JP5428686B2 - Active energy ray-curable resin composition - Google Patents

Active energy ray-curable resin composition Download PDF

Info

Publication number
JP5428686B2
JP5428686B2 JP2009211010A JP2009211010A JP5428686B2 JP 5428686 B2 JP5428686 B2 JP 5428686B2 JP 2009211010 A JP2009211010 A JP 2009211010A JP 2009211010 A JP2009211010 A JP 2009211010A JP 5428686 B2 JP5428686 B2 JP 5428686B2
Authority
JP
Japan
Prior art keywords
active energy
energy ray
mass
curable resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009211010A
Other languages
Japanese (ja)
Other versions
JP2011057905A (en
Inventor
寛哉 貝原
崇 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko PMC Corp
Original Assignee
Seiko PMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko PMC Corp filed Critical Seiko PMC Corp
Priority to JP2009211010A priority Critical patent/JP5428686B2/en
Publication of JP2011057905A publication Critical patent/JP2011057905A/en
Application granted granted Critical
Publication of JP5428686B2 publication Critical patent/JP5428686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、貯蔵安定性に優れ、活性エネルギー線照射前にタックフリーの塗膜を形成し、活性エネルギー線照射後に優れた硬度や耐擦傷性を有し、硬化収縮し難い(以下、低硬化収縮性と略することがある)硬化膜が得られる活性エネルギー線硬化型樹脂組成物に関する。詳しくは、プラスチック、木材、ガラス、金属等向けの塗料材料、各種フィルム基材の保護層、転写材の保護層、フラットパネルディスプレー、フォトレジスト等の電子基板・光学関連材料、活性エネルギー線硬化型インキ用の樹脂等として用いることができる活性エネルギー線硬化型樹脂組成物に関する。   The present invention has excellent storage stability, forms a tack-free coating film before irradiation with active energy rays, has excellent hardness and scratch resistance after irradiation with active energy rays, and is difficult to cure and shrink (hereinafter referred to as low curing) The present invention relates to an active energy ray-curable resin composition from which a cured film may be abbreviated. Specifically, paint materials for plastics, wood, glass, metal, etc., protective layers for various film bases, protective layers for transfer materials, flat panel displays, electronic substrates and optical materials such as photoresists, active energy ray curable type The present invention relates to an active energy ray-curable resin composition that can be used as a resin for ink.

近年、紫外線や電子線等の活性エネルギー線の照射により成形品表面を被覆し、保護層を形成する方法として、例えば塗装法や転写法があり、保護層として使用される活性エネルギー線硬化型樹脂組成物の積極的な開発が行われている。しかしながら、活性エネルギー線硬化型樹脂組成物の多くは、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート等のオリゴマーと総称される分子量の低い化合物であるために、活性エネルギー線照射による光硬化前の塗膜は液状もしくはタックを有する未乾燥の状態にあり、活性エネルギー線照射前の塗膜にゴミや粉塵が付着して外観不良を引き起こし、生産効率の悪化を招くことがある。更に、分子量が低いことから、活性エネルギー線硬化の際に体積収縮が起きやすく、硬化膜が硬化収縮して、塗装物の塗膜が割れたり、フィルム基材に塗工した場合には、フィルムがカールする等の問題が生じる。   In recent years, as a method for forming a protective layer by coating the surface of a molded article by irradiation with active energy rays such as ultraviolet rays and electron beams, there are, for example, a coating method and a transfer method, and an active energy ray curable resin used as a protective layer. Active development of the composition is underway. However, since many active energy ray-curable resin compositions are low molecular weight compounds collectively referred to as oligomers such as epoxy acrylate, urethane acrylate, and polyester acrylate, the coating before photocuring by irradiation with active energy rays It is in an undried state having a liquid state or a tack, and dust or dust may adhere to the coating film before irradiation with active energy rays to cause poor appearance, resulting in deterioration of production efficiency. Furthermore, since the molecular weight is low, volume shrinkage tends to occur during active energy ray curing, the cured film cures and shrinks, and the coating film of the coated material is cracked or applied to the film substrate. Causes problems such as curling.

これらの問題を解決するために比較的高分子量の設計が可能で、低硬化収縮性を有する活性エネルギー線硬化型樹脂組成物として、アクリルアクリレートと称される化合物の開発が行われている(例えば、特許文献1、2、3参照)。しかしながら、タックフリー性・低硬化収縮性を得るために、更なる高分子量化が求められているが、貯蔵安定性が悪化する点や合成時にゲル化する問題があるために、高分子量化が困難であり、高分子量化が図れたとしても、貯蔵安定性やゲル化の問題を回避するために、活性エネルギー線の照射により硬化する官能基であるアクリロイル基やメタクリロイル基の導入量に制限があり、活性エネルギー線照射後の塗膜の硬度や耐擦傷性が劣る問題があった。 In order to solve these problems, a relatively high molecular weight design is possible, and an active energy ray-curable resin composition having low curing shrinkage has been developed as a compound called acrylic acrylate (for example, Patent Documents 1, 2, and 3). However, in order to obtain tack-free properties and low cure shrinkage, higher molecular weight is required. However, there is a problem that storage stability deteriorates and gelation occurs during synthesis. Even if high molecular weight can be achieved, the introduction amount of acryloyl group or methacryloyl group, which is a functional group that is cured by irradiation of active energy rays, is limited in order to avoid problems of storage stability and gelation. There was a problem that the hardness and scratch resistance of the coating film after irradiation with active energy rays were inferior.

特開平9−290491号公報Japanese Patent Laid-Open No. 9-290491 WO2004/039856号公報WO2004 / 039856 特開2008−69303号公報JP 2008-69303 A

本発明は、高分子量で且つ貯蔵安定性に優れ、活性エネルギー線照射前にタックフリーの塗膜表面を形成し、活性エネルギー線照射後に、優れた硬度や耐擦傷性を有し、低硬化収縮性の硬化膜を得る活性エネルギー線硬化型樹脂組成物を提供することを技術的課題とする。 The present invention has a high molecular weight and excellent storage stability, forms a tack-free coating surface before irradiation with active energy rays, has excellent hardness and scratch resistance after irradiation with active energy rays, and has low cure shrinkage. It is a technical problem to provide an active energy ray-curable resin composition for obtaining a cured resin film.

本発明者らは、鋭意検討を行った結果、分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体にα,β−不飽和カルボン酸を付加させてなる、(メタ)アクリル当量200〜500g/eq、重量平均分子量が50,000〜200,000の反応生成物と飽和有機モノカルボン酸成分を含有させることにより得られる活性エネルギー線硬化型樹脂組成物が、高分子量で且つ貯蔵安定性に優れ、また、活性エネルギー線照射前にタックフリーの塗膜表面を形成し、活性エネルギー線照射後に、優れた硬度や耐擦傷性を有し、低硬化収縮性の硬化膜を得ることを見出し本発明に至った。 As a result of intensive studies, the inventors of the present invention have added a α, β-unsaturated carboxylic acid to a polymer of an ethylenically unsaturated compound containing an epoxy group in the molecule, and has a (meth) acryl equivalent of 200. An active energy ray-curable resin composition obtained by containing a reaction product having a weight average molecular weight of 50,000 to 200,000 and a saturated organic monocarboxylic acid component is high molecular weight and stable in storage To form a tack-free coating surface before irradiation with active energy rays, and to obtain a cured film having excellent hardness and scratch resistance after irradiation with active energy rays and having low curing shrinkage. The headline has led to the present invention.

すなわち、本発明は、
(1)分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)にα,β−不飽和カルボン酸(B)を付加させてなる、(メタ)アクリル当量200〜500g/eq、重量平均分子量が50,000〜200,000の反応生成物(C)と飽和有機モノカルボン酸成分(D)を含有することを特徴とする活性エネルギー線硬化型樹脂組成物(発明1)、
(2)反応生成物(C)の100質量部に対し、飽和有機モノカルボン酸成分(D)を2.5質量部以下含有する前記(1)の活性エネルギー線硬化型樹脂組成物 (発明2)、
(3)飽和有機モノカルボン酸成分(D)がギ酸、酢酸、及びプロピオン酸から選ばれる少なくとも1種である前記(1)又は(2)の活性エネルギー線硬化型樹脂組成物(発明3)、
を提供する。
That is, the present invention
(1) An (meth) acrylic equivalent of 200 to 500 g / eq obtained by adding an α, β-unsaturated carboxylic acid (B) to a polymer (A) of an ethylenically unsaturated compound containing an epoxy group in the molecule. An active energy ray-curable resin composition (Invention 1), comprising a reaction product (C) having a weight average molecular weight of 50,000 to 200,000 and a saturated organic monocarboxylic acid component (D),
(2) The active energy ray-curable resin composition according to (1) above, containing 2.5 parts by mass or less of the saturated organic monocarboxylic acid component (D) with respect to 100 parts by mass of the reaction product (C) (Invention 2) ),
(3) The active energy ray-curable resin composition according to (1) or (2) (Invention 3), wherein the saturated organic monocarboxylic acid component (D) is at least one selected from formic acid, acetic acid, and propionic acid.
I will provide a.

本発明によれば、高分子量で且つ貯蔵安定性に優れた活性エネルギー線硬化型樹脂組成物を提供することが出来る。また、本発明に係る活性エネルギー線硬化型樹脂組成物は従来からある一般的な活性エネルギー線硬化型樹脂と比較して、高分子量かつ活性エネルギー線の照射により硬化する官能基であるアクリロイル基やメタクリロイル基の量が多いことから、活性エネルギー線照射前にタックフリーの塗膜を形成し、活性エネルギー線照射後に、優れた硬度や耐擦傷性を有し、低硬化収縮性の硬化膜を得ることが出来る。 According to the present invention, an active energy ray-curable resin composition having a high molecular weight and excellent storage stability can be provided. In addition, the active energy ray-curable resin composition according to the present invention has a high molecular weight and an acryloyl group that is a functional group that is cured by irradiation with an active energy ray, compared to a conventional general active energy ray-curable resin. Since the amount of methacryloyl group is large, a tack-free coating film is formed before irradiation with active energy rays, and a cured film having excellent hardness and scratch resistance and low curing shrinkage is obtained after irradiation with active energy rays. I can do it.

本発明の構成をより詳しく説明すれば次のとおりである。
<分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)>
本発明で用いる分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)としては、エポキシ基を含有するエチレン性不飽和化合物の重合体であれば特に限定されず、公知のものを用いることができる。エポキシ基を含有するエチレン性不飽和化合物系の重合体としては、例えば、エポキシ基を含有するエチレン性不飽和化合物の共重合体、又は、エポキシ基を含有するエチレン性不飽和化合物と重合可能なエポキシ基を含有しないエチレン性不飽和化合物からなる共重合体が挙げられる。
The configuration of the present invention will be described in more detail as follows.
<Polymer (A) of ethylenically unsaturated compound containing epoxy group in molecule>
The polymer (A) of an ethylenically unsaturated compound containing an epoxy group in the molecule used in the present invention is not particularly limited as long as it is a polymer of an ethylenically unsaturated compound containing an epoxy group. Can be used. As an ethylenically unsaturated compound-based polymer containing an epoxy group, for example, a copolymer of an ethylenically unsaturated compound containing an epoxy group or an ethylenically unsaturated compound containing an epoxy group can be polymerized. The copolymer which consists of an ethylenically unsaturated compound which does not contain an epoxy group is mentioned.

エポキシ基を含有するエチレン性不飽和化合物としては、グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4−エポキシシクロヘキシル(メタ)アクリレート等が挙げられる。これらは、一種単独で用いてもよく、二種類以上を組み合わせて用いてもよい。特に、グリシジルメタクリレートが入手しやすい点から好ましい。 Examples of the ethylenically unsaturated compound containing an epoxy group include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, 3,4-epoxycyclohexyl (meth) acrylate, and the like. These may be used individually by 1 type, and may be used in combination of 2 or more types. In particular, glycidyl methacrylate is preferable because it is easily available.

重合可能なエポキシ基を含有しないエチレン性不飽和化合物としては、例えば、炭素数1以上18以下の直鎖、分岐、環状のアルキル基とのエステルであるアクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸n−プロピル、メタクリル酸n−プロピル、アクリル酸i−プロピル、メタクリル酸i−プロピル、アクリル酸n−ブチル、メタクリル酸n−ブチル、アクリル酸i−ブチル、メタクリル酸i−ブチル、アクリル酸2−ブチル、メタクリル酸2−ブチル、アクリル酸t−ブチル、メタクリル酸t−ブチル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、アクリル酸n−オクチル、メタクリル酸n−オクチル、アクリル酸n−ドデシル、メタクリル酸n−ドデシル、アクリル酸n−オクタデシル、メタクリル酸n−オクタデシル等の(メタ)アクリル酸エステル系モノマー、スチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系モノマー、エチレン、プロピレン、ブテン等のオレフィン、ブタジエン、イソプレン等のアルカジエン、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、イソブチルビニルエーテル、ドデシルビニルエーテル、シクロヘキシルビニルエーテル、ジエチレングリコールモノビニルエーテル、4−ヒドロキシブチルビニルエーテル等が挙げられる。また、これらのモノマーの他に、アクリロニトリル、(メタ)アクリルアミド、N置換(メタ)アクリルアミド、不飽和二塩基酸のジエステルなども使用することができる。これらは、一種単独で用いてもよく、二種類以上を組み合わせて用いてもよい。特に、炭素数1〜8の(メタ)アクリル酸エステル系モノマー、スチレン系モノマーが、エポキシ基を含有するエチレン性不飽和化合物との共重合性が良く、活性エネルギー線硬化型樹脂組成物がタックフリーの塗膜表面を形成するために好ましい。 Examples of the ethylenically unsaturated compound that does not contain a polymerizable epoxy group include, for example, methyl acrylate, methyl methacrylate, and ethyl acrylate, which are esters with linear, branched, and cyclic alkyl groups having 1 to 18 carbon atoms. , Ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, i-propyl acrylate, i-propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, i-butyl acrylate, i-methacrylate -Butyl, 2-butyl acrylate, 2-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-acrylate -Octyl, n-octyl methacrylate, (Meth) acrylate monomers such as n-dodecyl crylate, n-dodecyl methacrylate, n-octadecyl acrylate, n-octadecyl methacrylate, styrene monomers such as styrene, α-methylstyrene, divinylbenzene, ethylene Olefins such as propylene and butene, alkadienes such as butadiene and isoprene, vinyl esters such as vinyl acetate and vinyl propionate, isobutyl vinyl ether, dodecyl vinyl ether, cyclohexyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether and the like. In addition to these monomers, acrylonitrile, (meth) acrylamide, N-substituted (meth) acrylamide, diester of unsaturated dibasic acid, and the like can also be used. These may be used individually by 1 type, and may be used in combination of 2 or more types. In particular, the (meth) acrylic acid ester monomer having 1 to 8 carbon atoms and the styrene monomer have good copolymerizability with an ethylenically unsaturated compound containing an epoxy group, and the active energy ray-curable resin composition is tacky. It is preferable for forming a free coating film surface.

エポキシ基を含有しないエチレン性不飽和化合物の使用量は、本願発明の効果を阻害しないためにはエポキシ基を含有するエチレン性不飽和化合物とエポキシ基を含有しないエチレン性不飽和化合物の合計量を100質量部とした場合に65質量部以下であることが好ましい。65質量部よりも多い使用量の場合には、活性エネルギー線硬化型樹脂組成物の(メタ)アクリル当量が500以上となり、活性エネルギー線照射後の硬度や耐擦傷性が劣る場合がある。 The amount of the ethylenically unsaturated compound that does not contain an epoxy group is the total amount of the ethylenically unsaturated compound that contains an epoxy group and the ethylenically unsaturated compound that does not contain an epoxy group in order not to inhibit the effects of the present invention. When it is 100 parts by mass, it is preferably 65 parts by mass or less. When the amount used is more than 65 parts by mass, the (meth) acrylic equivalent of the active energy ray-curable resin composition is 500 or more, and the hardness and scratch resistance after irradiation with active energy rays may be inferior.

本発明に用いられるエポキシ基を含有するエチレン性不飽和化合物の重合体(A)は、ラジカル重合によって得られる。ラジカル重合は、公知の方法で行うことができる。例えば、溶剤中で重合開始剤を用い加熱して重合する方法が挙げられる。溶剤としては、特に限定されず公知のものを使用できる。具体的には、酢酸エチル、酢酸ブチル等のエステル、メチルエチルケトン、メチルイソブチルケトン等のケトン、イソプロピルアルコール、t−ブチルアルコール等のアルコール等を使用できる。これらの溶剤は1種単独で用いても良いし、2種以上を併用することもできる。なお、溶剤の使用量は、エチレン性不飽和化合物の総量100質量部に対し、50質量部以上150質量部以下であることが活性エネルギー線硬化型樹脂組成物の分子量を調製しやすい点から好ましい。また、重合反応後に溶剤を留去してもよい。   The polymer (A) of an ethylenically unsaturated compound containing an epoxy group used in the present invention is obtained by radical polymerization. The radical polymerization can be performed by a known method. For example, the method of superposing | polymerizing by heating using a polymerization initiator in a solvent is mentioned. The solvent is not particularly limited and a known solvent can be used. Specifically, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alcohols such as isopropyl alcohol and t-butyl alcohol can be used. These solvents may be used alone or in combination of two or more. In addition, it is preferable from the point which is easy to adjust the molecular weight of an active energy ray hardening-type resin composition that the usage-amount of a solvent is 50 to 150 mass parts with respect to 100 mass parts of total amounts of an ethylenically unsaturated compound. . Further, the solvent may be distilled off after the polymerization reaction.

重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)等のアゾ化合物、ジベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート等の有機過酸化物等を使用できる。特に、アゾ化合物が、活性エネルギー線硬化型樹脂組成物の貯蔵安定性を確保するために好ましい。なお、これらの重合開始剤はエチレン性不飽和化合物の総量100質量部に対し、0.05質量部以上5質量部以下であることが活性エネルギー線硬化型樹脂組成物の分子量を調製しやすい点から好ましい。 As the polymerization initiator, inorganic peroxides such as ammonium persulfate and potassium persulfate, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2 An azo compound such as' -azobis (2-methylbutyronitrile), an organic peroxide such as dibenzoyl peroxide, and t-butylperoxy-2-ethylhexanoate can be used. In particular, an azo compound is preferable in order to ensure the storage stability of the active energy ray-curable resin composition. In addition, it is easy to adjust the molecular weight of the active energy ray-curable resin composition that these polymerization initiators are 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total amount of the ethylenically unsaturated compound. To preferred.

このようにして得られた分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)の重量平均分子量は40,000〜150,000であることが、α,β−不飽和カルボン酸(B)を付加させてなる反応生成物(C)の分子量を50,000〜200,000に調製するために好ましい。 The weight average molecular weight of the polymer (A) of the ethylenically unsaturated compound containing an epoxy group in the molecule thus obtained is 40,000 to 150,000. It is preferable for preparing the molecular weight of the reaction product (C) obtained by adding the acid (B) to 50,000 to 200,000.

<α,β−不飽和カルボン酸(B)>
本発明で用いるα,β−不飽和カルボン酸(B)としては、不飽和二重結合を有するカルボン酸であればよく、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。特に、アクリル酸を使用した場合に活性エネルギー線硬化型樹脂組成物の硬化性が優れるために好ましい。
<Α, β-unsaturated carboxylic acid (B)>
The α, β-unsaturated carboxylic acid (B) used in the present invention may be any carboxylic acid having an unsaturated double bond, and examples thereof include acrylic acid, methacrylic acid, and crotonic acid. In particular, when acrylic acid is used, it is preferable because the curability of the active energy ray-curable resin composition is excellent.

<反応生成物(C)>
本発明で用いる反応生成物(C)は、分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)にα,β−不飽和カルボン酸(B)を付加させることにより得られる。α,β−不飽和カルボン酸(B)の使用量は特に限定されないが、分子中のエポキシ基に対しカルボキシル基の当量比が0.95〜1.1になるような使用量であることが合成時のゲル化抑制や貯蔵安定性を確保するために好ましい。
<Reaction product (C)>
The reaction product (C) used in the present invention is obtained by adding an α, β-unsaturated carboxylic acid (B) to a polymer (A) of an ethylenically unsaturated compound containing an epoxy group in the molecule. . The amount of α, β-unsaturated carboxylic acid (B) used is not particularly limited, but it should be such that the equivalent ratio of carboxyl group to epoxy group in the molecule is 0.95 to 1.1. It is preferable in order to ensure gelation suppression and storage stability during synthesis.

分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)へのα,β−不飽和カルボン酸(B)の付加反応は公知の方法で行うことができる。例えば、触媒の存在下、加熱して得ることができる。 The addition reaction of the α, β-unsaturated carboxylic acid (B) to the polymer (A) of an ethylenically unsaturated compound containing an epoxy group in the molecule can be carried out by a known method. For example, it can be obtained by heating in the presence of a catalyst.

付加反応時に使用する触媒としては、例えば、トリフェニルホスフィン等のホスフィン類、トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩、テトラブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の4級ホスホニウム塩、トリエチルアミン、トリブチルアミン等のアミン類が挙げられる。これらは、一種単独で用いてもよく、二種類以上を組み合わせて用いてもよい。特に、4級ホスホニウム塩が触媒活性および副反応抑制の点から好ましい。触媒の使用量は特に限定されないが、α,β−不飽和カルボン酸(B)の使用量100質量部に対し、5質量部以上25質量部以下であることが好ましい。使用量が5質量部よりも少ない場合、付加反応が十分進行しない場合がある。使用量が25質量部よりも多い場合、副反応が生じ反応途中でゲル化したり、活性エネルギー線硬化型樹脂組成物の貯蔵安定性が悪化する場合がある。 Examples of the catalyst used in the addition reaction include phosphines such as triphenylphosphine, quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium bromide and tetrabutylammonium bromide, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide and the like. And amines such as quaternary phosphonium salts, triethylamine, and tributylamine. These may be used individually by 1 type, and may be used in combination of 2 or more types. In particular, a quaternary phosphonium salt is preferable from the viewpoint of catalytic activity and side reaction suppression. Although the usage-amount of a catalyst is not specifically limited, It is preferable that they are 5 mass parts or more and 25 mass parts or less with respect to 100 mass parts of usage-amounts of (alpha), (beta)-unsaturated carboxylic acid (B). If the amount used is less than 5 parts by mass, the addition reaction may not proceed sufficiently. When the amount used is more than 25 parts by mass, side reactions may occur and gelation may occur during the reaction, or the storage stability of the active energy ray-curable resin composition may deteriorate.

付加反応時に溶剤や重合禁止剤を用いることもできる。溶剤としては、エポキシ基およびカルボキシル基と反応しない溶剤であればよく、例えば、酢酸エチル、酢酸ブチル等のエステル、メチルエチルケトン、メチルイソブチルケトン等のケトン、t−ブチルアルコール、ダイアセトンアルコール等の3級アルコールが挙げられる。これらは、一種単独で用いてもよく、二種類以上を組み合わせて用いてもよい。 A solvent or a polymerization inhibitor can also be used during the addition reaction. The solvent may be any solvent that does not react with the epoxy group and the carboxyl group. For example, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, tertiary grades such as t-butyl alcohol and diacetone alcohol Examples include alcohol. These may be used individually by 1 type, and may be used in combination of 2 or more types.

溶剤の使用量は特に限定されないが、分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)とα,β−不飽和カルボン酸(B)の総量100質量部に対し、100質量部以上であることが、付加反応時のゲル化抑制のために好ましい。 Although the usage-amount of a solvent is not specifically limited, It is 100 with respect to 100 mass parts of total amounts of the polymer (A) of the ethylenically unsaturated compound containing an epoxy group in a molecule | numerator, and (alpha), (beta) -unsaturated carboxylic acid (B). It is preferable for it to be at least part by mass in order to suppress gelation during the addition reaction.

重合禁止剤としては、ハイドロキノン、p−メトキシフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、t−ブチルハイドロキノン、フェノチアジン等が挙げられる。 Examples of the polymerization inhibitor include hydroquinone, p-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, t-butylhydroquinone, phenothiazine and the like.

重合禁止剤の使用量は特に限定されないが、分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)とα,β−不飽和カルボン酸(B)の総量100質量部に対し、1質量部以下であることが活性エネルギー線硬化型樹脂組成物の硬化性を阻害しにくいために好ましい。 Although the usage-amount of a polymerization inhibitor is not specifically limited, with respect to 100 mass parts of total amounts of the polymer (A) of the ethylenically unsaturated compound which contains an epoxy group in a molecule | numerator, and (alpha), (beta)-unsaturated carboxylic acid (B). 1 mass part or less is preferable because it is difficult to inhibit the curability of the active energy ray-curable resin composition.

反応温度に特に制限はないが、80℃以上110℃以下が好ましい。反応温度が80℃よりも低い場合、付加反応が十分進行しない場合がある。反応温度が110℃よりも高い場合、副反応が生じ反応途中でゲル化したり、活性エネルギー線硬化型樹脂組成物の貯蔵安定性が悪化する場合がある。 Although there is no restriction | limiting in particular in reaction temperature, 80 to 110 degreeC is preferable. When the reaction temperature is lower than 80 ° C., the addition reaction may not proceed sufficiently. When reaction temperature is higher than 110 degreeC, a side reaction may arise and it may gelatinize in the middle of reaction, and the storage stability of an active energy ray hardening-type resin composition may deteriorate.

付加反応時にα,β−不飽和カルボン酸(B)や反応生成物(C)の重合防止のために、反応系内に空気を導入する等の手段を講じることもできる。 In order to prevent polymerization of the α, β-unsaturated carboxylic acid (B) and the reaction product (C) during the addition reaction, it is possible to take measures such as introducing air into the reaction system.

このようにして得られた反応生成物(C)は、(メタ)アクリル当量200〜500g/eq、重量平均分子量が50,000〜200,000とすることが、活性エネルギー線照射前にタックフリーの塗膜表面を形成し、活性エネルギー線照射後に、硬度や耐擦傷性を低下させることなく、低硬化収縮性の硬化膜を得ることができる点から好ましい。 The reaction product (C) thus obtained has a (meth) acryl equivalent of 200 to 500 g / eq and a weight average molecular weight of 50,000 to 200,000. It is preferable from the viewpoint that a cured film having a low curing shrinkage can be obtained without reducing the hardness or scratch resistance after irradiation with active energy rays.

<飽和有機モノカルボン酸成分(D)>
本発明で用いる飽和有機モノカルボン酸成分(D)としては、不飽和結合を有しないカルボキシル基を有する有機モノカルボン酸であればよく、具体的には、ギ酸、酢酸、プロピオン酸、酪酸、ペンタン酸等が挙げられる。特に、ギ酸、酢酸、プロピオン酸は沸点が低く、揮発しやすいために、活性エネルギー線硬化後の塗膜に残り難いために好ましい。これらは、一種単独で用いてもよく、二種類以上を組み合わせてもよい。
<Saturated organic monocarboxylic acid component (D)>
The saturated organic monocarboxylic acid component (D) used in the present invention may be an organic monocarboxylic acid having a carboxyl group that does not have an unsaturated bond. Specifically, formic acid, acetic acid, propionic acid, butyric acid, pentane An acid etc. are mentioned. In particular, formic acid, acetic acid, and propionic acid are preferable because they have a low boiling point and are likely to volatilize, and thus hardly remain in the coating film after active energy ray curing. These may be used alone or in combination of two or more.

飽和有機モノカルボン酸成分(D)の使用量は、反応生成物(C)の100質量部に対し、2.5質量部以下であることが好ましい。さらに好ましくは、0.5質量部以上2質量部以下である。0.5質量部よりも少ない使用量の場合には、活性エネルギー線硬化型樹脂組成物の貯蔵安定性の改善への寄与が小さく、2質量部よりも多い使用量の場合には塗膜に飽和有機モノカルボン酸成分(D)が残り易くなり、臭気が塗膜から発生する場合がある。また、活性エネルギー線硬化型樹脂組成物の硬化性を阻害する場合がある。 The amount of the saturated organic monocarboxylic acid component (D) used is preferably 2.5 parts by mass or less with respect to 100 parts by mass of the reaction product (C). More preferably, they are 0.5 mass part or more and 2 mass parts or less. When the amount used is less than 0.5 parts by mass, the contribution to improving the storage stability of the active energy ray-curable resin composition is small, and when the amount used is more than 2 parts by mass, the coating film is used. The saturated organic monocarboxylic acid component (D) tends to remain, and an odor may be generated from the coating film. Moreover, the sclerosis | hardenability of an active energy ray hardening-type resin composition may be inhibited.

飽和有機モノカルボン酸成分(D)は任意のタイミングで添加することができる。例えば、分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)にα,β−不飽和カルボン酸(B)を付加反応させるときにあらかじめ添加もしくは分割添加しても良いし、付加反応後の反応生成物(C)に添加しても良い。 The saturated organic monocarboxylic acid component (D) can be added at an arbitrary timing. For example, when the α, β-unsaturated carboxylic acid (B) is added to the polymer (A) of an ethylenically unsaturated compound containing an epoxy group in the molecule for addition reaction, it may be added in advance or dividedly. You may add to the reaction product (C) after an addition reaction.

かくして得られた活性エネルギー線硬化型樹脂組成物は、例えばプラスチック、木材、ガラス、金属等向けの塗料材料、各種フィルム基材の保護層、転写材の保護層、フラットパネルディスプレー、フォトレジスト等の電子基板・光学関連材料、活性エネルギー線硬化型インキ用の樹脂等として用いることができる。 The active energy ray-curable resin composition thus obtained includes, for example, coating materials for plastics, wood, glass, metals, etc., protective layers for various film substrates, protective layers for transfer materials, flat panel displays, photoresists, etc. It can be used as a resin for electronic substrates, optical related materials, active energy ray curable inks, and the like.

本発明の活性エネルギー線硬化型樹脂組成物には、必要に応じて光重合開始剤、活性エネルギー線硬化型オリゴマー、不飽和結合を有する反応性モノマー、溶剤、着色剤、硬化剤および反応促進剤等を配合して使用することができる。これらの配合する物質は、必要に応じて一種単独で用いてもよく、二種類以上を組み合わせてもよい。 The active energy ray-curable resin composition of the present invention includes a photopolymerization initiator, an active energy ray-curable oligomer, a reactive monomer having an unsaturated bond, a solvent, a colorant, a curing agent, and a reaction accelerator as necessary. Etc. can be used in combination. These substances to be blended may be used alone or in combination of two or more as required.

硬化被膜に機能性を持たせることを目的に、滑剤、有機フィラー、無機フィラー、帯電防止剤、熱安定剤、光安定剤、紫外線吸収剤、難燃剤等を配合して使用することができる。これらの配合する物質は、機能性を付与するために一種単独で用いてもよく、二種類以上を組み合わせてもよい。 For the purpose of imparting functionality to the cured film, a lubricant, an organic filler, an inorganic filler, an antistatic agent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a flame retardant, and the like can be blended and used. These substances to be blended may be used alone or in combination of two or more in order to impart functionality.

本発明の活性エネルギー線硬化型樹脂組成物を用いて硬化被膜(保護層)を形成する手段としては特に限定されず、公知の方法を用いることができる。例えば、被塗装物に対して活性エネルギー線硬化型樹脂組成物を塗布して活性エネルギー線を照射することにより硬化させる方法がある。塗布する手段としては特に制限されず、例えば、刷毛塗り、ローラー塗布、エアースプレー塗装、グラビアコート、ロールコート、リップコート等のコート法、グラビア印刷、スクリーン印刷等の印刷法等を挙げることができる。 The means for forming a cured film (protective layer) using the active energy ray-curable resin composition of the present invention is not particularly limited, and a known method can be used. For example, there is a method in which an active energy ray-curable resin composition is applied to an object to be coated and cured by irradiating active energy rays. The means for applying is not particularly limited, and examples thereof include brush coating, roller coating, air spray coating, gravure coating, roll coating, lip coating and other coating methods, gravure printing, screen printing and other printing methods. .

硬化被膜の膜厚は0.5〜30μmであることが好ましく、更に好ましくは2〜10μmの厚さに形成することが好ましい。 The thickness of the cured film is preferably 0.5 to 30 μm, more preferably 2 to 10 μm.

照射する活性エネルギー線としては、例えば、電子線、紫外線等が挙げられる。照射する手段としては特に制限されず、公知の方法を用いることができる。活性エネルギー線の照射量は、活性エネルギー線硬化型樹脂組成物の種類、膜厚等により適宜調整することができ、例えば、50〜1000mJ/cm程度である。 Examples of the active energy rays to be irradiated include electron beams and ultraviolet rays. The means for irradiating is not particularly limited, and a known method can be used. The irradiation amount of the active energy ray can be appropriately adjusted depending on the type and thickness of the active energy ray-curable resin composition, and is, for example, about 50 to 1000 mJ / cm 2 .

以下、本発明を、実施例および比較例を挙げて、具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、各表中、部は特記しない限りすべて質量部である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these examples. In each table, all parts are parts by mass unless otherwise specified.

(合成例1)
攪拌機、温度計、還流冷却器および窒素ガス導入管を備えた5000mLセパラフラスコに、メチルエチルケトン(以下、MEKと略することがある。)1000質量部を入れ、窒素雰囲気下、攪拌を行いながらフラスコ内が80℃になるように昇温させた後、グリシジルメタクリレート(以下、GMAと略することがある。)900質量部、メタクリル酸メチル(以下、MMAと略することがある。)100質量部と2,2’−アゾビス(2−メチルブチロニトリル)(以下、ABN−Eと略することがある。)4質量部を3時間にわたり滴下した。滴下終了後2時間反応させた。その後ABN−E 2質量部添加して2時間反応させ、さらにABN−E 2質量部を添加した後、80℃で5時間反応させた。得られた樹脂の重量平均分子量は57,000であった。その後、40℃まで冷却して窒素ガス導入管をエアー導入管に切り替え、エアーバブリングを実施しながら、アクリル酸(以下、AAと略することがある。)479質量部、MEK 1895質量部、テトラフェニルホスホニウムブロマイド(以下、PPh4・Brと略することがある。)83.6質量部と2,6−ジ−t−ブチル−4−メチルフェノール((以下、BHTと略することがある。)7.4質量部を加えて、攪拌しながら80℃になるように昇温させた後、12時間反応を行った。反応終了後、室温まで冷却した。その後、ギ酸21質量部を添加して室温で30分間攪拌した。得られた活性エネルギー線硬化型樹脂組成物(A1)のアクリル当量は230g/eq、重量平均分子量は86,500であった。なお、重量平均分子量はゲルパーミネーションクロマトグラフィー(東ソー株式会社製:HPL−8120GPC、標準物質ポリスチレン)を用いて測定して得た値である(以下、同様)。また、得られた活性エネルギー線硬化型樹脂組成物(A1)の固形分、製品粘度を表2に記載する。
(Synthesis Example 1)
In a 5000 mL Separa flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet tube, 1000 parts by mass of methyl ethyl ketone (hereinafter sometimes abbreviated as MEK) was placed, and the flask was stirred while stirring in a nitrogen atmosphere. Is heated to 80 ° C., 900 parts by weight of glycidyl methacrylate (hereinafter sometimes abbreviated as GMA), 100 parts by weight of methyl methacrylate (hereinafter sometimes abbreviated as MMA), 4 parts by mass of 2,2′-azobis (2-methylbutyronitrile) (hereinafter sometimes abbreviated as ABN-E) was added dropwise over 3 hours. It was made to react for 2 hours after completion | finish of dripping. Thereafter, 2 parts by mass of ABN-E was added and reacted for 2 hours, and further 2 parts by mass of ABN-E were added, followed by reaction at 80 ° C. for 5 hours. The weight average molecular weight of the obtained resin was 57,000. Then, it is cooled to 40 ° C., the nitrogen gas introduction pipe is switched to the air introduction pipe, and while carrying out air bubbling, 479 parts by mass of acrylic acid (hereinafter sometimes abbreviated as AA), 1895 parts by mass of MEK, Phenyl phosphonium bromide (hereinafter abbreviated as PPh4 · Br) 83.6 parts by mass and 2,6-di-t-butyl-4-methylphenol (hereinafter abbreviated as BHT) After adding 7.4 parts by mass and raising the temperature to 80 ° C. while stirring, the reaction was carried out for 12 hours, after the reaction was completed, the mixture was cooled to room temperature, and then 21 parts by mass of formic acid was added. The resulting active energy ray-curable resin composition (A1) was found to have an acrylic equivalent of 230 g / eq and a weight average molecular weight of 86,500. The amount is a value obtained by measurement using gel permeation chromatography (manufactured by Tosoh Corporation: HPL-8120GPC, standard polystyrene) (hereinafter the same), and the obtained active energy ray-curable resin composition. Table 2 shows the solid content and product viscosity of the product (A1).

(合成例2〜11)
攪拌機、温度計、還流冷却器および窒素ガス導入管を備えた5000mLセパラフラスコに、表2に示す割合になるように有機溶剤1を入れ、窒素雰囲気下、攪拌を行いながらフラスコ内が80℃になるように昇温させた後、表1に示すエポキシ基を含有するエチレン性不飽和化合物とエポキシ基を含有しないエチレン性不飽和化合物とABN−E(表2に記載したABN−Eの合計使用量から4質量部差し引いた量)を3時間にわたり滴下した。滴下終了後2時間反応させた。その後ABN−E 2質量部添加して2時間反応させ、さらにABN−E 2質量部を添加した後、溶剤還流下で5時間反応させた。得られた樹脂の重量平均分子量を表2に示す。その後、40℃まで冷却して窒素ガス導入管をエアー導入管に切り替え、エアーバブリングを実施しながら、表1に示すα,β−不飽和カルボン酸、表2に示す有機溶剤2、付加反応触媒と重合禁止剤を加えて、攪拌しながら有機溶剤還流下になるように昇温させた後、12時間反応を行った。反応終了後、室温まで冷却し、表1に示す飽和有機モノカルボン酸を添加して30分間攪拌することで活性エネルギー線硬化型樹脂組成物を得た。得られた活性エネルギー線硬化型樹脂組成物(A2)〜(A11)の(メタ)アクリル当量、重量平均分子量を表1に、固形分、製品粘度を表2に記載する。
(Synthesis Examples 2 to 11)
In a 5000 mL Separa flask equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube, the organic solvent 1 was added so as to have the ratio shown in Table 2, and the flask was heated to 80 ° C. while stirring in a nitrogen atmosphere. After raising the temperature so that the ethylenically unsaturated compound containing an epoxy group shown in Table 1 and the ethylenically unsaturated compound containing no epoxy group and ABN-E (total use of ABN-E shown in Table 2) The amount obtained by subtracting 4 parts by mass from the amount) was added dropwise over 3 hours. It was made to react for 2 hours after completion | finish of dripping. Thereafter, 2 parts by mass of ABN-E was added and reacted for 2 hours, and further 2 parts by mass of ABN-E were added, followed by reaction for 5 hours under reflux of the solvent. The weight average molecular weight of the obtained resin is shown in Table 2. Then, it cools to 40 degreeC, a nitrogen gas introduction pipe | tube is switched to an air introduction pipe | tube, (alpha), beta-unsaturated carboxylic acid shown in Table 1, the organic solvent 2 shown in Table 2, addition reaction catalyst, implementing air bubbling And a polymerization inhibitor were added, and the mixture was heated to reflux under organic solvent with stirring, and then reacted for 12 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, added with saturated organic monocarboxylic acid shown in Table 1, and stirred for 30 minutes to obtain an active energy ray-curable resin composition. Table 1 shows the (meth) acryl equivalents and weight average molecular weights of the obtained active energy ray-curable resin compositions (A2) to (A11), and Table 2 shows the solid content and product viscosity.

(比較合成例1)
攪拌機、温度計、還流冷却器および窒素ガス導入管を備えた5000mLセパラフラスコに、MEK 1500質量部を入れ、窒素雰囲気下、攪拌を行いながらフラスコ内が80℃になるように昇温させた後、GMA 600質量部、MMA 350質量部、アクリル酸n−ブチル 50質量部とABN−E 8質量部を3時間にわたり滴下した。滴下終了後2時間反応させた。その後ABN−E 2質量部添加して2時間反応させ、さらにABN−E 2質量部を添加した後、80℃で5時間反応させた。得られた樹脂の重量平均分子量は22,800であった。その後、40℃まで冷却して窒素ガス導入管をエアー導入管に切り替え、エアーバブリングを実施しながら、AA 304質量部、MEK 1020質量部、PPh4・Br 53.1質量部とBHT 6.5質量部を加えて、攪拌しながら80℃になるように昇温させた後、12時間反応を行った。反応終了後、室温まで冷却した。その後、酢酸12.7質量部を添加して室温で30分間攪拌した。得られた活性エネルギー線硬化型樹脂組成物(B1)のアクリル当量は309g/eq、重量平均分子量は31,400であった。なお、得られた活性エネルギー線硬化型樹脂組成物(B1)の固形分、製品粘度を表2に記載する。
(Comparative Synthesis Example 1)
After putting 1500 parts by mass of MEK into a 5000 mL Separa flask equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube, the temperature was raised to 80 ° C. while stirring in a nitrogen atmosphere. , 600 parts by mass of GMA, 350 parts by mass of MMA, 50 parts by mass of n-butyl acrylate and 8 parts by mass of ABN-E were added dropwise over 3 hours. It was made to react for 2 hours after completion | finish of dripping. Thereafter, 2 parts by mass of ABN-E was added and reacted for 2 hours, and further 2 parts by mass of ABN-E were added, followed by reaction at 80 ° C. for 5 hours. The weight average molecular weight of the obtained resin was 22,800. Then, it cools to 40 degreeC, a nitrogen gas introduction pipe | tube is switched to an air introduction pipe | tube, AA 304 mass part, MEK 1020 mass part, PPh4 * Br 53.1 mass part, and BHT 6.5 mass are implemented, implementing air bubbling. Part was added and the temperature was raised to 80 ° C. with stirring, followed by reaction for 12 hours. After completion of the reaction, it was cooled to room temperature. Thereafter, 12.7 parts by mass of acetic acid was added and stirred at room temperature for 30 minutes. The obtained active energy ray-curable resin composition (B1) had an acrylic equivalent of 309 g / eq and a weight average molecular weight of 31,400. The solid content and product viscosity of the obtained active energy ray-curable resin composition (B1) are shown in Table 2.

(比較合成例2〜4)
攪拌機、温度計、還流冷却器および窒素ガス導入管を備えた5000mLセパラフラスコに、表2に示す割合になるように有機溶剤1を入れ、窒素雰囲気下、攪拌を行いながらフラスコ内が80℃になるように昇温させた後、表1に示すエポキシ基を含有するエチレン性不飽和化合物とエポキシ基を含有しないエチレン性不飽和化合物とABN−E(表2に記載したABN−Eの合計使用量から4質量部差し引いた量)を3時間にわたり滴下した。滴下終了後2時間反応させた。その後ABN−E 2質量部添加して2時間反応させ、さらにABN−E 2質量部を添加した後、溶剤還流下で5時間反応させた。得られた樹脂の重量平均分子量を表2に示す。その後、40℃まで冷却して窒素ガス導入管をエアー導入管に切り替え、エアーバブリングを実施しながら、表1に示すα,β−不飽和カルボン酸、表2に示す有機溶剤2、付加反応触媒と重合禁止剤を加えて、攪拌しながら有機溶剤還流下になるように昇温させた後、12時間反応を行った。反応終了後、室温まで冷却し、表1に示す飽和有機モノカルボン酸を添加して30分間攪拌することで活性エネルギー線硬化型樹脂組成物を得た。得られた活性エネルギー線硬化型樹脂組成物(B2)〜(B4)のアクリル当量、重量平均分子量を表1に、固形分、製品粘度を表2に記載する。
(Comparative Synthesis Examples 2 to 4)
In a 5000 mL Separa flask equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube, the organic solvent 1 was added so as to have the ratio shown in Table 2, and the flask was heated to 80 ° C. while stirring in a nitrogen atmosphere. After raising the temperature so that the ethylenically unsaturated compound containing an epoxy group shown in Table 1 and the ethylenically unsaturated compound containing no epoxy group and ABN-E (total use of ABN-E shown in Table 2) The amount obtained by subtracting 4 parts by mass from the amount) was added dropwise over 3 hours. It was made to react for 2 hours after completion | finish of dripping. Thereafter, 2 parts by mass of ABN-E was added and reacted for 2 hours, and further 2 parts by mass of ABN-E were added, followed by reaction for 5 hours under reflux of the solvent. The weight average molecular weight of the obtained resin is shown in Table 2. Then, it cools to 40 degreeC, a nitrogen gas introduction pipe | tube is switched to an air introduction pipe | tube, (alpha), beta-unsaturated carboxylic acid shown in Table 1, the organic solvent 2 shown in Table 2, addition reaction catalyst, implementing air bubbling And a polymerization inhibitor were added, and the mixture was heated to reflux under organic solvent with stirring, and then reacted for 12 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, added with saturated organic monocarboxylic acid shown in Table 1, and stirred for 30 minutes to obtain an active energy ray-curable resin composition. Table 1 shows the acrylic equivalent and weight average molecular weight of the obtained active energy ray-curable resin compositions (B2) to (B4), and Table 2 shows the solid content and product viscosity.

(保存安定性の確認)
合成例1〜11、比較合成例1〜4で得られた活性エネルギー線硬化型樹脂組成物(A1〜A11、B1〜B4)を密閉容器に入れ、60℃の条件下で静置してゲル化するまでの日数を確認した。30日経過時点でゲル化していないものを○、30日未満でゲル化した場合は、ゲル化までの日数を記載する。すなわち、数値がある場合は保存安定性が悪いことを示す。保存安定性の確認結果を表1に示す。
<活性エネルギー線硬化型樹脂組成物を用いたハードコート塗料の調製>
上記、合成例および比較合成例により得られた活性エネルギー線硬化型樹脂組成物(A1)〜(A11)、(B1)、(B4)を用いて、ハードコート塗料の調製を行った。
なお、比較合成例2,3は保存安定性が悪かったため、ハードコート塗料を調製しなかった。
(Confirmation of storage stability)
The active energy ray-curable resin compositions (A1 to A11 and B1 to B4) obtained in Synthesis Examples 1 to 11 and Comparative Synthesis Examples 1 to 4 are placed in a sealed container and left to stand at 60 ° C. for gel. Confirmed the number of days until conversion. In the case where gelation has not occurred after 30 days, gelation is performed in less than 30 days, and the number of days until gelation is described. That is, when there is a numerical value, it indicates that the storage stability is poor. Table 1 shows the results of confirmation of storage stability.
<Preparation of hard coat paint using active energy ray-curable resin composition>
Hard coat paints were prepared using the active energy ray-curable resin compositions (A1) to (A11), (B1), and (B4) obtained in the above synthesis examples and comparative synthesis examples.
Since Comparative Synthesis Examples 2 and 3 were poor in storage stability, no hard coat paint was prepared.

(実施例1)
合成例1で得られた活性エネルギー線硬化型樹脂組成物(A1)100質量部に対し、光重合開始剤のイルガキュア184(チバスペシャリティーケミカルズ株式会社製)を2.5部配合し、MEKを用いて不揮発分が30%になるように調製した。
Example 1
To 100 parts by mass of the active energy ray-curable resin composition (A1) obtained in Synthesis Example 1, 2.5 parts of photopolymerization initiator Irgacure 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.) is blended, and MEK is mixed. The non-volatile content was adjusted to 30%.

(実施例2〜11)
合成例2〜11で得られた活性エネルギー線硬化型樹脂組成物(A2)〜(A11)のそれぞれ100質量部に対し、光重合開始剤のイルガキュア184(チバスペシャリティーケミカルズ株式会社製)を2.5部配合し、MEKを用いて不揮発分が30%になるように調製した。
(Examples 2 to 11)
For each 100 parts by mass of the active energy ray-curable resin compositions (A2) to (A11) obtained in Synthesis Examples 2 to 11, 2 Irgacure 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.) as a photopolymerization initiator was used. .5 parts was blended and prepared using MEK so that the nonvolatile content was 30%.

(比較例1)
比較合成例1で得られた活性エネルギー線硬化型樹脂組成物(B1)100質量部に対し、光重合開始剤のイルガキュア184(チバスペシャリティーケミカルズ株式会社製)を2.5部配合し、MEKを用いて不揮発分が30%になるように調製した。
(Comparative Example 1)
To 100 parts by mass of the active energy ray-curable resin composition (B1) obtained in Comparative Synthesis Example 1, 2.5 parts of photopolymerization initiator Irgacure 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.) is blended, and MEK Was prepared so that the non-volatile content was 30%.

(比較例2)
比較合成例4で得られた活性エネルギー線硬化型樹脂組成物(B4)100質量部に対し、光重合開始剤のイルガキュア184(チバスペシャリティーケミカルズ株式会社製)を2.5部配合し、MEKを用いて不揮発分が30%になるように調製した。
(Comparative Example 2)
2.5 parts of photopolymerization initiator Irgacure 184 (manufactured by Ciba Specialty Chemicals Co., Ltd.) is blended with 100 parts by mass of the active energy ray-curable resin composition (B4) obtained in Comparative Synthesis Example 4. MEK Was prepared so that the non-volatile content was 30%.

<ハードコート塗料被膜フィルムの作製>
実施例1〜11、比較例1、2で調製したハードコート塗料を♯12のバーコーターを用いて膜厚が約8μmになるように、38μmのPETフィルム(商品名AT−38、ユニチカ製)に塗布したのち、140℃で30秒間乾燥させた。得られたハードコート塗料被膜フィルムはタックフリー性試験に用いた。
<Preparation of hard coat paint film>
38 μm PET film (trade name AT-38, manufactured by Unitika) so that the film thickness of the hard coat paint prepared in Examples 1 to 11 and Comparative Examples 1 and 2 is about 8 μm using a # 12 bar coater. And then dried at 140 ° C. for 30 seconds. The obtained hard coat paint film was used for a tack-free test.

<ハードコート塗料硬化被膜フィルムの作製>
前述の方法で得られたハードコート塗料被膜を大気中でメタルハライドランプ(ランプ出力1.5Kw )、照射距離15cm、ベルトスピード4m/分、トータル照射量600mJ/cmの条件で硬化させた。得られたハードコート塗料硬化被膜フィルムは耐擦傷性試験、被膜硬度試験および低硬化収縮性試験に用いた。
<Production of hard coat paint cured coating film>
The hard coat paint film obtained by the above-described method was cured in air under the conditions of a metal halide lamp (lamp output 1.5 Kw), an irradiation distance of 15 cm, a belt speed of 4 m / min, and a total irradiation amount of 600 mJ / cm 2 . The obtained hard coat paint cured coating film was used for an abrasion resistance test, a coating hardness test, and a low cure shrinkage test.

(タックフリー性試験)
各ハードコート塗料被膜フィルムを5cm×5cmにカットして、同じ大きさのPETフィルムを重ね合わせて2Kgの荷重を掛け、60℃の条件下で24時間保管し、取り出して付着および膜面の荒れ具合を確認した。全く抵抗なく剥がれ、膜面に荒れがないものを○、抵抗なく剥がれるが、膜面に一部荒れがあるものを△、剥がすのに抵抗があり、膜面に荒れがあるものを×とした。その結果を表3に示す。
(Tack-free test)
Cut each hard coat paint film into 5cm x 5cm, put the same size PET film on top of each other, apply a load of 2Kg, store at 60 ° C for 24 hours, take out, adhere and roughen the film surface The condition was confirmed. The film was peeled off without any resistance and the film surface was not rough. The film was peeled without resistance. The film surface was partially rough. The film surface was resistant to peeling and the film surface was rough. . The results are shown in Table 3.

(耐擦傷性試験)
各ハードコート塗料硬化被膜フィルムを用い、硬化被膜面を10mm×10mmの♯0000番のスチールウールに500gの荷重を掛けて20回擦り、硬化被膜面の傷の付き具合を目視評価した。全く傷がつかなかったものを◎、傷が10本以内のものを○、傷が11〜20本のものを△、傷が20本以上のものを×とした。その結果を表3に示す。
(Abrasion resistance test)
Each hard coat paint cured coating film was used, and the cured coating surface was rubbed 20 times with a load of 500 g against # 10 mm × 10 mm # 0000 steel wool, and the degree of scratches on the cured coating surface was visually evaluated. The case where no scratch was found was rated as ◎, the case where there were no more than 10 scratches as ◯, the case where there were 11 to 20 scratches as Δ, and the case where there were 20 or more scratches as X. The results are shown in Table 3.

(被膜硬度試験)
各ハードコート塗料硬化被膜フィルムを用い、JIS−K5600に従い、荷重750gの引っかき強度試験(鉛筆法)によってハードコート塗料硬化被膜フィルムの被膜硬度を評価した。Hの前の数値が大きいほど好ましいことを示している。その結果を表3に示す。
(Film hardness test)
Using each hard coat paint cured film, according to JIS-K5600, the film hardness of the hard coat paint cured film was evaluated by a scratch strength test (pencil method) with a load of 750 g. It shows that the larger the numerical value before H, the better. The results are shown in Table 3.

(低硬化収縮性試験)
各ハードコート塗料硬化被膜フィルムを10cm×10cmの大きさに切り取り、平面なテーブルの上に載せ、テーブル面からのフィルム4隅のそり高さ(mm)を測定した。数値が低いほど好ましく、0であることが実用的には必要である。4隅のそり高さの平均値を表3に示す。
(Low cure shrinkage test)
Each hard coat paint cured coating film was cut to a size of 10 cm × 10 cm, placed on a flat table, and the warp height (mm) of the four corners of the film from the table surface was measured. The lower the value, the better, and it is practically necessary that it is 0. Table 3 shows the average values of the warp heights at the four corners.

Figure 0005428686
Figure 0005428686

表1中の略号として、GMAはグリシジルメタクリレート、MMAはメタクリル酸メチル、BAはアクリル酸n−ブチル、AAはアクリル酸、MAAはメタクリル酸を示している。 As abbreviations in Table 1, GMA represents glycidyl methacrylate, MMA represents methyl methacrylate, BA represents n-butyl acrylate, AA represents acrylic acid, and MAA represents methacrylic acid.

Figure 0005428686
Figure 0005428686

表2中の略号として、MEKはメチルエチルケトン、PPh4・Brはテトラフェニルホスホニウムブロマイド、PPh3はトリフェニルホスフィン、TBABはテトラブチルアンモニウムブロマイド、PBu4・Brはテトラブチルホスホニウムブロマイド、ABN−Eは2,2’−アゾビス(2−メチルブチロニトリル)、BHTは2,6−ジ−t−ブチル−4−メチルフェノールを示している。なお、ABN−Eに記載されている使用量は合成例に用いられる合計量を示している。 As abbreviations in Table 2, MEK is methyl ethyl ketone, PPh4 · Br is tetraphenylphosphonium bromide, PPh3 is triphenylphosphine, TBAB is tetrabutylammonium bromide, PBu4 · Br is tetrabutylphosphonium bromide, and ABN-E is 2,2 '. -Azobis (2-methylbutyronitrile), BHT represents 2,6-di-t-butyl-4-methylphenol. In addition, the usage-amount described in ABN-E has shown the total amount used for a synthesis example.

Figure 0005428686
Figure 0005428686

表1〜3からわかるように、実施例のほうが、比較例よりも貯蔵安定性に優れ、また、活性エネルギー線照射前にタックフリーの塗膜表面を形成し、活性エネルギー線照射後に、優れた硬度や耐擦傷性を有し、低硬化収縮性の硬化膜を得られることがわかる。 As can be seen from Tables 1 to 3, the examples were superior in storage stability than the comparative examples, and formed a tack-free coating surface before irradiation with active energy rays, and were excellent after irradiation with active energy rays. It can be seen that a cured film having hardness and scratch resistance and low cure shrinkage can be obtained.

Claims (2)

分子中にエポキシ基を含有するエチレン性不飽和化合物の重合体(A)にα,β−不飽和カルボン酸(B)を付加させてなる、(メタ)アクリル当量200〜500g/eq、重量平均分子量が50,000〜200,000の反応生成物(C)と飽和有機モノカルボン酸成分(D)を含有し、反応生成物(C)の100質量部に対し、飽和有機モノカルボン酸成分(D)を2.5質量部以下含有することを特徴とする活性エネルギー線硬化型樹脂組成物。 (Meth) acrylic equivalent 200 to 500 g / eq, weight average obtained by adding α, β-unsaturated carboxylic acid (B) to polymer (A) of an ethylenically unsaturated compound containing an epoxy group in the molecule It contains a reaction product (C) having a molecular weight of 50,000 to 200,000 and a saturated organic monocarboxylic acid component (D), and 100 parts by mass of the reaction product (C), a saturated organic monocarboxylic acid component ( An active energy ray-curable resin composition containing 2.5 parts by mass or less of D) . 飽和有機モノカルボン酸成分(D)が蟻酸、酢酸、及びプロピオン酸から選ばれる少なくとも1種であることを特徴とする請求項1記載の活性エネルギー線硬化型樹脂組成物。 2. The active energy ray-curable resin composition according to claim 1 , wherein the saturated organic monocarboxylic acid component (D) is at least one selected from formic acid, acetic acid, and propionic acid.
JP2009211010A 2009-09-11 2009-09-11 Active energy ray-curable resin composition Active JP5428686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211010A JP5428686B2 (en) 2009-09-11 2009-09-11 Active energy ray-curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211010A JP5428686B2 (en) 2009-09-11 2009-09-11 Active energy ray-curable resin composition

Publications (2)

Publication Number Publication Date
JP2011057905A JP2011057905A (en) 2011-03-24
JP5428686B2 true JP5428686B2 (en) 2014-02-26

Family

ID=43945899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211010A Active JP5428686B2 (en) 2009-09-11 2009-09-11 Active energy ray-curable resin composition

Country Status (1)

Country Link
JP (1) JP5428686B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193524A (en) * 2011-07-27 2014-10-09 Nissha Printing Co Ltd Transfer material, active energy curable resin composition used in hard coat layer of transfer material and method of producing mold excellent in wear resistance by using the transfer material
JP6941747B1 (en) * 2021-03-18 2021-09-29 大日精化工業株式会社 A coating composition, a semi-cured film, a decorative molded product, and a method for manufacturing a decorative molded product.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236659A (en) * 1985-08-12 1987-02-17 Mitsubishi Chem Ind Ltd Photopolymerizable composition
JPH07234510A (en) * 1994-02-21 1995-09-05 Kansai Paint Co Ltd Photopolymerization resin composition and forming method for hardening film using the same
JPH0959565A (en) * 1995-08-18 1997-03-04 Mitsui Toatsu Chem Inc Method for forming cured coating film of water-based photosetting resin composition
JPH1087769A (en) * 1996-09-11 1998-04-07 Nippon Kayaku Co Ltd Resin composition, its film and its cured product
JP2000007715A (en) * 1998-06-22 2000-01-11 Kansai Paint Co Ltd Visible-ray-curable resin composition and its use
JP2000095839A (en) * 1998-09-22 2000-04-04 Toagosei Co Ltd Production of polymer including ethylenically unsaturated group

Also Published As

Publication number Publication date
JP2011057905A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5555089B2 (en) Urethane (meth) acrylate and photocurable resin composition containing the same
JP2001506693A (en) Method for producing radiation-crosslinkable polymer acrylate or methacrylate
JP7245824B2 (en) Polymer, oxygen absorber and resin composition using the same
JP2008069303A (en) Curl inhibitor, active energy ray-curable resin composition and film substrate
JPWO2018164260A1 (en) Curable composition
JPWO2018021352A1 (en) Curing type composition
JP5428686B2 (en) Active energy ray-curable resin composition
JP5014862B2 (en) UV-curable top coating composition and coated product thereof
JP5407102B2 (en) Active energy ray-curable resin composition for protecting cyclic olefin resin substrate surface
JP5819481B2 (en) Urethane (meth) acrylate and photocurable resin composition containing the same
JP2003048929A (en) Curable resin composition
JP5892799B2 (en) Urethane (meth) acrylate that forms a cured product having elongation and excellent scratch resistance, and a photocurable resin composition containing the same
JPS63145372A (en) Actinic radiation curable paint
JP4597145B2 (en) Active energy ray polymerization initiator, polymerizable composition containing the same, and cured product thereof
JPH11148045A (en) Active energy light-curable coating composition and formation of coating using the same
JP5556583B2 (en) Base coat coating composition and glitter composite coating film
JP2010180306A (en) Active energy ray-curable hard-coating composition
JPH08277321A (en) Photocurable resin composition
JPH11302562A (en) Photocurable coating composition
JP6111592B2 (en) Active energy ray-curable composition
JP3767968B2 (en) Photocurable composition for plastic substrate
JP5803441B2 (en) Active energy ray curable resin and hard coat material using the same
JP5590398B2 (en) Method for producing coating composition
JP2007106927A (en) Floor coating composition and floor material coated with the coating composition
JP2003213159A (en) Coating composition curable with active energy ray

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250