JP6225375B2 - Active energy ray curable composition, active energy ray curable paint, and article coated with the paint - Google Patents

Active energy ray curable composition, active energy ray curable paint, and article coated with the paint Download PDF

Info

Publication number
JP6225375B2
JP6225375B2 JP2013072530A JP2013072530A JP6225375B2 JP 6225375 B2 JP6225375 B2 JP 6225375B2 JP 2013072530 A JP2013072530 A JP 2013072530A JP 2013072530 A JP2013072530 A JP 2013072530A JP 6225375 B2 JP6225375 B2 JP 6225375B2
Authority
JP
Japan
Prior art keywords
meth
active energy
acrylate
energy ray
curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013072530A
Other languages
Japanese (ja)
Other versions
JP2014196410A (en
Inventor
円美 新地
円美 新地
卓 村川
卓 村川
隆志 安村
隆志 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2013072530A priority Critical patent/JP6225375B2/en
Publication of JP2014196410A publication Critical patent/JP2014196410A/en
Application granted granted Critical
Publication of JP6225375B2 publication Critical patent/JP6225375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、外観、耐擦傷性、基材密着性及び耐熱水性に優れる硬化塗膜が得られる活性エネルギー線硬化性組成物、活性エネルギー線硬化性塗料、及び該塗料で塗装された物品に関する。   The present invention relates to an active energy ray-curable composition, an active energy ray-curable coating material, and an article coated with the coating material, from which a cured coating film excellent in appearance, scratch resistance, substrate adhesion and hot water resistance is obtained.

活性エネルギー線硬化性組成物は、塗装基材への熱履歴が少なく、塗膜硬度や擦り傷性に優れるという特長から、家電製品、携帯電話等のプラスチック基材用ハードコート剤として使用されている。これらの活性エネルギー線硬化性組成物は、耐擦傷性を向上させるべく、(メタ)アクリロイル基を多く導入して架橋密度を高める工夫をしているが、一般に、(メタ)アクリロイル基が多いと硬化時に急激な体積収縮が起こりやすく、基材との密着性が悪化する傾向があった。   Active energy ray curable compositions are used as hard coating agents for plastic substrates for home appliances, mobile phones, etc., because they have a low heat history on the coating substrate and excellent coating film hardness and scratch resistance. . In order to improve the scratch resistance, these active energy ray-curable compositions are devised to increase the crosslinking density by introducing a large amount of (meth) acryloyl groups, but in general, if there are many (meth) acryloyl groups There was a tendency for rapid volume shrinkage to occur at the time of curing, and the adhesiveness with the base material tended to deteriorate.

この密着性の課題に対し、アクリル樹脂と紫外線硬化性組成物とを配合した硬化性樹脂組成物等が検討されている(例えば、特許文献1。)。この硬化性樹脂組成物では、アクリル樹脂として、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸n−ステアリル、及び(メタ)アクリル酸ラウリルから選ばれる(メタ)アクリル酸エステルを含む単量体から得られる(メタ)アクリル酸エステル重合体を使用し、基材やトップコート層との密着性を向上させているが、作業性に優れる1コート仕様で利用するためには、塗膜外観が不十分であるという問題があった。   A curable resin composition in which an acrylic resin and an ultraviolet curable composition are blended has been studied for this adhesion problem (for example, Patent Document 1). In this curable resin composition, the acrylic resin is selected from 2-ethylhexyl (meth) acrylate, n-butyl (meth) acrylate, n-stearyl (meth) acrylate, and lauryl (meth) acrylate ( (Meth) acrylic acid ester polymer obtained from a monomer containing a methacrylic acid ester is used to improve adhesion to the base material and topcoat layer, but with a one-coat specification with excellent workability In order to utilize, there existed a problem that the coating-film external appearance was inadequate.

そこで、外観、耐擦傷性及び基材密着性に優れる硬化塗膜を得ることのできる活性エネルギー線硬化性樹脂組成物が求められていた。   Therefore, there has been a demand for an active energy ray-curable resin composition capable of obtaining a cured coating film having excellent appearance, scratch resistance, and substrate adhesion.

特開2009−84309号公報JP 2009-84309 A

本発明が解決しようとする課題は、外観、耐擦傷性、基材密着性及び耐熱水性に優れる硬化塗膜が得られる活性エネルギー線硬化性組成物、活性エネルギー線硬化性塗料、及び該塗料で塗装された物品を提供することである。   The problem to be solved by the present invention is an active energy ray curable composition, an active energy ray curable coating, and a coating material that can provide a cured coating film having excellent appearance, scratch resistance, substrate adhesion and hot water resistance. It is to provide a painted article.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、特定のアクリル単量体を必須原料として共重合して得られた特定の溶解性パラメータを有するアクリル樹脂と、ウレタン(メタ)アクリレート組成物とを含有する活性エネルギー線硬化性樹脂組成物を用いることで、外観、耐擦傷性、基材密着性及び耐熱水性に優れる硬化塗膜が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have obtained an acrylic resin having a specific solubility parameter obtained by copolymerization using a specific acrylic monomer as an essential raw material, and urethane (meta ) By using an active energy ray-curable resin composition containing an acrylate composition, it was found that a cured coating film excellent in appearance, scratch resistance, substrate adhesion and hot water resistance was obtained, and the present invention was completed. did.

すなわち、本発明は、水酸基を有するアクリル単量体(a1)、炭素原子数が12〜18のアルキル基を有するアクリル単量体(a2)、及び炭素原子数が1〜4のアルキル基を有するアクリル単量体(a3)を必須原料として共重合して得られたアクリル樹脂(A)と、ウレタン(メタ)アクリレート組成物(B)とを含有する活性エネルギー線硬化性樹脂組成物であって、前記アクリル樹脂(A)の溶解性パラメータが、9.4〜11.5であることを特徴とする活性エネルギー線硬化性樹脂組成物、活性エネルギー線硬化性塗料、及び該塗料で塗装された物品に関する。   That is, the present invention has an acrylic monomer (a1) having a hydroxyl group, an acrylic monomer (a2) having an alkyl group having 12 to 18 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. An active energy ray-curable resin composition comprising an acrylic resin (A) obtained by copolymerizing an acrylic monomer (a3) as an essential raw material, and a urethane (meth) acrylate composition (B). The solubility parameter of the acrylic resin (A) is 9.4 to 11.5, the active energy ray-curable resin composition, the active energy ray-curable paint, and the paint applied with the paint It relates to goods.

本発明の活性エネルギー線硬化性組成物は、外観、耐擦傷性、基材密着性及び耐熱水性に優れる硬化塗膜が得られることから、活性エネルギー線硬化性塗料に有用であり、該塗料を各種物品に塗装することができる。したがって、本発明の活性エネルギー線硬化性樹脂組成物は、テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体;パソコン、スマートフォン、携帯電話、デジタルカメラ、ゲーム機等の電子機器の筐体;自動車、鉄道車輌等の各種車輌の内装材;FRP浴槽などの物品を塗装する塗料に好適に用いることができる。   The active energy ray-curable composition of the present invention is useful as an active energy ray-curable coating because a cured coating film excellent in appearance, scratch resistance, substrate adhesion and hot water resistance is obtained. Can be painted on various articles. Therefore, the active energy ray-curable resin composition of the present invention is a housing for home appliances such as a television, a refrigerator, a washing machine, and an air conditioner; a housing for an electronic device such as a personal computer, a smartphone, a mobile phone, a digital camera, and a game machine. Interior materials for various vehicles such as automobiles and railway vehicles, and can be suitably used for paints for coating articles such as FRP bathtubs.

本発明の活性エネルギー線硬化性樹脂組成物は、水酸基を有するアクリル単量体(a1)、炭素原子数が12〜18のアルキル基を有するアクリル単量体(a2)、及び炭素原子数が1〜4のアルキル基を有するアクリル単量体(a3)を必須原料として共重合して得られたアクリル樹脂(A)と、ウレタン(メタ)アクリレート組成物(B)とを含有する活性エネルギー線硬化性樹脂組成物であって、前記アクリル樹脂(A)の溶解性パラメータが、9.4〜11.5であるものである。   The active energy ray-curable resin composition of the present invention includes an acrylic monomer (a1) having a hydroxyl group, an acrylic monomer (a2) having an alkyl group having 12 to 18 carbon atoms, and 1 carbon atom. Active energy ray curing containing acrylic resin (A) obtained by copolymerizing acrylic monomer (a3) having ˜4 alkyl groups as essential raw material and urethane (meth) acrylate composition (B) The acrylic resin (A) has a solubility parameter of 9.4 to 11.5.

なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルとメタクリロイル基の一方又は両方をいい、「(メタ)アクリレート」とは、アクリレートとメタクリレートの一方又は両方をいい、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の一方又は両方をいう。   In the present invention, “(meth) acryloyl” refers to one or both of acryloyl and methacryloyl groups, “(meth) acrylate” refers to one or both of acrylate and methacrylate, and “(meth) acrylic” “Acid” refers to one or both of acrylic acid and methacrylic acid.

また、本発明において、溶解性パラメータの単位は(cal/ml)1/2である。 In the present invention, the unit of the solubility parameter is (cal / ml) 1/2 .

まず、前記アクリル樹脂(A)について説明する。このアクリル樹脂(A)は、水酸基を有するアクリル単量体(a1)、炭素原子数が12〜18のアルキル基を有するアクリル単量体(a2)、及び炭素原子数が1〜4のアルキル基を有するアクリル単量体(a3)を必須原料として共重合して得られたものである。   First, the acrylic resin (A) will be described. This acrylic resin (A) includes an acrylic monomer (a1) having a hydroxyl group, an acrylic monomer (a2) having an alkyl group having 12 to 18 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. It is obtained by copolymerizing an acrylic monomer (a3) having an essential raw material.

前記水酸基を有するアクリル単量体(a1)としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシ−n−ブチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ−n−ブチル(メタ)アクリレート、3−ヒドロキシ−n−ブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等が挙げられる。なお、これらの水酸基を有するアクリル単量体(a1)は、単独で用いることも2種以上併用することもできる。   Examples of the acrylic monomer (a1) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, and 2-hydroxypropyl. (Meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (Meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxy Ethyl-2-hydroxyethyl phthalate, lactone-modified (meth) acrylate having a hydroxyl group at the terminal. In addition, the acrylic monomer (a1) having these hydroxyl groups can be used alone or in combination of two or more.

前記炭素原子数が12〜18のアルキル基を有するアクリル単量体(a2)としては、例えば、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられ、これらの中でも、得られる塗膜の耐熱水性が向上することからラウリルメタクリレート及びトリデシルメタクリレートが好ましい。なお、これらのアクリル単量体(a2)は、単独で用いることも2種以上併用することもできる。   Examples of the acrylic monomer (a2) having an alkyl group having 12 to 18 carbon atoms include lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, and the like. Among these, lauryl methacrylate and tridecyl methacrylate are preferable because the hot water resistance of the obtained coating film is improved. These acrylic monomers (a2) can be used alone or in combination of two or more.

前記炭素原子数が1〜4のアルキル基を有するアクリル単量体(a3)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、iso−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート等が挙げられる。なお、これらのアクリル単量体(a3)は、単独で用いることも2種以上併用することもできる。   Examples of the acrylic monomer (a3) having an alkyl group having 1 to 4 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and iso-propyl (meth). ) Acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate and the like. These acrylic monomers (a3) can be used alone or in combination of two or more.

さらに、アクリル樹脂(A)の原料として、上記の必須原料であるアクリル単量体(a1)、アクリル単量体(a2)、及びアクリル単量体(a3)以外のその他の単量体(a4)を用いても構わない。このその他の単量体(a4)としては、例えば、(メタ)アクリル酸、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、3−(メタ)アクリロイルプロピルトリメトキシシラン、2−ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、スチレン、α−メチルスチレン、p−メチルスチレン、p−メトキシスチレン等が挙げられる。これらは、単独で用いることも2種以上併用することもできる。   Furthermore, as a raw material of the acrylic resin (A), the other essential monomers (a4) other than the acrylic monomer (a1), the acrylic monomer (a2), and the acrylic monomer (a3) which are the essential raw materials described above. ) May be used. Examples of the other monomer (a4) include (meth) acrylic acid, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, and 2-ethylhexyl (meth). Acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acrylonitrile, 3- (meth) acryloylpropyl Examples include trimethoxysilane, 2-dimethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, styrene, α-methylstyrene, p-methylstyrene, and p-methoxystyrene. These can be used alone or in combination of two or more.

前記アクリル単量体(a1)の使用量は、前記ウレタン(メタ)アクリレート(B)との相溶性が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の5〜40質量%の範囲が好ましく、8〜25質量%の範囲がより好ましい。前記アクリル単量体(a2)の使用量は、耐水試験後の付着性が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の5〜60質量%の範囲が好ましく、20〜35質量%の範囲がより好ましい。前記アクリル単量体(a3)の使用量は、プラスチック基材への密着性が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の5〜90質量%の範囲が好ましく、40〜72質量%の範囲がより好ましい。なお、前記その他の単量体(a4)の使用量は、前記アクリル樹脂(A)の原料である単量体成分の合計100質量%から上記のアクリル単量体(a1)、アクリル単量体(a2)及びアクリル単量体(a3)の使用比率を除いた残部となる。   Since the compatibility with the urethane (meth) acrylate (B) is improved, the amount of the acrylic monomer (a1) used is 5 to 5 in the monomer component that is a raw material of the acrylic resin (A). The range of 40% by mass is preferable, and the range of 8 to 25% by mass is more preferable. The amount of the acrylic monomer (a2) used is preferably in the range of 5 to 60% by mass in the monomer component that is the raw material of the acrylic resin (A) because the adhesion after the water resistance test is improved. The range of 20-35 mass% is more preferable. The amount of the acrylic monomer (a3) used is in the range of 5 to 90% by mass in the monomer component that is the raw material of the acrylic resin (A) because the adhesion to the plastic substrate is improved. Preferably, the range of 40 to 72 mass% is more preferable. In addition, the usage-amount of the said other monomer (a4) is said acrylic monomer (a1) and acrylic monomer from the total 100 mass% of the monomer component which is a raw material of the said acrylic resin (A). It becomes the remainder except the use ratio of (a2) and the acrylic monomer (a3).

前記アクリル樹脂(A)の製造方法としては、前記アクリル単量体(a1)〜(a3)、さらには必要に応じてその他の単量体(a4)を原料として、公知の重合方法で行うことができるが、溶液ラジカル重合法が最も簡便であることから好ましい。   The acrylic resin (A) is produced by a known polymerization method using the acrylic monomers (a1) to (a3) and, if necessary, other monomers (a4) as raw materials. However, the solution radical polymerization method is preferable because it is the simplest.

上記の溶液ラジカル重合法は、原料である各単量体を溶剤に溶解し、重合開始剤存在下で重合反応を行う方法である。この際に用いることができる溶剤としては、例えば、トルエン、キシレン、シクロヘキサン、n−ヘキサン、オクタン等の炭化水素系溶剤;メタノール、エタノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール、エチレングリコールモノメチルエーテル等のアルコール系溶剤;酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸イソブチル、酢酸アミル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上併用することもできる。   The solution radical polymerization method is a method in which each monomer as a raw material is dissolved in a solvent and a polymerization reaction is performed in the presence of a polymerization initiator. Examples of the solvent that can be used in this case include hydrocarbon solvents such as toluene, xylene, cyclohexane, n-hexane, and octane; methanol, ethanol, iso-propanol, n-butanol, iso-butanol, sec-butanol. Alcohol solvents such as ethylene glycol monomethyl ether; ester solvents such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone It is done. These solvents can be used alone or in combination of two or more.

前記アクリル樹脂(A)の製造で用いる重合開始剤としては、例えば、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、アゾビスシアノ吉草酸等のアゾ化合物;tert−ブチルパーオキシピバレート、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシ−2−エチルヘキサノエート、ジ−tert−ブチルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、tert−ブチルハイドロパーオキサイド等の有機過酸化物;過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物などが挙げられる。これらの重合体開始剤は、単独で用いることも2種以上併用することもできる。また、前記重合開始剤は、前記アクリル樹脂(A)の原料となる単量体の合計に対して、0.1〜10質量%の範囲内で使用することが好ましい。   Examples of the polymerization initiator used in the production of the acrylic resin (A) include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), azobiscyanovaleric acid, and the like. Tert-butyl peroxypivalate, tert-butyl peroxybenzoate, tert-butyl peroxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, tert -Organic peroxides such as butyl hydroperoxide; inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, and sodium persulfate. These polymer initiators can be used alone or in combination of two or more. Moreover, it is preferable to use the said polymerization initiator within the range of 0.1-10 mass% with respect to the sum total of the monomer used as the raw material of the said acrylic resin (A).

また、前記重合開始剤とともに、必要に応じて、ラウリルメルカプタン、オクチルメルカプタン、2−メルカプトエタノール、チオグリコール酸オクチル、3−メルカプトプロピオン酸、α−メチルスチレン・ダイマー等の連鎖移動剤も用いることができる。   In addition to the polymerization initiator, a chain transfer agent such as lauryl mercaptan, octyl mercaptan, 2-mercaptoethanol, octyl thioglycolate, 3-mercaptopropionic acid, α-methylstyrene dimer or the like may be used as necessary. it can.

前記アクリル樹脂(A)の溶解性パラメータは、前記ウレタン(メタ)アクリレート(B)との相溶性が向上し、得られる塗膜の外観がより優れることから、9.7〜11.5の範囲が好ましく、9.8〜11.0の範囲がより好ましい。   The solubility parameter of the acrylic resin (A) is in the range of 9.7 to 11.5 because the compatibility with the urethane (meth) acrylate (B) is improved and the appearance of the resulting coating film is more excellent. Is preferable, and the range of 9.8 to 11.0 is more preferable.

なお、本発明において、アクリル樹脂の溶解性パラメータ(以下、「SP」と略称する。)は、
SP(δ)=(ΔE/V)1/2
(ΔE:分子凝集エネルギー(cal/mol)、V:分子容(ml/mol))
の式に基づき、以下の濁度滴定法により求めたものである。
「濁度滴定法によるSPの計算式」
VmL1/2(δ−δmL)≒VmH1/2(δmH−δ)
δ=(VmL1/2δmL+VmH1/2δmH)/(VmL1/2+VmH1/2
δ:アクリル樹脂のSP(cal/ml)1/2
VmL:SPの低い低極性溶剤の分子容(ml/mol)
VmH:SPの高い高極性溶剤の分子容(ml/mol)
δmL:SPの低い低極性溶剤のSP((cal/ml)1/2
δmH:SPの高い高極性溶剤のSP((cal/ml)1/2
「滴定方法」
アクリル樹脂0.500gを50mlの三角フラスコに秤取する。ここへ、溶解溶剤であるテトラヒドロフラン10mlを投入し、アクリル樹脂を完全に溶解させた後、25℃に保ちながらノルマルヘキサン(低極性溶剤)を滴下し、濁点滴定量(ml)を測定する。同様の手順で、イオン交換水(高極性溶剤)における濁点滴定量(ml)を測定する。なお、滴定中の50ml三角フラスコを25℃に保ったまま印刷物(10ポイント活字)上に置き、50ml三角フラスコを上から覗いた時に、液層を透して、三角フラスコ下に準備した印刷物(10ポイント活字)が濁りでぼやけて判読できなくなった時点を終点とする。なお、テトラヒドロフラン、ノルマルヘキサン、イオン交換水の25℃のSPは以下の値を用いる。
テトラヒドロフランの分子容:81(ml/mol)
ノルマルヘキサンの分子容(VmL):132(ml/mol)
イオン交換水の分子容(VmH):18(ml/mol)
テトラヒドロフランのSP:9.52((cal/ml)1/2
ノルマルヘキサンのSP(δmL):7.24((cal/ml)1/2
イオン交換水のSP(δmH):23.50((cal/ml)1/2
In the present invention, the solubility parameter of the acrylic resin (hereinafter abbreviated as “SP”) is
SP (δ) = (ΔE / V) 1/2
(ΔE: molecular cohesive energy (cal / mol), V: molecular volume (ml / mol))
Is obtained by the following turbidity titration method based on the above formula.
"Calculation formula of SP by turbidity titration method"
VmL 1/2 (δ−δmL) ≈VmH 1/2 (δmH−δ)
δ = (VmL 1/2 δmL + VmH 1/2 δmH) / (VmL 1/2 + VmH 1/2 )
δ: SP of acrylic resin (cal / ml) 1/2 )
VmL: low polar solvent molecular volume with low SP (ml / mol)
VmH: Molecular volume of high polar solvent with high SP (ml / mol)
δmL: SP of low polarity solvent with low SP ((cal / ml) 1/2 )
δmH: SP of high polarity solvent with high SP ((cal / ml) 1/2 )
"Titration method"
Weigh 0.500 g of acrylic resin into a 50 ml Erlenmeyer flask. To this, 10 ml of tetrahydrofuran as a dissolving solvent was added to completely dissolve the acrylic resin, and then normal hexane (low polarity solvent) was dropped while maintaining the temperature at 25 ° C., and the turbidity titration (ml) was measured. The turbid drip quantification (ml) in ion-exchanged water (high polarity solvent) is measured in the same procedure. The 50 ml Erlenmeyer flask being titrated was placed on a printed material (10-point type) while being kept at 25 ° C., and when looking into the 50 ml Erlenmeyer flask from above, the printed material (see below) was prepared under the Erlenmeyer flask through the liquid layer. The end point is the point at which the 10-point type) becomes cloudy and blurry. In addition, 25 degreeC SP of tetrahydrofuran, normal hexane, and ion-exchange water uses the following values.
Molecular volume of tetrahydrofuran: 81 (ml / mol)
Molecular volume of normal hexane (VmL): 132 (ml / mol)
Molecular volume of ion-exchanged water (VmH): 18 (ml / mol)
Tetrahydrofuran SP: 9.52 ((cal / ml) 1/2 )
Normal hexane SP (δ mL): 7.24 ((cal / ml) 1/2 )
SP (δmH) of ion-exchanged water: 23.50 ((cal / ml) 1/2 )

前記アクリル樹脂(A)の水酸基価は、得られる塗膜の外観、耐擦傷性、基材密着性、及び耐熱水性が向上することから、40〜150mgKOH/gが好ましく、60〜120mgKOH/gの範囲がより好ましい。   The hydroxyl value of the acrylic resin (A) is preferably 40 to 150 mgKOH / g, and preferably 60 to 120 mgKOH / g because the appearance, scratch resistance, substrate adhesion, and hot water resistance of the resulting coating film are improved. A range is more preferred.

なお、本発明において、水酸基価は、JIS試験方法K 0070−1992に準拠して測定したものである。   In the present invention, the hydroxyl value is measured in accordance with JIS test method K 0070-1992.

前記アクリル樹脂(A)の重量平均分子量(Mw)は、5,000〜100,000の範囲が好ましく、8,000〜50,000の範囲がより好ましく、15,000〜25,000の範囲がさらに好ましい。ここで、重量平均分子量(Mw)はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。   The weight average molecular weight (Mw) of the acrylic resin (A) is preferably in the range of 5,000 to 100,000, more preferably in the range of 8,000 to 50,000, and in the range of 15,000 to 25,000. Further preferred. Here, the weight average molecular weight (Mw) is a value converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement. The measurement conditions for GPC are as follows.

[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.

(標準ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

前記ウレタン(メタ)アクリレート(B)について説明する。前記ウレタン(メタ)アクリレート(B)の製造方法としては、例えば、水酸基及び(メタ)アクリロイル基を有する化合物とポリイソシアネート化合物とをウレタン化反応させる方法が挙げられる。   The urethane (meth) acrylate (B) will be described. Examples of the method for producing the urethane (meth) acrylate (B) include a method in which a compound having a hydroxyl group and a (meth) acryloyl group is reacted with a polyisocyanate compound.

前記水酸基及び(メタ)アクリロイル基を有する化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシ−n−ブチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ−n−ブチル(メタ)アクリレート、3−ヒドロキシ−n−ブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の水酸基を有する単官能(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、イソシアヌル酸EO変性ジアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の水酸基を有する多官能(メタ)アクリレートなどが挙げられるが、これらの中でも、得られた活性エネルギー線硬化性樹脂組成物から得られる硬化塗膜の耐擦傷性が向上することから、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレートが好ましい。なお、これらの水酸基及び(メタ)アクリロイル基を有する化合物は、単独で用いることも2種以上併用することもできる。   Examples of the compound having a hydroxyl group and a (meth) acryloyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, and 2-hydroxypropyl. (Meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (Meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryl Monofunctional (meth) acrylate having a hydroxyl group such as yloxyethyl-2-hydroxyethylphthalate, lactone-modified (meth) acrylate having a hydroxyl group at the terminal; trimethylolpropane di (meth) acrylate, isocyanuric acid EO-modified diacrylate, penta Examples thereof include polyfunctional (meth) acrylates having a hydroxyl group such as erythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate, and among these, it is obtained from the obtained active energy ray-curable resin composition. Pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferred because they improve the scratch resistance of the cured coating film. These compounds having a hydroxyl group and a (meth) acryloyl group can be used alone or in combination of two or more.

前記ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、m−キシリレンジイソシアネート、m−フェニレンビス(ジメチルメチレン)ジイソシアネート等の芳香族ジイソシアネート化合物;ヘキサメチレンジイソシアネート、リジンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、2−メチル−1,3−ジイソシアナトシクロヘキサン、2−メチル−1,5−ジイソシアナトシクロヘキサン、4,4’−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族又は脂環式ジイソシアネート化合物などが挙げられる。   Examples of the polyisocyanate compound include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, m-phenylenebis (dimethylmethylene) diisocyanate; hexamethylene diisocyanate, lysine diisocyanate, 1,3-bis. (Isocyanatomethyl) aliphatic or fat such as cyclohexane, 2-methyl-1,3-diisocyanatocyclohexane, 2-methyl-1,5-diisocyanatocyclohexane, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate And cyclic diisocyanate compounds.

また、前記ポリイソシアネート化合物として、上記のジイソシアネート化合物を多価アルコールと付加反応させて得られるイソシアネート基を有するプレポリマー;上記のジイソシアネート化合物を環化三量化させて得られるイソシアヌレート環を有する化合物;上記のジイソシアネート化合物を水と反応させて得られる尿素結合やビュレット結合を有するポリイソシアネート化合物なども用いることができる。   Further, as the polyisocyanate compound, a prepolymer having an isocyanate group obtained by addition reaction of the diisocyanate compound with a polyhydric alcohol; a compound having an isocyanurate ring obtained by cyclization and trimerization of the diisocyanate compound; A polyisocyanate compound having a urea bond or a burette bond obtained by reacting the above diisocyanate compound with water can also be used.

上記のポリイソシアネート化合物の中でも、耐黄変性に優れることから、脂肪族又は脂環式ジイソシアネート化合物が好ましい。   Among the above polyisocyanate compounds, aliphatic or alicyclic diisocyanate compounds are preferable because of excellent yellowing resistance.

上記のポリイソシアネート化合物は、単独で用いることも2種以上併用することもできる。   The above polyisocyanate compounds can be used alone or in combination of two or more.

なお、上記のウレタン化反応は、公知の方法により行うことができる。   In addition, said urethanation reaction can be performed by a well-known method.

前記ウレタン(メタ)アクリレート(B)の(メタ)アクリロイル基濃度は、耐擦傷性が向上することから、4〜11mmol/gの範囲が好ましく、5〜10mmol/gの範囲がより好ましい。   The concentration of the (meth) acryloyl group of the urethane (meth) acrylate (B) is preferably in the range of 4 to 11 mmol / g, more preferably in the range of 5 to 10 mmol / g because the scratch resistance is improved.

本発明の活性エネルギー線硬化性樹脂組成物は、前記アクリル樹脂(A)と前記ウレタン(メタ)アクリレート(B)とを含有するものであるが、前記アクリル樹脂(A)と前記ウレタン(メタ)アクリレート(B)との質量比[(A)/(B)]は、得られる塗膜の耐擦傷性及び耐熱水性が向上することから、10/90〜70/30の範囲が好ましく、10/90〜60/40の範囲がより好ましい。   The active energy ray-curable resin composition of the present invention contains the acrylic resin (A) and the urethane (meth) acrylate (B), but the acrylic resin (A) and the urethane (meth). The mass ratio [(A) / (B)] with the acrylate (B) is preferably in the range of 10/90 to 70/30 because the scratch resistance and hot water resistance of the resulting coating film are improved. The range of 90-60 / 40 is more preferable.

また、本発明の活性エネルギー線硬化型水性樹脂組成物は、前記アクリル樹脂(A)及び前記ウレタン(メタ)アクリレート(B)を含有するものであるが、この反応物以外に、多官能(メタ)アクリレート(C)を含有してもよい。   The active energy ray-curable aqueous resin composition of the present invention contains the acrylic resin (A) and the urethane (meth) acrylate (B). ) An acrylate (C) may be contained.

前記多官能(メタ)アクリレート化合物(C)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールA−ジ(メタ)アクリレート、ビスフェノールA−EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性ジアクリレート、イソシアヌル酸EO変性トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられ挙げられるが、これらの中でも、得られた活性エネルギー線硬化性樹脂組成物から得られる硬化塗膜の耐擦傷性が向上することから、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、イソシアヌル酸EO変性トリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートが好ましい。なお、これらの多官能(メタ)アクリレート化合物(C)は、単独で用いることも2種以上併用することもできる。 Examples of the polyfunctional (meth) acrylate compound (C) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and propylene glycol. Di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butanediol di (meth) ) Acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, hydroxypivalate ester neopentyl glycol di (me ) Acrylate, bisphenol A-di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, isocyanuric acid EO modified diacrylate, isocyanuric acid EO modified triacrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO Modified tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate and the like can be mentioned, among these, Since the scratch resistance of the cured coating film obtained from the obtained active energy ray-curable resin composition is improved, pentaerythritol triacrylate, pentaerythritol Lumpur tetraacrylate, isocyanuric acid EO-modified triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate are preferable. In addition, these polyfunctional (meth) acrylate compounds (C) can be used alone or in combination of two or more.

本発明の活性エネルギー線硬化性樹脂組成物中の多官能(メタ)アクリレート化合物(C)の含有量は、得られる塗膜の耐擦傷性が向上することから、前記アクリル樹脂(A)と、前記ウレタン(メタ)アクリレート(B)との合計100質量部に対し、50質量部以下であることが好ましい。   The content of the polyfunctional (meth) acrylate compound (C) in the active energy ray-curable resin composition of the present invention improves the scratch resistance of the resulting coating film, so that the acrylic resin (A), It is preferable that it is 50 mass parts or less with respect to 100 mass parts in total with the said urethane (meth) acrylate (B).

本発明の活性エネルギー線硬化性樹脂組成物は、耐擦傷性、基材密着性、耐熱水性及び外観に優れる塗膜が得られることから、活性エネルギー線硬化性塗料に好適に用いることができる。   The active energy ray-curable resin composition of the present invention can be suitably used for an active energy ray-curable coating material because a coating film excellent in scratch resistance, substrate adhesion, hot water resistance and appearance can be obtained.

上記の活性エネルギー線硬化性塗料は、本発明の活性エネルギー線硬化性樹脂組成物を含有するものであるが、その他の配合物として、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、顔料分散剤等の添加剤を使用することができる。   The active energy ray-curable coating material described above contains the active energy ray-curable resin composition of the present invention, but as other formulations, an antistatic agent, an antifoaming agent, a viscosity modifier, and a light-resistant stabilizer. Additives such as a weather stabilizer, a heat stabilizer, an ultraviolet absorber, an antioxidant, a leveling agent, and a pigment dispersant can be used.

また、本発明の活性エネルギー線硬化性塗料は、基材に塗布後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等の電離放射線をいう。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、本発明の活性エネルギー線硬化性塗料中に光重合開始剤(D)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特に光重合開始剤(D)や光増感剤を添加する必要はない。   Moreover, the active energy ray-curable coating material of the present invention can be formed into a cured coating film by irradiating active energy rays after being applied to a substrate. The active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. When irradiating ultraviolet rays as active energy rays to form a cured coating film, it is preferable to improve the curability by adding a photopolymerization initiator (D) to the active energy ray-curable coating material of the present invention. Further, if necessary, a photosensitizer can be further added to improve curability. On the other hand, when ionizing radiation such as electron beam, α-ray, β-ray, and γ-ray is used, it cures quickly without using a photopolymerization initiator or photosensitizer. It is not necessary to add D) or a photosensitizer.

前記光重合開始剤(D)としては、分子内開裂型光重合開始剤および水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン;2,4,6−トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。   Examples of the photopolymerization initiator (D) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy. 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone, 2-methyl-2-morpholino (4-thiomethyl) Acetophenone compounds such as phenyl) propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether and benzoin isopropyl ether; 6-Trimethylbenzoindiphenylphosphie Oxide, bis (2,4,6-trimethylbenzoyl) - acyl phosphine oxide-based compounds such as triphenylphosphine oxide; benzyl, and methyl phenylglyoxylate ester.

一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル−4−フェニルベンゾフェノン、4,4’−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系化合物;2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ−ケトン、4,4’−ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等が挙げられる。これらの光重合開始剤(D)は、単独で用いることも、2種以上を併用することもできる。   On the other hand, examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone, o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide. Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone compounds such as Michler's ketone and 4,4'-diethylaminobenzophenone; 2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like. These photopolymerization initiators (D) can be used alone or in combination of two or more.

また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン、o−トリルチオ尿素等の尿素、ナトリウムジエチルジチオホスフェート、s−ベンジルイソチウロニウム−p−トルエンスルホネート等の硫黄化合物などが挙げられる。   Examples of the photosensitizer include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sulfur such as sodium diethyldithiophosphate, s-benzylisothuronium-p-toluenesulfonate, and the like. Compound etc. are mentioned.

これらの光重合開始剤および光増感剤の使用量は、本発明の活性エネルギー線硬化性塗料中の不揮発成分100質量部に対し、各々0.05〜20質量部が好ましく、0.5〜10質量%がより好ましい。   The amount of these photopolymerization initiators and photosensitizers used is preferably 0.05 to 20 parts by mass, preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the non-volatile component in the active energy ray-curable paint of the present invention. 10 mass% is more preferable.

本発明の活性エネルギー線硬化性塗料の塗装方法としては、塗装する物品により異なるが、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等の方法が挙げられる。   The coating method of the active energy ray-curable coating of the present invention varies depending on the article to be coated, for example, a gravure coater, roll coater, comma coater, knife coater, air knife coater, curtain coater, kiss coater, shower coater, wheeler coater, Examples of the method include spin coater, dipping, screen printing, spraying, applicator, and bar coater.

さらに、本発明の活性エネルギー線硬化性塗料は、上記の塗装方法に適した粘度に調整するため、有機溶剤で希釈することが好ましい。この有機溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素溶剤;メタノール、エタノール、イソプロパノール、t−ブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールノルマルプロピルエーテル、エチレングリコールモノブチルエーテル、ダイアセトンアルコール等のアルコール溶剤;酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸ノルマルプロピル、プロピレングリコールモノメチルエーテルアセテート等のエステル溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン溶剤などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。   Furthermore, the active energy ray-curable coating material of the present invention is preferably diluted with an organic solvent in order to adjust the viscosity to be suitable for the above-described coating method. Examples of the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene; methanol, ethanol, isopropanol, t-butanol, propylene glycol monomethyl ether, propylene glycol normal propyl ether, ethylene glycol monobutyl ether, diacetone alcohol, and the like. Alcohol solvents; ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate, normal propyl acetate, and propylene glycol monomethyl ether acetate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclohexanone. These solvents can be used alone or in combination of two or more.

本発明の活性エネルギー線硬化性組成物を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源または硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧または高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、または走査型、カーテン型電子線加速器による電子線等が挙げられる。   As described above, the active energy ray for curing the active energy ray-curable composition of the present invention is an ionizing radiation such as an ultraviolet ray, an electron beam, an α ray, a β ray, and a γ ray. Or as a curing device, for example, a germicidal lamp, an ultraviolet fluorescent lamp, a carbon arc, a xenon lamp, a high-pressure mercury lamp for copying, an intermediate or high-pressure mercury lamp, an ultra-high pressure mercury lamp, an electrodeless lamp, a metal halide lamp, natural light, etc. Examples of the electron beam include ultraviolet rays, a scanning type, and a curtain type electron beam accelerator.

本発明の活性エネルギー線硬化性塗料は、各種物品の表面に、耐擦傷性、基材密着性、耐熱水性及び外観に優れる硬化塗膜を付与することができる。   The active energy ray-curable coating material of the present invention can impart a cured coating film excellent in scratch resistance, substrate adhesion, hot water resistance and appearance to the surface of various articles.

本発明の活性エネルギー線硬化性塗料は、被塗装物となる物品に、直接塗装してもよいし、被塗装物に適合したプライマー塗材を塗装してから、本発明の活性エネルギー線硬化性塗料を塗装してもよい。   The active energy ray-curable coating material of the present invention may be applied directly to an article to be coated, or after applying a primer coating material suitable for the material to be coated, the active energy beam-curing property of the present invention. Paint may be applied.

被塗装物となる物品の材質としては、ポリカーボネート(以下、「PC」と略記する。)、アクリロニトリル−ブタジエン−スチレン共重合体(以下、「ABS」と略記する。)、PC−ABSのポリマーアロイ、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリプロピレン(PP)等の各種樹脂;これらの樹脂にガラス繊維等のフィラーを入れた繊維強化プラスチック(FRP);鉄、銅、亜鉛、アルミニウム、マグネシウム等の各種金属及びこれらの合金などが挙げられる。   As materials of articles to be coated, polycarbonate (hereinafter abbreviated as “PC”), acrylonitrile-butadiene-styrene copolymer (hereinafter abbreviated as “ABS”), PC-ABS polymer alloy. , Various resins such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyamide (PA), polypropylene (PP); fiber reinforced plastic (FRP) in which filler such as glass fiber is added to these resins; iron, copper , Various metals such as zinc, aluminum and magnesium, and alloys thereof.

また、上記の活性エネルギー線硬化性塗料は、各種物品を塗装する塗料として用いることができる。本発明の活性エネルギー線硬化性塗料を塗装することのできる物品としては、テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体;パソコン、スマートフォン、携帯電話、デジタルカメラ、ゲーム機等の電子機器の筐体;自動車、鉄道車輌等の各種車輌の内装材;FRP浴槽などが挙げられる。   Moreover, said active energy ray hardening coating material can be used as a coating material which coats various articles | goods. Articles that can be coated with the active energy ray-curable paint of the present invention include housings for home appliances such as TVs, refrigerators, washing machines, and air conditioners; electronic devices such as personal computers, smartphones, mobile phones, digital cameras, and game machines. Equipment casings; interior materials for various vehicles such as automobiles and railway vehicles; FRP bathtubs and the like.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、アクリル樹脂の水酸基価は、JIS試験方法K 0070−1992に準拠して測定したものであり、重量平均分子量(Mw)は、下記のGPC測定条件で測定したものであり、溶解性パラメータ(SP)は、下記の濁度滴定法により求めたものである。   Hereinafter, the present invention will be described in more detail with reference to specific examples. The hydroxyl value of the acrylic resin was measured in accordance with JIS test method K 0070-1992, the weight average molecular weight (Mw) was measured under the following GPC measurement conditions, and the solubility parameter ( SP) is determined by the following turbidity titration method.

[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg / mL)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.

(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Monodispersed polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

「濁度滴定法によるSPの計算式」
VmL1/2(δ−δmL)≒VmH1/2(δmH−δ)
δ=(VmL1/2δmL+VmH1/2δmH)/(VmL1/2+VmH1/2
δ:アクリル樹脂のSP(cal/ml)1/2
VmL:SPの低い低極性溶剤の分子容(ml/mol)
VmH:SPの高い高極性溶剤の分子容(ml/mol)
δmL:SPの低い低極性溶剤のSP((cal/ml)1/2
δmH:SPの高い高極性溶剤のSP((cal/ml)1/2
「滴定方法」
アクリル樹脂0.500gを50mlの三角フラスコに秤取した。ここへ、溶解溶剤であるテトラヒドロフラン10mlを投入し、アクリル樹脂を完全に溶解させた後、25℃に保ちながらノルマルヘキサン(低極性溶剤)を滴下し、濁点滴定量(ml)を測定した。同様の手順で、イオン交換水(高極性溶剤)における濁点滴定量(ml)を測定した。なお、滴定中の50ml三角フラスコを25℃に保ったまま印刷物(10ポイント活字)上に置き、50ml三角フラスコを上から覗いた時に、液層を透して、三角フラスコ下に準備した印刷物(10ポイント活字)が濁りでぼやけて判読できなくなった時点を終点とした。なお、テトラヒドロフラン、ノルマルヘキサン、イオン交換水の25℃のSPは以下の値を用いた。
テトラヒドロフランの分子容:81(ml/mol)
ノルマルヘキサンの分子容(VmL):132(ml/mol)
イオン交換水の分子容(VmH):18(ml/mol)
テトラヒドロフランのSP:9.52((cal/ml)1/2
ノルマルヘキサンのSP(δmL):7.24((cal/ml)1/2
イオン交換水のSP(δmH):23.50((cal/ml)1/2
"Calculation formula of SP by turbidity titration method"
VmL 1/2 (δ−δmL) ≈VmH 1/2 (δmH−δ)
δ = (VmL 1/2 δmL + VmH 1/2 δmH) / (VmL 1/2 + VmH 1/2 )
δ: SP of acrylic resin (cal / ml) 1/2 )
VmL: low polar solvent molecular volume with low SP (ml / mol)
VmH: Molecular volume of high polar solvent with high SP (ml / mol)
δmL: SP of low polarity solvent with low SP ((cal / ml) 1/2 )
δmH: SP of high polarity solvent with high SP ((cal / ml) 1/2 )
"Titration method"
0.500 g of acrylic resin was weighed into a 50 ml Erlenmeyer flask. To this, 10 ml of tetrahydrofuran as a dissolving solvent was added to completely dissolve the acrylic resin, and then normal hexane (low polarity solvent) was dropped while keeping the temperature at 25 ° C., and the turbidity drop (ml) was measured. In the same procedure, turbidity drip quantification (ml) in ion-exchanged water (high polarity solvent) was measured. The 50 ml Erlenmeyer flask being titrated was placed on a printed material (10-point type) while being kept at 25 ° C., and when looking into the 50 ml Erlenmeyer flask from above, the printed material (through the liquid layer was prepared under the Erlenmeyer flask ( The end point was defined as the point when the 10-point type) was cloudy and blurred. In addition, 25 degreeC SP of tetrahydrofuran, normal hexane, and ion-exchange water used the following values.
Molecular volume of tetrahydrofuran: 81 (ml / mol)
Molecular volume of normal hexane (VmL): 132 (ml / mol)
Molecular volume of ion-exchanged water (VmH): 18 (ml / mol)
Tetrahydrofuran SP: 9.52 ((cal / ml) 1/2 )
Normal hexane SP (δ mL): 7.24 ((cal / ml) 1/2 )
SP (δmH) of ion-exchanged water: 23.50 ((cal / ml) 1/2 )

(合成例1:アクリル樹脂(A−1)の合成)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入管を備えた反応容器に、メチルイソブチルケトン(以下、「MIBK」と略記する。)1000質量部を仕込んで、窒素ガス気流下で115℃まで昇温した。次いで、同温度で、メチルメタクリレート518質量部、2−ヒドロキシエチルメタクリレート232質量部、合成ラウリルメタクリレート(三菱レイヨン株式会社製「アクリエステルSL」、ラウリルメタクリレート及びトリデシルメタクリレートの混合物)250質量部及びtert−ブチルパーオキシ−2−エチルヘキサノエート23質量部の混合物を4時間かけて滴下した。滴下終了後も同温度で19時間保持、反応を継続することで、アクリル樹脂(A−1)の50質量%溶液を得た。このアクリル樹脂(A−1)の溶解性パラメータは、10.74であり、水酸基価は、100mgKOH/gであった。
(Synthesis Example 1: Synthesis of acrylic resin (A-1))
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a cooling tube and a nitrogen gas introduction tube was charged with 1000 parts by mass of methyl isobutyl ketone (hereinafter abbreviated as “MIBK”), and the temperature was 115 ° C. under a nitrogen gas stream. The temperature was raised to. Next, at the same temperature, 518 parts by mass of methyl methacrylate, 232 parts by mass of 2-hydroxyethyl methacrylate, 250 parts by mass of synthetic lauryl methacrylate (a mixture of “Acryester SL”, lauryl methacrylate and tridecyl methacrylate, manufactured by Mitsubishi Rayon Co., Ltd.) and tert -A mixture of 23 parts by mass of butylperoxy-2-ethylhexanoate was added dropwise over 4 hours. Even after completion of dropping, the reaction was continued for 19 hours at the same temperature to obtain a 50% by mass solution of acrylic resin (A-1). The solubility parameter of this acrylic resin (A-1) was 10.74, and the hydroxyl value was 100 mgKOH / g.

(合成例2〜8:アクリル樹脂(A−2)〜(A−7)の合成)
合成例1で用いたアクリル単量体を表1に示した仕込み量に変更した以外は同様に操作して、アクリル樹脂(A−2)〜(A−7)の50質量%溶液を得た。
(Synthesis Examples 2 to 8: Synthesis of acrylic resins (A-2) to (A-7))
A 50% by mass solution of acrylic resins (A-2) to (A-7) was obtained in the same manner except that the acrylic monomer used in Synthesis Example 1 was changed to the charge shown in Table 1. .

上記で合成したアクリル樹脂(A−1)〜(A−7)の原料である単量体の仕込み量及び性状値を表1に示す。   Table 1 shows the charged amounts and properties of monomers as raw materials for the acrylic resins (A-1) to (A-7) synthesized above.

Figure 0006225375
Figure 0006225375

表1中の合成ラウリルメタクリレートは、アクリエステルSL(三菱レイヨン株式会社製、ラウリルメタクリレート及びトリデシルメタクリレートの混合物)である。   The synthetic lauryl methacrylate in Table 1 is acrylate ester SL (Mitsubishi Rayon Co., Ltd., mixture of lauryl methacrylate and tridecyl methacrylate).

(合成例8:ウレタンアクリレート組成物(B−1)の合成)
攪拌機、温度計、滴下ロート、冷却管及び空気導入口を備えた反応容器に、酢酸n−ブチル150.8質量部、イソホロンジイソシアネート111質量部、ジ−t−ブチルヒドロキシトルエン1.2質量部、メトキノン0.12質量部及びジオクチル錫バーサテート0.12質量部を仕込んで、空気の通気下、攪拌しながら、50℃まで昇温した。次いで、ペンタエリスリトールトリアクリレート(以下、「PETA」と略記する。)及びペンタエリスリトールテトラアクリレートの混合物(東亞合成株式会社製「アロニックス M305」、ペンタエリスリトールトリアクリレート/ペンタエリスリトールテトラアクリレート=60/40(質量比)、水酸基価:115;以下、「PETA混合物」と略記する。)491質量部を加え、80℃で5時間攪拌することによりウレタン化反応を行い、ウレタンアクリレート(B−1)とペンタエリスリトールテトラアクリレートとの混合物(ウレタンアクリレート(B−1)/ペンタエリスリトールテトラアクリレート=67.5/32.5(質量比))の80質量%溶液を得た(ウレタンアクリレート(B−1)のアクリロイル基濃度:7.3mmol/g)。
(Synthesis Example 8: Synthesis of urethane acrylate composition (B-1))
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and air inlet, 150.8 parts by mass of n-butyl acetate, 111 parts by mass of isophorone diisocyanate, 1.2 parts by mass of di-t-butylhydroxytoluene, Methoquinone 0.12 parts by mass and dioctyl tin versatate 0.12 parts by mass were charged, and the temperature was raised to 50 ° C. while stirring under aeration of air. Next, a mixture of pentaerythritol triacrylate (hereinafter abbreviated as “PETA”) and pentaerythritol tetraacrylate (“Aronix M305” manufactured by Toagosei Co., Ltd., pentaerythritol triacrylate / pentaerythritol tetraacrylate = 60/40 (mass) Ratio), hydroxyl value: 115; hereinafter abbreviated as “PETA mixture.”) Urethane reaction is carried out by adding 491 parts by mass and stirring at 80 ° C. for 5 hours to obtain urethane acrylate (B-1) and pentaerythritol. An 80% by mass solution of a mixture with urethane (urethane acrylate (B-1) / pentaerythritol tetraacrylate = 67.5 / 32.5 (mass ratio)) was obtained (acryloyl group of urethane acrylate (B-1)). Concentration: 7 .3 mmol / g).

(実施例1:活性エネルギー線硬化性樹脂組成物(1)の調製)
合成例1で得られたアクリル樹脂(A−1)の50質量%溶液12質量部(アクリル樹脂(A−1)として6質量部)に、合成例8で得られたウレタンアクリレート(B−1)とペンタエリスリトールテトラアクリレートとの混合物の80質量%溶液22.2質量部(ウレタン(メタ)アクリレート(B−1)として12質量部、ペンタエリスリトールテトラアクリレートとして5.76質量部)及び光重合開始剤(BASFジャパン株式会社製「イルガキュア184」、1−ヒドロキシシクロヘキシルフェニルケトン)0.8質量部を加えて、ディスパーで均一に混合し、活性エネルギー線硬化性組成物(1)を得た。
(Example 1: Preparation of active energy ray-curable resin composition (1))
The urethane acrylate (B-1) obtained in Synthesis Example 8 was added to 12 parts by mass (6 parts by mass as the acrylic resin (A-1)) of a 50% by mass solution of the acrylic resin (A-1) obtained in Synthesis Example 1. ) And pentaerythritol tetraacrylate 80% by weight solution 22.2 parts by mass (12 parts by mass as urethane (meth) acrylate (B-1), 5.76 parts by mass as pentaerythritol tetraacrylate) and initiation of photopolymerization 0.8 parts by mass of an agent (“Irgacure 184” manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone) was added and mixed uniformly with a disper to obtain an active energy ray-curable composition (1).

(実施例2〜7:活性エネルギー線硬化性組成物(2)〜(7)の調製)
実施例1で用いたアクリル樹脂(A−1)、ウレタンアクリレート(B−1)及びペンタエリスリトールテトラアクリレートを、下記の表2に示す組成に変更した以外は実施例1と同様に操作することにより、活性エネルギー線硬化性組成物(2)〜(7)を調製した。
(Examples 2 to 7: Preparation of active energy ray-curable compositions (2) to (7))
By operating in the same manner as in Example 1 except that the acrylic resin (A-1), urethane acrylate (B-1) and pentaerythritol tetraacrylate used in Example 1 were changed to the compositions shown in Table 2 below. Active energy ray-curable compositions (2) to (7) were prepared.

(比較例1〜2:活性エネルギー線硬化性組成物(R1)〜(R2)の調製)
実施例1で用いたアクリル樹脂(A−1)、ウレタンアクリレート(B−1)及びペンタエリスリトールテトラアクリレートを、下記の表2に示す組成に変更した以外は実施例1と同様に操作することにより、活性エネルギー線硬化性組成物(R1)〜(R2)を調製した。
(Comparative Examples 1-2: Preparation of active energy ray-curable compositions (R1) to (R2))
By operating in the same manner as in Example 1 except that the acrylic resin (A-1), urethane acrylate (B-1) and pentaerythritol tetraacrylate used in Example 1 were changed to the compositions shown in Table 2 below. Active energy ray-curable compositions (R1) to (R2) were prepared.

上記で得られた活性エネルギー線硬化性組成物(1)〜(7)及び(R1)〜(R2)の組成を表2に示す。   Table 2 shows the compositions of the active energy ray-curable compositions (1) to (7) and (R1) to (R2) obtained above.

Figure 0006225375
Figure 0006225375

(実施例8:活性エネルギー線硬化性組成物(1)の評価)
PCの樹脂板(厚さ2mm)の表面に上記で得られた活性エネルギー線硬化性組成物(1)をスプレー塗装が可能な粘度になるまでシンナー(ジアセトンアルコール/酢酸イソブチル/酢酸エチル/酢酸ブチル=30/30/20/20(質量%))で希釈した後、乾燥後の膜厚が15μmとなるようにスプレー塗装した。その後、室温(25℃)で5分間放置した後、乾燥機中で60℃で5分間の予備乾燥した後、出力80W/cmの高圧水銀ランプを用いて、照射量0.8J/cmの紫外線照射を行い、評価用硬化塗膜を作製した。
(Example 8: Evaluation of active energy ray-curable composition (1))
Thinner (diacetone alcohol / isobutyl acetate / ethyl acetate / acetic acid) until the viscosity of the active energy ray-curable composition (1) obtained above is sprayable on the surface of a PC resin plate (thickness 2 mm). After being diluted with butyl = 30/30/20/20 (mass%), spray coating was performed so that the film thickness after drying was 15 μm. Then, after leaving at room temperature (25 ° C.) for 5 minutes, after preliminary drying in a dryer at 60 ° C. for 5 minutes, using a high-pressure mercury lamp with an output of 80 W / cm, an irradiation amount of 0.8 J / cm 2 Ultraviolet irradiation was performed to produce a cured coating film for evaluation.

[塗膜外観の評価]
上記で得られた評価用硬化塗膜のヘーズ値をヘーズメーター(日本電色工業株式会社製、「NDH 5000」)を用いて測定し、得られた値から、下記の基準により塗膜外観を評価した。
◎:1未満
○:1以上3未満
△:3以上〜10未満
×:10以上
[Evaluation of coating appearance]
The haze value of the cured coating film for evaluation obtained above was measured using a haze meter (“NDH 5000”, manufactured by Nippon Denshoku Industries Co., Ltd.). From the obtained value, the coating film appearance was determined according to the following criteria. evaluated.
◎: Less than 1 ○: 1 or more and less than 3 Δ: 3 or more and less than 10 ×: 10 or more

[耐擦傷性の評価]
上記で得られた評価用硬化塗膜をRUBBING TESTER(大平理化学工業株式会社製)にセットし、スチールウール(日本スチールウール株式会社製、BON STAR(No.000))を用いて、塗膜表面を500g荷重で100回ラビングした。ラビング前後の硬化塗膜のヘーズ値の差(Δヘーズ)から、下記の基準により塗膜の耐擦傷性を評価した。
◎:5未満
○:5以上10未満
△:10以上〜15未満
×:15以上
[Evaluation of scratch resistance]
The cured coating film for evaluation obtained above is set on RUBBING TESTER (manufactured by Ohira Riken Chemical Co., Ltd.), and the surface of the coating film using steel wool (manufactured by Nippon Steel Wool Co., Ltd., BON STAR (No. 000)). Was rubbed 100 times with a load of 500 g. From the difference in the haze values (Δhaze) of the cured coating film before and after rubbing, the scratch resistance of the coating film was evaluated according to the following criteria.
◎: Less than 5 ○: 5 or more and less than 10 Δ: 10 or more to less than 15 ×: 15 or more

[基材密着性の評価]
上記で得られた評価用硬化塗膜をJIS K−5400の碁盤目試験法に基づいて測定した。前記硬化塗膜の上にカッターで1mm幅の切込みを入れ碁盤目の数を100個とし、全ての碁盤目を覆うようにセロハンテープを貼り付け、すばやく引き剥がして付着して残っている碁盤目の数から、下記の基準により密着性を評価した。
◎:95個以上100個未満
○:80個以上95個未満
△:50個以上〜79個未満
×:49個未満
[Evaluation of substrate adhesion]
The cured coating film for evaluation obtained above was measured based on the cross cut test method of JIS K-5400. A 1 mm wide cut is made on the cured coating film with a cutter, the number of grids is 100, cellophane tape is applied so as to cover all grids, and they are peeled off quickly to adhere and remain. From the number, the adhesion was evaluated according to the following criteria.
◎: 95 or more and less than 100 ○: 80 or more and less than 95 △: 50 or more and less than 79 ×: Less than 49

[耐熱水性の評価(耐熱水試験後の密着性評価)]
上記で得られた評価用硬化塗膜を100℃の沸騰水中に3時間浸漬した後、取り出した塗膜を直ちに、上記の基材密着性の評価と同様に操作して、下記の基準により耐熱水性(耐熱水試験後の密着性)を評価した。
◎:95個以上100個未満
○:80個以上95個未満
△:50個以上〜79個未満
×:49個未満
[Evaluation of hot water resistance (adhesion evaluation after hot water test)]
After the cured coating film for evaluation obtained above was immersed in boiling water at 100 ° C. for 3 hours, the removed coating film was immediately operated in the same manner as in the evaluation of substrate adhesion, and heat-resistant according to the following criteria. The aqueous property (adhesion after the hot water test) was evaluated.
◎: 95 or more and less than 100 ○: 80 or more and less than 95 △: 50 or more and less than 79 ×: Less than 49

(実施例9〜14:活性エネルギー線硬化性組成物(2)〜(7)の評価)
実施例8で用いた実施例1で得られた活性エネルギー線硬化性組成物(1)に代えて、実施例2〜7で得られた活性エネルギー線硬化性組成物(2)〜(7)をそれぞれ用いた以外は、実施例8と同様に行い、評価用硬化塗膜を作製し、外観、耐擦傷性、基材密着性及び耐熱水性を評価した。
(Examples 9 to 14: Evaluation of active energy ray-curable compositions (2) to (7))
Instead of the active energy ray-curable composition (1) obtained in Example 1 used in Example 8, the active energy ray-curable compositions (2) to (7) obtained in Examples 2 to 7 were used. A cured coating film for evaluation was produced in the same manner as in Example 8 except that each was used, and the appearance, scratch resistance, substrate adhesion and hot water resistance were evaluated.

(比較例3〜4:活性エネルギー線硬化性組成物(R1)〜(R2)の評価)
実施例9で用いた実施例1で得られた活性エネルギー線硬化性組成物(1)に代えて、比較例1〜2で得られた活性エネルギー線硬化性組成物(R1)〜(R2)をそれぞれ用いた以外は、実施例8と同様に行い、評価用硬化塗膜を作製し、外観、耐擦傷性、基材密着性及び耐熱水性を評価した。
(Comparative Examples 3 to 4: Evaluation of active energy ray-curable compositions (R1) to (R2))
Instead of the active energy ray-curable composition (1) obtained in Example 1 used in Example 9, the active energy ray-curable compositions (R1) to (R2) obtained in Comparative Examples 1 and 2 were used. A cured coating film for evaluation was produced in the same manner as in Example 8 except that each was used, and the appearance, scratch resistance, substrate adhesion and hot water resistance were evaluated.

上記の実施例8〜14及び比較例3〜4の評価結果を表3に示す。   Table 3 shows the evaluation results of Examples 8 to 14 and Comparative Examples 3 to 4.

Figure 0006225375
Figure 0006225375

実施例8〜14の評価結果から、本発明の活性エネルギー線硬化性組成物は、外観、耐擦傷性、基材密着性、及び耐熱水性に優れた塗膜を形成可能であることがわかった。   From the evaluation results of Examples 8 to 14, it was found that the active energy ray-curable composition of the present invention can form a coating film excellent in appearance, scratch resistance, substrate adhesion, and hot water resistance. .

一方、比較例3は、本発明の活性エネルギー線硬化性組成物の成分であるアクリル樹脂の原料として、水酸基を有するアクリル単量体を使用しない例であるが、得られる塗膜の外観及び耐擦傷性が不良であることがわかった。   On the other hand, Comparative Example 3 is an example in which an acrylic monomer having a hydroxyl group is not used as a raw material for the acrylic resin that is a component of the active energy ray-curable composition of the present invention. It was found that the scratch resistance was poor.

比較例4は、本発明の活性エネルギー線硬化性組成物の成分であるアクリル樹脂の原料として、炭素原子数が12〜18のアルキル基を有するアクリル単量体を使用しない例であるが、得られる塗膜の耐熱水性が不良であることがわかった。   Comparative Example 4 is an example in which an acrylic monomer having an alkyl group having 12 to 18 carbon atoms is not used as a raw material for an acrylic resin that is a component of the active energy ray-curable composition of the present invention. It was found that the hot water resistance of the resulting coating film was poor.

Claims (6)

水酸基を有するアクリル単量体(a1)、炭素原子数が12〜18のアルキル基を有するアクリル単量体(a2)、及び炭素原子数が1〜4のアルキル基を有するアクリル単量体(a3)を必須原料として共重合して得られたアクリル樹脂(A)と、ウレタン(メタ)アクリレート(B)とを含有する活性エネルギー線硬化性樹脂組成物であって、前記アクリル樹脂(A)の溶解性パラメータが、9.4〜11.5であることを特徴とする活性エネルギー線硬化性樹脂組成物。   An acrylic monomer having a hydroxyl group (a1), an acrylic monomer having an alkyl group having 12 to 18 carbon atoms (a2), and an acrylic monomer having an alkyl group having 1 to 4 carbon atoms (a3 ) Is an active energy ray-curable resin composition containing an acrylic resin (A) obtained by copolymerization using essential raw materials and a urethane (meth) acrylate (B), the acrylic resin (A) An active energy ray-curable resin composition having a solubility parameter of 9.4 to 11.5. 前記アクリル樹脂(A)の原料である単量体成分中の前記アクリル単量体(a1)が5〜40質量%の範囲であり、前記アクリル単量体(a2)が5〜60質量%の範囲であり、前記アクリル単量体(a3)が5〜90質量%の範囲である請求項1記載の活性エネルギー線硬化性樹脂組成物。   The said acrylic monomer (a1) in the monomer component which is a raw material of the said acrylic resin (A) is 5-40 mass%, The said acrylic monomer (a2) is 5-60 mass%. The active energy ray-curable resin composition according to claim 1, wherein the acrylic monomer (a3) is in the range of 5 to 90% by mass. 前記ウレタン(メタ)アクリレート(B)の(メタ)アクリロイル基濃度が4〜11mmol/gである請求項1又は2記載の活性エネルギー線硬化性樹脂組成物。   The active energy ray-curable resin composition according to claim 1 or 2, wherein the urethane (meth) acrylate (B) has a (meth) acryloyl group concentration of 4 to 11 mmol / g. 前記アクリル樹脂(A)と前記ウレタン(メタ)アクリレート組成物(B)との質量比[(A)/(B)]が、10/90〜70/30の範囲である請求項1〜3のいずれか1項記載の活性エネルギー線硬化性樹脂組成物。
The mass ratio [(A) / (B)] of the acrylic resin (A) and the urethane (meth) acrylate composition (B) is in the range of 10/90 to 70/30 . The active energy ray-curable resin composition according to any one of the above.
請求項1〜4のいずれか1項記載の活性エネルギー線硬化性樹脂組成物を含有することを特徴とする活性エネルギー線硬化性塗料。   An active energy ray-curable coating composition comprising the active energy ray-curable resin composition according to any one of claims 1 to 4. 請求項5記載の活性エネルギー線硬化性塗料が塗装されたことを特徴とする物品。   An article coated with the active energy ray-curable paint according to claim 5.
JP2013072530A 2013-03-29 2013-03-29 Active energy ray curable composition, active energy ray curable paint, and article coated with the paint Active JP6225375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072530A JP6225375B2 (en) 2013-03-29 2013-03-29 Active energy ray curable composition, active energy ray curable paint, and article coated with the paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072530A JP6225375B2 (en) 2013-03-29 2013-03-29 Active energy ray curable composition, active energy ray curable paint, and article coated with the paint

Publications (2)

Publication Number Publication Date
JP2014196410A JP2014196410A (en) 2014-10-16
JP6225375B2 true JP6225375B2 (en) 2017-11-08

Family

ID=52357445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072530A Active JP6225375B2 (en) 2013-03-29 2013-03-29 Active energy ray curable composition, active energy ray curable paint, and article coated with the paint

Country Status (1)

Country Link
JP (1) JP6225375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087885A1 (en) * 2020-10-28 2022-05-05 Dic Corporation Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279800B1 (en) * 2017-08-30 2018-02-14 日本ペイント・オートモーティブコーティングス株式会社 Active energy ray-curable coating composition
JP2019167508A (en) * 2018-03-26 2019-10-03 三菱ケミカル株式会社 Active energy ray-curable composition and metal molding
JP7433888B2 (en) 2019-12-24 2024-02-20 東亞合成株式会社 Method for producing coating material using electron beam curable composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895241A (en) * 1994-09-22 1996-04-12 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using same
JP3990426B2 (en) * 2005-10-19 2007-10-10 武蔵塗料株式会社 UV curable aqueous coating composition
JP2013204001A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Active energy ray-curable resin composition and laminate using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087885A1 (en) * 2020-10-28 2022-05-05 Dic Corporation Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material

Also Published As

Publication number Publication date
JP2014196410A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP4003800B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
JP6067235B2 (en) Urethane (meth) acrylate and curable resin composition containing the same
JP6225375B2 (en) Active energy ray curable composition, active energy ray curable paint, and article coated with the paint
JP6295652B2 (en) Photocurable polymer, photocurable resin composition, cured product thereof, and cured coating film
JP5418868B1 (en) Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material
JP2014065788A (en) Active energy ray-curable composition, coating agent for glass, and glass member having cured coating film of the coating agent
JP2012017404A (en) Photocurable resin composition and photocurable coating agent using the same
JP6874787B2 (en) Active energy ray-curable resin composition, cured product and laminate
JP4915042B2 (en) Photocurable resin composition, photocurable coating agent using the same, and photocurable film
TWI719154B (en) Active energy ray hardening composition
JP2011016871A (en) Curable resin composition
TW201428056A (en) Active energy ray-curable composition, cured coating film of same, and article having said cured coating film
JP5686228B1 (en) Active energy ray-curable composition, cured film thereof, and article having the cured film
JP2015063616A (en) Active energy ray-curable composition, cured coating film of the same, and article having the cured film
JP6512468B1 (en) Aqueous resin composition, aqueous paint and article
JP2020164829A (en) Antistatic agent for active energy ray-curable resin composition, active energy ray-curable resin composition, cured coat, and film
WO2019182155A1 (en) Curable composition, cured product, method for producing cured product, and method for repairing damage of cured product
JP6965868B2 (en) Antistatic agent for active energy ray-curable resin composition, active energy ray-curable resin composition, cured product and film
JP7244172B2 (en) Curable resin composition, film using same, and molded article using film
JP2015120860A (en) Active energy ray-curable composition, cured coating film thereof and article having the cured coating film
JP6631055B2 (en) Reactive polymer, photocurable composition, cured product and article
KR20150135215A (en) Resin composition, primer coating material, and plastic molded article coated with such coating material
JP2023511217A (en) Active energy ray-curable water-based resin composition, active energy ray-curable water-based paint, and article coated with said paint
JP2021038355A (en) Aqueous resin composition, aqueous coating material, and article
JP2020019860A (en) Curable resin molded body, functional film, method for producing curable resin molded body and method for producing curable resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R151 Written notification of patent or utility model registration

Ref document number: 6225375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250