JP2015054932A - Powder coating and aluminum wheel alloy member coated with the powder coating - Google Patents

Powder coating and aluminum wheel alloy member coated with the powder coating Download PDF

Info

Publication number
JP2015054932A
JP2015054932A JP2013189372A JP2013189372A JP2015054932A JP 2015054932 A JP2015054932 A JP 2015054932A JP 2013189372 A JP2013189372 A JP 2013189372A JP 2013189372 A JP2013189372 A JP 2013189372A JP 2015054932 A JP2015054932 A JP 2015054932A
Authority
JP
Japan
Prior art keywords
mass
parts
acrylic resin
powder coating
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013189372A
Other languages
Japanese (ja)
Inventor
紀行 一ノ瀬
Noriyuki Ichinose
紀行 一ノ瀬
尾林 良一
Ryoichi Obayashi
良一 尾林
哲 岸上
Satoru Kishigami
哲 岸上
昭典 數田
Akinori Kazuta
昭典 數田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2013189372A priority Critical patent/JP2015054932A/en
Publication of JP2015054932A publication Critical patent/JP2015054932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder coating capable of providing a cured coated film excellent in storage stability, appearance, filiform corrosion resistance, water resistance and weather resistance and to provide an aluminum wheel alloy member coated with the coating.SOLUTION: There is provided a powder coating obtained by copolymerization of an acrylic monomer having an epoxy group (a1), an acrylic monomer having a glass transition temperature of -35 to -10°C (a2) and a monomer other than the acrylic monomer (a1) and the acrylic monomer (a2) (a3) as essential raw materials, and containing an acrylic resin having the glass transition temperature of 40 to 75°C and an epoxy group having a weight average molecular weight of 3,000 to 25,000 (A) and a curing agent having a functional group reactive with the epoxy group (B).

Description

本発明は、貯蔵安定性(耐ブロッキング性)に優れ、外観、耐糸錆性、耐水性及び耐候性に優れる硬化塗膜を得ることのできる粉体塗料、及び該塗料で塗装されたアルミホイール合金部材に関する。   The present invention provides a powder coating material that is excellent in storage stability (blocking resistance), can provide a cured coating film that is excellent in appearance, yarn rust resistance, water resistance and weather resistance, and an aluminum wheel coated with the coating material. The present invention relates to an alloy member.

近年、大気汚染等の問題から有機溶剤に対する規制が厳しくなり、環境調和型塗料が注目されている。その中でも、粉体塗料は無溶剤型塗料として環境保護の観点から脚光を浴びており、特にアクリル系粉体塗料は耐候性、耐汚染性等の塗膜性能に優れることから、アルミホイール等の自動車部品、金属外装、家電の用途に注目されている。しかしながら、粉体塗料は溶剤型塗料と比較し、塗膜外観が劣るという欠点があった。   In recent years, regulations on organic solvents have become stricter due to problems such as air pollution, and environmentally friendly paints have attracted attention. Among them, powder coatings are attracting attention from the viewpoint of environmental protection as solvent-free coatings. Especially, acrylic powder coatings have excellent coating performance such as weather resistance and contamination resistance. It is attracting attention for automotive parts, metal exteriors, and home appliances. However, the powder coating has a drawback that the appearance of the coating film is inferior to the solvent-based coating.

これに対して、(メタ)アクリル酸アルキルエステル、エポキシ基含有アクリル単量体、その他共重合可能なビニル系単量体を共重合させて得られるエポキシ基含有アクリル樹脂と、エポキシ基と反応可能な官能基を有する硬化剤とを含んでなる粉体塗料が提案されている(例えば、特許文献1参照。)。しかしながら、この粉体塗料から得られる硬化塗膜は、塗膜外観等に優れるものの、粉体塗料自体の貯蔵安定性が不十分であるという問題があった。そこで、貯蔵安定性に優れ、高外観の硬化塗膜が得られる粉体塗料が求められていた。   On the other hand, epoxy group-containing acrylic resins obtained by copolymerizing (meth) acrylic acid alkyl esters, epoxy group-containing acrylic monomers, and other copolymerizable vinyl monomers can react with epoxy groups. A powder coating comprising a curing agent having a functional group has been proposed (for example, see Patent Document 1). However, although the cured coating film obtained from this powder coating is excellent in coating film appearance and the like, there is a problem that the storage stability of the powder coating itself is insufficient. Therefore, there has been a demand for a powder coating that is excellent in storage stability and can provide a cured coating film having a high appearance.

特開2002−69368号公報JP 2002-69368 A

本発明が解決しようとする課題は、貯蔵安定性に優れ、外観、耐糸錆性、耐水性及び耐候性に優れる硬化塗膜を得ることのできる粉体塗料、及び該塗料で塗装されたアルミホイール合金部材を提供することである。   The problem to be solved by the present invention is a powder coating material that can provide a cured coating film that is excellent in storage stability, appearance, yarn rust resistance, water resistance and weather resistance, and aluminum coated with the coating material It is to provide a wheel alloy member.

本発明者等は、上記の課題を解決するため鋭意研究した結果、特定のエポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する粉体塗料は、貯蔵安定性に優れ、また、その硬化塗膜の外観、耐糸錆性、耐水性及び耐候性が優れることを見出し、発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors contain an acrylic resin (A) having a specific epoxy group and a curing agent (B) having a functional group capable of reacting with the epoxy group. The powder coating has been found to be excellent in storage stability and excellent in appearance, yarn rust resistance, water resistance and weather resistance of the cured coating film, and has completed the invention.

すなわち、本発明は、エポキシ基を有するアクリル単量体(a1)、ホモポリマーのガラス転移温度が−35〜10℃であるアクリル単量体(a2)、並びに前記アクリル単量体(a1)及びアクリル単量体(a2)以外の単量体(a3)を必須原料として共重合して得られたものであり、かつガラス転移温度が40〜75℃であり、重量平均分子量が3,000〜25,000であるエポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有することを特徴とする粉体塗料及び該塗料で塗装されたアルミホイール合金部材に関する。   That is, the present invention includes an acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) having a glass transition temperature of −35 to 10 ° C., and the acrylic monomer (a1) and It is obtained by copolymerizing monomer (a3) other than acrylic monomer (a2) as an essential raw material, has a glass transition temperature of 40 to 75 ° C., and a weight average molecular weight of 3,000 to A powder coating containing an acrylic resin (A) having an epoxy group of 25,000 and a curing agent (B) having a functional group capable of reacting with the epoxy group, and coated with the coating The present invention relates to an aluminum wheel alloy member.

本発明の粉体塗料は、貯蔵安定性に優れ、外観、耐糸錆性、耐水性に優れる硬化塗膜を形成することができることから、アルミホイールなどの物品を塗装する塗料に好適に用いることができる。   The powder coating material of the present invention is excellent in storage stability and can form a cured coating film excellent in appearance, yarn rust resistance, and water resistance, and therefore is preferably used for coating materials such as aluminum wheels. Can do.

本発明の粉体塗料は、エポキシ基を有するアクリル単量体(a1)、ホモポリマーのガラス転移温度が−35〜10℃であるアクリル単量体(a2)、並びに前記アクリル単量体(a1)及びアクリル単量体(a2)以外の単量体(a3)を必須原料として共重合して得られたものであり、かつガラス転移温度が40〜75℃であり、重量平均分子量が3,000〜25,000であるエポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有するものである。   The powder coating material of the present invention comprises an acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) having a homopolymer glass transition temperature of −35 to 10 ° C., and the acrylic monomer (a1). ) And the monomer (a3) other than the acrylic monomer (a2) as an essential raw material, a glass transition temperature of 40 to 75 ° C., and a weight average molecular weight of 3, It contains an acrylic resin (A) having an epoxy group of 000 to 25,000 and a curing agent (B) having a functional group capable of reacting with the epoxy group.

なお、本発明において、ホモポリマーのガラス転移温度は、Polymer Handbook(4th Edition)J.Brandrup,E.H.Immergut,E.A.Grulke著(Wiley Interscience)記載の値を用いた。   In the present invention, the glass transition temperature of the homopolymer is determined according to Polymer Handbook (4th Edition) J. MoI. Brandrup, E .; H. Immergut, E .; A. Values described by Grulke (Wiley Interscience) were used.

まず、前記エポキシ基を有するアクリル樹脂(A)について説明する。このエポキシ基含有アクリル樹脂(A)は、エポキシ基を有するアクリル単量体(a1)、ガラス転移温度が−35〜10℃であるアクリル単量体(a2)、並びに前記アクリル単量体(a1)及びアクリル単量体(a2)以外の単量体(a3)を必須原料として共重合して得られたものであり、かつガラス転移温度が40〜75℃であり、重量平均分子量が3000〜25000であるものである。   First, the acrylic resin (A) having the epoxy group will be described. The epoxy group-containing acrylic resin (A) includes an acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) having a glass transition temperature of −35 to 10 ° C., and the acrylic monomer (a1). ) And the monomer (a3) other than the acrylic monomer (a2) as an essential raw material, a glass transition temperature of 40 to 75 ° C., and a weight average molecular weight of 3000 to 3000. 25,000.

前記アクリル単量体(a1)は、エポキシ基を有するアクリル単量体であり、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸メチルグリシジル、(メタ)アリルグリシジルエーテル、(メタ)アリルメチルグリシジルエーテル、(メタ)アクリル酸3,4−エポキシシクロヘキシルメチルなどが挙げられるが、これらの中でも、(メタ)アクリル酸グリシジルが好ましい。なお、これらのアクリル単量体(a1)は、単独で用いることも2種以上併用することもできる。   The acrylic monomer (a1) is an acrylic monomer having an epoxy group. For example, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, (meth) allyl glycidyl ether, (meth) allyl methyl Examples thereof include glycidyl ether, 3,4-epoxycyclohexylmethyl (meth) acrylate, and among these, glycidyl (meth) acrylate is preferable. These acrylic monomers (a1) can be used alone or in combination of two or more.

なお、本発明において、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいう。   In the present invention, “(meth) acrylic acid” refers to one or both of methacrylic acid and acrylic acid, “(meth) acrylate” refers to one or both of methacrylate and acrylate, and “(meta) The “) acryloyl group” means one or both of a methacryloyl group and an acryloyl group.

前記アクリル単量体(a2)は、ガラス転移温度が−35〜10℃であるアクリル単量体であり、例えば、2−エチルヘキシルメタクリレート、2−メトキシエチルメタクリレート、2−エトキシエチルメタクリレート、エチルアクリレート、sec−ブチルアクリレート、イソブチルアクリレート、イソプロピルアクリレート、メチルアクリレート、ベンジルアクリレート等が挙げられる。なお、これらのアクリル単量体(a2)は、単独で用いることも2種以上併用することもできる。   The acrylic monomer (a2) is an acrylic monomer having a glass transition temperature of −35 to 10 ° C., for example, 2-ethylhexyl methacrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, ethyl acrylate, Examples include sec-butyl acrylate, isobutyl acrylate, isopropyl acrylate, methyl acrylate, and benzyl acrylate. These acrylic monomers (a2) can be used alone or in combination of two or more.

前記単量体(a3)は、前記エポキシ基を有するアクリル樹脂(A)の成分となる、前記アクリル単量体(a1)及び(a2)以外の単量体であり、例えば、(メタ)アクリル酸、メチルメタクリレート、エチルメタクリレート、n−プロピル(メタ)アクリレート、イソプロピルメタアクリレート、n−ブチル(メタ)アクリレート、イソブチルメタアクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−ヘプチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシルアクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4−tert−ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、N,N−ジメチルアミノエチル(メタ)アクリレート、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、スチレン、α−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシ−n−ブチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ−n−ブチル(メタ)アクリレート、3−ヒドロキシ−n−ブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等が挙げられる。これらの中でも、貯蔵安定性に優れる粉体塗料が得られることから、メタクリル酸メチル及びスチレンが好ましく、さらに得られる塗膜の耐候性に優れることから、単量体成分中のスチレンの質量比率が1〜23質量%の範囲であることがより好ましい。また、これらのビニル単量体は、単独で用いることも2種以上併用することもできる。   The monomer (a3) is a monomer other than the acrylic monomers (a1) and (a2), which is a component of the acrylic resin (A) having the epoxy group. For example, (meth) acrylic Acid, methyl methacrylate, ethyl methacrylate, n-propyl (meth) acrylate, isopropyl methacrylate, n-butyl (meth) acrylate, isobutyl methacrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n- Heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (Meta) Acry , Cyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, acrylamide, N, N-dimethyl (meth) ) Acrylamide, (meth) acrylonitrile, N, N-dimethylaminoethyl (meth) acrylate, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyl Oxypropylmethyldimethoxysilane, styrene, α-methylstyrene, p-methylstyrene, p-methoxystyrene, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1,4 -Cyclohexanedimethanol mono (meth) acrylate, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth ) Acryloyloxyethyl-2-hydroxyethyl phthalate, lactone-modified (meth) acrylate having a hydroxyl group at the terminal, and the like. Among these, since a powder coating having excellent storage stability is obtained, methyl methacrylate and styrene are preferable, and since the weather resistance of the obtained coating film is excellent, the mass ratio of styrene in the monomer component is A range of 1 to 23% by mass is more preferable. These vinyl monomers can be used alone or in combination of two or more.

前記アクリル単量体(a1)の使用量は、粉体塗料の貯蔵安定性が向上すること及び得られる塗膜の外観が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、10〜55質量%の範囲が好ましく、15〜45質量%の範囲がより好ましい。前記アクリル単量体(a2)の使用量は、粉体塗料の貯蔵安定性が向上すること及び得られる塗膜の外観が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、2〜30質量%の範囲が好ましく、2〜25質量%の範囲がより好ましい。前記アクリル単量体(a3)の使用量は、粉体塗料の貯蔵安定性が向上すること及び得られる塗膜の外観が向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、30〜80質量%の範囲が好ましい。   The amount of the acrylic monomer (a1) used is a monomer that is a raw material for the acrylic resin (A) because the storage stability of the powder coating material is improved and the appearance of the resulting coating film is improved. The mass ratio in the components is preferably in the range of 10 to 55 mass%, more preferably in the range of 15 to 45 mass%. The amount of the acrylic monomer (a2) used is a monomer that is a raw material for the acrylic resin (A) because the storage stability of the powder coating is improved and the appearance of the resulting coating film is improved. The mass ratio in the component is preferably in the range of 2 to 30% by mass, and more preferably in the range of 2 to 25% by mass. The amount of the acrylic monomer (a3) used is a monomer that is a raw material for the acrylic resin (A) because the storage stability of the powder coating is improved and the appearance of the resulting coating film is improved. The mass ratio in the components is preferably in the range of 30 to 80% by mass.

また、前記アクリル樹脂(A)のガラス転移温度は40〜75℃であるが、粉体塗料の貯蔵安定性が向上すること及び得られる塗膜の外観が向上することから、45〜65℃が好ましい。   Moreover, although the glass transition temperature of the said acrylic resin (A) is 40-75 degreeC, since the storage stability of a powder coating material improves and the external appearance of the coating film obtained improves, it is 45-65 degreeC. preferable.

さらに、前記アクリル樹脂(A)の重量平均分子量は3,000〜25,000であるが、得られる塗膜の外観が優れることから、4,000〜10,000が好ましい。ここで、重量平均分子量はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。   Furthermore, although the weight average molecular weight of the said acrylic resin (A) is 3,000-25,000, since the external appearance of the coating film obtained is excellent, 4,000-10,000 are preferable. Here, the weight average molecular weight is a value in terms of polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement.

前記アクリル樹脂(A)を得る方法としては、前記アクリル単量体(a1)、アクリル単量体(a2)及び単量体(a3)を原料として、公知の重合方法で行うことができるが、溶液ラジカル重合法が最も簡便であることから好ましい。   The acrylic resin (A) can be obtained by a known polymerization method using the acrylic monomer (a1), acrylic monomer (a2) and monomer (a3) as raw materials. The solution radical polymerization method is preferred because it is the simplest.

上記の溶液ラジカル重合法は、原料である各単量体を溶剤に溶解し、重合開始剤存在下で重合反応を行う方法である。この際に用いることができる溶剤としては、例えば、トルエン、キシレン、シクロヘキサン、n−ヘキサン、オクタン等の炭化水素系溶剤;メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール等のアルコール系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸イソブチル、酢酸アミル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上併用することもできる。   The solution radical polymerization method is a method in which each monomer as a raw material is dissolved in a solvent and a polymerization reaction is performed in the presence of a polymerization initiator. Examples of the solvent that can be used in this case include hydrocarbon solvents such as toluene, xylene, cyclohexane, n-hexane, and octane; alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, and sec-butanol. Solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether; esters such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, amyl acetate, etc. Examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. These solvents can be used alone or in combination of two or more.

前記重合開始剤としては、例えば、シクロヘキサノンパーオキサイド、3,3,5−トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド化合物;1,1−ビス(tert−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(tert−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(tert−ブチルパーオキシ)バレレート、2,2−ビス(4,4−ジtert−ブチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジtert−アミルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジtert−ヘキシルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジtert−オクチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジクミルパーオキシシクロヘキシル)プロパン等のパーオキシケタール化合物;クメンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド等のハイドロパーオキサイド類;1,3−ビス(tert−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、ジイソプロピルベンゼンパーオキサイド、tert−ブチルクミルパーオキサイド等のジアルキルパーオキサイド化合物;デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド等のジアシルパーオキサイド化合物;ビス(tert−ブチルシクロヘキシル)パーオキシジカーボネート等のパーオキシカーボネート化合物;tert−ブチルパーオキシ−2−エチルヘキサノエート、tert−ブチルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン等のパーオキシエステル化合物などの有機過酸化物と、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)等のアゾ化合物とが挙げられる。   Examples of the polymerization initiator include ketone peroxide compounds such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, 2,2-bis (4,4-di tert-butylperoxycyclohexyl) propane, 2,2-bis (4,4-ditert-amylperoxycyclohexyl) propane, 2,2-bis (4,4-ditert-hexylperoxycyclohexyl) propane, 2 , 2-bis (4,4-ditert-octylpa Peroxyketal compounds such as oxycyclohexyl) propane and 2,2-bis (4,4-dicumylperoxycyclohexyl) propane; cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, etc. Hydroperoxides: 1,3-bis (tert-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, diisopropylbenzene peroxide, tert Dialkyl peroxide compounds such as butyl cumyl peroxide; Diacyl peroxide compounds such as decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide; bis (tert-butyl) Peroxycarbonate compounds such as cyclohexyl) peroxydicarbonate; tert-butylperoxy-2-ethylhexanoate, tert-butylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane And organic peroxides such as peroxyester compounds, and azo compounds such as 2,2′-azobisisobutyronitrile and 1,1′-azobis (cyclohexane-1-carbonitrile).

次に、前記硬化剤(B)について説明する。前記硬化剤(B)は、エポキシ基と反応可能な官能基を有する硬化剤であり、例えば、スベリン酸、アゼライン酸、2,4−ジエチルグルタル酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ブラシル酸、テトラデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸、ヘプタデカンジカルボン酸、オクタデカンジカルボン酸、エイコサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、ブタントリカルボン酸等の多価カルボン酸化合物、これら多価カルボン酸の無水物、及び多価フェノール化合物などが挙げられる。これらの中でも、高強度の塗膜が得られることから、脂肪族多価カルボン酸化合物及びその無水物が好ましく、ドデカンジカルボン酸がより好ましい。また、これらの硬化剤(B)は単独で用いることも2種以上併用することもできる。   Next, the curing agent (B) will be described. The curing agent (B) is a curing agent having a functional group capable of reacting with an epoxy group, for example, suberic acid, azelaic acid, 2,4-diethylglutaric acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, Polycarboxylic acid compounds such as brassylic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid, heptadecanedicarboxylic acid, octadecanedicarboxylic acid, eicosanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, butanetricarboxylic acid, etc. Examples thereof include anhydrides of polyvalent carboxylic acids and polyhydric phenol compounds. Among these, since a high intensity | strength coating film is obtained, an aliphatic polyvalent carboxylic acid compound and its anhydride are preferable, and dodecanedicarboxylic acid is more preferable. Moreover, these hardening | curing agents (B) can be used individually or can also be used together 2 or more types.

本発明の粉体塗料は、前記エポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有するものであるが、高強度の塗膜が得られることから、これらの配合量としては、前記アクリル樹脂(A)中のエポキシ基の当量数(EP)と、前記硬化剤(B)中のカルボキシル基の当量数(COOH)との当量比[(EP)/(COOH)]が、0.5〜1.5の範囲が好ましく、0.8〜1.2の範囲がより好ましい。   The powder coating material of the present invention contains the acrylic resin (A) having the epoxy group and the curing agent (B) having a functional group capable of reacting with the epoxy group. Since it is obtained, these compounding amounts are equivalent ratios of the number of equivalents (EP) of epoxy groups in the acrylic resin (A) and the number of equivalents (COOH) of carboxyl groups in the curing agent (B). [(EP) / (COOH)] is preferably in the range of 0.5 to 1.5, more preferably in the range of 0.8 to 1.2.

本発明の粉体塗料には、本発明の効果を損なわない範囲内で、有機系ないしは無機系の顔料をはじめ、流動調整剤、光安定剤、紫外線吸収剤、酸化防止剤等の公知慣用の種々の添加剤を添加することができる。また、焼き付け時の硬化反応を促進する目的で、触媒を添加することもできる。   In the powder coating of the present invention, known and commonly used organic or inorganic pigments, flow regulators, light stabilizers, ultraviolet absorbers, antioxidants and the like are within the range not impairing the effects of the present invention. Various additives can be added. Moreover, a catalyst can also be added for the purpose of accelerating the curing reaction during baking.

本発明の粉体塗料の調製方法としては、公知慣用の種々の方法を利用することができるが、例えば、前記アクリル樹脂(A)と、前記硬化剤(B)と、必要に応じて、顔料、表面調整剤等の種々の添加剤とを混合し、次いで、それらを溶融混練したのちに、微粉砕、分級するという、いわゆる機械粉砕方式などを利用することができる。   As a method for preparing the powder coating material of the present invention, various known and commonly used methods can be used. For example, the acrylic resin (A), the curing agent (B), and, if necessary, a pigment A so-called mechanical pulverization method in which various additives such as a surface conditioner are mixed and then melt-kneaded and then finely pulverized and classified can be used.

本発明の粉体塗料は、エクステリア、家電用品、自動車用品、二輪車用品、防護柵等に塗装することが可能であるが、耐候性、耐衝撃性、耐チッピング性、耐水性、耐糸錆性等に優れる高外観の塗膜が得られることから、アルミホイール合金部材等の金属部材への塗装に適している。   The powder coating of the present invention can be applied to exteriors, home appliances, automobiles, motorcycles, protective fences, etc., but it is weather resistant, impact resistant, chipping resistant, water resistant, yarn rust resistant Therefore, it is suitable for coating on metal members such as aluminum wheel alloy members.

本発明の粉体塗料の塗装方法としては、静電粉体塗装法等の公知慣用の種々の方法が挙げられる。また、本発明の粉体塗料を塗装後、硬化塗膜とする方法としては、基材の種類や目的に応じて適宜選択することができるが、耐糸錆性、耐水性及び耐候性に優れる塗膜が得られることから、120〜250℃の温度範囲で、5〜30分間の範囲で焼き付けることが好ましい。また、塗装膜厚は、50〜150μmの範囲が好ましい。   Examples of the coating method of the powder coating of the present invention include various known and conventional methods such as electrostatic powder coating. In addition, the method for forming a cured coating film after applying the powder coating of the present invention can be appropriately selected according to the type and purpose of the substrate, but is excellent in yarn rust resistance, water resistance and weather resistance. Since a coating film is obtained, baking is preferably performed in a temperature range of 120 to 250 ° C. for 5 to 30 minutes. The coating film thickness is preferably in the range of 50 to 150 μm.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、アクリル樹脂のエポキシ当量、ガラス転移温度、及び重量平均分子量は、下記の方法で測定したものである。
[エポキシ当量の測定方法]
塩酸−ピリジン法により測定した。樹脂に、塩酸−ピリジン溶液25mlを加え、130℃で1時間、加熱溶解した後、フェノールフタレインを指示薬として0.1N−
水酸化カリウムアルコール溶液で滴定した。消費した0.1N−水酸化カリウムアルコール溶液の量によってエポキシ当量を算出した。
Hereinafter, the present invention will be described in more detail with reference to specific examples. In addition, the epoxy equivalent of an acrylic resin, a glass transition temperature, and a weight average molecular weight are measured by the following method.
[Measurement method of epoxy equivalent]
It measured by the hydrochloric acid-pyridine method. After adding 25 ml of hydrochloric acid-pyridine solution to the resin and heating and dissolving at 130 ° C. for 1 hour, 0.1N- with phenolphthalein as an indicator.
Titrated with potassium hydroxide alcohol solution. The epoxy equivalent was calculated by the amount of 0.1N potassium hydroxide alcohol solution consumed.

[ガラス転移温度の測定方法]
DSC法(示差走査熱量測定法)により求めた。
測定装置:示差走査熱量計(TA INSTRUMENTS株式会社製「DSC Q−100」)
雰囲気条件:窒素雰囲気下
温度範囲:−50〜150℃
昇温速度:5℃/分
[Measurement method of glass transition temperature]
It calculated | required by DSC method (differential scanning calorimetry).
Measuring device: differential scanning calorimeter (“DSC Q-100” manufactured by TA INSTRUMENTS Co., Ltd.)
Atmosphere conditions: Temperature range under nitrogen atmosphere: -50 to 150 ° C
Temperature increase rate: 5 ° C / min

[重量平均分子量の測定方法]
GPCにより測定した。
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[Method for measuring weight average molecular weight]
Measured by GPC.
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg / mL)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.

(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Monodispersed polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

(合成例1:アクリル樹脂(A−1)の合成)
攪拌機、温度計、冷却管及び窒素導入管を備えた反応容器に、キシレン470質量部を仕込み、窒素雰囲気下に135℃にまで昇温した。そこへ、スチレン(以下、「St」と略記する。)25質量部、メチルメタクリレート(以下、「MMA」と略記する。)42質量部、2−エチルヘキシルメタクリレート(以下、「2EHMA」と略記する。)3質量部、グリシジルメタクリレート(以下、「GMA」と略記する。)30質量部およびtert−ブチルパーオキシ−2−エチルヘキサノエート(以下、「P−O」と略記する。)5質量部とからなる混合物を6時間かけて滴下した。滴下終了後も同温度にて10時間保持し、重合反応を行った後、170℃で20mmHgの減圧下に溶剤をのぞき、エポキシ当量500、重量平均分子量7,000、ガラス転移温度67℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−1)と略記する。
(Synthesis Example 1: Synthesis of acrylic resin (A-1))
A reaction vessel equipped with a stirrer, a thermometer, a cooling pipe and a nitrogen introduction pipe was charged with 470 parts by mass of xylene and heated to 135 ° C. in a nitrogen atmosphere. Thereto, 25 parts by mass of styrene (hereinafter abbreviated as “St”), 42 parts by mass of methyl methacrylate (hereinafter abbreviated as “MMA”), 2-ethylhexyl methacrylate (hereinafter abbreviated as “2EHMA”). ) 3 parts by mass, 30 parts by mass of glycidyl methacrylate (hereinafter abbreviated as “GMA”) and 5 parts by mass of tert-butylperoxy-2-ethylhexanoate (hereinafter abbreviated as “PO”) The mixture consisting of was added dropwise over 6 hours. After the completion of the dropping, the polymerization reaction is carried out at the same temperature for 10 hours, and then the solvent is removed at 170 ° C. under a reduced pressure of 20 mmHg, and a solid having an epoxy equivalent of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 67 ° C. An acrylic resin was obtained. Hereinafter, this is abbreviated as an acrylic resin (A-1).

(合成例2:アクリル樹脂(A−2)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA37質量部、2EHMA13質量部、GMA30質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量500、重量平均分子量7,000、ガラス転移温度56℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−2)と略記する。
(Synthesis Example 2: Synthesis of acrylic resin (A-2))
By changing the composition of the monomer and polymerization initiator to St 20 parts by mass, MMA 37 parts by mass, 2EHMA 13 parts by mass, GMA 30 parts by mass and PO-O 5 parts by mass, the same procedure as in Synthesis Example 1 was followed. A solid acrylic resin having an equivalent weight of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 56 ° C. was obtained. Hereinafter, this is abbreviated as an acrylic resin (A-2).

(合成例3:アクリル樹脂(A−3)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA35質量部、2EHMA20質量部、GMA25質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量600、重量平均分子量7,000、ガラス転移温度45℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−3)と略記する。
(Synthesis Example 3: Synthesis of acrylic resin (A-3))
By changing the composition of the monomer and the polymerization initiator to St 20 parts by mass, MMA 35 parts by mass, 2EHMA 20 parts by mass, GMA 25 parts by mass and PO-O 5 parts by mass, the same procedure as in Synthesis Example 1 was followed. A solid acrylic resin having an equivalent weight of 600, a weight average molecular weight of 7,000, and a glass transition temperature of 45 ° C. was obtained. Hereinafter, this is abbreviated as an acrylic resin (A-3).

(合成例4:アクリル樹脂(A−4)の合成)
単量体及び重合開始剤の組成を、St3質量部、MMA74質量部、2EHMA3質量部、GMA20質量部およびP−O 7質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量800、重量平均分子量4,000、ガラス転移温度59℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−4)と略記する。
(Synthesis Example 4: Synthesis of acrylic resin (A-4))
By changing the composition of the monomer and the polymerization initiator to St 3 parts by mass, MMA 74 parts by mass, 2EHMA 3 parts by mass, GMA 20 parts by mass and P—O 7 parts by mass, the same procedure as in Synthesis Example 1 was followed. A solid acrylic resin having an equivalent weight of 800, a weight average molecular weight of 4,000, and a glass transition temperature of 59 ° C. was obtained. Hereinafter, this is abbreviated as an acrylic resin (A-4).

(合成例5:アクリル樹脂(A−5)の合成)
単量体及び重合開始剤の組成を、St15質量部、MMA25質量部、2EHMA20質量部、GMA40質量部およびP−O 3質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量400、重量平均分子量10,000、ガラス転移温度61℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−5)と略記する。
(Synthesis Example 5: Synthesis of acrylic resin (A-5))
By changing the composition of the monomer and the polymerization initiator to St 15 parts by mass, MMA 25 parts by mass, 2EHMA 20 parts by mass, GMA 40 parts by mass and P-O 3 parts by mass, the same procedure as in Synthesis Example 1 was followed. A solid acrylic resin having an equivalent weight of 400, a weight average molecular weight of 10,000, and a glass transition temperature of 61 ° C. was obtained. Hereinafter, this is abbreviated as an acrylic resin (A-5).

(合成例6:アクリル樹脂(A−6)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA37質量部、2−エトキシエチルメタクリレート(以下、「2−ETMA」と略記する。)13質量部、GMA30質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量500、重量平均分子量7,000、ガラス転移温度47℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−6)と略記する。
(Synthesis Example 6: Synthesis of acrylic resin (A-6))
The composition of the monomer and the polymerization initiator was 20 parts by mass of St, 37 parts by mass of MMA, 13 parts by mass of 2-ethoxyethyl methacrylate (hereinafter abbreviated as “2-ETMA”), 30 parts by mass of GMA and 5 parts by mass of PO. A solid acrylic resin having an epoxy equivalent of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 47 ° C. was obtained by operating in the same manner as in Synthesis Example 1 except for changing to parts. Hereinafter, this is abbreviated as an acrylic resin (A-6).

(合成例7:アクリル樹脂(A−7)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA37質量部、エチルアクリレート(以下、「EA」と略記する。)13質量部、GMA30質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量500、重量平均分子量7,000、ガラス転移温度50℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−8)と略記する。
(Synthesis Example 7: Synthesis of acrylic resin (A-7))
The composition of the monomer and the polymerization initiator was changed to St 20 parts by mass, MMA 37 parts by mass, ethyl acrylate (hereinafter abbreviated as “EA”) 13 parts by mass, GMA 30 parts by mass and P—O 5 parts by mass. Were operated in the same manner as in Synthesis Example 1 to obtain a solid acrylic resin having an epoxy equivalent of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 50 ° C. Hereinafter, this is abbreviated as an acrylic resin (A-8).

(合成例8:アクリル樹脂(A−8)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA37質量部、イソブチルアクリレート(以下、「IBA」と略記する。)13質量部、GMA30質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量500、重量平均分子量7,000、ガラス転移温度49℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−8)と略記する。
(Synthesis Example 8: Synthesis of acrylic resin (A-8))
The composition of the monomer and the polymerization initiator was changed to St 20 parts by mass, MMA 37 parts by mass, isobutyl acrylate (hereinafter abbreviated as “IBA”) 13 parts by mass, GMA 30 parts by mass and P—O 5 parts by mass. Were operated in the same manner as in Synthesis Example 1 to obtain a solid acrylic resin having an epoxy equivalent of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 49 ° C. Hereinafter, this is abbreviated as an acrylic resin (A-8).

(合成例9:アクリル樹脂(A−9)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA37質量部、イソプロピルアクリレート(以下、「IPA」と略記する。)13質量部、GMA30質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量500、重量平均分子量7,000、ガラス転移温度58℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−9)と略記する。
(Synthesis Example 9: Synthesis of acrylic resin (A-9))
The composition of the monomer and the polymerization initiator was changed to St 20 parts by mass, MMA 37 parts by mass, isopropyl acrylate (hereinafter abbreviated as “IPA”) 13 parts by mass, GMA 30 parts by mass, and P—O 5 parts by mass. Were operated in the same manner as in Synthesis Example 1 to obtain a solid acrylic resin having an epoxy equivalent of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 58 ° C. Hereinafter, this is abbreviated as an acrylic resin (A-9).

(合成例10:アクリル樹脂(A−10)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA37質量部、メチルアクリレート(以下、「MA」と略記する。)13質量部、GMA30質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量500、重量平均分子量7,000、ガラス転移温度64℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(A−10)と略記する。
(Synthesis Example 10: Synthesis of acrylic resin (A-10))
The composition of the monomer and the polymerization initiator was changed to St 20 parts by mass, MMA 37 parts by mass, methyl acrylate (hereinafter abbreviated as “MA”) 13 parts by mass, GMA 30 parts by mass and P—O 5 parts by mass. Were operated in the same manner as in Synthesis Example 1 to obtain a solid acrylic resin having an epoxy equivalent of 500, a weight average molecular weight of 7,000, and a glass transition temperature of 64 ° C. Hereinafter, this is abbreviated as an acrylic resin (A-10).

(合成例11:アクリル樹脂(RA−1)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA43質量部、n−ブチルアクリレート(以下、「BA」と略記する。)17質量部、GMA20質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量800、重量平均分子量7,000、ガラス転移温度42℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(RA−1)と略記する。
(Synthesis Example 11: Synthesis of acrylic resin (RA-1))
The composition of the monomer and the polymerization initiator was changed to St 20 parts by mass, MMA 43 parts by mass, n-butyl acrylate (hereinafter abbreviated as “BA”) 17 parts by mass, GMA 20 parts by mass and P—O 5 parts by mass. A solid acrylic resin having an epoxy equivalent of 800, a weight average molecular weight of 7,000, and a glass transition temperature of 42 ° C. was obtained by operating in the same manner as in Synthesis Example 1 except that. Hereinafter, this is abbreviated as acrylic resin (RA-1).

(合成例12:アクリル樹脂(RA−2)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA43質量部、2−エチルヘキシルアクリレート(以下、「2−EHA」と略記する。)17質量部、GMA20質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量800、重量平均分子量7,000、ガラス転移温度42℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(RA−2)と略記する。
(Synthesis Example 12: Synthesis of acrylic resin (RA-2))
The composition of the monomer and the polymerization initiator was St 20 parts by mass, MMA 43 parts by mass, 2-ethylhexyl acrylate (hereinafter abbreviated as “2-EHA”) 17 parts by mass, GMA 20 parts by mass and PO 5 parts by mass. A solid acrylic resin having an epoxy equivalent of 800, a weight average molecular weight of 7,000, and a glass transition temperature of 42 ° C. was obtained by operating in the same manner as in Synthesis Example 1 except for changing to Hereinafter, this is abbreviated as acrylic resin (RA-2).

(合成例13:アクリル樹脂(RA−3)の合成)
単量体及び重合開始剤の組成を、St20質量部、MMA43質量部、n−ブチルメタクリレート(以下、「BMA」と略記する。)17質量部、GMA20質量部およびP−O 5質量部に変更した以外は合成例1と同様に操作することにより、エポキシ当量800、重量平均分子量7,000、ガラス転移温度68℃なる固形アクリル樹脂を得た。以下、これをアクリル樹脂(RA−3)と略記する。
(Synthesis Example 13: Synthesis of acrylic resin (RA-3))
The composition of the monomer and the polymerization initiator was changed to St 20 parts by mass, MMA 43 parts by mass, n-butyl methacrylate (hereinafter abbreviated as “BMA”) 17 parts by mass, GMA 20 parts by mass and P—O 5 parts by mass. A solid acrylic resin having an epoxy equivalent of 800, a weight average molecular weight of 7,000, and a glass transition temperature of 68 ° C. was obtained by operating in the same manner as in Synthesis Example 1 except that. Hereinafter, this is abbreviated as acrylic resin (RA-3).

なお、上記の合成例1〜13で合成したアクリル樹脂(A−1)〜(A−10)及び(RA−1)〜(RA−3)の単量体組成及び性状値を表1〜3に示す。   The monomer compositions and property values of the acrylic resins (A-1) to (A-10) and (RA-1) to (RA-3) synthesized in Synthesis Examples 1 to 13 are shown in Tables 1 to 3. Shown in

Figure 2015054932
Figure 2015054932

Figure 2015054932
Figure 2015054932

Figure 2015054932
Figure 2015054932

表1〜3中の略号は、それぞれ下記のものである。
GMA:グリシジルメタクリレート
2EHMA:2−エチルヘキシルメタクリレート
ETMA:2−エトキシエチルメタクリレート
EA:エチルアクリレート
IBA:イソブチルアクリレート
IPA:イソプロピルアクリレート
MA:メチルアクリレート
St:スチレン
MMA:メチルメタクリレート
BA:n−ブチルアクリレート
2EHA:2−エチルヘキシルアクリレート
BMA:n−ブチルメタクリレート
The abbreviations in Tables 1 to 3 are as follows.
GMA: glycidyl methacrylate 2EHMA: 2-ethylhexyl methacrylate ETMA: 2-ethoxyethyl methacrylate EA: ethyl acrylate IBA: isobutyl acrylate IPA: isopropyl acrylate MA: methyl acrylate St: styrene MMA: methyl methacrylate BA: n-butyl acrylate 2EHA: 2- Ethylhexyl acrylate BMA: n-butyl methacrylate

また、各単量体のホモポリマーのTgは下記の値を採用した。
GMA:74℃、2EHMA:−10℃、ETMA:−31℃、EA:−24℃、IBA:−24℃、IPA:−5℃、MA:10℃、St:100℃、MMA:105℃、BA:−54℃、2EHA:−50℃、BMA:20℃
Further, the following values were adopted for the Tg of each monomer homopolymer.
GMA: 74 ° C, 2EHMA: -10 ° C, ETMA: -31 ° C, EA: -24 ° C, IBA: -24 ° C, IPA: -5 ° C, MA: 10 ° C, St: 100 ° C, MMA: 105 ° C, BA: -54 ° C, 2EHA: -50 ° C, BMA: 20 ° C

(実施例1:粉体塗料(1)の調製)
合成例1で得られたアクリル樹脂(A−1)80質量部、ドデカンジカルボン酸(以下、「DDA」と略記する。)20質量部、ベンゾイン0.5質量部及び表面調整剤(ビーエーエスエフ社製「アクロナール4F」;以下、「表面調整剤(1)」と略記する。)1質量部を配合した配合物を、二軸混練機(ツバコー横浜販売株式会社製「APV・ニーダーMP−2015型」)を使用して溶融混練した後、微粉砕し、さらに、200メッシュの金網で分級し、粉体塗料(1)を得た。
(Example 1: Preparation of powder coating material (1))
80 parts by mass of the acrylic resin (A-1) obtained in Synthesis Example 1, 20 parts by mass of dodecanedicarboxylic acid (hereinafter abbreviated as “DDA”), 0.5 parts by mass of benzoin and a surface conditioner (BASF Corporation) “Acronal 4F”; hereinafter abbreviated as “Surface Conditioner (1)”) A blend of 1 part by mass was mixed with a twin-screw kneader (Tubaco Yokohama Sales Co., Ltd. “APV Kneader MP-2015 type”. )), And then finely pulverized and further classified with a 200 mesh wire mesh to obtain a powder coating (1).

(実施例2:粉体塗料(2)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部を、アクリル樹脂(A−2)80質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(2)を得た。
(Example 2: Preparation of powder paint (2))
By operating in the same manner as in Example 1 except that 80 parts by mass of the acrylic resin (A-1) blended in Example 1 was changed to 80 parts by mass of the acrylic resin (A-2), the powder paint (2 )

(実施例3:粉体塗料(3)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部及びDDA20質量部を、アクリル樹脂(A−3)84質量部及びDDA16質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(3)を得た。
(Example 3: Preparation of powder paint (3))
The same operation as in Example 1 is carried out except that 80 parts by mass of acrylic resin (A-1) and 20 parts by mass of DDA blended in Example 1 are changed to 84 parts by mass of acrylic resin (A-3) and 16 parts by mass of DDA. As a result, a powder coating material (3) was obtained.

(実施例4:粉体塗料(4)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部及びDDA20質量部を、アクリル樹脂(A−4)90質量部及びDDA10質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(4)を得た。
(Example 4: Preparation of powder paint (4))
The same operation as in Example 1 is performed except that 80 parts by mass of acrylic resin (A-1) and 20 parts by mass of DDA blended in Example 1 are changed to 90 parts by mass of acrylic resin (A-4) and 10 parts by mass of DDA. As a result, a powder coating material (4) was obtained.

(実施例5:粉体塗料(5)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部及びDDA20質量部を、アクリル樹脂(A−5)75質量部及びDDA25質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(5)を得た。
(Example 5: Preparation of powder paint (5))
The same operation as in Example 1 is performed except that 80 parts by mass of acrylic resin (A-1) and 20 parts by mass of DDA blended in Example 1 are changed to 75 parts by mass of acrylic resin (A-5) and 25 parts by mass of DDA. As a result, a powder coating material (5) was obtained.

(実施例6:粉体塗料(6)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部を、アクリル樹脂(A−6)80質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(6)を得た。
(Example 6: Preparation of powder paint (6))
By operating in the same manner as in Example 1 except that 80 parts by mass of the acrylic resin (A-1) blended in Example 1 was changed to 80 parts by mass of the acrylic resin (A-6), the powder paint (6 )

(実施例7:粉体塗料(7)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部を、アクリル樹脂(A−7)80質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(7)を得た。
(Example 7: Preparation of powder paint (7))
By operating in the same manner as in Example 1 except that 80 parts by mass of the acrylic resin (A-1) blended in Example 1 was changed to 80 parts by mass of the acrylic resin (A-7), the powder paint (7 )

(実施例8:粉体塗料(8)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部を、アクリル樹脂(A−8)80質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(8)を得た。
(Example 8: Preparation of powder paint (8))
By operating in the same manner as in Example 1 except that 80 parts by mass of the acrylic resin (A-1) blended in Example 1 was changed to 80 parts by mass of the acrylic resin (A-8), the powder paint (8 )

(実施例9:粉体塗料(9)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部を、アクリル樹脂(A−9)80質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(9)を得た。
(Example 9: Preparation of powder coating material (9))
By operating in the same manner as in Example 1 except that 80 parts by mass of the acrylic resin (A-1) blended in Example 1 was changed to 80 parts by mass of the acrylic resin (A-9), the powder paint (9 )

(実施例10:粉体塗料(10)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部を、アクリル樹脂(A−10)80質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(10)を得た。
(Example 10: Preparation of powder paint (10))
By operating in the same manner as in Example 1 except that 80 parts by mass of the acrylic resin (A-1) blended in Example 1 was changed to 80 parts by mass of the acrylic resin (A-10), the powder paint (10 )

(比較例1:粉体塗料(R1)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部及びDDA20質量部を、アクリル樹脂(RA−1)90質量部及びDDA10質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(R1)を得た。
(Comparative Example 1: Preparation of powder coating material (R1))
The same operation as in Example 1 is performed except that 80 parts by mass of acrylic resin (A-1) and 20 parts by mass of DDA blended in Example 1 are changed to 90 parts by mass of acrylic resin (RA-1) and 10 parts by mass of DDA. As a result, a powder coating material (R1) was obtained.

(比較例2:粉体塗料(R2)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部及びDDA20質量部を、アクリル樹脂(RA−2)90質量部及びDDA10質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(R2)を得た。
(Comparative Example 2: Preparation of powder coating material (R2))
The same operation as in Example 1 is performed except that 80 parts by mass of acrylic resin (A-1) and 20 parts by mass of DDA blended in Example 1 are changed to 90 parts by mass of acrylic resin (RA-2) and 10 parts by mass of DDA. As a result, a powder coating material (R2) was obtained.

(比較例3:粉体塗料(R3)の調製)
実施例1で配合したアクリル樹脂(A−1)80質量部及びDDA20質量部を、アクリル樹脂(RA−3)90質量部及びDDA10質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(R3)を得た。
(Comparative Example 3: Preparation of powder coating material (R3))
The same operation as in Example 1 is performed except that 80 parts by mass of acrylic resin (A-1) and 20 parts by mass of DDA blended in Example 1 are changed to 90 parts by mass of acrylic resin (RA-3) and 10 parts by mass of DDA. As a result, a powder coating material (R3) was obtained.

なお、上記の実施例1〜10で調製した粉体塗料(1)〜(10)及び比較例1〜3で調製した粉体塗料(R1)〜(R3)の配合組成を表4〜6に示す。   In addition, the compounding compositions of the powder coatings (1) to (10) prepared in Examples 1 to 10 and the powder coatings (R1) to (R3) prepared in Comparative Examples 1 to 3 are shown in Tables 4 to 6. Show.

Figure 2015054932
Figure 2015054932

Figure 2015054932
Figure 2015054932

Figure 2015054932
Figure 2015054932

(実施例11:粉体塗料(1)の評価)
実施例1で得られた粉体塗料(1)を用いて、粉体塗料の貯蔵安定性(耐ブロッキング性)、硬化塗膜の外観、耐糸錆性、耐水性及び耐候性を評価した。
(Example 11: Evaluation of powder coating material (1))
Using the powder coating material (1) obtained in Example 1, the storage stability (blocking resistance) of the powder coating material, the appearance of the cured coating film, the yarn rust resistance, the water resistance and the weather resistance were evaluated.

[貯蔵安定性の評価]
ポリプロピレン製サンプル管(16ml)に粉体塗料(1)を容器の約2/3採取し、40±1℃の恒温機に2週間静置した。その後、室温で2時間自然放冷した後の塗料状態を観察し、下記の基準にしたがって、貯蔵安定性(耐ブロッキング性)を評価した。
◎:貯蔵前の状態と変化なし
○:凝集がみられるが、ショックを与えると、貯蔵前の状態に戻る。
×:凝集がみられ、ショックを与えても、貯蔵前の状態に戻らない。
[Evaluation of storage stability]
About 2/3 of the container was collected in a polypropylene sample tube (16 ml) and the powder coating material (1) was placed in a thermostat at 40 ± 1 ° C. for 2 weeks. Then, the coating state after naturally cooling at room temperature for 2 hours was observed, and storage stability (blocking resistance) was evaluated according to the following criteria.
A: No change from the state before storage ○: Aggregation is observed, but when shock is applied, the state returns to the state before storage.
X: Agglomeration is observed, and even if a shock is given, it does not return to the state before storage.

[評価用硬化塗膜の作製]
アルミニウム合金板「A5052P」(日本テストパネル株式会社製)に、焼き付け後の膜厚が80μmとなるように粉体塗料(1)を静電粉体塗装した後、160℃で20分間焼き付けを行い、評価用硬化塗膜を作製した。
[Production of cured coating film for evaluation]
Powder coating (1) is applied to an aluminum alloy plate “A5052P” (manufactured by Nippon Test Panel Co., Ltd.) so that the film thickness after baking is 80 μm, followed by baking at 160 ° C. for 20 minutes. A cured coating film for evaluation was prepared.

[塗膜外観の評価]
上記で得られた評価用硬化塗膜の表面を目視で観察し、下記の基準にしたがって、塗膜外観(平滑性)を評価した。
◎:平滑である。
○:わずかにラウンドがみられる。
×:細かいチリ肌がみられる。
[Evaluation of coating appearance]
The surface of the evaluation cured coating film obtained above was visually observed, and the coating film appearance (smoothness) was evaluated according to the following criteria.
A: Smooth.
○: A slight round is seen.
X: Fine chilli skin is seen.

[塗膜耐糸錆性の評価]
上記で得られた評価用硬化塗膜にカッターナイフで基材の素地に達するようにクロスカットを入れ、塩水噴霧試験機にて、温度35±5℃の条件下、5質量%食塩水を24時間噴霧した後、水洗し、温度40±1℃、相対湿度85±2%の恒温恒湿槽内に240時間放置し、これを1サイクルとして、3サイクル迄繰り返してクロスカットの片側錆幅の最大長さを測定し、下記の基準により塗膜耐糸錆性を評価した。
◎:糸錆の長さが2mm未満
○:糸錆の長さが2mm以上5mm未満
×:糸錆の長さが5mm以上
[Evaluation of coating film rust resistance]
The cured coating film for evaluation obtained above is cross-cut with a cutter knife so as to reach the base material, and a salt spray tester is used to add 5% by weight saline solution at a temperature of 35 ± 5 ° C. After spraying for a period of time, it is washed with water and left in a constant temperature and humidity chamber at a temperature of 40 ± 1 ° C. and a relative humidity of 85 ± 2% for 240 hours. The maximum length was measured and the coating film rust resistance was evaluated according to the following criteria.
A: Yarn rust length is less than 2 mm B: Yarn rust length is 2 mm or more and less than 5 mm X: Yarn rust length is 5 mm or more

[塗膜耐水性の評価]
上記で得られた評価用硬化塗膜を有する試験片を60℃の温水中に、3日間浸漬し、引き上げてから30分後に、塗膜にカッターで碁盤目状に1mmのクロスカットを入れ、粘着テープによる剥離試験を行った。評価判定の基準は、クロスカットの残数を、X/100で表示した。この値が高いほど、付着性が良好であることを意味している。又、温水中から引き上げてからの塗膜のフクレの有無を目視判定した。
[Evaluation of water resistance of coating film]
The test piece having the cured coating film for evaluation obtained above was immersed in warm water at 60 ° C. for 3 days, and 30 minutes after being pulled up, a 1 mm cross cut was put in a grid pattern with a cutter on the coating film, A peel test with an adhesive tape was performed. As a criterion for evaluation, the remaining number of crosscuts was displayed as X / 100. The higher this value, the better the adhesion. Moreover, the presence or absence of the swelling of the coating film after pulling up from warm water was visually judged.

[塗膜耐候性の評価]
上記で得られた塗膜について、スーパーキセノンウェザーメーター試験機(スガ試験機株式会社製、SX2−75)による促進耐候性試験を1500時間実施した。
放射照度:180W/m(波長範囲300〜700nm)
ブラックパネル温度:63℃
照射及び噴霧の方法:120分サイクル(102分間の照射、続いて18分間の照 射及び噴霧)
(光沢保持率%)
光沢計(ビックケミー・ジャパン株式会社製、micro−TRI−gloss)により、試験前後の硬化塗膜について60度鏡面反射率(%)を測定し、試験後の硬化塗膜の60度鏡面反射率(%)を、試験前の硬化塗膜の60度鏡面反射率(%)で除して100倍した値を光沢保持率(%)として表示した。
(耐黄変性)
色差計(コニカミノルタ株式会社製、SPECTROPHOTOMETER CM−3500d)により、試験前後の硬化塗膜について黄色味を示すb値を測定し、試験前後のb値の差分Δbを表示した。
[Evaluation of weather resistance of coating film]
About the coating film obtained above, the accelerated weather resistance test by the super xenon weather meter tester (Suga Test Instruments Co., Ltd. product, SX2-75) was implemented for 1500 hours.
Irradiance: 180 W / m 2 (wavelength range 300 to 700 nm)
Black panel temperature: 63 ° C
Irradiation and spraying method: 120 minute cycle (102 minutes of irradiation followed by 18 minutes of irradiation and spraying)
(Gloss retention%)
The 60 degree specular reflectance (%) of the cured coating film before and after the test was measured with a gloss meter (Bic Chemie Japan Co., Ltd., micro-TRI-gloss), and the cured coating film after the test was subjected to 60 degree mirror reflectance ( %) Was divided by the 60-degree specular reflectance (%) of the cured coating film before the test and multiplied by 100, and the gloss retention rate (%) was displayed.
(Yellowing resistance)
With a color difference meter (SPECTROPHOMETER CM-3500d, manufactured by Konica Minolta Co., Ltd.), the b value indicating yellowness was measured for the cured coating film before and after the test, and the difference Δb between the b values before and after the test was displayed.

(実施例12〜20:粉体塗料(2)〜(10)の評価)
実施例11で用いた粉体塗料(1)に代えて、実施例2〜10で得られた粉体塗料(2)〜(10)をそれぞれ用いた以外は実施例11と同様に操作して、粉体塗料の貯蔵安定性、硬化塗膜の外観、耐糸錆性、耐水性及び耐候性を評価した。
(Examples 12 to 20: Evaluation of powder coatings (2) to (10))
It replaced with the powder coating material (1) used in Example 11, and it operated similarly to Example 11 except having used the powder coating materials (2)-(10) obtained in Examples 2-10, respectively. The storage stability of the powder coating material, the appearance of the cured coating film, the yarn rust resistance, the water resistance and the weather resistance were evaluated.

(比較例4〜6:粉体塗料(R1)〜(R3)の評価)
実施例11で用いた粉体塗料(1)に代えて、比較例1〜3で得られた粉体塗料(R1)〜(R3)をそれぞれ用いた以外は実施例11と同様に操作して、粉体塗料の貯蔵安定性、硬化塗膜の外観、耐糸錆性、耐水性及び耐候性を評価した。
(Comparative Examples 4 to 6: Evaluation of powder coating materials (R1) to (R3))
It replaced with the powder coating material (1) used in Example 11, and it operated similarly to Example 11 except having used powder coating material (R1)-(R3) obtained by Comparative Examples 1-3, respectively. The storage stability of the powder coating material, the appearance of the cured coating film, the yarn rust resistance, the water resistance and the weather resistance were evaluated.

実施例11〜20及び比較例4〜6の評価結果を表7〜9に示す。   The evaluation results of Examples 11 to 20 and Comparative Examples 4 to 6 are shown in Tables 7 to 9.

Figure 2015054932
Figure 2015054932

Figure 2015054932
Figure 2015054932

Figure 2015054932
Figure 2015054932

実施例11〜20の評価結果から、本発明の粉体塗料は、貯蔵安定性に優れ、その硬化塗膜は、外観、耐糸錆性、耐水性及び耐候性に優れることが確認された。   From the evaluation results of Examples 11 to 20, it was confirmed that the powder coating material of the present invention was excellent in storage stability, and the cured coating film was excellent in appearance, yarn rust resistance, water resistance and weather resistance.

一方、比較例4〜6は、本発明の粉体塗料の成分であるアクリル樹脂(A)の原料として、ガラス転移温度が−35〜10℃であるアクリル単量体(a2)を用いない例の評価結果であるが、粉体塗料の貯蔵安定性又は硬化塗膜の外観が劣ることが確認された(比較例4〜6)。   On the other hand, Comparative Examples 4 to 6 are examples in which an acrylic monomer (a2) having a glass transition temperature of −35 to 10 ° C. is not used as a raw material of the acrylic resin (A) that is a component of the powder coating material of the present invention. It was confirmed that the storage stability of the powder coating or the appearance of the cured coating film was inferior (Comparative Examples 4 to 6).

Claims (4)

エポキシ基を有するアクリル単量体(a1)、ホモポリマーのガラス転移温度が−35〜10℃であるアクリル単量体(a2)、並びに前記アクリル単量体(a1)及びアクリル単量体(a2)以外の単量体(a3)を必須原料として共重合して得られたものであり、かつガラス転移温度が40〜75℃であり、重量平均分子量が3,000〜25,000であるエポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有することを特徴とする粉体塗料。   An acrylic monomer (a1) having an epoxy group, an acrylic monomer (a2) having a glass transition temperature of −35 to 10 ° C., and the acrylic monomer (a1) and acrylic monomer (a2) Epoxy having a glass transition temperature of 40 to 75 ° C. and a weight average molecular weight of 3,000 to 25,000. A powder paint comprising an acrylic resin (A) having a group and a curing agent (B) having a functional group capable of reacting with an epoxy group. 前記アクリル樹脂(A)の原料である単量体成分中の前記アクリル単量体(a1)の質量比率が10〜55質量%の範囲であり、前記アクリル単量体(a2)の質量比率が2〜30質量%の範囲であり、前記アクリル単量体(a3)の質量比率が30〜80質量%の範囲である請求項1記載の粉体塗料。   The mass ratio of the acrylic monomer (a1) in the monomer component that is a raw material of the acrylic resin (A) is in the range of 10 to 55 mass%, and the mass ratio of the acrylic monomer (a2) is The powder coating material according to claim 1, wherein the content is in the range of 2 to 30% by mass and the mass ratio of the acrylic monomer (a3) is in the range of 30 to 80% by mass. 前記硬化剤(B)が脂肪族多価カルボン酸及び/又はその無水物である請求項1又は2記載の粉体塗料。   The powder coating material according to claim 1 or 2, wherein the curing agent (B) is an aliphatic polyvalent carboxylic acid and / or an anhydride thereof. 請求項1〜3のいずれか1項記載の粉体塗料で塗装されたことを特徴とするアルミホイール合金部材。   An aluminum wheel alloy member, which is coated with the powder paint according to any one of claims 1 to 3.
JP2013189372A 2013-09-12 2013-09-12 Powder coating and aluminum wheel alloy member coated with the powder coating Pending JP2015054932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189372A JP2015054932A (en) 2013-09-12 2013-09-12 Powder coating and aluminum wheel alloy member coated with the powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189372A JP2015054932A (en) 2013-09-12 2013-09-12 Powder coating and aluminum wheel alloy member coated with the powder coating

Publications (1)

Publication Number Publication Date
JP2015054932A true JP2015054932A (en) 2015-03-23

Family

ID=52819560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189372A Pending JP2015054932A (en) 2013-09-12 2013-09-12 Powder coating and aluminum wheel alloy member coated with the powder coating

Country Status (1)

Country Link
JP (1) JP2015054932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492019A (en) * 2017-12-19 2020-08-04 Dic株式会社 Powder coating material and article having coating film of the same
JPWO2021215252A1 (en) * 2020-04-24 2021-10-28
WO2024127899A1 (en) * 2022-12-15 2024-06-20 Dic株式会社 Resin composition for powder coating materials, powder coating material, and article having coating film of said powder coating material
WO2024135173A1 (en) * 2022-12-22 2024-06-27 Dic株式会社 Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180614A (en) * 1997-07-08 1999-03-26 Mitsui Chem Inc Thermosetting powder coating composition
JP2002069368A (en) * 2000-08-30 2002-03-08 Dainippon Ink & Chem Inc Thermosetting powder coating composition for aluminum wheel alloy member and aluminum alloy wheel member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180614A (en) * 1997-07-08 1999-03-26 Mitsui Chem Inc Thermosetting powder coating composition
JP2002069368A (en) * 2000-08-30 2002-03-08 Dainippon Ink & Chem Inc Thermosetting powder coating composition for aluminum wheel alloy member and aluminum alloy wheel member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492019A (en) * 2017-12-19 2020-08-04 Dic株式会社 Powder coating material and article having coating film of the same
JPWO2021215252A1 (en) * 2020-04-24 2021-10-28
WO2021215252A1 (en) * 2020-04-24 2021-10-28 Dic株式会社 Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material
JP7070818B2 (en) 2020-04-24 2022-05-18 Dic株式会社 Resin composition for powder paint, powder paint, articles having a coating film of the paint
CN115427523A (en) * 2020-04-24 2022-12-02 Dic株式会社 Resin composition for powder coating material, and article having coating film of the powder coating material
WO2024127899A1 (en) * 2022-12-15 2024-06-20 Dic株式会社 Resin composition for powder coating materials, powder coating material, and article having coating film of said powder coating material
WO2024135173A1 (en) * 2022-12-22 2024-06-27 Dic株式会社 Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material

Similar Documents

Publication Publication Date Title
KR102604755B1 (en) Aqueous polymer dispersions and aqueous coating compositions comprising the same
JP2015054932A (en) Powder coating and aluminum wheel alloy member coated with the powder coating
JP5637500B2 (en) Method for producing vinyl polymer and vinyl polymer
JP7070818B2 (en) Resin composition for powder paint, powder paint, articles having a coating film of the paint
JP6674163B2 (en) Powder coating and article having a coating of the coating
US20010003764A1 (en) Paint composition
JP6255626B2 (en) Coating composition and article coated with the coating composition
WO2023162563A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
WO2024127899A1 (en) Resin composition for powder coating materials, powder coating material, and article having coating film of said powder coating material
JP2023064339A (en) Resin composition for powder coating, powder coating, and article having coated film of the coating
JP6512468B1 (en) Aqueous resin composition, aqueous paint and article
WO2024004421A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
WO2024135173A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material
KR102194430B1 (en) Resin composition, primer coating material, and plastic molded article coated with such coating material
JP7364115B2 (en) Water-based resin compositions, water-based paints, and articles coated with the water-based paints
JP7338807B2 (en) Aqueous dispersion for metallic paint and aqueous metallic paint
JPH04226112A (en) Dispersion of copolymer of vinyl ester of branched carboxylic acid, and ethylenically unsaturated acid and/or its ester
JP2021038355A (en) Aqueous resin composition, aqueous coating material, and article
JP2017122198A (en) Resin composition, paint and plastic molding having paint applied thereon
JP2022076639A (en) Resin composition, coating and plastic molding coated with the coating
US20210238325A1 (en) Acrylic resin with internal plasticizer
WO2019102626A1 (en) (meth)acrylic-modified polyester resin, curable resin composition, coating material, and coated steel sheet
WO2020255843A1 (en) Polyolefin-modified acrylic resin, paint, and plastic molded article coated with said paint
JP2023018294A (en) Adhesive composition and molded article
JP2001064572A (en) Resin composition for coating and one pack type coating for base coat using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205