WO2021215332A1 - 光学部材及びこれを用いた画像表示装置 - Google Patents

光学部材及びこれを用いた画像表示装置 Download PDF

Info

Publication number
WO2021215332A1
WO2021215332A1 PCT/JP2021/015478 JP2021015478W WO2021215332A1 WO 2021215332 A1 WO2021215332 A1 WO 2021215332A1 JP 2021015478 W JP2021015478 W JP 2021015478W WO 2021215332 A1 WO2021215332 A1 WO 2021215332A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polarizing plate
light emitting
light
retardation
Prior art date
Application number
PCT/JP2021/015478
Other languages
English (en)
French (fr)
Inventor
田中 興一
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2022516999A priority Critical patent/JPWO2021215332A1/ja
Publication of WO2021215332A1 publication Critical patent/WO2021215332A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to an optical member using a reflective polarizing plate or a light emitting polarizing plate.
  • a polarizing plate is an element that extracts polarized light from unpolarized light, and is widely used in liquid crystal displays, polarized sunglasses, and the like.
  • the absorption type polarizing plate adsorbs iodine and / or a dichroic dye, which are generally dichroic dyes, on a polyvinyl alcohol film, as described in Patent Document 1, for example.
  • -It consists of oriented ones and is usually used for polarized sunglasses and liquid crystal displays.
  • the reflective polarizing plate includes, for example, the wire grid type having fine irregularities on the surface described in Patent Document 2, the birefringence interference type in which a large number of films having different birefringence described in Patent Document 3 are laminated, and Patent Document 4.
  • a circularly polarized light reflection type or the like using the cholesteric liquid crystal described in the above is known.
  • a so-called luminescent polarizing plate that irradiates ultraviolet rays described in Patent Document 5 to emit visible polarized light has been proposed.
  • a transparent display using an inorganic EL has also been proposed as a method of viewing an image from both sides, but since the same image is viewed, characters that can be visually recognized correctly on one side are inverted when viewed from the other side, so limited information is available. There was a problem that it could only be displayed.
  • the purpose of this application is to effectively utilize the polarized light emitted from both sides.
  • the present invention relates to, but is not limited to: [Invention 1] An optical member including a reflective polarizing plate or a light emitting polarizing plate, and having retardation plates on both sides thereof. [Invention 2] The optical member according to invention 1, wherein the optical member includes a light emitting polarizing plate, and the retardation plates on both sides thereof have different retardation values. [Invention 3] When the maximum in-plane refractive index of the retardation plate is nx, the refractive index in the direction orthogonal to nx is ny, and the refractive index in the thickness direction is nz, the relationship between them is nx>ny> nz, nx>.
  • invention 4 The optical member according to any one of Inventions 1 to 3, wherein the polarization axis of the light emitting polarizing plate and the direction of nx of at least one of the retardation plates do not match.
  • the retardation plate is patterned so as to have a different slow phase axis for each region in the plane.
  • At least one of the retardation plates is a liquid crystal cell.
  • various polarized light can be obtained from the respective polarized light emitting surfaces by the retardation elements provided on both sides of the reflective polarizing plate or the light emitting polarizing plate. Further, by utilizing this, it becomes possible to display different images from both sides of the polarizing plate.
  • the optical member of the present invention is characterized in that a retardation plate is provided on both sides of a reflective polarizing plate or a light emitting polarizing plate capable of utilizing polarized light from both sides.
  • a reflective polarizing plate examples include a wire grid type, a birefringence interference type, and a circularly polarized light reflection type using a cholesteric liquid crystal as described in Patent Documents 1, 2 and 3, but there is no particular limitation and the polarizing plate is well known. Techniques can be used.
  • the light emitting polarizing plate used in the present invention is one in which at least one kind of polarized light emitting dye capable of polarized light emission is oriented by utilizing the absorption of light, preferably light including ultraviolet light.
  • the wavelength can be indicated by the value (OPD) of the order parameter calculated by the following formula (I), and is preferably 0.50 to 1.00, more preferably 0.81 to 0.95.
  • Ky in the above formula (I) represents the light transmittance when light polarized orthogonal to the axis showing the highest light absorption in the light emitting polarizing plate is incident, and Kz is the highest in the light emitting polarizing plate. It represents the light transmittance when light polarized parallel to the axis indicating light absorption is incident.
  • Polarized luminescent dyes capable of emitting polarized light by utilizing light absorption generally belong to fluorescent dyes or phosphorescent luminescent dyes, but specifically, they absorb specific light and utilize the light to emit light energy.
  • a dye that can be converted to either a fluorescent dye or a phosphorescent dye may be used, but it is preferable to use a fluorescent dye.
  • the dye often has a different wavelength of absorbed light from the emitted light, and is sometimes called a wavelength conversion dye.
  • At least one kind of polarized light emitting dye contained in the light emitting polarizing plate preferably has a fluorescent light emitting property, and in particular, the light in the visible range is polarized by absorbing the light in the ultraviolet region to the near-ultraviolet visible region. It is more preferable to have a fluorescent emission characteristic capable of emitting light.
  • the polarized light emitting dye has light absorption anisotropy between the axis oriented to the base material and the axis orthogonal to the axis, like the dichroic dye, by orienting the polarized light emitting dye, and the light absorption anisotropy. That is, it exhibits a polarization function.
  • the light transmittance (that is, the transmittance on the axis with a small amount of light transmission) was defined as Kz, while the light-emitting polarizing plate in which the polarized light-emitting dye was oriented was polarized at an orthogonal position to the axis showing the highest absorption.
  • Ky be the light transmittance when light is incident (that is, the transmittance on the axis in which the amount of light transmitted is large). Then, by substituting these Ky and Kz into the above equation (I), the order parameter, that is, the degree of orientation order can be calculated.
  • the order parameter value (orientation order) is generally used as an index used to measure the orientation of substances such as liquid crystals, and the higher the order parameter value, the higher the orientation order of the polarized light emitting element. It shows that it has.
  • the formula for calculating the value of the order parameter is expressed as the following formula (II) (see “Display materials and functional dyes (CMC Publishing, supervised by Hiroyuki Nakazumi, 2004, P65)").
  • the following equation (III) is derived.
  • the value of the order parameter (OPD) can be expressed by the above equation (I).
  • a PARA is the absorbance in the direction parallel to the absorption axis of the oriented polarized fluorinated dye
  • a CROSS is the absorbance in the direction orthogonal to the absorption axis of the oriented dye. ..
  • Each absorbance is calculated by Log (A), and the formula (I) is derived by substituting the absorbance obtained by Ky and Kz into the equation (III) for each absorbance calculated by Log (A). ..
  • the degree of orientation order of the dye capable of emitting polarized light is controlled by utilizing the absorption of light, whereby a light emitting polarizing plate exhibiting polarized light emission having a high contrast value can be obtained.
  • the value of the order parameter is preferably controlled in the range of 0.50 to 1.00, more preferably 0.81 to 0.95, and even more preferably 0.85 to 0.94. ..
  • a light emitting polarizing plate exhibiting polarized light emission can be obtained by containing one or more polarized light emitting dyes in a substrate and orienting them. Such a light emitting polarizing plate exhibits various emission colors by adjusting the blending ratio of the polarized light emitting dye. For example, when the absolute value of hue a * measured according to JIS Z 8781-4: 2013 is 5 or less and the absolute value of hue b * is 5 or less, the emission color from the polarized light emitting element becomes white. show.
  • the hue a * value and the hue b * value according to the standard of JIS Z 8781-4: 2013 are values generally used as an index indicating the hue of light.
  • the polarized luminescent dye is preferably a compound having a stilbene skeleton or a biphenyl skeleton as a basic skeleton, or a salt thereof.
  • the stilbene skeleton and the biphenyl skeleton as the basic skeletons of the polarized luminescent dye have the effect of exhibiting fluorescence emission characteristics in their respective skeletons and exhibiting high dichroism by orienting them toward the substrate. Since this action is due to the structure of each basic skeleton of the stilbene skeleton and the biphenyl skeleton, any substituent may be further bonded to the basic skeleton structure.
  • the azo group is substituted in the basic skeleton structure, although a high degree of polarization can be realized as in the conventional dye-based polarizing plate, the amount of emitted light is remarkably reduced depending on the position where the azo group is substituted, and the desired emission is achieved. The amount of light may not be obtained. Therefore, when substituting an azo group for each basic skeleton, the substitution position is important.
  • the polarized luminescent dye may be used alone or in combination of two or more.
  • the polarized light emitting dye has a fluorescence emission characteristic capable of polarized light in the visible range by absorbing light in the ultraviolet region to the near ultraviolet visible region. Specifically, by impregnating the base material with a polarized luminescent dye and then irradiating light in the ultraviolet to near-ultraviolet visible region, in the visible region (generally 380 to 780 nm), for example, in the wavelength region of 400 to 700 nm.
  • ultraviolet light means light in a wavelength range of 400 nm or less, but light in a wavelength range of 430 nm or less is also extremely low in human visual sensitivity. Therefore, the light in the ultraviolet to near-ultraviolet visible region can be defined as the light invisible to the human eye, and for example, the light absorbed by the polarized light emitting dye is preferably the light in the wavelength region of 300 to 430 nm.
  • a polarized luminescent dye it is possible to obtain a luminescent polarizing plate capable of absorbing invisible light and emitting polarized light.
  • Polarized luminescent dye having a stilbene skeleton is preferably a compound represented by the following formula (1) or a salt thereof.
  • L and M each independently have a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, and a substituent.
  • which may be a naphthotriazole group which may have a substituent C 1 -C 20 (1 ⁇ 20 carbon atoms) alkyl group, optionally a vinyl group which may have a substituent and may have a substituent It is selected from the group consisting of an amide group, a ureido group which may have a substituent, an aryl group which may have a substituent, and a carbonyl group which may have a substituent, but is limited thereto. is not it.
  • the compound having a stilbene skeleton represented by the formula (1) exhibits fluorescence emission, and dichroism can be obtained by orientation. Since the luminescence property is due to the stilbene skeleton, the substituent to which each group of L and M can be bonded is not particularly limited as long as it does not have an azo group, and is an arbitrary substituent. It's okay.
  • Each of the "substituents” is not particularly limited, and examples thereof include the following: Amino group; Nitro group; Cyano group; Hydroxy group; Sulfonic acid group; Phosphate group; Carboxyl group; Carboxylalkyl groups such as methylcarboxyl group and ethylcarboxyl group; Halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom; Alkoxy groups such as methoxy group, ethoxy group and propoxy group; Aryloxy groups such as phenoxy group and naphthoxy group; Methyl group, ethyl group, n- butyl group, n- hexyl, n- octyl group, n- dodecyl group, an isopropyl group, sec- butyl group, tert- butyl group, a cyclohexyl groups, C 1 -C such cyclopenty
  • Aryl groups such as; Methylcarbonyl group, ethylcarbonyl group, n- butyl - C 1 -C 20 alkylcarbonyl group such as a carbonyl group; Arylcarbonyl groups such as phenylcarbonyl group, biphenylcarbonyl group, naphthylcarbonyl group; Methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, n- butyl - C 1 -C 20 alkylsulfonyl group such as a sulfonyl group; Arylsulfonyl groups such as phenylsulfonyl groups and naphthylsulfonyl groups.
  • substituents may have additional substituents, and the above-mentioned examples can be mentioned as the additional substituents.
  • the number of such substitution chains is not limited.
  • Compound Example 1-5 exemplified later has an amino group as a substituent, the amino group has a triazine group as a substituent, and the triazine group has two amino groups as a substituent and is an amino group.
  • Amino groups that may have substituents include, for example: Unsubstituted amino group; Methylamino group, ethylamino group, n-butylamino group, tert-butylamino group, n-hexylamino group, dodecylamino group, dimethylamino group, diethylamino group, di-n-butylamino group, ethylmethylamino group, good C 1 -C 20 alkylamino group which may have a substituent such as ethylhexyl amino group; An arylamino group which may have a substituent such as a phenylamino group, a diphenylamino group, a naphthylamino group, an N-phenyl-N-naphthylamino group; Methylcarbonylamino group, ethylcarbonylamino group, n- butyl - -C
  • an optionally substituted C 1 -C 20 alkyl carbonyl amino group an optionally substituted aryl carbonyl amino group, C 1 -C 20 alkylsulfonylamino group, a substituted group
  • the arylsulfonylamino group which may have is preferable.
  • Examples of the carbonylamide group that may have a substituent include an N-methyl-carbonylamide group (-CONHCH 3 ), an N-ethyl-carbonylamide group (-CONHC 2 H 5 ), and an N-phenyl-carbonylamide.
  • Groups (-CONHC 6 H 5 ) and the like can be mentioned.
  • C 1 -C 20 alkyl group which may have a substituent C 1 -C 20 alkyl group, e.g., methyl group, ethyl group, n- butyl group, n- hexyl, n- octyl, n- Linear C 1- C 12 alkyl group such as dodecyl group ; branched C 3- C 10 alkyl group such as isopropyl group, sec-butyl group, tert-butyl group; cyclic group such as cyclohexyl group and cyclopentyl group C 3- C 7 alkyl group and the like.
  • a linear or branched alkyl group is preferable, and a linear alkyl group is more preferable.
  • Examples of the vinyl group which may have a substituent include an ethenyl group, a styryl group, a vinyl group having an alkyl group, a vinyl group having an alkoxy group, a divinyl group, a pentadienyl group and the like.
  • Examples of the amide group which may have a substituent include an acetamide group (-NHCOCH 3 ) and a benzamide group (-NHCOC 6 H 5 ).
  • the aryl group of the aryl group which may have a substituent, for example, a phenyl group, a naphthyl group, an anthracenyl group, a biphenyl group and the like, preferably a C 6 -C 12 aryl group.
  • the aryl group may be a 5- or 6-membered heterocyclic group containing 1 to 3 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom as ring-constituting atoms.
  • the heterocyclic group contains an atom selected from a nitrogen atom and a sulfur atom as a ring-constituting atom.
  • Examples of the carbonyl group which may have a substituent include a methylcarbonyl group, an ethylcarbonyl group, an n-butyl-carbonyl group, a phenylcarbonyl group and the like.
  • Examples of the compound represented by the formula (1) include the Kayaphor series (manufactured by Nippon Kayaku Co., Ltd.), the Whitex series (manufactured by Sumitomo Chemical Co., Ltd.) such as Whitex RP, and the following compounds are exemplified. , Not limited to these.
  • a compound represented by the following formula (2) or formula (3) or a salt thereof is preferable.
  • a polarized light emitting device that emits clear white light can be obtained.
  • the compounds represented by the following formulas (2) and (3) also exhibit fluorescence emission due to the stilbene skeleton, and dichroism can be obtained by orientation.
  • X represents a nitro group or an amino group which may have a substituent.
  • the amino group which may have a substituent is defined in the same manner as the amino group which may have a substituent in the above formula (1).
  • X is a nitro group, an optionally substituted C 1 -C 20 alkyl carbonyl amino group, an optionally substituted aryl carbonyl amino group, C 1 -C 20 alkylsulfonylamino group , Or an arylsulfonylamino group which may have a substituent, and more preferably a nitro group.
  • R has a halogen atom such as a hydrogen atom, a chlorine atom, a bromine atom or a fluorine atom, a hydroxyl group, a carboxyl group, a nitro group, an alkyl group which may have a substituent, and a substituent.
  • a halogen atom such as a hydrogen atom, a chlorine atom, a bromine atom or a fluorine atom, a hydroxyl group, a carboxyl group, a nitro group, an alkyl group which may have a substituent, and a substituent.
  • As the alkyl group which may have a substituent group is similarly defined with good C 1 -C 20 alkyl group which may have a substituent in the formula (1).
  • the alkoxy group which may have a substituent is preferably a methoxy group, an ethoxy group or
  • the amino group which may have a substituent is defined in the same manner as the amino group which may have a substituent in the above formula (1), and is preferably a methylamino group, a dimethylamino group, an ethylamino group or a diethylamino group. , Or a phenylamino group or the like.
  • R is preferably a hydrogen atom or a C 1 -C 20 alkyl group, when R is C 1 -C 20 alkyl group, preferably a methyl group.
  • R may be bonded to any carbon of the naphthalene ring in the naphthotriazole ring, but when the carbon atom condensed with the triazole ring is at the 1-position and the 2-position, the 3-position, 5-position, or 8 is used. It is preferably bonded to the position.
  • n is an integer of 0 to 3, preferably 1.
  • ⁇ (SO 3 H) may be bonded to an arbitrary carbon atom of the naphthalene ring in the naphthotriazole ring.
  • R is a hydrogen atom and n is 1 or 2.
  • Y represents an optionally substituted C 1 -C 20 alkyl group, optionally a vinyl group which may have a substituent, or an aryl group which may have a substituent.
  • an aryl group which may have a substituent is preferable, a naphthyl group which may have a substituent is more preferable, and a naphthyl group in which an amino group and a sulfo group are substituted as a substituent is preferable. Is particularly preferable.
  • Z is defined in the same manner as X in the above formula (2), represents a nitro group or an amino group which may have a substituent, and is preferably a nitro group.
  • the compound having a biphenyl skeleton is preferably a compound represented by the following formula (4) or a salt thereof.
  • P and Q may independently have a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, and a substituent, respectively.
  • naphthotriazole group which may have a substituent C 1 -C 20 alkyl group, an optionally substituted vinyl group, an amide group which may have a substituent and may have a substituent It represents a ureido group, an aryl group which may have a substituent, or a carbonyl group which may have a substituent, but is not limited thereto.
  • a compound having an azo group as P and / or Q of the biphenyl skeleton is not suitable because the fluorescence emission is remarkably reduced.
  • the compound represented by the above formula (4) is preferably a compound represented by the following formula (5).
  • j independently represents an integer of 0 to 2.
  • R 1 , R 2 , R 3 and R 4 are independently hydrogen atom, C 1- C 4 alkyl group, C 1- C 4 alkoxy group, aralkyloxy group, alkeniroxy group, C 1 -C 4 alkylsulfonyl group, C 6 -C 20 arylsulfonyl group, a carbonamido group, a sulfonamido group, a carboxyalkyl group.
  • the position where R 1 to R 4 are bonded is not particularly limited, but when the carbon atom bonded to the vinyl group is the 1-position, the 2-position, 4-position, and 6-position are preferable, and the 4-position is preferable. Is particularly preferable.
  • the C 1 -C 4 alkyl group e.g., methyl group, ethyl group, propyl group, n- butyl group, sec- butyl group, tert- butyl group, a cyclobutyl group.
  • the C 1 -C 4 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, n- butoxy group, sec- butoxy group, tert- butoxy group, cyclobutoxy group, and the like.
  • the Ararukirokishi group for example, C 7 -C 18 Ararukirokishi group.
  • the alkenyloxy group for example, C 2 -C 18 alkenyloxy group.
  • the C 1 -C 4 alkylsulfonyl group for example, include methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, n- butylsulfonyl group, sec- butylsulfonyl group, tert- butylsulfonyl group, cyclobutylsulfonyl group, and the Be done.
  • the compound represented by the above formula (5) can be prepared by a known method, and can be synthesized, for example, by condensing 4-nitrobenzaldehyde-2-sulfonic acid with phosphonate and then reducing the nitro group. ..
  • Specific examples of the compound represented by the formula (5) include the following compounds described in JP-A-4-226162.
  • the salt of the compound represented by the formulas (1) to (5) means a state in which the free acid of each compound represented by each of the above formulas forms a salt together with an inorganic cation or an organic cation.
  • the inorganic cations for example, the cations of alkali metals (such as lithium, sodium, potassium, etc.), or ammonium (NH 4 +), and the like.
  • examples of the organic cation include organic ammonium represented by the following formula (D).
  • Z 1 to Z 4 independently represent a hydrogen atom, an alkyl group, a hydroxyalkyl group or a hydroxyalkoxyalkyl group, and at least one of Z 1 to Z 4 is hydrogen. It is a group other than an atom.
  • Z 1 to Z 4 include: Methyl, ethyl, butyl group, pentyl group, C 1 -C 6 alkyl such as hexyl, preferably C 1 -C 4 alkyl group; Hydroxy C 1- C 6 alkyl groups such as hydroxymethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 4-hydroxybutyl group, 3-hydroxybutyl group and 2-hydroxybutyl are preferable.
  • hydroxy C 1- C 4 alkyl group Is a hydroxy C 1- C 4 alkyl group;
  • hydroxy C 1- C 6 alkoxy C 1- C 6 alkyl groups such as hydroxyethoxymethyl group, 2-hydroxyethoxyethyl group, 3-hydroxyethoxypropyl group, 3-hydroxyethoxybutyl group and 2-hydroxyethoxybutyl group,
  • a hydroxy C 1- C 4 alkoxy C 1- C 4 alkyl group Preferably a hydroxy C 1- C 4 alkoxy C 1- C 4 alkyl group.
  • each cation such as lithium, sodium, potassium, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, and ammonium is more preferable.
  • Inorganic cations of lithium, ammonium or sodium are particularly preferred.
  • the polarized light emitting dye having the above structure does not have an azo group in the molecule, the absorption of light due to the azo bond is suppressed.
  • a compound having a stilbene skeleton exhibits a luminescent effect when irradiated with ultraviolet light, and the molecule is stabilized by the presence of a strong carbon-carbon double bond in the stilbene skeleton. Therefore, a light-emitting polarizing plate using a polarized light-emitting dye having such a specific structure can absorb light and utilize the energy to emit polarized light in the visible region.
  • the light emitting polarizing plate exhibiting the above characteristics may further contain at least one fluorescent dye and / or organic dye different from the above-mentioned polarized light emitting dye as long as it does not impair the polarization performance of the polarized light emitting element. good.
  • the fluorescent dye used in combination include C.I. I. Fluorescent Fluorescent 5, C.I. I. Fluorescent Fluorescenter 8, C.I. I. Fluorescent Fluorescent 12, C.I. I. Fluorescent Brightener 28, C.I. I. Fluorescent Brightener 30, C.I. I. Fluorescent Fluorescent 33, C.I. I. Fluorescent Fluorescent 350, C.I. I. Fluorescent Fluorescent 360, C.I. I. Fluorescent Fluorescent 365 and the like can be mentioned.
  • organic dye for example, C.I. Ai. direct. Yellow 12, Sea. Ai. direct. Yellow 28, Sea. Ai. direct. Yellow 44, Sea. Ai. direct. Orange 26, Sea. Ai. direct. Orange 39, Sea. Ai. direct. Orange 71, Sea. Ai. direct. Orange 107, Sea. Ai. direct. Red 2, Sea. Ai. direct. Red 31, Sea. Ai. direct. Red 79, Sea. Ai. direct. Red 81, Sea. Ai. direct. Red 247, Sea. Ai. direct. Blue 69, Sea. Ai. direct. Blue 78, Sea. Ai. direct. Green 80 and Sea. Ai. direct. Green 59 and the like can be mentioned.
  • These organic dyes may be free acids, or may be alkali metal salts (eg Li salt, Na salt, K salt), ammonium salts or amine salts.
  • the base material light emitting polarizing plate is obtained by orienting a polarized light emitting dye.
  • the method of orientation is not limited, and examples thereof include a method of aligning the polarized light emitting dye by containing the polarized light emitting dye in the base material and orienting the entire base material.
  • the base material used in the present invention is not particularly limited as long as it can contain a polarized luminescent dye and can be oriented.
  • Such a base material preferably contains, for example, a hydrophilic polymer that adsorbs a polarized light emitting dye and can be crosslinked with a boron derivative or the like, and is hydrophilic obtained by forming a film of the hydrophilic polymer. Polymer films are more preferred.
  • the hydrophilic polymer is not particularly limited, but for example, a polyvinyl alcohol-based resin and a starch-based resin are preferable.
  • the hydrophilic polymer preferably contains a polyvinyl alcohol-based resin or a derivative thereof, and more preferably contains polyvinyl alcohol, from the viewpoint of dyeability, processability, crosslinkability and the like of the polarized light emitting dye.
  • the polyvinyl alcohol-based resin or its derivative include polyvinyl alcohol or a derivative thereof, polyvinyl alcohol or a derivative thereof as an olefin such as ethylene or propylene, or crotonic acid, acrylic acid, methacrylic acid, and maleic acid.
  • the base material is preferably a film made of polyvinyl alcohol or a partially esterified polyvinyl alcohol derivative.
  • a method for producing a light emitting polarizing plate using a base material containing a polyvinyl alcohol-based resin will be exemplified.
  • the base material containing the polyvinyl alcohol-based resin for example, a commercially available product may be used, or the substrate may be produced by forming a film of the polyvinyl alcohol-based resin.
  • the film-forming method of the polyvinyl alcohol-based resin is not particularly limited, and for example, a method of melt-extruding a hydrous polyvinyl alcohol, a casting film-forming method, a wet film-forming method, and a gel film-forming method (the polyvinyl alcohol aqueous solution is once cooled).
  • a known film-forming method can be adopted, such as a method of extracting and removing the solvent after gelation), a cast film-forming method (flowing a polyvinyl alcohol aqueous solution on a substrate and drying), and a method using a combination thereof.
  • the thickness of the base material can be appropriately designed, but is usually 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • a swelling treatment may be performed in order to facilitate the adsorption of the polarized luminescent dye.
  • the swelling treatment is preferably performed by immersing the base material in a swelling liquid at 20 to 50 ° C. for 30 seconds to 10 minutes, and the swelling liquid is preferably water.
  • the draw ratio of the base material with the swelling liquid is preferably adjusted to 1.00 to 1.50 times, more preferably 1.10 to 1.35 times.
  • the substrate obtained by performing the swelling treatment in the above swelling step is impregnated and adsorbed with at least one type of polarized luminescent dye.
  • the dyeing step is not particularly limited as long as it is a method of impregnating and adsorbing the polarized light emitting dye on the base material, but for example, a method of immersing the base material in a dyeing solution containing the polarized light emitting dye, the method of immersing the base material in the base material. Examples thereof include a method of applying a dyeing solution and adsorbing the dyeing solution. Of these, a method of immersing in a dyeing solution containing a polarized luminescent dye is preferable.
  • the concentration of the polarized luminescent dye in the dyeing solution is not particularly limited as long as the polarized luminescent dye is sufficiently adsorbed in the substrate, but is, for example, 0.0001 to 1% by mass in the dyeing solution. It is preferably 0.001 to 0.5% by mass, and more preferably 0.001 to 0.5% by mass.
  • the temperature of the dyeing solution in the dyeing step is preferably 5 to 80 ° C, more preferably 20 to 50 ° C, and particularly preferably 40 to 50 ° C.
  • the time for immersing the substrate in the dyeing solution is important in controlling the value of the order parameter exhibited by the polarizing light emitting device. In order to control the value of the order parameter within a desired range, the time for immersing the substrate in the dyeing solution is preferably adjusted between 6 and 20 minutes, more preferably between 7 and 10 minutes.
  • the polarized luminescent dye contained in the dyeing solution may be used alone or in combination of two or more. Since the luminescent color of the polarized luminescent dye differs depending on the compound, it is possible to appropriately adjust the luminescent color to be produced by containing one or more kinds of the polarized luminescent dye in the base material. Further, if necessary, the dyeing solution may further contain one or more organic dyes and / or fluorescent dyes different from the polarized light emitting dyes.
  • the blending ratio of the fluorescent dye or the organic dye is not particularly limited, but in general, the total amount of the fluorescent dye and / or the organic dye is 0.01 to 10 parts by mass with respect to 100 parts by mass of the polarizing element. It is preferable to use in the range of.
  • a dyeing aid may be further used if necessary.
  • the dyeing aid include sodium carbonate, sodium hydrogencarbonate, sodium chloride, sodium sulfate (Glauber's salt), anhydrous sodium sulfate, sodium tripolyphosphate and the like, and sodium sulfate is preferable.
  • the content of the dyeing aid can be arbitrarily adjusted by the above-mentioned immersion time based on the dyeability of the dichroic dye used, the temperature at the time of dyeing, etc., but is 0.0001 to 10% by mass in the dyeing solution. It is preferably 0.0001 to 2% by mass, and more preferably 0.0001 to 2% by mass.
  • a pre-cleaning step can be optionally performed in order to remove the dyeing solution adhering to the surface of the base material in the dyeing step.
  • a pre-cleaning step it is possible to suppress the transfer of the polarized luminescent dye remaining on the surface of the base material into the liquid to be treated next.
  • water is generally used as the cleaning liquid.
  • cleaning method it is preferable to immerse the dyed base material in the cleaning liquid, and on the other hand, cleaning can also be performed by applying the cleaning liquid to the base material.
  • the washing time is not particularly limited, but is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds.
  • the temperature of the cleaning liquid in this pre-cleaning step needs to be a temperature at which the material constituting the base material does not dissolve, and the cleaning treatment is generally performed at 5 to 40 ° C. Even if there is no pre-cleaning step, the pre-cleaning step can be omitted because it does not have a particularly large effect on the performance of the polarizing element.
  • the base material can contain a cross-linking agent.
  • a cross-linking agent As a method of incorporating a cross-linking agent into the base material, it is preferable to immerse the base material in a treatment solution containing the cross-linking agent, and on the other hand, the treatment solution may be applied or applied to the base material.
  • the cross-linking agent in the treatment solution for example, a solution containing a boron compound is used.
  • the boron compound examples include inorganic compounds such as boric acid, borosand, boron oxide and boron hydroxide, alkenylboronic acid, arylboronic acid, alkylboronic acid, boronic acid ester, trifluoroborate or a salt thereof, which are boronic acids. Boric acid and boronic acid are preferable, and boric acid is particularly preferable.
  • the solvent in the treatment solution is not particularly limited, but water is preferable.
  • the concentration of the boron derivative in the treatment solution is preferably 0.1 to 15% by mass, more preferably 0.1 to 10% by mass.
  • the temperature of the treatment solution is preferably 30 to 80 ° C, more preferably 40 to 75 ° C.
  • the treatment time of this cross-linking step is preferably 30 seconds to 10 minutes, more preferably 1 to 6 minutes.
  • the light emitting polarizing plate obtained by this cross-linking step shows high contrast. This is an excellent action that cannot be expected from the function of the boron compound used for the purpose of improving water resistance or light transmission in the prior art.
  • a fixing treatment may be further performed with an aqueous solution containing a cation and a cationic polymer compound.
  • the cation is an ion derived from a metal such as sodium, potassium, calcium, magnesium, aluminum, iron or barium, and a divalent ion is preferably used.
  • cationic polymer compound for example, dicyanamide and formalin polymerization condensate as dicyan, dicyandiamide / diethylenetriamine polycondensate as polyamine, epichlorohydrin / dimethylamine addition polymer as polycation, dimethyldialylammon Nium chloride / ion dioxide ion copolymer, diallylamine salt polymer, dimethyldiallylammonium chloride polymer, allylamine salt polymer, dialkylaminoethyl acrylate quaternary salt polymer and the like are used.
  • a stretching step is carried out.
  • the stretching step is performed by uniaxially stretching the base material in a certain direction.
  • the stretching method may be either a wet stretching method or a dry stretching method.
  • the stretch ratio of the substrate is also important in controlling the value of the order parameter.
  • the draw ratio of the base material is preferably 3.3 times or more, and more preferably 3.3 to 8.0 times. , 3.5 to 6.0 times is more preferable, and 4.0 to 5.0 times is particularly preferable.
  • the stretching treatment is performed while immersing the base material in a solution containing at least one cross-linking agent.
  • a cross-linking agent for example, a boron compound in the above-mentioned cross-linking step can be used, and preferably, the stretching treatment can be performed in the treatment solution used in the cross-linking step.
  • the stretching temperature is preferably 40 to 60 ° C, more preferably 45 to 58 ° C.
  • the stretching time is usually 30 seconds to 20 minutes, preferably 2 to 7 minutes.
  • the wet stretching step may be carried out by one-step stretching or by two or more steps of multi-step stretching.
  • the stretching treatment may be optionally performed before the dyeing step, and in this case, the orientation of the polarized light emitting dye can also be performed at the time of dyeing.
  • the stretching medium when the stretching medium is an air medium, it is preferable to stretch the base material at a temperature of the air medium of room temperature to 180 ° C.
  • the humidity is preferably in an atmosphere of 20 to 95% RH.
  • the method for heating the base material include, but are not limited to, an inter-roll zone stretching method, a roll heating stretching method, a hot pressure stretching method, and an infrared heating stretching method.
  • the dry stretching step may be carried out by one-step stretching or by two or more steps of multi-step stretching.
  • the base material containing the polarized light emitting dye can be stretched while containing the boron derivative, or the base material can be stretched after containing the boron compound, but the base material contains the boron compound.
  • the temperature at which the boron derivative is applied is preferably 40 to 90 ° C, more preferably 50 to 75 ° C.
  • the concentration of the boron compound is preferably 1 to 10%, more preferably 3 to 8%.
  • the treatment time for dry stretching is preferably 1 to 15 minutes, more preferably 2 to 12 minutes, and even more preferably 3 to 10 minutes.
  • a cross-linking agent may precipitate or foreign matter may adhere to the surface of the base material, so that a cleaning step of cleaning the surface of the base material can be performed.
  • the washing time is preferably 1 second to 5 minutes.
  • a cleaning method it is preferable to immerse the base material in a cleaning liquid, and on the other hand, the cleaning liquid can be applied to the base material or cleaned by coating. Water is preferable as the cleaning liquid.
  • the cleaning treatment may be carried out in one step or in two or more steps.
  • the temperature of the cleaning liquid in the cleaning step is not particularly limited, but is usually 5 to 50 ° C., preferably 10 to 40 ° C., and may be normal temperature.
  • the solvent of the solution or treatment liquid used in each of the above steps in addition to the above water, for example, dimethylsulfoxide; N-methylpyrrolidone; methanol, ethanol, propanol, isopropyl alcohol, glycerin, ethylene glycol, propylene glycol, diethylene glycol, etc. Alcohols such as triethylene glycol, tetraethylene glycol or trimethylolpropane; amines such as ethylenediamine and diethylenetriamine can be mentioned.
  • the solvent of the solution or the treatment liquid is not limited to these, but is preferably water. Further, the solvent of these solutions or the treatment liquid may be used alone or in combination of two or more.
  • a drying step of the base material is performed.
  • the drying treatment can be performed by natural drying, in order to further improve the drying efficiency, it can be performed by compression with a roll, removal of moisture on the surface with an air knife, a water absorption roll, etc. It is also possible to do it.
  • the temperature of the drying treatment is preferably 20 to 100 ° C, more preferably 60 to 100 ° C.
  • the drying time is preferably 30 seconds to 20 minutes, more preferably 5 to 10 minutes.
  • a light emitting polarizing plate can be produced by the above-mentioned manufacturing method, and the obtained light emitting polarizing plate exhibits polarized light emission having high durability and high degree of polarization (contrast).
  • a polyvinyl alcohol-based resin film containing a polarized light-emitting dye is prepared in advance, and each step of swelling, stretching, washing, cross-linking, and drying is performed without going through a dyeing step to prepare a light-emitting polarizing plate. It is also possible to do.
  • a light emitting polarizing plate can be produced by the above-exemplified manufacturing method, and the obtained light emitting polarizing plate exhibits polarized light emission having high durability and high degree of polarization (contrast).
  • the light emitting polarizing plate uses the energy obtained by absorbing light, particularly light in the ultraviolet region, to polarize and emit light in the visible region.
  • the polarized light emission has a high degree of polarization (contrast). Since the light emitted from the polarized light emitting element is polarized light in the visible region, when the light emitting polarizing plate is observed through a general polarizing plate having a polarizing function for the light in the visible region, the axis of the polarizing plate By changing the angle, polarized light emission and non-polarized light emission can be visually recognized.
  • the degree of polarization of the polarized light emitted by the light emitting polarizing plate is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more. Further, the higher the contrast, the more preferable, and the higher the degree of polarization, the higher the tendency.
  • the transmittance of light in the visible region of the light emitting polarizing plate is, for example, 60% or more, preferably 70% or more in terms of the luminous efficiency correction transmittance. , More preferably 80% or more, still more preferably 85% or more, and particularly preferably 90% or more.
  • the light emitting polarizing plate may be provided with a support on one side or may be sandwiched between the supports on both sides in order to protect the surface.
  • the means for providing or holding the support is not particularly limited, but when an adhesive or an adhesive is used, a water-soluble adhesive, a heat-curable adhesive, an ultraviolet-curable adhesive, an acrylic adhesive, or the like is used. Is preferable.
  • various resin materials such as glass, cellulose resin such as triacetyl cellulose, acrylic resin, nylon resin, and polyolefin resin can be used.
  • the transmittance of the base material or the adhesive layer at the wavelength of the light absorbed by the element is preferably 50 so as not to interfere with the light emission of the light emitting polarizing plate. It is preferably about 100%, more preferably 70 to 98%, and even more preferably about 80 to 95%.
  • the support preferably does not absorb light having an absorption wavelength of the light emitting polarizing plate. For example, since the support often contains an ultraviolet absorber, it is preferable to use a support that does not contain an ultraviolet absorber in the case of ultraviolet rays having an absorption wavelength of 350 to 380 nm of the light emitting polarizing plate.
  • the retardation plate used in the present invention has a function of changing the polarization state so as to convert linearly polarized light into circularly polarized light, for example.
  • the function of the retardation plate is determined by the birefringence and thickness of the retardation plate.
  • the maximum in-plane refractive index of the retardation plate is nx
  • the refractive index in the direction orthogonal to nx is ny
  • the refractive index in the thickness direction is nz, any one or any of the respective refractive indexes. It functions as a retardation plate by different parts.
  • the retardation plate of the present invention is uniaxially or biaxially formed of a cellulose resin such as triacetyl cellulose, a polymer film such as polycarbonate, polyamide, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polystyrene, polyvinyl alcohol or cycloolefin polymer. It can be obtained by stretching on a shaft. The distribution of the refractive index is appropriately adjusted according to the stretching conditions.
  • the degree to which one polarization state is converted to another polarization state depends on 1) the phase difference value according to the wavelength and 2) the relation angle between the polarization axis and the slow axis of the retardation plate (same as the direction of nx). It is decided.
  • the angle between the slow axis direction of the retardation plate and the polarization axis is 45 degrees, and the retardation value is the wavelength of linearly polarized light.
  • the linearly polarized light is converted into circularly polarized light.
  • the phase difference value is 1/2 of the wavelength of linearly polarized light (so-called 1/2 wave plate)
  • the linearly polarized light remains linearly polarized light, but the direction of the polarization axis is converted by 90 degrees.
  • the phase difference value and slow axis are different from those in the normal direction due to the contribution of the nz component, and the angle of relationship with the polarization axis also changes. do.
  • these controls can be adjusted by appropriately adjusting the values of nx, ny, and nz.
  • the retardation value also changes depending on the wavelength of the incident polarized light.
  • the wavelength dispersion characteristics of the material used for the retardation plate can be controlled, and a plurality of retardation films can be used. Can be adjusted arbitrarily by combining.
  • the refractive indexes of nx, ny, and nz related to the retardation value of the retardation plate can be appropriately selected and adjusted according to the desired polarization state, and such a combination is selected as the refractive index of the first retardation plate.
  • the retardation plate is not limited to one on one side, and it is also possible to stack two or more retardation plates on one side or both sides.
  • the optical member of the present invention includes retardation plates on both sides of the reflective polarizing plate or the light emitting polarizing plate.
  • the first and second retardation plates may be different or may be the same retardation plate.
  • the polarizing plate and the retardation plate do not necessarily have to be in close contact with each other, and there may be a space between the polarizing plate and the retardation plate.
  • FIG. 1 shows an example of the configuration of the optical member 1 of the present invention.
  • a first retardation plate 3 and a second retardation plate 4 are arranged on both surfaces of the light emitting polarizing plate 2.
  • the first retardation plate is a 1/4 wave plate
  • the second retardation plate is also a 1/4 wavelength plate.
  • the slow axes 6 and 7 of the retardation plates are arranged so as to be 45 degrees when the retardation plates are arranged on the observer side with respect to the polarizing axis 5 of the light emitting polarizing plate 1.
  • the light source 8 irradiates the light (for example, ultraviolet rays) required for the light emitting polarizing plate to emit light from the first retardation plate 3
  • the light emitting polarizing plate emits linearly polarized light 9 on both sides
  • the light emitting polarizing plate emits linearly polarized light 9 to each retardation plate.
  • the emitted linearly polarized light 9 is converted into right-handed circularly polarized light 10 on the first retardation plate 3 side and emitted.
  • the right circularly polarized light 10 in the same direction is emitted on the second retardation plate 4 side as well.
  • FIG. 2 shows the optical member 11 of the present invention as another example.
  • a first retardation plate 3 and a second retardation plate 12 are arranged on both surfaces of the light emitting polarizing plate 2.
  • the first retardation plate is a 1/4 wave plate
  • the second retardation plate is a 1/2 wavelength plate.
  • the slow axes 6 and 7 of the retardation plates are arranged so as to be 45 degrees when the retardation plates are arranged on the observer side with respect to the polarization axis 5 of the light emitting polarizing plate 2.
  • the light source 8 irradiates the light (for example, ultraviolet rays) required for the light emitting polarizing plate to emit light from the first retardation plate 3, the light emitting polarizing plate emits linearly polarized light 9 on both sides, and the light emitting polarizing plate emits linearly polarized light 9 to each retardation plate. Incident. Next, the emitted linearly polarized light 9 is converted into right-handed circularly polarized light 10 on the first retardation plate 3 side and emitted. On the other hand, on the second retardation plate 12 side, the horizontally linearly polarized light 13 is emitted.
  • the light for example, ultraviolet rays
  • the angle formed by the slow axis of these retardation plates and the polarization axis of the light emitting polarizing plate differs depending on the desired polarization state, and is therefore appropriately selected.
  • the slow axis of the 1/4 wave plate used in FIG. 1 is set at an angle different from 45 degrees (for example, 22.5 degrees) with respect to the polarization axis of the light emitting polarizing plate, the emitted light becomes elliptically polarized light.
  • the slow axis of the 1/2 wave plate used in FIG. 2 is set to an angle different from 45 degrees (for example, 22.5 degrees) with respect to the polarization axis of the light emitting polarizing plate, the emitted light is not horizontally linearly polarized light.
  • the retardation plate has a wavelength dependence, the retardation plate is selected so as to give an appropriate phase difference to the wavelength of the emitted light.
  • a well-known retardation plate having an inverse wavelength dispersion characteristic or a broadband retardation plate in which a plurality of retardation plates are combined may be used.
  • the above-mentioned light emitting polarizing plate and the retardation plate may be bonded together using an adhesive, an adhesive or the like.
  • the adhesive and the adhesive used are not particularly limited, and may be colored as necessary in order to design and cut off unnecessary light.
  • the adhesive include a composition containing a thermosetting type or ultraviolet curable type resin and a polymerization initiator.
  • examples of the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives containing a polymer of an acrylic acid ester.
  • the outermost layer may be coated with a hard coat to prevent scratches or an antireflection coat to prevent reflection of external light.
  • the hard coat is not particularly limited, and examples thereof include those obtained by coating and curing a composition containing an ultraviolet curable resin and a polymerization initiator, and examples of the antireflection coat are those in which the film thickness is appropriately adjusted. Examples thereof include a multilayer film composed of a high-refractive index resin layer and a low-refractive index resin layer.
  • FIG. 3 illustrates the image display device 14 of the present invention.
  • the first retardation plate 15 and the second retardation plate 16 have a plurality of slow-phase shafts 17, 18 and 19 in the plane.
  • Such a retardation plate can be manufactured by combining a polymerizable liquid crystal display and a photoalignment technique.
  • the optics of the present invention comprising the retardation plates 15 and 16 having a plurality of slow phases and a transparent substrate 21 such as a glass plate in which a light emitting polarizing plate 20 processed into a predetermined shape is bonded with an acrylic pressure-sensitive adhesive.
  • Absorption-type polarizing plates 24 having an absorption shaft 23 in the horizontal direction are further arranged on both sides of the member 22.
  • the retardation plate 15 has a retardation of 1/2 wavelength, has a slow-phase axis 17 parallel to the polarization axis of the light-emitting polarizing plate, and a slow-phase axis 18 of 45 degrees. It has a phase difference of 1/2 wavelength and has a slow axis 17 and a slow axis 19 of 45 degrees parallel to the polarization axis of the light emitting polarizing plate.
  • the light emitting polarizing plate 20 When the light source 8 irradiates the light required for the light emitting polarizing plate to emit light (for example, ultraviolet rays) from the retardation plate 15 side, the light emitting polarizing plate 20 emits light in the shape of a figure, but all of them are linearly polarized light on the polarization axis 5.
  • the polarized light incident on the retardation plate 15 side is horizontally linearly polarized light by rotating the polarization axis only in the region where the slow phase axis is tilted by 45 degrees.
  • the polarized rotation-rotated region by the retardation plate is absorbed by the absorption type polarizing plate 24, so that only the image of the region not polarized is visually recognized.
  • the polarized light emitted in the shape of a figure from the light emitting polarizing plate incident on the retardation plate 16 side is horizontally linearly polarized light by rotating the polarization axis only in the region where the slow axis is tilted by 45 degrees.
  • the liquid crystal cell side can freely switch images and display a moving image.
  • a liquid crystal cell can be regarded as a kind of retardation plate because it changes the state of transmitted polarized light by changing the orientation state of the liquid crystal according to the voltage. Therefore, the retardation plate is on one side of the light emitting polarizing plate and the liquid crystal cell is on the other side.
  • the configuration having the above or the configuration having the liquid crystal cells on both sides of the light emitting polarizing plate is also one form of the optical member and the image display device of the present invention.
  • the liquid crystal cell is not particularly limited as long as it is a liquid crystal cell used in a general liquid crystal display, and is TN (twisted nematic type), STN (super twisted nematic type), VA (vertical orientation type), IPS (inplane). Switching type) and the like are preferably used.
  • FIG. 4 illustrates such an optical member and an image display device of the present invention.
  • the slow phase axis has a slow phase axis 17 parallel to the polarization axis of the light emitting polarizing plate and a slow phase axis 18 of 45 degrees as in FIG.
  • the optical member 26 of the present invention can be obtained by using the two-wave plate 15 and the liquid crystal cell 25 as the second retardation plate. Further, by arranging the absorption type polarizing plate 24 having the absorption shaft 23 in the horizontal direction on the outer side of each, the image display device 27 of the present invention can be obtained.
  • the light emitting polarizing plate When the light source 8 irradiates the light required for the light emitting polarizing plate to emit light (for example, ultraviolet rays) from the retardation plate 15 side, the light emitting polarizing plate emits linearly polarized light on both sides. A part of the polarized light incident on the retardation plate 15 side is vertically linearly polarized light and is incident on the absorbing polarizing plate 24, so that light is transmitted. Since it is converted in the horizontal direction, it is absorbed by the absorption type polarizing plate 24. As a result, a fixed fixed image can be displayed (in FIG. 4, the left side shows a checkered pattern).
  • the left side shows a checkered pattern
  • the polarized light emitted by the light emitting polarizing plate is converted for each pixel of the liquid crystal cell, and various images can be displayed by observing the converted polarized light through the absorption type polarizing plate 24. It can be changed continuously, and it is possible to display a moving image.
  • Example 1 Preparation of Light-emitting Polarizing Plate
  • the film obtained by swelling was subjected to 0.05 part of an aqueous solution of 4,4'-bis- (sulfostylyl) biphenyl disodium (Tinopal NFW Liquid manufactured by BASF) described in Compound Example 5-1 and 1.0 part of sardine glass. It was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 10 minutes.
  • the obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C. for 5 minutes and stretched 5.0 times.
  • the stretched film was washed with water at room temperature for 20 seconds while maintaining a tense state, and dried to obtain a polarized light emitting device.
  • the obtained polarized light emitting element was measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.), the absorption peak was 370 nm, the luminous efficiency correction single transmittance (Ys) was 92.3%, and the order parameter was The value (OPD) was 0.886.
  • both sides of a triacetyl cellulose film that transmits ultraviolet rays having a transmittance of 90% at 370 nm, which is used as a support, are subjected to a 1.5-specified sodium hydroxide aqueous solution. It was treated at 35 ° C. for 10 minutes, washed with water and then dried at 70 ° C. for 10 minutes.
  • This triacetyl cellulose film is laminated on both sides of the polarized light emitting element produced above via an aqueous solution containing 4% polyvinyl alcohol resin (NH-26 manufactured by Japan Vam & Poval), and dried at 60 ° C. for 10 minutes. Obtained a light emitting polarizing plate used in the present invention.
  • a 1/4 wave plate (ZD12-141158-A1330 manufactured by Zeon Co., Ltd.) was used as the first and second retardation plates, and as shown in FIG. 1, with respect to the polarizing axis of the light emitting polarizing plate.
  • the slow axis of each phase difference plate was arranged so as to be 45 degrees with respect to the polarization axis of the light emitting polarizing plate, and laminated with an acrylic pressure-sensitive adhesive to obtain the optical member of the present invention.
  • UV-LED light strong ultraviolet light manufactured by Alps
  • a pale light was emitted.
  • this light is emitted from the UV light irradiation side with a circularly polarizing plate (absorbent polarizing plate SHC-13U manufactured by Polar Techno Co., Ltd. and 1/4 wave plate ZD12-141158-A1330 manufactured by Zeon Co., Ltd. with the absorption axis of the polarizing plate and 1/4 wavelength.
  • Example 2 Fabrication of optical member
  • the second retardation plate is a 1/2 wavelength plate (ZF45 film # 270 manufactured by Zeon) so that the slow axis of the retardation plate is 45 degrees with respect to the polarization axis of the light emitting polarizing plate.
  • the optical member of the present invention was obtained in the arrangement shown in FIG. 2 by the same operation as in Example 1 except for the above.
  • Example 2 Similar to Example 1, when a commercially available UV-LED light (strong ultraviolet light manufactured by Alps) was irradiated from one direction of the optical member, a pale light was emitted. Next, when this light was observed from the UV-LED light irradiation side with the circularly polarizing plate used in Example 1, light and darkness was observed every time the absorption axis of the polarizing plate was rotated by 90 degrees, so that the emitted light was circular. It was confirmed that it was polarized.
  • a commercially available UV-LED light strong ultraviolet light manufactured by Alps
  • optical member of the present invention By using the optical member of the present invention, different images can be displayed on both sides. Furthermore, by combining with a liquid crystal cell, it is possible to display a still image and a moving image or different moving images on both sides.
  • Such an image display device of the present invention not only enables one display without using two displays for double-sided display as in the conventional case, but also solves a problem of visibility such as character inversion. be able to.
  • Optical member of the present invention 2 Light emitting polarizing plate 3: First retardation plate 4: Second retardation plate 5: Polarizing axis of light emitting polarizing plate 6: Slow axis of first retardation plate 7: Slow axis of the second retardation plate 8: Light source 9: Polarized light emitted from the light emitting polarizing plate 10: Right circularly polarized light 11: Other form of the optical member of the present invention 12: Second retardation plate 13: Horizontal straight line Polarized light 14: Image display device 15 of the present invention: First retardation plate having a plurality of slow axes in the plane 16: Second retardation plate having a plurality of slow axes in the plane 17: In the plane Multiple slow axes of the retardation plate 18: Other slow axes of the retardation plate having a plurality of slow axes in the plane 19: Of the retardation plate having a plurality of slow axes in the plane Other slow axis 20: Light emitting polarizing plate 21 processed into a predetermined shape

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

反射型偏光板あるいは発光偏光板の両面に位相差板を備えることを特徴とする光学部材。

Description

光学部材及びこれを用いた画像表示装置
 本発明は反射型偏光板あるいは発光偏光板を用いた光学部材に関する。
 偏光板は、無偏光の光から偏光を取り出す素子であり、液晶ディスプレイや偏光サングラス等に広く用いられている。
 偏光板には主に吸収型と反射型があり、吸収型偏光板は、例えば特許文献1にあるように、一般に二色性色素であるヨウ素及び/又は二色性染料をポリビニルアルコールフィルムに吸着・配向させたものからなり、通常、偏光サングラスや液晶ディスプレイに使用されている。反射型偏光板は、例えば、特許文献2に記載の表面に微細な凹凸を有するワイヤーグリッド型や、特許文献3に記載の複屈折の異なるフィルムを多数積層した複屈折干渉型や、特許文献4に記載のコレステリック液晶を用いた円偏光反射型等が知られている。また、近年、特許文献5に記載の紫外線を照射し可視偏光を発光するいわゆる発光偏光板が提案されている。
WO2014/162633A1号 特表2003-502708号 特表平09-511844号 特開平11-248943号 WO2019/022212A1号
 吸収型偏光板は、透過した光のみが偏光となるが、反射型偏光板や発光偏光板は両面から偏光が出射される。しかしながら、それぞれの偏光を有効に利用する手段はなかった。
 また、近年ディスプレイも多様化し、様々な状況で使用されるようになった。例えばデジタルサイネージは店舗や公共施設などで情報を提供しているが、ディスプレイ自体は従来の透過型あるいは反射型液晶ディスプレイであった。これらは、片面のみに表示部があるために、例えば通路の中央部に表示体を設置し、両面から画像を見ることがあるような場合は、ディスプレイを2台設置し、それぞれの方向に画像を表示しなければならなかった。両面から画像を見る方法としては無機ELを用いた透明ディスプレイも提案されているが、同じ画像を見るため、一方は正しく視認できる文字も、反対側から見ると文字が反転するため限られた情報しか表示できないという問題があった。
 本願は、両面から出射する偏光を有効に利用することを目的とする。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、以下の構成を有する光学部材を見出し、本発明を完成した。
 本発明は以下に関するが、それに限定されない。
[発明1]
 反射型偏光板あるいは発光偏光板を備え、その両面に位相差板を備えることを特徴とする光学部材。
[発明2]
 光学部材が発光偏光板を備え、その両面にある位相差板がそれぞれ異なる位相差値を有することを特徴とする発明1に記載の光学部材。
[発明3]
 位相差板の面内最大屈折率をnx、nxと面内で直交する方向の屈折率をny、厚さ方向の屈折率をnzとするとき、それらの関係がnx>ny>nz、nx>ny=nz、nx>nz>ny、nz>nx>ny、nx=ny>nz、及びnx=ny<nzのいずれかであることを特徴とする発明1又は2に記載の光学部材。
[発明4]
 発光偏光板の偏光軸と、少なくとも一方の位相差板のnxの方向とが一致していないことを特徴とする発明1ないし3のいずれか1項に記載の光学部材。
[発明5]
 位相差板が面内に領域毎に異なる遅相軸を有するようにパターン化されていることを特徴とする発明1ないし4のいずれか1項に記載の光学部材。
[発明6]
 位相差板の少なくとも一方が液晶セルであることを特徴とする発明1又は2に記載の光学部材。
[発明7]
 発明1ないし6のいずれか1項に記載の光学部材を用いた画像表示装置。
 本発明により、反射型偏光板あるいは発光偏光板の両面に備えた位相差素子により、それぞれの偏光出射面から様々な偏光を得ることができる。さらにはこれを利用して、偏光板の両面から異なる画像を表示することが可能となる。
本発明の光学部材の構成図である。 本発明の光学部材の他の構成図である。 本発明の画像表示装置の構成図である。 本発明の画像表示装置の他の構成図である。
 本発明の光学部材は、両面から偏光を利用することのできる反射型偏光板あるいは発光偏光板の両面に位相差板が備えてあることを特徴とする。反射型偏光板は例えば前記特許文献1、2、3に記載されたような、ワイヤーグリッド型、複屈折干渉型、コレステリック液晶を用いた円偏光反射型等が挙げられるが特に制限はなく、周知の技術を用いることができる。
 本発明で用いる発光偏光板とは、光、好ましくは紫外光を含む光の吸収を利用して偏光発光可能な少なくとも1種の偏光発光色素を配向させたものである。発光した光の偏光度合いは、高い方が偏光素子による吸収効率も向上するため好ましく、その程度は、偏光発光色素が、吸収された光の波長領域において偏光作用を示し、その偏光作用が最も高い波長において、下記式(I)で算出されるオーダーパラメーターの値(OPD)によって示すことができ、好ましくは0.50~1.00、より好ましくは0.81~0.95である。
Figure JPOXMLDOC01-appb-M000001
 上記式(I)におけるKyは、発光偏光板において最も高い光の吸収を示す軸に対して直交位に偏光した光が入射した場合の光透過率を表し、Kzは、発光偏光板において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した場合の光透過率を表す。
 光の吸収を利用して偏光発光可能な偏光発光色素は、一般的には蛍光色素又は燐光発光色素に属するが、具体的には、特定の光を吸収し、その光を利用して発光エネルギーに変換しうる色素を指す。このような色素として、蛍光色素、燐光発光色素のいずれを用いてもよいが、蛍光色素を使用することが好適である。また、該色素は、吸収した光の波長と、発光する光とが異なることが多く、波長変換色素とも呼ばれることがある。このように、発光偏光板に含まれる少なくとも1種の偏光発光色素は、蛍光発光特性を有することが好ましく、特に、紫外域~近紫外可視域の光を吸収することにより可視域の光を偏光発光可能な蛍光発光特性を有することがより好ましい。
 また、偏光発光色素は、基材に配向させることにより、二色性色素のように、基材に配向した軸とその直交軸とで光吸収異方性を有し、光の吸収異方性、すなわち、偏光機能を発現する。
 偏光機能を発現した偏光発光色素の各波長の透過率に着目し、偏光発光色素を配向させた発光偏光板において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した場合の光透過率(すなわち、光の透過量が少ない軸での透過率)をKzとし、一方、偏光発光色素を配向させた発光偏光板において最も高い吸収を示す軸に対して直交位に偏光した光が入射した場合の光透過率(すなわち、光の透過量が多い軸での透過率)をKyとする。そして、これらKy、Kzを上記式(I)に代入することより、オーダーパラメーター、すなわち配向秩序度を算出することができる。
 オーダーパラメーターの値(配向秩序度)とは、液晶等の物質の配向を計測するために用いる指標として一般的に使用され、オーダーパラメーターの値が高い数値を示すほど偏光発光素子が高い配向秩序を有していることを示している。一般的に、オーダーパラメーターの値の算出式は、下記式(II)のように表され(「ディスプレイ材料と機能性色素(CMC出版、中澄博行監修、2004年、P65)」参照)、数式(II)を変換すると、下記式(III)が導き出される。この式(III)をさらに変換することにより、オーダーパラメーターの値(OPD)を、上記式(I)で表すことができる。式(II)及び式(III)中、APARAは配向した偏光発光色素の吸収軸に対して平行方向の吸光度であり、ACROSSは配向した色素の吸収軸に対して直交方向の吸光度である。それぞれの吸光度はLog(A)によって算出され、Log(A)で算出されたそれぞれの吸光度に、Ky及びKzによって得られる吸光度を式(III)に代入することによって、式(I)が導かれる。この式(I)に基づき、光の吸収を利用して偏光発光可能な色素の配向秩序度を制御し、これにより、高いコントラスト値を有する偏光発光を示す発光偏光板を得ることができる。オーダーパラメーターの値は高い程好ましいが、生産上、安定して高いコントラストを有する偏光発光を示す発光偏光板を得るため、オーダーパラメーターの値の上限値は、0.95に設定されることがより好ましい。具体的には、オーダーパラメーターの値は好ましくは0.50~1.00、より好ましくは0.81~0.95、さらに好ましくは、0.85~0.94の範囲に制御するのがよい。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 偏光発光色素を1種又は複数用いて基材中に含有させ、配向させることにより偏光発光を示す発光偏光板が得られる。このような発光偏光板は、偏光発光色素の配合割合を調整することによって、様々な発光色を示す。例えば、JIS Z 8781-4:2013に従って測定される色相aの絶対値が5以下であり、かつ色相bの絶対値が5以下であることによって、偏光発光素子からの発光色は白色を示す。JIS Z 8781-4:2013の基準に従う色相a値及び色相b値は、光の色相を示す指標として一般的に用いられる値である。
偏光発光色素
 偏光発光色素は、スチルベン骨格又はビフェニル骨格を基本骨格として有する化合物又はその塩であることが好ましい。このような基本骨格を有する偏光発光色素が、蛍光発光特性を示しつつ、かつ、オーダーパラメーターの値が0.50~1.00の範囲に制御されるよう基材に配向されるにことにより、他の偏光発光色素よりも高い偏光度を有する光、すなわち、高いコントラストを有する光を発光させることができる。偏光発光色素の基本骨格としてのスチルベン骨格及びビフェニル骨格は、それぞれの骨格自体が蛍光発光特性を示し、かつ、基材に配向させることにより高い二色性を示す作用を有する。この作用は、スチルベン骨格及びビフェニル骨格の各基本骨格の構造に起因するため、基本骨格構造にはさらに任意の置換基が結合されていてもよい。ただし、基本骨格構造にアゾ基を置換する場合、従来の染料系偏光板のように高い偏光度を実現できるものの、アゾ基が置換される位置によっては発光光量が著しく低下し、所望とする発光光量が得られないことがある。そのため、各基本骨格にアゾ基を置換する場合、その置換位置が重要となる。偏光発光色素は、1種単独で使用してもよく、2種以上組み合わせて併用してもよい。
 上述のように、偏光発光色素は、紫外域~近紫外可視域の光を吸収することにより可視域の光を偏光発光可能な蛍光発光特性を有することが好ましい。具体的には、偏光発光色素を基材に含有させた後、紫外域~近紫外可視域の光を照射することにより、可視域(一般には380~780nm)、例えば400~700nmの波長域において、0.04μW/cm以上の発光強度の偏光発光を示すことが好ましく、0.05μW/cm以上の発光強度の偏光発光を示すことがより好ましく、0.1μW/cm以上の発光強度の偏光発光を示すことがさらに好ましい。尚、一般的に紫外光は400nm以下の波長域の光を意味するものの、430nm以下の波長域の光も人間の視感度としては著しく低い。そのため、紫外域~近紫外可視域の光は、人の目に見えない光として定義することができ、例えば、偏光発光色素が吸収する光が300~430nm波長域の光であることが好ましい。偏光発光色素を使用することにより、目に見えない光を吸収して偏光発光可能な発光偏光板を得ることができる。
(a)スチルベン骨格を有する偏光発光色素
 スチルベン骨格を有する偏光発光色素は、好ましくは、下記式(1)で表される化合物又はその塩である。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)中、L及びMは、例えば、各々独立して、ニトロ基、置換基を有してもよいアミノ基、置換基を有してもよいカルボニルアミド基、置換基を有してもよいナフトトリアゾール基、置換基を有してもよいC-C20(炭素原子数1~20)アルキル基、置換基を有してもよいビニル基、置換基を有してもよいアミド基、置換を有してもよいウレイド基、置換基を有してもよいアリール基、及び置換基を有してもよいカルボニル基からなる群から選択されるが、これらに限定されるものではない。式(1)で示されるスチルベン骨格を有する化合物は、蛍光発光を示し、また、配向させることによって二色性が得られる。発光特性は、スチルベン骨格に起因するものであるため、L及びMの各基が結合し得る置換基はアゾ基を有していなければ、特に限定されるものではなく、任意の置換基であってよい。
 前記各「置換基」としては、特に限定されるものではないが、例えば以下が挙げられる:
 アミノ基;
 ニトロ基;
 シアノ基;
 ヒドロキシル基;
 スルホン酸基;
 リン酸基;
 カルボキシル基;
 メチルカルボキシル基、エチルカルボキシル基等カルボキシアルキル基;
 フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;
 メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;
 フェノキシ基、ナフトキシ基等アリールオキシ基;
 メチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基、イソプロピル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、シクロペンチル基等のC-C20アルキル基;
 フェニル基、ナフチル基、アントラセニル基、ビフェニル基、環構成原子として窒素原子、酸素原子及び硫黄原子からなる群から選択される1~3つのヘテロ原子を含む5員環又は6員環の複素環基等のアリール基;
 メチルカルボニル基、エチルカルボニル基、n-ブチル-カルボニル基等のC-C20アルキルカルボニル基;
 フェニルカルボニル基、ビフェニルカルボニル基、ナフチルカルボニル基等のアリールカルボニル基;
 メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、n-ブチル-スルホニル基等のC-C20アルキルスルホニル基;
フェニルスルホニル基、ナフチルスルホニル基等のアリールスルホニル基。
 これらの置換基がさらなる置換基を有してもよく、前記さらなる置換基としても上述が挙げられる。また、そのような置換の連鎖の数は限定されない。例えば、後で例示する化合物例1-5は、置換基としてアミノ基を有し、アミノ基は置換基としてトリアジン基を有し、トリアジン基は置換基として2つのアミノ基を有し、アミノ基の1つは置換基としてフェニル基を有し、フェニル基は置換基としてスルホン酸基を有し、アミノ基のもう1つは置換基としてアミノ基を有し、そのアミノ基は置換基として2つのエチル基を有し、両エチル基は置換基としてヒドロキシ基を有する。
 置換基を有してもよいアミノ基としては、例えば、以下が挙げられる:
 非置換のアミノ基;
 メチルアミノ基、エチルアミノ基、n-ブチルアミノ基、tert-ブチルアミノ基、n-ヘキシルアミノ基、ドデシルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基、エチルメチルアミノ基、エチルヘキシルアミノ基等の置換基を有してもよいC-C20アルキルアミノ基;
 フェニルアミノ基、ジフェニルアミノ基、ナフチルアミノ基、N-フェニル-N-ナフチルアミノ基等の置換基を有してもよいアリールアミノ基;
 メチルカルボニルアミノ基、エチルカルボニルアミノ基、n-ブチル-カルボニルアミノ基等の置換基を有してもよいC-C20アルキルカルボニルアミノ基;
 フェニルカルボニルアミノ基、ビフェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等の置換基を有してもよいアリールカルボニルアミノ基;
 メチルスルホニルアミノ基、エチルスルホニルアミノ基、プロピルスルホニルアミノ基、n-ブチル-スルホニルアミノ基等のC-C20アルキルスルホニルアミノ基;
 フェニルスルホニルアミノ基、ナフチルスルホニルアミノ基等の置換基を有してもよいアリールスルホニルアミノ基。
 これらのアミノ基の中でも、置換基を有してもよいC-C20アルキルカルボニルアミノ基、置換基を有してもよいアリールカルボニルアミノ基、C-C20アルキルスルホニルアミノ基、置換基を有してもよいアリールスルホニルアミノ基が好ましい。
 置換基を有してもよいカルボニルアミド基としては、例えば、N-メチル-カルボニルアミド基(-CONHCH)、N-エチル-カルボニルアミド基(-CONHC)、N-フェニル-カルボニルアミド基(-CONHC)等が挙げられる。
 置換基を有してもよいC-C20アルキル基のC-C20アルキル基として、例えば、メチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基等の直鎖状のC-C12アルキル基;イソプロピル基、sec-ブチル基、tert-ブチル基等の分岐鎖状のC-C10アルキル基;シクロヘキシル基、シクロペンチル基等の環状のC-Cアルキル基等が挙げられる。これらの中でも、直鎖状又は分岐鎖状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。
 置換基を有してもよいビニル基として、例えば、エテニル基、スチリル基、アルキル基を有するビニル基、アルコキシ基を有するビニル基、ジビニル基、ペンタジエニル基等が挙げられる。
 置換基を有してもよいアミド基として、例えば、アセトアミド基(-NHCOCH)、ベンズアミド基(-NHCOC)等が挙げられる。
 置換基を有してもよいウレイド基として、例えば、モノアルキルウレイド基、ジアルキルウレイド基、モノアリールウレイド基、ジアリールウレイド基等が挙げられる。
 置換基を有してもよいアリール基のアリール基として、例えば、フェニル基、ナフチル基、アントラセニル基、ビフェニル基等が挙げられ、好ましくはC-C12アリール基である。アリール基は、環構成原子として窒素原子、酸素原子及び硫黄原子からなる群から選択される1~3つのヘテロ原子を含む5員環又は6員環の複素環基であってもよい。このような複素環基の中でも、窒素原子及び硫黄原子から選択される原子を環構成原子として含む複素環基であることが好ましい。
 置換基を有してもよいカルボニル基としては、例えば、メチルカルボニル基、エチルカルボニル基、n-ブチル-カルボニル基、フェニルカルボニル基等が挙げられる。
 式(1)で示される化合物として、例えば、Kayaphorシリーズ(日本化薬社製)、Whitex RP等のホワイテックスシリーズ(住友化学社製)等が挙げられ、また、下記の化合物が例示されるが、これらに限定されるものではない。
[化合物例1]
Figure JPOXMLDOC01-appb-C000005
 スチルベン骨格を有する他の化合物として下記式(2)又は式(3)で示される化合物又はその塩であることが好ましい。これらの化合物を用いることによって、より鮮明な白色発光をする偏光発光素子を得ることができる。さらに、下記式(2)及び式(3)で示される化合物もスチルベン骨格に起因して蛍光発光を示し、また、配向させることによって二色性が得られる。
Figure JPOXMLDOC01-appb-C000006
 上記式(2)において、Xは、ニトロ基、又は、置換基を有してもよいアミノ基を表す。置換基を有してもよいアミノ基は、上記式(1)における置換基を有してもよいアミノ基と同様に定義される。これらの中でも、Xは、ニトロ基、置換基を有してもよいC-C20アルキルカルボニルアミノ基、置換基を有してもよいアリールカルボニルアミノ基、C-C20アルキルスルホニルアミノ基、又は置換基を有してもよいアリールスルホニルアミノ基であることが好ましく、特に、ニトロ基であることがより好ましい。
 上記式(2)中、Rは、水素原子、塩素原子、臭素原子又はフッ素原子等のハロゲン原子、ヒドロキシル基、カルボキシル基、ニトロ基、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、又は置換基を有してもよいアミノ基を表す。置換基を有してもよいアルキル基としては、上記式(1)における置換基を有してもよいC-C20アルキル基と同様に定義される。置換基を有してもよいアルコキシ基は、好ましくはメトキシ基、又はエトキシ基等である。置換基を有してもよいアミノ基は、上記式(1)における置換基を有してもよいアミノ基と同様に定義され、好ましくはメチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、又はフェニルアミノ基等である。これらの中でも、Rは、水素原子又はC-C20アルキル基であることが好ましく、RがC-C20アルキル基である場合、メチル基であることが好ましい。Rは、ナフトトリアゾール環中のナフタレン環の任意の炭素に結合していてよいが、トリアゾール環と縮合している炭素原子を1位、及び2位とした場合、3位、5位、又は8位に結合していることが好ましい。
 上記式(2)中、nは0~3の整数であり、好ましくは1である。また、上記式(2)中、-(SOH)は、ナフトトリアゾール環中のナフタレン環の任意の炭素原子に結合していてよい。-(SOH)のナフタレン環における位置は、トリアゾール環と縮合している炭素原子を1位、2位とした場合、n=1であれば、4位、6位、又は7位であることが好ましく、n=2であれば、5位と7位、及び6位と8位であることが好ましく、n=3であれば、3位と6位と8位の組み合わせであることが好ましい。これらのうち、Rが水素原子であり、かつnが1又は2であることが特に好ましい。
 式(3)中、Yは、置換基を有してもよいC-C20アルキル基、置換基を有してもよいビニル基、又は置換基を有してもよいアリール基を表す。これらの中でも、置換基を有してもよいアリール基であることが好ましく、置換基を有してもよいナフチル基であることがさらに好ましく、置換基としてアミノ基とスルホ基が置換したナフチル基であることが特に好ましい。
 式(3)中、Zは、上記式(2)におけるXと同様に定義され、ニトロ基、又は、置換基を有してもよいアミノ基を表し、ニトロ基であることが好ましい。
 ビフェニル骨格を有する化合物は、好ましくは下記式(4)で示される化合物又はその塩である。
Figure JPOXMLDOC01-appb-C000007
 上記式(4)において、P及びQは、それぞれ独立に、ニトロ基、置換基を有してもよいアミノ基、置換基を有してもよいカルボニルアミド基、置換基を有してもよいナフトトリアゾール基、置換基を有してもよいC-C20アルキル基、置換基を有してもよいビニル基、置換基を有してもよいアミド基、置換基を有してもよいウレイド基、又は置換基を有してもよいアリール基、置換基を有してもよいカルボニル基を表すが、これらに限定されるものではない。ただし、ビフェニル骨格のP及び/又はQとしてアゾ基を有する化合物は、蛍光発光は著しく小さくなるため好適ではない。
 上記式(4)で表される化合物は、好ましくは、下記式(5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000008
 上記式(5)中、jは独立して0~2の整数を示す。また、-(SOH)が結合される位置は、-CH=CH-と結合している炭素原子を1位とした場合、2位、4位、6位が好ましく、4位が特に好ましい。
 上記式(5)中、R、R、R及びRはそれぞれ独立に、水素原子、C-Cアルキル基、C-Cアルコキシ基、アラルキロキシ基、アルケニロキシ基、C-Cアルキルスルホニル基、C-C20アリールスルホニル基、カルボンアミド基、スルホンアミド基、カルボキシアルキル基である。R~Rが結合される位置は、特に限定されるものではないが、ビニル基と結合している炭素原子を1位とした場合、2位、4位、6位が好ましく、4位が特に好ましい。
 C-Cアルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が挙げられる。
 C-Cアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基等が挙げられる。
 アラルキロキシ基としては、例えば、C-C18アラルキロキシ基等が挙げられる。
 アルケニロキシ基としては、例えば、C-C18アルケニロキシ基等が挙げられる。
 C-Cアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、n-ブチルスルホニル基、sec-ブチルスルホニル基、tert-ブチルスルホニル基、シクロブチルスルホニル基等が挙げられる。
 C-C20アリールスルホニル基としては、フェニルスルホニル基、ナフチルスルホニル基、ビフェニルスルホニル基等が挙げられる。
 上記式(5)で表される化合物は公知の方法で作製可能であり、例えば、4-ニトロベンズアルデヒド-2-スルホン酸をホスホネートと縮合させ、次いでニトロ基を還元することによって合成することができる。
 式(5)で示される化合物の具体例としては、例えば、特開平4-226162号公報に記載されている下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(1)~(5)で示される化合物の塩とは、上記各式で示される各化合物の遊離酸が無機陽イオン又は有機陽イオンと共に塩を形成している状態を意味する。無機陽イオンとしては、例えば、アルカリ金属(例えばリチウム、ナトリウム、カリウム等)の各陽イオン、又は、アンモニウム(NH )等が挙げられる。また、有機陽イオンとしては、例えば、下記式(D)で表される有機アンモニウム等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(D)中、Z1~Z4は、各々独立して、水素原子、アルキル基、ヒドロキシアルキル基又はヒドロキシアルコキシアルキル基を表し、かつ、Z1~Z4の少なくともいずれか1つは水素原子以外の基である。
 Z1~Z4の具体例としては、例えば以下が挙げられる:
 メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基等のC-Cアルキル基、好ましくはC-Cアルキル基;
 ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、2-ヒドロキシプロピル基、4-ヒドロキシブチル基、3-ヒドロキシブチル基、2-ヒドロキシブチル等のヒドロキシC-Cアルキル基、好ましくはヒドロキシC-Cアルキル基;
 並びに、ヒドロキシエトキシメチル基、2-ヒドロキシエトキシエチル基、3-ヒドロキシエトキシプロピル基、3-ヒドロキシエトキシブチル基、2-ヒドロキシエトキシブチル等のヒドロキシC-CアルコキシC-Cアルキル基、好ましくはヒドロキシC-CアルコキシC-Cアルキル基。
 これらの無機陽イオン又は有機陽イオンの中でも、リチウム、ナトリウム、カリウム、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、アンモニウム等の各陽イオンがより好ましく、リチウム、アンモニウム又はナトリウムの各無機陽イオンが特に好ましい。
 上記のような構造を有する偏光発光色素は、分子中にアゾ基を有さないため、アゾ結合に起因する光の吸収が抑制される。特に、スチルベン骨格を有する化合物は、紫外光の照射により発光作用を示し、また、スチルベン骨格の強い炭素-炭素二重結合の存在により分子が安定する。そのため、このような特定構造を有する偏光発光色素を用いた発光偏光板は、光を吸収し、そのエネルギーを利用して、可視域の光を偏光発光することができる。
その他の色素
 上記の特性を示す発光偏光板は、偏光発光素子の偏光性能を阻害しない範囲で、上述した偏光発光色素とは異なる少なくとも1種の蛍光染料及び/又は有機染料をさらに含んでいてもよい。併用される蛍光染料としては、例えば、C.I.Fluorescent Brightener 5、C.I.Fluorescent Brightener 8、C.I.Fluorescent Brightener 12、C.I.Fluorescent Brightener 28、C.I.Fluorescent Brightener 30、C.I.Fluorescent Brightener 33、C.I.Fluorescent Brightener 350、C.I.Fluorescent Brightener 360、C.I.Fluorescent Brightener 365等が挙げられる。
 有機染料としては、例えば、シー.アイ.ダイレクト.イエロー12、シー.アイ.ダイレクト.イエロー28、シー.アイ.ダイレクト.イエロー44、シー.アイ.ダイレクト.オレンジ26、シー.アイ.ダイレクト.オレンジ39、シー.アイ.ダイレクト.オレンジ71、シー.アイ.ダイレクト.オレンジ107、シー.アイ.ダイレクト.レッド2、シー.アイ.ダイレクト.レッド31、シー.アイ.ダイレクト.レッド79、シー.アイ.ダイレクト.レッド81、シー.アイ.ダイレクト.レッド247、シー.アイ.ダイレクト.ブルー69、シー.アイ.ダイレクト.ブルー78、シー.アイ.ダイレクト.グリーン80、及びシー.アイ.ダイレクト.グリーン59等が挙げられる。これらの有機染料は遊離酸であっても、あるいはアルカリ金属塩(例えばLi塩、Na塩、K塩)、アンモニウム塩又はアミン類の塩であってもよい。
基材
 発光偏光板は、偏光発光色素を配向させることにより得られる。配向させる方法に制限はないが、例えば、偏光発光色素を基材に含有させ、基材ごと配向させることによって偏光発光色素を配向する方法が挙げられる。本発明で用いる基材は、偏光発光色素を含有することができ、かつ、配向することができれば特に制限はない。そのような基材としては、例えば、偏光発光色素を吸着し、かつ、ホウ素誘導体等によって架橋しうる親水性高分子を含むことが好ましく、該親水性高分子を製膜して得られる親水性高分子フィルムがより好ましい。親水性高分子は、特に限定されないが、例えば、ポリビニルアルコール系樹脂、デンプン系樹脂が好ましい。親水性高分子は、偏光発光色素の染色性、加工性及び架橋性などの観点からポリビニルアルコール系樹脂又はその誘導体を含むことが好ましく、ポリビニルアルコールを含むことがより好ましい。ポリビニルアルコール系樹脂又はその誘導体としては、例えば、ポリビニルアルコール又はその誘導体、ポリビニルアルコール又はその誘導体のいずれかをエチレン、プロピレンのようなオレフィンや、クロトン酸、アクリル酸、メタクリル酸、及びマレイン酸のような不飽和カルボン酸等で変性した樹脂等が挙げられる。これらのなかでも、偏光発光色素の吸着性及び配向性の点から、基材は、ポリビニルアルコール又は一部がエステル化されているポリビニルアルコール誘導体から作製されたフィルムが好ましい。
 以下、ポリビニルアルコール系樹脂を含む基材を用いて発光偏光板を作製する方法について例示する。ポリビニルアルコール系樹脂を含む基材としては、例えば、市販品を用いてもよく、ポリビニルアルコール系樹脂を製膜することにより作製してもよい。ポリビニルアルコール系樹脂の製膜方法は特に限定されるものではなく、例えば、含水ポリビニルアルコールを溶融押出する方法、流延製膜法、湿式製膜法、ゲル製膜法(ポリビニルアルコール水溶液を一旦冷却ゲル化した後、溶媒を抽出除去)、キャスト製膜法(ポリビニルアルコール水溶液を基盤上に流し、乾燥)、及びこれらの組み合わせによる方法等、公知の製膜方法を採用することができる。基材の厚さは適宜設計することができるが、通常10~100μmである、好ましくは20~80μmである。
膨潤工程
 ポリビニルアルコール系樹脂の場合、偏光発光色素の吸着を容易にするために、膨潤処理を行うことがある。膨潤処理は、20~50℃の膨潤液に、上記基材を30秒~10分間浸漬させることにより行うことが好ましく、膨潤液は水であることが好ましい。膨潤液による基材の延伸倍率は、1.00~1.50倍に調整することが好ましく、1.10~1.35倍に調整することがより好ましい。
染色工程
 上記膨潤工程にて膨潤処理を施して得られた基材に、少なくとも1種の偏光発光色素を含浸及び吸着させる。染色工程は、偏光発光色素を基材に含浸及び吸着させる方法であれば特に限定されるものではないが、例えば、基材を、偏光発光色素を含む染色溶液に浸漬させる方法、基材に該染色溶液を塗布し、吸着させる方法等が挙げられる。これらのうち、偏光発光色素を含む染色溶液に浸漬させる方法が好ましい。染色溶液中の偏光発光色素の濃度は、基材中に偏光発光色素が十分に吸着されるのであれば特に限定されるものではないが、例えば、染色溶液中に0.0001~1質量%であることが好ましく、0.001~0.5質量%であることがより好ましい。
 染色工程における染色溶液の温度は、5~80℃が好ましく、20~50℃がより好ましく、40~50℃が特に好ましい。染色溶液に基材を浸漬する時間は、偏光発光素子が示すオーダーパラメーターの値を制御する際、重要である。オーダーパラメーターの値を所望の範囲に制御するため、染色溶液に基材を浸漬する時間は、6~20分の間で調節するのが好ましく、7~10分の間がより好ましい。
 染色溶液に含まれる偏光発光色素は、1種単独で使用してもよく、2種以上を併用してもよい。上記偏光発光色素は、化合物によりその発光色が異なるため、基材に、上記偏光発光色素を1種以上含有させることにより、生じる発光色を様々な色になるように適宜調整することができる。また、必要に応じて、染色溶液は、偏光発光色素とは異なる1種以上の有機染料及び/又は蛍光染料をさらに含んでいてもよい。
 蛍光染料及び/又は有機染料を併用する場合、所望とする偏光素子の色調整のために、配合する染料を選択し、配合比率等を調整することが可能である。蛍光染料又は有機染料の配合割合は特に限定されるものではないが、一般的には、偏光素子100質量部に対して、これら蛍光染料及び/又は有機染料の総量が0.01~10質量部の範囲で用いることが好ましい。
 また、上記の各染料に加え、必要に応じてさらに染色助剤を併用してもよい。染色助剤としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、塩化ナトリウム、硫酸ナトリウム(芒硝)、無水硫酸ナトリウム及びトリポリリン酸ナトリウム等が挙げられ、好ましくは硫酸ナトリウムである。染色助剤の含有量は、使用される二色性色素の染色性に基づく上記浸漬時間、染色時の温度等によって任意に調整可能であるが、染色溶液中に0.0001~10質量%であることが好ましく、0.0001~2質量%であることがより好ましい。
 上記染色工程後、当該染色工程で基材の表面に付着した染色溶液を除去するために、任意に予備洗浄工程を実施することができる。予備洗浄工程を実施することによって、次に処理する液中に基材の表面に残存する偏光発光色素が移行することを抑制することができる。予備洗浄工程では、洗浄液として一般的には水が用いられる。洗浄方法は、洗浄液に染色した基材を浸漬することが好ましく、一方で、洗浄液を当該基材に塗布することによって洗浄することもできる。洗浄時間は、特に限定されるものではないが、好ましくは1~300秒であり、より好ましくは1~60秒である。この予備洗浄工程における洗浄液の温度は、基材を構成する材料が溶解しない温度であることが必要となり、一般的には5~40℃で洗浄処理が施される。尚、予備洗浄工程の工程がなくとも、偏光素子の性能には特段大きな影響を及ぼさないため、予備洗浄工程は省略することも可能である。
架橋工程
 染色工程又は予備洗浄工程の後、基材に架橋剤を含有させることができる。基材に架橋剤を含有させる方法は、架橋剤を含む処理溶液に基材を浸漬させることが好ましく、一方で、当該処理溶液を基材に塗布又は塗工してもよい。処理溶液中の架橋剤としては、例えば、ホウ素化合物を含有する溶液を使用する。ホウ素化合物としては、例えば、ホウ酸、硼砂、酸化ホウ素、水酸化ホウ素等の無機化合物、ボロン酸であるアルケニルボロン酸、アリールボロン酸、アルキルボロン酸、ボロン酸エステル、トリフルオロボラート又はその塩等が挙げられ、ホウ酸、硼砂が好ましくは、ホウ酸が特に好ましい。処理溶液中の溶媒は、特に限定されるものではないが、水が好ましい。処理溶液中のホウ素誘導体の濃度は、0.1~15質量%であることが好ましく、0.1~10質量%であることがより好ましい。処理溶液の温度は、30~80℃が好ましく、40~75℃がより好ましい。また、この架橋工程の処理時間は30秒~10分が好ましく、1~6分がより好ましい。この架橋工程により、得られる発光偏光板は、高いコントラストを示す。このことは、従来技術において、耐水性又は光透過性を改善する目的で使用されていたホウ素化合物の機能からは全く予期し得ない優れた作用である。また、架橋工程においては、必要に応じて、カチオン、カチオン系高分子化合物を含む水溶液で、フィックス処理をさらに併せて行ってもよい。カチオンとはナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、鉄、バリウムなどの金属に由来するイオンであり、好ましくは2価のイオンが用いられる。具体例としては塩化カルシウム、塩化マグネシウム、塩化鉄、塩化バリウム等に由来するカチオンが挙げられる。フィックス処理により、基材中における偏光発光色素の固定化が可能となる。このとき、カチオン系高分子化合物として、例えば、ジシアン系としてジシアンアミドとホルマリン重合縮合物、ポリアミン系としてジシアンジアミド・ジエチレントリアミン重縮合物、ポリカチオン系としてエピクロロヒドリン・ジメチルアミン付加重合物、ジメチルジアリルアモンニウムクロライド・二酸化イオン共重合物、ジアリルアミン塩重合物、ジメチルジアリルアンモニウムクロライド重合物、アリルアミン塩の重合物、ジアルキルアミノエチルアクリレート四級塩重合物等が使用される。
延伸工程
 上記架橋工程を行った後、延伸工程を実施する。延伸工程は、基材を一定の方向に一軸延伸することにより行われる。延伸方法は、湿式延伸法又は乾式延伸法のいずれであってもよい。基材の延伸倍率もまた、オーダーパラメーターの値を制御する際、重要である。発光偏光板が示すオーダーパラメーターの値を所望の範囲に制御するため、基材の延伸倍率は、3.3倍以上であることが好ましく、3.3~8.0倍であることがより好ましく、3.5~6.0倍であることがさらに好ましく、4.0~5.0倍であることが特に好ましい。
 上記湿式延伸法においては、水、水溶性有機溶剤又はその混合溶液中で基材を延伸することが好ましい。より好ましくは、架橋剤を少なくとも1種含有する溶液中に基材を浸漬しながら延伸処理を行う。架橋剤は、例えば、上記架橋工程におけるホウ素化合物を用いることができ、好ましくは、架橋工程で使用した処理溶液中で延伸処理を行うことができる。延伸温度は40~60℃であることが好ましく、45~58℃がより好ましい。延伸時間は通常30秒~20分であり、好ましくは2~7分である。湿式延伸工程は、一段階の延伸で実施しても、二段階以上の多段延伸で実施してもよい。尚、延伸処理は、任意に、染色工程の前に行ってもよく、この場合には、染色の時点で偏光発光色素の配向も一緒に行うことができる。
 上記乾式延伸法において、延伸媒体が空気媒体である場合には、空気媒体の温度が常温~180℃で基材を延伸するのが好ましい。また、湿度は20~95%RHの雰囲気中であることが好ましい。基材の加熱方法としては、例えば、ロール間ゾーン延伸法、ロール加熱延伸法、熱間圧延伸法及び赤外線加熱延伸法等が挙げられるが、これらの延伸方法に限定されるものではない。乾式延伸工程は、一段階の延伸で実施しても、二段階以上の多段延伸で実施してもよい。乾式延伸工程においては、偏光発光色素を含有する基材にホウ素誘導体を含有させながら延伸させるか、又はホウ素化合物を基材に含有させた後に延伸させることができるが、ホウ素化合物を基材に含有させた後に延伸処理することが好ましい。ホウ素誘導体を適用する温度は40~90℃が好ましく、50~75℃がより好ましい。ホウ素化合物の濃度は1~10%であることが好ましく、3~8%であることがより好ましい。乾式延伸の処理時間は、1~15分であることが好ましく、2~12分であることがより好ましく、3~10分であることがさらに好ましい。
洗浄工程
 上記延伸工程を実施した後には、基材の表面に架橋剤の析出又は異物が付着することがあるため、基材の表面を洗浄する洗浄工程を行うことができる。洗浄時間は1秒~5分が好ましい。洗浄方法は、基材を洗浄液に浸漬することが好ましく、一方で、洗浄液を基材に塗布又は塗工によって洗浄することもできる。洗浄液としては、水が好ましい。洗浄処理は一段階で実施しても、二段階以上の多段処理で実施してもよい。洗浄工程の洗浄液の温度は、特に限定されるものではないが、通常、5~50℃、好ましくは10~40℃であり、常温であってよい。
 上記各工程で用いる溶液又は処理液の溶媒としては、上記水の他にも、例えば、ジメチルスルホキシド;N-メチルピロリドン;メタノール、エタノール、プロパノール、イソプロピルアルコール、グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール又はトリメチロールプロパン等のアルコール類;エチレンジアミン及びジエチレントリアミン等のアミン類等が挙げられる。当該溶液又は処理液の溶媒は、これらに限定されるものではないが、好ましくは水である。また、これらの溶液又は処理液の溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。
乾燥工程
 上記洗浄工程の後、基材の乾燥工程を行う。乾燥処理は、自然乾燥により行うことができるものの、より乾燥効率を高めるため、ロールによる圧縮やエアーナイフ又は吸水ロール等による表面の水分除去等により行うことが可能であり、さらには、送風乾燥を行うことも可能である。乾燥処理の温度は、20~100℃であることが好ましく、60~100℃であることがより好ましい。乾燥時間は、30秒~20分であることが好ましく、5~10分であることがより好ましい。
 上述の製造方法により、発光偏光板を作製することができ、得られた発光偏光板は、高い耐久性を有すると共に、高い偏光度(コントラスト)を有する偏光発光を示す。
 上述の製造方法以外にも、あらかじめ偏光発光色素を含有したポリビニルアルコール系樹脂フィルムを作製し、染色工程を経ずに膨潤、延伸、洗浄、架橋、乾燥の各工程を行って発光偏光板を作製することも可能である。
 以上の例示した製造方法により、発光偏光板を作製することができ、得られた発光偏光板は、高い耐久性を有すると共に、高い偏光度(コントラスト)を有する偏光発光を示す。
 発光偏光板は、光の吸収、特に紫外域の光の吸収により得られたエネルギーを利用して、可視域の光を偏光発光する。この偏光発光の明度の差をより向上させるため、偏光発光が高い偏光度(コントラスト)を有することが好ましい。偏光発光素子より発光する光が可視域の偏光であることから、可視域の光に対して偏光機能を有する一般的な偏光板を介して発光偏光板を観察した場合、その偏光板の軸の角度を変えることによって、偏光発光と非発光とを視認することができる。発光偏光板が発光する偏光の偏光度は、例えば70%以上であり、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上である。また、コントラストは高いほど好ましく、偏光度が高いほど、高い傾向を示す。発光偏光板が、可視域の光を吸収せずに透過させる場合、発光偏光板の可視域の光の透過率は、視感度補正透過率において、例えば60%以上であり、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上、特に好ましくは90%以上である。
 発光偏光板は、表面を保護するために、片側に支持体を備えたり、両側を支持体で挟持してもよい。支持体を備えたり、挟持する手段は特に制限はないが、接着剤又は粘着剤を用いる場合、水溶性接着剤、熱硬化型接着剤、紫外線硬化型接着剤やアクリル系の粘着剤等を用いるのが好ましい。また、支持体の材質としては、ガラス、トリアセチルセルロース等のセルロース樹脂、アクリル樹脂、ナイロン樹脂、ポリオレフィン樹脂等種々の樹脂素材が使用できる。偏光発光素子側に配置される支持体、及び接着剤には、発光偏光板の発光を妨げないよう、該素子が吸収する光の波長における基材もしくは接着剤層の透過率が、好ましくは50~100%、より好ましくは70~98%、さらに好ましくは80~95%程度が良い。支持体は、発光偏光板の吸収波長の光を吸収しないことが好ましい。例えば、支持体中には紫外線吸収剤が含有している場合が多いため、発光偏光板の吸収波長が350~380nmである紫外線の場合、紫外線吸収剤を含まない支持体を用いることが好ましい。
 本発明で用いられる位相差板は、例えば直線偏光を円偏光に変換するように、偏光状態を変える機能を有する。位相差板の機能は、位相差板の持つ複屈折と厚さによって決まる。位相差板の面内最大屈折率をnx、nxと面内で直交する方向の屈折率をny、厚さ方向の屈折率をnzとするとき、それぞれの屈折率のいずれか一つ、あるいはいずれもが異なることによって位相差板として機能する。そのような組み合わせとしては、例えば、nx>ny>nz、nx>ny=nz、nx>nz>ny、nz>nx>ny、nx=ny>nz、nx=ny<nz、nx=nz>ny等が挙げられる。
 本発明の位相差板は、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメタクリル酸メチル、ポリスチレン、ポリビニルアルコールやシクロオレフィンポリマーといった高分子フィルムを一軸、あるいは二軸に延伸することによって得ることができる。上記屈折率の分布は延伸条件によって適宜調整される。
 ある偏光状態を別の偏光状態へ変換する程度は、その1)波長に応じた位相差値と、2)偏光軸と位相差板の遅相軸(nxの方向と同じ)との関係角によって決まる。位相差値はある波長における位相差板の複屈折率と厚さの積によって求めることができる。例えばある波長における屈折率がnx>ny=nzの関係を満たし、厚さがdである位相差板の法線方向の位相差値は(nx-ny)・dとなる。この時nx-nyが複屈折に相当する。次に、位相差板の法線方向から直線偏光が入射する場合、位相差板の遅相軸方向と偏光軸とのなす角が45度であって、かつ、位相差値が直線偏光の波長の1/4である場合(いわゆる1/4波長板)、直線偏光は円偏光に変換される。また、位相差値が直線偏光の波長の1/2である場合(いわゆる1/2波長板)、直線偏光は直線偏光のままであるが、偏光軸の向きが90度変換される。
 偏光が位相差板に対して斜め方向から入射する場合は、nz成分の寄与があるため、法線方向の場合と異なる位相差値、遅相軸となるほか、偏光軸との関係角も変化する。しかしながら、これらの制御についてはnx、ny、nzの値を適切に調整することで調整が可能である。また、屈折率は波長依存性があるため、入射する偏光の波長によって位相差値も変化するがこれについても、位相差板に使用する材料の波長分散特性を制御したり、複数の位相差フィルムを組み合わせることにより、任意に調整することができる。
 位相差板の位相差値に関わるnx、ny、nzの屈折率は、求める偏光状態によって適宜選択、調整することが可能であるが、そのような組み合わせを、第一の位相差板の屈折率異方性nx1、ny1、nz1/発光偏光板/第二の位相差板の屈折率異方性nx2、ny2、nz2とするとき、好ましくは以下の通りである:
 nx1>ny1>nz1/発光偏光板/nx2>ny2>nz2、
 nx1>ny1>nz1/発光偏光板/nx2>ny2=nz2、
 nx1>ny1>nz1/発光偏光板/nx2=ny2>nz2、
 nx1>ny1>nz1/発光偏光板/nx2=ny2<nz2、
 nx1>ny1>nz1/発光偏光板/nx2>nz2>ny2、
 nx1>ny1>nz1/発光偏光板/nx2=nz2>ny2、
 nx1>ny1>nz1/発光偏光板/nz2>nx2>ny2;
 nx1>ny1=nz1/発光偏光板/nx2>ny2>nz2、
 nx1>ny1=nz1/発光偏光板/nx2>ny2=nz2、
 nx1>ny1=nz1/発光偏光板/nx2=ny2>nz2、
 nx1>ny1=nz1/発光偏光板/nx2=ny2<nz2、
 nx1>ny1=nz1/発光偏光板/nx2>nz2>ny2、
 nx1>ny1=nz1/発光偏光板/nx2=nz2>ny2、
 nx1>ny1=nz1/発光偏光板/nz2>nx2>ny2;
 nx1=ny1>nz1/発光偏光板/nx2>ny2>nz2、
 nx1=ny1>nz1/発光偏光板/nx2>ny2=nz2、
 nx1=ny1>nz1/発光偏光板/nx2=ny2>nz2、
 nx1=ny1>nz1/発光偏光板/nx2=ny2<nz2、
 nx1=ny1>nz1/発光偏光板/nx2>nz2>ny2、
 nx1=ny1>nz1/発光偏光板/nx2=nz2>ny2、
 nx1=ny1>nz1/発光偏光板/nz2>nx2>ny2;
 nx1=ny1<nz1/発光偏光板/nx2>ny2>nz2、
 nx1=ny1<nz1/発光偏光板/nx2>ny2=nz2、
 nx1=ny1<nz1/発光偏光板/nx2=ny2>nz2、
 nx1=ny1<nz1/発光偏光板/nx2=ny2<nz2、
 nx1=ny1<nz1/発光偏光板/nx2>nz2>ny2、
 nx1=ny1<nz1/発光偏光板/nx2=nz2>ny2、
 nx1=ny1<nz1/発光偏光板/nz2>nx2>ny2、
 nx1>nz1>ny1/発光偏光板/nx2>ny2>nz2、
 nx1>nz1>ny1/発光偏光板/nx2>ny2=nz2、
 nx1>nz1>ny1/発光偏光板/nx2=ny2>nz2、
 nx1>nz1>ny1/発光偏光板/nx2=ny2<nz2、
 nx1>nz1>ny1/発光偏光板/nx2>nz2>ny2、
 nx1>nz1>ny1/発光偏光板/nx2=nz2>ny2、
 nx1>nz1>ny1/発光偏光板/nz2>nx2>ny2;
 nx1=nz1>ny1/発光偏光板/nx2>ny2>nz2、
 nx1=nz1>ny1/発光偏光板/nx2>ny2=nz2、
 nx1=nz1>ny1/発光偏光板/nx2=ny2>nz2、
 nx1=nz1>ny1/発光偏光板/nx2=ny2<nz2、
 nx1=nz1>ny1/発光偏光板/nx2>nz2>ny2、
 nx1=nz1>ny1/発光偏光板/nx2=nz2>ny2、
 nx1=nz1>ny1/発光偏光板/nz2>nx2>ny2;
 nz1>nx1>ny1/発光偏光板/nx2>ny2>nz2、
 nz1>nx1>ny1/発光偏光板/nx2>ny2=nz2、
 nz1>nx1>ny1/発光偏光板/nx2=ny2>nz2、
 nz1>nx1>ny1/発光偏光板/nx2=ny2<nz2、
 nz1>nx1>ny1/発光偏光板/nx2>nz2>ny2、
 nz1>nx1>ny1/発光偏光板/nx2=nz2>ny2、
 nz1>nx1>ny1/発光偏光板/nz2>nx2>ny2。
  より好ましくは以下の通りである:
 nx1>ny1>nz1/発光偏光板/nx2>ny2>nz2、
 nx1>ny1>nz1/発光偏光板/nx2>ny2=nz2、
 nx1>ny1>nz1/発光偏光板/nx2=ny2>nz2、
 nx1>ny1>nz1/発光偏光板/nx2=ny2<nz2、
 nx1>ny1>nz1/発光偏光板/nx2>nz2>ny2、
 nx1>ny1>nz1/発光偏光板/nx2=nz2>ny2、
 nx1>ny1>nz1/発光偏光板/nz2>nx2>ny2;
 nx1>ny1=nz1/発光偏光板/nx2>ny2>nz2、
 nx1>ny1=nz1/発光偏光板/nx2>ny2=nz2、
 nx1>ny1=nz1/発光偏光板/nx2=ny2>nz2、
 nx1>ny1=nz1/発光偏光板/nx2=ny2<nz2、
 nx1>ny1=nz1/発光偏光板/nx2>nz2>ny2、
 nx1>ny1=nz1/発光偏光板/nx2=nz2>ny2、
 nx1>ny1=nz1/発光偏光板/nz2>nx2>ny2;
 nx1=ny1>nz1/発光偏光板/nx2>ny2>nz2、
 nx1=ny1>nz1/発光偏光板/nx2>ny2=nz2、
 nx1=ny1>nz1/発光偏光板/nx2>nz2>ny2、
 nx1=ny1>nz1/発光偏光板/nx2=nz2>ny2、
 nx1=ny1>nz1/発光偏光板/nz2>nx2>ny2;
 nx1=ny1<nz1/発光偏光板/nx2>ny2>nz2、
 nx1=ny1<nz1/発光偏光板/nx2>ny2=nz2、
 nx1=ny1<nz1/発光偏光板/nx2>nz2>ny2、
 nx1=ny1<nz1/発光偏光板/nx2=nz2>ny2、
 nx1=ny1<nz1/発光偏光板/nz2>nx2>ny2;
 nx1>nz1>ny1/発光偏光板/nx2>ny2>nz2、
 nx1>nz1>ny1/発光偏光板/nx2>ny2=nz2、
 nx1>nz1>ny1/発光偏光板/nx2=ny2>nz2、
 nx1>nz1>ny1/発光偏光板/nx2=ny2<nz2、
 nx1>nz1>ny1/発光偏光板/nx2>nz2>ny2、
 nx1>nz1>ny1/発光偏光板/nx2=nz2>ny2、
 nx1>nz1>ny1/発光偏光板/nz2>nx2>ny2;
 nx1=nz1>ny1/発光偏光板/nx2>ny2>nz2、
 nx1=nz1>ny1/発光偏光板/nx2>ny2=nz2、
 nx1=nz1>ny1/発光偏光板/nx2=ny2>nz2、
 nx1=nz1>ny1/発光偏光板/nx2=ny2<nz2、
 nx1=nz1>ny1/発光偏光板/nx2>nz2>ny2、
 nx1=nz1>ny1/発光偏光板/nx2=nz2>ny2、
 nx1=nz1>ny1/発光偏光板/nz2>nx2>ny2;
 nz1>nx1>ny1/発光偏光板/nx2>ny2>nz2、
 nz1>nx1>ny1/発光偏光板/nx2>ny2=nz2、
 nz1>nx1>ny1/発光偏光板/nx2=ny2>nz2、
 nz1>nx1>ny1/発光偏光板/nx2=ny2<nz2、
 nz1>nx1>ny1/発光偏光板/nx2>nz2>ny2、
 nz1>nx1>ny1/発光偏光板/nx2=nz2>ny2、
 nz1>nx1>ny1/発光偏光板/nz2>nx2>ny2。
 なお、これらのnx1とnx2、ny1とny2、又はnz1とnz2が等しい場合でも、第一の位相差板の厚さd1、第二の位相差板の厚さd2とが異なれば、位相差値は異なるものとなるため、これも本発明の一つである。また、位相差板は片側に1枚とは限らず、積層して片側もしくは両側それぞれ2枚以上用いることも可能である。
 本発明の光学部材は、上記反射型偏光板あるいは発光偏光板の両面に位相差板を備える。それぞれの位相差板を第一の位相差板、第二の位相差板とするとき、第一と第二の位相差板は異なるものでも良いし、同じ位相差板であってもよい。偏光板と位相差板は必ずしも密着している必要はなく、偏光板と位相差板との間に空間があってもよい。図1には、本発明の光学部材1の構成の一例を示している。発光偏光板2の両面に第一の位相差板3と第二の位相差板4が配置されている。第一の位相差板は1/4波長板であり、第二の位相差板も1/4波長板である。発光偏光板1の偏光軸5に対してそれぞれの位相差板の遅相軸6、7は、それぞれの位相差板を観察者側に配置したときに45度になるよう配置されている。光源8から発光偏光板が発光するために必要な光(例えば紫外線)を第一の位相差板3側から照射すると、発光偏光板は両面に直線偏光9を発光し、それぞれの位相差板へ入射する。次に発光した直線偏光9は第一の位相差板3側では右円偏光10に変換されて出射される。一方、第二の位相差板4側でも同じ向きの右円偏光10となって出射される。
 図2には、別の例として本発明の光学部材11を示している。発光偏光板2の両面に第一の位相差板3と第二の位相差板12が配置されている。第一の位相差板は1/4波長板であり、第二の位相差板は1/2波長板である。発光偏光板2の偏光軸5に対してそれぞれの位相差板の遅相軸6、7は、それぞれの位相差板を観察者側に配置したときに45度になるよう配置されている。光源8から発光偏光板が発光するために必要な光(例えば紫外線)を第一の位相差板3側から照射すると、発光偏光板は両面に直線偏光9を発光し、それぞれの位相差板へ入射する。次に発光した直線偏光9は第一の位相差板3側では右円偏光10に変換されて出射される。一方、第二の位相差板12側では水平直線偏光13となって出射される。
 これら位相差板の遅相軸と発光偏光板の偏光軸とのなす角度は求める偏光状態によって異なるために適宜選択される。例えば、図1で用いた1/4波長板の遅相軸を発光偏光板の偏光軸に対して45度とは異なる角度(例えば22.5度)にすると出射光は楕円偏光となる。あるいは、図2で用いた1/2波長板の遅相軸を発光偏光板の偏光軸に対して45度とは異なる角度(例えば22.5度)にすると出射光は水平直線偏光ではなく、45度に傾いた直線偏光となる。なお、位相差板には波長依存性があるため、発光する光の波長に対して適切な位相差を与えるように位相差板は選択される。広い帯域で発光する場合は、周知である逆波長分散特性を有する位相差板や複数の位相差板を組み合わせた広帯域位相差板を用いれば良い。
 本発明の光学部材を積層する方法としては、例えば、上記の発光偏光板と位相差板を接着剤もしくは粘着剤等を用いて貼り合わせせればよい。用いる接着剤、粘着剤に特に制限はなく、必要に応じてデザイン性や不要な光をカットするために着色されていても良い。接着剤は例えば熱硬化型や紫外線硬化型の樹脂と重合開始剤を含む組成物が挙げられる。また、粘着剤はアクリル酸エステルの重合物を含むアクリル系粘着剤等が挙げられる。
 最外層は傷付きやすさを防ぐためのハードコートや外光の反射を防ぐための反射防止コートが施されていても良い。ハードコートとしては特に制限はないが、例えば紫外線硬化型樹脂と重合開始剤を含む組成物をコーティングして硬化させたものが挙げられ、また、反射防止コートとしては、例えば、膜厚を適宜調整した高屈折率樹脂層と低屈折率樹脂層からなる多層膜等が挙げられる。
 こうして得られた本発明の光学部材を用いることにより、例えば両面に異なる情報を表示することができる画像表示体を得ることができる。図3には本発明の画像表示装置14が例示してある。第一の位相差板15、第二の位相差板16は面内に複数の遅相軸17、18、19を有する。このような位相差板は重合性液晶と光配向技術を組み合わせることで作製することが可能である。このような複数の遅相軸を有する位相差板15、16と、所定の形状に加工した発光偏光板20をアクリル系粘着剤で貼り合わせたガラス板等の透明基板21からなる本発明の光学部材22の両側にさらに吸収軸23が水平方向にある吸収型偏光板24が配置されている。例えば位相差板15は、位相差が1/2波長であり、発光偏光板の偏光軸と平行な遅相軸17及び45度の遅相軸18を有しており、位相差板16は、位相差が1/2波長であり、発光偏光板の偏光軸と平行な遅相軸17及び45度の遅相軸19を有している。光源8から発光偏光板が発光するために必要な光(例えば紫外線)を位相差板15側から照射すると、発光偏光板20は図形の形に発光するが全て偏光軸5の直線偏光となる。次に位相差板15側に入射した偏光は遅相軸が45度傾いた領域のみ、偏光軸が回転し水平直線偏光となる。次に水平方向に吸収軸23を有する吸収型偏光板24に入射すると、位相差板による偏光回転した領域は吸収型偏光板24によって吸収されるため、偏光変換されなかった領域の画像のみを視認することができる(図3においては、左側は上向きの矢印のみ視認できる)。一方、位相差板16側に入射した発光偏光板から図形の形に発光した偏光は、遅相軸が45度傾いた領域のみ、偏光軸が回転し水平直線偏光となる。次に水平方向に吸収軸23を有する吸収型偏光板24に入射すると、位相差板による偏光回転した領域は吸収型偏光板24によって吸収されるため、偏光変換されなかった領域の画像のみを視認することができる(図3において右側は下向きの矢印のみ視認できる)。
 さらに、発光偏光板の少なくとも片側に液晶セルを配置し、発光する偏光状態を画素毎に変えることで、液晶セル側は自在に画像を切り替えたり、動画を表示することが可能となる。液晶セルは電圧によって液晶の配向状態を変えることで、透過する偏光の状態を変えることから位相差板の一種とみなすことができるため、発光偏光板の片側に位相差板、もう一方に液晶セルを有する構成あるいは発光偏光板の両側に液晶セルを有する構成もまた、本発明の光学部材、画像表示装置の一形態である。さらにはその両側に吸収型偏光板を配置した構成も本発明の画像表示装置の一形態である。液晶セルとしては一般的な液晶ディスプレイに使用されている液晶セルであれば特に制限はなく、TN(ツイステッドネマチック型)、STN(スーパーツイステッドネマチック型)、VA(垂直配向型)、IPS(インプレーンスイッチング型)等が好適に用いられる。
 図4にはそのような本発明の光学部材及び画像表示装置が例示してある。発光偏光板2の片側には第一の位相差板として、図3と同じく遅相軸が、発光偏光板の偏光軸と平行な遅相軸17及び45度の遅相軸18を有する1/2波長板15を用い、第二の位相差板として、液晶セル25を用いることにより、本発明の光学部材26が得られる。さらにそれぞれの外側に吸収軸23が水平方向にある吸収型偏光板24を配置することで、本発明の画像表示装置27が得られる。光源8から発光偏光板が発光するために必要な光(例えば紫外線)を位相差板15側から照射すると、発光偏光板は直線偏光を両側に発光する。位相差板15側に入射した偏光の一部は垂直直線偏光のまま吸収型偏光板24に入射するため光は透過するが、遅相軸が45度に配向した領域では入射した偏光が垂直から水平方向に変換されるため、吸収型偏光板24により吸収される。これにより固定された一定の画像を表示することができる(図4では左側は市松模様が表示されている様子を示してある)。一方、液晶セル側では、発光偏光板により発光した偏光が液晶セルの画素毎に変換され、変換された偏光を、吸収型偏光板24を介して観察することで様々な画像を表示することができ、連続して変化させることで動画表示も可能となる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はかかる実施例に限定されない。
実施例1
発光偏光板の作製
 厚さ75μmのポリビニルアルコールフィルム(クラレ社製 VF-PS#7500)を40℃の温水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、化合物例5-1に記載の4,4’-ビス-(スルホスチリル)ビフェニル2ナトリウム水溶液(BASF社製 Tinopal NFW Liquid)を0.05部、芒硝1.0部、水1000部を含む45℃の水溶液に10分間浸漬させた。得られたフィルムを3%ホウ酸水溶液中に50℃で5分間浸漬し、5.0倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま常温の水で20秒間水洗し、乾燥して偏光発光素子を得た。得られた偏光発光素子を分光光度計(日立製作所製 U-4100)を用いて測定したところ、吸収ピークは370nmであり、視感度補正単体透過率(Ys)は92.3%、オーダーパラメーターの値(OPD)は0.886であった。次に、支持体として用いる、370nmにおける透過率が90%である紫外線を透過するトリアセチルセルロースフィルム(富士フイルム社製 ZRD-60)の両面を、1.5規定の水酸化ナトリウム水溶液を用いて35℃で10分間処理し、水洗し、次いで、70℃で10分乾燥した。このトリアセチルセルロースフィルムを、上記で作製した偏光発光素子の両面に4%のポリビニルアルコール樹脂(日本酢ビポバール社製 NH-26)を含む水溶液を介して積層し、60℃で10分間乾燥することにより、本発明で使用する発光偏光板を得た。
位相差板の積層
 第一、第二の位相差板として、1/4波長板(ゼオン社製 ZD12-141158-A1330)を用い、図1に示すように発光偏光板の偏光軸に対して、それぞれの位相差板の遅相軸が発光偏光板の偏光軸に対して45度になるように配置し、アクリル系の粘着剤で積層し、本発明の光学部材を得た。
評価
 上記で作製した光学部材の一方向から市販のUV-LEDライト(アルプス製 強紫外線ライト)を照射すると、青白い光を発光した。次にUVライト照射側からこの光を円偏光板(ポラテクノ社製 吸収型偏光板SHC-13Uとゼオン社製 1/4波長板ZD12-141158-A1330とを偏光板の吸収軸と1/4波長板の遅相軸とが45度になるように積層されたもの)で観察したところ、円偏光板の吸収軸を90度回転させる毎に明暗が観察されたことから、出射光は円偏光となっていることが確認された。さらに、UV-LEDライト照射側と反対方向からこの光を円偏光板で観察したところ、円偏光板の吸収軸を90度回転させる毎に上記と同じ明暗が観察されたことから、出射光は反対側と同じ円偏光となっていることが確認された。以上のことから、両面から同じ円偏光が出射していることが確認された。
実施例2
光学部材の作製
 第二の位相差板を1/2波長板(ゼオン社製 ZF45フィルム#270)にし位相差板の遅相軸が発光偏光板の偏光軸に対して45度になるようにすること以外は実施例1と同様の操作により、図2に示すような配置で本発明の光学部材を得た。
評価
 実施例1と同様に、光学部材の一方向から市販のUV-LEDライト(アルプス製 強紫外線ライト)を照射すると、青白い光を発光した。次にUV-LEDライト照射側からこの光を実施例1で用いた円偏光板で観察したところ、偏光板の吸収軸を90度回転させる毎に明暗が観察されたことから、出射光は円偏光となっていることが確認された。さらに、UV-LEDライト照射側と反対方向からこの光を直線偏光板(ポラテクノ社製 吸収型偏光板SHC-13U)で観察したところ、直線偏光板の吸収軸を90度回転させる毎に明暗が観察され、かつ、出射光の偏光軸は発光偏光板の偏光軸とは90度異なっていることが確認された。以上のことから、UV-LEDライト照射側からは円偏光が出射し、反対側からは偏光軸が発光偏光板の偏光軸に対して90度回転した直線偏光が出射していることが確認された。
 本発明の光学部材を用いることで、両面に異なる画像を表示することができる。さらには、液晶セルとの組み合わせにより、静止画と動画あるいは両面に異なる動画を表示することが可能となる。このような本発明の画像表示装置は従来のような両面表示に2台のディスプレイを使用することなく、1台で表示が可能となるだけでなく、文字の反転といった視認性の課題も解決することができる。
1:本発明の光学部材
2:発光偏光板
3:第一の位相差板
4:第二の位相差板
5:発光偏光板の偏光軸
6:第一の位相差板の遅相軸
7:第二の位相差板の遅相軸
8:光源
9:発光偏光板から出射した偏光
10:右円偏光
11:本発明の光学部材の他の形態
12:第二の位相差板
13:水平直線偏光
14:本発明の画像表示装置
15:面内に複数の遅相軸を有する第一の位相差板
16:面内に複数の遅相軸を有する第二の位相差板
17:面内に複数の遅相軸を位相差板の遅相軸
18:面内に複数の遅相軸を有する位相差板の他の遅相軸
19:面内に複数の遅相軸を有する位相差板の他の遅相軸
20:所定の形状に加工した発光偏光板
21:透明基板
22:本発明の光学部材の他の形態
23:吸収型偏光板の吸収軸
24:吸収型偏光板
25:液晶セル
26:本発明の光学部材の他の形態
27:本発明の画像表示装置
 

Claims (7)

  1.  反射型偏光板あるいは発光偏光板を備え、その両面に位相差板を備えることを特徴とする光学部材。
  2.  光学部材が発光偏光板を備え、その両面にある位相差板がそれぞれ異なる位相差値を有することを特徴とする請求項1に記載の光学部材。
  3.  位相差板の面内最大屈折率をnx、nxと面内で直交する方向の屈折率をny、厚さ方向の屈折率をnzとするとき、それらの関係がnx>ny>nz、nx>ny=nz、nx>nz>ny、nz>nx>ny、nx=ny>nz、及びnx=ny<nzのいずれかであることを特徴とする請求項1又は2に記載の光学部材。
  4.  発光偏光板の偏光軸と、少なくとも一方の位相差板のnxの方向とが一致していないことを特徴とする請求項1ないし3のいずれか1項に記載の光学部材。
  5.  位相差板が面内に領域毎に異なる遅相軸を有するようにパターン化されていることを特徴とする請求項1ないし4のいずれか1項に記載の光学部材。
  6.  位相差板の少なくとも一方が液晶セルであることを特徴とする請求項1又は2に記載の光学部材。
  7.  請求項1ないし6のいずれか1項に記載の光学部材を用いた画像表示装置。
     
PCT/JP2021/015478 2020-04-24 2021-04-14 光学部材及びこれを用いた画像表示装置 WO2021215332A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022516999A JPWO2021215332A1 (ja) 2020-04-24 2021-04-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077392 2020-04-24
JP2020077392 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215332A1 true WO2021215332A1 (ja) 2021-10-28

Family

ID=78269284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015478 WO2021215332A1 (ja) 2020-04-24 2021-04-14 光学部材及びこれを用いた画像表示装置

Country Status (2)

Country Link
JP (1) JPWO2021215332A1 (ja)
WO (1) WO2021215332A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100946A1 (ja) * 2021-11-30 2023-06-08 国立大学法人京都大学 円偏光素子及びそれを用いた照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325216A (ja) * 1996-06-06 1997-12-16 Nitto Denko Corp 広視野角偏光板
JP2001154021A (ja) * 1999-11-29 2001-06-08 Nitto Denko Corp 偏光部材及び液晶表示装置
JP2006163169A (ja) * 2004-12-09 2006-06-22 Nitto Denko Corp 光学フィルム、バックライトシステムおよび液晶表示装置
WO2018212348A1 (ja) * 2017-05-19 2018-11-22 富士フイルム株式会社 光学素子および光学装置
WO2019058758A1 (ja) * 2017-09-20 2019-03-28 日本化薬株式会社 光学システム及び表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325216A (ja) * 1996-06-06 1997-12-16 Nitto Denko Corp 広視野角偏光板
JP2001154021A (ja) * 1999-11-29 2001-06-08 Nitto Denko Corp 偏光部材及び液晶表示装置
JP2006163169A (ja) * 2004-12-09 2006-06-22 Nitto Denko Corp 光学フィルム、バックライトシステムおよび液晶表示装置
WO2018212348A1 (ja) * 2017-05-19 2018-11-22 富士フイルム株式会社 光学素子および光学装置
WO2019058758A1 (ja) * 2017-09-20 2019-03-28 日本化薬株式会社 光学システム及び表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100946A1 (ja) * 2021-11-30 2023-06-08 国立大学法人京都大学 円偏光素子及びそれを用いた照明装置

Also Published As

Publication number Publication date
JPWO2021215332A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
JP7287889B2 (ja) 偏光発光素子、偏光発光板、表示装置及び偏光発光素子の製造方法
JP7182552B2 (ja) 光学システム及び表示装置
WO2020235413A1 (ja) 光学素子又は偏光板及びこれらを用いたアイウェア
JP2019056904A (ja) 面状偏光発光素子
WO2021215332A1 (ja) 光学部材及びこれを用いた画像表示装置
JP7429105B2 (ja) 偏光発光板、及びそれを備えた光学装置
WO2021166907A1 (ja) 光学システム及びそれを備えた光学装置
JP7479136B2 (ja) 偏光発光素子、偏光発光板、並びにそれを用いた表示装置
JP7336964B2 (ja) 光学制御システム
WO2021010340A1 (ja) 発光性化合物又はその塩、ならびにこれを用いた偏光発光素子、偏光発光板、及び表示装置
WO2021106798A1 (ja) 偏光発光素子、偏光発光板、及び表示装置
JP7452969B2 (ja) 偏光発光板、及びそれを備えた光学装置
JP7288298B2 (ja) 表示装置
WO2021010351A1 (ja) 発光性化合物又はその塩を用いた偏光発光素子、偏光発光板、及び表示装置
CN113795784B (zh) 光学元件以及使用这些的眼用器具
JP7411361B2 (ja) 光の反射を抑制する偏光発光光源および表示装置
TWI826705B (zh) 發光性化合物或其鹽,以及含有該化合物之偏光發光元件、偏光發光板及顯示裝置
JP7448910B2 (ja) 液晶セル及び液晶表示装置
TWI825331B (zh) 發光性化合物或其鹽,以及含有該化合物之偏光發光元件、偏光發光板及顯示裝置
TW202112769A (zh) 含有水溶性香豆素系化合物或其鹽之偏光發光膜、偏光發光板及顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791617

Country of ref document: EP

Kind code of ref document: A1