JP6674163B2 - Powder coating and article having a coating of the coating - Google Patents

Powder coating and article having a coating of the coating Download PDF

Info

Publication number
JP6674163B2
JP6674163B2 JP2019542752A JP2019542752A JP6674163B2 JP 6674163 B2 JP6674163 B2 JP 6674163B2 JP 2019542752 A JP2019542752 A JP 2019542752A JP 2019542752 A JP2019542752 A JP 2019542752A JP 6674163 B2 JP6674163 B2 JP 6674163B2
Authority
JP
Japan
Prior art keywords
mass
meth
parts
acrylate
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019542752A
Other languages
Japanese (ja)
Other versions
JPWO2019124051A1 (en
Inventor
典幸 杉山
典幸 杉山
英樹 岡部
英樹 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2019124051A1 publication Critical patent/JPWO2019124051A1/en
Application granted granted Critical
Publication of JP6674163B2 publication Critical patent/JP6674163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、粉体塗料及び該塗料の塗膜を有する物品に関する。   The present invention relates to a powder coating and an article having a coating of the coating.

近年、大気汚染等の問題から有機溶剤に対する規制が厳しくなり、環境調和型塗料が注目されている。その中でも、粉体塗料は無溶剤型塗料として環境保護の観点から脚光を浴びており、特にアクリル系粉体塗料は耐候性、耐汚染性等の塗膜性能に優れることから、アルミホイール等の自動車部品、金属外装、家電の用途に注目されている。しかしながら、粉体塗料は溶剤型塗料と比較し、塗膜外観が劣るという欠点があった。   In recent years, regulations on organic solvents have become stricter due to problems such as air pollution, and environmentally friendly paints have been receiving attention. Among them, powder coatings have been spotlighted from the viewpoint of environmental protection as solvent-free coatings, and acrylic powder coatings in particular have excellent coating performance such as weather resistance and stain resistance. Attention has been focused on the use of automotive parts, metal exteriors, and home appliances. However, the powder coating has a drawback in that the appearance of the coating is inferior to that of the solvent coating.

これに対して、(メタ)アクリル酸アルキルエステル、エポキシ基含有アクリル単量体、その他共重合可能なビニル系単量体を共重合させて得られるエポキシ基含有アクリル樹脂と、エポキシ基と反応可能な官能基を有する硬化剤とを含んでなる粉体塗料が提案されている(例えば、特許文献1参照。)。しかしながら、この粉体塗料から得られる硬化塗膜は、外観が改善されているものの、耐糸錆性が不十分であるという問題があった。   On the other hand, epoxy group-containing acrylic resin obtained by copolymerizing (meth) acrylic acid alkyl ester, epoxy group-containing acrylic monomer, and other copolymerizable vinyl monomers can react with epoxy group. There has been proposed a powder coating comprising a curing agent having a functional group (for example, see Patent Document 1). However, although the cured coating film obtained from this powder coating has an improved appearance, it has a problem that the rust resistance is insufficient.

特開2002−69368号公報JP-A-2002-69368

本発明が解決しようとする課題は、耐糸錆性に優れる硬化塗膜を得ることのできる粉体塗料、及び該塗料の塗膜を有する物品を提供することである。   The problem to be solved by the present invention is to provide a powder coating material capable of obtaining a cured coating film having excellent yarn rust resistance, and an article having a coating film of the coating material.

本発明者等は、上記の課題を解決するため鋭意研究した結果、特定のエポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する粉体塗料から得られる硬化塗膜が、耐糸錆性に優れることを見出し、発明を完成させた。   The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, they contain a specific epoxy group-containing acrylic resin (A) and a curing agent (B) having a functional group capable of reacting with the epoxy group. The inventors have found that a cured coating film obtained from a powder coating material has excellent yarn rust resistance and completed the invention.

すなわち、本発明は、エポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する粉体塗料であって、前記エポキシ基を有するアクリル樹脂(A)のMark−Houwink−Sakuradaプロットにおける分子形態パラメータα値が0.3〜0.5であることを特徴とする粉体塗料及び該塗料の塗膜を有する物品に関する。   That is, the present invention relates to a powder coating containing an acrylic resin having an epoxy group (A) and a curing agent having a functional group capable of reacting with the epoxy group (B), wherein the acrylic resin having the epoxy group The present invention relates to a powder coating material having a molecular form parameter α value of 0.3 to 0.5 in a Mark-Houwink-Sakurada plot of (A) and an article having a coating film of the coating material.

本発明の粉体塗料は、耐糸錆性に優れる硬化塗膜を形成することができることから、アルミホイールなどの物品を塗装する塗料に好適に用いることができる。   Since the powder coating of the present invention can form a cured coating film having excellent thread rust resistance, it can be suitably used as a coating for coating articles such as aluminum wheels.

本発明の粉体塗料は、エポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する粉体塗料であって、前記エポキシ基を有するアクリル樹脂(A)のMark−Houwink−Sakuradaプロットにおける分子形態パラメータα値が0.3〜0.5であるものである。   The powder coating of the present invention is a powder coating containing an acrylic resin having an epoxy group (A) and a curing agent having a functional group capable of reacting with the epoxy group (B), and having the epoxy group. The molecular form parameter α value in the Mark-Houwink-Sakurada plot of the acrylic resin (A) is 0.3 to 0.5.

まず、前記エポキシ基を有するアクリル樹脂(A)について説明する。このエポキシ基を有するアクリル樹脂(A)のMark−Houwink−Sakuradaプロットにおける分子形態パラメータα値は、耐糸錆性等の塗膜物性に優れる塗膜が得られることから、0.3〜0.5であることが重要である。   First, the acrylic resin (A) having an epoxy group will be described. The value of the molecular form parameter α in the Mark-Houwink-Sakurada plot of the acrylic resin (A) having an epoxy group is from 0.3 to 0, since a coating film having excellent coating properties such as yarn rust resistance is obtained. It is important that it is 5.

なお、本発明におけるアクリル樹脂(A)のMark−Houwink−Sakuradaプロットにおける分子形態パラメータα値は、GPC−MALS−VISCO測定により求めたものである。Mark−Houwink−Sakuradaの式:[η]=K・Mwαから、log[η]=logK + αlogMwとなる。MALSから絶対分子量Mw、VISCOから極限粘度[η]を得て、横軸にlogMw、縦軸にlog[η]をプロットし、その傾きからαを求めたものである。In addition, the molecular form parameter α value in the Mark-Houwink-Sakurada plot of the acrylic resin (A) in the present invention was determined by GPC-MALS-VISCO measurement. From the Mark-Houwink-Sakurada equation: [η] = K · Mw α , log [η] = logK + αlogMw. The absolute molecular weight Mw was obtained from MALS, the intrinsic viscosity [η] was obtained from VISCO, logMw was plotted on the horizontal axis, and log [η] was plotted on the vertical axis, and α was determined from the slope.

前記エポキシ基を有するアクリル樹脂(A)は、 例えば、エポキシ基を有するアクリル単量体(a1)と、その他の不飽和単量体(a2)とを共重合することにより得られる。   The acrylic resin (A) having an epoxy group can be obtained, for example, by copolymerizing an acrylic monomer (a1) having an epoxy group and another unsaturated monomer (a2).

前記エポキシ基を有するアクリル単量体(a1)としては、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、(メタ)アリルグリシジルエーテル、(メタ)アリルメチルグリシジルエーテル、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられるが、これらの中でも、グリシジル(メタ)アクリレートが好ましい。なお、これらのアクリル単量体(a1)は、単独で用いることも2種以上併用することもできる。   Examples of the acrylic monomer (a1) having an epoxy group include glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, (meth) allyl glycidyl ether, (meth) allyl methyl glycidyl ether, and 3,4-epoxy. Examples thereof include cyclohexylmethyl (meth) acrylate, and among them, glycidyl (meth) acrylate is preferable. In addition, these acrylic monomers (a1) can be used alone or in combination of two or more.

なお、本発明において、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいう。   In the present invention, “(meth) acrylic acid” refers to one or both of methacrylic acid and acrylic acid, “(meth) acrylate” refers to one or both of methacrylate and acrylate, and “(meth) acrylic acid”. The term “) acryloyl group” means one or both of a methacryloyl group and an acryloyl group.

前記その他の不飽和単量体(a2)としては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−ヘプチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4−tert−ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、N,N−ジメチルアミノエチル(メタ)アクリレート、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、スチレン、α−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、2−メトキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシ−n−ブチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ−n−ブチル(メタ)アクリレート、3−ヒドロキシ−n−ブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の単官能単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールA−ジ(メタ)アクリレート、ビスフェノールA−EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性ジアクリレート等の2官能単量体;イソシアヌル酸EO変性トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の3官能以上の単量体などが挙げられるが、単官能単量体及び多官能単量体を併用することが好ましく、ゲル化の可能性が低く、分子形態パラメータα値が0.3〜0.5のアクリル樹脂を容易に得られることから、単官能単量体及び2官能単量体を併用することが好ましい。これらのその他の不飽和単量体(a2)は、単独で用いることも2種以上併用することもできる。なお、本発明においては、重合性二重結合を1有する単量体を単官能単量体とし、2有する単量体を2官能単量体、3以上有する単量体を3官能以上の単量体とする。   Examples of the other unsaturated monomer (a2) include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- Butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (meth) Acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acrylonitrile , N, N-dimethylaminoethyl (meth) acrylate, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, styrene , Α-methylstyrene, p-methylstyrene, p-methoxystyrene, 2-methoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) ) Acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- ( Monofunctional monomers such as (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, lactone-modified (meth) acrylate having a hydroxyl group at a terminal; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate; ) Acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di ( (Meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, hydroxy Pivalic acid ester neopentyl glycol di (meth) acrylate, bisphenol A-di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, isocyanuric acid EO Bifunctional monomers such as functional diacrylates; isocyanuric acid EO-modified triacrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra Examples include trifunctional or higher functional monomers such as acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate. Preferably, a monofunctional monomer and a bifunctional monomer are used in combination, since the possibility of gelation is low and an acrylic resin having a molecular form parameter α value of 0.3 to 0.5 can be easily obtained. preferable. These other unsaturated monomers (a2) can be used alone or in combination of two or more. In the present invention, a monomer having one polymerizable double bond is a monofunctional monomer, a monomer having two is a bifunctional monomer, and a monomer having three or more is a trifunctional or more monofunctional monomer. And a monomer.

前記エポキシ基を有するアクリル単量体(a1)の使用量は、得られる塗膜の耐糸錆性、塗膜物性がより向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、10〜70質量%の範囲が好ましく、20〜50質量%の範囲がより好ましい。前記多官能単量体の使用量は、得られる塗膜の耐糸錆性がより向上することから、前記アクリル樹脂(A)の原料である単量体成分中の質量比率で、0.1〜10質量%の範囲が好ましく、0.1〜5質量%の範囲がより好ましい。   The amount of the acrylic monomer (a1) having an epoxy group to be used is such that the obtained coating film has improved filiform rust resistance and coating film properties, so that the monomer used as the raw material of the acrylic resin (A) can be used. The mass ratio in the component is preferably in the range of 10 to 70% by mass, and more preferably in the range of 20 to 50% by mass. The amount of the polyfunctional monomer used is 0.1% by mass in the monomer component, which is a raw material of the acrylic resin (A), since the obtained coating film has a further improved rust resistance. The range is preferably from 10 to 10% by mass, more preferably from 0.1 to 5% by mass.

前記アクリル樹脂(A)の数平均分子量は、得られる塗膜の耐糸錆性、塗膜物性がより向上することから、1,000〜5,000が好ましい。ここで、数平均分子量はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。   The number average molecular weight of the acrylic resin (A) is preferably from 1,000 to 5,000, since the resulting coating film has improved rust resistance and coating film properties. Here, the number average molecular weight is a value converted into polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement.

前記アクリル樹脂(A)のガラス転移温度は、得られる塗膜の耐糸錆性、塗膜物性がより向上ことから、30〜80℃が好ましい。   The glass transition temperature of the acrylic resin (A) is preferably from 30 to 80 ° C. from the viewpoint of improving the rust resistance and physical properties of the obtained coating film.

前記アクリル樹脂(A)を得る方法としては、前記アクリル単量体(a1)、及びその他の不飽和単量体(a2)を原料として、公知の重合方法で行うことができるが、溶液ラジカル重合法が最も簡便であることから好ましい。   The acrylic resin (A) can be obtained by a known polymerization method using the acrylic monomer (a1) and the other unsaturated monomer (a2) as raw materials. Legalization is preferred because it is the simplest.

上記の溶液ラジカル重合法は、原料である各単量体を溶剤に溶解し、重合開始剤存在下で重合反応を行う方法である。この際に用いることができる溶剤としては、例えば、トルエン、キシレン、シクロヘキサン、n−ヘキサン、オクタン等の炭化水素溶剤;メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール等のアルコール溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル溶剤;酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸イソブチル、酢酸アミル等のエステル溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上併用することもできる。   The solution radical polymerization method is a method in which each monomer as a raw material is dissolved in a solvent and a polymerization reaction is performed in the presence of a polymerization initiator. Examples of the solvent that can be used at this time include hydrocarbon solvents such as toluene, xylene, cyclohexane, n-hexane, and octane; and alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, isobutanol, and sec-butanol. Ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether and diethylene glycol dimethyl ether; ester solvents such as methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate and amyl acetate; acetone And ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. These solvents can be used alone or in combination of two or more.

前記重合開始剤としては、分子形態パラメータα値が0.3〜0.5のアクリル樹脂を容易に得られることから、多官能性重合開始剤を用いることが好ましく、3官能以上の重合開始剤を用いることがより好ましい。多官能性重合開始剤とは、例えば、2,2−ビス−(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、2,2−t−ブチルパーオキシオクタン、1,1−ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、1,3−ビス−(t−ブチルパーオキシイソプロピル)ベンゼン、2,5−ジメチル−2,5−(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(t−ブチルパーオキシ)ヘキシン−3、トリス−(t−ブチルパーオキシ)トリアジン、1,1−ジ−t−ブチルパーオキシシクロヘキサン、2,2−ジ−t−ブチルパーオキシブタン、4,4−ジ−t−ブチルパーオキシバレリックアシッド−n−ブチルエステル、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、ジ−t−ブチルパーオキシアゼレート、ジーt−ブチルパーオキシトリメチルアジペート、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等の1分子内に2つ以上のパーオキサイド基などの重合開始機能を有する官能基を有するものが挙げられる。   As the polymerization initiator, a polyfunctional polymerization initiator is preferably used because an acrylic resin having a molecular form parameter α value of 0.3 to 0.5 can be easily obtained, and a trifunctional or higher functional polymerization initiator is preferably used. It is more preferable to use The polyfunctional polymerization initiator includes, for example, 2,2-bis- (4,4-di-t-butylperoxycyclohexyl) propane, 2,2-t-butylperoxyoctane, 1,1-di- t-butylperoxy-3,3,5-trimethylcyclohexane, 1,3-bis- (t-butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5- (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexyne-3, tris- (t-butylperoxy) triazine, 1,1-di-t-butylperoxycyclohexane, 2,2 -Di-t-butylperoxybutane, 4,4-di-t-butylperoxyvaleric acid-n-butyl ester, di-t-butylperoxyhexahydroterephthalate, di- Two or more peroxide groups in one molecule such as -butylperoxyazelate, di-t-butylperoxytrimethyladipate, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone And those having a functional group having a polymerization initiation function.

前記重合開始剤としては、単官能性重合開始剤を使用してもよく、多官能性重合開始剤と併用してもよい。単官能性重合開始剤として、例えば、シクロヘキサノンパーオキサイド、3,3,5−トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド化合物;1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(4,4−ジt−ブチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジt−アミルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジt−ヘキシルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジt−オクチルパーオキシシクロヘキシル)プロパン、2,2−ビス(4,4−ジクミルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−アミルパーオキシ)シクロヘキサン等のパーオキシケタール化合物;クメンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、t−アミルハイドロパーオキサイド等のハイドロパーオキサイド化合物;1,3−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジイソプロピルベンゼンパーオキサイド、t−ブチルクミルパーオキサイド、ジt−アミルパーオキサイド等のジアルキルパーオキサイド化合物;デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド等のジアシルパーオキサイド化合物;ビス(t−ブチルシクロヘキシル)パーオキシジカーボネート、t−アミルパーオキシイソプロピルカーボネート、t−アミルパーオキシ2−エチルヘキシルカーボネート等のパーオキシカーボネート化合物;t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシベンゾエート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−アミルパーオキシネオデカネート、t−アミルパーオキシピバレート、t−アミルパーオキシ−2−エチルヘキサノエート、t−アミルパーオキシノルマルオクトエート、t−アミルパーオキシアセテート、t−アミルパーオキシイソノナノエート、t−アミルパーオキシベンゾエート等のパーオキシエステル化合物などの有機過酸化物と、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)等のアゾ化合物などが挙げられる。   As the polymerization initiator, a monofunctional polymerization initiator may be used, or a polyfunctional polymerization initiator may be used in combination. Examples of the monofunctional polymerization initiator include ketone peroxide compounds such as cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2-bis (4,4- Di-t-butylperoxycyclohexyl) propane, 2,2-bis (4,4-di-t-amylperoxycyclohexyl) propane, 2,2-bis (4,4-di-t-hexylperoxycyclohexyl) propane, 2,2-bis (4,4-di-tert-octylperoxycyclohexyl) propane, 2,2 Peroxyketal compounds such as bis (4,4-dicumylperoxycyclohexyl) propane and 1,1-bis (t-amylperoxy) cyclohexane; cumene hydroperoxide, 2,5-dimethylhexane-2,5- Hydroperoxide compounds such as dihydroperoxide and t-amyl hydroperoxide; 1,3-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (t- Butylperoxy) hexane, diisopropylbenzene peroxide, t-butylcumyl peroxide, di-t-amyl peroxide and other dialkyl peroxide compounds; decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl Paoki Diacyl peroxide compounds such as amides; peroxycarbonate compounds such as bis (t-butylcyclohexyl) peroxydicarbonate, t-amylperoxyisopropyl carbonate and t-amylperoxy 2-ethylhexyl carbonate; t-butylperoxy- 2-ethylhexanoate, t-butylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-amylperoxyneodecanate, t-amylperoxypivalate, t -Peroxyester compounds such as amyl peroxy-2-ethylhexanoate, t-amyl peroxy normal octoate, t-amyl peroxy acetate, t-amyl peroxy isononanoate, t-amyl peroxy benzoate, etc. No And azo compounds such as 2,2'-azobisisobutyronitrile and 1,1'-azobis (cyclohexane-1-carbonitrile).

前記重合開始剤の使用量は、得られる塗膜の耐糸錆性、塗膜物性がより向上することから、前記アクリル樹脂(A)の原料である単量体成分に対し、0.5〜15質量%の範囲が好ましく、2〜10質量%の範囲がより好ましい。   The amount of the polymerization initiator to be used is from 0.5 to 0.5% with respect to the monomer component as a raw material of the acrylic resin (A), since the obtained coating film has improved filiform rust resistance and coating film properties are further improved. A range of 15% by mass is preferable, and a range of 2 to 10% by mass is more preferable.

次に、前記硬化剤(B)について説明する。前記硬化剤(B)は、エポキシ基と反応可能な官能基を有する硬化剤であり、例えば、スベリン酸、アゼライン酸、2,4−ジエチルグルタル酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ブラシル酸、テトラデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸、ヘプタデカンジカルボン酸、オクタデカンジカルボン酸、エイコサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、ブタントリカルボン酸等の多価カルボン酸化合物、これら多価カルボン酸の無水物、及び多価フェノール化合物などが挙げられる。これらの中でも、高強度の塗膜が得られることから、脂肪族多価カルボン酸化合物及びその無水物が好ましく、ドデカンジカルボン酸がより好ましい。また、これらの硬化剤(B)は単独で用いることも2種以上併用することもできる。   Next, the curing agent (B) will be described. The curing agent (B) is a curing agent having a functional group capable of reacting with an epoxy group, such as suberic acid, azelaic acid, 2,4-diethylglutaric acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, Polyvalent carboxylic acid compounds such as brassic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid, heptadecanedicarboxylic acid, octadecanedicarboxylic acid, eicosandicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and butanetricarboxylic acid; Examples thereof include anhydrides of polyvalent carboxylic acids and polyhydric phenol compounds. Among these, an aliphatic polycarboxylic acid compound and its anhydride are preferable, and dodecanedicarboxylic acid is more preferable, since a high-strength coating film can be obtained. These curing agents (B) can be used alone or in combination of two or more.

本発明の粉体塗料は、前記エポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有するものであるが、高強度の塗膜が得られることから、これらの配合量としては、前記アクリル樹脂(A)中のエポキシ基の当量数(EP)と、前記硬化剤(B)中のカルボキシル基の当量数(COOH)との当量比[(EP)/(COOH)]が、0.5〜1.5の範囲が好ましく、0.8〜1.2の範囲がより好ましい。   The powder coating of the present invention contains the acrylic resin (A) having an epoxy group and a curing agent (B) having a functional group capable of reacting with the epoxy group. From the fact that they are obtained, the mixing ratio of the equivalent number of the equivalent number of epoxy groups (EP) in the acrylic resin (A) and the equivalent number of carboxyl groups (COOH) in the curing agent (B) is determined. [(EP) / (COOH)] is preferably in the range of 0.5 to 1.5, and more preferably in the range of 0.8 to 1.2.

本発明の粉体塗料には、本発明の効果を損なわない範囲内で、有機系ないしは無機系の顔料をはじめ、流動調整剤、光安定剤、紫外線吸収剤、酸化防止剤等の公知慣用の種々の添加剤を添加することができる。また、焼き付け時の硬化反応を促進する目的で、触媒を添加することもできる。   In the powder coating of the present invention, within the range not impairing the effects of the present invention, including organic or inorganic pigments, flow regulators, light stabilizers, ultraviolet absorbers, known and commonly used antioxidants and the like. Various additives can be added. Further, a catalyst may be added for the purpose of accelerating the curing reaction at the time of baking.

本発明の粉体塗料の調製方法としては、公知慣用の種々の方法を利用することができるが、例えば、前記アクリル樹脂(A)と、前記硬化剤(B)と、必要に応じて、顔料、表面調整剤等の種々の添加剤とを混合し、次いで、それらを溶融混練したのちに、微粉砕、分級するという、いわゆる機械粉砕方式などを利用することができる。   As a method for preparing the powder coating material of the present invention, various known and common methods can be used. For example, the acrylic resin (A), the curing agent (B), and if necessary, a pigment A so-called mechanical pulverization method of mixing various additives such as a surface conditioner and the like, then melt-kneading them, and then pulverizing and classifying them can be used.

本発明の粉体塗料は、エクステリア、家電用品、自動車用品、二輪車用品、防護柵等の各種物品に塗装することが可能であるが、耐糸錆性、耐候性、耐衝撃性、耐チッピング性、耐水性等に優れる高外観の塗膜が得られることから、アルミホイール合金部材等の金属部材への塗装に適している。   The powder coating of the present invention can be applied to various articles such as exteriors, home appliances, automobiles, motorcycles, protective fences, etc., and has a high resistance to thread rust, weather resistance, impact resistance, and chipping resistance. It is suitable for coating metal members such as aluminum wheel alloy members since a high-appearance coating film having excellent water resistance and the like can be obtained.

本発明の粉体塗料の塗装方法としては、静電粉体塗装法等の公知慣用の種々の方法が挙げられる。また、本発明の粉体塗料を塗装後、硬化塗膜とする方法としては、基材の種類や目的に応じて適宜選択することができるが、耐糸錆性、耐水性及び耐候性に優れる塗膜が得られることから、120〜250℃の温度範囲で、5〜30分間の範囲で焼き付けることが好ましい。また、塗装膜厚は、50〜150μmの範囲が好ましい。   Examples of the coating method of the powder coating of the present invention include various known and commonly used methods such as an electrostatic powder coating method. Further, the method of forming a cured coating film after applying the powder coating of the present invention can be appropriately selected according to the type and purpose of the substrate, but is excellent in thread rust resistance, water resistance and weather resistance. From the viewpoint of obtaining a coating film, baking is preferably performed at a temperature in the range of 120 to 250 ° C. for 5 to 30 minutes. Further, the coating film thickness is preferably in the range of 50 to 150 μm.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、アクリル樹脂のエポキシ当量、ガラス転移温度、及び数平均分子量は、下記の方法で測定したものである。
[エポキシ当量の測定方法]
塩酸−ピリジン法により測定した。樹脂に、塩酸−ピリジン溶液25mlを加え、130℃で1時間、加熱溶解した後、フェノールフタレインを指示薬として0.1N−水酸化カリウムアルコール溶液で滴定した。消費した0.1N−水酸化カリウムアルコール溶液の量によってエポキシ当量を算出した。
Hereinafter, the present invention will be described in more detail with reference to specific examples. The epoxy equivalent, glass transition temperature, and number average molecular weight of the acrylic resin were measured by the following methods.
[Method of measuring epoxy equivalent]
It was measured by the hydrochloric acid-pyridine method. To the resin was added 25 ml of a hydrochloric acid-pyridine solution, and the mixture was heated and dissolved at 130 ° C. for 1 hour, and titrated with a 0.1 N potassium hydroxide alcohol solution using phenolphthalein as an indicator. The epoxy equivalent was calculated from the amount of the consumed 0.1 N potassium hydroxide alcohol solution.

[ガラス転移温度の測定方法]
DSC法(示差走査熱量測定法)により求めた。
測定装置:示差走査熱量計(TA INSTRUMENTS株式会社製「DSC Q−100」)
雰囲気条件:窒素雰囲気下
温度範囲:−50〜150℃
昇温速度:5℃/分
[Measurement method of glass transition temperature]
It was determined by the DSC method (differential scanning calorimetry).
Measuring device: Differential scanning calorimeter ("DSC Q-100" manufactured by TA INSTRUMENTS Co., Ltd.)
Atmosphere conditions: Under nitrogen atmosphere Temperature range: -50 to 150 ° C
Heating rate: 5 ° C / min

[重量平均分子量の測定方法]
GPCにより測定した。
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[Method of measuring weight average molecular weight]
It was measured by GPC.
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 Book “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 Detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection volume: 100 μL (sample concentration 4 mg / mL in tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.

(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Monodisperse polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation

(合成例1:アクリル樹脂(A−1)の合成)
攪拌機、温度計、冷却管及び窒素導入管を備えた反応容器に、キシレン76質量部を仕込み、窒素雰囲気下に135℃にまで昇温した。そこへ、スチレン(以下、「St」と略記する。)18質量部、メチルメタクリレート(以下、「MMA」と略記する。)42質量部、n−ブチルメタクリレート(以下、「nBMA」と略記する。)4質量部、2−エチルヘキシルメタクリレート(以下、「2EHMA」と略記する。)2質量部、グリシジルメタクリレート(以下、「GMA」と略記する。)32質量部、n−ブチルアクリレート(以下、「BA」と略記する。)2質量部、および2,2−ビス−(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン(以下、「P−TA」と略記する。)0.3質量部、t−ブチルパーオキシ−2−エチルヘキサノエート(以下、「P−O」と略記する。)5質量部とからなる混合物を6時間かけて滴下した。滴下終了後も同温度にて10時間保持し、重合反応を行った後、160℃で20mmHgの減圧下に溶剤をのぞき、分子形態パラメータ0.47、数平均分子量2,200、ガラス転移温度52℃、エポキシ当量460g/eqなる固形のアクリル樹脂(A−1)を得た。
(Synthesis Example 1: Synthesis of acrylic resin (A-1))
76 parts by mass of xylene was charged into a reaction vessel equipped with a stirrer, a thermometer, a cooling pipe, and a nitrogen introduction pipe, and heated to 135 ° C. under a nitrogen atmosphere. There, 18 parts by mass of styrene (hereinafter abbreviated as "St"), 42 parts by mass of methyl methacrylate (hereinafter abbreviated as "MMA"), and n-butyl methacrylate (hereinafter abbreviated as "nBMA"). ) 4 parts by mass, 2-ethylhexyl methacrylate (hereinafter abbreviated as “2EHMA”) 2 parts by mass, glycidyl methacrylate (hereinafter abbreviated as “GMA”) 32 parts by mass, n-butyl acrylate (hereinafter “BA”) 2) and 0.3 parts by mass of 2,2-bis- (4,4-di-t-butylperoxycyclohexyl) propane (hereinafter abbreviated as “P-TA”). And 5 parts by mass of t-butylperoxy-2-ethylhexanoate (hereinafter abbreviated as “PO”) were added dropwise over 6 hours. After completion of the dropwise addition, the mixture was kept at the same temperature for 10 hours to carry out the polymerization reaction. After removing the solvent at 160 ° C. under a reduced pressure of 20 mmHg, the molecular form parameter was 0.47, the number average molecular weight was 2,200, and the glass transition temperature was 52. C., a solid acrylic resin (A-1) having an epoxy equivalent of 460 g / eq was obtained.

(合成例2:アクリル樹脂(A−2)の合成)
単量体及び重合開始剤の組成を、St 20質量部、MMA 44質量部、nBMA 6質量部、イソブチルメタクリレート(以下、「iBMA」と略記する。)3質量部、GMA 24質量部、エチルアクリレート(以下、「EA」と略記する。)3質量部、およびP−TA 5.3質量部に変更した以外は合成例1と同様に操作することにより、分子形態パラメータ0.42、数平均分子量2,100、ガラス転移温度52℃、エポキシ当量600g/eqなる固形のアクリル樹脂(A−2)を得た。
(Synthesis Example 2: Synthesis of acrylic resin (A-2))
The composition of the monomer and the polymerization initiator was 20 parts by mass of St, 44 parts by mass of MMA, 6 parts by mass of nBMA, 3 parts by mass of isobutyl methacrylate (hereinafter abbreviated as “iBMA”), 24 parts by mass of GMA, and ethyl acrylate. (Hereinafter, abbreviated as "EA".) The same procedure as in Synthesis Example 1 was carried out except that the amount was changed to 3 parts by mass and 5.3 parts by mass of P-TA, whereby a molecular form parameter 0.42 and a number average molecular weight were obtained. A solid acrylic resin (A-2) having a glass transition temperature of 2,100 and an epoxy equivalent of 600 g / eq was obtained.

(合成例3:アクリル樹脂(A−3)の合成)
単量体及び重合開始剤の組成を、St 25質量部、MMA 38質量部、nBMA 4質量部、2EHMA 2質量部、GMA 26質量部、アクリル酸イソブチル(以下、「iBA」と略記する。)4質量部、エチレングリコールジメタクリレート(以下、「EDMA」と略記する。)1質量部およびP−O 8質量部に変更した以外は合成例1と同様に操作することにより、分子形態パラメータ0.46、数平均分子量1,700、ガラス転移温度41℃、エポキシ当量570g/eqなる固形のアクリル樹脂(A−3)を得た。
(Synthesis Example 3: Synthesis of acrylic resin (A-3))
The composition of the monomer and the polymerization initiator was 25 parts by mass of St, 38 parts by mass of MMA, 4 parts by mass of nBMA, 2 parts by mass of 2EHMA, 26 parts by mass of GMA, and isobutyl acrylate (hereinafter abbreviated as “iBA”). The same procedure as in Synthesis Example 1 was carried out except that 4 parts by mass, 1 part by mass of ethylene glycol dimethacrylate (hereinafter abbreviated as "EDMA") and 8 parts by mass of P-O were used, whereby the molecular morphological parameter was changed to 0.1 part by mass. Thus, a solid acrylic resin (A-3) having a number average molecular weight of 1,700, a glass transition temperature of 41 ° C. and an epoxy equivalent of 570 g / eq was obtained.

(合成例4:アクリル樹脂(A−4)の合成)
単量体及び重合開始剤の組成を、St 18質量部、MMA 38質量部、nBMA 8質量部、GMA 30質量部、 nBA 1質量部、EDMA 5質量部およびP−O 5.3質量部に変更した以外は合成例1と同様に操作することにより、分子形態パラメータ0.40、数平均分子量2,600、ガラス転移温度60℃、エポキシ当量490g/eqなる固形のアクリル樹脂(A−4)を得た。
(Synthesis Example 4: Synthesis of acrylic resin (A-4))
The composition of the monomer and the polymerization initiator was changed to 18 parts by mass of St, 38 parts by mass of MMA, 8 parts by mass of nBMA, 30 parts by mass of GMA, 1 part by mass of nBA, 5 parts by mass of EDMA, and 5.3 parts by mass of PO. A solid acrylic resin (A-4) having a molecular form parameter of 0.40, a number average molecular weight of 2,600, a glass transition temperature of 60 ° C. and an epoxy equivalent of 490 g / eq was obtained by operating in the same manner as in Synthesis Example 1 except for the change. I got

(合成例5:アクリル樹脂(RA−1)の合成)
単量体及び重合開始剤の組成を、St 20質量部、MMA 30質量部、nBMA 9質量部、nBA 8質量部、GMA 28質量部、iBA 5質量部およびP−O 3.5質量部に変更した以外は合成例1と同様に操作することにより、分子形態パラメータ0.57、数平均分子量3,300、ガラス転移温度50℃、エポキシ当量520g/eqなる固形のアクリル樹脂(RA−1)を得た。
(Synthesis Example 5: Synthesis of acrylic resin (RA-1))
The composition of the monomer and the polymerization initiator was changed to 20 parts by mass of St, 30 parts by mass of MMA, 9 parts by mass of nBMA, 8 parts by mass of nBA, 28 parts by mass of GMA, 5 parts by mass of iBA, and 3.5 parts by mass of PO. A solid acrylic resin (RA-1) having a molecular form parameter of 0.57, a number average molecular weight of 3,300, a glass transition temperature of 50 ° C., and an epoxy equivalent of 520 g / eq was obtained by operating in the same manner as in Synthesis Example 1 except for the change. I got

(合成例6:アクリル樹脂(RA−2)の合成)
単量体及び重合開始剤の組成を、St 18質量部、MMA 43質量部、nBMA 10質量部、2EHMA 2質量部、GMA 25質量部、iBA 2質量部およびP−O 5.3質量部に変更した以外は合成例1と同様に操作することにより、分子形態パラメータ0.52、数平均分子量2,200、ガラス転移温度50℃、エポキシ当量580g/eqなる固形のアクリル樹脂(RA−2)を得た。
(Synthesis Example 6: Synthesis of acrylic resin (RA-2))
The composition of the monomer and the polymerization initiator was adjusted to 18 parts by mass of St, 43 parts by mass of MMA, 10 parts by mass of nBMA, 2 parts by mass of 2EHMA, 25 parts by mass of GMA, 2 parts by mass of iBA, and 5.3 parts by mass of PO. A solid acrylic resin (RA-2) having a molecular form parameter of 0.52, a number average molecular weight of 2,200, a glass transition temperature of 50 ° C., and an epoxy equivalent of 580 g / eq was obtained by operating in the same manner as in Synthesis Example 1 except for the change. I got

(合成例7:アクリル樹脂(RA−3)の合成)
単量体及び重合開始剤の組成を、St 25質量部、MMA 36質量部、iBMA 7質量部、2EHMA 1質量部、GMA 30質量部、nBA 1質量部およびP−O 6質量部に変更した以外は合成例1と同様に操作することにより、分子形態パラメータ0.53、数平均分子量2,200、ガラス転移温度56℃、エポキシ当量490g/eqなる固形のアクリル樹脂(RA−3)を得た。
(Synthesis Example 7: Synthesis of acrylic resin (RA-3))
The composition of the monomer and the polymerization initiator was changed to St 25 parts by mass, MMA 36 parts by mass, iBMA 7 parts by mass, 2EHMA 1 part by mass, GMA 30 parts by mass, nBA 1 part by mass and PO 6 parts by mass. A solid acrylic resin (RA-3) having a molecular form parameter of 0.53, a number average molecular weight of 2,200, a glass transition temperature of 56 ° C, and an epoxy equivalent of 490 g / eq was obtained by operating in the same manner as in Synthesis Example 1 except for the above. Was.

上記の合成例1〜7で合成したアクリル樹脂(A−1)〜(A−4)及び(RA−1)〜(RA−3)の単量体・重合開始剤組成及び性状値を表1に示す。   Table 1 shows the monomer / polymerization initiator composition and properties of the acrylic resins (A-1) to (A-4) and (RA-1) to (RA-3) synthesized in Synthesis Examples 1 to 7 above. Shown in

Figure 0006674163
Figure 0006674163

(実施例1:粉体塗料(1)の調製)
合成例1で得られたアクリル樹脂(A−1)82質量部、ドデカンジカルボン酸(以下、「DDDA」と略記する。)18質量部、ベンゾイン0.5質量部及び表面調整剤(ESTRON製「レジフローLF」;以下、「表面調整剤(1)」と略記する。)1質量部を配合した配合物を、二軸混練機(ツバコー横浜販売株式会社製「APV・ニーダーMP−2015型」)を使用して溶融混練した後、微粉砕し、さらに、200メッシュの金網で分級し、粉体塗料(1)を得た。
Example 1 Preparation of Powder Coating (1)
82 parts by mass of the acrylic resin (A-1) obtained in Synthesis Example 1, 18 parts by mass of dodecanedicarboxylic acid (hereinafter abbreviated as “DDDA”), 0.5 parts by mass of benzoin, and a surface conditioner (“ESTRON”) Resinflow LF "; hereinafter, abbreviated as" surface conditioner (1) ".) A mixture prepared by mixing 1 part by mass was mixed with a twin-screw kneader (" APV Kneader MP-2015 "manufactured by Tubaco Yokohama Sales Co., Ltd.). After melt-kneading using, the mixture was finely pulverized and further classified using a 200-mesh wire net to obtain a powder coating material (1).

(実施例2:粉体塗料(2)の調製)
実施例1で配合したアクリル樹脂(A−1)82質量部及びDDDA 18質量部を、アクリル樹脂(A−2)86質量部及びDDDA 14質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(2)を得た。
(Example 2: Preparation of powder coating material (2))
Same as Example 1 except that 82 parts by mass of the acrylic resin (A-1) and 18 parts by mass of DDDA blended in Example 1 were changed to 86 parts by mass of the acrylic resin (A-2) and 14 parts by mass of DDDA. By operating, a powder coating (2) was obtained.

(実施例3:粉体塗料(3)の調製)
実施例1で配合したアクリル樹脂(A−1)82質量部及びDDDA 18質量部を、アクリル樹脂(A−3)85質量部及びDDDA 15質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(3)を得た。
(Example 3: Preparation of powder coating material (3))
Same as Example 1 except that 82 parts by mass of the acrylic resin (A-1) and 18 parts by mass of DDDA blended in Example 1 were changed to 85 parts by mass of the acrylic resin (A-3) and 15 parts by mass of DDDA. By operation, a powder coating (3) was obtained.

(実施例4:粉体塗料(4)の調製)
実施例1で配合したアクリル樹脂(A−1)82質量部及びDDDA 18質量部を、アクリル樹脂(A−4)83質量部及びDDDA 17質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(4)を得た。
(Example 4: Preparation of powder coating (4))
Same as Example 1 except that 82 parts by mass of the acrylic resin (A-1) and 18 parts by mass of DDDA blended in Example 1 were changed to 83 parts by mass of the acrylic resin (A-4) and 17 parts by mass of DDDA. By operation, powder coating (4) was obtained.

(比較例1:粉体塗料(R1)の調製)
実施例1で配合したアクリル樹脂(A−1)82質量部及びDDDA 18質量部を、アクリル樹脂(RA−1)84質量部及びDDDA 16質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(R1)を得た。
(Comparative Example 1: Preparation of powder coating (R1))
Same as Example 1 except that 82 parts by mass of the acrylic resin (A-1) and 18 parts by mass of DDDA blended in Example 1 were changed to 84 parts by mass of the acrylic resin (RA-1) and 16 parts by mass of DDDA. By operation, a powder coating (R1) was obtained.

(比較例2:粉体塗料(R2)の調製)
実施例1で配合したアクリル樹脂(A−1)82質量部及びDDDA 18質量部を、アクリル樹脂(RA−2)85質量部及びDDDA 15質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(R2)を得た。
(Comparative Example 2: Preparation of powder coating material (R2))
Same as Example 1 except that 82 parts by mass of the acrylic resin (A-1) and 18 parts by mass of DDDA blended in Example 1 were changed to 85 parts by mass of the acrylic resin (RA-2) and 15 parts by mass of DDDA. By operation, a powder coating (R2) was obtained.

(比較例3:粉体塗料(R3)の調製)
実施例1で配合したアクリル樹脂(A−1)82質量部及びDDDA 18質量部を、アクリル樹脂(RA−3)83質量部及びDDDA 17質量部に変更した以外は、実施例1と同様に操作することにより、粉体塗料(R3)を得た。
(Comparative Example 3: Preparation of powder coating material (R3))
Same as Example 1 except that 82 parts by mass of the acrylic resin (A-1) and 18 parts by mass of DDDA blended in Example 1 were changed to 83 parts by mass of the acrylic resin (RA-3) and 17 parts by mass of DDDA. By operation, a powder coating (R3) was obtained.

[評価用硬化塗膜の作製]
上記で得られた粉体塗料を未処理アルミ板(A−1050P)(7cm×15cm)に、焼き付け後の膜厚が80〜120μmとなるように静電粉体塗装した後、160℃で20分間焼き付けを行い、評価用硬化塗膜を作製した。
[Production of cured coating film for evaluation]
The powder coating obtained above is applied to an untreated aluminum plate (A-1050P) (7 cm × 15 cm) by electrostatic powder coating so that the film thickness after baking becomes 80 to 120 μm. After baking for a minute, a cured coating film for evaluation was prepared.

[耐糸錆性の評価]
上記で得られた評価用硬化塗膜にカッターナイフで基材の素地に達するように13cmの直線の傷を2本入れ、CASS試験機にて次の試験を行った。温度50℃、噴霧液量1.2〜1.8cc/h、噴霧圧力0.1MPaの条件下、塩水(塩化銅(II)水和物2.6g、氷酢酸10cc、並塩500gを10Lのイオン交換水に溶解し調製)を6時間噴霧する試験1と、温度60℃、湿度85%の条件下96時間放置する試験2とを1サイクルとして、合計5サイクル行った。CASS試験終了後、塗装板の傷から生じた糸錆を目視にて確認し、耐糸錆性を下記の基準に従い評価した。
◎:直線に入れた傷に対して、糸錆が垂直方向に1mm未満である。
○:直線に入れた傷に対して、糸錆が垂直方向に1mm以上、2mm未満である。
×:直線に入れた傷に対して、糸錆が垂直方向に2mm以上である。
[Evaluation of thread rust resistance]
Two 13-cm linear scratches were made on the cured coating film for evaluation obtained above with a cutter knife so as to reach the base material of the base material, and the following test was performed with a CASS tester. Under a condition of a temperature of 50 ° C., a spray liquid amount of 1.2 to 1.8 cc / h, and a spray pressure of 0.1 MPa, salt water (2.6 g of copper (II) chloride hydrate, 10 cc of glacial acetic acid, 500 g of normal salt in 10 L) was used. Test 1 in which spraying (prepared by dissolving in ion-exchanged water) was sprayed for 6 hours, and Test 2 in which the test was left for 96 hours at a temperature of 60 ° C. and a humidity of 85%, as one cycle, for a total of 5 cycles. After the completion of the CASS test, thread rust generated from scratches on the coated plate was visually confirmed, and the thread rust resistance was evaluated according to the following criteria.
:: Yarn rust is less than 1 mm in the vertical direction with respect to a scratch placed in a straight line
Good: Yarn rust is not less than 1 mm and less than 2 mm in the vertical direction with respect to a scratch placed in a straight line.
X: The thread rust is 2 mm or more in the vertical direction with respect to the scratch placed in a straight line.

上記の実施例1〜4で調製した粉体塗料(1)〜(4)及び比較例1〜3で調製した粉体塗料(R1)〜(R3)の配合組成及び評価結果を表2に示す。   Table 2 shows the composition and evaluation results of the powder coatings (1) to (4) prepared in Examples 1 to 4 and the powder coatings (R1) to (R3) prepared in Comparative Examples 1 to 3. .

Figure 0006674163
Figure 0006674163

実施例1〜4の評価結果から、本発明の粉体塗料から得られる塗膜は耐糸錆性に優れることが確認された。   From the evaluation results of Examples 1 to 4, it was confirmed that the coating film obtained from the powder coating material of the present invention had excellent rust resistance.

一方、比較例1〜3は、本発明の粉体塗料の成分であるアクリル樹脂(A)の分子形態パラメータα値が0.5以上である例であるが、得られる塗膜の耐糸錆性が劣ることが確認された。   On the other hand, Comparative Examples 1 to 3 are examples in which the molecular form parameter α value of the acrylic resin (A) which is a component of the powder coating of the present invention is 0.5 or more. Inferiority was confirmed.

Claims (5)

エポキシ基を有するアクリル樹脂(A)と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有する粉体塗料用の、前記エポキシ基を有するアクリル樹脂(A)を含有する樹脂組成物であって、前記エポキシ基を有するアクリル樹脂(A)のMark−Houwink−Sakuradaプロットにおける分子形態パラメータα値が0.3〜0.5の範囲であり、前記エポキシ基を有するアクリル樹脂(A)が多官能性重合開始剤を用いた重合体であることを特徴とする樹脂組成物。 Resin containing an acrylic resin having an epoxy group (A) for a powder coating containing an acrylic resin having an epoxy group (A) and a curing agent having a functional group capable of reacting with the epoxy group (B) A composition, wherein the acrylic resin (A) having an epoxy group has a molecular morphological parameter α value in a range of 0.3 to 0.5 in a Mark-Houwink-Sakurada plot, and the acrylic resin having an epoxy group ( tree fat composition you characterized by a) is a polymer using a polyfunctional polymerization initiator. 前記エポキシ基を有するアクリル樹脂(A)が、多官能単量体を必須原料とするものである請求項1記載の樹脂組成物。 The acrylic resin having an epoxy group (A) is, tree fat composition according to claim 1, wherein in which the polyfunctional monomer as an essential raw material. 請求項1又は2記載の樹脂組成物と、エポキシ基と反応可能な官能基を有する硬化剤(B)とを含有することを特徴とする粉体塗料。 And tree fat composition according to claim 1 or 2, wherein the curing agent having a functional group capable of reacting with epoxy group (B) and powder coating, characterized in that it contains. 前記エポキシ基と反応可能な官能基を有する硬化剤(B)が、脂肪族多価カルボン酸及び/又はその無水物である請求項3記載の粉体塗料。   The powder coating according to claim 3, wherein the curing agent (B) having a functional group capable of reacting with an epoxy group is an aliphatic polycarboxylic acid and / or an anhydride thereof. 請求項3又は4記載の粉体塗料の塗膜を有する物品。   An article having a coating film of the powder paint according to claim 3.
JP2019542752A 2017-12-19 2018-12-04 Powder coating and article having a coating of the coating Active JP6674163B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017242796 2017-12-19
JP2017242796 2017-12-19
PCT/JP2018/044513 WO2019124051A1 (en) 2017-12-19 2018-12-04 Powder coating composition and article including coating film obtained from said coating composition

Publications (2)

Publication Number Publication Date
JPWO2019124051A1 JPWO2019124051A1 (en) 2019-12-19
JP6674163B2 true JP6674163B2 (en) 2020-04-01

Family

ID=66994542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542752A Active JP6674163B2 (en) 2017-12-19 2018-12-04 Powder coating and article having a coating of the coating

Country Status (3)

Country Link
JP (1) JP6674163B2 (en)
CN (1) CN111492019B (en)
WO (1) WO2019124051A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427523A (en) * 2020-04-24 2022-12-02 Dic株式会社 Resin composition for powder coating material, and article having coating film of the powder coating material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032090B2 (en) * 1972-06-20 1975-10-17
JPS5128828A (en) * 1974-09-05 1976-03-11 Dainippon Ink & Chemicals FUNTAITORYOYONETSUKOKASEIJUSHISOSEIBUTSU
JPS5818951B2 (en) * 1976-05-06 1983-04-15 日本原子力研究所 Wet manufacturing method for thermosetting powder coatings
JPS5575403A (en) * 1978-12-01 1980-06-06 Japan Atom Energy Res Inst Preparation of reactive microgel
PL2085436T3 (en) * 2008-01-29 2011-05-31 Akzo Nobel Coatings Int Bv Acrylic coating powders comprising hydrophobic particles and powder coatings therefrom having filliform corrosion resistance
PL2098575T3 (en) * 2008-03-04 2011-02-28 Akzo Nobel Coatings Int Bv Epoxy functional acrylic coating powders and powder coatings therefrom having filiform corrosion resistance
JP2015054932A (en) * 2013-09-12 2015-03-23 Dic株式会社 Powder coating and aluminum wheel alloy member coated with the powder coating
KR102305319B1 (en) * 2014-02-27 2021-09-27 아크조노벨코팅스인터내셔널비.브이. Acrylic resins and powder coating compositions and powder coated substrates including the same
CN103865015B (en) * 2014-03-24 2017-01-11 合肥工业大学 High-Tg low-softening-point carboxyl-containing acrylic resin for weather-resisting powder coating
CN105462429B (en) * 2015-12-11 2017-12-05 六安科瑞达新型材料有限公司 A kind of modified solid epoxy radicals acrylic resin and preparation method thereof

Also Published As

Publication number Publication date
CN111492019B (en) 2022-10-11
CN111492019A (en) 2020-08-04
JPWO2019124051A1 (en) 2019-12-19
WO2019124051A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN103282340A (en) Substituted 3-xopentanoates and their uses in coating compositions
JP6674163B2 (en) Powder coating and article having a coating of the coating
JP5637500B2 (en) Method for producing vinyl polymer and vinyl polymer
JP2015054932A (en) Powder coating and aluminum wheel alloy member coated with the powder coating
JP7070818B2 (en) Resin composition for powder paint, powder paint, articles having a coating film of the paint
TW200927774A (en) Vernetzbare vinylester-copolymerisate und deren verwendung als low-profile-additive
JP6225375B2 (en) Active energy ray curable composition, active energy ray curable paint, and article coated with the paint
KR20160097803A (en) composition of clear top coat and the method thereof
JP5527596B2 (en) Acrylic syrup
WO2023162563A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
WO2005040241A1 (en) Fast drying coating composition comprising an unsaturated hydroxydiester
JP2023064339A (en) Resin composition for powder coating, powder coating, and article having coated film of the coating
WO2024004421A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film of said powder coating material
WO2024127899A1 (en) Resin composition for powder coating materials, powder coating material, and article having coating film of said powder coating material
CN116635452A (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
JP6255626B2 (en) Coating composition and article coated with the coating composition
EP0546640A1 (en) Interpolymer-based binders
JP5428686B2 (en) Active energy ray-curable resin composition
WO2024135173A1 (en) Resin composition for powder coating material, powder coating material, and article having coating film formed of said coating material
JP2010180306A (en) Active energy ray-curable hard-coating composition
JPH04226112A (en) Dispersion of copolymer of vinyl ester of branched carboxylic acid, and ethylenically unsaturated acid and/or its ester
CN105073802B (en) Resin combination, bottom-coating and by the formed products after the paint spraying
KR100648226B1 (en) Acrylic polyol resin composition for possible mixing of cellulose ester and paint composition
JP2021038355A (en) Aqueous resin composition, aqueous coating material, and article
JPH10287715A (en) Water-base resin, production thereof, and water-base resin composition containing the sane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R151 Written notification of patent or utility model registration

Ref document number: 6674163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250