WO2021215252A1 - Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material - Google Patents

Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material Download PDF

Info

Publication number
WO2021215252A1
WO2021215252A1 PCT/JP2021/014843 JP2021014843W WO2021215252A1 WO 2021215252 A1 WO2021215252 A1 WO 2021215252A1 JP 2021014843 W JP2021014843 W JP 2021014843W WO 2021215252 A1 WO2021215252 A1 WO 2021215252A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
powder coating
coating material
acrylate
resin composition
Prior art date
Application number
PCT/JP2021/014843
Other languages
French (fr)
Japanese (ja)
Inventor
村上 晃一
奈緒之 清家
雄一郎 柴
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202180029540.0A priority Critical patent/CN115427523A/en
Priority to KR1020227033394A priority patent/KR20220143944A/en
Priority to JP2022503951A priority patent/JP7070818B2/en
Publication of WO2021215252A1 publication Critical patent/WO2021215252A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Definitions

  • the present invention relates to a resin composition for powder coating material, a powder coating material, and an article having a coating film of the coating material.
  • powder paints are in the limelight as solvent-free paints from the viewpoint of environmental protection.
  • acrylic powder paints have excellent coating performance such as weather resistance and stain resistance, so aluminum wheels, etc. It is attracting attention for applications such as automobile parts, metal exteriors, and home appliances.
  • the powder coating material has a drawback that the smoothness of the coating film is inferior to that of the solvent type coating material.
  • the epoxy group-containing acrylic resin obtained by copolymerizing a (meth) acrylic acid alkyl ester, an epoxy group-containing acrylic monomer, and other copolymerizable vinyl-based monomers can react with an epoxy group.
  • a powder coating material containing a curing agent having a functional group has been proposed (see, for example, Patent Document 1).
  • the cured coating film obtained from this powder coating film has improved smoothness, it has a problem of insufficient thread rust resistance.
  • the problem to be solved by the present invention is a resin composition for powder coating material, a powder coating material, and a coating material of the coating material, which can obtain a cured coating material having excellent smoothness, flexibility, and thread rust resistance. To provide goods.
  • the present inventors have made an acrylic monomer having an epoxy group, an acrylic monomer having a specific structure, and other unsaturated monomers as essential raw materials.
  • the invention was completed by finding that the cured coating film obtained from the resin composition for powder coating material containing a resin is excellent in smoothness, flexibility, and thread rust resistance.
  • the acrylic monomer (a1) having an epoxy group the acrylic monomer (a2) represented by the following general formula (1), the acrylic monomer (a1) and the polypoly acrylic are used.
  • a resin composition for powder coating which contains an acrylic resin (A) containing an unsaturated monomer (a3) other than the weight (a2) as an essential raw material.
  • the present invention relates to powder coating materials and articles coated with the coating materials.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a branched or non-branched alkyl group having 1 to 8 carbon atoms
  • R 3 has 1 carbon atom. Represents a branched or non-branched alkyl group of ⁇ 8)
  • the resin composition for powder coatings of the present invention is excellent in appearance, flexibility, and thread rust resistance, and can form a cured coating film. Therefore, it is suitably used as a coating material for coating articles such as aluminum wheels. Can be done.
  • the resin composition for powder coating of the present invention comprises an acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) represented by the following general formula (1), and the acrylic monomer (a2). It contains an acrylic resin (A) containing an unsaturated monomer (a3) other than the a1) and the acrylic monomer (a2) as an essential raw material.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a branched or non-branched alkyl group having 1 to 8 carbon atoms
  • R 3 has 1 carbon atom. Represents a branched or non-branched alkyl group of ⁇ 8)
  • the acrylic resin (A) will be described.
  • the acrylic resin (A) has an epoxy group
  • the acrylic monomer (a1), the acrylic monomer (a2), and the unsaturated monomer (a3) are copolymerized with each other. Obtained by
  • the acrylic monomer (a1) is an acrylic monomer having an epoxy group, and is, for example, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, (meth) allyl glycidyl ether, (meth) allyl methyl glycidyl ether. , 3,4-Epoxide cyclohexylmethyl (meth) acrylate and the like, and among these, glycidyl (meth) acrylate is preferable.
  • These acrylic monomers (a1) can be used alone or in combination of two or more.
  • (meth) acrylic acid refers to one or both of methacrylic acid and acrylic acid
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • the acrylic monomer (a2) is an acrylic monomer represented by the general formula (1), and is, for example, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, and N-isopropyl (meth). ) Acrylamide, Nt-butyl (meth) acrylamide, Nt-octyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like.
  • N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N, N-diethyl (meth) acrylamide are preferable because they have an excellent balance between the flexibility of the coating film and the resistance to thread rust.
  • These acrylic monomers (a2) can be used alone or in combination of two or more.
  • the unsaturated monomer (a3) is an unsaturated monomer other than the acrylic monomers (a1) and (a2), and is, for example, (meth) acrylic acid, methyl (meth) acrylate, and ethyl (meth). ) Acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (Meta) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (
  • EO-modified triacrylate of isocyanuric acid trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylol propanetetraacrylate, dipentaerythritol hexa (meth) acrylate , Dipentaerythritol Penta (meth) acrylate and other trifunctional or higher functional monomers, among these, styrene and / or because of the excellent balance between the flexibility of the coating film and the resistance to thread rust.
  • acrylic monomers (a3) can be used alone or in combination of two or more.
  • the amount of the acrylic monomer (a1) used is 10 to 60% by mass in the monomer component which is the raw material of the acrylic resin (A) because the appearance of the coating film and the thread rust resistance are improved. It is preferably 20 to 50% by mass, more preferably 20 to 50% by mass.
  • the amount of the acrylic monomer (a2) used is 0.1 to 30% by mass in the monomer component which is the raw material of the acrylic resin (A) because the thread rust resistance of the coating film is improved. It is preferably 0.5 to 20% by mass, more preferably 0.5 to 20% by mass.
  • the amount of the acrylic monomer (a3) used is 30 to 80% by mass in the monomer component which is the raw material of the acrylic resin (A) because the flexibility of the coating film and the thread rust resistance are improved. Is preferable, and 40 to 80% by mass is more preferable.
  • the glass transition temperature of the acrylic resin (A) is preferably 20 to 120 ° C. because the thread rust resistance of the coating film is improved. More preferably, it is 40 to 100 ° C.
  • Tg glass transition temperature to be obtained, W1: weight fraction of component 1, Tg1: glass transition temperature of homopolymer of component 1
  • the number average molecular weight of the acrylic resin (A) is preferably 1,000 to 10,000 because it is excellent in fluidity at the time of melting and thread rust resistance. More preferably, it is 2,000 to 8,000.
  • the number average molecular weight is a value converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as "GPC") measurement.
  • the method for obtaining the acrylic resin (A) can be carried out by a known polymerization method using the acrylic monomer (a1), the acrylic monomer (a2) and the unsaturated monomer (a3) as raw materials.
  • the solution radical polymerization method is preferable because it is the simplest.
  • the above solution radical polymerization method is a method in which each monomer as a raw material is dissolved in a solvent and a polymerization reaction is carried out in the presence of a polymerization initiator.
  • the solvent that can be used in this case are hydrocarbon solvents such as toluene, xylene, cyclohexane, n-hexane and octane; alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol and sec-butanol.
  • Ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether; esters such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, etc.
  • Solvents Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like can be mentioned. These solvents can be used alone or in combination of two or more.
  • Examples of the polymerization initiator include ketone peroxide compounds such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, 2,2-bis (4,5-di) tert-butylperoxycyclohexyl) propane, 2,2-bis (4,5-ditert-amylperoxycyclohexyl) propane, 2,2-bis (4,54-ditert-hexylperoxycyclohexyl) propane, 2 Peroxyketal compounds such as 2-bis (4,5-ditert-octylperoxycyclohexyl) propane, 2,2-bis (4,54-dicumyl
  • Peroxide compounds such as bis (tert-butylcyclohexyl) peroxydicarbonate; tert-butylperoxy-2-ethylhexanoate, tert-butylperoxybenzoate, 2,5-dimethyl-2,
  • Organic peroxides such as peroxyester compounds such as 5-di (benzoylperoxy) hexane, 2,2'-azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), etc. Azo compound of.
  • the resin composition for powder coating material of the present invention contains the acrylic resin (A), but since the physical properties of the coating film are further improved, a curing agent (B) having a functional group capable of reacting with an epoxy group. ) Is preferably contained.
  • the curing agent (B) is a curing agent having a functional group capable of reacting with an epoxy group.
  • Polyvalent carboxylic acid compounds such as brassic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid, heptadecanedicarboxylic acid, octadecanedicarboxylic acid, eikosandicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, butanetricarboxylic acid, and many others. Examples thereof include anhydrides of valent carboxylic acids and polyvalent phenol compounds.
  • an aliphatic polyvalent carboxylic acid compound and an anhydride thereof are preferable, and dodecanedicarboxylic acid is more preferable, because a high-strength coating film can be obtained.
  • these curing agents (B) can be used alone or in combination of two or more.
  • the acrylic resin (A) and the curing agent (B) in the resin composition for powder coating of the present invention a high-strength coating film can be obtained, so that the acrylic resin (A) has
  • the equivalent ratio (A / B) of the equivalent number of epoxy groups to the equivalent number of functional groups capable of reacting with the epoxy group in the curing agent (B) is preferably 0.5 to 1.5, preferably 0.8. ⁇ 1.2 is more preferable.
  • the resin composition for powder coatings of the present invention includes organic or inorganic pigments, leveling agents, flow modifiers, light stabilizers, ultraviolet absorbers, and oxidations, as long as the effects of the present invention are not impaired.
  • Various known and commonly used additives such as inhibitors can be added.
  • a catalyst can be added for the purpose of accelerating the curing reaction during baking.
  • the resin composition for powder coating material of the present invention contains water such as silica, alkoxysilane, and a silane coupling agent within a range that does not impair the effects of the present invention.
  • Degradable silane compounds can be further included. These compounds may be used alone or in combination of two or more.
  • silane coupling agents examples include glycidyl alkoxysilane and aminoalkoxysilane. Among these, glycidyltrialkoxysilane is preferable, and glycidyltrimethoxysilane is more preferable, because a coating film having excellent thread rust resistance can be obtained.
  • the blending amount of the silane coupling agent is preferably 0.01 to 3% by mass, preferably 0.01 to 1% by mass, in the resin composition for powder coating material, because a coating film having excellent thread rust resistance can be obtained. % Is more preferable.
  • a so-called mechanical pulverization method in which various additives such as a surface conditioner are mixed, and then they are melt-kneaded and then finely pulverized and classified, can be used.
  • the powder coating material of the present invention can be applied to exteriors, household appliances, automobile supplies, motorcycle supplies, protective fences, etc., but has weather resistance, impact resistance, chipping resistance, water resistance, and thread rust resistance. It is suitable for coating metal members such as aluminum wheel alloy members because it can obtain a coating film with excellent appearance.
  • Examples of the powder coating coating method of the present invention include various known and commonly used methods such as an electrostatic powder coating method. Further, as a method of forming a cured coating film after coating the powder coating material of the present invention, it can be appropriately selected depending on the type and purpose of the base material, but it is excellent in thread rust resistance, water resistance and weather resistance. Since a coating film can be obtained, it is preferable to bake in a temperature range of 120 to 250 ° C. for 5 to 30 minutes. The coating film thickness is preferably in the range of 50 to 200 ⁇ m.
  • the epoxy equivalent and the number average molecular weight of the acrylic resin were measured by the following methods.
  • Measurement method of epoxy equivalent It was measured by the hydrochloric acid-pyridine method. To the resin, 25 ml of a hydrochloric acid-pyridine solution was added, and the mixture was heated and dissolved at 130 ° C. for 1 hour, and then titrated with a 0.1 N-potassium hydroxide alcohol solution using phenolphthalein as an indicator. The epoxy equivalent was calculated from the amount of 0.1N-potassium hydroxide alcohol solution consumed.
  • Measurement method of number average molecular weight Measured by GPC.
  • Measuring device High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
  • Column The following columns manufactured by Tosoh Corporation were connected in series and used.
  • TKgel G5000 (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1
  • Detector RI (Differential Refractometer) Column temperature: 40 ° C Eluent: tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection volume: 100 ⁇ L (sample concentration 4 mg / mL tetrahydrofuran solution) Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.
  • NIPAM N-isopropylacrylamide
  • t-butylperoxy2-ethylhexanoate was added dropwise over 6 hours.
  • the polymerization reaction was carried out by keeping the temperature at the same temperature for 6 hours, and then the solvent was removed at 160 ° C. under a reduced pressure of 20 mmHg to obtain a number average molecular weight of 3,000, a glass transition temperature of 84 ° C., and an epoxy equivalent of 525 g / eq.
  • a solid acrylic resin (A-1) was obtained.
  • Synthesis Example 5 Synthesis of Acrylic Resin (RA-1)
  • the composition of the monomer was changed to 20 parts by mass of St, 30 parts by mass of MMA, 22 parts by mass of IBOMA, and 28 parts by mass of GMA, the number average molecular weight was 3,000 and the glass was glass.
  • a solid acrylic resin (RA-1) having a transition temperature of 94 ° C. and an epoxy equivalent of 525 g / eq was obtained.
  • Synthesis Example 6 Synthesis of Acrylic Resin (RA-2)
  • the composition of the monomer was changed to 25 parts by mass of St, 30 parts by mass of MMA, 30 parts by mass of nBMA, and 15 parts by mass of GMA, the number average molecular weight was 3,000 and the glass was glass.
  • Synthesis Example 7 Synthesis of Acrylic Resin (RA-3)
  • the composition of the monomer was changed to 15 parts by mass of St, 15 parts by mass of MMA, 42 parts by mass of nBA, and 28 parts by mass of GMA, the number average molecular weight was 3,000 and the glass was glass.
  • a solid acrylic resin (RA-3) having a transition temperature of 4 ° C. and an epoxy equivalent of 525 g / eq was obtained.
  • Tables 1 and 2 show the monomer compositions and property values of the acrylic resins (A-1) to (A-4) and (RA-1) to (RA-3) synthesized in Synthesis Examples 1 to 6 above. ..
  • Example 1 Production and evaluation of powder coating material (1)
  • DDDA dodecanedicarboxylic acid
  • benzoin 5 parts by mass of benzoin
  • a leveling agent (“Regiflow LF” manufactured by ESTRON).
  • the resin composition containing 3 parts by mass is melt-kneaded using a twin-screw kneader (“APV Kneader MP-2015 type” manufactured by Tsubako Yokohama Sales Co., Ltd.), finely pulverized, and further 200 mesh.
  • the powder coating (1) was obtained by classifying with the wire net of the above.
  • the powder coating obtained above is electrostatically powder coated on an untreated aluminum plate (A-1050P) (7 cm ⁇ 15 cm) so that the film thickness after baking is 80 to 120 ⁇ m, and then 20 at 170 ° C. Baking for minutes was performed to prepare a cured coating film for evaluation.
  • A-1050P untreated aluminum plate
  • Test 1 in which (prepared by dissolving in ion-exchanged water) was sprayed for 6 hours and test 2 in which the mixture was left to stand for 96 hours under the conditions of a temperature of 60 ° C. and a humidity of 85% were performed for a total of 5 cycles.
  • the thread rust generated from the scratches on the coated plate was visually confirmed, and the thread rust resistance was evaluated by the length of the thread rust that grew to the longest. Based on the length of the thread rust that grew to the longest, the thread rust resistance of the coating film was determined as follows. ⁇ : Maximum length of thread rust is 2.0 mm or less ⁇ : Maximum length of thread rust exceeds 2.0 mm, 3.0 mm or less ⁇ : Maximum length of thread rust exceeds 3.0 mm
  • Examples 2 to 4 Production and evaluation of powder coating materials (2) to (4)
  • the powder coating materials (2) to (4) were obtained by operating in the same manner as in Example 1 except that the acrylic resin (A-1) and DDDA blended in Example 1 were changed to the compositions shown in Table 3. It was prepared and various physical properties were evaluated.
  • Tables 3 and 4 show the compounding compositions and evaluation results of the powder coating materials (1) to (4) obtained in Examples 1 to 4 and the powder coating materials (R1) to (R3) obtained in Comparative Examples 1 to 3. Shown in.
  • the acrylic monomer (a2) represented by the general formula (1) is used as the raw material of the acrylic resin (A) which is a component of the resin composition for powder coating of the present invention.
  • the acrylic monomer (a2) represented by the general formula (1) is used as the raw material of the acrylic resin (A) which is a component of the resin composition for powder coating of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a resin composition for a powder coating material, the resin composition being characterized by comprising an acrylic resin (A) which contains, as essential raw materials, an acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) represented by general formula (1), and an unsaturated monomer (a3) other than the acrylic monomer (a1) and the acrylic monomer (a2). Since a cured coating film having excellent appearance, flexibility, and filiform corrosion resistance can be obtained from said resin composition for a powder coating material, said resin composition is suitably used for a powder coating material. (In general formula (1), R1 represents a hydrogen atom or a methyl group, R2 represents a hydrogen atom or a branched or non-branched alkyl group having 1-8 carbon atoms, and R3 represents a branched or non-branched alkyl group having 1-8 carbon atoms.)

Description

粉体塗料用樹脂組成物、粉体塗料、該塗料の塗膜を有する物品Resin composition for powder coating material, powder coating material, article having a coating film of the coating material
 本発明は、粉体塗料用樹脂組成物、粉体塗料、該塗料の塗膜を有する物品に関する。 The present invention relates to a resin composition for powder coating material, a powder coating material, and an article having a coating film of the coating material.
 近年、大気汚染等の問題から有機溶剤に対する規制が厳しくなり、環境調和型塗料が注目されている。その中でも、粉体塗料は無溶剤型塗料として環境保護の観点から脚光を浴びており、特にアクリル系粉体塗料は耐候性、耐汚染性等の塗膜性能に優れることから、アルミホイール等の自動車部品、金属外装、家電の用途に注目されている。しかしながら、粉体塗料は溶剤型塗料と比較し、塗膜の平滑性が劣るという欠点があった。 In recent years, regulations on organic solvents have become stricter due to problems such as air pollution, and environment-friendly paints are attracting attention. Among them, powder paints are in the limelight as solvent-free paints from the viewpoint of environmental protection. In particular, acrylic powder paints have excellent coating performance such as weather resistance and stain resistance, so aluminum wheels, etc. It is attracting attention for applications such as automobile parts, metal exteriors, and home appliances. However, the powder coating material has a drawback that the smoothness of the coating film is inferior to that of the solvent type coating material.
 これに対して、(メタ)アクリル酸アルキルエステル、エポキシ基含有アクリル単量体、その他共重合可能なビニル系単量体を共重合させて得られるエポキシ基含有アクリル樹脂と、エポキシ基と反応可能な官能基を有する硬化剤とを含んでなる粉体塗料が提案されている(例えば、特許文献1参照。)。しかしながら、この粉体塗料から得られる硬化塗膜は、平滑性が改善されているものの、耐糸錆性が不十分であるという問題があった。 On the other hand, the epoxy group-containing acrylic resin obtained by copolymerizing a (meth) acrylic acid alkyl ester, an epoxy group-containing acrylic monomer, and other copolymerizable vinyl-based monomers can react with an epoxy group. A powder coating material containing a curing agent having a functional group has been proposed (see, for example, Patent Document 1). However, although the cured coating film obtained from this powder coating film has improved smoothness, it has a problem of insufficient thread rust resistance.
特開2002-69368号公報Japanese Unexamined Patent Publication No. 2002-69368
 本発明が解決しようとする課題は、平滑性、柔軟性、及び耐糸錆性に優れる硬化塗膜を得ることのできる粉体塗料用樹脂組成物、粉体塗料及び該塗料の塗膜を有する物品提供することである。 The problem to be solved by the present invention is a resin composition for powder coating material, a powder coating material, and a coating material of the coating material, which can obtain a cured coating material having excellent smoothness, flexibility, and thread rust resistance. To provide goods.
 本発明者等は、上記の課題を解決するため鋭意研究した結果、エポキシ基を有するアクリル単量体と特定構造を有するアクリル単量体と、その他の不飽和単量体を必須原料とするアクリル樹脂を含有する粉体塗料用樹脂組成物から得られる硬化塗膜が、平滑性、柔軟性、及び耐糸錆性に優れることを見出し、発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors have made an acrylic monomer having an epoxy group, an acrylic monomer having a specific structure, and other unsaturated monomers as essential raw materials. The invention was completed by finding that the cured coating film obtained from the resin composition for powder coating material containing a resin is excellent in smoothness, flexibility, and thread rust resistance.
 すなわち、本発明は、エポキシ基を有するアクリル単量体(a1)と、下記一般式(1)で表されるアクリル単量体(a2)と、前記アクリル単量体(a1)及び前記アクリル単量体(a2)以外の不飽和単量体(a3)とを必須原料とするアクリル樹脂(A)を含有することを特徴とする粉体塗料用樹脂組成物。粉体塗料及び該塗料で塗装された物品に関する。 That is, in the present invention, the acrylic monomer (a1) having an epoxy group, the acrylic monomer (a2) represented by the following general formula (1), the acrylic monomer (a1) and the polypoly acrylic are used. A resin composition for powder coating, which contains an acrylic resin (A) containing an unsaturated monomer (a3) other than the weight (a2) as an essential raw material. The present invention relates to powder coating materials and articles coated with the coating materials.
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中、Rは水素原子又はメチル基を表し、Rは水素原子、又は炭素原子数1~8の分岐又は非分岐のアルキル基を表し、Rは炭素原子数1~8の分岐又は非分岐のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or a branched or non-branched alkyl group having 1 to 8 carbon atoms, and R 3 has 1 carbon atom. Represents a branched or non-branched alkyl group of ~ 8)
 本発明の粉体塗料用樹脂組成物は、外観、柔軟性、及び耐糸錆性に優れること硬化塗膜を形成することができることから、アルミホイール等の物品を塗装する塗料に好適に用いることができる。 The resin composition for powder coatings of the present invention is excellent in appearance, flexibility, and thread rust resistance, and can form a cured coating film. Therefore, it is suitably used as a coating material for coating articles such as aluminum wheels. Can be done.
 本発明の粉体塗料用樹脂組成物は、エポキシ基を有するアクリル単量体(a1)と、下記一般式(1)で表されるアクリル単量体(a2)と、前記アクリル単量体(a1)及び前記アクリル単量体(a2)以外の不飽和単量体(a3)とを必須原料とするアクリル樹脂(A)を含有するものである。 The resin composition for powder coating of the present invention comprises an acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) represented by the following general formula (1), and the acrylic monomer (a2). It contains an acrylic resin (A) containing an unsaturated monomer (a3) other than the a1) and the acrylic monomer (a2) as an essential raw material.
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rは水素原子又はメチル基を表し、Rは水素原子、又は炭素原子数1~8の分岐又は非分岐のアルキル基を表し、Rは炭素原子数1~8の分岐又は非分岐のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or a branched or non-branched alkyl group having 1 to 8 carbon atoms, and R 3 has 1 carbon atom. Represents a branched or non-branched alkyl group of ~ 8)
 まず、前記アクリル樹脂(A)について説明する。前記アクリル樹脂(A)はエポキシ基を有するものであるが、前記アクリル単量体(a1)と、前記アクリル単量体(a2)と、前記不飽和単量体(a3)とを共重合することにより得られる。 First, the acrylic resin (A) will be described. Although the acrylic resin (A) has an epoxy group, the acrylic monomer (a1), the acrylic monomer (a2), and the unsaturated monomer (a3) are copolymerized with each other. Obtained by
 前記アクリル単量体(a1)は、エポキシ基を有するアクリル単量体であり、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル、(メタ)アリルメチルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられるが、これらの中でも、グリシジル(メタ)アクリレートが好ましい。なお、これらのアクリル単量体(a1)は、単独で用いることも2種以上併用することもできる。 The acrylic monomer (a1) is an acrylic monomer having an epoxy group, and is, for example, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, (meth) allyl glycidyl ether, (meth) allyl methyl glycidyl ether. , 3,4-Epoxide cyclohexylmethyl (meth) acrylate and the like, and among these, glycidyl (meth) acrylate is preferable. These acrylic monomers (a1) can be used alone or in combination of two or more.
 なお、本発明において、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリルアミド」とは、メタクリルアミドとアクリルアミドの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいう。 In the present invention, "(meth) acrylic acid" refers to one or both of methacrylic acid and acrylic acid, and "(meth) acrylate" refers to one or both of methacrylate and acrylate, and "(meth) acrylate". ) Acrylamide ”refers to one or both of methacrylamide and acrylamide, and“ (meth) acryloyl group ”refers to one or both of methacrylic acid group and acryloyl group.
 前記アクリル単量体(a2)は、前記一般式(1)で表されるアクリル単量体であり、例えば、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-t-オクチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等が挙げられるが、これらの中でも、塗膜の柔軟性と耐糸錆性のバランスに優れることから、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドが好ましい。なお、これらのアクリル単量体(a2)は、単独で用いることも2種以上併用することもできる。 The acrylic monomer (a2) is an acrylic monomer represented by the general formula (1), and is, for example, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, and N-isopropyl (meth). ) Acrylamide, Nt-butyl (meth) acrylamide, Nt-octyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like. Of these, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N, N-diethyl (meth) acrylamide are preferable because they have an excellent balance between the flexibility of the coating film and the resistance to thread rust. These acrylic monomers (a2) can be used alone or in combination of two or more.
 前記不飽和単量体(a3)は、前記アクリル単量体(a1)及び(a2)以外の不飽和単量体であり、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、(メタ)アクリルアミド、(メタ)アクリロニトリル、N,N-ジメチルアミノエチル(メタ)アクリレート、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、スチレン、α-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、2-メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシ-n-ブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-n-ブチル(メタ)アクリレート、3-ヒドロキシ-n-ブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の単官能単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールA-ジ(メタ)アクリレート、ビスフェノールA-EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性ジアクリレート等の2官能単量体;イソシアヌル酸EO変性トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の3官能以上の単量体などが挙げられるが、これらの中でも、塗膜の柔軟性と耐糸錆性のバランスに優れることから、スチレン、及び/又はメチルメタクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、を用いることが好ましい。なお、これらのアクリル単量体(a3)は、単独で用いることも2種以上併用することもできる。 The unsaturated monomer (a3) is an unsaturated monomer other than the acrylic monomers (a1) and (a2), and is, for example, (meth) acrylic acid, methyl (meth) acrylate, and ethyl (meth). ) Acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (Meta) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) ) Acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) ) Acrylate, (meth) acrylamide, (meth) acrylonitrile, N, N-dimethylaminoethyl (meth) acrylate, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3 -(Meta) acryloyloxypropylmethyldimethoxysilane, styrene, α-methylstyrene, p-methylstyrene, p-methoxystyrene, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (Meta) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1,4-Cyclohexanedimethanol mono (meth) acrylate, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2, Monofunctional monomers such as- (meth) acryloyloxyethyl-2-hydroxyethylphthalate, lactone-modified (meth) acrylate having a hydroxyl group at the end; ethylene glycol di (meth) acrylate, diechi Lenglycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate , Polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di ( Bifunctional monomers such as meta) acrylate, hydroxypivalic acid ester neopentyl glycol di (meth) acrylate, bisphenol A-di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, and isocyanuric acid EO modified diacrylate. EO-modified triacrylate of isocyanuric acid, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylol propanetetraacrylate, dipentaerythritol hexa (meth) acrylate , Dipentaerythritol Penta (meth) acrylate and other trifunctional or higher functional monomers, among these, styrene and / or because of the excellent balance between the flexibility of the coating film and the resistance to thread rust. It is preferable to use methyl methacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and isobornyl (meth) acrylate. These acrylic monomers (a3) can be used alone or in combination of two or more.
 前記アクリル単量体(a1)の使用量は、塗膜の外観と耐糸錆性が向上することから、前記アクリル樹脂(A)の原料である単量体成分中、10~60質量%が好ましく、20~50質量%がより好ましい。前記アクリル単量体(a2)の使用量は、塗膜の耐糸錆性が向上することから、前記アクリル樹脂(A)の原料である単量体成分中、0.1~30質量%が好ましく、0.5~20質量%がより好ましい。前記アクリル単量体(a3)の使用量は、塗膜の柔軟性と耐糸錆性が向上することから、前記アクリル樹脂(A)の原料である単量体成分中、30~80質量%が好ましく、40~80質量%がより好ましい。 The amount of the acrylic monomer (a1) used is 10 to 60% by mass in the monomer component which is the raw material of the acrylic resin (A) because the appearance of the coating film and the thread rust resistance are improved. It is preferably 20 to 50% by mass, more preferably 20 to 50% by mass. The amount of the acrylic monomer (a2) used is 0.1 to 30% by mass in the monomer component which is the raw material of the acrylic resin (A) because the thread rust resistance of the coating film is improved. It is preferably 0.5 to 20% by mass, more preferably 0.5 to 20% by mass. The amount of the acrylic monomer (a3) used is 30 to 80% by mass in the monomer component which is the raw material of the acrylic resin (A) because the flexibility of the coating film and the thread rust resistance are improved. Is preferable, and 40 to 80% by mass is more preferable.
 また、前記アクリル樹脂(A)のガラス転移温度は、塗膜の耐糸錆性が向上することから、20~120℃が好ましい。さらに好ましくは、40~100℃が好ましい。 Further, the glass transition temperature of the acrylic resin (A) is preferably 20 to 120 ° C. because the thread rust resistance of the coating film is improved. More preferably, it is 40 to 100 ° C.
 なお、本発明において、ガラス転移温度とは、
FOXの式:1/Tg=W1/Tg1+W2/Tg2+・・・
(Tg:求めるべきガラス転移温度、W1:成分1の重量分率、Tg1:成分1のホモポリマーのガラス転移温度)
に従い計算により求めたものである。各成分のホモポリマーのガラス転移温度の値は、日刊工業新聞社の「粘着技術ハンドブック」またはWiley-Interscienceの「ポリマーハンドブック(Polymer Handbook)」に記載の値を採用するものとする。以下、この計算によるガラス転移温度を「設計Tg」と略称する。
In the present invention, the glass transition temperature is defined as
FOX formula: 1 / Tg = W1 / Tg1 + W2 / Tg2 + ...
(Tg: glass transition temperature to be obtained, W1: weight fraction of component 1, Tg1: glass transition temperature of homopolymer of component 1)
It was calculated according to the above. For the value of the glass transition temperature of the homopolymer of each component, the value described in the "Adhesive Technology Handbook" of Nikkan Kogyo Shimbun or the "Polymer Handbook" of Wiley-Interscience shall be adopted. Hereinafter, the glass transition temperature calculated by this calculation is abbreviated as "design Tg".
 さらに、前記アクリル樹脂(A)の数平均分子量は溶融時の流動性と耐糸錆性に優れることから、1,000~10,000が好ましい。さらに好ましくは2,000~8,000が好ましい。ここで、数平均分子量はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。 Further, the number average molecular weight of the acrylic resin (A) is preferably 1,000 to 10,000 because it is excellent in fluidity at the time of melting and thread rust resistance. More preferably, it is 2,000 to 8,000. Here, the number average molecular weight is a value converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as "GPC") measurement.
 前記アクリル樹脂(A)を得る方法としては、前記アクリル単量体(a1)、アクリル単量体(a2)及び不飽和単量体(a3)を原料として、公知の重合方法で行うことができるが、溶液ラジカル重合法が最も簡便であることから好ましい。 The method for obtaining the acrylic resin (A) can be carried out by a known polymerization method using the acrylic monomer (a1), the acrylic monomer (a2) and the unsaturated monomer (a3) as raw materials. However, the solution radical polymerization method is preferable because it is the simplest.
 上記の溶液ラジカル重合法は、原料である各単量体を溶剤に溶解し、重合開始剤存在下で重合反応を行う方法である。この際に用いることができる溶剤としては、例えば、トルエン、キシレン、シクロヘキサン、n-ヘキサン、オクタン等の炭化水素系溶剤;メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール等のアルコール系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸アミル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上併用することもできる。 The above solution radical polymerization method is a method in which each monomer as a raw material is dissolved in a solvent and a polymerization reaction is carried out in the presence of a polymerization initiator. Examples of the solvent that can be used in this case are hydrocarbon solvents such as toluene, xylene, cyclohexane, n-hexane and octane; alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol and sec-butanol. Ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether; esters such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, etc. Solvents: Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like can be mentioned. These solvents can be used alone or in combination of two or more.
 前記重合開始剤としては、例えば、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド化合物;1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、2,2-ビス(4,4-ジtert-ブチルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジtert-アミルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジtert-ヘキシルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジtert-オクチルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジクミルパーオキシシクロヘキシル)プロパン等のパーオキシケタール化合物;クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド等のハイドロパーオキサイド類;1,3-ビス(tert-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、ジイソプロピルベンゼンパーオキサイド、tert-ブチルクミルパーオキサイド等のジアルキルパーオキサイド化合物;デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド等のジアシルパーオキサイド化合物;ビス(tert-ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシカーボネート化合物;tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等のパーオキシエステル化合物などの有機過酸化物と、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ化合物とが挙げられる。 Examples of the polymerization initiator include ketone peroxide compounds such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, 2,2-bis (4,5-di) tert-butylperoxycyclohexyl) propane, 2,2-bis (4,5-ditert-amylperoxycyclohexyl) propane, 2,2-bis (4,54-ditert-hexylperoxycyclohexyl) propane, 2 Peroxyketal compounds such as 2-bis (4,5-ditert-octylperoxycyclohexyl) propane, 2,2-bis (4,54-dicumylperoxycyclohexyl) propane; cumenehydroperoxide, 2, Hydroperoxides such as 5-dimethylhexane-2,5-dihydroperoxide; 1,3-bis (tert-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di ( Dialkyl peroxide compounds such as tert-butylperoxy) hexane, diisopropylbenzene peroxide, and tert-butylcumyl peroxide; diacyls such as decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, and 2,4-dichlorobenzoyl peroxide. Peroxide compounds; Peroxycarbonate compounds such as bis (tert-butylcyclohexyl) peroxydicarbonate; tert-butylperoxy-2-ethylhexanoate, tert-butylperoxybenzoate, 2,5-dimethyl-2, Organic peroxides such as peroxyester compounds such as 5-di (benzoylperoxy) hexane, 2,2'-azobisisobutyronitrile, 1,1'-azobis (cyclohexane-1-carbonitrile), etc. Azo compound of.
 本発明の粉体塗料用樹脂組成物は、前記アクリル樹脂(A)を含有するものであるが、塗膜物性がより向上することから、エポキシ基と反応可能な官能基を有する硬化剤(B)を含有することが好ましい。 The resin composition for powder coating material of the present invention contains the acrylic resin (A), but since the physical properties of the coating film are further improved, a curing agent (B) having a functional group capable of reacting with an epoxy group. ) Is preferably contained.
 前記硬化剤(B)は、エポキシ基と反応可能な官能基を有する硬化剤であり、例えば、スベリン酸、アゼライン酸、2,4-ジエチルグルタル酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ブラシル酸、テトラデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸、ヘプタデカンジカルボン酸、オクタデカンジカルボン酸、エイコサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、ブタントリカルボン酸等の多価カルボン酸化合物、これら多価カルボン酸の無水物、及び多価フェノール化合物などが挙げられる。これらの中でも、高強度の塗膜が得られることから、脂肪族多価カルボン酸化合物及びその無水物が好ましく、ドデカンジカルボン酸がより好ましい。また、これらの硬化剤(B)は単独で用いることも2種以上併用することもできる。 The curing agent (B) is a curing agent having a functional group capable of reacting with an epoxy group. Polyvalent carboxylic acid compounds such as brassic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid, heptadecanedicarboxylic acid, octadecanedicarboxylic acid, eikosandicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, butanetricarboxylic acid, and many others. Examples thereof include anhydrides of valent carboxylic acids and polyvalent phenol compounds. Among these, an aliphatic polyvalent carboxylic acid compound and an anhydride thereof are preferable, and dodecanedicarboxylic acid is more preferable, because a high-strength coating film can be obtained. Further, these curing agents (B) can be used alone or in combination of two or more.
 本発明の粉体塗料用樹脂組成物における前記アクリル樹脂(A)と前記硬化剤(B)との配合量としては、高強度の塗膜が得られることから、前記アクリル樹脂(A)中のエポキシ基の当量数と、前記硬化剤(B)中のエポキシ基と反応可能な官能基の当量数との当量比(A/B)が、0.5~1.5が好ましく、0.8~1.2がより好ましい。 As the blending amount of the acrylic resin (A) and the curing agent (B) in the resin composition for powder coating of the present invention, a high-strength coating film can be obtained, so that the acrylic resin (A) has The equivalent ratio (A / B) of the equivalent number of epoxy groups to the equivalent number of functional groups capable of reacting with the epoxy group in the curing agent (B) is preferably 0.5 to 1.5, preferably 0.8. ~ 1.2 is more preferable.
 本発明の粉体塗料用樹脂組成物には、本発明の効果を損なわない範囲内で、有機系ないしは無機系の顔料をはじめ、レベリング剤、流動調整剤、光安定剤、紫外線吸収剤、酸化防止剤等の公知慣用の種々の添加剤を添加することができる。また、焼き付け時の硬化反応を促進する目的で、触媒を添加することもできる。 The resin composition for powder coatings of the present invention includes organic or inorganic pigments, leveling agents, flow modifiers, light stabilizers, ultraviolet absorbers, and oxidations, as long as the effects of the present invention are not impaired. Various known and commonly used additives such as inhibitors can be added. In addition, a catalyst can be added for the purpose of accelerating the curing reaction during baking.
本発明の粉体塗料用樹脂組成物には、塗膜の耐糸錆性を向上させるために、本発明の効果を損なわない範囲内で、シリカ及びアルコキシシラン、シランカップリング剤のような加水分解可能なシラン化合物をさらに含むことができる。なお、これらの化合物は、単独で用いることも、2種以上併用することもできる。 In order to improve the thread rust resistance of the coating film, the resin composition for powder coating material of the present invention contains water such as silica, alkoxysilane, and a silane coupling agent within a range that does not impair the effects of the present invention. Degradable silane compounds can be further included. These compounds may be used alone or in combination of two or more.
 好適なシランカップリング剤の例としては、グリシジルアルコキシシランおよびアミノアルコキシシランなどが挙げられる。これらの中でも、耐糸錆性に優れる塗膜が得られることからグリシジルトリアルコキシシランが好ましく、グリシジルトリメトキシシランがより好ましい。 Examples of suitable silane coupling agents include glycidyl alkoxysilane and aminoalkoxysilane. Among these, glycidyltrialkoxysilane is preferable, and glycidyltrimethoxysilane is more preferable, because a coating film having excellent thread rust resistance can be obtained.
前記シランカップリング剤の配合量としては、耐糸錆性に優れる塗膜が得られることから、粉体塗料用樹脂組成物中、0.01~3質量%が好ましく、0.01~1質量%がより好ましい。 The blending amount of the silane coupling agent is preferably 0.01 to 3% by mass, preferably 0.01 to 1% by mass, in the resin composition for powder coating material, because a coating film having excellent thread rust resistance can be obtained. % Is more preferable.
 本発明の粉体塗料の調製方法としては、公知慣用の種々の方法を利用することができるが、例えば、前記アクリル樹脂(A)と、前記硬化剤(B)と、必要に応じて、顔料、表面調整剤等の種々の添加剤とを混合し、次いで、それらを溶融混練したのちに、微粉砕、分級するという、いわゆる機械粉砕方式などを利用することができる。 As a method for preparing the powder coating material of the present invention, various known and commonly used methods can be used. For example, the acrylic resin (A), the curing agent (B), and, if necessary, pigments. , A so-called mechanical pulverization method in which various additives such as a surface conditioner are mixed, and then they are melt-kneaded and then finely pulverized and classified, can be used.
 本発明の粉体塗料は、エクステリア、家電用品、自動車用品、二輪車用品、防護柵等に塗装することが可能であるが、耐候性、耐衝撃性、耐チッピング性、耐水性、耐糸錆性等に優れる高外観の塗膜が得られることから、アルミホイール合金部材等の金属部材への塗装に適している。 The powder coating material of the present invention can be applied to exteriors, household appliances, automobile supplies, motorcycle supplies, protective fences, etc., but has weather resistance, impact resistance, chipping resistance, water resistance, and thread rust resistance. It is suitable for coating metal members such as aluminum wheel alloy members because it can obtain a coating film with excellent appearance.
 本発明の粉体塗料の塗装方法としては、静電粉体塗装法等の公知慣用の種々の方法が挙げられる。また、本発明の粉体塗料を塗装後、硬化塗膜とする方法としては、基材の種類や目的に応じて適宜選択することができるが、耐糸錆性、耐水性及び耐候性に優れる塗膜が得られることから、120~250℃の温度範囲で、5~30分間の範囲で焼き付けることが好ましい。また、塗装膜厚は、50~200μmの範囲が好ましい。 Examples of the powder coating coating method of the present invention include various known and commonly used methods such as an electrostatic powder coating method. Further, as a method of forming a cured coating film after coating the powder coating material of the present invention, it can be appropriately selected depending on the type and purpose of the base material, but it is excellent in thread rust resistance, water resistance and weather resistance. Since a coating film can be obtained, it is preferable to bake in a temperature range of 120 to 250 ° C. for 5 to 30 minutes. The coating film thickness is preferably in the range of 50 to 200 μm.
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、アクリル樹脂のエポキシ当量及び数平均分子量は、下記の方法で測定したものである。
[エポキシ当量の測定方法]
塩酸-ピリジン法により測定した。樹脂に、塩酸-ピリジン溶液25mlを加え、130℃で1時間、加熱溶解した後、フェノールフタレインを指示薬として0.1N-水酸化カリウムアルコール溶液で滴定した。消費した0.1N-水酸化カリウムアルコール溶液の量によってエポキシ当量を算出した。
Hereinafter, the present invention will be described in more detail with reference to specific examples. The epoxy equivalent and the number average molecular weight of the acrylic resin were measured by the following methods.
[Measuring method of epoxy equivalent]
It was measured by the hydrochloric acid-pyridine method. To the resin, 25 ml of a hydrochloric acid-pyridine solution was added, and the mixture was heated and dissolved at 130 ° C. for 1 hour, and then titrated with a 0.1 N-potassium hydroxide alcohol solution using phenolphthalein as an indicator. The epoxy equivalent was calculated from the amount of 0.1N-potassium hydroxide alcohol solution consumed.
[数平均分子量の測定方法]
GPCにより測定した。
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[Measurement method of number average molecular weight]
Measured by GPC.
Measuring device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer)
Column temperature: 40 ° C
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection volume: 100 μL (sample concentration 4 mg / mL tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.
(単分散ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Unidispersed polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
(合成例1:アクリル樹脂(A-1)の合成)
 攪拌機、温度計、コンデンサー及び窒素ガス導入口を備えた反応容器に、キシレン67質量部を仕込んで、窒素雰囲気下に135℃まで昇温した。そこへ、スチレン(以下、「St」と略記する。)25質量部、メチルメタクリレート(以下、「MMA」と略記する。)45質量部、グリシジルメタクリレート(以下、「GMA」と略
記する。)28質量部、N-イソプロピルアクリルアミド(以下、「NIPAM」と略記する。)2質量部およびt-ブチルパーオキシ2-エチルヘキサノエート6.0質量部からなる混合物を6時間に亘って滴下し、滴下終了後も同温度に6時間保持して重合反応を行い、しかる後160℃で20mmHgの減圧下に溶剤をのぞき、数平均分子量3,000、ガラス転移温度84℃、エポキシ当量525g/eqなる固形のアクリル樹脂(A-1)を得た。
(Synthesis Example 1: Synthesis of Acrylic Resin (A-1))
67 parts by mass of xylene was charged in a reaction vessel equipped with a stirrer, a thermometer, a condenser and a nitrogen gas inlet, and the temperature was raised to 135 ° C. under a nitrogen atmosphere. There, 25 parts by mass of styrene (hereinafter abbreviated as "St"), 45 parts by mass of methyl methacrylate (hereinafter abbreviated as "MMA"), and glycidyl methacrylate (hereinafter abbreviated as "GMA") 28. A mixture consisting of 2 parts by mass, 2 parts by mass of N-isopropylacrylamide (hereinafter abbreviated as "NIPAM") and 6.0 parts by mass of t-butylperoxy2-ethylhexanoate was added dropwise over 6 hours. After the completion of the dropping, the polymerization reaction was carried out by keeping the temperature at the same temperature for 6 hours, and then the solvent was removed at 160 ° C. under a reduced pressure of 20 mmHg to obtain a number average molecular weight of 3,000, a glass transition temperature of 84 ° C., and an epoxy equivalent of 525 g / eq. A solid acrylic resin (A-1) was obtained.
(合成例2:アクリル樹脂(A-2)の合成)
単量体の組成を、St 20質量部、MMA 25質量部、n-ブチルアクリレート(以下、「nBA」と略記する。)17質量部、イソボルニルメタクリレート(以下、「IBOMA」と略記する。)5質量部、GMA 28質量部、N-イソプロピルメタクリルアミド(以下、「NIPMAA」と略記する。)5質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量2,800、ガラス転移温度51℃、エポキシ当量525g/eqなる固形のアクリル樹脂(A-2)を得た。
(Synthesis Example 2: Synthesis of Acrylic Resin (A-2))
The composition of the monomer is abbreviated as St 20 parts by mass, MMA 25 parts by mass, n-butyl acrylate (hereinafter abbreviated as “nBA”) 17 parts by mass, and isobornyl methacrylate (hereinafter abbreviated as “IBOMA”). ) Number average molecular weight 2, A solid acrylic resin (A-2) having an epoxy equivalent of 525 g / eq at 800 and a glass transition temperature of 51 ° C. was obtained.
(合成例3:アクリル樹脂(A-3)の合成)
単量体の組成を、St 10質量部、MMA 30質量部、n-ブチルメタクリレート(以下、「nBMA」と略記する。)13質量部、GMA 45質量部、N-t-オクチルアクリルアミド(以下、「NOAA」と略記する。)2質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度60℃、エポキシ当量340g/eqなる固形のアクリル樹脂(A-3)を得た。
(Synthesis Example 3: Synthesis of Acrylic Resin (A-3))
The composition of the monomer is St 10 parts by mass, MMA 30 parts by mass, n-butyl methacrylate (hereinafter abbreviated as "nBMA") 13 parts by mass, GMA 45 parts by mass, Nt-octylacrylamide (hereinafter, abbreviated as "nBMA"). It is abbreviated as "NOAA".) By operating in the same manner as in Synthesis Example 1 except that it was changed to 2 parts by mass, a solid acrylic resin having a number average molecular weight of 3,000, a glass transition temperature of 60 ° C., and an epoxy equivalent of 340 g / eq. (A-3) was obtained.
(合成例4:アクリル樹脂(A-4)の合成)
 攪拌機、温度計、コンデンサー及び窒素ガス導入口を備えた反応容器に、キシレン67質量部を仕込んで、窒素雰囲気下に135℃まで昇温した。そこへ、St 30質量部、MMA 20質量部、GMA 20質量部、nBMA 20質量部、N,N-ジメチルアクリルアミド(以下、「DMAA」と略記する。)10質量部およびt-ブチルパーオキシ2-エチルヘキサノエート4.0質量部からなる混合物を6時間に亘って滴下し、滴下終了後も同温度に6時間保持して重合反応を行い、さらに、3-グリシドキシプロピルトリメトキシシランを0.5質量部加え、30分攪拌混合した。しかる後、160℃で20mmHgの減圧下に溶剤をのぞき、数平均分子量5,000、ガラス転移温度72℃、エポキシ当量750g/eqなる固形のアクリル樹脂(A-4)を得た。
(Synthesis Example 4: Synthesis of Acrylic Resin (A-4))
67 parts by mass of xylene was charged in a reaction vessel equipped with a stirrer, a thermometer, a condenser and a nitrogen gas inlet, and the temperature was raised to 135 ° C. under a nitrogen atmosphere. There, St 30 parts by mass, MMA 20 parts by mass, GMA 20 parts by mass, nBMA 20 parts by mass, N, N-dimethylacrylamide (hereinafter abbreviated as "DMAA") 10 parts by mass and t-butyl peroxy 2 A mixture consisting of 4.0 parts by mass of -ethylhexanoate was added dropwise over 6 hours, and after the addition was completed, the mixture was kept at the same temperature for 6 hours to carry out a polymerization reaction, and further, 3-glycidoxypropyltrimethoxysilane was added. Was added by 0.5 parts by mass, and the mixture was stirred and mixed for 30 minutes. Then, the solvent was removed at 160 ° C. under a reduced pressure of 20 mmHg to obtain a solid acrylic resin (A-4) having a number average molecular weight of 5,000, a glass transition temperature of 72 ° C., and an epoxy equivalent of 750 g / eq.
(合成例5:アクリル樹脂(RA-1)の合成)
単量体の組成を、St 20質量部、MMA 30質量部、IBOMA 22質量部、GMA 28質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度94℃、エポキシ当量525g/eqなる固形のアクリル樹脂(RA-1)を得た。
(Synthesis Example 5: Synthesis of Acrylic Resin (RA-1))
By operating in the same manner as in Synthesis Example 1 except that the composition of the monomer was changed to 20 parts by mass of St, 30 parts by mass of MMA, 22 parts by mass of IBOMA, and 28 parts by mass of GMA, the number average molecular weight was 3,000 and the glass was glass. A solid acrylic resin (RA-1) having a transition temperature of 94 ° C. and an epoxy equivalent of 525 g / eq was obtained.
(合成例6:アクリル樹脂(RA-2)の合成)
単量体の組成を、St 25質量部、MMA 30質量部、nBMA 30質量部、GMA 15質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度65℃、エポキシ当量900g/eqなる固形のアクリル樹脂(RA-2)を得た。
(Synthesis Example 6: Synthesis of Acrylic Resin (RA-2))
By operating in the same manner as in Synthesis Example 1 except that the composition of the monomer was changed to 25 parts by mass of St, 30 parts by mass of MMA, 30 parts by mass of nBMA, and 15 parts by mass of GMA, the number average molecular weight was 3,000 and the glass was glass. A solid acrylic resin (RA-2) having a transition temperature of 65 ° C. and an epoxy equivalent of 900 g / eq was obtained.
(合成例7:アクリル樹脂(RA-3)の合成)
単量体の組成を、St 15質量部、MMA 15質量部、nBA 42質量部、GMA 28質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度4℃、エポキシ当量525g/eqなる固形のアクリル樹脂(RA-3)を得た。
(Synthesis Example 7: Synthesis of Acrylic Resin (RA-3))
By operating in the same manner as in Synthesis Example 1 except that the composition of the monomer was changed to 15 parts by mass of St, 15 parts by mass of MMA, 42 parts by mass of nBA, and 28 parts by mass of GMA, the number average molecular weight was 3,000 and the glass was glass. A solid acrylic resin (RA-3) having a transition temperature of 4 ° C. and an epoxy equivalent of 525 g / eq was obtained.
 上記の合成例1~6で合成したアクリル樹脂(A-1)~(A-4)及び(RA-1)~(RA-3)の単量体組成及び性状値を表1及び2に示す。
Figure JPOXMLDOC01-appb-I000004
Tables 1 and 2 show the monomer compositions and property values of the acrylic resins (A-1) to (A-4) and (RA-1) to (RA-3) synthesized in Synthesis Examples 1 to 6 above. ..
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例1:粉体塗料(1)の製造及び評価)
 合成例1で得られたアクリル樹脂(A-1)84質量部、ドデカンジカルボン酸(以下、「DDDA」と略記する。)16質量部、ベンゾイン5質量部及びレベリング剤(ESTRON製「レジフローLF」)3質量部を配合した樹脂組成物を、二軸混練機(ツバコー横浜販売株式会社製「APV・ニーダーMP-2015型」)を使用して溶融混練した後、微粉砕し、さらに、200メッシュの金網で分級し、粉体塗料(1)を得た。
(Example 1: Production and evaluation of powder coating material (1))
84 parts by mass of the acrylic resin (A-1) obtained in Synthesis Example 1, 16 parts by mass of dodecanedicarboxylic acid (hereinafter abbreviated as "DDDA"), 5 parts by mass of benzoin, and a leveling agent ("Regiflow LF" manufactured by ESTRON). ) The resin composition containing 3 parts by mass is melt-kneaded using a twin-screw kneader (“APV Kneader MP-2015 type” manufactured by Tsubako Yokohama Sales Co., Ltd.), finely pulverized, and further 200 mesh. The powder coating (1) was obtained by classifying with the wire net of the above.
[評価用硬化塗膜の作製]
 上記で得られた粉体塗料を未処理アルミ板(A-1050P)(7cm×15cm)に、焼き付け後の膜厚が80~120μmとなるように静電粉体塗装した後、170℃で20分間焼き付けを行い、評価用硬化塗膜を作製した。
[Preparation of cured coating film for evaluation]
The powder coating obtained above is electrostatically powder coated on an untreated aluminum plate (A-1050P) (7 cm × 15 cm) so that the film thickness after baking is 80 to 120 μm, and then 20 at 170 ° C. Baking for minutes was performed to prepare a cured coating film for evaluation.
[平滑性試験]
PCI(パウダーコーティングインスティチュート)による粉体塗膜の平滑性目視判定用標準板を用いて判定した。標準板は、1~10の10枚あり、数字が大きくなるに従い、平滑性が良好となる。作成した粉体塗膜の平滑性がどの標準板に相当するかを目視で判定した。判定した結果をもとに、平滑性を以下のように判定した。
〇:平滑性が8以上
△:平滑性が6~7
×:平滑性が5以下
[Smoothness test]
Judgment was made using a standard plate for visually determining the smoothness of the powder coating film by PCI (Powder Coating Institute). There are 10 standard plates from 1 to 10, and the larger the number, the better the smoothness. It was visually determined which standard plate the smoothness of the prepared powder coating film corresponded to. Based on the judgment result, the smoothness was judged as follows.
〇: Smoothness is 8 or more Δ: Smoothness is 6 to 7
X: Smoothness is 5 or less
[エリクセン試験]
上記で得られた評価用塗膜の塗膜面をエリクセン試験機(「ERICHSENGMBH&CO.Model 200」)で押し出し試験を行い、ワレが発生したときの押し出した長さを測定した。押し出し長さをもとに、塗膜の柔軟性を以下のように判定した。
〇:押し出し長さが7.0mmを超える
△:押し出し長さが5.0~7.0mm
×:押し出し長さが5.0mm未満
[Eriksen test]
The coating film surface of the evaluation coating film obtained above was subjected to an extrusion test with an Eriksen testing machine (“ERICHSENGMBH & CO. Model 200”), and the extruded length when cracks occurred was measured. Based on the extrusion length, the flexibility of the coating film was determined as follows.
〇: Extruded length exceeds 7.0 mm Δ: Extruded length is 5.0 to 7.0 mm
X: Extruded length is less than 5.0 mm
[耐糸錆性の評価]
 上記で得られた評価用硬化塗膜にカッターナイフで基材の素地に達するように13cmの直線の傷を2本入れ、CASS試験機にて次の試験を行った。温度50℃、噴霧液量1.2~1.8cc/h、噴霧圧力0.1MPaの条件下、塩水(塩化銅(II)水和物2.6g、氷酢酸10cc、並塩500gを10Lのイオン交換水に溶解し調製)を6時間噴霧する試験1と、温度60℃、湿度85%の条件下96時間放置する試験2とを1サイクルとして、合計5サイクル行った。CASS試験終了後、塗装板の傷から生じた糸錆を目視にて確認し、最長に成長した糸錆の長さにより耐糸錆性を評価した。最長に成長した糸錆の長さをもとに、塗膜の耐糸錆性を以下のように判定した。
〇:糸錆の最長長さが2.0mm以下
△:糸錆の最長長さが2.0mmを超え、3.0mm以下
×:糸錆の最長長さが3.0mmを超える
[Evaluation of thread rust resistance]
Two 13 cm straight scratches were made on the cured coating film for evaluation obtained above with a cutter knife so as to reach the base material of the base material, and the following test was performed with a CASS tester. Under the conditions of a temperature of 50 ° C., a spray liquid volume of 1.2 to 1.8 cc / h, and a spray pressure of 0.1 MPa, 10 L of salt water (2.6 g of copper (II) chloride hydrate, 10 cc of glacial acetic acid, and 500 g of normal salt). Test 1 in which (prepared by dissolving in ion-exchanged water) was sprayed for 6 hours and test 2 in which the mixture was left to stand for 96 hours under the conditions of a temperature of 60 ° C. and a humidity of 85% were performed for a total of 5 cycles. After the CASS test was completed, the thread rust generated from the scratches on the coated plate was visually confirmed, and the thread rust resistance was evaluated by the length of the thread rust that grew to the longest. Based on the length of the thread rust that grew to the longest, the thread rust resistance of the coating film was determined as follows.
〇: Maximum length of thread rust is 2.0 mm or less Δ: Maximum length of thread rust exceeds 2.0 mm, 3.0 mm or less ×: Maximum length of thread rust exceeds 3.0 mm
(実施例2~4:粉体塗料(2)~(4)の製造及び評価)
 実施例1で配合したアクリル樹脂(A-1)及びDDDAを、表3に示す組成に変更した以外は、実施例1と同様に操作することにより、粉体塗料(2)~(4)を調製し、各種物性を評価した。
(Examples 2 to 4: Production and evaluation of powder coating materials (2) to (4))
The powder coating materials (2) to (4) were obtained by operating in the same manner as in Example 1 except that the acrylic resin (A-1) and DDDA blended in Example 1 were changed to the compositions shown in Table 3. It was prepared and various physical properties were evaluated.
(比較例1~3:粉体塗料(R1)~(R3)の製造及び評価)
 実施例1で配合したアクリル樹脂(A-1)及びDDDAを、表4に示す通りに変更した以外は、実施例1と同様に操作することにより、粉体塗料(R1)~(R3)を調製し、各種物性を評価した。
(Comparative Examples 1 to 3: Production and Evaluation of Powder Paints (R1) to (R3))
The powder coating materials (R1) to (R3) were obtained by operating in the same manner as in Example 1 except that the acrylic resin (A-1) and DDDA blended in Example 1 were changed as shown in Table 4. It was prepared and various physical properties were evaluated.
 上記の実施例1~4で得た粉体塗料(1)~(4)及び比較例1~3で得た粉体塗料(R1)~(R3)の配合組成及び評価結果を表3及び4に示す。 Tables 3 and 4 show the compounding compositions and evaluation results of the powder coating materials (1) to (4) obtained in Examples 1 to 4 and the powder coating materials (R1) to (R3) obtained in Comparative Examples 1 to 3. Shown in.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~4の本発明の粉体塗料用樹脂組成物から得られる硬化塗膜は、平滑性、柔軟性、及び耐糸錆性に優れることが確認された。 It was confirmed that the cured coating films obtained from the resin compositions for powder coatings of the present invention of Examples 1 to 4 were excellent in smoothness, flexibility, and thread rust resistance.
 一方、比較例1~3は、本発明の粉体塗料用樹脂組成物の成分であるアクリル樹脂(A)の原料として、一般式(1)で表されるアクリル単量体(a2)を用いない例であるが、良好な塗膜の平滑性、柔軟性及び耐糸錆性を全て満たすものは得られなかった。 On the other hand, in Comparative Examples 1 to 3, the acrylic monomer (a2) represented by the general formula (1) is used as the raw material of the acrylic resin (A) which is a component of the resin composition for powder coating of the present invention. Although this is not the case, it was not possible to obtain a coating material that satisfies all of the good smoothness, flexibility, and thread rust resistance of the coating film.

Claims (6)

  1.  エポキシ基を有するアクリル単量体(a1)と、下記一般式(1)で表されるアクリル単量体(a2)と、前記アクリル単量体(a1)及び前記アクリル単量体(a2)以外の不飽和単量体(a3)とを必須原料とするアクリル樹脂(A)を含有することを特徴とする粉体塗料用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは水素原子又はメチル基を表し、Rは水素原子、又は炭素原子数1~8の分岐又は非分岐のアルキル基を表し、Rは炭素原子数1~8の分岐又は非分岐のアルキル基を表す。)
    Other than the acrylic monomer (a1) having an epoxy group, the acrylic monomer (a2) represented by the following general formula (1), the acrylic monomer (a1) and the acrylic monomer (a2). A resin composition for powder coating, which contains an acrylic resin (A) containing the unsaturated monomer (a3) of the above as an essential raw material.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or a branched or non-branched alkyl group having 1 to 8 carbon atoms, and R 3 has 1 carbon atom. Represents a branched or non-branched alkyl group of ~ 8)
  2.  前記アクリル樹脂(A)の原料である単量体成分中の前記アクリル単量体(a1)が10~60質量%であり、前記アクリル単量体(a2)が0.1~30質量%であり、前記アクリル単量体(a3)が30~80質量%である請求項1記載の粉体塗料用樹脂組成物。 The acrylic monomer (a1) in the monomer component which is the raw material of the acrylic resin (A) is 10 to 60% by mass, and the acrylic monomer (a2) is 0.1 to 30% by mass. The resin composition for powder coating according to claim 1, wherein the acrylic monomer (a3) is 30 to 80% by mass.
  3.  さらに、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する請求項1又は2記載の粉体塗料用樹脂組成物。 The resin composition for powder coating material according to claim 1 or 2, further containing a curing agent (B) having a functional group capable of reacting with an epoxy group.
  4.  前記硬化剤(B)が、脂肪族多価カルボン酸及び/又はその無水物である請求項3記載の粉体塗料用樹脂組成物。 The resin composition for powder coating material according to claim 3, wherein the curing agent (B) is an aliphatic polyvalent carboxylic acid and / or an anhydride thereof.
  5.  請求項1~4いずれか1項記載の粉体塗料用樹脂組成物から得られる粉体塗料。 A powder coating material obtained from the resin composition for powder coating material according to any one of claims 1 to 4.
  6.  請求項5記載の粉体塗料の塗膜を有する物品。 An article having a coating film of the powder coating according to claim 5.
PCT/JP2021/014843 2020-04-24 2021-04-08 Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material WO2021215252A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180029540.0A CN115427523A (en) 2020-04-24 2021-04-08 Resin composition for powder coating material, and article having coating film of the powder coating material
KR1020227033394A KR20220143944A (en) 2020-04-24 2021-04-08 A resin composition for a powder coating material, a powder coating material, and an article having a coating film of the coating material
JP2022503951A JP7070818B2 (en) 2020-04-24 2021-04-08 Resin composition for powder paint, powder paint, articles having a coating film of the paint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077319 2020-04-24
JP2020077319 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215252A1 true WO2021215252A1 (en) 2021-10-28

Family

ID=78270714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014843 WO2021215252A1 (en) 2020-04-24 2021-04-08 Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material

Country Status (4)

Country Link
JP (1) JP7070818B2 (en)
KR (1) KR20220143944A (en)
CN (1) CN115427523A (en)
WO (1) WO2021215252A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2024004421A1 (en) * 2022-06-30 2024-01-04

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095333A (en) * 1973-12-19 1975-07-29
JPH09188833A (en) * 1995-11-09 1997-07-22 Nippon Paint Co Ltd Powder coating composition and coating film forming method
JPH11116855A (en) * 1997-10-09 1999-04-27 Daicel Chem Ind Ltd Resin composition for powder coating material
JPH11124519A (en) * 1997-08-21 1999-05-11 Mitsui Chem Inc Thermosetting powder coating composition
JP2000119564A (en) * 1998-10-16 2000-04-25 Toagosei Co Ltd Powdered paint composition for frictional electrification painting, its production and coating method using the same
WO2004044065A1 (en) * 2002-11-14 2004-05-27 Kansai Paint Co., Ltd. Powder coating, method for production thereof, method for using said powder coating and coated article
JP2005220208A (en) * 2004-02-05 2005-08-18 Asahi Kasei Chemicals Corp Method for manufacturing curable composition
JP2006022273A (en) * 2004-07-09 2006-01-26 Mitsubishi Gas Chem Co Inc Powder coating resin composition
JP2009001666A (en) * 2007-06-21 2009-01-08 Kansai Paint Co Ltd Water-based coating composition
JP2015054932A (en) * 2013-09-12 2015-03-23 Dic株式会社 Powder coating and aluminum wheel alloy member coated with the powder coating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069368A (en) 2000-08-30 2002-03-08 Dainippon Ink & Chem Inc Thermosetting powder coating composition for aluminum wheel alloy member and aluminum alloy wheel member
PL2098575T3 (en) * 2008-03-04 2011-02-28 Akzo Nobel Coatings Int Bv Epoxy functional acrylic coating powders and powder coatings therefrom having filiform corrosion resistance
US7737238B2 (en) * 2008-03-04 2010-06-15 Anderson Development Co. Resin suitable for powder coating compositions
KR102305319B1 (en) * 2014-02-27 2021-09-27 아크조노벨코팅스인터내셔널비.브이. Acrylic resins and powder coating compositions and powder coated substrates including the same
MY179360A (en) * 2014-04-30 2020-11-05 Akzo Nobel Coatings Int Bv Process for making acrylic powder coating resin systems
CN111492019B (en) * 2017-12-19 2022-10-11 Dic株式会社 Powder coating material and article having coating film of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095333A (en) * 1973-12-19 1975-07-29
JPH09188833A (en) * 1995-11-09 1997-07-22 Nippon Paint Co Ltd Powder coating composition and coating film forming method
JPH11124519A (en) * 1997-08-21 1999-05-11 Mitsui Chem Inc Thermosetting powder coating composition
JPH11116855A (en) * 1997-10-09 1999-04-27 Daicel Chem Ind Ltd Resin composition for powder coating material
JP2000119564A (en) * 1998-10-16 2000-04-25 Toagosei Co Ltd Powdered paint composition for frictional electrification painting, its production and coating method using the same
WO2004044065A1 (en) * 2002-11-14 2004-05-27 Kansai Paint Co., Ltd. Powder coating, method for production thereof, method for using said powder coating and coated article
JP2005220208A (en) * 2004-02-05 2005-08-18 Asahi Kasei Chemicals Corp Method for manufacturing curable composition
JP2006022273A (en) * 2004-07-09 2006-01-26 Mitsubishi Gas Chem Co Inc Powder coating resin composition
JP2009001666A (en) * 2007-06-21 2009-01-08 Kansai Paint Co Ltd Water-based coating composition
JP2015054932A (en) * 2013-09-12 2015-03-23 Dic株式会社 Powder coating and aluminum wheel alloy member coated with the powder coating

Also Published As

Publication number Publication date
JPWO2021215252A1 (en) 2021-10-28
KR20220143944A (en) 2022-10-25
CN115427523A (en) 2022-12-02
JP7070818B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
JP5233614B2 (en) Resin composition and transfer film using the same
JP7070818B2 (en) Resin composition for powder paint, powder paint, articles having a coating film of the paint
JP5637500B2 (en) Method for producing vinyl polymer and vinyl polymer
JPH11241047A (en) Coating composition
JP2015054932A (en) Powder coating and aluminum wheel alloy member coated with the powder coating
JP6225375B2 (en) Active energy ray curable composition, active energy ray curable paint, and article coated with the paint
US6465589B2 (en) Paint composition
CN111492019B (en) Powder coating material and article having coating film of the same
WO2023162563A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
WO2024127899A1 (en) Resin composition for powder coating materials, powder coating material, and article having coating film of said powder coating material
WO2024004421A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
JP2023064339A (en) Resin composition for powder coating, powder coating, and article having coated film of the coating
JP2011252078A (en) Ultraviolet-curing coating composition
JP7107807B2 (en) auto parts
WO2024135173A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material
JP6255626B2 (en) Coating composition and article coated with the coating composition
JP3025367B2 (en) Resin composition for water-based paint
CN111748235A (en) Antistatic agent for active energy ray-curable resin composition, cured film, and film
KR100648226B1 (en) Acrylic polyol resin composition for possible mixing of cellulose ester and paint composition
JPH04226112A (en) Dispersion of copolymer of vinyl ester of branched carboxylic acid, and ethylenically unsaturated acid and/or its ester
JP2009203375A (en) Acrylic resin composition
JP2002201236A (en) Resin for coating material
JP2019516002A (en) Aqueous resin composition, aqueous paint and article having cured coating of the aqueous paint
JP3052072B2 (en) Resin composition for powder coating
CN116670237A (en) Aqueous dispersion for metal coating materials and aqueous metal coating materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503951

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033394

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791611

Country of ref document: EP

Kind code of ref document: A1