JP2023064339A - Resin composition for powder coating, powder coating, and article having coated film of the coating - Google Patents

Resin composition for powder coating, powder coating, and article having coated film of the coating Download PDF

Info

Publication number
JP2023064339A
JP2023064339A JP2021174571A JP2021174571A JP2023064339A JP 2023064339 A JP2023064339 A JP 2023064339A JP 2021174571 A JP2021174571 A JP 2021174571A JP 2021174571 A JP2021174571 A JP 2021174571A JP 2023064339 A JP2023064339 A JP 2023064339A
Authority
JP
Japan
Prior art keywords
meth
mass
powder coating
acrylate
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021174571A
Other languages
Japanese (ja)
Inventor
雄一郎 柴
Yuichiro Shiba
奈緒之 清家
Naoyuki Seike
晃一 村上
Koichi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2021174571A priority Critical patent/JP2023064339A/en
Publication of JP2023064339A publication Critical patent/JP2023064339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

To provide a resin composition for a powder coating, and a powder coating which enable the formation of a cured coated film excellent in curability, smoothness and filiform corrosion resistance, and an article having a coated film of the coating.SOLUTION: A resin composition for a powder coating contains an acrylic resin (A) containing an acrylic monomer (a1) having an epoxy group, (meth)acrylamide (a2), styrene (a3) and other unsaturated monomer (a4) as essential raw materials, wherein the acrylic monomer (a1) in a monomer component that is a raw material of the acrylic resin (A) is 20-60 mass%, the (meth)acrylamide is 0.1-30 mass%, and the styrene is 10-50 mass%.SELECTED DRAWING: None

Description

本発明は、粉体塗料用樹脂組成物、粉体塗料、該塗料の塗膜を有する物品に関する。 TECHNICAL FIELD The present invention relates to a resin composition for powder coating, a powder coating, and an article having a coating film of the coating.

近年、大気汚染等の問題から有機溶剤に対する規制が厳しくなり、環境調和型塗料が注目されている。その中でも、粉体塗料は無溶剤型塗料として環境保護の観点から脚光を浴びており、特にアクリル系粉体塗料は耐候性、耐汚染性等の塗膜性能に優れることから、アルミホイール等の自動車部品、金属外装、家電の用途に注目されている。しかしながら、粉体塗料は溶剤型塗料と比較し、塗膜の平滑性が劣るという欠点があった。 In recent years, regulations on organic solvents have become stricter due to problems such as air pollution, and environment-friendly paints have attracted attention. Among them, powder coatings are attracting attention from the viewpoint of environmental protection as solvent-free coatings. In particular, acrylic powder coatings are excellent in coating performance such as weather resistance and stain resistance. It is attracting attention for use in automobile parts, metal exteriors, and home appliances. However, powder coatings have the disadvantage that the smoothness of coating films is inferior to that of solvent-based coatings.

これに対して、(メタ)アクリル酸アルキルエステル、エポキシ基含有アクリル単量体、その他共重合可能なビニル系単量体を共重合させて得られるエポキシ基含有アクリル樹脂と、エポキシ基と反応可能な官能基を有する硬化剤とを含んでなる粉体塗料が提案されている(例えば、特許文献1参照。)。しかしながら、この粉体塗料から得られる硬化塗膜は、平滑性が改善されているものの、耐糸錆性が不十分であるという問題があった。 On the other hand, epoxy group-containing acrylic resins obtained by copolymerizing (meth)acrylic acid alkyl esters, epoxy group-containing acrylic monomers, and other copolymerizable vinyl monomers can react with epoxy groups. A powder coating containing a curing agent having a functional group has been proposed (see, for example, Patent Document 1). However, although the cured coating film obtained from this powder coating has improved smoothness, there is a problem that the thread rust resistance is insufficient.

特開2002-69368号公報JP-A-2002-69368

本発明が解決しようとする課題は、硬化性、平滑性、及び耐糸錆性に優れる硬化塗膜を得ることのできる粉体塗料用樹脂組成物、粉体塗料及び該塗料の塗膜を有する物品を提供することである。 The problem to be solved by the present invention is to provide a resin composition for powder coating, a powder coating, and a coating film of the coating that can obtain a cured coating film having excellent curability, smoothness, and thread rust resistance. It is to provide goods.

本発明者等は、上記の課題を解決するため鋭意研究した結果、エポキシ基を有するアクリル単量体と、(メタ)アクリルアミドと、スチレンと、その他の不飽和単量体とを必須原料とするアクリル樹脂を含有する粉体塗料用樹脂組成物から得られる硬化塗膜が、硬化性、平滑性、及び耐糸錆性に優れることを見出し、発明を完成させた。 As a result of intensive research to solve the above problems, the present inventors have found that an acrylic monomer having an epoxy group, (meth)acrylamide, styrene, and other unsaturated monomers are essential raw materials. The inventors have found that a cured coating film obtained from a resin composition for powder coating containing an acrylic resin is excellent in curability, smoothness, and thread rust resistance, and completed the invention.

すなわち、本発明は、エポキシ基を有するアクリル単量体(a1)と、(メタ)アクリルアミド(a2)と、スチレン(a3)と、その他の不飽和単量体(a4)とを必須原料とするアクリル樹脂(A)を含有する粉体塗料用樹脂組成物であって、前記アクリル樹脂(A)の原料である単量体成分中の前記アクリル単量体(a1)が20~60質量%であり、(メタ)アクリルアミドが0.1~30質量%であり、スチレンが10~50質量%であることを特徴とする粉体塗料用樹脂組成物、粉体塗料及び該塗料で塗装された物品に関する。 That is, the present invention uses acrylic monomer (a1) having an epoxy group, (meth)acrylamide (a2), styrene (a3), and other unsaturated monomer (a4) as essential raw materials. A resin composition for powder coating containing an acrylic resin (A), wherein the acrylic monomer (a1) in the monomer component, which is the raw material of the acrylic resin (A), is 20 to 60% by mass. A resin composition for powder coating, a powder coating, and an article coated with the coating, characterized by comprising 0.1 to 30% by mass of (meth)acrylamide and 10 to 50% by mass of styrene Regarding.

本発明の粉体塗料用樹脂組成物は、硬化性、外観、及び耐糸錆性に優れること硬化塗膜を形成することができることから、アルミホイール等の物品を塗装する塗料に好適に用いることができる。 The resin composition for powder coating of the present invention is excellent in curability, appearance, and thread rust resistance, and can form a cured coating film. can be done.

本発明の粉体塗料用樹脂組成物は、エポキシ基を有するアクリル単量体(a1)と、(メタ)アクリルアミド(a2)と、スチレン(a3)と、その他の不飽和単量体(a4)とを必須原料とするアクリル樹脂(A)を含有する粉体塗料用樹脂組成物であって、前記アクリル樹脂(A)の原料である単量体成分中の前記アクリル単量体(a1)が20~60質量%であり、(メタ)アクリルアミドが0.1~30質量%であり、スチレンが10~50質量%であるものである。 The resin composition for powder coating of the present invention comprises an epoxy group-containing acrylic monomer (a1), (meth)acrylamide (a2), styrene (a3), and other unsaturated monomers (a4). A resin composition for powder coating containing an acrylic resin (A) as an essential raw material, wherein the acrylic monomer (a1) in the monomer component that is the raw material of the acrylic resin (A) is 20 to 60% by mass, 0.1 to 30% by mass of (meth)acrylamide, and 10 to 50% by mass of styrene.

まず、前記アクリル樹脂(A)について説明する。前記アクリル樹脂(A)はエポキシ基を有するものであるが、前記アクリル単量体(a1)と、(メタ)アクリルアミド(a2)と、スチレン(a3)と、その他の不飽和単量体(a4)とを共重合することにより得られる。 First, the acrylic resin (A) will be described. The acrylic resin (A) has an epoxy group, and the acrylic monomer (a1), (meth)acrylamide (a2), styrene (a3), and other unsaturated monomers (a4 ) is obtained by copolymerizing.

前記アクリル単量体(a1)は、エポキシ基を有するアクリル単量体であり、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル、(メタ)アリルメチルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられるが、これらの中でも、グリシジル(メタ)アクリレートが好ましい。なお、これらのアクリル単量体(a1)は、単独で用いることも2種以上併用することもできる。 The acrylic monomer (a1) is an acrylic monomer having an epoxy group, such as glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, (meth) allyl glycidyl ether, (meth) allyl methyl glycidyl ether , 3,4-epoxycyclohexylmethyl (meth)acrylate and the like. Among these, glycidyl (meth)acrylate is preferred. These acrylic monomers (a1) can be used alone or in combination of two or more.

なお、本発明において、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリルアミド」とは、メタクリルアミドとアクリルアミドの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいう。 In the present invention, "(meth)acrylic acid" refers to one or both of methacrylic acid and acrylic acid, "(meth)acrylate" refers to one or both of methacrylate and acrylate, and "(meth) ) acrylamide” refers to one or both of methacrylamide and acrylamide, and “(meth)acryloyl group” refers to one or both of methacryloyl group and acryloyl group.

前記(メタ)アクリルアミド(a2)は、単独で用いることも2種以上併用することもできる。 The (meth)acrylamide (a2) can be used alone or in combination of two or more.

前記その他の不飽和単量体(a4)は、前記アクリル単量体(a1)、(メタ)アクリルアミド、及びスチレン以外の不飽和単量体であり、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、(メタ)アクリロニトリル、N,N-ジメチルアミノエチル(メタ)アクリレート、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、スチレン、α-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、2-メトキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシ-n-ブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-n-ブチル(メタ)アクリレート、3-ヒドロキシ-n-ブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の単官能単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールA-ジ(メタ)アクリレート、ビスフェノールA-EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性ジアクリレート等の2官能単量体;イソシアヌル酸EO変性トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の3官能以上の単量体などが挙げられるが、これらの中でも、塗膜の硬化性、耐糸錆性がより向上することから、アルキル(メタ)アクリレートが好ましく、炭素原子数が1~4のアルキル基を有するアルキル(メタ)アクリレートがより好ましい。なお、これらの不飽和単量体(a4)は、単独で用いることも2種以上併用することもできる。 The other unsaturated monomer (a4) is an unsaturated monomer other than the acrylic monomer (a1), (meth)acrylamide, and styrene, such as (meth)acrylic acid, methyl (meth ) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, n-pentyl (meth) acrylate ) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate ) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate ) acrylate, benzyl (meth)acrylate, (meth)acrylonitrile, N,N-dimethylaminoethyl (meth)acrylate, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropylmethyldimethoxysilane, styrene, α-methylstyrene, p-methylstyrene, p-methoxystyrene, 2-methoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxy Propyl (meth)acrylate, 4-hydroxy-n-butyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxy-n-butyl (meth)acrylate, 3-hydroxy-n-butyl (meth)acrylate , 1,4-cyclohexanedimethanol mono (meth) acrylate, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-(meth)acryloyloxyethyl-2-hydroxyethyl phthalate, monofunctional monomers such as lactone-modified (meth)acrylates having terminal hydroxyl groups; ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, tri ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, Neopentyl glycol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, hydroxy pivalic acid ester neo Bifunctional monomers such as pentyl glycol di (meth) acrylate, bisphenol A-di (meth) acrylate, bisphenol A-EO-modified di (meth) acrylate, isocyanuric acid EO-modified diacrylate; Methylolpropane tri(meth)acrylate, trimethylolpropane EO-modified tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate Among them, alkyl (meth)acrylates are preferred, and the number of carbon atoms is from 1 to Alkyl (meth)acrylates with 4 alkyl groups are more preferred. These unsaturated monomers (a4) can be used alone or in combination of two or more.

前記アクリル単量体(a1)の使用量は、前記アクリル樹脂(A)の原料である単量体成分中、20~60質量%であるが、硬化性と耐糸錆性のバランスがより向上することから、25~50質量%が好ましく、25~40質量%がより好ましい。 The amount of the acrylic monomer (a1) used is 20 to 60% by mass in the monomer component that is the raw material of the acrylic resin (A), and the balance between curability and thread rust resistance is further improved. Therefore, it is preferably 25 to 50% by mass, more preferably 25 to 40% by mass.

前記(メタ)アクリルアミド(a2)の使用量は、前記アクリル樹脂(A)の原料である単量体成分中、0.1~30質量%であるが、硬化性と耐糸錆性のバランスがより向上することから、0.1~20質量%が好ましく、0.2~15質量%がより好ましく、0.5~5質量%がさらに好ましい。 The amount of the (meth)acrylamide (a2) used is 0.1 to 30% by mass in the monomer component that is the raw material of the acrylic resin (A). 0.1 to 20% by mass is preferable, 0.2 to 15% by mass is more preferable, and 0.5 to 5% by mass is even more preferable, because it is more improved.

前記スチレン(a3)の使用量は、前記アクリル樹脂(A)の原料である単量体成分中、10~50質量%であるが、硬化性と耐糸錆性のバランスがより向上することから、15~45質量%が好ましく、15~40質量%がより好ましい。 The amount of the styrene (a3) used is 10 to 50% by mass in the monomer component that is the raw material of the acrylic resin (A). , preferably 15 to 45% by mass, more preferably 15 to 40% by mass.

前記不飽和単量体(a4)の使用量は、硬化性と耐糸錆性のバランスがより向上することから、前記アクリル樹脂(A)の原料である単量体成分中、20~70質量%が好ましい。 The amount of the unsaturated monomer (a4) used is 20 to 70 mass in the monomer components that are the raw materials of the acrylic resin (A), since the balance between curability and thread rust resistance is further improved. % is preferred.

また、前記アクリル樹脂(A)のガラス転移温度は、塗膜の耐糸錆性が向上することから、20~120℃が好ましい。さらに好ましくは、40~100℃が好ましい。 Further, the glass transition temperature of the acrylic resin (A) is preferably 20 to 120° C., since the coating film has improved thread rust resistance. More preferably, it is 40 to 100°C.

なお、本発明において、ガラス転移温度とは、
FOXの式:1/Tg=W1/Tg1+W2/Tg2+・・・
(Tg:求めるべきガラス転移温度、W1:成分1の重量分率、Tg1:成分1のホモポリマーのガラス転移温度)
に従い計算により求めたものである。各成分のホモポリマーのガラス転移温度の値は、日刊工業新聞社の「粘着技術ハンドブック」またはWiley-Interscienceの「ポリマーハンドブック(Polymer Handbook)」に記載の値を採用するものとする。なお、メタクリルアミドのホモポリマーのTgは、77℃とする。以下、この計算によるガラス転移温度を「設計Tg」と略称する場合がある。
In the present invention, the glass transition temperature is
FOX formula: 1/Tg=W1/Tg1+W2/Tg2+...
(Tg: glass transition temperature to be obtained, W1: weight fraction of component 1, Tg1: glass transition temperature of homopolymer of component 1)
It is obtained by calculation according to For the value of the glass transition temperature of the homopolymer of each component, the value described in "Adhesive Technology Handbook" published by Nikkan Kogyo Shimbun or "Polymer Handbook" published by Wiley-Interscience is adopted. The Tg of the homopolymer of methacrylamide is assumed to be 77°C. Hereinafter, the calculated glass transition temperature may be abbreviated as “design Tg”.

さらに、前記アクリル樹脂(A)の数平均分子量は溶融時の流動性と耐糸錆性に優れることから、1,000~10,000が好まく、2,000~8,000がより好ましい。ここで、数平均分子量はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。 Furthermore, the number average molecular weight of the acrylic resin (A) is preferably from 1,000 to 10,000, more preferably from 2,000 to 8,000, because it is excellent in fluidity and thread rust resistance when melted. Here, the number average molecular weight is a value converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as "GPC") measurement.

前記アクリル樹脂(A)を得る方法としては、前記アクリル単量体(a1)、前記(メタ)アクリルアミド(a2)、前記スチレン(a3)、及び前記不飽和単量体(a4)を原料として、公知の重合方法で行うことができるが、溶液ラジカル重合法が最も簡便であることから好ましい。 As a method for obtaining the acrylic resin (A), the acrylic monomer (a1), the (meth)acrylamide (a2), the styrene (a3), and the unsaturated monomer (a4) are used as raw materials, Although it can be carried out by a known polymerization method, a solution radical polymerization method is preferred because it is the simplest.

上記の溶液ラジカル重合法は、原料である各単量体を溶剤に溶解し、重合開始剤存在下で重合反応を行う方法である。この際に用いることができる溶剤としては、例えば、トルエン、キシレン、シクロヘキサン、n-ヘキサン、オクタン等の炭化水素系溶剤;メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール等のアルコール系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸アミル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上併用することもできる。 The solution radical polymerization method is a method of dissolving each monomer as a raw material in a solvent and performing a polymerization reaction in the presence of a polymerization initiator. Solvents that can be used at this time include, for example, hydrocarbon solvents such as toluene, xylene, cyclohexane, n-hexane and octane; alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol and sec-butanol. Ether-based solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol dimethyl ether; Esters such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, and amyl acetate System solvent; ketone system solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like. These solvents can be used alone or in combination of two or more.

前記重合開始剤としては、例えば、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド化合物;1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、2,2-ビス(4,4-ジtert-ブチルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジtert-アミルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジtert-ヘキシルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジtert-オクチルパーオキシシクロヘキシル)プロパン、2,2-ビス(4,4-ジクミルパーオキシシクロヘキシル)プロパン等のパーオキシケタール化合物;クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド等のハイドロパーオキサイド類;1,3-ビス(tert-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、ジイソプロピルベンゼンパーオキサイド、tert-ブチルクミルパーオキサイド等のジアルキルパーオキサイド化合物;デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド等のジアシルパーオキサイド化合物;ビス(tert-ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシカーボネート化合物;tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等のパーオキシエステル化合物などの有機過酸化物と、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ化合物とが挙げられる。 Examples of the polymerization initiator include ketone peroxide compounds such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide and methylcyclohexanone peroxide; 1,1-bis(tert-butylperoxy)-3, 3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane, n-butyl-4,4-bis(tert-butylperoxy)valerate, 2,2-bis(4,4-di tert-butylperoxycyclohexyl)propane, 2,2-bis(4,4-ditert-amylperoxycyclohexyl)propane, 2,2-bis(4,4-ditert-hexylperoxycyclohexyl)propane, 2 , 2-bis(4,4-di-tert-octylperoxycyclohexyl)propane, 2,2-bis(4,4-dicumylperoxycyclohexyl)propane and other peroxyketal compounds; cumene hydroperoxide, 2, Hydroperoxides such as 5-dimethylhexane-2,5-dihydroperoxide; 1,3-bis(tert-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di( dialkyl peroxide compounds such as tert-butylperoxy)hexane, diisopropylbenzene peroxide, and tert-butylcumyl peroxide; diacyl compounds such as decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, and 2,4-dichlorobenzoyl peroxide Peroxide compounds; peroxycarbonate compounds such as bis(tert-butylcyclohexyl) peroxydicarbonate; tert-butylperoxy-2-ethylhexanoate, tert-butylperoxybenzoate, 2,5-dimethyl-2, Organic peroxides such as peroxyester compounds such as 5-di(benzoylperoxy)hexane, 2,2'-azobisisobutyronitrile, 1,1'-azobis(cyclohexane-1-carbonitrile), etc. and an azo compound of.

本発明の粉体塗料用樹脂組成物は、前記アクリル樹脂(A)を含有するものであるが、塗膜物性がより向上することから、エポキシ基と反応可能な官能基を有する硬化剤(B)を含有することが好ましい。 The resin composition for powder coating of the present invention contains the above-mentioned acrylic resin (A), and since the physical properties of the coating film are further improved, a curing agent (B ) is preferably contained.

前記硬化剤(B)は、エポキシ基と反応可能な官能基を有する硬化剤であり、例えば、スベリン酸、アゼライン酸、2,4-ジエチルグルタル酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ブラシル酸、テトラデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸、ヘプタデカンジカルボン酸、オクタデカンジカルボン酸、エイコサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、ブタントリカルボン酸等の多価カルボン酸化合物、これら多価カルボン酸の無水物、及び多価フェノール化合物などが挙げられる。これらの中でも、高強度の塗膜が得られることから、脂肪族多価カルボン酸化合物及びその無水物が好ましく、ドデカンジカルボン酸がより好ましい。また、これらの硬化剤(B)は単独で用いることも2種以上併用することもできる。 The curing agent (B) is a curing agent having a functional group capable of reacting with an epoxy group. Polyvalent carboxylic acid compounds such as brassylic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid, heptadecanedicarboxylic acid, octadecanedicarboxylic acid, eicosanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, butanetricarboxylic acid, etc. Examples include anhydrides of carboxylic acids and polyhydric phenol compounds. Among these, aliphatic polyvalent carboxylic acid compounds and their anhydrides are preferable, and dodecanedicarboxylic acid is more preferable, since a high-strength coating film can be obtained. These curing agents (B) can be used alone or in combination of two or more.

本発明の粉体塗料用樹脂組成物における前記アクリル樹脂(A)と前記硬化剤(B)との配合量としては、高強度の塗膜が得られることから、前記アクリル樹脂(A)中のエポキシ基の当量数と、前記硬化剤(B)中のエポキシ基と反応可能な官能基の当量数との当量比(A/B)が、0.5~1.5が好ましく、0.8~1.2がより好ましい。 The amount of the acrylic resin (A) and the curing agent (B) in the resin composition for powder coating of the present invention is, since a high-strength coating film is obtained, the amount of the acrylic resin (A) The equivalent ratio (A/B) between the number of equivalents of the epoxy group and the number of equivalents of the functional group capable of reacting with the epoxy group in the curing agent (B) is preferably 0.5 to 1.5, and 0.8. ~1.2 is more preferred.

本発明の粉体塗料用樹脂組成物には、本発明の効果を損なわない範囲内で、有機系ないしは無機系の顔料をはじめ、レベリング剤、流動調整剤、光安定剤、紫外線吸収剤、酸化防止剤等の公知慣用の種々の添加剤を添加することができる。また、焼き付け時の硬化反応を促進する目的で、触媒を添加することもできる。 The resin composition for powder coating of the present invention may contain organic or inorganic pigments, leveling agents, flow control agents, light stabilizers, ultraviolet absorbers, oxidation Various known and commonly used additives such as inhibitors can be added. A catalyst may also be added for the purpose of accelerating the curing reaction during baking.

本発明の粉体塗料用樹脂組成物には、塗膜の耐糸錆性を向上させるために、本発明の効果を損なわない範囲内で、シリカ及びアルコキシシラン、シランカップリング剤のような加水分解可能なシラン化合物をさらに含むことができる。なお、これらの化合物は、単独で用いることも、2種以上併用することもできる。 In order to improve the thread rust resistance of the coating film, the resin composition for powder coating of the present invention contains silica and water such as alkoxysilane and silane coupling agent within a range that does not impair the effects of the present invention. It can further include a decomposable silane compound. These compounds can be used alone or in combination of two or more.

好適なシランカップリング剤の例としては、グリシジルアルコキシシランおよびアミノアルコキシシランなどが挙げられる。これらの中でも、耐糸錆性に優れる塗膜が得られることからグリシジルトリアルコキシシランが好ましく、グリシジルトリメトキシシランがより好ましい。 Examples of suitable silane coupling agents include glycidylalkoxysilanes and aminoalkoxysilanes. Among these, glycidyltrialkoxysilane is preferable, and glycidyltrimethoxysilane is more preferable, because a coating film having excellent thread rust resistance can be obtained.

前記シランカップリング剤の配合量としては、耐糸錆性に優れる塗膜が得られることから、粉体塗料用樹脂組成物中、0.01~3質量%が好ましく、0.01~1質量%がより好ましい。 The amount of the silane coupling agent is preferably 0.01 to 3% by mass, more preferably 0.01 to 1% by mass, in the resin composition for powder coatings, since a coating film having excellent thread rust resistance can be obtained. % is more preferred.

本発明の粉体塗料の調製方法としては、公知慣用の種々の方法を利用することができるが、例えば、前記アクリル樹脂(A)と、前記硬化剤(B)と、必要に応じて、顔料、表面調整剤等の種々の添加剤とを混合し、次いで、それらを溶融混練したのちに、微粉砕、分級するという、いわゆる機械粉砕方式などを利用することができる。 As a method for preparing the powder coating material of the present invention, various known and commonly used methods can be used. , various additives such as surface conditioners, and the like, which are then melt-kneaded, finely pulverized, and classified.

本発明の粉体塗料は、エクステリア、家電用品、自動車用品、二輪車用品、防護柵等に塗装することが可能であるが、耐候性、耐衝撃性、耐チッピング性、耐水性、耐糸錆性等に優れる高外観の塗膜が得られることから、アルミホイール合金部材等の金属部材への塗装に適している。 The powder coating of the present invention can be applied to exteriors, home appliances, automobiles, motorcycles, protective fences, etc., but it has weather resistance, impact resistance, chipping resistance, water resistance, and thread rust resistance. It is suitable for coating on metal members such as aluminum wheel alloy members because a coating film with excellent appearance can be obtained.

本発明の粉体塗料の塗装方法としては、静電粉体塗装法等の公知慣用の種々の方法が挙げられる。また、本発明の粉体塗料を塗装後、硬化塗膜とする方法としては、基材の種類や目的に応じて適宜選択することができるが、耐糸錆性、耐水性及び耐候性に優れる塗膜が得られることから、120~250℃の温度範囲で、5~30分間の範囲で焼き付けることが好ましい。また、塗装膜厚は、50~200μmの範囲が好ましい。 As the coating method of the powder coating material of the present invention, various known and commonly used methods such as an electrostatic powder coating method can be used. In addition, the method for forming a cured coating film after coating the powder coating of the present invention can be appropriately selected according to the type and purpose of the base material, but it is excellent in thread rust resistance, water resistance and weather resistance. It is preferable to bake in the temperature range of 120 to 250° C. for 5 to 30 minutes so that a coating film can be obtained. Moreover, the coating film thickness is preferably in the range of 50 to 200 μm.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、アクリル樹脂のエポキシ当量及び数平均分子量は、下記の方法で測定したものである。 The present invention will be described in more detail below with specific examples. The epoxy equivalent and number average molecular weight of the acrylic resin are measured by the following methods.

[エポキシ当量の測定方法]
塩酸-ピリジン法により測定した。樹脂に、塩酸-ピリジン溶液25mlを加え、130℃で1時間、加熱溶解した後、フェノールフタレインを指示薬として0.1N-水酸化カリウムアルコール溶液で滴定した。消費した0.1N-水酸化カリウムアルコール溶液の量によってエポキシ当量を算出した。
[Method for measuring epoxy equivalent]
Measured by the hydrochloride-pyridine method. 25 ml of a hydrochloric acid-pyridine solution was added to the resin, dissolved by heating at 130° C. for 1 hour, and then titrated with a 0.1N-potassium hydroxide alcohol solution using phenolphthalein as an indicator. The epoxy equivalent was calculated by the amount of 0.1N-potassium hydroxide alcohol solution consumed.

[数平均分子量の測定方法]
GPCにより測定した。
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[Method for measuring number average molecular weight]
Measured by GPC.
Measuring device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
"TSKgel G5000" (7.8mm I.D. x 30cm) x 1 "TSKgel G4000" (7.8mm I.D. x 30cm) x 1 "TSKgel G3000" (7.8mm I.D. x 30cm) x 1 Book "TSKgel G2000" (7.8 mm I.D. x 30 cm) x 1 Detector: RI (differential refractometer)
Column temperature: 40°C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL/min Injection volume: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg/mL)
Standard sample: A calibration curve was created using the following monodisperse polystyrene.

(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(monodispersed polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

(合成例1:アクリル樹脂(A-1)の合成)
攪拌機、温度計、コンデンサー及び窒素ガス導入口を備えた反応容器に、キシレン67質量部を仕込んで、窒素雰囲気下に135℃まで昇温した。そこへ、スチレン(以下、「St」と略記する。)25質量部、メチルメタクリレート(以下、「MMA」と略記する。)49質量部、グリシジルメタクリレート(以下、「GMA」と略
記する。)25質量部、アクリルアミド(以下、「AM」と略記する。)1質量部およびt-ブチルパーオキシ2-エチルヘキサノエート6質量部からなる混合物を6時間に亘って滴下し、滴下終了後も同温度に6時間保持して重合反応を行い、しかる後160℃で20mmHgの減圧下に溶剤をのぞき、数平均分子量3,000、ガラス転移温度84℃、エポキシ当量569g/eqなる固形のアクリル樹脂(A-1)を得た。
(Synthesis Example 1: Synthesis of acrylic resin (A-1))
A reaction vessel equipped with a stirrer, a thermometer, a condenser and a nitrogen gas inlet was charged with 67 parts by mass of xylene and heated to 135° C. under a nitrogen atmosphere. 25 parts by mass of styrene (hereinafter abbreviated as "St"), 49 parts by mass of methyl methacrylate (hereinafter abbreviated as "MMA"), and 25 parts by mass of glycidyl methacrylate (hereinafter abbreviated as "GMA") are added thereto. A mixture of parts by mass, acrylamide (hereinafter abbreviated as "AM") 1 part by mass and 6 parts by mass of t-butylperoxy 2-ethylhexanoate was added dropwise over 6 hours. The polymerization reaction was carried out by maintaining the temperature for 6 hours, after which the solvent was removed under a reduced pressure of 20 mmHg at 160°C to give a solid acrylic resin (number average molecular weight 3,000, glass transition temperature 84°C, epoxy equivalent 569 g/eq A-1) was obtained.

(合成例2:アクリル樹脂(A-2)の合成)
単量体の組成を、St 25質量部、MMA 40質量部、GMA 25質量部、AM 10質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度91℃、エポキシ当量569g/eqの固形のアクリル樹脂(A-2)を得た。
(Synthesis Example 2: Synthesis of acrylic resin (A-2))
In the same manner as in Synthesis Example 1, except that the composition of the monomers was changed to 25 parts by mass of St, 40 parts by mass of MMA, 25 parts by mass of GMA, and 10 parts by mass of AM, a number average molecular weight of 3,000 and glass A solid acrylic resin (A-2) having a transition temperature of 91° C. and an epoxy equivalent of 569 g/eq was obtained.

(合成例3:アクリル樹脂(A-3)の合成)
単量体の組成を、St 25質量部、MMA 40質量部、GMA 25質量部、メタクリルアミド(以下、「MAM」と略記する。)10質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度84℃、エポキシ当量569g/eqなる固形のアクリル樹脂(A-3)を得た。
(Synthesis Example 3: Synthesis of acrylic resin (A-3))
The same procedure as in Synthesis Example 1 was performed except that the composition of the monomers was changed to 25 parts by mass of St, 40 parts by mass of MMA, 25 parts by mass of GMA, and 10 parts by mass of methacrylamide (hereinafter abbreviated as "MAM"). Thus, a solid acrylic resin (A-3) having a number average molecular weight of 3,000, a glass transition temperature of 84° C. and an epoxy equivalent of 569 g/eq was obtained.

(合成例4:アクリル樹脂(A-4)の合成)
単量体の組成を、St 10質量部、MMA 64質量部、GMA 25質量部、AM 1質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度88℃、エポキシ当量569g/eqなる固形のアクリル樹脂(A-4)を得た
(Synthesis Example 4: Synthesis of acrylic resin (A-4))
In the same manner as in Synthesis Example 1, except that the composition of the monomers was changed to 10 parts by mass of St, 64 parts by mass of MMA, 25 parts by mass of GMA, and 1 part by mass of AM, a number average molecular weight of 3,000 and glass A solid acrylic resin (A-4) having a transition temperature of 88° C. and an epoxy equivalent of 569 g/eq was obtained.

(合成例5:アクリル樹脂(A-5)の合成)
単量体の組成を、St 20質量部、MMA 29質量部、GMA 50質量部、AM 1質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度72℃、エポキシ当量284g/eqなる固形のアクリル樹脂(A-5)を得た。
(Synthesis Example 5: Synthesis of acrylic resin (A-5))
In the same manner as in Synthesis Example 1, except that the composition of the monomers was changed to 20 parts by mass of St, 29 parts by mass of MMA, 50 parts by mass of GMA, and 1 part by mass of AM, a number average molecular weight of 3,000 and glass A solid acrylic resin (A-5) having a transition temperature of 72° C. and an epoxy equivalent of 284 g/eq was obtained.

(合成例6:アクリル樹脂(RA-1)の合成)
単量体の組成を、St 25質量部、MMA 47質量部、GMA 28質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度85℃、エポキシ当量508g/eqなる固形のアクリル樹脂(RA-1)を得た。
(Synthesis Example 6: Synthesis of acrylic resin (RA-1))
In the same manner as in Synthesis Example 1, except that the composition of the monomers was changed to 25 parts by mass of St, 47 parts by mass of MMA, and 28 parts by mass of GMA, a number average molecular weight of 3,000, a glass transition temperature of 85°C, A solid acrylic resin (RA-1) having an epoxy equivalent of 508 g/eq was obtained.

(合成例7:アクリル樹脂(RA-2)の合成)
単量体の組成を、St 25質量部、MMA 64質量部、GMA 10質量部、AM 1質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,350、ガラス転移温度97℃、エポキシ当量1,422g/eqなる固形のアクリル樹脂(RA-2)を得た。
(Synthesis Example 7: Synthesis of acrylic resin (RA-2))
In the same manner as in Synthesis Example 1, except that the composition of the monomers was changed to 25 parts by mass of St, 64 parts by mass of MMA, 10 parts by mass of GMA, and 1 part by mass of AM, a number average molecular weight of 3,350 and glass A solid acrylic resin (RA-2) having a transition temperature of 97° C. and an epoxy equivalent of 1,422 g/eq was obtained.

(合成例8:アクリル樹脂(RA-3)の合成)
単量体の組成を、St 5質量部、MMA 66質量部、GMA 28質量部、AM 1質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,400、ガラス転移温度87℃、エポキシ当量508g/eqなる固形のアクリル樹脂(RA-3)を得た。
(Synthesis Example 8: Synthesis of acrylic resin (RA-3))
In the same manner as in Synthesis Example 1 except that the composition of the monomers was changed to 5 parts by mass of St, 66 parts by mass of MMA, 28 parts by mass of GMA, and 1 part by mass of AM, a number average molecular weight of 3,400 and glass A solid acrylic resin (RA-3) having a transition temperature of 87° C. and an epoxy equivalent of 508 g/eq was obtained.

(合成例9:アクリル樹脂(RA-4)の合成)
単量体の組成を、St 5質量部、MMA 35質量部、n-ブチルメタクリレート(以下、「nBMA」と略記する。)40質量部、GMA 15質量部、MAM 5質量部に変更した以外は合成例1と同様に操作することにより、数平均分子量3,000、ガラス転移温度56℃、エポキシ当量948g/eqなる固形のアクリル樹脂(RA-4)を得た。
(Synthesis Example 9: Synthesis of acrylic resin (RA-4))
The composition of the monomers was changed to 5 parts by mass of St, 35 parts by mass of MMA, 40 parts by mass of n-butyl methacrylate (hereinafter abbreviated as "nBMA"), 15 parts by mass of GMA, and 5 parts by mass of MAM. By operating in the same manner as in Synthesis Example 1, a solid acrylic resin (RA-4) having a number average molecular weight of 3,000, a glass transition temperature of 56° C. and an epoxy equivalent of 948 g/eq was obtained.

上記の合成例1~5で合成したアクリル樹脂(A-1)~(A-5)及び(RA-1)~(RA-4)の単量体組成及び性状値を表1及び2に示す。 Tables 1 and 2 show the monomer compositions and property values of the acrylic resins (A-1) to (A-5) and (RA-1) to (RA-4) synthesized in Synthesis Examples 1 to 5 above. .

Figure 2023064339000001
Figure 2023064339000001

Figure 2023064339000002
Figure 2023064339000002

(実施例1:粉体塗料(1)の製造及び評価)
合成例1で得られたアクリル樹脂(A-1)85質量部、ドデカンジカルボン酸(以下、「DDDA」と略記する。)15質量部、ベンゾイン0.5質量部及びレベリング剤(ESTRON製「レジフローLF」)0.3質量部を配合した樹脂組成物を、二軸混練機(ツバコー横浜販売株式会社製「APV・ニーダーMP-2015型」)を使用して溶融混練した後、微粉砕し、さらに、200メッシュの金網で分級し、粉体塗料(1)を得た。
(Example 1: Production and evaluation of powder coating (1))
85 parts by mass of the acrylic resin (A-1) obtained in Synthesis Example 1, 15 parts by mass of dodecanedicarboxylic acid (hereinafter abbreviated as "DDDA"), 0.5 parts by mass of benzoin and a leveling agent ("Reiflow" manufactured by ESTRON) LF") 0.3 parts by mass of the resin composition is melt-kneaded using a twin-screw kneader ("APV Kneader MP-2015" manufactured by Tsubako Yokohama Sales Co., Ltd.), and then pulverized. Furthermore, it was classified with a wire mesh of 200 mesh to obtain a powder coating material (1).

[評価用硬化塗膜の作製]
上記で得られた粉体塗料を未処理アルミ板(A-1050P)(7cm×15cm)に、焼き付け後の膜厚が80~120μmとなるように静電粉体塗装した後、170℃で20分間焼き付けを行い、評価用硬化塗膜を作製した。
[Preparation of cured coating film for evaluation]
The powder coating obtained above was electrostatically powder coated on an untreated aluminum plate (A-1050P) (7 cm x 15 cm) so that the film thickness after baking was 80 to 120 μm, and then heated at 170 ° C. for 20 minutes. Baking was performed for a minute to prepare a cured coating film for evaluation.

[硬化性の評価]
上記で得られた粉体塗料0.5gを160℃に加熱したホットプレート上に投下し、タックが無くなるまでの時間(ゲルタイム)を測定した。ゲルタイムを基に、硬化性を以下の通り判定した。
〇:ゲルタイムが160秒未満
△:ゲルタイムが160秒以上200秒未満
×:ゲルタイムが200秒以上
[Curability evaluation]
0.5 g of the powder coating obtained above was dropped onto a hot plate heated to 160° C., and the time until tack disappeared (gel time) was measured. Based on the gel time, curability was determined as follows.
○: Gel time is less than 160 seconds △: Gel time is 160 seconds or more and less than 200 seconds ×: Gel time is 200 seconds or more

[平滑性試験]
PCI(パウダーコーティングインスティチュート)による粉体塗膜の平滑性目視判定用標準板を用いて判定した。標準板は、1~10の10枚あり、数字が大きくなるに従い、平滑性が良好となる。作成した粉体塗膜の平滑性がどの標準板に相当するかを目視で判定した。判定した結果をもとに、平滑性を以下のように判定した。
〇:平滑性が8以上
△:平滑性が6~7
×:平滑性が5以下
[Smoothness test]
It was judged using a standard plate for visually judging the smoothness of the powder coating film by PCI (Powder Coating Institute). There are ten standard plates numbered from 1 to 10, and the higher the number, the better the smoothness. It was visually determined to which standard plate the smoothness of the prepared powder coating film corresponded. Based on the determined results, the smoothness was determined as follows.
○: Smoothness is 8 or more △: Smoothness is 6 to 7
×: smoothness is 5 or less

[耐糸錆性の評価]
上記で得られた評価用硬化塗膜にカッターナイフで基材の素地に達するように13cmの直線の傷を2本入れ、CASS試験機にて次の試験を行った。温度50℃、噴霧液量1.2~1.8cc/h、噴霧圧力0.1MPaの条件下、塩水(塩化銅(II)水和物2.6g、氷酢酸10cc、並塩500gを10Lのイオン交換水に溶解し調製)を6時間噴霧する試験1と、温度60℃、湿度85%の条件下96時間放置する試験2とを1サイクルとして、合計5サイクル行った。CASS試験終了後、塗装板の傷から生じた糸錆を目視にて確認し、最長に成長した糸錆の長さにより耐糸錆性を評価した。最長に成長した糸錆の長さをもとに、塗膜の耐糸錆性を以下のように判定した。
〇:糸錆の最長長さが2.0mm以下
△:糸錆の最長長さが2.0mmを超え、3.0mm以下
×:糸錆の最長長さが3.0mmを超える
[Evaluation of yarn rust resistance]
Two 13 cm linear scratches were made on the cured coating film for evaluation obtained above with a cutter knife so as to reach the base material of the base material, and the following tests were performed using a CASS tester. 10 L of salt water (2.6 g of copper (II) chloride hydrate, 10 cc of glacial acetic acid, 500 g of common salt) under the conditions of a temperature of 50° C., a spray amount of 1.2 to 1.8 cc/h, and a spray pressure of 0.1 MPa. A total of 5 cycles were conducted, with test 1 of spraying for 6 hours and test 2 of leaving for 96 hours at a temperature of 60° C. and a humidity of 85%. After completion of the CASS test, rust threads generated from scratches on the coated plate were visually observed, and the rust thread resistance was evaluated based on the length of the longest growing rust threads. Based on the length of the longest growing rust thread, the rust thread resistance of the coating film was determined as follows.
○: The longest length of thread rust is 2.0 mm or less △: The longest length of thread rust exceeds 2.0 mm and is 3.0 mm or less ×: The longest length of thread rust exceeds 3.0 mm

(実施例2~5:粉体塗料(2)~(5)の製造及び評価)
実施例1で配合したアクリル樹脂(A-1)及びDDDAを、表3に示す組成に変更した以外は、実施例1と同様に操作することにより、粉体塗料(2)~(5)を調製し、各種物性を評価した。
(Examples 2 to 5: Production and evaluation of powder coatings (2) to (5))
Powder coatings (2) to (5) were prepared in the same manner as in Example 1 except that the acrylic resin (A-1) and DDDA blended in Example 1 were changed to the compositions shown in Table 3. It was prepared and evaluated for various physical properties.

(比較例1~4:粉体塗料(R1)~(R4)の製造及び評価)
実施例1で配合したアクリル樹脂(A-1)及びDDDAを、表4に示す通りに変更した以外は、実施例1と同様に操作することにより、粉体塗料(R1)~(R4)を調製し、各種物性を評価した。
(Comparative Examples 1 to 4: Production and evaluation of powder coatings (R1) to (R4))
Powder coatings (R1) to (R4) were prepared in the same manner as in Example 1 except that the acrylic resin (A-1) and DDDA blended in Example 1 were changed as shown in Table 4. It was prepared and evaluated for various physical properties.

上記の実施例1~5で得た粉体塗料(1)~(5)及び比較例1~4で得た粉体塗料(R1)~(R4)の配合組成及び評価結果を表3及び4に示す。 Tables 3 and 4 show the composition and evaluation results of the powder coatings (1) to (5) obtained in Examples 1 to 5 and the powder coatings (R1) to (R4) obtained in Comparative Examples 1 to 4. shown.

Figure 2023064339000003
Figure 2023064339000003

Figure 2023064339000004
Figure 2023064339000004

実施例1~5の本発明の粉体塗料用樹脂組成物から得られる硬化塗膜は、硬化性、平滑性、及び耐糸錆性に優れることが確認された。 It was confirmed that the cured coating films obtained from the resin compositions for powder coating of the present invention of Examples 1 to 5 are excellent in curability, smoothness and thread rust resistance.

一方、比較例1は、アクリル樹脂(A)の原料として、(メタ)アクリルアミド(a2)を用いなかった例であるが、耐糸錆性が不十分であることが確認された。 On the other hand, Comparative Example 1 was an example in which the (meth)acrylamide (a2) was not used as the raw material of the acrylic resin (A), but it was confirmed that the string rust resistance was insufficient.

比較例2は、アクリル樹脂(A)の原料である単量体成分中のアクリル単量体(a1)が、本発明の下限である20質量%より少ない例であるが、平滑性が不十分であることが確認された。 Comparative Example 2 is an example in which the acrylic monomer (a1) in the monomer component, which is the raw material of the acrylic resin (A), is less than 20% by mass, which is the lower limit of the present invention, but the smoothness is insufficient. It was confirmed that

比較例3は、アクリル樹脂(A)の原料である単量体成分中のスチレンが、本発明の下限である10質量%より少ない例であるが、硬化性が不十分であることが確認された。 Comparative Example 3 is an example in which the amount of styrene in the monomer component, which is the raw material of the acrylic resin (A), is less than 10% by mass, which is the lower limit of the present invention, but it was confirmed that the curability was insufficient. rice field.

比較例4は、アクリル樹脂(A)の原料である単量体成分中のアクリル単量体(a1)及びスチレンが、本発明の下限より少ない例であるが、硬化性が不十分であることが確認された。 Comparative Example 4 is an example in which the acrylic monomer (a1) and styrene in the monomer component, which is the raw material of the acrylic resin (A), are less than the lower limits of the present invention, but the curability is insufficient. was confirmed.

Claims (5)

エポキシ基を有するアクリル単量体(a1)と、(メタ)アクリルアミド(a2)と、スチレン(a3)と、その他の不飽和単量体(a4)とを必須原料とするアクリル樹脂(A)を含有する粉体塗料用樹脂組成物であって、前記アクリル樹脂(A)の原料である単量体成分中の前記アクリル単量体(a1)が20~60質量%であり、(メタ)アクリルアミドが0.1~30質量%であり、スチレンが10~50質量%であることを特徴とする粉体塗料用樹脂組成物。 An acrylic resin (A) comprising, as essential raw materials, an acrylic monomer (a1) having an epoxy group, (meth)acrylamide (a2), styrene (a3), and another unsaturated monomer (a4) The resin composition for powder coating containing, wherein the acrylic monomer (a1) in the monomer component which is the raw material of the acrylic resin (A) is 20 to 60% by mass, and (meth)acrylamide is 0.1 to 30% by mass, and styrene is 10 to 50% by mass. さらに、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する請求項1記載の粉体塗料用樹脂組成物。 2. The resin composition for powder coating according to claim 1, further comprising a curing agent (B) having a functional group capable of reacting with an epoxy group. 前記硬化剤(B)が、脂肪族多価カルボン酸及び/又はその無水物である請求項2記載の粉体塗料用樹脂組成物。 3. The resin composition for powder coating according to claim 2, wherein the curing agent (B) is an aliphatic polycarboxylic acid and/or its anhydride. 請求項1~3いずれか1項記載の粉体塗料用樹脂組成物から得られる粉体塗料。 A powder coating obtained from the resin composition for powder coating according to any one of claims 1 to 3. 請求項4記載の粉体塗料の塗膜を有する物品。 An article having a coating film of the powder coating according to claim 4.
JP2021174571A 2021-10-26 2021-10-26 Resin composition for powder coating, powder coating, and article having coated film of the coating Pending JP2023064339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021174571A JP2023064339A (en) 2021-10-26 2021-10-26 Resin composition for powder coating, powder coating, and article having coated film of the coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021174571A JP2023064339A (en) 2021-10-26 2021-10-26 Resin composition for powder coating, powder coating, and article having coated film of the coating

Publications (1)

Publication Number Publication Date
JP2023064339A true JP2023064339A (en) 2023-05-11

Family

ID=86271629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021174571A Pending JP2023064339A (en) 2021-10-26 2021-10-26 Resin composition for powder coating, powder coating, and article having coated film of the coating

Country Status (1)

Country Link
JP (1) JP2023064339A (en)

Similar Documents

Publication Publication Date Title
US3988273A (en) Aqueous coating composition
JP4184470B2 (en) Paint composition
JP7070818B2 (en) Resin composition for powder paint, powder paint, articles having a coating film of the paint
JP5637500B2 (en) Method for producing vinyl polymer and vinyl polymer
JP2015054932A (en) Powder coating and aluminum wheel alloy member coated with the powder coating
EP0025285B1 (en) Aqueous coating compositions and articles coated thereby
CZ112895A3 (en) Copolymers containing hydroxy groups and carboxylic groups, process of their preparation, their use and varnishes in which said copolymers are comprised
CN111492019B (en) Powder coating material and article having coating film of the same
US6465589B2 (en) Paint composition
JP2023064339A (en) Resin composition for powder coating, powder coating, and article having coated film of the coating
WO2023162563A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
WO2024127899A1 (en) Resin composition for powder coating materials, powder coating material, and article having coating film of said powder coating material
WO2024004421A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
CN116507680B (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
WO2024135173A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material
JP6255626B2 (en) Coating composition and article coated with the coating composition
JP3025367B2 (en) Resin composition for water-based paint
WO2005040241A1 (en) Fast drying coating composition comprising an unsaturated hydroxydiester
JP7338807B2 (en) Aqueous dispersion for metallic paint and aqueous metallic paint
JP7364115B2 (en) Water-based resin compositions, water-based paints, and articles coated with the water-based paints
JP2002235031A (en) Composition for coating material
JPH04226112A (en) Dispersion of copolymer of vinyl ester of branched carboxylic acid, and ethylenically unsaturated acid and/or its ester
WO2024128006A1 (en) Radical-polymerizable composition
JPH0623326B2 (en) Room temperature dry paint
JP2017095652A (en) Photocurable resin composition, coating for vehicle and coated article