WO2021215951A1 - Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome - Google Patents

Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome Download PDF

Info

Publication number
WO2021215951A1
WO2021215951A1 PCT/RU2020/000197 RU2020000197W WO2021215951A1 WO 2021215951 A1 WO2021215951 A1 WO 2021215951A1 RU 2020000197 W RU2020000197 W RU 2020000197W WO 2021215951 A1 WO2021215951 A1 WO 2021215951A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
source
wavelength
interference pattern
scanning
Prior art date
Application number
PCT/RU2020/000197
Other languages
English (en)
Russian (ru)
Inventor
Вадим Вениаминович КИЙКО
Сергей Юрьевич СЕДЫХ
Original Assignee
Общество с ограниченной ответственностью "Смартсенсор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Смартсенсор" filed Critical Общество с ограниченной ответственностью "Смартсенсор"
Priority to PCT/RU2020/000197 priority Critical patent/WO2021215951A1/fr
Publication of WO2021215951A1 publication Critical patent/WO2021215951A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters

Definitions

  • the invention relates to laser scanning systems without the use of mechanically moving parts.
  • US patent N ° 10393877 of the company VELODYNE LIDAR INC with the name Multiple pixel scanning LIDAR is known from the prior art, published on August 27, 2019 and describes methods and systems for scanning a three-dimensional picture based on LIDAR.
  • the system includes a scanning device, such as a mirror, configured to mechanically oscillate around an axis of rotation to deflect the beam in a predetermined direction using a drive in accordance with control signals from a control controller.
  • the device contains a transmitting channel rigidly fixed in the housing, including a pulsed coherent source of IR radiation and a collimator, a receiving channel, including a photodetector with focusing optics, a processing and control unit and a microelectromechanical mirror made with a two-coordinate suspension, located after the collimator of the transmitting channel and in front of the focusing optics of the receiving channel for simultaneous scanning of the scene with a laser beam and a radiation receiver.
  • the optical axes of the transmitting and receiving channels are aligned through the use of a tilted mirror made with a hole in the center through which the collimated radiation beam of the transmitting channel passes, and after reflection from the scanned object, the radiation beam is directed by the said mirror into the receiving channel.
  • the technical task is to create alternative methods of scanning with laser radiation, providing increased performance.
  • the technical result is achieved through the use of a system for changing the direction of propagation of a laser beam with a wavelength of li from the first source, including a plate with a layer of photochromic substance, in which a deflecting beam from the original direction at an angle Q is sequentially recorded, an interference pattern from the second source under the action of radiation with a wavelength Xr, and then the beam gradually returns to its original direction due to the erasure of the interference pattern under the action of radiation with a wavelength l 3 from the third radiation source.
  • the system can be designed in such a way that a Fresnel biprism is used to form the interference pattern, fixed between the second source and the plate.
  • the system can be designed in such a way that li lies in the range from 800 nm to 1700 nm, the radiation of the second and third sources lies in the UV, while Xs ⁇ Xr ⁇ 400 nm.
  • the system can be designed in such a way that a photochromic substance is used, in which the refractive index changes under the influence of Xr radiation and the interference pattern is a periodic change in the refractive index of the photochromic substance from in the ground state to m at the places of maximum illumination of the interference pattern.
  • the system can be designed in such a way that chemical compounds based on diarylethenes, spirooxazines, spiropyrano, bacteriorhodopsin, fulgides, fulgidides or phenoxy derivatives of quinones are used as a photochromic substance.
  • a method of deflecting the scanning laser radiation from the first source including recording the interference pattern from the second source with a wavelength l ⁇ , which deflects the scanning beam radiation with a wavelength li at an angle Q, with the subsequent gradual erasure of the interference pattern under the action of l3 radiation from the third source, which returns the scanning beam to its original direction.
  • the method can be implemented by repeating the following steps:
  • FIG. 1 shows a plate 1 with a layer of photochromic substance 2 on the second surface.
  • FIG. 2 schematically depicts a periodic change in the refractive index in photochromic substance 2.
  • FIG. 3 shows a system for changing the direction of propagation of a laser beam with a wavelength of ⁇
  • the following designations are introduced:
  • the plate 1 can be made of glass, quartz.
  • the photochromic substance should have the following properties. It should be transparent for the scanned radiation with a wavelength Li, and in the initial state, the refractive index corresponds to a certain value on, but under the action of radiation with a wavelength li, as a result of photochemical processes, the refractive index should vary in the places of irradiation depending on the intensity of the radiation Rr incident on one or another area of the photochromic layer 2, up to a value of n, different from. Another requirement for a photochromic substance is the ability to start a reverse photochemical process under the action of radiation l3, which returns the refractive index to its initial value along.
  • a diffraction pattern is created in the photochromic layer by radiation on R, the corresponding distribution of the refractive index is recorded in the layer.
  • An example of a recorded diffraction pattern at a wavelength Rr is shown in Fig. 2.
  • the regions of black color correspond to the places in which the interference pattern has minima, that is, the regions that are practically not irradiated by R1 and, therefore, the refractive index in which practically does not change and is equal to.
  • the light areas correspond to the maxima of the intensity of the interference pattern. In the light bands, the refractive index reaches the value of w.
  • the period of the fringes d can be chosen in such a way that when a laser beam with a wavelength Rb passes, the beam will be deflected by a certain diffraction angle Q, determined from the formula of the diffraction grating.
  • d sin Q w Hb where m is the diffraction order.
  • a system for changing the direction of propagation of a laser beam with a wavelength of li from the first source 5, including a plate 1 with a layer of photochromic substance 2, in which the interference pattern from the second source deflecting the beam from the initial direction is sequentially recorded 4 under the action of radiation with a wavelength l2 using a Fresnel prism 3. And then a scanning beam at R
  • FIG. 3 to create an interference pattern the Fresnel biprism is used, but in the general case, it is possible to use other elements.
  • the system can be designed in such a way that li lies in the range from 800 nm to 1700 nm, the radiation of the second and third sources lies in the UV, with Rs ⁇ Rr ⁇ 400 nm.
  • the reduced system has no mechanically moving parts and has an increased response speed.
  • the system according to the described solution can be made quite compact.
  • the dimensions of the photochromic layer will be about 4 mm x 4 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

L'invention concerne des systèmes de balayage par faisceau laser sans utiliser de pièces mécaniques mobiles. L'invention concerne essentiellement un système et un procédé de changement de la direction de propagation d'un faisceau laser ayant une longueur d'onde λ1 grâce à l'utilisation d'une plaque comportant une couche d'une substance photochrome dans laquelle est imprimé séquentiellement un schéma d'interférence qui dévie le faisceau d'un angle Θ par rapport à la position initiale depuis une seconde source sous l'action d'un rayonnement ayant une longueur d'onde λ2, après quoi le faisceau revient progressivement dans la position initiale du fait de l'effacement du schéma d'interférence sous l'action d'un rayonnement ayant une longueur d'onde λ3 depuis une troisième source de rayonnement. Le résultat technique consiste en l'élaboration de procédés alternatifs de balayage par faisceau laser assurant une augmentation de la vitesse d'action.
PCT/RU2020/000197 2020-04-24 2020-04-24 Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome WO2021215951A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2020/000197 WO2021215951A1 (fr) 2020-04-24 2020-04-24 Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2020/000197 WO2021215951A1 (fr) 2020-04-24 2020-04-24 Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome

Publications (1)

Publication Number Publication Date
WO2021215951A1 true WO2021215951A1 (fr) 2021-10-28

Family

ID=78269715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2020/000197 WO2021215951A1 (fr) 2020-04-24 2020-04-24 Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome

Country Status (1)

Country Link
WO (1) WO2021215951A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206858A (ja) * 1999-01-11 2000-07-28 Canon Inc ホログラム再生装置
KR100686923B1 (ko) * 2004-12-06 2007-02-27 김수길 스펙클패턴 전단간섭법에 있어서 파장판을 이용한 위상천이방법 및 이를 이용한 계측시스템
US20070211319A1 (en) * 2006-03-09 2007-09-13 Canon Kabushiki Kaisha Display apparatus, hologram reproduction apparatus and apparatus utilizing hologram
US20160245967A1 (en) * 2013-10-11 2016-08-25 Transitions Optical, Inc. Method of preparing a photochromic optical article using an organic solvent pretreatment and photochromic coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206858A (ja) * 1999-01-11 2000-07-28 Canon Inc ホログラム再生装置
KR100686923B1 (ko) * 2004-12-06 2007-02-27 김수길 스펙클패턴 전단간섭법에 있어서 파장판을 이용한 위상천이방법 및 이를 이용한 계측시스템
US20070211319A1 (en) * 2006-03-09 2007-09-13 Canon Kabushiki Kaisha Display apparatus, hologram reproduction apparatus and apparatus utilizing hologram
US20160245967A1 (en) * 2013-10-11 2016-08-25 Transitions Optical, Inc. Method of preparing a photochromic optical article using an organic solvent pretreatment and photochromic coating

Similar Documents

Publication Publication Date Title
US20060086898A1 (en) Method and apparatus of making highly repetitive micro-pattern using laser writer
JP3192630B2 (ja) 光ファイバブラッグ格子書き込みのための自動高精度波長制御装置及び方法
JP3330874B2 (ja) 自動光ファイバブラッグ格子書き込みのための高精度波長制御装置及び方法
JPS6218896B2 (fr)
CN109283805A (zh) 基于达曼光栅的激光直写装置
US5309272A (en) Dual pass binary diffractive optical element scanner
CN106556568B (zh) 利用衰减全反射的红外光谱仪和扫描仪
KR100569396B1 (ko) 홀로그래픽 메모리의 각도 다중화 장치
WO2021215951A1 (fr) Système de changement de la direction de propagation d'un faisceau laser sur la base d'une plaque comportant une couche photochrome
CN109343162A (zh) 基于超透镜的激光直写装置及其激光直写方法
JPS6383931A (ja) 発光素子
US6633385B2 (en) System and method for recording interference fringes in a photosensitive medium
US7445390B2 (en) Method and system for optically coupling components
SE520909C2 (sv) Metod och anordning för fotoinducering av ett lutat gitter i en optisk fiber
CA2107194C (fr) Systeme de balayage a element de diffraction optique binaire
KR100819872B1 (ko) 광 변조기 캘리브레이션 장치
US20040145744A1 (en) Measuring array
Goering et al. Miniaturized optical systems for beam deflection and modulation
KR20210020451A (ko) 레이저 가공 장치 및 레이저 가공 방법
CN117477354B (zh) 可调谐激光器的光束共线调节系统及方法
JPH0267559A (ja) 干渉露光装置
JPH05241008A (ja) 回折格子プロッター
CN104729995B (zh) 基于可编程微镜阵列菲涅尔波带片的微型光谱仪
JPS5977637A (ja) 光学読取装置
CN117055302A (zh) 一种激光直写装置及激光直写方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20932343

Country of ref document: EP

Kind code of ref document: A1