WO2019102626A1 - (meth)acrylic-modified polyester resin, curable resin composition, coating material, and coated steel sheet - Google Patents

(meth)acrylic-modified polyester resin, curable resin composition, coating material, and coated steel sheet Download PDF

Info

Publication number
WO2019102626A1
WO2019102626A1 PCT/JP2017/044868 JP2017044868W WO2019102626A1 WO 2019102626 A1 WO2019102626 A1 WO 2019102626A1 JP 2017044868 W JP2017044868 W JP 2017044868W WO 2019102626 A1 WO2019102626 A1 WO 2019102626A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polyester resin
acrylic
mass
modified polyester
Prior art date
Application number
PCT/JP2017/044868
Other languages
French (fr)
Japanese (ja)
Inventor
グラン マルティネス アレハンドロ
正澄 澪川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019556082A priority Critical patent/JP6725895B2/en
Priority to DE112017008223.4T priority patent/DE112017008223T5/en
Priority to CN201780097073.9A priority patent/CN111448229B/en
Publication of WO2019102626A1 publication Critical patent/WO2019102626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a (meth) acrylic-modified polyester resin, a curable resin composition containing the same, a paint comprising the curable resin composition, and a coated steel plate having a coating of the paint.
  • PCM pre-coated metal
  • paints of various forms such as two-component curing type, UV curing type, and volatilization drying type are used, and the resin system is also various as polyester resin, fluorine resin, acrylic resin, etc.
  • the resin system is also various as polyester resin, fluorine resin, acrylic resin, etc.
  • a two-component curable coating mainly composed of a polyester resin is widely used because it has excellent processability.
  • Examples of the two-component curable paint containing the polyester resin as a main component include, for example, terephthalic acid, isophthalic acid, 2-methyl-1,3-propanediol, and a number average molecular weight using 1,6-hexanediol as a reaction raw material Paints based on polyester resins of 11,000 Mn are known (see, for example, Patent Document 1), but although excellent in processability, standards that are recently required in terms of high solidification of the paint It did not cover the
  • the problem to be solved by the present invention is (meth) acrylic-modified polyester resin capable of forming a coating having high processability and weatherability, which is capable of achieving high solidification of paint, and curability containing the same. It is providing a resin composition, a paint, and a coated steel plate.
  • a (meth) acrylic-modified polyester comprising a saturated polyester resin (A) and a (meth) acrylic monomer mixture (B) containing a hydroxyl group-containing (meth) acrylic monomer as essential reaction raw materials It is a resin, and the saturated polyester resin (A) is a polycondensate of an aliphatic diol (a1) and a dicarboxylic acid (a2) containing an aliphatic dicarboxylic acid, and the content of the aliphatic dicarboxylic acid
  • the present invention relates to a (meth) acrylic-modified polyester resin having a content of 5% by mass or more in the dicarboxylic acid (a2), a curable resin composition containing the same, a paint, and a coated steel sheet.
  • the (meth) acrylic-modified polyester resin of the present invention enables high-solidification of the paint, that is, high non-volatile differentiation, and can form a coating film having excellent processability and weather resistance. It can be suitably used for automotive paints such as top coats and automotive repair paints.
  • “high solid” indicates that the non-volatile content of the paint is 65% by mass or more.
  • the (meth) acrylic-modified polyester resin of the present invention is characterized in that the saturated polyester resin (A) and the (meth) acrylic monomer mixture (B) are essential reaction raw materials.
  • the saturated polyester resin (A) refers to a polyester resin substantially having no aliphatic carbon-carbon double bond.
  • saturated polyester resin (A) what was obtained by carrying out the polycondensation reaction of aliphatic diol (a1) and dicarboxylic acid (a2) is used.
  • the aliphatic diol (a1) it is possible to form a coating having high processability and weatherability, and to obtain a (meth) acrylic-modified polyester resin capable of achieving high-solidification of the coating, so that at least at least Those containing an asymmetric diol having one side chain and / or a linear diol having no side chain are preferred.
  • the term "asymmetric diol” refers to a diol having an asymmetric structure.
  • Examples of the asymmetric diol having at least one side chain include 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-1,4-butanediol, and 2-ethyl-1,4-butane.
  • Diol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 3-methyl-1,5-heptanediol and the like can be mentioned.
  • These unsymmetrical diols having at least one side chain can be used alone or in combination of two or more. Also among these, 2-methyl-1,3-propanediol is preferred.
  • linear diol having no side chain examples include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and the like.
  • linear diols having no side chain can be used alone or in combination of two or more. Further, among these, 1,6-hexane, because it is possible to obtain a (meth) acrylic-modified polyester resin capable of forming a paint film having high processability and weather resistance, while being able to make the paint highly solid. Diols are preferred.
  • aliphatic diol (a1) other diol can be used as needed other than the unsymmetrical diol which has the said at least 1 side chain, and the linear diol which does not have a side chain.
  • Examples of the other aliphatic diols include neopentyl glycol, hydrogenated bisphenol A, hydrogenated bisphenol F, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • dicarboxylic acid (a2) an aliphatic dicarboxylic acid is contained as an essential component because a (meth) acrylic-modified polyester resin capable of forming a coating film having excellent processability and weatherability is obtained.
  • aliphatic dicarboxylic acids examples include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, dimer acid, fumaric acid and the like, and aliphatics thereof
  • the methyl ester of dicarboxylic acid, an acid chloride, etc. are mentioned.
  • These aliphatic dicarboxylic acids can be used alone or in combination of two or more. Among these, adipic acid is preferred.
  • the content of the aliphatic dicarboxylic acid is 5% by mass or more in the dicarboxylic acid (a2) because it is excellent in compatibility with the (meth) acrylic monomer mixture (B), and 10
  • the range of -20% by mass is more preferable.
  • dicarboxylic acid (a2) alicyclic dicarboxylic acid, aromatic dicarboxylic acid, or these acid anhydrides can also be contained as needed.
  • alicyclic dicarboxylic acid examples include 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid and the like.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, p-hydroxybenzoic acid P- (2-hydroxyethoxy) benzoic acid, trimellitic acid, pyromellitic acid, phthalic anhydride and the like.
  • an esterification catalyst can also be used, if necessary.
  • esterification catalyst examples include metal salts such as titanium, tin, zinc, aluminum, zirconium, magnesium, hafnium, germanium and the like; titanium tetraisopropoxide, titanium tetrabutoxide, titanium oxyacetylacetonate, dibutyl tin oxide, dibutyl tin oxide Tin diacetate, dibutyltin dilaurate, tin octanoate, 2-ethylhexanetin, zinc acetylacetonate, zirconium tetrachloride, zirconium tetrachloride tetrahydrofuran complex, hafnium tetrachloride, hafnium tetrachloride tetrahydrofuran complex, germanium oxide, tetraethoxygermanium, etc. And the like.
  • metal salts such as titanium, tin, zinc, aluminum, zirconium, magnesium, hafnium, germanium
  • reaction of the aliphatic diol (a1) and the dicarboxylic acid (a2) can be carried out, for example, in the absence of a solvent or in the presence of an organic solvent.
  • reaction of the aliphatic diol (a1) and the dicarboxylic acid (a2) is carried out without a solvent, it can be used after being dissolved in an organic solvent after the reaction.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; and aroma such as toluene, xylene and solvent naphtha Solvents; cycloaliphatic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol Examples thereof include glycol ether solvents such as monoalkyl ether acetate. These organic solvents can be used alone or in combination of two or more.
  • the weight average molecular weight of the saturated polyester resin (A) is such that a (meth) acrylic-modified polyester resin capable of forming a paint film having high processability and weatherability can be obtained. Therefore, the range of 1,000 to 5,000 is preferable, and the range of 2,000 to 3,000 is more preferable.
  • the weight average molecular weight of the saturated polyester resin (A) is a value measured by gel permeation chromatography (GPC).
  • the (meth) acrylic monomer mixture (B) essentially contains a hydroxyl group-containing (meth) acrylic monomer.
  • hydroxyl group-containing (meth) acrylic monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and mono (meth) glycerin. And (meth) acrylic monomers having a hydroxyl group in the molecule such as acrylic acid ester. These hydroxyl group-containing (meth) acrylic monomers can be used alone or in combination of two or more.
  • the content of the hydroxyl group-containing (meth) acrylic monomer is preferably 10% by mass or more in the (meth) acrylic monomer mixture.
  • the range of 20 to 40% by mass is more preferable, and in the case of using for PCM coating etc.
  • the range of% is more preferable.
  • the (meth) acrylic monomer mixture can also contain other (meth) acrylic monomers other than the hydroxyl group-containing (meth) acrylic monomer.
  • Examples of the other (meth) acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and (meth) T-butyl acrylate, 2-ethylhexyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate; (meth) Acrylic acid, ⁇ -carboxyethyl (
  • the mass ratio [(A) / (B)] of the saturated polyester resin (A) to the (meth) acrylic monomer mixture (B) enables high-solidification of the paint and excellent processability And the range of 15/85 to 50/50 is preferable, and the range of 25/75 to 35/65 is more preferable, since a (meth) acrylic-modified polyester resin capable of forming a coating film having weather resistance is obtained.
  • the (meth) acrylic-modified polyester resin of the present invention is prepared, for example, by adding the (meth) acrylic monomer mixture (B) and the polymerization initiator to the organic solvent solution of the saturated polyester resin (A) dropwise and reacting them. Can be obtained by:
  • polymerization initiator examples include azo compounds such as 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile) and azobiscyanovaleric acid; tert-butylperoxy Pivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, tert-butyl Organic peroxides such as peroxy-2-ethylhexyl monocarbonate; and inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate. These polymerization initiators can be used alone or in combination of two or more.
  • azo compounds such as 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-
  • the weight average molecular weight of the (meth) acrylic-modified polyester resin of the present invention is such that the paint can be made into a high solid solution, and a (meth) acrylic-modified polyester resin capable of forming a coating having excellent processability and weatherability From the viewpoint of obtaining, the range of 5,000 to 20,000 is preferable, and the range of 7,500 to 12,500 is more preferable.
  • the hydroxyl value of the (meth) acrylic acid polyester resin of the present invention makes it possible to solidify the paint, and can form a (meth) acrylic-modified polyester resin having excellent processability and weatherability.
  • the range of 60 to 150 is preferable because In particular, when the (meth) acrylic modified polyester resin of the present invention is used for industrial coatings such as automobiles and heavy machinery, the range of 100 to 150 is more preferable, and when it is used for PCM coatings, the range of 60 to 100 is More preferable.
  • the curable resin composition of the present invention essentially contains the (meth) acrylic-modified polyester resin and a curing agent.
  • the curing agent may contain a component capable of causing a curing reaction with the (meth) acrylic-modified polyester resin of the present invention, and as such a component, for example, amino resin, polyisocyanate resin, resol resin And epoxy resins. These may be used alone or in combination of two or more.
  • the components of the curing agent are appropriately selected according to the application and use environment of the curable resin composition, the physical properties of the desired cured product, and the like, as long as the (meth) acrylic-modified polyester resin of the present invention is used as the main agent, Even when any curing agent is used, the effect excellent in the balance between the processability and the weather resistance in the cured coating film exhibited by the present invention is sufficiently exhibited.
  • amino resin for example, a methylolated amino resin synthesized from at least one selected from the group consisting of melamine, urea and benzoguanamine and formaldehydes; part or all of the methylol groups of the methylolated amino resin Those obtained by alkyl etherification with lower monohydric alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol and the like can be mentioned.
  • Examples of commercial products of the amino resin include “Cymel 303” (methylated melamine resin) manufactured by Allnex, “Cymel 350” (methylated melamine resin), “Yuban 520” manufactured by Mitsui Chemicals, Inc. (n- Butylated Modified Melamine Resin), “U-Ban 20-SE-60” (n-Butylated Modified Melamine Resin), “U-Ban 2021” (n-Butylated Modified Melamine Resin), “U-Bon 220” (n-Butylated Modified Melamine) Resin), “U-Bane 22R” (n-butylated modified melamine resin), “U-Ban 2028” (n-butylated modified melamine resin), “U-Bang 165” (isobutylated modified melamine resin), “U-Bang 114” (isobutylated) Modified melamine resin), “U-ban 62” (isobutylated modified melamine resin), “U
  • polyisocyanate resin examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, Alicyclic alicyclic compounds such as hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, diphenylmethane diisocyanate, aromatic diisocyanate compounds such as 1,5-naphthalene diisocyanate; Polymethylene polypheny having a repeating structure represented by formula (1) Polyisocyanates; these isocyanurate modified product, a biuret modified product, an allophanate modified product, and a blocked poly
  • each R 1 independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, or a bonding point which is linked to the structural moiety represented by the structural formula (1) via a methylene group marked with an asterisk (*).
  • m is an integer of 0 or 1 to 3
  • l is an integer of 1 or more.
  • epoxy resin examples include polyglycidyl ethers of polyol compounds, polyglycidyl esters of polycarboxylic acid compounds, bisphenol type epoxy resins, and novolac type epoxy resins.
  • the curable resin composition of the present invention may be, if necessary, a curing catalyst, a curing accelerator, a pigment, a pigment dispersant, a matting agent, a leveling agent, a drying inhibitor, an ultraviolet absorber, an antifoamer, a thickener. An anti-settling agent, an organic solvent and the like may be added.
  • the compounding ratio of each of these components and the kind of compound are suitably adjusted by the use and desired performance of a curable resin composition.
  • the curable resin composition of the present invention may be one-pack type or two-pack type. When the curable resin composition of the present invention is a two-component type, the various additives can be added to either or both of the main agent and the curing agent.
  • the application of the curable resin composition of the present invention is not particularly limited, it can be used for paints and adhesives because it can form a cured coating film having excellent processability and weather resistance, and in particular, it can be used for PCM paints and automobiles. It can be suitably used as a paint for coated steel plates such as top paints, paints for automobiles such as paints for car repair, etc.
  • the coated steel sheet of the present invention refers to a coated steel sheet having a cured coating film of a coating comprising the curable resin composition on the surface of the steel sheet, and the steel sheet refers to, for example, plating of galvanized steel sheet, aluminum-zinc alloy steel sheet, etc.
  • a steel plate, a zinc-aluminium-magnesium alloy plated steel plate, an aluminum plate, an aluminum alloy plate, an electromagnetic steel plate, a copper plate, a stainless steel plate and the like can be mentioned.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the saturated polyester resin used in the present invention, and the number average molecular weight (Mn) of the (meth) acrylic-modified polyester resin of the present invention, and weight average molecular weight (Mw) ) Shows values obtained by measurement under the following conditions by gel permeation chromatography (GPC).
  • Measuring device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were used in series connection. "TSKgel G5000" (7.8 mm ID ⁇ 30 cm) ⁇ 1 "TSK gel G 4000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 "TSK gel G 3000" (7.8 mm ID ⁇ 30 cm) ⁇ 1 This "TSKgel G2000" (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection volume: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4% by mass) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • the saturated polyester resin (1) had a number average molecular weight (Mn) of 1,094, a weight average molecular weight (Mw) of 2,114, an acid value of 2.8 mg KOH / g and a hydroxyl value of 137 mg KOH / g.
  • the obtained saturated polyester resin (1) was dissolved in butyl acetate to obtain a saturated polyester resin (1) solution having a nonvolatile content of 81.4% by mass.
  • the Gardner viscosity of this saturated polyester resin (1) solution was Z4-Z5.
  • the saturated polyester resin (2) had a number average molecular weight (Mn) of 988, a weight average molecular weight (Mw) of 2,026, an acid value of 2.1 mg KOH / g, and a hydroxyl value of 141.3 mg KOH / g.
  • the obtained saturated polyester resin (2) was dissolved in butyl acetate to obtain a saturated polyester resin (2) solution having a nonvolatile content of 83.1% by mass.
  • the Gardner viscosity of this saturated polyester resin (2) solution was Z3-Z4.
  • the saturated polyester resin (3) had a number average molecular weight (Mn) of 667, a weight average molecular weight (Mw) of 1,441, an acid value of 7.2 mg KOH / g, and a hydroxyl value of 169.2 mg KOH / g.
  • the obtained saturated polyester resin (3) was dissolved in butyl acetate to obtain a saturated polyester resin (3) solution having a nonvolatile content of 87% by mass.
  • the Gardner viscosity of this saturated polyester resin (3) solution was Z2-Z3.
  • the saturated polyester resin (4) had a number average molecular weight (Mn) of 2,149, a weight average molecular weight (Mw) of 4,968, an acid value of 4.7 mg KOH / g and a hydroxyl value of 78.6 mg KOH / g. .
  • the obtained saturated polyester resin (4) is dissolved in a mixed solvent of 800 parts by mass of an aromatic solvent ("Solvesso 100" manufactured by Exxon Mobil Co., Ltd.) and 200 parts by mass of propylene glycol monomethyl ether acetate, and the non volatile matter 78 A 0.3% by mass saturated polyester resin (4) solution was obtained.
  • the Gardner viscosity of this saturated polyester resin (4) solution was Z-Z1.
  • Production Example 5 Production of a Saturated Polyester Resin (5) Solution
  • a reaction vessel equipped with a stirrer, a condenser and a thermometer 30.81 parts by mass of 2-methyl-1,3-propanediol, 6.85 parts by mass of 1,6-hexanediol, 1.17 parts by mass of trimethylolpropane, 4.25 parts by mass of neopentyl glycol, 38.44 parts by mass of isophthalic acid, 18.49 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged.
  • the esterification reaction was carried out at 200 to 250 ° C.
  • the number average molecular weight (Mn) of this saturated polyester resin (5) was 1,234, the weight average molecular weight (Mw) was 2,998, the acid value was 6 mg KOH / g, and the hydroxyl value was 113.5 mg KOH / g.
  • the obtained saturated polyester resin (5) was dissolved in butyl acetate to obtain a saturated polyester resin (5) solution having a nonvolatile content of 82.2% by mass.
  • the Gardner viscosity of this saturated polyester resin (5) solution was XY.
  • Production Example 6 Production of Saturated Polyester Resin (6) Solution
  • 25.76 parts by mass of 2-methyl-1,3-propanediol In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 25.76 parts by mass of 2-methyl-1,3-propanediol, 2.02 parts by mass of trimethylolpropane, 12.63 parts by mass of neopentyl glycol, and 40 parts of isophthalic acid .4 parts by mass, 16.67 parts by mass of terephthalic acid, 2.53 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged.
  • the esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (6).
  • the number average molecular weight (Mn) of this saturated polyester resin (6) was 1,763, the weight average molecular weight (Mw) was 4,028, the acid value was 4.5 mg KOH / g, and the hydroxyl value was 94.4 mg KOH / g .
  • the obtained saturated polyester resin (6) was dissolved in butyl acetate to obtain a saturated polyester resin (6) solution having a nonvolatile content of 72% by mass.
  • the Gardner viscosity of this saturated polyester resin (6) solution was Z1-Z2.
  • Example 1 Preparation of (Meth) Acryl-Modified Polyester Resin (1) Solution
  • a reaction vessel equipped with a stirrer, a condenser and a thermometer 17.41 parts by mass of the saturated polyester resin (1) solution obtained in Production Example 1 and 20.38 parts by mass of butyl acetate are charged, and the temperature rises to 120 to 130 ° C. It warmed.
  • Example 2 Preparation of (meth) acrylic modified polyester resin (2)
  • the temperature was raised to 120 to 130.degree.
  • the (meth) acrylic monomer mixture described in Table 1 and 4.02 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide were added dropwise over 4 to 6 hours.
  • Example 3 Preparation of (meth) acrylic modified polyester resin (3)
  • a reaction vessel equipped with a stirrer, a condenser, and a thermometer 18.30 parts by mass of the saturated polyester resin (3) solution obtained in Production Example 3 and 21.26 parts by mass of butyl acetate are charged, and the temperature rises to 120 to 130 ° C. It warmed.
  • (meth) acrylic monomer mixture described in Table 1 4.89 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.5 mass of 1-dodecanethiol over 4 to 6 hours The part was dropped.
  • Example 4 Preparation of (meth) acrylic-modified polyester resin (4)
  • a reaction vessel equipped with a stirrer, a condenser and a thermometer 22.05 parts by mass of the saturated polyester resin (4) solution obtained in Production Example 4; 12.88 parts by mass of butyl acetate; 19.24 parts by mass of propylene glycol monomethyl ether acetate
  • the temperature was raised to 120 to 130 ° C.
  • the (meth) acrylic monomer mixture described in Table 1 3.15 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.45 parts by mass of 1-dodecanethiol.
  • the part was dropped.
  • Example 5 Preparation of (Meth) Acryl-Modified Polyester Resin (5) In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 25.25 parts by mass of the saturated polyester resin (5) solution obtained in Production Example 5; 17.04 parts by mass of butyl acetate; 3.01 parts by mass of propylene glycol monomethyl ether acetate The temperature was raised to 120 to 130 ° C. Then, (meth) acrylic monomer mixture described in Table 1, 4.94 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.54 mass of 1-dodecanethiol over 4 to 6 hours The part was dropped.
  • compositions of the (meth) acrylic modified polyester resins (1) to (5) obtained in Examples 1 to 5 are shown in Table 1.
  • Comparative Preparation Example 1 Preparation of Acrylic Resin Solution (C1-1) In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, butyl acetate was charged, and the temperature was raised to 120 to 130.degree. Then, the acrylic monomer mixture used in Example 5 was dropped over 4 to 6 hours. Thereafter, tert-butyl benzoyl peroxide was added, and allowed to stand at 120 to 130 ° C. for 2 hours to obtain an acrylic resin solution (C1-1) having a nonvolatile content of 70.8% by mass.
  • the acrylic resin solution (C1-1) has a number average molecular weight (Mn) of 2,742, a weight average molecular weight (Mw) of 7,841, an acid value of 6.6 mg KOH / g, and a hydroxyl value (solid content) of 73. 3 mg KOH / g, Gardner viscosity was YZ.
  • Comparative Example 1 Preparation of Mixed Solution (C1) of Acrylic Resin and Polyester Resin
  • the acrylic resin solution (C1-1) obtained in Comparative Production Example 1 and the saturated polyester resin (5) solution obtained in Production Example 5 are mixed at 25 ° C. so that the same polyester amount as in Example 5 can be obtained.
  • a mixed solution (C1) of an acrylic resin and a polyester resin was obtained.
  • Example 6 Preparation of White Paint (1) In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 26.4 parts by mass of the (meth) acrylic-modified polyester resin (4) solution obtained in Example 4 and titanium oxide ("Ti-Pure R960” manufactured by Dupont 34) .3 parts by mass, 0.3 parts by mass of silica ("Aerosil R 972” manufactured by Evonik Industries), aromatic solvent (“Sorvesso 100” manufactured by Exxon Mobil Limited) and propylene glycol monomethyl ether acetate at a mass ratio of 7: 3 The mixed solvent was mixed with 4.1 parts by mass of the mixed solvent and dispersed until the particle size became 10 .mu.m or less ..
  • Solid 100 1.0 part by mass of a mixed solvent in which propylene glycol monomethyl ether acetate is mixed in a mass ratio of 7: 3 are added and mixed, and the Ford cup # 4 viscosity at 25 ° C. is about
  • the white paint (1) was obtained by adjusting to 100 seconds.
  • Example 7 Preparation of White Paint (2)
  • Example 6 was repeated except that the (meth) acrylic modified polyester resin (5) solution obtained in Example 5 was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6.
  • White paint (2) was obtained.
  • Example 6 is the same as Example 6, except that the mixed solution (C1) of the acrylic resin and polyester resin obtained in Comparative Example 1 is used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6.
  • White paint (3) was obtained.
  • Example 6 was carried out in the same manner as Example 6, except that a saturated polyester resin solution ("Beckolite GS-13" manufactured by DIC Corporation) was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. White paint (4) was obtained.
  • Example 6 Preparation of White Paint (5)
  • Example 6 was repeated except that a saturated polyester resin solution ("Beckolite GS-37-1" manufactured by DIC Corporation) was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6.
  • a white paint (5) was obtained in the same manner.
  • Example 6 was carried out in the same manner as Example 6, except that a saturated polyester resin solution ("Beckolite GS-12" manufactured by DIC Corporation) was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6.
  • White paint (7) was obtained.
  • the coated steel plate was produced using the white paint obtained by said Example and comparative example.
  • Examples 8 and 9 Preparation of coated steel sheets (A) and (B)
  • the white paints (1) and (2) obtained in Examples 5 and 6 were each coated with a bar coater to a film thickness of 15 to 20 ⁇ m on a 0.5 mm thick hot-dip galvanized chromate-treated steel sheet, It heat-dried in 20 degreeC oven for 20 seconds (metal peak temperature is 210 degreeC), and obtained the coated steel plates (A) and (B).
  • Comparative Examples 8 to 11 Preparation of Painted Steel Sheets (C) to (F)
  • the white paints (3) to (6) obtained in Comparative Examples 3 to 6 were coated with a bar coater on a hot-dip galvanized chromate-treated steel sheet having a thickness of 0.5 mm so that the film thickness would be 15 to 20 ⁇ m.
  • the resultant was heated and dried in an oven for 40 seconds (metal peak temperature is 230.degree. C.) to obtain coated steel sheets (C) to (F).
  • Example 10 and 11 Preparation of coated steel sheets (G) and (H)
  • a saturated polyester resin (“Beckorite GS-12" manufactured by DIC Corporation) is coated on a 0.5 mm-thick hot-dip galvanized chromate-treated steel plate with a bar coater to a film thickness of 5 ⁇ m, 250 ° C Heat-dried in an oven for 20 seconds (metal peak temperature is 210 ° C.) to form a primer layer, and then the white paints (1) and (2) obtained in Examples 5 and 6 were applied to the surface of the primer layer. It coated with a bar coater so that a film thickness might be set to 15 micrometers, and it heat-dried for 40 seconds in a 250 degreeC oven (metal peak temperature is 210 degreeC), and created the coated steel plates (G) and (H).
  • a saturated polyester resin ("Beckorite GS-12" manufactured by DIC Corporation) is coated on a 0.5 mm-thick hot-dip galvanized chromate-treated steel plate with a bar coater to a film thickness of 5 ⁇ m, 250 ° C (The metal peak temperature is 210 ° C.) to form a primer layer, and then the white paints (3), (6) and (7) obtained in Comparative Examples 3, 6 and 7 are prepared.
  • the primer layer is coated with a bar coater to a film thickness of 15 ⁇ m and dried by heating in an oven at 250 ° C. for 40 seconds (metal peak temperature is 230 ° C.) to produce coated steel plates (I) to (K) did.
  • Example 12 Preparation of Clear Paint (1) In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 87.8 parts by mass of the (meth) acrylic-modified polyester resin (5) solution obtained in Example 5; amino resin ("Cymel 303LF” manufactured by Allnex) 10. 0 parts by mass, 0.9 parts by mass of a catalyst ("Nacure 5225” manufactured by King), 0.5 parts by mass of a leveling agent ("Modaflow 2100” manufactured by Allnex), aromatic solvent (“Solvesso 100” manufactured by Exxon Mobil Co., Ltd. ) And propylene glycol monomethyl ether acetate in a mass ratio of 7: 3 are added and mixed, and the mixture is further adjusted so that the Ford cup # 4 viscosity at 25 ° C. becomes about 100 seconds And got clear paint (1).
  • amino resin (“Cymel 303LF” manufactured by Allnex) 10. 0 parts by mass, 0.9 parts by mass of a catalyst ("Nacure 5225"
  • Example 13 Preparation of a coated steel sheet (L)
  • the clear paint (1) obtained in Example 12 was coated on a 0.5 mm thick hot-dip galvanized chromate-treated steel sheet to a film thickness of 15 to 20 ⁇ m with a bar coater, and kept for 20 seconds in an oven at 250 ° C. It heat-dried (metal peak temperature is 210 degreeC) and obtained the coated steel plate (L).
  • Examples 8 and 9 shown in Table 3 are examples of the white paint using the (meth) acrylic modified polyester resin of the present invention, both have a high nonvolatile content such as 73.3% by mass of nonvolatile content. It was confirmed that high solid paint could be made. In addition, it has been confirmed that the coating film of the white paint is excellent not only in excellent processability and weatherability but also in coating film hardness and stain resistance.
  • Comparative Example 8 is an example of a white paint using a mixed solution of an acrylic resin and a polyester resin, but it has a high non-volatile content and although a high solid paint can be produced, the paint film of the paint is It was confirmed that the gloss retention was as low as 60% and the weather resistance was insufficient.
  • Comparative Examples 9 and 10 are examples of the white paint using a saturated polyester resin, but the nonvolatile content is as low as 64.3 mass% (Comparative Example 9) and 63.2 mass% (Comparative Example 10), and is a high solid. It could be confirmed that it was not possible to make a good paint. In addition, it was confirmed that the coating film of the white paint had an extremely low gloss retention of 30% (Comparative Example 9) and 55% (Comparative Example 10), and the weather resistance was extremely insufficient.
  • Comparative Example 11 is an example of a white paint using an acrylic resin solution, but although a high non-volatile content and high solid paint can be produced, the paint film of the paint has insufficient processability. It has been confirmed that there is.
  • Examples 10 and 11 and Comparative Examples 12 to 14 shown in Table 4 relate to a coated steel plate provided with a primer layer between the steel plate and the white paint. It was confirmed that the coating film of the white paint in the coated steel sheet obtained in Examples 10 and 11 was excellent not only in the excellent processability and the weather resistance but also in the coating film hardness and the stain resistance.
  • Example 13 shown in Table 5 is an example of a clear paint using the (meth) acrylic-modified polyester resin of the present invention. It was confirmed that the coating film of the clear paint in the coated steel sheet obtained in Example 13 is excellent not only in the excellent processability and the weather resistance but also in the film hardness and the stain resistance.

Abstract

The present invention provides a (meth)acrylic-modified polyester resin formed of essential reaction starting materials including a saturated polyester resin (A) and a (meth)acrylic monomer mixture (B) that contains a hydroxyl group-bearing (meth)acrylic monomer, the (meth)acrylic-modified polyester resin being characterized in that the saturated polyester resin (A) is the polycondensate of an aliphatic diol (a1) and a dicarboxylic acid (a2) containing an aliphatic dicarboxylic acid and the aliphatic dicarboxylic acid content in the dicarboxylic acid (a2) is at least 5 mass%. This (meth)acrylic-modified polyester resin can provide high solidification of a coating material and can form a coating film that exhibits excellent workability and excellent weather resistance.

Description

(メタ)アクリル変性ポリエステル樹脂、硬化性樹脂組成物、塗料及び塗装鋼板(Meth) acrylic-modified polyester resin, curable resin composition, paint, and coated steel plate
 本発明は、(メタ)アクリル変性ポリエステル樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる塗料、及び前記塗料の塗膜を有する塗装鋼板に関する。 The present invention relates to a (meth) acrylic-modified polyester resin, a curable resin composition containing the same, a paint comprising the curable resin composition, and a coated steel plate having a coating of the paint.
 家電や自動車部品、建材、製缶用途等の各種金属部品或いは金属成形品の塗装方法として、鋼板に予め塗装を施すプレコート法と、鋼板を成形した後に塗装するポストコート法が知られている。プレコート法に用いる鋼板は一般にプレコートメタル(以下、「PCM」と略記する。)と呼ばれており、予め塗装した鋼板を用途に応じて切断し、様々な形状に成形加工して用いるため、PCM塗料には塗膜表面の硬度や光沢に加え、非常に高い加工性と耐候性が求められている。 As a coating method of various metal parts or metal molded products such as home appliances, automobile parts, building materials, can making, etc., a pre-coating method in which a steel plate is previously coated and a post-coating method in which a steel plate is formed after coating are known. The steel plate used for the pre-coating method is generally called pre-coated metal (hereinafter abbreviated as "PCM"), and the pre-painted steel plate is cut according to the application and formed into various shapes for use. Coatings are required to have extremely high processability and weatherability, in addition to the hardness and gloss of the coating film surface.
 また、近年は、環境への影響を考慮し、揮発性有機化合物(VOC)の量を低減した溶剤含有量の少ないハイソリッド型PCM塗料の検討も行われており、塗料のハイソリッド化が求められている。 Also, in recent years, in consideration of environmental impact, high-solid type PCM paint with low solvent content and reduced amount of volatile organic compound (VOC) has been studied, so high-solidification of paint is required. It is done.
 従来のPCM塗料には、二液硬化型、紫外線硬化型、揮発乾燥型等様々な形態の塗料が用いられており、また、樹脂系もポリエステル樹脂、フッ素樹脂、アクリル樹脂等多種多様であるが、これらの中でも優れた加工性を有することから、ポリエステル樹脂を主剤とする二液硬化型の塗料が広く利用されている。 For conventional PCM paints, paints of various forms such as two-component curing type, UV curing type, and volatilization drying type are used, and the resin system is also various as polyester resin, fluorine resin, acrylic resin, etc. Among these, a two-component curable coating mainly composed of a polyester resin is widely used because it has excellent processability.
 前記ポリエステル樹脂を主剤とする二液硬化型の塗料としては、例えば、テレフタル酸、イソフタル酸、2-メチル-1,3-プロパンジオール、1,6-ヘキサンジオールを反応原料とする数平均分子量(Mn)11,000のポリエステル樹脂を主剤とする塗料が知られている(例えば、特許文献1参照。)が、加工性には優れるものの、塗料のハイソリッド化の点において近年要求されている基準に及ぶものではなかった。 Examples of the two-component curable paint containing the polyester resin as a main component include, for example, terephthalic acid, isophthalic acid, 2-methyl-1,3-propanediol, and a number average molecular weight using 1,6-hexanediol as a reaction raw material Paints based on polyester resins of 11,000 Mn are known (see, for example, Patent Document 1), but although excellent in processability, standards that are recently required in terms of high solidification of the paint It did not cover the
 そこで、塗料のハイソリッド化を実現でき、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な材料が求められていた。 Therefore, there has been a demand for a material capable of achieving high solidification of the coating and capable of forming a coating film having excellent processability and weatherability.
特開平9-12969号公報Japanese Patent Laid-Open No. 9-12969
 本発明が解決しようとする課題は、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂、これを含有する硬化性樹脂組成物、塗料及び塗装鋼板を提供することにある。 The problem to be solved by the present invention is (meth) acrylic-modified polyester resin capable of forming a coating having high processability and weatherability, which is capable of achieving high solidification of paint, and curability containing the same. It is providing a resin composition, a paint, and a coated steel plate.
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、飽和ポリエステル樹脂と(メタ)アクリル単量体混合物とを必須の反応原料とする(メタ)アクリル変性ポリエステル樹脂を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the inventors of the present invention have found that, by using a (meth) acrylic-modified polyester resin having a saturated polyester resin and a (meth) acrylic monomer mixture as essential reaction raw materials, The inventors have found that the above problems can be solved, and completed the present invention.
 すなわち、発明は、飽和ポリエステル樹脂(A)と、水酸基含有(メタ)アクリル単量体を含有する(メタ)アクリル単量体混合物(B)とを必須の反応原料とする(メタ)アクリル変性ポリエステル樹脂であって、前記飽和ポリエステル樹脂(A)が、脂肪族ジオール(a1)と、脂肪族ジカルボン酸を含有するジカルボン酸(a2)との重縮合物であり、前記脂肪族ジカルボン酸の含有量が、前記ジカルボン酸(a2)中に5質量%以上であることを特徴とする(メタ)アクリル変性ポリエステル樹脂、これを含有する硬化性樹脂組成物、塗料及び塗装鋼板に関するものである。 That is, according to the invention, a (meth) acrylic-modified polyester comprising a saturated polyester resin (A) and a (meth) acrylic monomer mixture (B) containing a hydroxyl group-containing (meth) acrylic monomer as essential reaction raw materials It is a resin, and the saturated polyester resin (A) is a polycondensate of an aliphatic diol (a1) and a dicarboxylic acid (a2) containing an aliphatic dicarboxylic acid, and the content of the aliphatic dicarboxylic acid The present invention relates to a (meth) acrylic-modified polyester resin having a content of 5% by mass or more in the dicarboxylic acid (a2), a curable resin composition containing the same, a paint, and a coated steel sheet.
 本発明の(メタ)アクリル変性ポリエステル樹脂は、塗料のハイソリッド化、すなわち高不揮発分化が可能であり、また、優れた加工性及び耐候性を有する塗膜を形成できることから、PCM塗料や、自動車上塗り塗料、自動車補修用塗料等の自動車用塗料などに好適に用いることができる。なお、本発明でいう「ハイソリッド」とは、塗料の不揮発分が65質量%以上を指す。 The (meth) acrylic-modified polyester resin of the present invention enables high-solidification of the paint, that is, high non-volatile differentiation, and can form a coating film having excellent processability and weather resistance. It can be suitably used for automotive paints such as top coats and automotive repair paints. In the present invention, “high solid” indicates that the non-volatile content of the paint is 65% by mass or more.
 本発明の(メタ)アクリル変性ポリエステル樹脂は、飽和ポリエステル樹脂(A)と、(メタ)アクリル単量体混合物(B)とを必須の反応原料とすることを特徴とする。 The (meth) acrylic-modified polyester resin of the present invention is characterized in that the saturated polyester resin (A) and the (meth) acrylic monomer mixture (B) are essential reaction raw materials.
 前記飽和ポリエステル樹脂(A)とは、脂肪族の炭素間二重結合を実質的に有さないポリエステル樹脂をいう。 The saturated polyester resin (A) refers to a polyester resin substantially having no aliphatic carbon-carbon double bond.
 前記飽和ポリエステル樹脂(A)としては、脂肪族ジオール(a1)とジカルボン酸(a2)とを重縮合反応させて得られたものを用いる。 As said saturated polyester resin (A), what was obtained by carrying out the polycondensation reaction of aliphatic diol (a1) and dicarboxylic acid (a2) is used.
 前記脂肪族ジオール(a1)としては、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから、少なくとも1つの側鎖を有する非対称ジオール、及び/または側鎖を有しない直鎖ジオールを含むものが好ましい。なお、本発明でいう「非対称ジオール」とは、構造が非対称なジオールを指す。 As the aliphatic diol (a1), it is possible to form a coating having high processability and weatherability, and to obtain a (meth) acrylic-modified polyester resin capable of achieving high-solidification of the coating, so that at least at least Those containing an asymmetric diol having one side chain and / or a linear diol having no side chain are preferred. In the present invention, the term "asymmetric diol" refers to a diol having an asymmetric structure.
 前記少なくとも1つの側鎖を有する非対称ジオールとしては、例えば、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、2-エチル-1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、3-メチル-1,5-ヘプタンジオール等が挙げられる。これらの少なくとも1つの側鎖を有する非対称ジオールは、単独で用いることも2種以上を併用することもできる。また、これらの中でも、2-メチル-1,3-プロパンジオールが好ましい。 Examples of the asymmetric diol having at least one side chain include 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-1,4-butanediol, and 2-ethyl-1,4-butane. Diol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 3-methyl-1,5-heptanediol and the like can be mentioned. These unsymmetrical diols having at least one side chain can be used alone or in combination of two or more. Also among these, 2-methyl-1,3-propanediol is preferred.
 前記側鎖を有しない直鎖ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ナノジオール、1,10-ドデカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,15-ペンタデカンジオール、1,16-ヘキサデカンジオール、1,17-ヘプタデカンジオール、1,18-オクタデカンジオール、1,19-ノナデカンジオール、1,20-エイコサンジオール等が挙げられる。これらの側鎖を有しない直鎖ジオールは、単独で用いることも2種以上を併用することもできる。また、これらの中でも、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから、1,6-ヘキサンジオールが好ましい。 Examples of the linear diol having no side chain include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and the like. -Heptanediol, 1,8-octanediol, 1,9-nanodiol, 1,10-dodecanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14- Tetradecanediol, 1,15-pentadecanediol, 1,16-hexadecanediol, 1,17-heptadecanediol, 1,18-octadecanediol, 1,19-nonadecanediol, 1,20-eicosanediol etc. Be These linear diols having no side chain can be used alone or in combination of two or more. Further, among these, 1,6-hexane, because it is possible to obtain a (meth) acrylic-modified polyester resin capable of forming a paint film having high processability and weather resistance, while being able to make the paint highly solid. Diols are preferred.
 また、前記脂肪族ジオール(a1)としては、前記少なくとも1つの側鎖を有する非対称ジオール及び側鎖を有しない直鎖ジオール以外に、必要に応じて、その他のジオールを用いることができる。 Moreover, as said aliphatic diol (a1), other diol can be used as needed other than the unsymmetrical diol which has the said at least 1 side chain, and the linear diol which does not have a side chain.
 前記その他の脂肪族ジオールとしては、例えば、ネオペンチルグリコール、水添ビスフェノールA、水添ビスフェノールF、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,2-ヘキサンジオール、1,4-ヘキサンジオール、2,3-ヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等が挙げられる。これらのその他の脂肪族ジオールは、単独で用いることも2種以上を併用することもできる。 Examples of the other aliphatic diols include neopentyl glycol, hydrogenated bisphenol A, hydrogenated bisphenol F, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,2-butanediol, and 1,3-butanediol. Butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,2-hexanediol, 1,4-hexanediol, 2,3-hexanediol, 2,2-diethyl-1,3-propanediol And 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol and the like. These other aliphatic diols can be used alone or in combination of two or more.
 前記ジカルボン酸(a2)としては、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから脂肪族ジカルボン酸を必須として含有する。 As the dicarboxylic acid (a2), an aliphatic dicarboxylic acid is contained as an essential component because a (meth) acrylic-modified polyester resin capable of forming a coating film having excellent processability and weatherability is obtained.
 前記脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、シクロヘキサンジカルボン酸、ダイマー酸、フマル酸等やこれらの脂肪族ジカルボン酸のメチルエステル、酸塩化物などが挙げられる。これらの脂肪族ジカルボン酸は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、アジピン酸が好ましい。 Examples of the aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, dimer acid, fumaric acid and the like, and aliphatics thereof The methyl ester of dicarboxylic acid, an acid chloride, etc. are mentioned. These aliphatic dicarboxylic acids can be used alone or in combination of two or more. Among these, adipic acid is preferred.
 前記脂肪族ジカルボン酸の含有量は、前記(メタ)アクリル単量体混合物(B)との相溶性に優れることから、前記ジカルボン酸(a2)中に5質量%以上含有するものであり、10~20質量%の範囲がより好ましい。 The content of the aliphatic dicarboxylic acid is 5% by mass or more in the dicarboxylic acid (a2) because it is excellent in compatibility with the (meth) acrylic monomer mixture (B), and 10 The range of -20% by mass is more preferable.
 また、前記ジカルボン酸(a2)としては、必要に応じて、脂環式ジカルボン酸や芳香族ジカルボン酸、またはこれらの酸無水物を含有することもできる。前記脂環式ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、トリメリット酸、ピロメリット酸、無水フタル酸等が挙げられる。 Moreover, as said dicarboxylic acid (a2), alicyclic dicarboxylic acid, aromatic dicarboxylic acid, or these acid anhydrides can also be contained as needed. Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid and the like. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, p-hydroxybenzoic acid P- (2-hydroxyethoxy) benzoic acid, trimellitic acid, pyromellitic acid, phthalic anhydride and the like.
 前記脂肪族ジオール(a1)と前記ジカルボン酸(a2)との重縮合反応においては、必要に応じて、エステル化触媒を用いることもできる。 In the polycondensation reaction of the aliphatic diol (a1) and the dicarboxylic acid (a2), an esterification catalyst can also be used, if necessary.
 前記エステル化触媒としては、例えば、チタン、スズ、亜鉛、アルミニウム、ジルコニウム、マグネシウム、ハフニウム、ゲルマニウム等の金属塩;チタンテトライソプロポキシド、チタンテトラブトキシド、チタンオキシアセチルアセトナート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、オクタン酸錫、2-エチルヘキサンスズ、アセチルアセトナート亜鉛、4塩化ジルコニウム、4塩化ジルコニウムテトラヒドロフラン錯体、4塩化ハフニウム、4塩化ハフニウムテトラヒドロフラン錯体、酸化ゲルマニウム、テトラエトキシゲルマニウム等の金属化合物などが挙げられる。 Examples of the esterification catalyst include metal salts such as titanium, tin, zinc, aluminum, zirconium, magnesium, hafnium, germanium and the like; titanium tetraisopropoxide, titanium tetrabutoxide, titanium oxyacetylacetonate, dibutyl tin oxide, dibutyl tin oxide Tin diacetate, dibutyltin dilaurate, tin octanoate, 2-ethylhexanetin, zinc acetylacetonate, zirconium tetrachloride, zirconium tetrachloride tetrahydrofuran complex, hafnium tetrachloride, hafnium tetrachloride tetrahydrofuran complex, germanium oxide, tetraethoxygermanium, etc. And the like.
 また、前記脂肪族ジオール(a1)と前記ジカルボン酸(a2)の反応は、例えば、無溶剤または有機溶剤の存在下で行うことができる。 The reaction of the aliphatic diol (a1) and the dicarboxylic acid (a2) can be carried out, for example, in the absence of a solvent or in the presence of an organic solvent.
 また、前記脂肪族ジオール(a1)と前記ジカルボン酸(a2)の反応を無溶剤で行った場合であっても、反応後に有機溶剤に溶解して用いることもできる。 Further, even when the reaction of the aliphatic diol (a1) and the dicarboxylic acid (a2) is carried out without a solvent, it can be used after being dissolved in an organic solvent after the reaction.
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、イソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤などが挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。 Examples of the organic solvent include ketone solvents such as methyl ethyl ketone, acetone and isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; and aroma such as toluene, xylene and solvent naphtha Solvents; cycloaliphatic solvents such as cyclohexane and methylcyclohexane; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol and propylene glycol monomethyl ether; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol Examples thereof include glycol ether solvents such as monoalkyl ether acetate. These organic solvents can be used alone or in combination of two or more.
 前記飽和ポリエステル樹脂(A)の重量平均分子量は、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから、1,000~5,000の範囲が好ましく、2,000~3,000の範囲がより好ましい。 The weight average molecular weight of the saturated polyester resin (A) is such that a (meth) acrylic-modified polyester resin capable of forming a paint film having high processability and weatherability can be obtained. Therefore, the range of 1,000 to 5,000 is preferable, and the range of 2,000 to 3,000 is more preferable.
 なお、前記飽和ポリエステル樹脂(A)の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The weight average molecular weight of the saturated polyester resin (A) is a value measured by gel permeation chromatography (GPC).
 前記(メタ)アクリル単量体混合物(B)は、水酸基含有(メタ)アクリル単量体を必須として含有する。 The (meth) acrylic monomer mixture (B) essentially contains a hydroxyl group-containing (meth) acrylic monomer.
 前記水酸基含有(メタ)アクリル単量体としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、グリセリンのモノ(メタ)アクリル酸エステル等の分子中に水酸基を有する(メタ)アクリル単量体が挙げられる。これらの水酸基含有(メタ)アクリル単量体は、単独で用いることも2種以上を併用することもできる。 Examples of the hydroxyl group-containing (meth) acrylic monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and mono (meth) glycerin. And (meth) acrylic monomers having a hydroxyl group in the molecule such as acrylic acid ester. These hydroxyl group-containing (meth) acrylic monomers can be used alone or in combination of two or more.
 また、前記水酸基含有(メタ)アクリル単量体の含有量は、前記(メタ)アクリル単量体混合物中に10質量%以上であることが好ましい。特に、本発明の(メタ)アクリル変性ポリエステル樹脂を自動車、重機等の工業用塗料などに用いる場合は、20~40質量%の範囲がより好ましく、PCM塗料などに用いる場合は、10~25質量%の範囲がより好ましい。 In addition, the content of the hydroxyl group-containing (meth) acrylic monomer is preferably 10% by mass or more in the (meth) acrylic monomer mixture. In particular, in the case of using the (meth) acrylic modified polyester resin of the present invention for industrial coatings such as automobiles and heavy machinery, the range of 20 to 40% by mass is more preferable, and in the case of using for PCM coating etc. The range of% is more preferable.
 前記(メタ)アクリル単量体混合物としては、水酸基含有(メタ)アクリル単量体以外のその他の(メタ)アクリル単量体を含有することもできる。 The (meth) acrylic monomer mixture can also contain other (meth) acrylic monomers other than the hydroxyl group-containing (meth) acrylic monomer.
 前記その他の(メタ)アクリル単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸、(メタ)アクリル酸β-カルボキシエチル、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸、β-(メタ)アクリロイルオキシエチルハイドロゲンサクシネート、β-(メタ)ヒドロキシエチルハイドロゲンフタレート等のカルボキシル基含有(メタ)アクリル単量体及びこれらの塩;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N-モノアルキルアミノアルキル、(メタ)アクリル酸N,N-ジアルキルアミノアルキル、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピルアクリルアミド、ジアセトン(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等のアミド基含有(メタ)アクリル単量体;アクロレイン、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等のビニルエステル化合物;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、アミルビニルエーテル、ヘキシルビニルエーテル等のビニルエーテル化合物;(メタ)アクリロニトリル等のビニルニトリル化合物;スチレン、α-メチルスチレン、ビニルトルエン、ビニルアニソール、α-ハロスチレン、ビニルナフタリン等の芳香環を有するビニル単量体;イソプレン、ブタジエン、エチレン等の官能基を有しないビニル単量体;N-ビニルピロリドン等の複素環式ビニル単量体;リン酸(メタ)アクリロイルオキシエチル、リン酸ジ(メタ)アクリロイルオキシエチル、リン酸トリ(メタ)アクリロイルオキシエチル、カプロラクトン変性リン酸(メタ)アクリロイルオキシエチル等のリン酸基含有(メタ)アクリル単量体などが挙げられる。これらのその他の(メタ)アクリル単量体は、単独で用いることも2種以上を併用することもできる。 Examples of the other (meth) acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and (meth) T-butyl acrylate, 2-ethylhexyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate; (meth) Acrylic acid, β-carboxyethyl (meth) acrylate, 2- (meth) acryloyl propion , Crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic anhydride, β- (meth) acryloyloxyethyl hydrogen succinate, β- (meth) hydroxyethyl Carboxyl group-containing (meth) acrylic monomers such as hydrogen phthalate and salts thereof; aminoethyl (meth) acrylate, N-monoalkylaminoalkyl (meth) acrylate, N, N-dialkylamino (meth) acrylate Alkyl, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N- propyl acrylamide, diacetone (meth) acrylamide, N- methylol (meth) acrylamide, N- isopropyl (meth) acrylamide An amide group-containing (meth) acrylic monomer such as N-butyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide; acrolein, vinyl acetate, vinyl propionate, Vinyl ester compounds such as vinyl versatate; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, amyl vinyl ether, hexyl vinyl ether; vinyl nitrile compounds such as (meth) acrylonitrile; styrene, α-methylstyrene, vinyl toluene , Vinyl monomers having an aromatic ring such as vinyl anisole, α-halostyrene, vinyl naphthalene, etc .; vinyl monomers having no functional group such as isoprene, butadiene, ethylene, etc .; Heterocyclic vinyl monomers such as don; phosphoric acid (meth) acryloyloxyethyl, di (meth) acryloyloxyethyl phosphate, tri (meth) acryloyloxyethyl phosphate, caprolactone modified phosphoric acid (meth) acryloyloxyethyl And phosphoric acid group-containing (meth) acrylic monomers. These other (meth) acrylic monomers can be used alone or in combination of two or more.
 前記飽和ポリエステル樹脂(A)と前記(メタ)アクリル単量体混合物(B)との質量比[(A)/(B)]は、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから、15/85~50/50の範囲が好ましく、25/75~35/65の範囲がより好ましい。 The mass ratio [(A) / (B)] of the saturated polyester resin (A) to the (meth) acrylic monomer mixture (B) enables high-solidification of the paint and excellent processability And the range of 15/85 to 50/50 is preferable, and the range of 25/75 to 35/65 is more preferable, since a (meth) acrylic-modified polyester resin capable of forming a coating film having weather resistance is obtained.
 本発明の(メタ)アクリル変性ポリエステル樹脂は、例えば、前記飽和ポリエステル樹脂(A)の有機溶剤溶液に前記(メタ)アクリル単量体混合物(B)と重合開始剤とを滴下して反応させることによって得ることができる。 The (meth) acrylic-modified polyester resin of the present invention is prepared, for example, by adding the (meth) acrylic monomer mixture (B) and the polymerization initiator to the organic solvent solution of the saturated polyester resin (A) dropwise and reacting them. Can be obtained by
 前記重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビスシアノ吉草酸等のアゾ化合物;tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート等の有機過酸化物;過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物が挙げられる。これらの重合開始剤は、単独で用いることも2種以上を併用することもできる。 Examples of the polymerization initiator include azo compounds such as 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile) and azobiscyanovaleric acid; tert-butylperoxy Pivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, tert-butyl Organic peroxides such as peroxy-2-ethylhexyl monocarbonate; and inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate. These polymerization initiators can be used alone or in combination of two or more.
 本発明の(メタ)アクリル変性ポリエステル樹脂の重量平均分子量は、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから、5,000~20,000の範囲が好ましく、7,500~12,500の範囲がより好ましい。 The weight average molecular weight of the (meth) acrylic-modified polyester resin of the present invention is such that the paint can be made into a high solid solution, and a (meth) acrylic-modified polyester resin capable of forming a coating having excellent processability and weatherability From the viewpoint of obtaining, the range of 5,000 to 20,000 is preferable, and the range of 7,500 to 12,500 is more preferable.
 また、本発明の(メタ)アクリル酸ポリエステル樹脂の水酸基価は、塗料のハイソリッド化が可能で、かつ、優れた加工性及び耐候性を有する塗膜を形成可能な(メタ)アクリル変性ポリエステル樹脂が得られることから、60~150の範囲が好ましい。特に、本発明の(メタ)アクリル変性ポリエステル樹脂を自動車、重機等の工業用塗料などに用いる場合は、100~150の範囲がより好ましく、PCM塗料などに用いる場合は、60~100の範囲がより好ましい。 In addition, the hydroxyl value of the (meth) acrylic acid polyester resin of the present invention makes it possible to solidify the paint, and can form a (meth) acrylic-modified polyester resin having excellent processability and weatherability. The range of 60 to 150 is preferable because In particular, when the (meth) acrylic modified polyester resin of the present invention is used for industrial coatings such as automobiles and heavy machinery, the range of 100 to 150 is more preferable, and when it is used for PCM coatings, the range of 60 to 100 is More preferable.
 本発明の硬化性樹脂組成物は、前記(メタ)アクリル変性ポリエステル樹脂と、硬化剤とを必須として含有する。 The curable resin composition of the present invention essentially contains the (meth) acrylic-modified polyester resin and a curing agent.
 前記硬化剤としては、前記本発明の(メタ)アクリル変性ポリエステル樹脂と硬化反応を生じ得る成分を含有していればよく、このような成分としては、例えば、アミノ樹脂、ポリイソシアネート樹脂、レゾール樹脂、エポキシ樹脂等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。前記硬化剤の成分は、硬化性樹脂組成物の用途や使用環境、所望の硬化物の物性等に応じて適宜選択されるが、主剤として本発明の(メタ)アクリル変性ポリエステル樹脂を用いる限り、いずれの硬化剤を用いた場合であっても、本発明が奏する硬化塗膜における加工性と耐候性とのバランスに優れる効果は十分に発揮される。 The curing agent may contain a component capable of causing a curing reaction with the (meth) acrylic-modified polyester resin of the present invention, and as such a component, for example, amino resin, polyisocyanate resin, resol resin And epoxy resins. These may be used alone or in combination of two or more. The components of the curing agent are appropriately selected according to the application and use environment of the curable resin composition, the physical properties of the desired cured product, and the like, as long as the (meth) acrylic-modified polyester resin of the present invention is used as the main agent, Even when any curing agent is used, the effect excellent in the balance between the processability and the weather resistance in the cured coating film exhibited by the present invention is sufficiently exhibited.
 前記アミノ樹脂としては、例えば、メラミン、尿素及びベンゾグアナミンからなる群より選ばれる少なくとも1種と、ホルムアルデヒド類とから合成されるメチロール化アミノ樹脂;前記メチロール化アミノ樹脂のメチロール基の一部または全部をメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等の低級一価アルコールによって、アルキルエーテル化したものなどが挙げられる。 As the amino resin, for example, a methylolated amino resin synthesized from at least one selected from the group consisting of melamine, urea and benzoguanamine and formaldehydes; part or all of the methylol groups of the methylolated amino resin Those obtained by alkyl etherification with lower monohydric alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol and the like can be mentioned.
 前記アミノ樹脂の市販品としては、例えば、Allnex社製「Cymel 303」(メチル化メラミン樹指)、「Cymel 350」(メチル化メラミン樹脂)、三井化学株式会社社製「ユーバン520」(n-ブチル化変性メラミン樹脂)、「ユーバン20-SE-60」(n-ブチル化変性メラミン樹脂)、「ユーバン2021」(n-ブチル化変性メラミン樹脂)、「ユーバン220」(n-ブチル化変性メラミン樹脂)、「ユーバン22R」(n-ブチル化変性メラミン樹脂)、「ユーバン2028」(n-ブチル化変性メラミン樹脂)、「ユーバン165」(イソブチル化変性メラミン樹脂)、「ユーバン114」(イソブチル化変性メラミン樹脂)、「ユーバン62」(イソブチル化変性メラミン樹脂)、「ユーバン60R」(イソブチル化変性メラミン樹脂)等が挙げられる。また、これらアミノ樹脂を用いる場合には、リン酸エステル等の酸化合物を硬化促進剤として添加しても良い。 Examples of commercial products of the amino resin include “Cymel 303” (methylated melamine resin) manufactured by Allnex, “Cymel 350” (methylated melamine resin), “Yuban 520” manufactured by Mitsui Chemicals, Inc. (n- Butylated Modified Melamine Resin), “U-Ban 20-SE-60” (n-Butylated Modified Melamine Resin), “U-Ban 2021” (n-Butylated Modified Melamine Resin), “U-Bon 220” (n-Butylated Modified Melamine) Resin), “U-Bane 22R” (n-butylated modified melamine resin), “U-Ban 2028” (n-butylated modified melamine resin), “U-Bang 165” (isobutylated modified melamine resin), “U-Bang 114” (isobutylated) Modified melamine resin), “U-ban 62” (isobutylated modified melamine resin), “U-ban 6 R "(isobutyl-modified melamine resin). Moreover, when using these amino resins, you may add acid compounds, such as phosphoric acid ester, as a hardening accelerator.
 前記ポリイソシアネート樹脂としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(1)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体、ブロック化ポリイソシアネート樹脂などが挙げられる。 Examples of the polyisocyanate resin include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, Alicyclic alicyclic compounds such as hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, diphenylmethane diisocyanate, aromatic diisocyanate compounds such as 1,5-naphthalene diisocyanate; Polymethylene polypheny having a repeating structure represented by formula (1) Polyisocyanates; these isocyanurate modified product, a biuret modified product, an allophanate modified product, and a blocked polyisocyanate resin.
Figure JPOXMLDOC01-appb-C000001
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式(1)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。mは0又は1~3の整数であり、lは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000001
[Wherein, each R 1 independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 2 each independently represents an alkyl group having 1 to 4 carbon atoms, or a bonding point which is linked to the structural moiety represented by the structural formula (1) via a methylene group marked with an asterisk (*). m is an integer of 0 or 1 to 3, and l is an integer of 1 or more. ]
 前記エポキシ樹脂としては、例えば、ポリオール化合物のポリグリシジルエーテル、ポリカルボン酸化合物のポリグリシジルエステル、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等が挙げられる。 Examples of the epoxy resin include polyglycidyl ethers of polyol compounds, polyglycidyl esters of polycarboxylic acid compounds, bisphenol type epoxy resins, and novolac type epoxy resins.
 本発明の硬化性樹脂組成物は、必要に応じて、硬化触媒、硬化促進剤、顔料、顔料分散剤、マッティング剤、レベリング剤、乾燥抑制剤、紫外線吸収剤、消泡剤、増粘剤、沈降防止剤、有機溶剤等を添加しても良い。これら各成分の配合割合や、配合物の種類は硬化性樹脂組成物の用途や所望の性能によって適宜調整される。また、本発明の硬化性樹脂組成物は、一液型であっても良いし、二液型であっても良い。本発明の硬化性樹脂組成物が二液型である場合、前記各種の添加剤は、主剤又は硬化剤のどちらか一方又は両方に添加することができる。 The curable resin composition of the present invention may be, if necessary, a curing catalyst, a curing accelerator, a pigment, a pigment dispersant, a matting agent, a leveling agent, a drying inhibitor, an ultraviolet absorber, an antifoamer, a thickener. An anti-settling agent, an organic solvent and the like may be added. The compounding ratio of each of these components and the kind of compound are suitably adjusted by the use and desired performance of a curable resin composition. In addition, the curable resin composition of the present invention may be one-pack type or two-pack type. When the curable resin composition of the present invention is a two-component type, the various additives can be added to either or both of the main agent and the curing agent.
 本発明の硬化性樹脂組成物の用途は特に限定されないが、優れた加工性及び耐候性を有する硬化塗膜を形成できることから、塗料や接着剤用途に用いることができ、特にPCM塗料や、自動車上塗り塗料、自動車補修用塗料等の自動車用塗料などの塗装鋼板用塗料として好適に用いることができる。 Although the application of the curable resin composition of the present invention is not particularly limited, it can be used for paints and adhesives because it can form a cured coating film having excellent processability and weather resistance, and in particular, it can be used for PCM paints and automobiles. It can be suitably used as a paint for coated steel plates such as top paints, paints for automobiles such as paints for car repair, etc.
 本発明の塗装鋼板とは、鋼板の表面に前記硬化性樹脂組成物からなる塗料の硬化塗膜を有するものをいい、前記鋼板とは、例えば、亜鉛めっき鋼板、アルミニウム-亜鉛合金鋼板等のめっき鋼板、亜鉛-アルミニウム-マグネシウム合金めっき鋼板、アルミ板、アルミ合金板、電磁鋼板、銅板、ステンレス鋼板等が挙げられる。 The coated steel sheet of the present invention refers to a coated steel sheet having a cured coating film of a coating comprising the curable resin composition on the surface of the steel sheet, and the steel sheet refers to, for example, plating of galvanized steel sheet, aluminum-zinc alloy steel sheet, etc. A steel plate, a zinc-aluminium-magnesium alloy plated steel plate, an aluminum plate, an aluminum alloy plate, an electromagnetic steel plate, a copper plate, a stainless steel plate and the like can be mentioned.
 以下、実施例と比較例とにより、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by examples and comparative examples.
 なお、本発明で用いる飽和ポリエステル樹脂の数平均分子量(Mn)、及び重量平均分子量(Mw)、ならびに本発明の(メタ)アクリル変性ポリエステル樹脂の数平均分子量(Mn)、及び重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定して得られた値を示す。 The number average molecular weight (Mn) and weight average molecular weight (Mw) of the saturated polyester resin used in the present invention, and the number average molecular weight (Mn) of the (meth) acrylic-modified polyester resin of the present invention, and weight average molecular weight (Mw) ) Shows values obtained by measurement under the following conditions by gel permeation chromatography (GPC).
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were used in series connection.
"TSKgel G5000" (7.8 mm ID × 30 cm) × 1 "TSK gel G 4000" (7.8 mm ID × 30 cm) × 1 "TSK gel G 3000" (7.8 mm ID × 30 cm) × 1 This "TSKgel G2000" (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection volume: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4% by mass)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
Tosoh Corporation "TSKgel standard polystyrene A-500"
Tosoh Corporation "TSKgel standard polystyrene A-1000"
Tosoh Corporation "TSKgel standard polystyrene A-2500"
Tosoh Corporation "TSKgel standard polystyrene A-5000"
Tosoh Corporation "TSKgel standard polystyrene F-1"
Tosoh Corporation "TSKgel standard polystyrene F-2"
Tosoh Corporation "TSKgel standard polystyrene F-4"
Tosoh Corporation "TSKgel standard polystyrene F-10"
Tosoh Corporation "TSKgel standard polystyrene F-20"
Tosoh Corporation "TSKgel standard polystyrene F-40"
Tosoh Corporation "TSKgel standard polystyrene F-80"
Tosoh Corporation "TSKgel standard polystyrene F-128"
Tosoh Corporation "TSKgel standard polystyrene F-288"
Tosoh Corporation "TSKgel standard polystyrene F-550"
(製造例1:飽和ポリエステル樹脂(1)溶液の製造)
 撹拌機、コンデンサ、温度計を備えた反応容器に2-メチル-1,3-プロパンジオール5質量部、1,6-ヘキサンジオール8.95質量部、トリメチロールプロパン4質量部、ネオペンチルグリコール28.29質量部、イソフタル酸44.76質量部、アジピン酸9質量部、オルトチタン酸テトライソプロピル0.01質量部を投入した。窒素気流下で撹拌しながら200~250℃で12時間エステル化反応を行い飽和ポリエステル樹脂(1)を得た。この飽和ポリエステル樹脂(1)の数平均分子量(Mn)は1,094、重量平均分子量(Mw)は2,114、酸価は2.8mgKOH/g、水酸基価は137mgKOH/gであった。
(Production Example 1: Production of Saturated Polyester Resin (1) Solution)
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 5 parts by mass of 2-methyl-1,3-propanediol, 8.95 parts by mass of 1,6-hexanediol, 4 parts by mass of trimethylolpropane, neopentyl glycol 28 29 parts by mass, 44.76 parts by mass of isophthalic acid, 9 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged. The esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (1). The saturated polyester resin (1) had a number average molecular weight (Mn) of 1,094, a weight average molecular weight (Mw) of 2,114, an acid value of 2.8 mg KOH / g and a hydroxyl value of 137 mg KOH / g.
 前記得られた飽和ポリエステル樹脂(1)を酢酸ブチルに溶解させて、不揮発分81.4質量%の飽和ポリエステル樹脂(1)溶液を得た。この飽和ポリエステル樹脂(1)溶液のガードナー粘度は、Z4-Z5であった。 The obtained saturated polyester resin (1) was dissolved in butyl acetate to obtain a saturated polyester resin (1) solution having a nonvolatile content of 81.4% by mass. The Gardner viscosity of this saturated polyester resin (1) solution was Z4-Z5.
(製造例2:飽和ポリエステル樹脂(2)溶液の製造)
 撹拌機、コンデンサ、温度計を備えた反応容器に2-メチル-1,3-プロパンジオール15.59質量部、1,6-ヘキサンジオール10.25質量部、トリメチロールプロパン1.97質量部、ネオペンチルグリコール17.64質量部、イソフタル酸44.3質量部、アジピン酸10.25質量部、オルトチタン酸テトライソプロピル0.01質量部を投入した。窒素気流下で撹拌しながら200~250℃で12時間エステル化反応を行い飽和ポリエステル樹脂(2)を得た。この飽和ポリエステル樹脂(2)の数平均分子量(Mn)は988、重量平均分子量(Mw)は2,026、酸価は2.1mgKOH/g、水酸基価は141.3mgKOH/gであった。
(Production Example 2: Production of Saturated Polyester Resin (2) Solution)
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 15.59 parts by mass of 2-methyl-1,3-propanediol, 10.25 parts by mass of 1,6-hexanediol, 1.97 parts by mass of trimethylolpropane, 17.64 parts by mass of neopentyl glycol, 44.3 parts by mass of isophthalic acid, 10.25 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged. The esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (2). The saturated polyester resin (2) had a number average molecular weight (Mn) of 988, a weight average molecular weight (Mw) of 2,026, an acid value of 2.1 mg KOH / g, and a hydroxyl value of 141.3 mg KOH / g.
 前記得られた飽和ポリエステル樹脂(2)を酢酸ブチルに溶解させて、不揮発分83.1質量%の飽和ポリエステル樹脂(2)溶液を得た。この飽和ポリエステル樹脂(2)溶液のガードナー粘度は、Z3-Z4であった。 The obtained saturated polyester resin (2) was dissolved in butyl acetate to obtain a saturated polyester resin (2) solution having a nonvolatile content of 83.1% by mass. The Gardner viscosity of this saturated polyester resin (2) solution was Z3-Z4.
(製造例3:飽和ポリエステル樹脂(3)溶液の製造)
 撹拌機、コンデンサ、温度計を備えた反応容器に2-メチル-1,3-プロパンジオール30質量部、1,6-ヘキサンジオール10質量部、トリメチロールプロパン1質量部、ネオペンチルグリコール4質量部、イソフタル酸35質量部、アジピン酸20質量部、オルトチタン酸テトライソプロピル0.01質量部を投入した。窒素気流下で撹拌しながら200~250℃で12時間エステル化反応を行い飽和ポリエステル樹脂(3)を得た。この飽和ポリエステル樹脂(3)の数平均分子量(Mn)は667、重量平均分子量(Mw)は1,441、酸価は7.2mgKOH/g、水酸基価は169.2mgKOH/gであった。
(Production Example 3: Production of Saturated Polyester Resin (3) Solution)
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 30 parts by mass of 2-methyl-1,3-propanediol, 10 parts by mass of 1,6-hexanediol, 1 part by mass of trimethylolpropane, 4 parts by mass of neopentyl glycol 35 parts by mass of isophthalic acid, 20 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate. The esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (3). The saturated polyester resin (3) had a number average molecular weight (Mn) of 667, a weight average molecular weight (Mw) of 1,441, an acid value of 7.2 mg KOH / g, and a hydroxyl value of 169.2 mg KOH / g.
 前記得られた飽和ポリエステル樹脂(3)を酢酸ブチルに溶解させて、不揮発分87質量%の飽和ポリエステル樹脂(3)溶液を得た。この飽和ポリエステル樹脂(3)溶液のガードナー粘度は、Z2-Z3であった。 The obtained saturated polyester resin (3) was dissolved in butyl acetate to obtain a saturated polyester resin (3) solution having a nonvolatile content of 87% by mass. The Gardner viscosity of this saturated polyester resin (3) solution was Z2-Z3.
(製造例4:飽和ポリエステル樹脂(4)溶液の製造)
 撹拌機、コンデンサ、温度計を備えた反応容器に2-メチル-1,3-プロパンジオール23.32質量部、1,6-ヘキサンジオール3.89質量部、トリメチロールプロパン1.94質量部、ネオペンチルグリコール12.05質量部、イソフタル酸45.19質量部、アジピン酸13.61質量部、オルトチタン酸テトライソプロピル0.01質量部を投入した。窒素気流下で撹拌しながら200~250℃で12時間エステル化反応を行い飽和ポリエステル樹脂(4)を得た。この飽和ポリエステル樹脂(4)の数平均分子量(Mn)は2,149、重量平均分子量(Mw)は4,968、酸価は4.7mgKOH/g、水酸基価は78.6mgKOH/gであった。
(Production Example 4: Production of Saturated Polyester Resin (4) Solution)
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 23.32 parts by mass of 2-methyl-1,3-propanediol, 3.89 parts by mass of 1,6-hexanediol, 1.94 parts by mass of trimethylolpropane, 12.05 parts by mass of neopentyl glycol, 45.19 parts by mass of isophthalic acid, 13.61 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged. The esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (4). The saturated polyester resin (4) had a number average molecular weight (Mn) of 2,149, a weight average molecular weight (Mw) of 4,968, an acid value of 4.7 mg KOH / g and a hydroxyl value of 78.6 mg KOH / g. .
 前記得られた飽和ポリエステル樹脂(4)を芳香族系溶剤(エクソンモービル有限会社製「ソルベッソ100」)800質量部とプロピレングリコールモノメチルエーテルアセテート200質量部との混合溶剤に溶解させて、不揮発分78.3質量%の飽和ポリエステル樹脂(4)溶液を得た。この飽和ポリエステル樹脂(4)溶液のガードナー粘度は、Z-Z1であった。 The obtained saturated polyester resin (4) is dissolved in a mixed solvent of 800 parts by mass of an aromatic solvent ("Solvesso 100" manufactured by Exxon Mobil Co., Ltd.) and 200 parts by mass of propylene glycol monomethyl ether acetate, and the non volatile matter 78 A 0.3% by mass saturated polyester resin (4) solution was obtained. The Gardner viscosity of this saturated polyester resin (4) solution was Z-Z1.
(製造例5:飽和ポリエステル樹脂(5)溶液の製造)
 撹拌機、コンデンサ、温度計を備えた反応容器に2-メチル-1,3-プロパンジオール30.81質量部、1,6-ヘキサンジオール6.85質量部、トリメチロールプロパン1.17質量部、ネオペンチルグリコール4.25質量部、イソフタル酸38.44質量部、アジピン酸18.49質量部、オルトチタン酸テトライソプロピル0.01質量部を投入した。窒素気流下で撹拌しながら200~250℃で12時間エステル化反応を行い飽和ポリエステル樹脂(5)を得た。この飽和ポリエステル樹脂(5)の数平均分子量(Mn)は1,234、重量平均分子量(Mw)は2,998、酸価は6mgKOH/g、水酸基価は113.5mgKOH/gであった。
Production Example 5 Production of a Saturated Polyester Resin (5) Solution
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 30.81 parts by mass of 2-methyl-1,3-propanediol, 6.85 parts by mass of 1,6-hexanediol, 1.17 parts by mass of trimethylolpropane, 4.25 parts by mass of neopentyl glycol, 38.44 parts by mass of isophthalic acid, 18.49 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged. The esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (5). The number average molecular weight (Mn) of this saturated polyester resin (5) was 1,234, the weight average molecular weight (Mw) was 2,998, the acid value was 6 mg KOH / g, and the hydroxyl value was 113.5 mg KOH / g.
 前記得られた飽和ポリエステル樹脂(5)を酢酸ブチルに溶解させて、不揮発分82.2質量%の飽和ポリエステル樹脂(5)溶液を得た。この飽和ポリエステル樹脂(5)溶液のガードナー粘度は、X-Yであった。 The obtained saturated polyester resin (5) was dissolved in butyl acetate to obtain a saturated polyester resin (5) solution having a nonvolatile content of 82.2% by mass. The Gardner viscosity of this saturated polyester resin (5) solution was XY.
(製造例6:飽和ポリエステル樹脂(6)溶液の製造)
 撹拌機、コンデンサ、温度計を備えた反応容器に2-メチル-1,3-プロパンジオール25.76質量部、トリメチロールプロパン2.02質量部、ネオペンチルグリコール12.63質量部、イソフタル酸40.4質量部、テレフタル酸16.67質量部、アジピン酸2.53質量部、オルトチタン酸テトライソプロピル0.01質量部を投入した。窒素気流下で撹拌しながら200~250℃で12時間エステル化反応を行い飽和ポリエステル樹脂(6)を得た。この飽和ポリエステル樹脂(6)の数平均分子量(Mn)は1,763、重量平均分子量(Mw)は4,028、酸価は4.5mgKOH/g、水酸基価は94.4mgKOH/gであった。
Production Example 6: Production of Saturated Polyester Resin (6) Solution
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 25.76 parts by mass of 2-methyl-1,3-propanediol, 2.02 parts by mass of trimethylolpropane, 12.63 parts by mass of neopentyl glycol, and 40 parts of isophthalic acid .4 parts by mass, 16.67 parts by mass of terephthalic acid, 2.53 parts by mass of adipic acid, and 0.01 parts by mass of tetraisopropyl orthotitanate were charged. The esterification reaction was carried out at 200 to 250 ° C. for 12 hours while stirring under a nitrogen stream to obtain a saturated polyester resin (6). The number average molecular weight (Mn) of this saturated polyester resin (6) was 1,763, the weight average molecular weight (Mw) was 4,028, the acid value was 4.5 mg KOH / g, and the hydroxyl value was 94.4 mg KOH / g .
 前記得られた飽和ポリエステル樹脂(6)を酢酸ブチルに溶解させて、不揮発分72質量%の飽和ポリエステル樹脂(6)溶液を得た。この飽和ポリエステル樹脂(6)溶液のガードナー粘度は、Z1-Z2であった。 The obtained saturated polyester resin (6) was dissolved in butyl acetate to obtain a saturated polyester resin (6) solution having a nonvolatile content of 72% by mass. The Gardner viscosity of this saturated polyester resin (6) solution was Z1-Z2.
(実施例1:(メタ)アクリル変性ポリエステル樹脂(1)溶液の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に製造例1で得られた飽和ポリエステル樹脂(1)溶液17.41質量部、酢酸ブチル20.38質量部投入して、120~130℃まで昇温した。次いで、4~6時間かけて表1に記載の(メタ)アクリル単量体混合物、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド4.96質量部、及び1-ドデカンチオール0.5質量部を滴下した。その後、tert-ブチルベンゾイルペルオキシド0.07質量部添加し、120~130℃で2時間静置し、不揮発分70.5質量%の(メタ)アクリル変性ポリエステル樹脂(1)溶液を得た。この(メタ)アクリル変性ポリエステル樹脂(1)溶液の数平均分子量(Mn)は2,942、重量平均分子量(Mw)は8,468、酸価は11mgKOH/g、水酸基価(固形分)は141mgKOH/g、ガードナー粘度は、Z1-Z2であった。
Example 1 Preparation of (Meth) Acryl-Modified Polyester Resin (1) Solution
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 17.41 parts by mass of the saturated polyester resin (1) solution obtained in Production Example 1 and 20.38 parts by mass of butyl acetate are charged, and the temperature rises to 120 to 130 ° C. It warmed. Next, (meth) acrylic monomer mixture described in Table 1, 4.96 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.5 mass of 1-dodecanethiol over 4 to 6 hours The part was dropped. Thereafter, 0.07 parts by mass of tert-butyl benzoyl peroxide was added, and the mixture was allowed to stand at 120 to 130 ° C. for 2 hours to obtain a (meth) acrylic-modified polyester resin (1) solution having a nonvolatile content of 70.5% by mass. The number average molecular weight (Mn) of this (meth) acrylic modified polyester resin (1) solution is 2,942, the weight average molecular weight (Mw) is 8,468, the acid value is 11 mg KOH / g, and the hydroxyl value (solid content) is 141 mg KOH / G, Gardner viscosity was Z1-Z2.
(実施例2:(メタ)アクリル変性ポリエステル樹脂(2)の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に製造例2で得られた飽和ポリエステル樹脂(2)溶液15.76質量部、オデカン酸グリシジルエステル5.22質量部、酢酸ブチル26.25質量部投入して、120~130℃まで昇温した。次いで、4~6時間かけて表1に記載の(メタ)アクリル単量体混合物、及び(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド4.02質量部を滴下した。その後、tert-ブチルベンゾイルペルオキシド0.07質量部添加し、120~130℃で2時間静置し、不揮発分72.3質量%の(メタ)アクリル変性ポリエステル樹脂(2)溶液を得た。この(メタ)アクリル変性ポリエステル樹脂(2)溶液の数平均分子量(Mn)は2,593、重量平均分子量(Mw)は6,660、酸価は15.2mgKOH/g、水酸基価(固形分)は143mgKOH/g、ガードナー粘度は、Z4-Z5であった。
(Example 2: Preparation of (meth) acrylic modified polyester resin (2))
15.76 parts by mass of the saturated polyester resin (2) solution obtained in Production Example 2 in a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 5.22 parts by mass of glycidyl ester of decanoic acid, 26.25 parts by mass of butyl acetate After charging, the temperature was raised to 120 to 130.degree. Next, the (meth) acrylic monomer mixture described in Table 1 and 4.02 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide were added dropwise over 4 to 6 hours. Then, 0.07 parts by mass of tert-butyl benzoyl peroxide was added, and the mixture was allowed to stand at 120 to 130 ° C. for 2 hours to obtain a (meth) acrylic-modified polyester resin (2) solution having a nonvolatile content of 72.3% by mass. The number average molecular weight (Mn) of this (meth) acrylic modified polyester resin (2) solution is 2,593, the weight average molecular weight (Mw) is 6,660, the acid value is 15.2 mg KOH / g, the hydroxyl value (solid content) Had a Gardner viscosity of Z4-Z5.
(実施例3:(メタ)アクリル変性ポリエステル樹脂(3)の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に製造例3で得られた飽和ポリエステル樹脂(3)溶液18.30質量部、酢酸ブチル21.26質量部投入して、120~130℃まで昇温した。次いで、4~6時間かけて表1に記載の(メタ)アクリル単量体混合物、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド4.89質量部、及び1-ドデカンチオール0.5質量部を滴下した。その後、tert-ブチルベンゾイルペルオキシド0.07質量部添加し、120~130℃で2時間静置し、不揮発分76.5質量%の(メタ)アクリル変性ポリエステル樹脂(3)を得た。この(メタ)アクリル変性ポリエステル樹脂(3)溶液の数平均分子量(Mn)は2,363、重量平均分子量(Mw)は6,873、酸価は11.2mgKOH/g、水酸基価(固形分)は140mgKOH/g、ガードナー粘度は、Z-Z1であった。
(Example 3: Preparation of (meth) acrylic modified polyester resin (3))
In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 18.30 parts by mass of the saturated polyester resin (3) solution obtained in Production Example 3 and 21.26 parts by mass of butyl acetate are charged, and the temperature rises to 120 to 130 ° C. It warmed. Next, (meth) acrylic monomer mixture described in Table 1, 4.89 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.5 mass of 1-dodecanethiol over 4 to 6 hours The part was dropped. Then, 0.07 parts by mass of tert-butyl benzoyl peroxide was added, and left at 120 to 130 ° C. for 2 hours to obtain a (meth) acrylic-modified polyester resin (3) having a nonvolatile content of 76.5% by mass. The number average molecular weight (Mn) of this (meth) acrylic modified polyester resin (3) solution is 2,363, the weight average molecular weight (Mw) is 6,873, the acid value is 11.2 mg KOH / g, the hydroxyl value (solid content) Of 140 mg KOH / g and Gardner viscosity was Z-Z1.
(実施例4:(メタ)アクリル変性ポリエステル樹脂(4)の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に製造例4で得られた飽和ポリエステル樹脂(4)溶液22.05質量部、酢酸ブチル12.88質量部、プロピレングリコールモノメチルエーテルアセテート19.24質量部投入して、120~130℃まで昇温した。次いで、4~6時間かけて表1に記載の(メタ)アクリル単量体混合物、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド3.15質量部、及び1-ドデカンチオール0.45質量部を滴下した。その後、tert-ブチルベンゾイルペルオキシド0.06質量部添加し、120~130℃で2時間静置し、不揮発分65質量%の(メタ)アクリル変性ポリエステル樹脂(4)溶液を得た。この(メタ)アクリル変性ポリエステル樹脂(4)溶液の数平均分子量(Mn)は3,172、重量平均分子量(Mw)は8,126、酸価は7.5mgKOH/g、水酸基価(固形分)は77.4mgKOH/g、ガードナー粘度は、Lであった。
(Example 4: Preparation of (meth) acrylic-modified polyester resin (4))
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 22.05 parts by mass of the saturated polyester resin (4) solution obtained in Production Example 4; 12.88 parts by mass of butyl acetate; 19.24 parts by mass of propylene glycol monomethyl ether acetate The temperature was raised to 120 to 130 ° C. Then, over 4 to 6 hours, the (meth) acrylic monomer mixture described in Table 1, 3.15 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.45 parts by mass of 1-dodecanethiol. The part was dropped. Then, 0.06 parts by mass of tert-butyl benzoyl peroxide was added, and the mixture was allowed to stand at 120 to 130 ° C. for 2 hours to obtain a (meth) acrylic-modified polyester resin (4) solution having a nonvolatile content of 65% by mass. The number average molecular weight (Mn) of this (meth) acrylic modified polyester resin (4) solution is 3,172, the weight average molecular weight (Mw) is 8,126, the acid value is 7.5 mg KOH / g, the hydroxyl value (solid content) Of 77.4 mg KOH / g, and Gardner viscosity was L.
(実施例5:(メタ)アクリル変性ポリエステル樹脂(5)の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に製造例5で得られた飽和ポリエステル樹脂(5)溶液25.25質量部、酢酸ブチル17.04質量部、プロピレングリコールモノメチルエーテルアセテート3.01質量部投入して、120~130℃まで昇温した。次いで、4~6時間かけて表1に記載の(メタ)アクリル単量体混合物、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド3.94質量部、及び1-ドデカンチオール0.54質量部を滴下した。その後、tert-ブチルベンゾイルペルオキシド0.07質量部添加し、120~130℃で2時間静置し、不揮発分73.7質量%の(メタ)アクリル変性ポリエステル樹脂(5)溶液を得た。この(メタ)アクリル変性ポリエステル樹脂(5)溶液の数平均分子量(Mn)は2,144、重量平均分子量(Mw)は7,441、酸価は7.4mgKOH/g、水酸基価(固形分)は80.6mgKOH/g、ガードナー粘度は、V-Wであった。
Example 5 Preparation of (Meth) Acryl-Modified Polyester Resin (5)
In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 25.25 parts by mass of the saturated polyester resin (5) solution obtained in Production Example 5; 17.04 parts by mass of butyl acetate; 3.01 parts by mass of propylene glycol monomethyl ether acetate The temperature was raised to 120 to 130 ° C. Then, (meth) acrylic monomer mixture described in Table 1, 4.94 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.54 mass of 1-dodecanethiol over 4 to 6 hours The part was dropped. Thereafter, 0.07 parts by mass of tert-butyl benzoyl peroxide was added, and the mixture was allowed to stand at 120 to 130 ° C. for 2 hours to obtain a solution of 73.7% by mass of (meth) acrylic-modified polyester resin (5) having nonvolatile content. The number average molecular weight (Mn) of this (meth) acrylic modified polyester resin (5) solution is 2,144, the weight average molecular weight (Mw) is 7,441, the acid value is 7.4 mg KOH / g, the hydroxyl value (solid content) Was 80.6 mg KOH / g, and the Gardner viscosity was VW.
 実施例1~5で得られた(メタ)アクリル変性ポリエステル樹脂(1)~(5)の組成を表1に示す。 The compositions of the (meth) acrylic modified polyester resins (1) to (5) obtained in Examples 1 to 5 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較製造例1:アクリル樹脂溶液(C1-1)の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に、酢酸ブチルを投入し、120~130℃まで昇温した。次いで、実施例5で用いたアクリル単量体混合物を4~6時間かけて滴下した。その後、tert-ブチルベンゾイルペルオキシドを添加し、120~130℃で2時間静置し、不揮発分70.8質量%のアクリル樹脂溶液(C1-1)を得た。このアクリル樹脂溶液(C1-1)の数平均分子量(Mn)は2,742、重量平均分子量(Mw)は7,841、酸価は6.6mgKOH/g、水酸基価(固形分)は73.3mgKOH/g、ガードナー粘度は、Y-Zであった。
Comparative Preparation Example 1: Preparation of Acrylic Resin Solution (C1-1)
In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, butyl acetate was charged, and the temperature was raised to 120 to 130.degree. Then, the acrylic monomer mixture used in Example 5 was dropped over 4 to 6 hours. Thereafter, tert-butyl benzoyl peroxide was added, and allowed to stand at 120 to 130 ° C. for 2 hours to obtain an acrylic resin solution (C1-1) having a nonvolatile content of 70.8% by mass. The acrylic resin solution (C1-1) has a number average molecular weight (Mn) of 2,742, a weight average molecular weight (Mw) of 7,841, an acid value of 6.6 mg KOH / g, and a hydroxyl value (solid content) of 73. 3 mg KOH / g, Gardner viscosity was YZ.
(比較例1:アクリル樹脂及びポリエステル樹脂の混合溶液(C1)の調製)
 比較製造例1で得られたアクリル樹脂溶液(C1-1)と、製造例5で得られた飽和ポリエステル樹脂(5)溶液を、実施例5と同じポリエステル量になるように25℃で混合して、アクリル樹脂及びポリエステル樹脂の混合溶液(C1)を得た。
Comparative Example 1: Preparation of Mixed Solution (C1) of Acrylic Resin and Polyester Resin
The acrylic resin solution (C1-1) obtained in Comparative Production Example 1 and the saturated polyester resin (5) solution obtained in Production Example 5 are mixed at 25 ° C. so that the same polyester amount as in Example 5 can be obtained. Thus, a mixed solution (C1) of an acrylic resin and a polyester resin was obtained.
(比較例2:(メタ)アクリル変性ポリエステル樹脂(C2)の調製)
 撹拌機、コンデンサ、温度計を備えた反応容器に製造例6で得られた飽和ポリエステル樹脂(6)溶液46.7質量部、酢酸ブチル1.41質量部、プロピレングリコールモノメチルエーテルアセテート12.7質量部投入して、120~130℃まで昇温した。次いで、4~6時間かけて表2に記載の(メタ)アクリル単量体混合物、(2-エチルヘキサノイル)(tert-ブチル)ペルオキシド2.39質量部、及び1-ドデカンチオール0.27質量部を滴下した。その後、tert-ブチルベンゾイルペルオキシド0.05質量部添加し、120~130℃で2時間静置したが、溶液が2層に分離し目的とする(メタ)アクリル変性ポリエステル樹脂溶液は得られなかった。
Comparative Example 2 Preparation of (Meth) Acryl-Modified Polyester Resin (C2)
In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 46.7 parts by mass of the saturated polyester resin (6) solution obtained in Production Example 6, 1.41 parts by mass of butyl acetate, 12.7 parts by mass of propylene glycol monomethyl ether acetate The temperature was raised to 120 to 130 ° C. Then, the (meth) acrylic monomer mixture described in Table 2 over a period of 4 to 6 hours, 2.39 parts by mass of (2-ethylhexanoyl) (tert-butyl) peroxide, and 0.27 parts by mass of 1-dodecanethiol. The part was dropped. Thereafter, 0.05 parts by mass of tert-butyl benzoyl peroxide was added, and the solution was allowed to stand at 120 to 130 ° C. for 2 hours, but the solution was separated into two layers, and the target (meth) acrylic modified polyester resin solution was not obtained .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例6:白色塗料(1)の作製)
 撹拌機、コンデンサ、温度計を備えた反応容器に、実施例4で得た(メタ)アクリル変性ポリエステル樹脂(4)溶液26.4質量部、酸化チタン(Dupont社製「Ti-Pure R960」34.3質量部、シリカ(Evonik Industries社製「エアロジル R972」)0.3質量部、芳香族系溶剤(エクソンモービル有限会社製「ソルベッソ100」)及びプロピレングリコールモノメチルエーテルアセテートを7:3の質量比で混合した混合溶剤4.1質量部とを混合し、粒径が10μm以下となるまで分散を行った。次いで、(メタ)アクリル変性ポリエステル樹脂(4)溶液26.4質量部、アミノ樹脂(Allnex社製「Cymel 303LF」)6.1質量部、触媒(King社製「Nacure 5225」)0.6質量部、マッティング剤(Allnex社製「Syloid ED3」)0.3質量部、レベリング剤(Allnex社製「Modaflow 2100」)0.5質量部、芳香族系溶剤(エクソンモービル有限会社製「ソルベッソ100」)及びプロピレングリコールモノメチルエーテルアセテートを7:3の質量比で混合した混合溶剤1.0質量部を加えて混合し、さらに25℃でのフォードカップ♯4粘度が約100秒になるように調節し、白色塗料(1)を得た。
Example 6 Preparation of White Paint (1)
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 26.4 parts by mass of the (meth) acrylic-modified polyester resin (4) solution obtained in Example 4 and titanium oxide ("Ti-Pure R960" manufactured by Dupont 34) .3 parts by mass, 0.3 parts by mass of silica ("Aerosil R 972" manufactured by Evonik Industries), aromatic solvent ("Sorvesso 100" manufactured by Exxon Mobil Limited) and propylene glycol monomethyl ether acetate at a mass ratio of 7: 3 The mixed solvent was mixed with 4.1 parts by mass of the mixed solvent and dispersed until the particle size became 10 .mu.m or less .. 26.4 parts by mass of (meth) acrylic-modified polyester resin (4) solution, amino resin ( 6.1 parts by mass of "Cymel 303LF" manufactured by Allnex, catalyst (manufactured by King "Nacure 522" 5 ′ ′) 0.6 parts by mass, 0.3 parts by mass of matting agent (“Syloid ED3” manufactured by Allnex Co., Ltd.), 0.5 parts by mass of leveling agent (“Modaflow 2100” manufactured by Allnex Co., Ltd.), aromatic solvent (exon Mobil Co., Ltd. “Solvesso 100”) and 1.0 part by mass of a mixed solvent in which propylene glycol monomethyl ether acetate is mixed in a mass ratio of 7: 3 are added and mixed, and the Ford cup # 4 viscosity at 25 ° C. is about The white paint (1) was obtained by adjusting to 100 seconds.
(実施例7:白色塗料(2)の作製)
 実施例6で用いた(メタ)アクリル変性ポリエステル樹脂(4)溶液の代わりに、実施例5で得た(メタ)アクリル変性ポリエステル樹脂(5)溶液を用いた以外は、実施例6と同様にして白色塗料(2)を得た。
Example 7 Preparation of White Paint (2)
Example 6 was repeated except that the (meth) acrylic modified polyester resin (5) solution obtained in Example 5 was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. White paint (2) was obtained.
(比較例3:白色塗料(3)の作製)
 実施例6で用いた(メタ)アクリル変性ポリエステル樹脂(4)溶液の代わりに、比較例1で得たアクリル樹脂及びポリエステル樹脂の混合溶液(C1)を用いた以外は、実施例6と同様にして白色塗料(3)を得た。
(Comparative example 3: Preparation of white paint (3))
Example 6 is the same as Example 6, except that the mixed solution (C1) of the acrylic resin and polyester resin obtained in Comparative Example 1 is used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. White paint (3) was obtained.
(比較例4:白色塗料(4)の作製)
 実施例6で用いた(メタ)アクリル変性ポリエステル樹脂(4)溶液の代わりに、飽和ポリエステル樹脂溶液(DIC株式会社製「ベッコライトGS-13」)を用いた以外は、実施例6と同様にして白色塗料(4)を得た。
(Comparative example 4: Preparation of white paint (4))
Example 6 was carried out in the same manner as Example 6, except that a saturated polyester resin solution ("Beckolite GS-13" manufactured by DIC Corporation) was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. White paint (4) was obtained.
(比較例5:白色塗料(5)の作製)
 実施例6で用いた(メタ)アクリル変性ポリエステル樹脂(4)溶液の代わりに、飽和ポリエステル樹脂溶液(DIC株式会社製「ベッコライトGS-37-1」)を用いた以外は、実施例6と同様にして白色塗料(5)を得た。
Comparative Example 5 Preparation of White Paint (5)
Example 6 was repeated except that a saturated polyester resin solution ("Beckolite GS-37-1" manufactured by DIC Corporation) was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. A white paint (5) was obtained in the same manner.
(比較例6:白色塗料(6)の作製)
 実施例6で用いた(メタ)アクリル変性ポリエステル樹脂(4)溶液の代わりに、比較製造例1で得たアクリル樹脂溶液(C1-1)を用いた以外は、実施例6と同様にして白色塗料(6)を得た。
(Comparative example 6: Preparation of white paint (6))
A white color was prepared in the same manner as in Example 6, except that the acrylic resin solution (C1-1) obtained in Comparative Production Example 1 was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. The paint (6) was obtained.
(比較例7:白色塗料(7)の作製)
 実施例6で用いた(メタ)アクリル変性ポリエステル樹脂(4)溶液の代わりに、飽和ポリエステル樹脂溶液(DIC株式会社製「ベッコライトGS-12」)を用いた以外は、実施例6と同様にして白色塗料(7)を得た。
(Comparative example 7: Preparation of white paint (7))
Example 6 was carried out in the same manner as Example 6, except that a saturated polyester resin solution ("Beckolite GS-12" manufactured by DIC Corporation) was used instead of the (meth) acrylic modified polyester resin (4) solution used in Example 6. White paint (7) was obtained.
 上記の実施例及び比較例で得られた白色塗料を用いて、塗装鋼板を作成した。 The coated steel plate was produced using the white paint obtained by said Example and comparative example.
(実施例8及び9:塗装鋼板(A)及び(B)の作成)
 厚さ0.5mmの溶融亜鉛めっきクロメート処理鋼板に、実施例5及び6で得た白色塗料(1)及び(2)を膜厚が15~20μmとなるようにそれぞれバーコーターで塗装し、250℃のオーブンで20秒間加熱乾燥し(メタルピーク温度は210℃)、塗装鋼板(A)及び(B)を得た。
(Examples 8 and 9: Preparation of coated steel sheets (A) and (B))
The white paints (1) and (2) obtained in Examples 5 and 6 were each coated with a bar coater to a film thickness of 15 to 20 μm on a 0.5 mm thick hot-dip galvanized chromate-treated steel sheet, It heat-dried in 20 degreeC oven for 20 seconds (metal peak temperature is 210 degreeC), and obtained the coated steel plates (A) and (B).
(比較例8~11:塗装鋼板(C)~(F)の作成)
 厚さ0.5mmの溶融亜鉛めっきクロメート処理鋼板に、比較例3~6で得た白色塗料(3)~(6)を膜厚が15~20μmとなるようにバーコーターで塗装し、230℃のオーブンで40秒間加熱乾燥し(メタルピーク温度は230℃)、塗装鋼板(C)~(F)を得た。
(Comparative Examples 8 to 11: Preparation of Painted Steel Sheets (C) to (F))
The white paints (3) to (6) obtained in Comparative Examples 3 to 6 were coated with a bar coater on a hot-dip galvanized chromate-treated steel sheet having a thickness of 0.5 mm so that the film thickness would be 15 to 20 μm. The resultant was heated and dried in an oven for 40 seconds (metal peak temperature is 230.degree. C.) to obtain coated steel sheets (C) to (F).
(実施例10及び11:<プライマー層あり>塗装鋼板(G)及び(H)の作成)
 プライマー層として、飽和ポリエステル樹脂(DIC株式会社製「ベッコライトGS-12」を厚さ0.5mmの溶融亜鉛めっきクロメート処理鋼板に、膜厚が5μmとなるようにバーコーターで塗装し、250℃のオーブンで20秒間加熱乾燥し(メタルピーク温度は210℃)、プライマー層を形成した。次いで、実施例5及び6で得た白色塗料(1)及び(2)を、該プライマー層の表面に膜厚が15μmとなるようにバーコーターで塗装し、250℃のオーブンで40秒間加熱乾燥し(メタルピーク温度は210℃)、塗装鋼板(G)及び(H)を作成した。
(Examples 10 and 11: <with primer layer> Preparation of coated steel sheets (G) and (H))
As a primer layer, a saturated polyester resin ("Beckorite GS-12" manufactured by DIC Corporation) is coated on a 0.5 mm-thick hot-dip galvanized chromate-treated steel plate with a bar coater to a film thickness of 5 μm, 250 ° C Heat-dried in an oven for 20 seconds (metal peak temperature is 210 ° C.) to form a primer layer, and then the white paints (1) and (2) obtained in Examples 5 and 6 were applied to the surface of the primer layer. It coated with a bar coater so that a film thickness might be set to 15 micrometers, and it heat-dried for 40 seconds in a 250 degreeC oven (metal peak temperature is 210 degreeC), and created the coated steel plates (G) and (H).
(比較例12~14:<プライマー層あり>塗装鋼板(I)~(K)の作成)
 プライマー層として、飽和ポリエステル樹脂(DIC株式会社製「ベッコライトGS-12」を厚さ0.5mmの溶融亜鉛めっきクロメート処理鋼板に、膜厚が5μmとなるようにバーコーターで塗装し、250℃のオーブンで20秒間加熱乾燥し(メタルピーク温度は210℃)、プライマー層を形成した。次いで、比較例3、6及び7で得た白色塗料(3)、(6)及び(7)を、該プライマー層の表面に膜厚が15μmとなるようにバーコーターで塗装し、250℃のオーブンで40秒間加熱乾燥し(メタルピーク温度は230℃)、塗装鋼板(I)~(K)を作成した。
(Comparative Examples 12 to 14: <with primer layer> Preparation of coated steel sheets (I) to (K))
As a primer layer, a saturated polyester resin ("Beckorite GS-12" manufactured by DIC Corporation) is coated on a 0.5 mm-thick hot-dip galvanized chromate-treated steel plate with a bar coater to a film thickness of 5 μm, 250 ° C (The metal peak temperature is 210 ° C.) to form a primer layer, and then the white paints (3), (6) and (7) obtained in Comparative Examples 3, 6 and 7 are prepared. The primer layer is coated with a bar coater to a film thickness of 15 μm and dried by heating in an oven at 250 ° C. for 40 seconds (metal peak temperature is 230 ° C.) to produce coated steel plates (I) to (K) did.
 上記の実施例及び比較例で得られた塗装鋼板を用いて、下記の評価を行った。 The following evaluation was performed using the coated steel plate obtained by said Example and comparative example.
[鉛筆硬度の測定方法]
 塗装鋼板(A)~(K)の塗装面の硬度をEN 13523-4に準じた方法にて測定した。
[Measuring method of pencil hardness]
The hardness of the coated surface of the coated steel sheets (A) to (K) was measured by the method according to EN 13523-4.
[光沢の測定方法]
 塗装鋼板(A)~(K)の塗装面の光沢をEN 13523-2に準じた方法にて、塗装面の60°反射率を測定した。
[How to measure gloss]
The gloss of the coated surface of the coated steel sheets (A) to (K) was measured for the 60 ° reflectance of the coated surface by a method according to EN 13523-2.
[加工性の評価方法(クラックフリーテスト)]
 T-ベンド折り曲げ試験にて塗膜の柔軟性を評価した。具体的には、EN 13523-7に準拠して、先で得た塗装鋼板(A)~(K)を180°折り曲げ、屈曲部に発生するクラックを10倍のルーペで観察した。屈曲部に何もはさまずに塗装鋼板を180°折り曲げた場合を0T、屈曲部に塗装鋼板と同じ厚さの板をX枚挟んで折り曲げた場合を(X/2)Tとし、屈曲部にクラックが発生しない最小値で評価した。
[Processability evaluation method (crack free test)]
The flexibility of the coating was evaluated by the T-bend bending test. Specifically, in accordance with EN 13523-7, the coated steel plates (A) to (K) obtained above were bent by 180 °, and cracks generated in the bent portion were observed with a loupe at a magnification of 10 times. 0T is the case where the coated steel plate is bent 180 ° without inserting anything in the bent portion, and (X / 2) T is the case where X plates having the same thickness as the coated steel plate are bent in the bent portion as (X / 2) T. It evaluated by the minimum value which a crack does not generate.
[加工性の評価方法(テープテスト)]
 T-ベンド折り曲げ試験にて塗膜の柔軟性を評価した。具体的には、EN 13523-7に準拠して、先で得た塗装鋼板(A)~(K)を180°折り曲げ、屈曲部にニチバン株式会社製の粘着テープを貼り、急速に剥がした場合の塗膜の剥がれの有無で評価した。屈曲部に何もはさまずに塗装鋼板を180°折り曲げた場合を0T、屈曲部に塗装鋼板と同じ厚さの板をX枚挟んで折り曲げた場合を(X/2)Tとし、剥がれが発生しない最小値で評価した。
[Method of evaluating processability (tape test)]
The flexibility of the coating was evaluated by the T-bend bending test. Specifically, when the coated steel plates (A) to (K) obtained above are bent by 180 ° in accordance with EN 13523-7, and a pressure-sensitive adhesive tape made by Nichiban Co., Ltd. is attached to the bent portion and peeled off rapidly It evaluated by the presence or absence of peeling of the coating film. If there is nothing in the bent part and the coated steel sheet is bent at 180 °, it is 0T, and if it is folded with X sheets of the same thickness as the coated steel sheet in the bent part, it is (X / 2) T. It evaluated by the minimum value which does not occur.
[耐候性の評価方法]
 Q-Lab社製「QUV促進耐候試験機」を用いて耐候性試験を行った。具体的には、先で得た塗装鋼板(A)~(K)にUV照射(UV-Aランプ)しながら60℃で4時間保持した後、湿潤下50℃で4時間のサイクルで2000時間の耐候性試験を行い、塗膜表面の光沢保持率で評価した。
[Method of evaluating weather resistance]
A weathering test was conducted using "QUV accelerated weathering tester" manufactured by Q-Lab. Specifically, the coated steel plates (A) to (K) obtained above are maintained at 60 ° C. for 4 hours while being irradiated with UV (UV-A lamp), and then moistened at 50 ° C. for 4 hours in 2000 cycles for 2000 hours. Weather resistance test was conducted, and the gloss retention of the coating film surface was evaluated.
[耐汚染性の評価方法]
 先で得た塗装鋼板(A)~(K)に10%カーボンブラック水分散液を約2ml滴下し、80℃で24時間乾燥後、水をしみ込ませたパッドで拭き取り、下記基準にて評価した。
[Method for evaluating contamination resistance]
About 2 ml of a 10% carbon black water dispersion was dropped on the coated steel sheets (A) to (K) obtained above, dried at 80 ° C. for 24 hours, wiped with a pad impregnated with water, and evaluated according to the following criteria .
 ○:塗装鋼板表面に跡が残らない。
 △:塗装鋼板表面に跡がわずかに残る。
 ×:塗装鋼板表面に跡が残る。
○: No marks are left on the coated steel sheet surface.
Fair: Marks slightly left on the surface of the coated steel sheet.
×: Marks remain on the surface of the coated steel sheet.
 実施例8及び9、ならびに比較例8~11で作成した塗装鋼板(A)~(F)の評価結果を表3に示す。 The evaluation results of the coated steel plates (A) to (F) prepared in Examples 8 and 9 and Comparative Examples 8 to 11 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例10及び11、ならびに比較例12~14で作成した塗装鋼板(G)~(K)の評価結果を表4に示す。 The evaluation results of the coated steel sheets (G) to (K) prepared in Examples 10 and 11 and Comparative Examples 12 to 14 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例12:クリア塗料(1)の作製)
 撹拌機、コンデンサ、温度計を備えた反応容器に、実施例5で得た(メタ)アクリル変性ポリエステル樹脂(5)溶液87.8質量部、アミノ樹脂(Allnex社製「Cymel 303LF」)10.0質量部、触媒(King社製「Nacure 5225」)0.9質量部、レベリング剤(Allnex社製「Modaflow 2100」)0.5質量部、芳香族系溶剤(エクソンモービル有限会社製「ソルベッソ100」)及びプロピレングリコールモノメチルエーテルアセテートを7:3の質量比で混合した混合溶剤0.8質量部を加えて混合し、さらに25℃でのフォードカップ♯4粘度が約100秒になるように調節し、クリア塗料(1)を得た。
Example 12 Preparation of Clear Paint (1)
In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 87.8 parts by mass of the (meth) acrylic-modified polyester resin (5) solution obtained in Example 5; amino resin ("Cymel 303LF" manufactured by Allnex) 10. 0 parts by mass, 0.9 parts by mass of a catalyst ("Nacure 5225" manufactured by King), 0.5 parts by mass of a leveling agent ("Modaflow 2100" manufactured by Allnex), aromatic solvent ("Solvesso 100" manufactured by Exxon Mobil Co., Ltd. ) And propylene glycol monomethyl ether acetate in a mass ratio of 7: 3 are added and mixed, and the mixture is further adjusted so that the Ford cup # 4 viscosity at 25 ° C. becomes about 100 seconds And got clear paint (1).
(実施例13:塗装鋼板(L)の作成)
 厚さ0.5mmの溶融亜鉛めっきクロメート処理鋼板に、実施例12で得たクリア塗料(1)を膜厚が15~20μmとなるようにそれぞれバーコーターで塗装し、250℃のオーブンで20秒間加熱乾燥し(メタルピーク温度は210℃)、塗装鋼板(L)を得た。
(Example 13: Preparation of a coated steel sheet (L))
The clear paint (1) obtained in Example 12 was coated on a 0.5 mm thick hot-dip galvanized chromate-treated steel sheet to a film thickness of 15 to 20 μm with a bar coater, and kept for 20 seconds in an oven at 250 ° C. It heat-dried (metal peak temperature is 210 degreeC) and obtained the coated steel plate (L).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示した実施例8及び9は、本発明の(メタ)アクリル変性ポリエステル樹脂を用いた白色塗料の例であるが、ともに不揮発分が73.3質量%と高い不揮発分を有しておりハイソリッドな塗料を作成可能なことが確認できた。また、前記白色塗料の塗膜は、優れた加工性と耐候性のみならず、塗膜硬度や耐汚染性にも優れることが確認できた。 Although Examples 8 and 9 shown in Table 3 are examples of the white paint using the (meth) acrylic modified polyester resin of the present invention, both have a high nonvolatile content such as 73.3% by mass of nonvolatile content. It was confirmed that high solid paint could be made. In addition, it has been confirmed that the coating film of the white paint is excellent not only in excellent processability and weatherability but also in coating film hardness and stain resistance.
 一方、比較例8は、アクリル樹脂とポリエステル樹脂の混合溶液を用いた白色塗料の例であるが、高い不揮発分を有し、ハイソリッドな塗料を作成可能ではあるものの、当該塗料の塗膜は、光沢保持率が60%と低く、耐候性が不十分であることが確認できた。 On the other hand, Comparative Example 8 is an example of a white paint using a mixed solution of an acrylic resin and a polyester resin, but it has a high non-volatile content and although a high solid paint can be produced, the paint film of the paint is It was confirmed that the gloss retention was as low as 60% and the weather resistance was insufficient.
 比較例9及び10は、飽和ポリエステル樹脂を用いた白色塗料の例であるが、不揮発分が64.3質量%(比較例9)、63.2質量%(比較例10)と低く、ハイソリッドな塗料を作成できないことが確認できた。また、当該白色塗料の塗膜は、光沢保持率が30%(比較例9)、55%(比較例10)と極めて低く、耐候性が著しく不十分であることが確認できた。 Comparative Examples 9 and 10 are examples of the white paint using a saturated polyester resin, but the nonvolatile content is as low as 64.3 mass% (Comparative Example 9) and 63.2 mass% (Comparative Example 10), and is a high solid. It could be confirmed that it was not possible to make a good paint. In addition, it was confirmed that the coating film of the white paint had an extremely low gloss retention of 30% (Comparative Example 9) and 55% (Comparative Example 10), and the weather resistance was extremely insufficient.
 比較例11は、アクリル樹脂溶液を用いた白色塗料の例であるが、高い不揮発分を有し、ハイソリッドな塗料を作成可能ではあるものの、当該塗料の塗膜は、加工性が不十分であることが確認できた。 Comparative Example 11 is an example of a white paint using an acrylic resin solution, but although a high non-volatile content and high solid paint can be produced, the paint film of the paint has insufficient processability. It has been confirmed that there is.
 表4に示した実施例10及び11、ならびに比較例12~14は、鋼板と白色塗料の間にプライマー層を設けた塗装鋼板に関するものである。実施例10及び11で得られた塗装鋼板における白色塗料の塗膜は、優れた加工性と耐候性のみならず、塗膜硬度や耐汚染性にも優れることが確認できた。 Examples 10 and 11 and Comparative Examples 12 to 14 shown in Table 4 relate to a coated steel plate provided with a primer layer between the steel plate and the white paint. It was confirmed that the coating film of the white paint in the coated steel sheet obtained in Examples 10 and 11 was excellent not only in the excellent processability and the weather resistance but also in the coating film hardness and the stain resistance.
 表5に示した実施例13は、本発明の(メタ)アクリル変性ポリエステル樹脂を用いたクリア塗料の例である。実施例13で得られた塗装鋼板におけるクリア塗料の塗膜は、優れた加工性と耐候性のみならず、塗膜硬度や耐汚染性にも優れることが確認できた。 Example 13 shown in Table 5 is an example of a clear paint using the (meth) acrylic-modified polyester resin of the present invention. It was confirmed that the coating film of the clear paint in the coated steel sheet obtained in Example 13 is excellent not only in the excellent processability and the weather resistance but also in the film hardness and the stain resistance.

Claims (10)

  1.  飽和ポリエステル樹脂(A)と、水酸基含有(メタ)アクリル単量体を含有する(メタ)アクリル単量体混合物(B)とを必須の反応原料とする(メタ)アクリル変性ポリエステル樹脂であって、
    前記飽和ポリエステル樹脂(A)が、脂肪族ジオール(a1)と、脂肪族ジカルボン酸を含有するジカルボン酸(a2)との重縮合物であり、
    前記脂肪族ジカルボン酸の含有量が、前記ジカルボン酸(a2)中に5質量%以上であることを特徴とする(メタ)アクリル変性ポリエステル樹脂。
    A (meth) acrylic-modified polyester resin comprising, as essential reaction raw materials, a saturated polyester resin (A) and a (meth) acrylic monomer mixture (B) containing a hydroxyl group-containing (meth) acrylic monomer,
    The saturated polyester resin (A) is a polycondensate of an aliphatic diol (a1) and a dicarboxylic acid (a2) containing an aliphatic dicarboxylic acid,
    Content of the said aliphatic dicarboxylic acid is 5 mass% or more in the said dicarboxylic acid (a2), The (meth) acryl modified polyester resin characterized by the above-mentioned.
  2.  前記飽和ポリエステル樹脂(A)と、前記(メタ)アクリル単量体混合物(B)との質量比[(A)/(B)]が、15/85~50/50の範囲である請求項1記載の(メタ)アクリル変性ポリエステル樹脂。 The mass ratio [(A) / (B)] of the saturated polyester resin (A) to the (meth) acrylic monomer mixture (B) is in the range of 15/85 to 50/50. (Meth) acrylic modified polyester resin as described.
  3.  前記脂肪族ジオール(a1)が、少なくとも1つの側鎖を有する非対称ジオール、及び/または側鎖を有しない直鎖ジオールを含むものである請求項1または2記載の(メタ)アクリル変性ポリエステル樹脂。 The (meth) acrylic-modified polyester resin according to claim 1 or 2, wherein the aliphatic diol (a1) contains an asymmetric diol having at least one side chain, and / or a linear diol having no side chain.
  4.  前記飽和ポリエステル樹脂(A)の重量平均分子量が、1,000~5,000の範囲である請求項1~3のいずれか1項記載の(メタ)アクリル変性ポリエステル樹脂。 The (meth) acrylic-modified polyester resin according to any one of claims 1 to 3, wherein the weight average molecular weight of the saturated polyester resin (A) is in the range of 1,000 to 5,000.
  5.  前記(メタ)アクリル単量体混合物(B)が、前記水酸基含有(メタ)アクリル単量体を10質量%以上含有するものである請求項1~4のいずれか1項記載の(メタ)アクリル変性ポリエステル樹脂。 The (meth) acrylic according to any one of claims 1 to 4, wherein the (meth) acrylic monomer mixture (B) contains 10% by mass or more of the hydroxyl group-containing (meth) acrylic monomer. Modified polyester resin.
  6.  前記(メタ)アクリル変性ポリエステル樹脂の重量平均分子量が、5,000~20,000の範囲である請求項1~5のいずれか1項記載の(メタ)アクリル変性ポリエステル樹脂。 The (meth) acrylic-modified polyester resin according to any one of claims 1 to 5, wherein the weight average molecular weight of the (meth) acrylic-modified polyester resin is in the range of 5,000 to 20,000.
  7.  前記(メタ)アクリル変性ポリエステル樹脂の水酸基価が、60~150の範囲である請求項1~6いずれか1項記載の(メタ)アクリル変性ポリエステル樹脂。 The (meth) acrylic-modified polyester resin according to any one of claims 1 to 6, wherein the hydroxyl value of the (meth) acrylic-modified polyester resin is in the range of 60 to 150.
  8.  請求項1~7のいずれか1項記載の(メタ)アクリル変性ポリエステル樹脂と、硬化剤とを含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the (meth) acrylic-modified polyester resin according to any one of claims 1 to 7 and a curing agent.
  9.  請求項8記載の硬化性樹脂組成物からなることを特徴とする塗料。 A paint comprising the curable resin composition according to claim 8.
  10.  請求項9記載の塗料の硬化塗膜を有することを特徴とする塗装鋼板。 A coated steel sheet having a cured coating film of the paint according to claim 9.
PCT/JP2017/044868 2017-11-21 2017-12-14 (meth)acrylic-modified polyester resin, curable resin composition, coating material, and coated steel sheet WO2019102626A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019556082A JP6725895B2 (en) 2017-11-21 2017-12-14 (Meth)acrylic modified polyester resin, curable resin composition, paint and coated steel sheet
DE112017008223.4T DE112017008223T5 (en) 2017-11-21 2017-12-14 (Meth) acrylic modified polyester resin, curable resin composition, paint and painted steel sheet
CN201780097073.9A CN111448229B (en) 2017-11-21 2017-12-14 (meth) acrylic-modified polyester resin, curable resin composition, coating material, and coated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017223604 2017-11-21
JP2017-223604 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019102626A1 true WO2019102626A1 (en) 2019-05-31

Family

ID=66630992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044868 WO2019102626A1 (en) 2017-11-21 2017-12-14 (meth)acrylic-modified polyester resin, curable resin composition, coating material, and coated steel sheet

Country Status (4)

Country Link
JP (1) JP6725895B2 (en)
CN (1) CN111448229B (en)
DE (1) DE112017008223T5 (en)
WO (1) WO2019102626A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016396B1 (en) * 1970-08-26 1975-06-12
JP2000327727A (en) * 1999-03-16 2000-11-28 Toyo Ink Mfg Co Ltd Polyester-modified resin and resin composition using the resin and cured product using the resin
JP2003025491A (en) * 2001-07-11 2003-01-29 Nippon Yushi Basf Coatings Kk Coated steel plate
JP2008201842A (en) * 2007-02-16 2008-09-04 Basf Coatings Japan Ltd Coating material composition
JP2012184370A (en) * 2011-03-08 2012-09-27 Toyo Ink Sc Holdings Co Ltd Aqueous coating composition, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016396B1 (en) * 1970-08-26 1975-06-12
JP2000327727A (en) * 1999-03-16 2000-11-28 Toyo Ink Mfg Co Ltd Polyester-modified resin and resin composition using the resin and cured product using the resin
JP2003025491A (en) * 2001-07-11 2003-01-29 Nippon Yushi Basf Coatings Kk Coated steel plate
JP2008201842A (en) * 2007-02-16 2008-09-04 Basf Coatings Japan Ltd Coating material composition
JP2012184370A (en) * 2011-03-08 2012-09-27 Toyo Ink Sc Holdings Co Ltd Aqueous coating composition, and method for manufacturing the same

Also Published As

Publication number Publication date
CN111448229A (en) 2020-07-24
JP6725895B2 (en) 2020-07-22
CN111448229B (en) 2023-04-11
JPWO2019102626A1 (en) 2020-07-02
DE112017008223T5 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP5586799B2 (en) Paint composition
JP2011207953A (en) Coating composition and coating film
JP2009504864A (en) Coating composition comprising a polyacrylate polyol, a polyester polyol, and an isocyanate functional crosslinker
WO2020137161A1 (en) Clear coating composition and method for forming clear coating film
JP6045670B2 (en) Resin used for coating composition
JP6725895B2 (en) (Meth)acrylic modified polyester resin, curable resin composition, paint and coated steel sheet
WO2022224306A1 (en) Intermediate-coat coating material composition, article obtained using same, and method for producing article
JP2015028096A (en) Coating composition
WO2005054386A1 (en) Coating composition and article coated with same
JP2013215887A (en) Metallic plastic and method of coating plastic
JP6255626B2 (en) Coating composition and article coated with the coating composition
JP2022095131A (en) Coating composition
JP7254012B2 (en) Exterior parts for automobiles and method for manufacturing exterior parts for automobiles
JP2012072320A (en) Curable composition for coating material and method for manufacturing plastic molding body using the same
JP2015013929A (en) Coating composition
JP7031705B2 (en) Polyester polyol resin and paint
CA3219277A1 (en) Waterborne coating composition
JP7109372B2 (en) Polyester polyol resin and paint
JP2002069368A (en) Thermosetting powder coating composition for aluminum wheel alloy member and aluminum alloy wheel member
EP4122974A1 (en) Aqueous resin composition, aqueous coating material, and coated article
JPH01156374A (en) Coating composition
JP2015183138A (en) Latex, aqueous coating composition and molded body
JPH0128784B2 (en)
JPH02240159A (en) Coating resin composition
JPS62288663A (en) Resin composition for coating compound having improved shelf stability and curing property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556082

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17933159

Country of ref document: EP

Kind code of ref document: A1