WO2021215155A1 - Photocurable composition - Google Patents

Photocurable composition Download PDF

Info

Publication number
WO2021215155A1
WO2021215155A1 PCT/JP2021/011251 JP2021011251W WO2021215155A1 WO 2021215155 A1 WO2021215155 A1 WO 2021215155A1 JP 2021011251 W JP2021011251 W JP 2021011251W WO 2021215155 A1 WO2021215155 A1 WO 2021215155A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
component
photocurable composition
acrylate
molded product
Prior art date
Application number
PCT/JP2021/011251
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 今井
朋哉 鈴木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022516891A priority Critical patent/JP7469746B2/en
Publication of WO2021215155A1 publication Critical patent/WO2021215155A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds

Definitions

  • the present invention includes a polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule, a photoradical initiator, silica particles surface-modified with a specific silane coupling agent, and a polyfunctional thiol.
  • a photoradical initiator silica particles surface-modified with a specific silane coupling agent
  • a polyfunctional thiol a polyfunctional thiol.
  • the cured product and molded product obtained from the photocurable composition of the present invention have high transparency, the amount of warpage of the support is small, and cracks do not occur even after undergoing a developing process using an organic solvent.
  • Resin lenses are used in electronic devices such as mobile phones, smartphones, digital cameras, and in-vehicle cameras, and have high transparency, heat resistance, and high productivity that can be molded with good yield according to the intended use of the resin lens. It has been demanded.
  • a resin lens satisfying such a requirement for example, a thermoplastic transparent resin such as a polycarbonate resin, a cycloolefin polymer, or a methacrylic resin has been used.
  • Multiple lenses are used in the high resolution camera module.
  • manufacturing the lens in order to improve yield and production efficiency, and to suppress optical axis deviation during lens lamination, from injection molding of thermoplastic resin to wafer level molding using photocurable resin liquid at room temperature. The transition to is being actively considered.
  • the photocurable resin a radical curable resin composition is widely used from the viewpoint of high transparency and mold releasability.
  • a hybrid lens method in which a lens is formed on a support such as a glass substrate is generally used from the viewpoint of productivity.
  • the market demand for thinning camera modules is increasing year by year, and the thickness of the support used in the hybrid lens system is also required to be thinned. Therefore, when a general radically polymerizable resin composition is used, the support on which the molded body such as a lens is formed tends to warp, which may make it difficult to precisely assemble the camera module.
  • the cured product has high transparency that can be used as a resin lens, the amount of warpage of the support when the molded body is formed on a support such as a glass substrate is small, and the molded product is molded even after undergoing a developing process using an organic solvent. There is still no resin composition containing inorganic fine particles that does not cause cracks in the hem of the body, and its development has been desired.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a photocurable composition that solves the above-mentioned problems.
  • the present inventors photocured specific polyfunctional (meth) acrylates, silica particles surface-modified with specific silane coupling agents, and polyfunctional thiols, respectively.
  • the transmittance of the cured product and the molded product obtained from the photocurable composition is high, and the warp of the support when the cured product and the molded product are formed on the support.
  • the amount is small (0 ⁇ m or more and less than 3.0 ⁇ m), and that cracks do not occur in the hem of the cured product and the molded product even after undergoing a development process using an organic solvent, and the present invention has been completed.
  • the first aspect of the present invention is a photocurable composition containing the following component (a), the following component (b), the following component (c) and the following component (d).
  • X 1 represents a hydrogen atom or a (meth) acryloyloxy group
  • R 1 and R 2 independently represent a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • m is 8 to 14. It represents an integer
  • n represents an integer of 0 to 2.
  • R 3 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms
  • X 2 represents a single bond, an ester bond or an ether bond
  • Q 1 represents a hetero atom. It represents an organic group having 2 to 12 carbon atoms or a hetero atom containing at least one or not containing a hetero atom
  • p represents an integer of 2 to 6).
  • the photocurable composition of the present invention may further contain the following component (e).
  • the photocurable composition of the present invention may further contain the following component (f) and / or the following component (g).
  • the photocurable composition of the present invention may further contain the following component (h).
  • the component (a) is, for example, a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in one molecule, or one of the bifunctional (meth) acrylate and the (meth) acryloyloxy group. It is a trifunctional (meth) acrylate having three in the molecule.
  • the component (a) includes, for example, the following component (a1) and the following component (a2).
  • R 4 represents a hydrogen atom or a methyl group
  • Q 2 represents a linear or branched alkylene group having 4 to 10 carbon atoms.
  • the component (c) is, for example, silica particles in which X 1 in the formula (1) is surface-modified with a silane coupling agent of a (meth) acryloyloxy group.
  • a second aspect of the present invention is a cured product of the photocurable composition.
  • a third aspect of the present invention is a method for producing a molded product, which comprises a step of imprint molding the photocurable composition.
  • a fourth aspect of the present invention is a method for producing a molded product of a photocurable composition, wherein the photocurable composition is applied onto a support, the photocurable composition, and a target molding.
  • the photocurable composition is exposed through the mold to form a photocurable portion.
  • a method for producing a molded product which comprises a drying step of spin-drying the support on which the photocurable portion is formed after the developing step.
  • a step of heating the photo-curing portion may be further included.
  • a rinsing step of rinsing the photocured portion with a rinsing liquid may be further included.
  • a post-exposure step of exposing the entire surface of the photocurable portion may be further included.
  • a post-exposure step After the post-exposure step, a post-baking step of heating the photocurable portion may be further included.
  • a step of forming an antireflection film on the surface of the photocurable portion may be further included.
  • a step of forming an antireflection film on the surface of the photocurable portion may be further included.
  • the molded body is, for example, a lens for a camera module.
  • the photocurable composition of the present invention contains the component (a) to the component (d) as an essential component, optionally contains the component (e), and optionally the component (f) and / or the (). g) Contains the component, and optionally contains the component (h). Due to the presence of the component (a) and the component (b), a three-dimensional crosslinked body is formed when the photocurable composition is exposed, and a cured product is obtained. Further, the surface of the component (c) was modified with a silane coupling agent represented by the formula (1), that is, a silane coupling agent having a long-chain hydrocarbon group having 8 to 14 carbon atoms.
  • a silane coupling agent represented by the formula (1) that is, a silane coupling agent having a long-chain hydrocarbon group having 8 to 14 carbon atoms.
  • the silica particle / organic resin interface generated when the cured product and the molded product are developed with an organic solvent. It is possible to reduce the strain of the silica particles to prevent cracks, and to increase the dispersibility of the silica particles to increase the transparency of the cured product and the molded product.
  • the cured product and the molded product obtained from the photocurable composition containing the component (a) to the component (d) show a desirable high transmission rate as a resin lens, for example, a lens for a camera module.
  • the amount of warpage of the support is small (0 ⁇ m or more and less than 3.0 ⁇ m), and further, the cured product and the molded product are molded even after undergoing a development step using an organic solvent. We found that there were no cracks in the hem of the body.
  • FIG. 1 is a schematic view showing a method for evaluating the amount of warpage of a substrate.
  • FIG. 2 is an optical micrograph showing a hem portion of a cured product prepared from the photocurable composition 15 of Example 15 treated under the development and rinsing conditions of condition D.
  • FIG. 3 is an optical micrograph showing a hem portion of a cured product prepared from the photocurable composition 18 of Comparative Example 1 when treated under the development and rinsing conditions of Condition D.
  • O) Indicates an acryloyloxy group represented by "O-"
  • the polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule which can be used as the component (a) of the photocurable composition of the present invention, has one molecule of (meth) acryloyloxy group. It can be roughly divided into a trifunctional or higher (meth) acrylate having three or more in it and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in one molecule.
  • the photocurable composition of the present invention contains the component (a1), the cured product and the molded product obtained from the photocurable composition are excellent in adhesion to the support.
  • the photocurable composition of the present invention contains the component (a2), the cured product and the molded product obtained from the photocurable composition are excellent in flexibility and have a (meth) acryloyloxy group described later. Excellent compatibility with.
  • Examples of the trifunctional or higher (meth) acrylate include U-6LPA, U-10HA, U-10PA, UA-1100H, U-15HA, UA-53H, UA-33H, and UA-7100 (above, Shin-Nakamura).
  • UV-2750B UV-7000B, UV-7510B, UV-1700B, UV-6300B, UV-7550B, UV-7600B
  • examples thereof include urethane (meth) acrylates such as UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7640B and UV-7650B (all manufactured by Mitsubishi Chemical Co., Ltd.).
  • TEICA MF-001, MF-101 (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), M-305, M-306, M-309, M-310, M-313, M-315, M-321 , M-350, M-360, M-400, M-402, M-403, M-404, M-405, M-406, M-408, M-450, M-460 and M-471 (or more) , Made by Toa Synthetic Co., Ltd.).
  • the trifunctional or higher (meth) acrylate can be used alone or in combination of two or more.
  • examples of the bifunctional (meth) acrylate that does not correspond to either the component (a1) or the component (a2) include cyclohexanediol di (meth) acrylate and cyclohexanedimethanol di (meth).
  • the bifunctional (meth) acrylate that does not correspond to either the component (a1) or the component (a2) can be used alone or in combination of two or more.
  • (A1) component bifunctional urethane (meth) acrylate
  • the component (a1) include U-2PPA, U-200PA, U-160TM, U-290TM, UA-4200, UA-4400, UA-122P, and UA-W2A (above, Shin-Nakamura Chemical Industry Co., Ltd.). ), AH-600, UF-8001G (all manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL (registered trademark) 210, 230, 270, 280/15IB, 284, 4491, 4683, 4683.
  • the component (a1) can be used alone or in combination of two or more.
  • Component (a2) Bifunctional (meth) acrylate represented by the above formula (3)
  • Examples of the component (a2) include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, and neopentyl glycol di.
  • biscoat # 195, biscoat # 230, biscoat # 260 (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), BD, NPG, A-NPG. , HD-N, A-HD-N, NOD-N, A-NOD-N, A-IND, DOD-N, A-DOD-N (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), FA-121M , FA-124M, FA-125M, FA-129AS (all manufactured by Hitachi Chemical Co., Ltd.), Light Ester 1.4BG, Light Ester NP, Light Ester 1.6HX, Light Ester 1.9ND, Light Acrylate 1.6HX -A, Light Acrylate 1.9ND-A, Light Acrylate NP-A, Light Acrylate MPD-A (above, manufactured by Kyoeisha Chemical Co., Ltd.), HDDA (above, manufactured by Daicel Ornex Co., Ltd.),
  • the component (a2) can be used alone or in combination of two or more.
  • the content of the component (a) of the photocurable composition of the present invention is 100% by mass of the sum of the components (a), (c), (d) and (e) contained in the photocurable composition. It is 30 parts by mass to 90 parts by mass, preferably 35 parts by mass to 85 parts by mass, and more preferably 40 parts by mass to 80 parts by mass. If the content of the component (a) is less than 30 parts by mass, the cured product and the molded product obtained from the photocurable composition cannot form an organic resin matrix having a sufficient crosslink density, and the cured product In addition, the molded product may become brittle due to its low crosslink density. If the content of the component (a) is more than 90 parts by mass, the heat resistance of the cured product and the molded product obtained from the photocurable composition may deteriorate.
  • the content thereof is the component (a), the component (c), the component (d) contained in the photocurable composition of the present invention.
  • All the relationships represented by the following formulas (4) to (6) are satisfied with respect to 100 parts by mass of the sum of the components (e) and (h), and preferably the following formulas (4') to (6'). ) Is satisfied, and more preferably all the relationships of the following equations (4 ′′) to (6 ′′) are satisfied.
  • the content of the component (a1) is defined as a Y part by mass
  • the content of the component (a2) is defined as a Z mass part.
  • Equation (4) 30 parts by mass ⁇ (Y + Z) ⁇ 90 parts by mass Equation (5): 0 parts by mass ⁇ Y ⁇ 80 parts by mass Equation (6): 0 parts by mass ⁇ Z ⁇ 70 parts by mass Equation (4'): 35 parts by mass ⁇ (Y + Z) ⁇ 85 parts by mass (5'): 0 parts by mass ⁇ Y ⁇ 75 parts by mass (6'): 0 parts by mass ⁇ Z ⁇ 65 parts by mass (4'): 40 parts by mass Part ⁇ (Y + Z) ⁇ 80 parts by mass Formula (5 ′′): 0 parts by mass ⁇ Y ⁇ 70 parts by mass Formula (6 ′′): 0 parts by mass ⁇ Z ⁇ 60 parts by mass
  • the content of the component (a1) is more than 80 parts by mass, the heat resistance of the cured product and the molded product obtained from the photocurable composition may deteriorate.
  • the content of the component (a2) is 70 parts by mass or less, the viscosity of the photocurable composition does not significantly decrease, and the handleability in the step of imprinting the photocurable composition is good. be.
  • Photoradical initiators examples include alkylphenones, benzophenones, dibenzoyls, anthraquinones, acylphosphine oxides, benzoylbenzoates, and oxime esters. And thioxanthones, and in particular, an intramolecular cleavage type photoradical polymerization initiator is preferable.
  • OMNIRAD registered trademark
  • 127, 184, 369, 369E, 379EG 500, 651, 819, 784, 907.
  • IGM Resins 1173, 2959, TPO H (manufactured by IGM Resins), IRGACURE (registered trademark) OXE01, OXE02, OXE03, OXE04, CGI1700, CGI1750, CGI1850, CG24-61 (above, BASF) Examples thereof include ESACURE KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46 and KIP75 (all manufactured by Lamberti).
  • the content of the component (b) of the photocurable composition of the present invention is the component (a), the component (c), the component (d), the component (e) and the component (h) contained in the photocurable composition. It is 0.1 parts by mass to 5 parts by mass, preferably 0.5 parts by mass to 3 parts by mass with respect to 100 parts by mass of the sum of the components. If the content of the component (b) is less than 0.1 parts by mass, the strength of the cured product and the molded product obtained from the photocurable composition may decrease. If the content of the component (b) is more than 5 parts by mass, the heat resistance of the cured product and the molded product may deteriorate.
  • the component (b) can be used alone or in combination of two or more.
  • Component (c) Silica particles having a primary particle size of 1 nm to 100 nm, which are surface-modified with at least one silane coupling agent represented by the above formula (1)]
  • the silane coupling agent represented by the formula (1) that modifies the surface of the silica particles of the component (c) of the photocurable composition of the present invention has m in the formula (1) of 8 to 14. It is characterized by being an integer, that is, having a linear hydrocarbon group having 8 to 14 carbon atoms in the molecule.
  • an alkoxysilane compound in which a linear alkyl group having 8 to 14 carbon atoms is bonded to a silicon atom, or a (meth) acryloyloxy group via a linear alkylene group having 8 to 14 carbon atoms. It is an alkoxysilane compound bonded to a silicon atom.
  • a silane coupling agent having m of 8 to 14 in the formula (1) the affinity / adhesion between the surface of the silica particles surface-modified with the silane coupling agent and the organic resin is improved. be able to.
  • the affinity and adhesion with the organic resin become insufficient, and the transmittance of the cured product and the molded product of the photocurable composition of the present invention becomes insufficient. There is a risk that cracks may occur in the cured product and the hem of the molded product after the development process using an organic solvent.
  • a silane coupling agent having m of 15 or more in the formula (1) the crystallinity of the linear hydrocarbon group becomes remarkable, and the silica particles surface-modified with the silane coupling agent may aggregate. ..
  • Examples of the silane coupling agent represented by the formula (1) include n-octylrimethoxysilane, n-octylriethoxysilane, n-octylmethyldimethoxysilane, n-octylethyldimethoxysilane, and n-octylmethyl.
  • silane coupling agent represented by the formula (1) specifically, KBM-5803, KBM-3103C and KBE-3083 (all manufactured by Shin-Etsu Chemical Co., Ltd.). Can be mentioned.
  • the silane coupling agent represented by the formula (1) can be used alone or in combination of two or more.
  • silane coupling agent represented by the formula (1) and another silane coupling agent not represented by the formula (1) may be used in combination, and examples of the other silane coupling agent include, for example.
  • the other silane coupling agents may be used alone or in combination of two or more.
  • silica particles are surface-modified by using the silane coupling agent represented by the formula (1) and optionally using another silane coupling agent not represented by the formula (1), these silane coupling agents are used.
  • the amount of silica particles used satisfies all the relationships represented by the following formulas (7) and (8) per 1 g of the silica particles, and is preferably represented by the following formulas (7)'and'(8)'. All the relationships are satisfied, and more preferably all the relationships represented by the following equations (7) ′′ and the following equation (8) ′′ are satisfied.
  • the amount of the silane coupling agent represented by the formula (1) is y mmol
  • the amount of the other silane coupling agent not represented by the formula (1) is z mmol.
  • the amount of the silane coupling agent represented by the formula (1) used is less than 0.1 mmol, the affinity / adhesion between the surface of the silica particles and the organic resin becomes insufficient, and the photocurability of the present invention becomes insufficient. There is a risk that the transmittance of the cured product and the molded product obtained from the composition will decrease, and that cracks will occur in the hem of the cured product and the molded product after the development step using an organic solvent.
  • the silane coupling agent is applied to the silica particles. If the silane coupling agent becomes excessive and is not consumed for surface modification of the silica particles, the storage stability and mechanical properties of the cured product and the molded product may be deteriorated.
  • the silica particles of the component (c) of the photocurable composition of the present invention have a primary particle size of 1 nm to 100 nm.
  • the primary particles are particles constituting the powder, and the particles in which the primary particles are aggregated are referred to as secondary particles.
  • the primary particle size calculated from the above relational expression is the average particle size, which is the diameter of the primary particles. If the primary particle size is smaller than 1 nm, the silica particles tend to aggregate, and the storage stability may deteriorate. If the primary particle size is larger than 100 nm, the transparency of the cured product and the molded product may be impaired.
  • silica particles of the component (c) those obtained by reacting the unsurface-modified silica particles with the silane coupling agent by various known methods can be used.
  • the unsurface-modified silica particles for example, those in which the silica particles are dispersed in an organic solvent (organo silica sol) are preferably used.
  • organosilica sol for example, CHO-ST-M, DMAC-ST, DMAC-ST-ZL, EAC-ST, EG-ST, EG-ST-ZL, EG-ST-XL30, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, methanol silica sol, MA-ST-M, MA-ST-L, MA-ST-ZL, MA-ST-UP, MEK -ST, MEK-ST-40, MEK-ST-L, MEK-ST-ZL, MEK-ST-UP, MIBK-ST, MIBK-ST-L, NMP-ST, NPC-ST-30, PMA-ST , PGM-ST, PGM-ST, PGM-ST-UP, and TOR-ST (all manufactured by Nissan Chemical Co., Ltd.).
  • organosilica sol a commercially available water-dispersed silica sol in which water is replaced with an organic solvent by a known method such as vacuum distillation or ultrafiltration, or a commercially available powdered silica particles dispersed in an organic solvent may be used. ..
  • the silica solid content concentration in the organosilica sol is not particularly limited, but is generally preferably 60% by mass or less.
  • the content of the component (c) of the photocurable composition of the present invention is the component (a), the component (c), the component (d), the component (e) and the component (h) contained in the photocurable composition. It is 5 parts by mass to 60 parts by mass, preferably 8 parts by mass to 45 parts by mass, and more preferably 10 parts by mass to 30 parts by mass with respect to 100 parts by mass of the sum of the components. If the content of the component (c) is less than 5 parts by mass, the heat resistance of the cured product and the molded product obtained from the photocurable composition may deteriorate. If the content of the component (c) is more than 60 parts by mass, haze may occur in the cured product and the molded product, and the transmittance may decrease.
  • the component (c) can be used alone or in combination of two or more.
  • a plurality of silica particles having different primary particle diameters may be combined, or a plurality of silica particles having different types and amounts of silane coupling agents used for surface modification may be combined.
  • Examples of the polyfunctional thiol represented by the above formula (2) that can be used as the component (d) of the photocurable composition of the present invention include 1,2-ethanedithiol, 1,3-propanedithiol, and bis.
  • a commercially available product may be used as the polyfunctional thiol compound represented by the formula (2).
  • Calends MT registered trademark
  • PE1, NR1, BD1, TPMB, TEMB all manufactured by Showa Denko KK.
  • TMMP TEMPIC
  • PEMP EGMP-4
  • DPMP TMMP II-20P
  • PEMP II-20P PEMP II-20P
  • PEPT all manufactured by SC Organic Chemistry Co., Ltd.
  • the content of the component (d) of the photocurable composition of the present invention is the component (a), the component (c), the component (d), the component (e) and the component (h) contained in the photocurable composition. It is 1 part by mass to 15 parts by mass, preferably 3 parts by mass to 10 parts by mass with respect to 100 parts by mass of the sum of the components. If the content of the component (d) is less than 1 part by mass, the amount of warpage of the cured product obtained from the photocurable composition and the support on which the molded product is formed may increase. If the content of the component (d) is more than 15 parts by mass, reliability may be deteriorated such as haze when the cured product and the molded product are exposed to a high humidity / high temperature environment.
  • the component (d) can be used alone or in combination of two or more.
  • the polyrotaxane having a (meth) acryloyloxy group that can be used as the component (e) of the photocurable composition of the present invention is a pseudopolyrotaxane in which the openings of cyclic molecules are skewered by linear molecules.
  • a blocking group is arranged so that the cyclic molecule does not escape, and the cyclic molecule has a (meth) acryloyloxy group.
  • the cyclic molecule of the polyrotaxane is not particularly limited as long as it is cyclic, has an opening, and is skewered by a linear molecule.
  • the (meth) acryloyloxy group may be directly attached to the cyclic molecule or may be attached via a spacer.
  • the cyclic molecule for example, it is preferable to select from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin.
  • linear molecule The linear molecule of the polyrotaxane is not particularly limited as long as it can be skewered into the opening of the cyclic molecule to be used.
  • linear molecule include polymers selected from the group consisting of polyethylene glycol, polyisobutylene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether.
  • polyethylene glycol is particularly preferable.
  • the linear molecule has a weight average molecular weight of 1,000 or more, preferably 3,000 to 100,000, and more preferably 6,000 to 50,000.
  • the combination of (cyclic molecule, linear molecule) is particularly preferably (derived from ⁇ -cyclodextrin, derived from polyethylene glycol).
  • the blocking group of the polyrotaxane is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclic molecule used does not desorb.
  • a blocking group selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantyl groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes is preferable, and more preferable. It is an adamantyl group or a cyclodextrin.
  • CELM registered trademark superpolymer
  • SA1303P SA1305P
  • SA1305P-10 SA1305P-20
  • SA2403P SA2405P-10
  • SA2405P-20 SA2405P-20
  • SA3403P SM1303P, SM1305P-20, SM2403P, SM2405P-20 and SM3403P [all manufactured by ASM Co., Ltd. (formerly Advanced Soft Materials Co., Ltd.)].
  • the content thereof is the component (a), the component (c), the component (d), and the component (e) contained in the photocurable composition.
  • 1 part by mass to 15 parts by mass preferably 3 parts by mass to 10 parts by mass with respect to 100 parts by mass of the sum of the components (h).
  • the component (e) can be used alone or in combination of two or more.
  • Component (f) Phenolic antioxidant
  • IRGANOX registered trademark
  • 1010, 1035, 1076, and 1135 above, BASF Japan
  • the content thereof is the component (a), the component (c), the component (d), (e) contained in the photocurable composition. It is 0.05 parts by mass to 3 parts by mass, preferably 0.1 parts by mass to 1 part by mass with respect to 100 parts by mass of the sum of the component and the component (h).
  • the component (f) can be used alone or in combination of two or more.
  • sulfide-based antioxidant examples include ADEKA STAB (registered trademark) AO-412S and AO-503 (all manufactured by ADEKA Corporation). Examples thereof include IRGANOX (registered trademark) PS802, PS800 (above, manufactured by BASF Japan Ltd.), and SUMILIZER (registered trademark) TP-D (manufactured by Sumitomo Chemical Co., Ltd.).
  • the photocurable composition of the present invention contains the component (g), the content thereof is the component (a), the component (c), the component (d), and the component (e) contained in the photocurable composition. And, with respect to 100 parts by mass of the sum of the components (h), it is 0.05 parts by mass to 3 parts by mass, preferably 0.1 parts by mass to 1 part by mass.
  • the component (g) can be used alone or in combination of two or more.
  • Examples of the monomer having one (meth) acryloyloxy group or allyloxy group in one molecule that can be used as the component (h) of the photocurable composition of the present invention include methyl (meth) acrylate and ethyl (meth).
  • n-butyl (meth) acrylate isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (Meta) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 1-adamantyl (meth) acrylate, benzyl (meth) acrylate, Phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (
  • the content thereof is the component (a), the component (c), the component (d), (e) contained in the photocurable composition. It is 0.5 parts by mass to 40 parts by mass, preferably 1 part by mass to 30 parts by mass, and more preferably 5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the sum of the component and the component (h).
  • the photocurable composition of the present invention reduces the viscosity of the photocurable composition according to the type of the component (h), and the photocurable composition.
  • the component (h) can be used alone or in combination of two or more.
  • the photocurable composition of the present invention can be used as a monofunctional acrylate, a chain transfer agent, an ultraviolet absorber, a light stabilizer, a leveling agent, a rheology adjuster, if necessary, as long as the effects of the present invention are not impaired.
  • Adhesive aids such as silane coupling agents and additives such as pigments, dyes and defoamers can be contained.
  • the method for preparing the photocurable composition of the present invention is not particularly limited.
  • the preparation method includes, for example, (a) component, (b) component, (c) component and (d) component, and if necessary, (e) component, (f) component and / or (g) component, and (h). )
  • a method of mixing the components at a predetermined ratio to obtain a uniform solution can be mentioned.
  • the photocurable composition of the present invention prepared in a solution is preferably used after being filtered using a filter having a pore size of 0.1 ⁇ m to 10 ⁇ m or the like.
  • the photocurable composition of the present invention can be exposed (photocured) to obtain a cured product, and the present invention also covers the cured product.
  • the light beam to be exposed is not particularly limited as long as the cured product can be obtained, and examples thereof include ultraviolet rays, electron beams, and X-rays.
  • the light source used for ultraviolet irradiation for example, a sunbeam, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used.
  • post-baking may be applied to stabilize the physical properties of the cured product.
  • the method of post-baking is not particularly limited, but is usually carried out in the range of 50 ° C. to 260 ° C. for 1 minute to 24 hours using a hot plate, an oven or the like.
  • the cured product obtained by photocuring the photocurable composition of the present invention has a high transmittance of 90% or more at a wavelength of 410 nm. Therefore, the photocurable composition of the present invention can be suitably used for forming a resin lens.
  • the method for producing a molded product of the present invention includes a step of applying the photocurable composition of the present invention on a support.
  • the support may have a pattern having an opening, and the pattern is formed by patterning a negative photosensitive resin composition or a positive photosensitive resin composition, and the shape thereof is, for example, a grid pattern.
  • the support may be, for example, a semiconductor substrate such as silicon coated with a silicon oxide film, a semiconductor substrate such as silicon nitride film or silicon coated with a silicon oxide film, a silicon nitride substrate, a quartz substrate, or a glass substrate (non-alkali). (Including glass, low alkali glass, and crystallized glass), and a glass substrate on which an ITO film is formed can be mentioned.
  • the photocurable composition is applied onto the photocurable composition by an appropriate application method such as a dispenser or a spinner.
  • the method for producing a molded product of the present invention includes an imprinting step of bringing the photocurable composition into contact with a mold having an inverted pattern of a target lens shape and a light-shielding film.
  • the target lens shape is a concave lens
  • the inversion pattern is a convex lens pattern.
  • the material of the mold is not limited as long as it is a material that transmits light such as ultraviolet rays used in the photocuring step described later, and for example, a (meth) acrylic resin such as polymethylmethacrylate, a cycloolefin polymer (COP) resin, and the like.
  • examples include quartz, borosilicate glass and calcium fluoride.
  • the material of the mold is a resin
  • it may be either a non-photosensitive resin or a photosensitive resin.
  • the photosensitive resin include replica molding materials for imprints disclosed in International Publication No. 2019/031359.
  • the material of the light-shielding film is not limited as long as it is a material that does not transmit light such as ultraviolet rays used in the photocuring step described later, and examples thereof include aluminum, chromium, nickel, cobalt, titanium, tantalum, tungsten, and molybdenum. Can be mentioned. It is desirable that the mold is used after the mold release treatment is performed by applying a mold release agent and drying for the mold release step described later.
  • the release agent is available as a commercially available product, and is, for example, Novec (registered trademark) 1700, 1710, 1720 (all manufactured by 3M Japan Co., Ltd.), Fluorosurf (registered trademark) FG-5084, and the same.
  • the method for producing a molded product of the present invention includes, after the imprinting step, a photocuring step of exposing the photocurable composition through the mold to form a photocurable portion.
  • the light beam to be exposed is not particularly limited as long as the photocurable portion can be formed, and examples thereof include ultraviolet rays, electron beams, and X-rays.
  • the light source used for ultraviolet irradiation for example, a sunbeam, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used.
  • the film thickness of the photocurable portion is preferably 100 ⁇ m to 1000 ⁇ m, and more preferably 300 ⁇ m to 700 ⁇ m. Since the mold is made of a material that transmits light such as ultraviolet rays and has a light-shielding film that does not transmit light such as ultraviolet rays, it is used as a mask in this step.
  • the method for producing a molded product of the present invention includes a mold release step for separating the photocurable portion and the mold.
  • the mold release method is not particularly limited as long as the photocurable portion can be completely separated from the mold without being damaged or deformed.
  • the mold can be easily separated from the photocurable portion by a mold release process in which the mold release agent is applied and dried.
  • the heating means is not particularly limited, and examples thereof include a hot plate and an oven.
  • the method for producing a molded product of the present invention includes a developing step of removing the uncured portion of the photocurable composition with a developing solution to expose the photocurable portion after the mold release step.
  • the developing method is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic dispensing method, and a static dispensing method.
  • the development conditions are appropriately selected from, for example, a development temperature of 5 ° C. to 50 ° C. and a development time of 10 seconds to 300 seconds.
  • the developer is not particularly limited as long as it can remove the uncured portion of the photocurable composition, but is organic such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, tetrahydrofurfuryl alcohol, and ⁇ -butyrolactone. Solvents are preferred.
  • the developer can be used alone or in combination of two or more.
  • the method for producing a molded product of the present invention may include a rinsing step of rinsing the photocured portion with a rinsing solution after the developing step and before the drying step described later.
  • the rinsing method is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic discharge method, and a static discharge method.
  • the rinsing conditions are appropriately selected from the range of a rinsing temperature of 5 ° C. to 50 ° C. and a rinsing time of 10 seconds to 300 seconds.
  • the rinse solution is not particularly limited as long as the developer can be washed away without damaging the photocurable portion.
  • the rinsing solution include ethanol, tetrahydrofurfuryl alcohol, 1,1,1,2,3,4,5,5,5-decafluoropentane, ethyl lactate, cyclohexanol and methylcyclohexane. ..
  • the rinse liquid can be used alone or in combination of two or more.
  • the developer and rinse solution used in the method for producing a molded product of the present invention further contains a surfactant as an additive for the purpose of improving the wettability to the photocured portion and efficiently proceeding with development and rinsing. You can also do it.
  • the surfactant may be used alone or in combination of two or more. When the surfactant is used, its content in the developer or rinse solution is preferably 0.001 part by mass to 5 parts by mass with respect to 100 parts by mass of the developer or rinse solution. Is 0.01 part by mass to 3 parts by mass, more preferably 0.05 part by mass to 1 part by mass.
  • the developer and rinse solution used in the method for producing a molded product of the present invention may contain an antioxidant as another additive, if necessary. Examples of the antioxidant include a phenol-based antioxidant of the component (f), a sulfide-based antioxidant of the component (g), and a phosphite-based antioxidant.
  • the method for producing a molded product of the present invention includes, after the developing step, a drying step of spin-drying the support on which the photocurable portion is formed. This step can be carried out by rotating the support with a spin-drying device such as a spinner or a coater.
  • the drying conditions are not particularly limited, but are appropriately selected from, for example, a rotation speed of 200 rpm to 3000 rpm, 10 seconds to 10 minutes.
  • the method for producing a molded product of the present invention may include a post-exposure step of exposing the entire surface of the photocurable portion after the drying step. As the light beam exposed in this step, a light ray that can be used in the photocuring step can be used.
  • the method for producing a molded product of the present invention may include a post-baking step of heating the photocurable portion after the post-exposure step.
  • the post-baking conditions are appropriately selected from, for example, 50 ° C. to 260 ° C., 1 minute to 24 hours.
  • the heating means is not particularly limited, and examples thereof include a hot plate and an oven.
  • the method for producing a molded product of the present invention further includes a step of forming an antireflection film on the surface of the photocurable portion after the post-exposure step or, if the post-baking step is performed, the post-baking step. You may.
  • the antireflection film is formed on the surface of the photocured product in order to suppress the reflection of light incident on the photocured product and improve the transmittance.
  • Examples of the method for forming the antireflection film include a vacuum deposition method, a sputtering method, a CVD method, a mist method, a spin coating method, a dip coating method and a spray coating method.
  • examples of the antireflection film include an inorganic film such as magnesium fluoride and silicon dioxide, and an organic film such as organopolysiloxane.
  • the molded product produced by such a method can be suitably used as a lens for a camera module.
  • Hem crack observation device Optical microscope MX61A manufactured by Olympus Corporation Conditions: Bright field, objective 10 times (5)
  • Transmittance measuring device JASCO Corporation Ultraviolet visible near infrared spectrophotometer V-670 Reference: Air (6)
  • Substrate warpage measuring device Non-contact surface property measuring device PF-60 manufactured by Mitaka Kohki Co., Ltd.
  • the sources of the compounds used in each production example, example and comparative example are as follows.
  • A-DOG Made by Shin-Nakamura Chemical Industry Co., Ltd.
  • Product name: NK ester APG-400 A-TMPT Made by Shin-Nakamura Chemical Industry Co., Ltd.
  • Product name: NK ester A-TMPT UA-4200 Made by Shin-Nakamura Chemical Industry Co., Ltd.
  • A-DOG, APG-100, APG-400, A-TMPT, UA-4200, V # 195 and V # 260 have a (meth) acryloyloxy group in one molecule that can be used as the component (a). It is a polyfunctional (meth) acrylate having two or more. Of these, A-DOG, APG-100, APG-400, UA-4200, V # 195 and V # 260 are bifunctional (meth) acrylates having two (meth) acryloyloxy groups in one molecule. Of these, UA-4200 is the bifunctional urethane (meth) acrylate of the component (a1), and V # 195 and V # 260 are represented by the formula (3) of the component (a2). It is a bifunctional (meth) acrylate.
  • I184 is a photoradical initiator that can be used as the component (b).
  • OTES and MOTMS are silane coupling agents represented by the formula (1) that modify the surface of silica particles of the component (c), and MPTMS is another silane not represented by the formula (1). It is a coupling agent.
  • silica sol i methanol-dispersed silica sol, primary particle diameter 20 nm to 25 nm, silica particle concentration 40% by mass
  • silica sol ii methanol-dispersed silica sol, primary particle diameter 10 nm to 15 nm, silica particle concentration 30% by mass
  • NR1 and PEPT are polyfunctional thiols represented by the formula (2) that can be used as the component (d).
  • SA1303P Cyclic molecule is cyclodextrin, linear molecule is polyethylene glycol chain, blocking group is adamantyl group, and the side chain of the cyclic molecule is a methylethylketone dispersion of polyrotaxane having an acrylicloyloxy group via a spacer, solid content. (Concentration: 50% by mass) is a polyrotaxane having a (meth) acryloyloxy group that can be used as the component (e).
  • I245 is a phenolic antioxidant that can be used as the component (f).
  • the AO503 is a sulfide-based antioxidant that can be used as the component (g).
  • IBXA and AOMA are monomers having one (meth) acryloyloxy group or allyloxy group in one molecule, which can be used as the component (h).
  • Methanol was distilled off under the conditions of 60 ° C. and a reduced pressure of 133.3 Pa or less to obtain a UA-4200 dispersion of MOTMS and MPTMS-modified silica particles (concentration of the MOTMS and MPTMS-modified silica particles was 55% by mass). ..
  • the surface-modified silica particles of the component (c) when the surface-modified silica particles of the component (c) are blended, the UA-4200 obtained in Production Examples 1 to 7 is used. It was blended as a dispersion liquid or an APG-100 dispersion liquid, and when the polyrotaxane of the component (e) was blended, it was blended as the V # 260 dispersion liquid obtained in Production Example 8.
  • Example 1 1.0 g of UA-4200 and 4.3 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c).
  • 4.2 g of the liquid (2.3 g in terms of MOTMS-modified silica particles) and 0.07 g of I245 as the component (f) were mixed, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the component (d).
  • 0.5 g of PEPT was added, and the mixture was stirred and defoamed for 10 minutes using the stirring defoaming machine to prepare a photocurable composition 1.
  • Example 2 The photocurable composition 2 was prepared in the same procedure as in Example 1 except that 2.0 g of UA-4200 and 3.3 g of V # 195 were used as the component (a).
  • Example 3 The photocurable composition 3 was prepared in the same procedure as in Example 1 except that 2.0 g of UA-4200 and 3.3 g of A-DOG were used as the component (a).
  • Example 4 The photocurable composition 4 was prepared in the same procedure as in Example 1 except that 2.6 g of UA-4200 and 2.7 g of A-TMPT were used as the component (a).
  • Example 5 4.2 g of APG-400 and 1.1 g of APG-100 were used as the component (a), and 4.2 g (MOTMS-modified silica particles) of the APG-100 dispersion obtained in Production Example 2 was used as the component (c).
  • the photocurable composition 5 was prepared in the same procedure as in Example 1 except that 2.3 g) was used in terms of conversion and 0.5 g of NR1 was used as the component (d).
  • Example 6 The photocurable composition was prepared in the same procedure as in Example 1 except that 4.2 g (2.3 g in terms of MOTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 3 was used as the component (c). Object 6 was prepared.
  • Example 7 Photo-curing in the same procedure as in Example 1 except that 4.2 g (2.3 g in terms of MOTMS and MPTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 4 was used as the component (c).
  • the sex composition 7 was prepared.
  • Example 8 Photo-curing in the same procedure as in Example 1 except that 4.2 g (2.3 g in terms of MOTMS and OTES-modified silica particles) of the UA-4200 dispersion obtained in Production Example 5 was used as the component (c).
  • the sex composition 8 was prepared.
  • Example 9 1.7 g of UA-4200 and 5.1 g of V # 260 were used as the component (a), and 2.7 g (MOTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 6 was used as the component (c).
  • the photocurable composition 9 was prepared in the same procedure as in Example 1 except that it was used (1.2 g in conversion).
  • Example 10 1.2 g of UA-4200 and 5.0 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c). 3.3 g of the liquid (1.8 g in terms of MOTMS-modified silica particles), 0.07 g of I245 as the component (f), and 0.05 g of AO-503 as the component (g) were blended at 50 ° C. After shaking and mixing for 15 hours, 0.5 g of PEPT was added as the component (d), and the mixture was stirred and defoamed for 10 minutes using the stirring defoaming machine to prepare a photocurable composition 10.
  • Example 11 The photocurable composition 11 was prepared in the same procedure as in Example 1 except that NR1 was used as the component (d).
  • Example 12 0.8 g of UA-4200 and 4.3 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c).
  • 0.07 g of I245 is mixed, and the mixture is shaken at 50 ° C. for 15 hours to mix, then 0.5 g of PEPT is added as the component (d), and the mixture is stirred and defoamed for 10 minutes using the stirring defoaming machine.
  • the photocurable composition 12 was prepared.
  • Example 13 0.5 g of UA-4200 and 4.0 g of V # 260 were used as the component (a), and 0.8 g of the dispersion obtained in Production Example 8 as the component (e) (0.4 g in terms of polyrotaxane).
  • the photocurable composition 13 was prepared in the same procedure as in Example 12 except that it was used.
  • Example 14 0.3 g of UA-4200 and 3.6 g of V # 260 were used as the component (a), and 1.4 g of the dispersion obtained in Production Example 8 as the component (e) (0.7 g in terms of polyrotaxane).
  • the photocurable composition 14 was prepared in the same procedure as in Example 12 except that it was used.
  • Example 15 0.2 g of UA-4200 and 3.3 g of V # 260 were used as the component (a), and 1.8 g of the V # 260 dispersion obtained in Production Example 8 as the component (e) (0 in terms of polyrotaxan). .9 g)
  • the photocurable composition 15 was prepared in the same procedure as in Example 12 except that it was used.
  • Example 16 4.7 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and 3.3 g (MOTMS-modified) of the UA-4200 dispersion obtained in Production Example 1 as the component (c). 1.8 g in terms of silica particles), 0.07 g of I245 as the component (f), and 1.5 g of IBXA as the component (h), respectively, and shaking at 50 ° C. for 15 hours to mix, and then the above.
  • the photocurable composition 16 was prepared by adding 0.5 g of PEPT as a component (d) and stirring and defoaming for 10 minutes using the stirring defoaming machine.
  • Example 17 1.7 g of UA-4200 and 5.1 g of V # 260 were used as the component (a), and 2.2 g (MOTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 1 was used as the component (c).
  • the photocurable composition 17 was prepared in the same procedure as in Example 16 except that 1.2 g) was used in conversion and 0.5 g of AOMA was used as the component (h).
  • the components of the photocurable compositions 1 to 20 prepared in Examples 1 to 17 and Comparative Examples 1 to 3 are shown in Table 2 below.
  • “part” represents “part by mass”.
  • the mass part of the component (c) is only the surface-modified silica particle component in the UA-4200 dispersion or the APG-100 dispersion obtained in Production Examples 1 to 7.
  • the mass part of the component (e) represents only the polyrotaxane component in the V # 260 dispersion obtained in Production Example 8.
  • Each photocurable composition prepared in Examples 1 to 17 and Comparative Examples 1 to 3 is subjected to mold release treatment by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) and drying.
  • the two glass substrates were sandwiched between the two glass substrates via a silicone rubber spacer having a thickness of 500 ⁇ m.
  • the photocurable composition sandwiched between the two release-treated glass substrates was UV- exposed at 30 mW / cm 2 for 200 seconds using the UV-LED irradiation device.
  • the cured product obtained after exposure was peeled from the mold-released glass substrate and then heated on a hot plate at 100 ° C.
  • the photocurable composition was UV- exposed at 30 mW / cm 2 for 200 seconds using a UV-LED irradiator.
  • the cured product obtained after the exposure was peeled off from the mold release-treated glass substrate, and then heated on a hot plate at 100 ° C. for 10 minutes on the non-alkali glass substrate to be subjected to the close contact treatment to have a diameter of 0.5 cm.
  • a cured product having a thickness of 500 ⁇ m was prepared. Further, it was heated on a hot plate at 175 ° C. for 2 minutes and 30 seconds.
  • FIG. 1 is a schematic diagram showing a method for evaluating the amount of warpage of a glass substrate. The obtained results are shown in Table 4 below.
  • the photocurable composition was UV-exposed at 50 mW / cm 2 for 9 seconds via the photomask substrate that had been demolded using the UV-LED irradiator manufactured by Iwasaki Electric Co., Ltd. to obtain light. A hardened part was formed. After the non-alkali glass substrate to which the photocurable portion was in close contact was peeled off from the photomask substrate which had been subjected to the mold release treatment, only development or development and rinsing were performed using the developing apparatus.
  • the developing solution and developing time used, and the rinsing solution and rinsing time are any of the conditions A to E of the developing / rinsing conditions shown in Table 3 below.
  • the rotation speed of the non-alkali glass substrate during development is 300 rpm
  • the rotation speed of the non-alkali glass substrate during rinsing is 200 rpm
  • the discharge flow rate of the developer and the rinse liquid is 200 mL / min.
  • the non-alkali glass substrate was rotated at 3000 rpm for 30 seconds using the developing apparatus to dry the glass substrate.
  • UV exposure was performed at 50 mW / cm 2 for 111 seconds using the UV-LED device manufactured by CCS Inc., and further 10 minutes on a hot plate at 100 ° C.
  • a cured product having a thickness of 1 cm square and 500 ⁇ m was prepared on the non-alkali glass substrate which had been subjected to the close contact treatment.
  • the top surface of the produced 1 cm square, 500 ⁇ m thick cured product has a planar shape.
  • a cured product having a lens shape was also prepared by the following procedure. That is, the release-treated photomask substrate is changed to a resin mold with a light-shielding film (a shape of an inverting lens having a thickness of about 100 ⁇ m), and the 500 ⁇ m-thick silicone rubber spacer is made of 600 ⁇ m-thick silicone rubber.
  • a cured product having a lens shape was produced by the same method as the method for producing a cured product having a thickness of 1 cm square and 500 ⁇ m except that the spacer was used.
  • the top surface of the produced cured product having a lens shape has a curved surface shape.
  • the mold release treatment method for the resin mold with a light-shielding film is the same as the mold release treatment method for the photomask substrate.
  • PGMEA is propylene glycol monomethyl ether acetate
  • PGME is propylene glycol monomethyl ether
  • GBL is ⁇ -butyrolactone
  • EL is ethyl lactate
  • THFA is tetrahydrofurfuryl alcohol
  • CHA is cyclohexanol
  • MCH Represents methylcyclohexane.
  • the developer under condition C and the developer and rinse solution under condition E are mixed solvents, and their components and mixing ratios are shown in Table 3 by mass ratio.
  • the cured product prepared from the photocurable compositions prepared in Examples 1 to 17 showed high transmittance (90% or more) and a low substrate warpage amount (less than 3.0 ⁇ m), and further, Conditions A to Condition E No cracks were observed at the hem regardless of the development / rinsing conditions, or the top surface shape of either a flat surface or a curved surface.
  • FIG. 2 shows the hem portion when the cured product prepared from the photocurable composition 15 prepared in Example 15 is treated under the development / rinsing condition of Condition D.
  • FIG. 3 shows the hem portion when the cured product prepared from the photocurable composition 18 prepared in Comparative Example 1 was treated under the development / rinsing condition of Condition D. The plurality of arrows in FIG. 3 indicate the crack occurrence location. Further, in the cured product prepared from the photocurable compositions prepared in Comparative Example 2 and Comparative Example 3 in which the component (d) was not used, the amount of substrate warpage was 3.0 ⁇ m or more.
  • the cured product (molded product) obtained from the photocurable composition containing the component (a) to the component (d) of the present invention exhibits high transmittance, and the cured product (molded product) is placed on the support.
  • the amount of warpage of the support when the body) is formed is small, and cracks do not occur at the hem of the cured product (molded product) even after undergoing a development process using an organic solvent. It was shown to have desirable properties as a lens of.

Abstract

[Problem] To provide a novel photocurable composition. [Solution] A photocurable composition including the following component (a), component (b), component (c), and component (d). (a): At least one polyfunctional (meth)acrylate having two or more (meth)acryloyloxy groups per molecule. (b): A photoradical initiator. (c): Silica particles having a primary particle size of 1-100 nm, the silica particles being surface modified by at least one silane coupling agent represented by formula (1). (d): A specific polyfunctional thiol. (In the formula, X1 represents a hydrogen atom or a (meth)acryloyloxy group, R1 and R2 each independently represent a hydrogen atom or a C1-2 alkyl group, m represents an integer of 8-14, and n represents an integer of 0-2.)

Description

光硬化性組成物Photocurable composition
本発明は、(メタ)アクリロイルオキシ基を1分子中に2つ以上有する多官能(メタ)アクリレート、光ラジカル開始剤、特定のシランカップリング剤で表面修飾されたシリカ粒子及び多官能チオールを含む光硬化性組成物に関する。本発明の光硬化性組成物から得られる硬化物及び成形体は、高透明性を有し、支持体の反り量が小さく、有機溶剤を用いた現像工程を経てもクラックが発生しない。 The present invention includes a polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule, a photoradical initiator, silica particles surface-modified with a specific silane coupling agent, and a polyfunctional thiol. With respect to photocurable compositions. The cured product and molded product obtained from the photocurable composition of the present invention have high transparency, the amount of warpage of the support is small, and cracks do not occur even after undergoing a developing process using an organic solvent.
樹脂レンズは、携帯電話、スマートフォン、デジタルカメラ、車載カメラなどの電子機器に用いられており、その樹脂レンズの使用用途に合わせて、高い透明性や耐熱性、並びに歩留まりよく成形できる高い生産性が求められている。このような要求を満たす樹脂レンズ用の材料としては、例えば、ポリカーボネート樹脂、シクロオレフィンポリマー、メタクリル樹脂等の熱可塑性の透明樹脂が使用されてきた。 Resin lenses are used in electronic devices such as mobile phones, smartphones, digital cameras, and in-vehicle cameras, and have high transparency, heat resistance, and high productivity that can be molded with good yield according to the intended use of the resin lens. It has been demanded. As a material for a resin lens satisfying such a requirement, for example, a thermoplastic transparent resin such as a polycarbonate resin, a cycloolefin polymer, or a methacrylic resin has been used.
高解像度カメラモジュールには複数枚のレンズが用いられる。そのレンズの製造にあたり、歩留まりや生産効率の向上、さらにはレンズ積層時の光軸ずれの抑制のために、熱可塑性樹脂の射出成型から、室温で液状の光硬化性樹脂を使用したウェハレベル成形への移行が盛んに検討されている。前記光硬化性樹脂としては、高透明性及びモールドからの離型性の観点から、ラジカル硬化性樹脂組成物が広く用いられている。また、ウェハレベル成形の種類としては、生産性の観点から、ガラス基板等の支持体上にレンズを形成するハイブリッドレンズ方式が一般的である。 Multiple lenses are used in the high resolution camera module. In manufacturing the lens, in order to improve yield and production efficiency, and to suppress optical axis deviation during lens lamination, from injection molding of thermoplastic resin to wafer level molding using photocurable resin liquid at room temperature. The transition to is being actively considered. As the photocurable resin, a radical curable resin composition is widely used from the viewpoint of high transparency and mold releasability. Further, as a type of wafer level molding, a hybrid lens method in which a lens is formed on a support such as a glass substrate is generally used from the viewpoint of productivity.
カメラモジュールの薄化に対する市場要求は年々増加しており、ハイブリッドレンズ方式に用いられる支持体の厚さも薄化が求められている。そのため、一般的なラジカル重合性樹脂組成物を使用した場合、レンズ等の成形体が形成された支持体が反り易くなり、カメラモジュールの精密な組立が困難となる虞がある。 The market demand for thinning camera modules is increasing year by year, and the thickness of the support used in the hybrid lens system is also required to be thinned. Therefore, when a general radically polymerizable resin composition is used, the support on which the molded body such as a lens is formed tends to warp, which may make it difficult to precisely assemble the camera module.
一方、樹脂レンズの耐熱性や光学特性等を向上させることを目的として、シリカ粒子やジルコニウム粒子等の無機微粒子を有機樹脂と複合させる技術が広く知られており、そのようなラジカル重合性樹脂組成物が既に報告されている(例えば、特許文献1及び特許文献2)。しかしながら、このような無機微粒子を含有した樹脂組成物から得られる硬化物は、インプリント工程後の有機溶剤を用いた現像工程においてクラックが生じやすいという課題を有している。このクラックは、無機微粒子と有機樹脂マトリクスとの界面に発生する歪みが原因と考えられる。すなわち、現像工程において有機溶剤が前記硬化物に接液し、内部へ浸入すると、有機樹脂マトリクスには一定の膨潤が発生する一方で、剛直な無機微粒子は殆ど膨潤しないため、両者の界面で膨潤量に差が生じ、歪みが発生する。この状態で、現像工程に続く乾燥工程において有機溶剤が放出される際、該有機溶剤の放出速度が速いと、歪みによる応力が急激に発散され、結果として前記硬化物にクラックが発生してしまう。特に、形状の急峻な成形体の裾部に応力が溜まり易く、該成形体の裾部においてクラックが発生し易い。この裾部のクラックは、外観不良となるだけでなく、成形体が支持体から剥がれる原因となり得るため、好ましくない。 On the other hand, a technique for combining inorganic fine particles such as silica particles and zirconium particles with an organic resin is widely known for the purpose of improving the heat resistance and optical properties of a resin lens, and such a radically polymerizable resin composition. The thing has already been reported (for example, Patent Document 1 and Patent Document 2). However, the cured product obtained from the resin composition containing such inorganic fine particles has a problem that cracks are likely to occur in the developing process using an organic solvent after the imprinting process. It is considered that this crack is caused by the strain generated at the interface between the inorganic fine particles and the organic resin matrix. That is, when the organic solvent comes into contact with the cured product in the developing process and infiltrates into the inside, a certain amount of swelling occurs in the organic resin matrix, but the rigid inorganic fine particles hardly swell, so that the swelling occurs at the interface between the two. There is a difference in the amount and distortion occurs. In this state, when the organic solvent is released in the drying step following the developing step, if the releasing rate of the organic solvent is high, the stress due to strain is rapidly released, and as a result, cracks are generated in the cured product. .. In particular, stress is likely to accumulate at the hem of a molded product having a steep shape, and cracks are likely to occur at the hem of the molded product. This crack at the hem is not preferable because it not only deteriorates the appearance but also causes the molded product to peel off from the support.
特開2014-234458号公報Japanese Unexamined Patent Publication No. 2014-234458 国際公開第2016/104039号International Publication No. 2016/104039
硬化物が樹脂レンズとして使用し得る高い透明性を有し、ガラス基板などの支持体上に成形体を形成した際の支持体の反り量が小さく、有機溶剤を用いた現像工程を経ても成形体の裾部にクラックが発生しない、無機微粒子を含有する樹脂組成物は未だ無く、その開発が望まれていた。本発明は、このような事情を鑑みてなされたものであり、前記課題を解決する光硬化性組成物を提供することを目的とする。 The cured product has high transparency that can be used as a resin lens, the amount of warpage of the support when the molded body is formed on a support such as a glass substrate is small, and the molded product is molded even after undergoing a developing process using an organic solvent. There is still no resin composition containing inorganic fine particles that does not cause cracks in the hem of the body, and its development has been desired. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a photocurable composition that solves the above-mentioned problems.
本発明者らは、前記課題を解決するべく鋭意検討を行った結果、特定の多官能(メタ)アクリレート、特定のシランカップリング剤で表面修飾されたシリカ粒子及び多官能チオールを、それぞれ光硬化性組成物に所定量配合することによって、該光硬化性組成物から得られる硬化物及び成形体の透過率が高く、かつ支持体上に硬化物及び成形体を形成した際の支持体の反り量が小さく(0μm以上3.0μm未満)、さらには有機溶剤を用いた現像工程を経ても硬化物及び成形体の裾部にクラックが発生しないことを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors photocured specific polyfunctional (meth) acrylates, silica particles surface-modified with specific silane coupling agents, and polyfunctional thiols, respectively. By blending a predetermined amount into the sex composition, the transmittance of the cured product and the molded product obtained from the photocurable composition is high, and the warp of the support when the cured product and the molded product are formed on the support. We have found that the amount is small (0 μm or more and less than 3.0 μm), and that cracks do not occur in the hem of the cured product and the molded product even after undergoing a development process using an organic solvent, and the present invention has been completed.
すなわち、本発明の第一態様は、下記(a)成分、下記(b)成分、下記(c)成分及び下記(d)成分を含む、光硬化性組成物である。
(a):(メタ)アクリロイルオキシ基を1分子中に2つ以上有する少なくとも1種の多官能(メタ)アクリレート
(b):光ラジカル開始剤
(c):下記式(1)で表される少なくとも1種のシランカップリング剤で表面修飾された、一次粒子径が1nm乃至100nmのシリカ粒子
Figure JPOXMLDOC01-appb-C000004
(式中、Xは水素原子又は(メタ)アクリロイルオキシ基を表し、R及びRはそれぞれ独立して水素原子又は炭素原子数1乃至2のアルキル基を表し、mは8乃至14の整数を表し、nは0乃至2の整数を表す。)
(d):下記式(2)で表される多官能チオール
Figure JPOXMLDOC01-appb-C000005
(式中、Rは単結合又は炭素原子数1乃至6の直鎖状もしくは分岐鎖状のアルキレン基を表し、Xは単結合、エステル結合又はエーテル結合を表し、Qはヘテロ原子を少なくとも1つ含むもしくはヘテロ原子を含まない炭素原子数2乃至12の有機基、又はヘテロ原子を表し、pは2乃至6の整数を表す。)
That is, the first aspect of the present invention is a photocurable composition containing the following component (a), the following component (b), the following component (c) and the following component (d).
(A): At least one polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule: photoradical initiator (c): represented by the following formula (1). Silane particles having a primary particle diameter of 1 nm to 100 nm, which are surface-modified with at least one silane coupling agent.
Figure JPOXMLDOC01-appb-C000004
(In the formula, X 1 represents a hydrogen atom or a (meth) acryloyloxy group, R 1 and R 2 independently represent a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and m is 8 to 14. It represents an integer, and n represents an integer of 0 to 2.)
(D): Polyfunctional thiol represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 3 represents a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms, X 2 represents a single bond, an ester bond or an ether bond, and Q 1 represents a hetero atom. It represents an organic group having 2 to 12 carbon atoms or a hetero atom containing at least one or not containing a hetero atom, and p represents an integer of 2 to 6).
本発明の光硬化性組成物はさらに、下記(e)成分を含有してもよい。
(e):(メタ)アクリロイルオキシ基を有するポリロタキサン
The photocurable composition of the present invention may further contain the following component (e).
(E): Polyrotaxane having a (meth) acryloyloxy group
本発明の光硬化性組成物はさらに、下記(f)成分及び/又は下記(g)成分を含有してもよい。
(f):フェノール系酸化防止剤
(g):スルフィド系酸化防止剤
The photocurable composition of the present invention may further contain the following component (f) and / or the following component (g).
(F): Phenolic antioxidant (g): Sulfide antioxidant
本発明の光硬化性組成物はさらに、下記(h)成分を含有してもよい。
(h):(メタ)アクリロイルオキシ基又はアリルオキシ基を1分子中に1つ有するモノマー
The photocurable composition of the present invention may further contain the following component (h).
(H): Monomer having one (meth) acryloyloxy group or allyloxy group in one molecule
前記(a)成分は、例えば、(メタ)アクリロイルオキシ基を1分子中に2つ有する二官能(メタ)アクリレートであるか、又は該二官能(メタ)アクリレート及び(メタ)アクリロイルオキシ基を1分子中に3つ有する三官能(メタ)アクリレートである。 The component (a) is, for example, a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in one molecule, or one of the bifunctional (meth) acrylate and the (meth) acryloyloxy group. It is a trifunctional (meth) acrylate having three in the molecule.
前記(a)成分は、例えば、下記(a1)成分及び下記(a2)成分を含む。
(a1):二官能ウレタン(メタ)アクリレート
(a2):下記式(3)で表される二官能(メタ)アクリレート
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子又はメチル基を表し、Qは炭素原子数4乃至10の直鎖状又は分岐鎖状のアルキレン基を表す。)
The component (a) includes, for example, the following component (a1) and the following component (a2).
(A1): Bifunctional urethane (meth) acrylate (a2): Bifunctional (meth) acrylate represented by the following formula (3)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 4 represents a hydrogen atom or a methyl group, and Q 2 represents a linear or branched alkylene group having 4 to 10 carbon atoms.)
前記(c)成分は、例えば、前記式(1)におけるXが(メタ)アクリロイルオキシ基のシランカップリング剤で表面修飾されたシリカ粒子である。 The component (c) is, for example, silica particles in which X 1 in the formula (1) is surface-modified with a silane coupling agent of a (meth) acryloyloxy group.
本発明の第二態様は、前記光硬化性組成物の硬化物である。 A second aspect of the present invention is a cured product of the photocurable composition.
本発明の第三態様は、前記光硬化性組成物をインプリント成形する工程を含む、成形体の製造方法である。 A third aspect of the present invention is a method for producing a molded product, which comprises a step of imprint molding the photocurable composition.
本発明の第四態様は、光硬化性組成物の成形体の製造方法であって、支持体上に前記光硬化性組成物を塗布する工程、該光硬化性組成物と、目的とする成形体の形状の反転パターン及び遮光膜を有するモールドとを接触させるインプリント工程、該インプリント工程の後、該モールドを介して該光硬化性組成物を露光して光硬化部を形成する光硬化工程、該光硬化部と該モールドとを分離する離型工程、該離型工程の後、該光硬化性組成物の未硬化部を現像液により除去して該光硬化部を露出させる現像工程、及び該現像工程の後、該光硬化部が形成された支持体をスピン乾燥させる乾燥工程を含む、成形体の製造方法である。 A fourth aspect of the present invention is a method for producing a molded product of a photocurable composition, wherein the photocurable composition is applied onto a support, the photocurable composition, and a target molding. After the imprinting step of bringing the body shape inversion pattern and the mold having the light-shielding film into contact with each other, and the imprinting step, the photocurable composition is exposed through the mold to form a photocurable portion. A step, a mold release step of separating the photocurable portion and the mold, and a development step of removing the uncured portion of the photocurable composition with a developing solution to expose the photocurable portion after the mold release step. A method for producing a molded product, which comprises a drying step of spin-drying the support on which the photocurable portion is formed after the developing step.
前記光硬化工程の後、前記離型工程の前、中途又は後に、前記光硬化部を加熱する工程をさらに含んでもよい。 After the photo-curing step, before, during, or after the mold release step, a step of heating the photo-curing portion may be further included.
前記現像工程の後、前記乾燥工程の前に、前記光硬化部に対してリンス液を用いてリンス処理するリンス工程をさらに含んでもよい。 After the developing step and before the drying step, a rinsing step of rinsing the photocured portion with a rinsing liquid may be further included.
前記乾燥工程の後、前記光硬化部の全面を露光するポスト露光工程をさらに含んでもよい。 After the drying step, a post-exposure step of exposing the entire surface of the photocurable portion may be further included.
前記ポスト露光工程の後、前記光硬化部を加熱するポストベーク工程をさらに含んでもよい。 After the post-exposure step, a post-baking step of heating the photocurable portion may be further included.
前記ポスト露光工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含んでもよい。 After the post-exposure step, a step of forming an antireflection film on the surface of the photocurable portion may be further included.
前記ポストベーク工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含んでもよい。 After the post-baking step, a step of forming an antireflection film on the surface of the photocurable portion may be further included.
前記成形体は、例えば、カメラモジュール用レンズである。 The molded body is, for example, a lens for a camera module.
本発明の光硬化性組成物は、必須成分として前記(a)成分乃至前記(d)成分を含み、任意で前記(e)成分を含み、さらに任意で前記(f)成分及び/又は前記(g)成分を含み、さらに任意で前記(h)成分を含む。前記(a)成分及び前記(b)成分の存在により、前記光硬化性組成物が露光された際に三次元架橋体が形成され、硬化物が得られる。また、前記(c)成分として前記式(1)で表されるようなシランカップリング剤、すなわち、炭素原子数が8乃至14の長鎖炭化水素基を有するシランカップリング剤で表面修飾されたシリカ粒子を用いることで、該シリカ粒子の表面と有機樹脂との親和性・密着性を向上させる結果、前記硬化物及び成形体が有機溶剤で現像される際に発生するシリカ粒子/有機樹脂界面の歪みを軽減してクラックを防止でき、且つ該シリカ粒子の分散性を高めて該硬化物及び成形体の透明性を高くすることができる。 The photocurable composition of the present invention contains the component (a) to the component (d) as an essential component, optionally contains the component (e), and optionally the component (f) and / or the (). g) Contains the component, and optionally contains the component (h). Due to the presence of the component (a) and the component (b), a three-dimensional crosslinked body is formed when the photocurable composition is exposed, and a cured product is obtained. Further, the surface of the component (c) was modified with a silane coupling agent represented by the formula (1), that is, a silane coupling agent having a long-chain hydrocarbon group having 8 to 14 carbon atoms. As a result of improving the affinity and adhesion between the surface of the silica particles and the organic resin by using the silica particles, the silica particle / organic resin interface generated when the cured product and the molded product are developed with an organic solvent. It is possible to reduce the strain of the silica particles to prevent cracks, and to increase the dispersibility of the silica particles to increase the transparency of the cured product and the molded product.
さらに、前記(d)成分の多官能チオールを用いることで、前記光硬化性組成物が光硬化する際の収縮が抑制される結果、前記硬化物及び成形体が形成された支持体の反り量を低減できる。以上より、前記(a)成分乃至前記(d)成分を含む光硬化性組成物から得られる硬化物及び成形体が、樹脂レンズ、例えば、カメラモジュール用レンズとして望ましい高透過率を示し、また、支持体上に該硬化物及び成形体を形成した際の該支持体の反り量が小さく(0μm以上3.0μm未満)、さらには、有機溶剤を用いた現像工程を経ても該硬化物及び成形体の裾部にクラックが発生しないこと見出した。 Further, by using the polyfunctional thiol of the component (d), shrinkage when the photocurable composition is photocured is suppressed, and as a result, the amount of warpage of the cured product and the support on which the molded product is formed is formed. Can be reduced. From the above, the cured product and the molded product obtained from the photocurable composition containing the component (a) to the component (d) show a desirable high transmission rate as a resin lens, for example, a lens for a camera module. When the cured product and the molded product are formed on the support, the amount of warpage of the support is small (0 μm or more and less than 3.0 μm), and further, the cured product and the molded product are molded even after undergoing a development step using an organic solvent. We found that there were no cracks in the hem of the body.
図1は基板の反り量の評価方法を示す模式図である。FIG. 1 is a schematic view showing a method for evaluating the amount of warpage of a substrate. 図2は、実施例15の光硬化性組成物15から作製された硬化物を条件Dの現像・リンス条件にて処理した際の裾部を示す、光学顕微鏡写真である。FIG. 2 is an optical micrograph showing a hem portion of a cured product prepared from the photocurable composition 15 of Example 15 treated under the development and rinsing conditions of condition D. 図3は、比較例1の光硬化性組成物18から作製された硬化物を条件Dの現像・リンス条件にて処理した際の裾部を示す、光学顕微鏡写真である。FIG. 3 is an optical micrograph showing a hem portion of a cured product prepared from the photocurable composition 18 of Comparative Example 1 when treated under the development and rinsing conditions of Condition D.
本発明の光硬化性組成物の各成分について、より詳細に説明する。なお、本発明において、(メタ)アクリロイルオキシ基とは、“CH=C(CH)-C(=O)O-”で表されるメタクリロイルオキシ基又は“CH=CH-C(=O)O-”で表されるアクリロイルオキシ基を示し、アリルオキシ基とは、“CH=CH-CH-O-”を示す。 Each component of the photocurable composition of the present invention will be described in more detail. In the present invention, the (meth) acryloyloxy group is a methacryloyloxy group represented by "CH 2 = C (CH 3 ) -C (= O) O-" or "CH 2 = CH-C (=). O) Indicates an acryloyloxy group represented by "O-", and the allyloxy group indicates "CH 2 = CH-CH 2- O-".
[(a)成分:(メタ)アクリロイルオキシ基を1分子中に2つ以上有する少なくとも1種の多官能(メタ)アクリレート]
本発明の光硬化性組成物の(a)成分として使用可能な、(メタ)アクリロイルオキシ基を1分子中に2つ以上有する多官能(メタ)アクリレートは、(メタ)アクリロイルオキシ基を1分子中に3つ以上有する三官能以上の(メタ)アクリレートと、(メタ)アクリロイルオキシ基を1分子中に2つ有する二官能(メタ)アクリレートとに大別できる。本明細書では、前記二官能(メタ)アクリレートの内、“-NH-C(=O)O-”で表されるウレタン結合を少なくとも1つ有する化合物[二官能ウレタン(メタ)アクリレート]を(a1)成分と称し、前記式(3)で表される二官能(メタ)アクリレートを(a2)成分と称する。本発明の光硬化性組成物が(a1)成分を含むとき、該光硬化性組成物から得られる硬化物及び成形体は、支持体との密着性に優れる。本発明の光硬化性組成物が(a2)成分を含むとき、該光硬化性組成物から得られる硬化物及び成形体は、柔軟性に優れ、且つ後述の(メタ)アクリロイルオキシ基を有するポリロタキサンとの相溶性に優れる。
[Component (a): At least one polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule]
The polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule, which can be used as the component (a) of the photocurable composition of the present invention, has one molecule of (meth) acryloyloxy group. It can be roughly divided into a trifunctional or higher (meth) acrylate having three or more in it and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in one molecule. In the present specification, among the bifunctional (meth) acrylates, a compound [bifunctional urethane (meth) acrylate] having at least one urethane bond represented by "-NH-C (= O) O-" is used. It is referred to as a1) component, and the bifunctional (meth) acrylate represented by the above formula (3) is referred to as (a2) component. When the photocurable composition of the present invention contains the component (a1), the cured product and the molded product obtained from the photocurable composition are excellent in adhesion to the support. When the photocurable composition of the present invention contains the component (a2), the cured product and the molded product obtained from the photocurable composition are excellent in flexibility and have a (meth) acryloyloxy group described later. Excellent compatibility with.
前記三官能以上の(メタ)アクリレートとしては、例えば、U-6LPA、U-10HA、U-10PA、UA-1100H、U-15HA、UA-53H、UA-33H、UA-7100(以上、新中村化学工業(株)製)、UA-306H、UA-306T、UA-306I、UA-510H(以上、共栄社化学(株)製)、EBECRYL(登録商標)220、同8800、同294/25HD、同4220、同4513、同4738、同4740、同4820、同8311、同9260、同8701、同4265、同4587、同4666、同4680、同8210、同8405、同1290、同5129、同8301R、同4501、同2221、同8465、同1258、同4101、同4201、同8209、同1291、同8602、同225、KRM(登録商標)8667、同8296、同8528、同8200、同8200AE、同8530、同8904、同8531BA、同8452(以上、ダイセル・オルネクス(株)製)、UV-2750B、UV-7000B、UV-7510B、UV-1700B、UV-6300B、UV-7550B、UV-7600B、UV-7605B、UV-7610B、UV-7620EA、UV-7630B、UV-7640B及びUV-7650B(以上、三菱ケミカル(株)製)等のウレタン(メタ)アクリレートが挙げられる。 Examples of the trifunctional or higher (meth) acrylate include U-6LPA, U-10HA, U-10PA, UA-1100H, U-15HA, UA-53H, UA-33H, and UA-7100 (above, Shin-Nakamura). Chemical Industry Co., Ltd.), UA-306H, UA-306T, UA-306I, UA-510H (all manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL (registered trademark) 220, 8800, 294/25 HD, same 4220, 4513, 4738, 4740, 4820, 8311, 9260, 8701, 4265, 4587, 4666, 4680, 8210, 8405, 1290, 5129, 8301R, 4501, 2221, 8465, 1258, 4101, 4201, 8209, 1291, 8602, 225, KRM (registered trademark) 8667, 8296, 8528, 8200, 8200AE, 8200AE. 8530, 8904, 8531BA, 8452 (all manufactured by Daicel Ornex Co., Ltd.), UV-2750B, UV-7000B, UV-7510B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, Examples thereof include urethane (meth) acrylates such as UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7640B and UV-7650B (all manufactured by Mitsubishi Chemical Co., Ltd.).
前記三官能以上の(メタ)アクリレートの他の例としては、ビスコート#295、同#300、同#802(以上、大阪有機化学工業(株)製)、A-9300、A-9300-1CL、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、TMPT、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH(以上、新中村化学工業(株)製)、ファンクリル(登録商標)FA-731A、FA-137M(以上、日立化成(株)製)、ライトエステルTMP、ライトアクリレート(登録商標)TMP-A、同PE-3A、同PE-4A、同DPE-6A(以上、共栄社化学(株)製)、PETIA、PETRA、TMPTA、OTA480、EBECRYL(登録商標)160S、同40、同EBECRYL(登録商標)140、同1142、PETA、DPHA(以上、ダイセル・オルネクス(株)製)、TMPTM、TMPT、TMP-2P、TMP-3P、TMP-3、PET-3、PETA-4、TEICA、MF-001、MF-101(以上、第一工業製薬(株)製)、M-305、M-306、M-309、M-310、M-313、M-315、M-321、M-350、M-360、M-400、M-402、M-403、M-404、M-405、M-406、M-408、M-450、M-460及びM-471(以上、東亞合成(株)製)が挙げられる。 As other examples of the trifunctional or higher (meth) acrylate, Viscort # 295, # 300, # 802 (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), A-9300, A-9300-1CL, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A-TMM-3LM-N, TMPT, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH (above, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Funkrill (registered trademark) FA-731A, FA-137M (above, manufactured by Hitachi Kasei Co., Ltd.), light ester TMP, light acrylate (Registered Trademarks) TMP-A, PE-3A, PE-4A, DPE-6A (all manufactured by Kyoeisha Chemical Co., Ltd.), PETIA, PETRA, TMPTA, OTA480, EBECRYL (registered trademark) 160S, 40 , EBECRYL (registered trademark) 140, 1142, PETA, DPHA (all manufactured by Daicel Ornex Co., Ltd.), TMPTM, TMPT, TMP-2P, TMP-3P, TMP-3, PET-3, PETA-4. , TEICA, MF-001, MF-101 (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), M-305, M-306, M-309, M-310, M-313, M-315, M-321 , M-350, M-360, M-400, M-402, M-403, M-404, M-405, M-406, M-408, M-450, M-460 and M-471 (or more) , Made by Toa Synthetic Co., Ltd.).
前記三官能以上の(メタ)アクリレートは1種単独で、又は2種以上を組み合わせて使用することができる。 The trifunctional or higher (meth) acrylate can be used alone or in combination of two or more.
前記二官能(メタ)アクリレートの内、前記(a1)成分及び前記(a2)成分いずれにも該当しない二官能(メタ)アクリレートとしては、例えば、シクロヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレンポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、EO変性水添ビスフェノールAジ(メタ)アクリレート及びヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートが挙げられる。 Among the bifunctional (meth) acrylates, examples of the bifunctional (meth) acrylate that does not correspond to either the component (a1) or the component (a2) include cyclohexanediol di (meth) acrylate and cyclohexanedimethanol di (meth). Meta) acrylate, tricyclodecanedimethanol di (meth) acrylate, dioxane glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene polypropylene glycol di (meth) acrylate, poly Tetramethylene glycol di (meth) acrylate, PO-modified neopentyl glycol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate, PO-modified bisphenol A di (meth) acrylate, EO-modified hydrogenated bisphenol A di (meth) Acrylate and neopentyl glycol di (meth) acrylate of hydroxypivalate can be mentioned.
前記(a1)成分及び前記(a2)成分いずれにも該当しない二官能(メタ)アクリレートとして市販品を用いてもよく、具体的には、ビスコート#310HP、ビスコート#335HP(以上、大阪有機化学工業(株)製)、DCP、A-DCP、A-DOG、2G、3G、4G、9G、14G、23G、A-200、A-400、A-600、A-1000、APG-100、APG-200、APG-400、APG-700、3PG、9PG、A-1206PE、A-0612PE、A-0412PE、A-1000PER、A-3000PER、A-PTMG-65、ABE-300、A-BPE-4、A-BPE-10、A-BPE-20、A-BPE-30、A-BPP-3(以上、新中村化学工業(株)製)、FA-222A、FA-220M、FA-240M、FA-240A、FA-P240A、FA-P270A、FA-023M、FA-PTG9M、FA-PTG9A、FA-320M、FA-321M、FA-3218M、FA-321A、FA-324A(以上、日立化成(株)製)、ライトエステル2EG、同3EG、同4EG、同9EG、同14EG、同BP-2EMK、ライトアクリレート(登録商標)DCP-A、同3EG-A、同4EG-A、同9EG-A、同14EG-A、同PTMGA-250、同BP-4EAL、同BP-4PA、同HPP-A(以上、共栄社化学(株)製)、DPGDA、TPGDA、IRR 214-K、EBECRYL(登録商標)11、同130、同145、同150(以上、ダイセル・オルネクス(株)製)、PE-200、PE-300、PE-400、PE-600、PEM-1000、BPEM-4、BPE-4、BPEM-10、BPE-10、BPE-20、HBPE-4、HBPEM-10及びHPN(第一工業製薬(株)製)が挙げられる。 Commercially available products may be used as the bifunctional (meth) acrylate that does not correspond to either the component (a1) or the component (a2). (Manufactured by Co., Ltd.), DCP, A-DCP, A-DOG, 2G, 3G, 4G, 9G, 14G, 23G, A-200, A-400, A-600, A-1000, APG-100, APG- 200, APG-400, APG-700, 3PG, 9PG, A-1206PE, A-0612PE, A-0412PE, A-1000PER, A-3000PER, A-PTMG-65, ABE-300, A-BPE-4, A-BPE-10, A-BPE-20, A-BPE-30, A-BPP-3 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), FA-222A, FA-220M, FA-240M, FA- 240A, FA-P240A, FA-P270A, FA-023M, FA-PTG9M, FA-PTG9A, FA-320M, FA-321M, FA-3218M, FA-321A, FA-324A (all manufactured by Hitachi Chemical Co., Ltd.) ), Light ester 2EG, 3EG, 4EG, 9EG, 14EG, BP-2EMK, Light acrylate (registered trademark) DCP-A, 3EG-A, 4EG-A, 9EG-A, 14EG -A, PTMGA-250, BP-4EAL, BP-4PA, HPP-A (all manufactured by Kyoeisha Chemical Co., Ltd.), DPGDA, TPGDA, IRR 214-K, EBECRYL (registered trademark) 11, same 130, 145, 150 (all manufactured by Daicel Ornex Co., Ltd.), PE-200, PE-300, PE-400, PE-600, PEM-1000, BPEM-4, BPE-4, BPEM-10 , BPE-10, BPE-20, HBPE-4, HBPEM-10 and HPN (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
前記(a1)成分及び前記(a2)成分いずれにも該当しない二官能(メタ)アクリレートは1種単独で、又は2種以上を組み合わせて使用することができる。 The bifunctional (meth) acrylate that does not correspond to either the component (a1) or the component (a2) can be used alone or in combination of two or more.
[(a1)成分:二官能ウレタン(メタ)アクリレート]
前記(a1)成分としては、例えば、U-2PPA、U-200PA、U-160TM、U-290TM、UA-4200、UA-4400、UA-122P、UA-W2A(以上、新中村化学工業(株)製)、AH-600、UF-8001G(以上、共栄社化学(株)製)、EBECRYL(登録商標)210、同230、同270、同280/15IB、同284、同4491、同4683、同4858、同8307、同8402、同8411、同8413、同8804、同8807、同9270、同246/20HEMA、同1271、同286、同4859、同8409、同8809、同8810、同8811、KRM(登録商標)7735、同8961、同8191、(以上、ダイセル・オルネクス(株)製)、M-1100、M-1200(以上、東亞合成(株)製)、UV-2000B、UV-3000B、UV-3200B、UV-3300B、UV-3310B、UV-3500BA、UV-3520EA、UV-3700B、UV-6640B及びUV-6630B(以上、三菱ケミカル(株)製)が挙げられる。
[(A1) component: bifunctional urethane (meth) acrylate]
Examples of the component (a1) include U-2PPA, U-200PA, U-160TM, U-290TM, UA-4200, UA-4400, UA-122P, and UA-W2A (above, Shin-Nakamura Chemical Industry Co., Ltd.). ), AH-600, UF-8001G (all manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL (registered trademark) 210, 230, 270, 280/15IB, 284, 4491, 4683, 4683. 4858, 8307, 8402, 8411, 8413, 8804, 8807, 9270, 246/20 HEMA, 1271, 286, 4859, 8409, 8809, 8810, 8811, KRM (Registered Trademarks) 7735, 8961, 8191, (above, manufactured by Daicel Ornex Co., Ltd.), M-1100, M-1200 (above, manufactured by Toa Synthetic Co., Ltd.), UV-2000B, UV-3000B, Examples thereof include UV-3200B, UV-3300B, UV-3310B, UV-3500BA, UV-3520EA, UV-3700B, UV-6640B and UV-6630B (all manufactured by Mitsubishi Chemical Co., Ltd.).
前記(a1)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (a1) can be used alone or in combination of two or more.
[(a2)成分:前記式(3)で表される二官能(メタ)アクリレート]
前記(a2)成分としては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、2-エチル-1,3-ヘキサンジオールジ(メタ)アクリレート、1,8-ノナンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、2,4,4-トリメチル-1,6-ヘキサンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、2-ブチル―2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-デカンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、が挙げられる。
[Component (a2): Bifunctional (meth) acrylate represented by the above formula (3)]
Examples of the component (a2) include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, and neopentyl glycol di. (Meta) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,7-heptanediol di (meth) acrylate, 1,8-octane Didioldi (meth) acrylate, 2-ethyl-1,3-hexanedioldi (meth) acrylate, 1,8-nonanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 2,4 , 4-trimethyl-1,6-hexanediol di (meth) acrylate, 2,4-diethyl-1,5-pentanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di Examples thereof include (meth) acrylate, 1,9-decanediol di (meth) acrylate, and 1,10-decanediol di (meth) acrylate.
前記(a2)成分として市販品を用いてもよく、具体的には、ビスコート#195、ビスコート#230、ビスコート#260(以上、大阪有機化学工業(株)製)、BD、NPG、A-NPG、HD-N、A-HD-N、NOD-N、A-NOD-N、A-IND、DOD-N、A-DOD-N(以上、新中村化学工業(株)製)、FA-121M、FA-124M、FA-125M、FA-129AS(以上、日立化成(株)製)、ライトエステル1.4BG、ライトエステルNP、ライトエステル1.6HX、ライトエステル1.9ND、ライトアクリレート1.6HX-A、ライトアクリレート1.9ND-A、ライトアクリレートNP-A、ライトアクリレートMPD-A(以上、共栄社化学(株)製)、HDDA(以上、ダイセル・オルネクス(株)製)、HDDA、L-C9A及びND-DA(以上、第一工業製薬(株)製)が挙げられる。 Commercially available products may be used as the component (a2). Specifically, biscoat # 195, biscoat # 230, biscoat # 260 (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), BD, NPG, A-NPG. , HD-N, A-HD-N, NOD-N, A-NOD-N, A-IND, DOD-N, A-DOD-N (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), FA-121M , FA-124M, FA-125M, FA-129AS (all manufactured by Hitachi Chemical Co., Ltd.), Light Ester 1.4BG, Light Ester NP, Light Ester 1.6HX, Light Ester 1.9ND, Light Acrylate 1.6HX -A, Light Acrylate 1.9ND-A, Light Acrylate NP-A, Light Acrylate MPD-A (above, manufactured by Kyoeisha Chemical Co., Ltd.), HDDA (above, manufactured by Daicel Ornex Co., Ltd.), HDDA, L- Examples thereof include C9A and ND-DA (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
前記(a2)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (a2) can be used alone or in combination of two or more.
本発明の光硬化性組成物の(a)成分の含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分及び(e)成分の和100質量部に対して、30質量部乃至90質量部、好ましくは35質量部乃至85質量部、より好ましくは40質量部乃至80質量部である。前記(a)成分の含有量が30質量部より少ないと、前記光硬化性組成物から得られる硬化物及び成形体が、十分な架橋密度を有する有機樹脂マトリクスを形成できず、また該硬化物及び成形体が、架橋密度が小さいため脆性化する虞がある。前記(a)成分の含有量が90質量部より多いと、前記光硬化性組成物から得られる硬化物及び成形体の耐熱性が悪化する虞がある。 The content of the component (a) of the photocurable composition of the present invention is 100% by mass of the sum of the components (a), (c), (d) and (e) contained in the photocurable composition. It is 30 parts by mass to 90 parts by mass, preferably 35 parts by mass to 85 parts by mass, and more preferably 40 parts by mass to 80 parts by mass. If the content of the component (a) is less than 30 parts by mass, the cured product and the molded product obtained from the photocurable composition cannot form an organic resin matrix having a sufficient crosslink density, and the cured product In addition, the molded product may become brittle due to its low crosslink density. If the content of the component (a) is more than 90 parts by mass, the heat resistance of the cured product and the molded product obtained from the photocurable composition may deteriorate.
前記(a)成分として(a1)成分及び(a2)成分を含む場合、その含有量は、本発明の光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対して、下記式(4)乃至下記式(6)で表される関係をすべて満たし、好ましくは下記式(4´)乃至(6´)の関係をすべて満たし、より好ましくは下記式(4´´)乃至(6´´)の関係をすべて満たす。ここで、前記(a1)成分の含有量をY質量部、前記(a2)成分の含有量をZ質量部とする。
式(4):30質量部≦(Y+Z)≦90質量部
式(5):0質量部≦Y≦80質量部
式(6):0質量部≦Z≦70質量部
式(4´):35質量部≦(Y+Z)≦85質量部
式(5´):0質量部≦Y≦75質量部
式(6´):0質量部≦Z≦65質量部
式(4´´):40質量部≦(Y+Z)≦80質量部
式(5´´):0質量部≦Y≦70質量部
式(6´´):0質量部≦Z≦60質量部
When the component (a1) and the component (a2) are contained as the component (a), the content thereof is the component (a), the component (c), the component (d) contained in the photocurable composition of the present invention. All the relationships represented by the following formulas (4) to (6) are satisfied with respect to 100 parts by mass of the sum of the components (e) and (h), and preferably the following formulas (4') to (6'). ) Is satisfied, and more preferably all the relationships of the following equations (4 ″) to (6 ″) are satisfied. Here, the content of the component (a1) is defined as a Y part by mass, and the content of the component (a2) is defined as a Z mass part.
Equation (4): 30 parts by mass ≤ (Y + Z) ≤ 90 parts by mass Equation (5): 0 parts by mass ≤ Y ≤ 80 parts by mass Equation (6): 0 parts by mass ≤ Z ≤ 70 parts by mass Equation (4'): 35 parts by mass ≤ (Y + Z) ≤85 parts by mass (5'): 0 parts by mass ≤Y≤75 parts by mass (6'): 0 parts by mass ≤Z ≤65 parts by mass (4'): 40 parts by mass Part ≦ (Y + Z) ≦ 80 parts by mass Formula (5 ″): 0 parts by mass ≦ Y ≦ 70 parts by mass Formula (6 ″): 0 parts by mass ≦ Z ≦ 60 parts by mass
前記(a1)成分の含有量が80質量部より多いと、前記光硬化性組成物から得られる硬化物及び成形体の耐熱性が悪化する虞がある。前記(a2)成分の含有量が70質量部以下であると、前記光硬化性組成物の粘度が著しく低下することはなく、該光硬化性組成物をインプリントする工程におけるハンドリング性が良好である。 If the content of the component (a1) is more than 80 parts by mass, the heat resistance of the cured product and the molded product obtained from the photocurable composition may deteriorate. When the content of the component (a2) is 70 parts by mass or less, the viscosity of the photocurable composition does not significantly decrease, and the handleability in the step of imprinting the photocurable composition is good. be.
[(b)成分:光ラジカル開始剤]
本発明の光硬化性組成物の(b)成分として使用可能な光ラジカル開始剤として、例えば、アルキルフェノン類、ベンゾフェノン類、ジベンゾイル類、アントラキノン類、アシルホスフィンオキシド類、ベンゾイルベンゾエート類、オキシムエステル類及びチオキサントン類が挙げられ、特に、分子内開裂型の光ラジカル重合開始剤が好ましい。前記光ラジカル開始剤として市販品を用いてもよく、例えば、OMNIRAD(登録商標)127、同184、同369、同369E、同379EG、同500、同651、同819、同784、同907、同1173、同2959、同TPO H(以上、IGM Resins社製)、IRGACURE(登録商標)OXE01、同OXE02、同OXE03、同OXE04、CGI1700、同CGI1750、同CGI1850、同CG24-61(以上、BASFジャパン(株)製)、ESACURE KIP150、同KIP65LT、同KIP100F、同KT37、同KT55、同KTO46及び同KIP75(以上、Lamberti社製)が挙げられる。
[Component (b): Photoradical initiator]
Examples of photoradical initiators that can be used as the component (b) of the photocurable composition of the present invention include alkylphenones, benzophenones, dibenzoyls, anthraquinones, acylphosphine oxides, benzoylbenzoates, and oxime esters. And thioxanthones, and in particular, an intramolecular cleavage type photoradical polymerization initiator is preferable. Commercially available products may be used as the photoradical initiator, for example, OMNIRAD (registered trademark) 127, 184, 369, 369E, 379EG, 500, 651, 819, 784, 907. 1173, 2959, TPO H (manufactured by IGM Resins), IRGACURE (registered trademark) OXE01, OXE02, OXE03, OXE04, CGI1700, CGI1750, CGI1850, CG24-61 (above, BASF) Examples thereof include ESACURE KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46 and KIP75 (all manufactured by Lamberti).
本発明の光硬化性組成物の(b)成分の含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対して、0.1質量部乃至5質量部、好ましくは0.5質量部乃至3質量部である。前記(b)成分の含有量が0.1質量部より少ないと、前記光硬化性組成物から得られる硬化物及び成形体の強度が低下する虞がある。前記(b)成分の含有量が5質量部より多いと、該硬化物及び成形体の耐熱性が悪化する虞がある。 The content of the component (b) of the photocurable composition of the present invention is the component (a), the component (c), the component (d), the component (e) and the component (h) contained in the photocurable composition. It is 0.1 parts by mass to 5 parts by mass, preferably 0.5 parts by mass to 3 parts by mass with respect to 100 parts by mass of the sum of the components. If the content of the component (b) is less than 0.1 parts by mass, the strength of the cured product and the molded product obtained from the photocurable composition may decrease. If the content of the component (b) is more than 5 parts by mass, the heat resistance of the cured product and the molded product may deteriorate.
前記(b)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (b) can be used alone or in combination of two or more.
[(c)成分:前記式(1)で表される少なくとも1種のシランカップリング剤で表面修飾された、一次粒子径が1nm乃至100nmのシリカ粒子]
本発明の光硬化性組成物の(c)成分のシリカ粒子の表面を修飾する、前記式(1)で表されるシランカップリング剤は、該式(1)中のmが8乃至14の整数であること、すなわち炭素原子数8乃至14の直鎖状炭化水素基を分子内に有することが特徴である。具体的には、炭素原子数8乃至14の直鎖状アルキル基がケイ素原子と結合したアルコキシシラン化合物、又は炭素原子数8乃至14の直鎖状アルキレン基を介して(メタ)アクリロイルオキシ基がケイ素原子と結合したアルコキシシラン化合物である。前記式(1)中のmが8乃至14であるシランカップリング剤を用いることで、該シランカップリング剤で表面修飾されたシリカ粒子の表面と有機樹脂との親和性・密着性を向上させることができる。前記式(1)中のmが7以下のシランカップリング剤の場合、有機樹脂との親和性・密着性が不十分となり、本発明の光硬化性組成物の硬化物及び成形体の透過率が低下したり、有機溶剤を用いた現像工程後に該硬化物及び成形体の裾部にクラックが発生したりする虞がある。前記式(1)中のmが15以上のシランカップリング剤の場合、直鎖状炭化水素基の結晶性が顕著となり、該シランカップリング剤で表面修飾されたシリカ粒子が凝集する虞がある。
[Component (c): Silica particles having a primary particle size of 1 nm to 100 nm, which are surface-modified with at least one silane coupling agent represented by the above formula (1)]
The silane coupling agent represented by the formula (1) that modifies the surface of the silica particles of the component (c) of the photocurable composition of the present invention has m in the formula (1) of 8 to 14. It is characterized by being an integer, that is, having a linear hydrocarbon group having 8 to 14 carbon atoms in the molecule. Specifically, an alkoxysilane compound in which a linear alkyl group having 8 to 14 carbon atoms is bonded to a silicon atom, or a (meth) acryloyloxy group via a linear alkylene group having 8 to 14 carbon atoms. It is an alkoxysilane compound bonded to a silicon atom. By using a silane coupling agent having m of 8 to 14 in the formula (1), the affinity / adhesion between the surface of the silica particles surface-modified with the silane coupling agent and the organic resin is improved. be able to. In the case of the silane coupling agent having m of 7 or less in the formula (1), the affinity and adhesion with the organic resin become insufficient, and the transmittance of the cured product and the molded product of the photocurable composition of the present invention becomes insufficient. There is a risk that cracks may occur in the cured product and the hem of the molded product after the development process using an organic solvent. In the case of a silane coupling agent having m of 15 or more in the formula (1), the crystallinity of the linear hydrocarbon group becomes remarkable, and the silica particles surface-modified with the silane coupling agent may aggregate. ..
前記式(1)で表されるシランカップリング剤としては、例えば、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、n-オクチルメチルジメトキシシラン、n-オクチルエチルジメトキシシラン、n-オクチルメチルジエトキシシラン、n-オクチルエチルジエトキシシラン、n-オクチルジメチルメトキシシラン、n-オクチルジエチルメトキシシラン、n-オクチルジメチルエトキシシラン、n-オクチルジエチルエトキシシラン、n-デシルトリメトキシシラン、n-デシルトリエトキシシラン、n-ドデシルトリメトキシシラン、n-ドデシルトリエトキシシラン、n-テトラデシルトリメトキシシラン、n-テトラデシルトリエトキシシラン、8-(メタ)アクリロイルオキシオクチルトリメトキシシラン、8-(メタ)アクリロイルオキシオクチルトリエトキシシラン、8-(メタ)アクリロイルオキシオクチルメチルジメトキシシラン、8-(メタ)アクリロイルオキシオクチルエチルジメトキシシラン、8-(メタ)アクリロイルオキシオクチルメチルジエトキシシラン、8-(メタ)アクリロイルオキシオクチルエチルジエトキシシラン、8-(メタ)アクリロイルオキシオクチルジメチルメトキシシラン、8-(メタ)アクリロイルオキシオクチルジエチルメトキシシラン、8-(メタ)アクリロイルオキシオクチルジメチルエトキシシラン、8-(メタ)アクリロイルオキシオクチルジエチルエトキシシラン、10-(メタ)アクリロイルオキシデシルトリメトキシシラン、10-(メタ)アクリロイルオキシデシルトリエトキシシラン、12-(メタ)アクリロイルオキシドデシルトリメトキシシラン、12-(メタ)アクリロイルオキシドデシルトリエトキシシラン、14-(メタ)アクリロイルオキシテトラデシルトリメトキシシラン、及び14-(メタ)アクリロイルオキシテトラデシルトリエトキシシランが挙げられる。 Examples of the silane coupling agent represented by the formula (1) include n-octylrimethoxysilane, n-octylriethoxysilane, n-octylmethyldimethoxysilane, n-octylethyldimethoxysilane, and n-octylmethyl. Diethoxysilane, n-octylethyldiethoxysilane, n-octyldimethylmethoxysilane, n-octyldiethylmethoxysilane, n-octyldimethylethoxysilane, n-octyldiethylethoxysilane, n-decyltrimethoxysilane, n-decyl Triethoxysilane, n-dodecyltrimethoxysilane, n-dodecyltriethoxysilane, n-tetradecyltrimethoxysilane, n-tetradecyltriethoxysilane, 8- (meth) acryloyloxyoctyltrimethoxysilane, 8- (meth) ) Acryloyloxyoctyl diethoxysilane, 8- (meth) acryloyloxyoctylmethyldimethoxysilane, 8- (meth) acryloyloxyoctylethyldimethoxysilane, 8- (meth) acryloyloxyoctylmethyldiethoxysilane, 8- (meth) Acryloyloxyoctylethyldiethoxysilane, 8- (meth) acryloyloxyoctyldimethylmethoxysilane, 8- (meth) acryloyloxyoctyldiethylmethoxysilane, 8- (meth) acryloyloxyoctyldimethylethoxysilane, 8- (meth) acryloyl Oxyoctyl diethylethoxysilane, 10- (meth) acryloyloxydecyltrimethoxysilane, 10- (meth) acryloyloxydecyltriethoxysilane, 12- (meth) acryloyloxidedecyltrimethoxysilane, 12- (meth) acryloyloxidedecyl Examples thereof include triethoxysilane, 14- (meth) acryloyloxytetradecyltrimethoxysilane, and 14- (meth) acryloyloxytetradecyltriethoxysilane.
前記式(1)で表されるシランカップリング剤として市販品を用いてもよく、具体的には、KBM-5803、KBM-3103C及びKBE-3083(以上、信越化学工業(株)製)が挙げられる。 Commercially available products may be used as the silane coupling agent represented by the formula (1), specifically, KBM-5803, KBM-3103C and KBE-3083 (all manufactured by Shin-Etsu Chemical Co., Ltd.). Can be mentioned.
前記式(1)で表されるシランカップリング剤は1種単独で、又は2種以上を組み合わせて使用することができる。 The silane coupling agent represented by the formula (1) can be used alone or in combination of two or more.
また、前記式(1)で表されるシランカップリング剤と該式(1)で表されないその他のシランカップリング剤とを併用してもよく、該その他のシランカップリング剤としては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリメトキシシラン、シクロペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、イソオクチルトリメトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、p-トリルトリメトキシシラン、p-スチリルトリメトキシシラン、ベンジルトリメトキシシラン、1-ナフチルトリメトキシシラン、トリメトキシ[3-(フェニルアミノ)プロピル]シラン、 [3-(N,N-ジメチルアミノ)プロピル]トリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、8-(2-アミノエチルアミノ)オクチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアナトプロピルトリメトキシシラン、トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート、メチルトリエトキシシラン、エチルトリエトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、n-ブチルトリエトキシシラン、イソブチルトリエトキシシラン、n-ペンチルトリエトキシシラン、シクロペンチルトリエトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルトリエトキシシラン、イソオクチルトリエトキシシラン、ビニルトリエトキシシラン、アリルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、フェニルトリエトキシシラン、p-トリルトリエトキシシラン、p-スチリルトリエトキシシラン、ベンジルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアナトプロピルトリエトキシシラン、トリス[3-(トリエトキシシリル)プロピル]イソシアヌレート等のトリアルコキシシラン類、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジイソブチルジメトキシシラン、シクロペンチルメチルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ビニルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジ-p-トリルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジイソブチルジエトキシシラン、シクロペンチルメチルジエトキシシラン、ジシクロペンチルジエトキシシラン、シクロヘキシルメチルジエトキシシラン、ビニルメチルジエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、フェニルメチルジエトキシシラン、ジフェニルジエトキシシラン、ジ-p-トリルジエトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等のジアルコキシシラン類、トリメチルメトキシシラン、トリエチルメトキシシラン、ビニルジメチルメトキシシラン、3-(メタ)アクリロイルオキシプロピルジメチルメトキシシラン、フェニルジメチルメトキシシラン、ジフェニルメチルメトキシシラン、トリフェニルメトキシシラン等のモノアルコキシシラン類、及び多官能基型シランカップリング剤が挙げられる。 Further, the silane coupling agent represented by the formula (1) and another silane coupling agent not represented by the formula (1) may be used in combination, and examples of the other silane coupling agent include, for example. Methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, isopropyltrimethoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, cyclopentyltrimethoxysilane, n-hexyltri Methoxysilane, cyclohexyltrimethoxysilane, isooctyltrimethoxysilane, vinyltrimethoxysilane, allyltrimethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, phenyltrimethoxysilane, p-tolyltrimethoxysilane, p- Styryltrimethoxysilane, benzyltrimethoxysilane, 1-naphthyltrimethoxysilane, trimethoxy [3- (phenylamino) propyl] silane, [3- (N, N-dimethylamino) propyl] trimethoxysilane, 3- (2) -Aminoethylamino) propyltrimethoxysilane, 8- (2-aminoethylamino) octyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, Tris [3- (Trimethoxysilyl) propyl] isocyanurate, methyltriethoxysilane, ethyltriethoxysilane, n-propyltriethoxysilane, isopropyltriethoxysilane, n-butyltriethoxysilane, isobutyltriethoxysilane, n-pentyl Triethoxysilane, cyclopentyltriethoxysilane, n-hexyltriethoxysilane, cyclohexyltriethoxysilane, isooctyltriethoxysilane, vinyltriethoxysilane, allyltriethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, phenyl Triethoxysilane, p-tolyltriethoxysilane, p-styryltriethoxysilane, benzyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, tris [ 3- (Triethoxysilyl) propyl] trialkoxysilanes such as isocyanurate, dimethyldimethoxysilane, diethi Ludimethoxysilane, diisobutyldimethoxysilane, cyclopentylmethyldimethoxysilane, dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, vinylmethyldimethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, phenylmethyldimethoxysilane, diphenyldimethoxysilane, di -P-trildimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, diisobutyldiethoxysilane, cyclopentylmethyldiethoxysilane, dicyclopentyldiethoxysilane, Cyclohexylmethyldiethoxysilane, vinylmethyldiethoxysilane, 3- (meth) acryloyloxypropylmethyldiethoxysilane, phenylmethyldiethoxysilane, diphenyldiethoxysilane, di-p-tolyldiethoxysilane, 3- (2-) Dialkoxysilanes such as aminoethylamino) propylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-mercaptopropylmethyldiethoxysilane, trimethylmethoxysilane, triethylmethoxysilane, vinyldimethylmethoxysilane, 3- (metha) ) Monoalkoxysilanes such as acryloyloxypropyldimethylmethoxysilane, phenyldimethylmethoxysilane, diphenylmethylmethoxysilane, triphenylmethoxysilane, and polyfunctional silane coupling agents can be mentioned.
前記その他のシランカップリング剤として市販品を用いてもよく、具体的には、KBM-1003、KBE-1003、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBM-903、KBE-903、KBM-573、KBM-6803、KBE-9007、KBM-9659、KBE-9659、KBM-802、KBM-803、KBM-13、KBE-13、KBM-22、KBE-22、KBM-103、KBE-103、KBM-202SS、KBM-3033、KBE-3033、KBM-3063、KBE-3063、X-12-1048、X-12-1050、X-12-1154、X-12-1156、X-12-972F、X-12-1159L、X-40-9296、KR-503、KR-511、KR-513、KR-518、KR-519及びKPN-3504(以上、信越化学工業(株)製)が挙げられる。 Commercially available products may be used as the other silane coupling agent, specifically, KBM-1003, KBE-1003, KBM-1403, KBM-502, KBM-503, KBE-502, KBE-503, KBM. -5103, KBM-602, KBM-603, KBM-903, KBE-903, KBM-573, KBM-6803, KBE-9007, KBM-9569, KBE-9569, KBM-802, KBM-803, KBM-13 , KBE-13, KBM-22, KBE-22, KBM-103, KBE-103, KBM-202SS, KBM-3033, KBE-3033, KBM-3063, KBE-3063, X-12-1048, X-12 -1050, X-12-1154, X-12-1156, X-12-972F, X-12-1159L, X-40-9296, KR-503, KR-511, KR-513, KR-518, KR -519 and KPN-3504 (all manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned.
前記その他のシランカップリング剤は1種単独で、又は2種以上を組み合わせて使用することができる。 The other silane coupling agents may be used alone or in combination of two or more.
前記式(1)で表されるシランカップリング剤を用い、さらに任意で前記式(1)で表されないその他のシランカップリング剤を併用してシリカ粒子を表面修飾する際、これらシランカップリング剤の使用量は、該シリカ粒子1g当たり、下記式(7)及び下記式(8)で表される関係を全て満たし、好ましくは下記式(7)´及び下記式(8)´で表される関係をすべて満たし、さらに好ましくは下記式(7)´´及び下記式(8)´´で表される関係をすべて満たす。ここで、前記式(1)で表されるシランカップリング剤の使用量をyミリモル、前記式(1)で表されないその他のシランカップリング剤の使用量をzミリモルとする。
式(7):0.1ミリモル≦(y+z)≦2ミリモル
式(8):0.1ミリモル≦y
式(7´):0.2ミリモル≦(y+z)≦1.5ミリモル
式(8´):0.2ミリモル≦y
式(7´´):0.3ミリモル≦(y+z)≦1ミリモル
式(8´´):0.3ミリモル≦y
When the silica particles are surface-modified by using the silane coupling agent represented by the formula (1) and optionally using another silane coupling agent not represented by the formula (1), these silane coupling agents are used. The amount of silica particles used satisfies all the relationships represented by the following formulas (7) and (8) per 1 g of the silica particles, and is preferably represented by the following formulas (7)'and'(8)'. All the relationships are satisfied, and more preferably all the relationships represented by the following equations (7) ″ and the following equation (8) ″ are satisfied. Here, the amount of the silane coupling agent represented by the formula (1) is y mmol, and the amount of the other silane coupling agent not represented by the formula (1) is z mmol.
Formula (7): 0.1 mmol ≦ (y + z) ≦ 2 mmol Formula (8): 0.1 mmol ≦ y
Formula (7'): 0.2 mmol ≤ (y + z) ≤ 1.5 mmol Formula (8'): 0.2 mmol ≤ y
Formula (7 ″): 0.3 mmol ≦ (y + z) ≦ 1 mmol Formula (8 ″): 0.3 mmol ≦ y
前記式(1)で表されるシランカップリング剤の使用量が0.1ミリモルより少ないと、シリカ粒子の表面と有機樹脂との親和性・密着性が不十分となり、本発明の光硬化性組成物から得られる硬化物及び成形体の透過率が低下したり、有機溶剤を用いた現像工程後に該硬化物及び成形体の裾部にクラックが発生したりする虞がある。前記式(1)で表されるシランカップリング剤及び前記式(1)で表されないその他のシランカップリング剤の合計使用量が2ミリモルより多いと、該シランカップリング剤がシリカ粒子に対して過剰となり、該シリカ粒子の表面修飾に消費されない該シランカップリング剤が顕著に生じることで、前記硬化物及び成形体の保存安定性や機械特性が悪化する虞がある。 If the amount of the silane coupling agent represented by the formula (1) used is less than 0.1 mmol, the affinity / adhesion between the surface of the silica particles and the organic resin becomes insufficient, and the photocurability of the present invention becomes insufficient. There is a risk that the transmittance of the cured product and the molded product obtained from the composition will decrease, and that cracks will occur in the hem of the cured product and the molded product after the development step using an organic solvent. When the total amount of the silane coupling agent represented by the formula (1) and the other silane coupling agents not represented by the formula (1) is more than 2 mmol, the silane coupling agent is applied to the silica particles. If the silane coupling agent becomes excessive and is not consumed for surface modification of the silica particles, the storage stability and mechanical properties of the cured product and the molded product may be deteriorated.
本発明の光硬化性組成物の(c)成分のシリカ粒子は、一次粒子径が1nm乃至100nmである。ここで、一次粒子とは、粉体を構成する粒子であり、この一次粒子が凝集した粒子を二次粒子という。前記一次粒子径は、ガス吸着法(BET法)により測定される前記シリカ粒子の比表面積(単位質量あたりの表面積)S、該シリカ粒子の密度ρ、及び一次粒子径Dとの間に成り立つ関係式:D=6/(ρS)から算出することができる。前記関係式から算出される一次粒子径は、平均粒子径であり、一次粒子の直径である。一次粒子径が1nmより小さいと、シリカ粒子が凝集しやすくなり、保存安定性が悪化する虞がある。一次粒子径が100nmより大きいと、硬化物の及び成形体の透明性が損なわれる虞がある。 The silica particles of the component (c) of the photocurable composition of the present invention have a primary particle size of 1 nm to 100 nm. Here, the primary particles are particles constituting the powder, and the particles in which the primary particles are aggregated are referred to as secondary particles. The primary particle diameter is a relationship established between the specific surface area (surface area per unit mass) S of the silica particles measured by the gas adsorption method (BET method), the density ρ of the silica particles, and the primary particle diameter D. It can be calculated from the formula: D = 6 / (ρS). The primary particle size calculated from the above relational expression is the average particle size, which is the diameter of the primary particles. If the primary particle size is smaller than 1 nm, the silica particles tend to aggregate, and the storage stability may deteriorate. If the primary particle size is larger than 100 nm, the transparency of the cured product and the molded product may be impaired.
前記(c)成分のシリカ粒子は、表面修飾されていないシリカ粒子と前記シランカップリング剤とを、各種公知の方法により反応させたものを用い得る。前記表面修飾されていないシリカ粒子としては、例えば、該シリカ粒子を有機溶媒に分散させたもの(オルガノシリカゾル)を用いることが好ましい。 As the silica particles of the component (c), those obtained by reacting the unsurface-modified silica particles with the silane coupling agent by various known methods can be used. As the unsurface-modified silica particles, for example, those in which the silica particles are dispersed in an organic solvent (organo silica sol) are preferably used.
前記オルガノシリカゾルとして市販品を用いてもよく、例えば、CHO-ST-M、DMAC-ST、DMAC-ST-ZL、EAC-ST、EG-ST、EG-ST-ZL、EG-ST-XL30、IPA-ST、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、メタノールシリカゾル、MA-ST-M、MA-ST-L、MA-ST-ZL、MA-ST-UP、MEK-ST、MEK-ST-40、MEK-ST-L、MEK-ST-ZL、MEK-ST-UP、MIBK-ST、MIBK-ST-L、NMP-ST、NPC-ST-30、PMA-ST、PGM-ST、PGM-ST、PGM-ST-UP、及びTOL-ST(以上、日産化学(株)製)が挙げられる。 Commercially available products may be used as the organosilica sol, for example, CHO-ST-M, DMAC-ST, DMAC-ST-ZL, EAC-ST, EG-ST, EG-ST-ZL, EG-ST-XL30, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, methanol silica sol, MA-ST-M, MA-ST-L, MA-ST-ZL, MA-ST-UP, MEK -ST, MEK-ST-40, MEK-ST-L, MEK-ST-ZL, MEK-ST-UP, MIBK-ST, MIBK-ST-L, NMP-ST, NPC-ST-30, PMA-ST , PGM-ST, PGM-ST, PGM-ST-UP, and TOR-ST (all manufactured by Nissan Chemical Co., Ltd.).
前記オルガノシリカゾルとして、市販の水分散シリカゾルを減圧蒸留や限外濾過といった公知の方法で水を有機溶媒に置換したもの、市販の粉末状シリカ粒子を有機溶媒に分散させたものを用いてもよい。 As the organosilica sol, a commercially available water-dispersed silica sol in which water is replaced with an organic solvent by a known method such as vacuum distillation or ultrafiltration, or a commercially available powdered silica particles dispersed in an organic solvent may be used. ..
前記オルガノシリカゾル中のシリカ固形分濃度は特に限定されないが、一般に60質量%以下が好ましい。 The silica solid content concentration in the organosilica sol is not particularly limited, but is generally preferably 60% by mass or less.
本発明の光硬化性組成物の(c)成分の含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対して、5質量部乃至60質量部、好ましくは8質量部乃至45質量部、より好ましくは10質量部乃至30質量部である。前記(c)成分の含有量が5質量部より少ないと、前記光硬化性組成物から得られた硬化物及び成形体の耐熱性が悪化する虞がある。前記(c)成分の含有量が60質量部より多いと、前記硬化物及び成形体にヘイズが生じ、透過率が低下する虞がある。 The content of the component (c) of the photocurable composition of the present invention is the component (a), the component (c), the component (d), the component (e) and the component (h) contained in the photocurable composition. It is 5 parts by mass to 60 parts by mass, preferably 8 parts by mass to 45 parts by mass, and more preferably 10 parts by mass to 30 parts by mass with respect to 100 parts by mass of the sum of the components. If the content of the component (c) is less than 5 parts by mass, the heat resistance of the cured product and the molded product obtained from the photocurable composition may deteriorate. If the content of the component (c) is more than 60 parts by mass, haze may occur in the cured product and the molded product, and the transmittance may decrease.
前記(c)成分は、1種単独で又は2種以上を組み合わせて使用することができる。例えば、一次粒子径の異なる複数のシリカ粒子を組み合わせてもよいし、表面修飾に用いたシランカップリング剤の種類や量が異なる複数のシリカ粒子を組み合わせてもよい。 The component (c) can be used alone or in combination of two or more. For example, a plurality of silica particles having different primary particle diameters may be combined, or a plurality of silica particles having different types and amounts of silane coupling agents used for surface modification may be combined.
[(d)成分:前記式(2)で表される多官能チオール]
本発明の光硬化性組成物の(d)成分として使用可能な、前記式(2)で表される多官能チオールとしては、例えば、1,2-エタンジチオール、1,3-プロパンジチオール、ビス(2-メルカプトエチル)エーテル、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、及びペンタエリスリトールトリス(3-メルカプトプロピル)エーテルが挙げられる。
[Component (d): Polyfunctional thiol represented by the above formula (2)]
Examples of the polyfunctional thiol represented by the above formula (2) that can be used as the component (d) of the photocurable composition of the present invention include 1,2-ethanedithiol, 1,3-propanedithiol, and bis. (2-Mercaptoethyl) Ether, Trimethylol Propanthris (3-Mercaptopropionate), Tris-[(3-Mercaptopropionyloxy) -Ethyl] -Isocyanurate, Tetraethylene Glycolbis (3-Mercaptopropionate) , Dipentaerythritol hexakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), 1,4-bis (3-mercaptobutyryloxy) ) Butane, 1,3,5-tris (3-mercaptobutylyloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, trimethylpropanthris (3) -Mercaptobutyrate), trimethylol ethanetris (3-mercaptobutyrate), and pentaerythritol tris (3-mercaptopropyl) ether.
前記式(2)で表される多官能チオール化合物として市販品を用いてもよく、例えば、カレンズMT(登録商標)PE1、同NR1、同BD1、TPMB、TEMB(以上、昭和電工(株)製)、TMMP、TEMPIC、PEMP、EGMP-4、DPMP、TMMP II-20P、PEMP II-20P及びPEPT(以上、SC有機化学(株)製)が挙げられる。 A commercially available product may be used as the polyfunctional thiol compound represented by the formula (2). For example, Calends MT (registered trademark) PE1, NR1, BD1, TPMB, TEMB (all manufactured by Showa Denko KK). ), TMMP, TEMPIC, PEMP, EGMP-4, DPMP, TMMP II-20P, PEMP II-20P and PEPT (all manufactured by SC Organic Chemistry Co., Ltd.).
本発明の光硬化性組成物の(d)成分の含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対し、1質量部乃至15質量部、好ましくは3質量部乃至10質量部である。前記(d)成分の含有量が1質量部より少ないと、前記光硬化性組成物から得られた硬化物及び成形体が形成された支持体の反り量が大きくなる虞がある。前記(d)成分の含有量が15質量部より多いと、前記硬化物及び成形体が高湿・高温環境下に晒された際にヘイズが生じる等、信頼性が悪化する虞がある。 The content of the component (d) of the photocurable composition of the present invention is the component (a), the component (c), the component (d), the component (e) and the component (h) contained in the photocurable composition. It is 1 part by mass to 15 parts by mass, preferably 3 parts by mass to 10 parts by mass with respect to 100 parts by mass of the sum of the components. If the content of the component (d) is less than 1 part by mass, the amount of warpage of the cured product obtained from the photocurable composition and the support on which the molded product is formed may increase. If the content of the component (d) is more than 15 parts by mass, reliability may be deteriorated such as haze when the cured product and the molded product are exposed to a high humidity / high temperature environment.
前記(d)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (d) can be used alone or in combination of two or more.
[(e)成分:(メタ)アクリロイルオキシ基を有するポリロタキサン]
本発明の光硬化性組成物の(e)成分として使用可能な(メタ)アクリロイルオキシ基を有するポリロタキサンは、環状分子の開口部が直鎖状分子によって串刺し状に包接された擬ポリロタキサンの両端に前記環状分子が脱離しないように封鎖基を配置され、該環状分子が(メタ)アクリロイルオキシ基を有する。前記ポリロタキサンの構成要素である、環状分子、直鎖状分子及び封鎖基について、説明する。
[(E) component: polyrotaxane having (meth) acryloyloxy group]
The polyrotaxane having a (meth) acryloyloxy group that can be used as the component (e) of the photocurable composition of the present invention is a pseudopolyrotaxane in which the openings of cyclic molecules are skewered by linear molecules. A blocking group is arranged so that the cyclic molecule does not escape, and the cyclic molecule has a (meth) acryloyloxy group. The cyclic molecule, the linear molecule, and the blocking group, which are the components of the polyrotaxane, will be described.
<e-1.環状分子>
前記ポリロタキサンの環状分子は、環状であり且つ開口部を有し、直鎖状分子によって串刺し状に包接されるものであれば、特に限定されない。前記(メタ)アクリロイルオキシ基は、前記環状分子に直接結合していても、スペーサーを介して結合していてもよい。前記スペーサーとしては、特に限定されないが、例えば、アルキレン基、(ポリ)アルキレングリコール基、ヒドロキシアルキレン基、ウレタン結合[-NH-C(=O)O-]、エステル結合[-C(=O)O-]及びカーボネート結合[-O-C(=O)O-]からなる群から選択される1つ又は2つ以上を組み合わせたものが挙げられる。前記環状分子として、例えば、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選択するのが好ましい。
<E-1. Cyclic molecule>
The cyclic molecule of the polyrotaxane is not particularly limited as long as it is cyclic, has an opening, and is skewered by a linear molecule. The (meth) acryloyloxy group may be directly attached to the cyclic molecule or may be attached via a spacer. The spacer is not particularly limited, but for example, an alkylene group, a (poly) alkylene glycol group, a hydroxyalkylene group, a urethane bond [-NH-C (= O) O-], an ester bond [-C (= O)). Examples thereof include one or a combination of two or more selected from the group consisting of [O-] and a carbonate bond [-OC (= O) O-]. As the cyclic molecule, for example, it is preferable to select from the group consisting of α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin.
<e-2.直鎖状分子>
前記ポリロタキサンの直鎖状分子は、用いる環状分子の開口部に串刺し状に包接され得るものであれば、特に限定されない。前記直鎖状分子としては、例えば、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール及びポリビニルメチルエーテルからなる群から選択されるポリマーが好ましく、特にポリエチレングリコールが好ましい。
<E-2. Linear molecule>
The linear molecule of the polyrotaxane is not particularly limited as long as it can be skewered into the opening of the cyclic molecule to be used. Examples of the linear molecule include polymers selected from the group consisting of polyethylene glycol, polyisobutylene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether. Preferably, polyethylene glycol is particularly preferable.
前記直鎖状分子は、その重量平均分子量が1,000以上、好ましくは3,000~100,000、より好ましくは6,000~50,000である。前記ポリロタキサンにおいて、(環状分子、直鎖状分子)の組合せが、(α-シクロデキストリン由来、ポリエチレングリコール由来)であるのが特に好ましい。 The linear molecule has a weight average molecular weight of 1,000 or more, preferably 3,000 to 100,000, and more preferably 6,000 to 50,000. In the polyrotaxane, the combination of (cyclic molecule, linear molecule) is particularly preferably (derived from α-cyclodextrin, derived from polyethylene glycol).
<e-3.封鎖基>
前記ポリロタキサンの封鎖基は、擬ポリロタキサンの両端に配置され、用いる環状分子が脱離しないように作用する基であれば、特に限定されない。前記封鎖基として、例えば、ジニトロフェニル基類、シクロデキストリン類、アダマンチル基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、及びピレン類からなる群から選ばれる封鎖基が好ましく、より好ましくはアダマンチル基類又はシクロデキストリン類である。前記封鎖基は、例えば[-NH-C(=O)-]を介して、前記直鎖状分子と結合している。
<E-3. Blocking group>
The blocking group of the polyrotaxane is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclic molecule used does not desorb. As the blocking group, for example, a blocking group selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantyl groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes is preferable, and more preferable. It is an adamantyl group or a cyclodextrin. The blocking group is attached to the linear molecule via, for example, [-NH-C (= O)-].
前記ポリロタキサンとして市販品を用いてもよく、具体的には、セルム(登録商標)スーパーポリマーSA1303P、同SA1305P、同SA1305P-10、同SA1305P-20、同SA2403P、同SA2405P-10、同SA2405P-20、同SA3403P、同SM1303P、同SM1305P-20、同SM2403P、同SM2405P-20及び同SM3403P[以上、(株)ASM(旧アドバンスト・ソフトマテリアルズ(株))製]が挙げられる。 Commercially available products may be used as the polyrotaxane, and specifically, CELM (registered trademark) superpolymer SA1303P, SA1305P, SA1305P-10, SA1305P-20, SA2403P, SA2405P-10, SA2405P-20. , SA3403P, SM1303P, SM1305P-20, SM2403P, SM2405P-20 and SM3403P [all manufactured by ASM Co., Ltd. (formerly Advanced Soft Materials Co., Ltd.)].
本発明の光硬化性組成物が(e)成分を含む場合、その含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対して、1質量部乃至15質量部、好ましくは3質量部乃至10質量部である。前記(e)成分を配合することで、前記光硬化性組成物から得られた硬化物及び成形体に靭性を付与させ、機械特性や耐熱衝撃性を向上させることができる。 When the photocurable composition of the present invention contains the component (e), the content thereof is the component (a), the component (c), the component (d), and the component (e) contained in the photocurable composition. And 1 part by mass to 15 parts by mass, preferably 3 parts by mass to 10 parts by mass with respect to 100 parts by mass of the sum of the components (h). By blending the component (e), toughness can be imparted to the cured product and the molded product obtained from the photocurable composition, and mechanical properties and thermal impact resistance can be improved.
前記(e)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (e) can be used alone or in combination of two or more.
[(f)成分:フェノール系酸化防止剤]
本発明の光硬化性組成物の(f)成分として使用可能なフェノール系酸化防止剤としては、例えば、IRGANOX(登録商標)245、同1010、同1035、同1076、同1135(以上、BASFジャパン(株)製)、SUMILIZER(登録商標)GA-80、同GP、同MDP-S、同BBM-S、同WX-R(以上、住友化学(株)製)、アデカスタブ(登録商標)AO-20、同AO-30、同AO-40、同AO-50、同AO-60、同AO-80及び同AO-330(以上、(株)ADEKA製)が挙げられる。
[Component (f): Phenolic antioxidant]
Examples of the phenolic antioxidant that can be used as the component (f) of the photocurable composition of the present invention include IRGANOX (registered trademark) 245, 1010, 1035, 1076, and 1135 (above, BASF Japan). (Manufactured by Sumitomo Chemical Co., Ltd.), SUMILIZER (registered trademark) GA-80, GP, MDP-S, BBM-S, WX-R (all manufactured by Sumitomo Chemical Co., Ltd.), ADEKA STAB (registered trademark) AO- 20, AO-30, AO-40, AO-50, AO-60, AO-80 and AO-330 (all manufactured by ADEKA CORPORATION).
本発明の光硬化性組成物が(f)成分を含有する場合、その含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対し、0.05質量部乃至3質量部、好ましくは0.1質量部乃至1質量部である。 When the photocurable composition of the present invention contains the component (f), the content thereof is the component (a), the component (c), the component (d), (e) contained in the photocurable composition. It is 0.05 parts by mass to 3 parts by mass, preferably 0.1 parts by mass to 1 part by mass with respect to 100 parts by mass of the sum of the component and the component (h).
前記(f)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (f) can be used alone or in combination of two or more.
[(g)成分:スルフィド系酸化防止剤]
本発明の光硬化性組成物の(g)成分として使用可能なスルフィド系酸化防止剤としては、例えば、アデカスタブ(登録商標)AO-412S、同AO-503(以上、(株)ADEKA製)、IRGANOX(登録商標)PS802、同PS800(以上、BASFジャパン(株)製)、及びSUMILIZER(登録商標)TP-D(住友化学(株)製)が挙げられる。
[(G) component: sulfide-based antioxidant]
Examples of the sulfide-based antioxidant that can be used as the component (g) of the photocurable composition of the present invention include ADEKA STAB (registered trademark) AO-412S and AO-503 (all manufactured by ADEKA Corporation). Examples thereof include IRGANOX (registered trademark) PS802, PS800 (above, manufactured by BASF Japan Ltd.), and SUMILIZER (registered trademark) TP-D (manufactured by Sumitomo Chemical Co., Ltd.).
本発明の光硬化性組成物が(g)成分を含む場合、その含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対し、0.05質量部乃至3質量部、好ましくは0.1質量部乃至1質量部である。 When the photocurable composition of the present invention contains the component (g), the content thereof is the component (a), the component (c), the component (d), and the component (e) contained in the photocurable composition. And, with respect to 100 parts by mass of the sum of the components (h), it is 0.05 parts by mass to 3 parts by mass, preferably 0.1 parts by mass to 1 part by mass.
前記(g)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (g) can be used alone or in combination of two or more.
[(h)成分:(メタ)アクリロイルオキシ基又はアリルオキシ基を1分子中に1つ有するモノマー]
本発明の光硬化性組成物の(h)成分として使用可能な、(メタ)アクリロイルオキシ基又はアリルオキシ基を1分子中に1つ有するモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(アリルオキシメチル)アクリル酸メチル、2-(2-ビニルオキシエトキシ)エチル(メタ)アクリレート、(メタ)アクリロイルオキシメチルトリメトキシシラン、(メタ)アクリロイルオキシメチルジメトキシシラン、(メタ)アクリロイルオキシメチルトリエトキシシラン、(メタ)アクリロイルオキシメチルジエトキシシラン、2-(メタ)アクリロイルオキシエチルトリメトキシシラン、2-(メタ)アクリロイルオキシエチルジメトキシシラン、2-(メタ)アクリロイルオキシエチルトリエトキシシラン、2-(メタ)アクリロイルオキシエチルジエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルジエトキシシラン、8-(メタ)アクリロイルオキシオクチルトリメトキシシラン、8-(メタ)アクリロイルオキシオクチルジメトキシシラン、8-(メタ)アクリロイルオキシオクチルトリエトキシシラン、及び8-(メタ)アクリロイルオキシオクチルジエトキシシランが挙げられる。
[Component (h): (meth) Monomer having one acryloyloxy group or allyloxy group in one molecule]
Examples of the monomer having one (meth) acryloyloxy group or allyloxy group in one molecule that can be used as the component (h) of the photocurable composition of the present invention include methyl (meth) acrylate and ethyl (meth). ) Acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (Meta) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 1-adamantyl (meth) acrylate, benzyl (meth) acrylate, Phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxy Ethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, methoxydi Propylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, ethylcarbitol (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (Meta) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, methyl 2- (allyloxymethyl) acrylate, 2- (2-vinyloxyethoxy) ethyl (meth) acrylate, (meth) acryloyl Oxymethyltrimethoxysilane, (meth) acryloyloxymethyldimethoxysilane, (meth) acryloyloxymethyltriethoxysilane, (meth) acryloyloxymethyldiethoxysilane, 2- (meth) acryloyloxyethyltrimethoxysilane, 2-( Me T) Acryloyloxyethyl dimethoxysilane, 2- (meth) acryloyloxyethyltriethoxysilane, 2- (meth) acryloyloxyethyldiethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Oxypropyldimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyldiethoxysilane, 8- (meth) acryloyloxyoctyltrimethoxysilane, 8- (meth) acryloyloxyoctyldimethoxy Examples include silane, 8- (meth) acryloyloxyoctyl diethoxysilane, and 8- (meth) acryloyloxyoctyldiethoxysilane.
前記モノマーとして市販品を用いてもよく、例えば、AIB、TBA、NOAA、IOAA、LA、STA、ISTA、IBXA、1-ADA、1-ADMA、ビスコート#150、ビスコート#155、ビスコート#160、ビスコート#190、ビスコート#192、ビスコート#MTG、ビスマー#MPE400A、ビスマー#MPE500A、HEA、4-HBA(以上、大阪有機化学工業(株)製)、FA-BZM、FA-BZA、FA-511AS、FA-512M、FA-512MT、FA-512AS、FA-513M、FA-513AS(以上、日立化成(株)製)、LMA、LA、S、A-S、S-1800M、S-1800A、IB、A-IB、PHE-1G、AMP-10G、PHE-2G、AMP-20GY、M-20G、M-30G、AM-30G、M-40G、M-90G、AM-90G、M-130G、AM-130G、M-230G、AM-230G、M-30PG、AM-30PG、702A(以上、新中村化学工業(株)製)、ライトエステルM、ライトエステルE、ライトエステルNB、ライトエステルIB、ライトエステルTB、ライトエステルEH、ライトエステルL、ライトエステルS、ライトエステルCH、ライトエステルIB-X、ライトエステルBZ、ライトエステルPО、ライトエステルTHF(1000)、ライトエステル130MA、ライトエステル041MA、ライトエステルHO-250(N)、ライトエステルHOA(N)、ライトエステルDM、ライトエステルDE、ライトアクリレートL-A、ライトアクリレートS-A、ライトアクリレートIB-XA、ライトアクリレートPO-A、ライトアクリレートTHF-A、ライトアクリレートMTG-A、ライトアクリレート130A、ライトアクリレートDPM-A、ライトアクリレートEC-A、エポキシエステルM-600A、(以上、共栄社化学(株)製)、FX-AO-MA、VEEM、VEEA((株)日本触媒)、KBM-5103、KBM-503、KBM-502、KBE-503、KBE-502及びKBM-5803(以上、信越化学工業(株)製)が挙げられる。 Commercially available products may be used as the monomer, for example, AIB, TBA, NOAA, IOAA, LA, STA, ISTA, IBXA, 1-ADA, 1-ADMA, biscoat # 150, biscoat # 155, biscoat # 160, biscoat. # 190, Viscoat # 192, Viscote # MTG, Bismer # MPE400A, Bismer # MPE500A, HEA, 4-HBA (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), FA-BZM, FA-BZA, FA-511AS, FA -512M, FA-512MT, FA-512AS, FA-513M, FA-513AS (all manufactured by Hitachi Chemical Co., Ltd.), LMA, LA, S, AS, S-1800M, S-1800A, IB, A -IB, PHE-1G, AMP-10G, PHE-2G, AMP-20GY, M-20G, M-30G, AM-30G, M-40G, M-90G, AM-90G, M-130G, AM-130G , M-230G, AM-230G, M-30PG, AM-30PG, 702A (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Light Ester M, Light Ester E, Light Ester NB, Light Ester IB, Light Ester TB , Acrylate EH, Acrylate L, Acrylate S, Acrylate CH, Acrylate IB-X, Acrylate BZ, Acrylate PO, Acrylate THF (1000), Acrylate 130MA, Acrylate 041MA, Acrylate HO- 250 (N), Light Ester HOA (N), Light Ester DM, Light Ester DE, Light Acrylate LA, Light Acrylate SA, Light Acrylate IB-XA, Light Acrylate PO-A, Light Acrylate THF-A, Light Acrylate MTG-A, Light Acrylate 130A, Light Acrylate DPM-A, Light Acrylate EC-A, Epoxy Ester M-600A (all manufactured by Kyoeisha Chemical Co., Ltd.), FX-AO-MA, VEEM, VEEA ((() Nippon Catalyst Co., Ltd.), KBM-5103, KBM-503, KBM-502, KBE-503, KBE-502 and KBM-5803 (all manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
本発明の光硬化性組成物が(h)成分を含有する場合、その含有量は、該光硬化性組成物に含まれる(a)成分、(c)成分、(d)成分、(e)成分及び(h)成分の和100質量部に対し0.5質量部乃至40質量部、好ましくは1質量部乃至30質量部、さらに好ましくは5質量部乃至15質量部である。本発明の光硬化性組成物が(h)成分を上記含有量で含有することにより、(h)成分の種類に応じて、該光硬化性組成物の低粘度化、該光硬化性組成物から得られる硬化物及び成形体のガラス転移温度の上昇、該硬化物及び成形体の耐熱性の向上、該硬化物及び成形体の柔軟性の向上、該硬化物及び成形体の支持基板との密着性の向上等の効果を付与することができる。 When the photocurable composition of the present invention contains the component (h), the content thereof is the component (a), the component (c), the component (d), (e) contained in the photocurable composition. It is 0.5 parts by mass to 40 parts by mass, preferably 1 part by mass to 30 parts by mass, and more preferably 5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the sum of the component and the component (h). By containing the component (h) in the above content, the photocurable composition of the present invention reduces the viscosity of the photocurable composition according to the type of the component (h), and the photocurable composition. Increased glass transition temperature of the cured product and the molded product obtained from the above, improved heat resistance of the cured product and the molded product, improved flexibility of the cured product and the molded product, and a support substrate of the cured product and the molded product. It is possible to impart effects such as improvement of adhesion.
前記(h)成分は1種単独で、又は2種以上を組み合わせて使用することができる。 The component (h) can be used alone or in combination of two or more.
<その他添加剤>
さらに本発明の光硬化性組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、単官能アクリレート、連鎖移動剤、紫外線吸収剤、光安定化剤、レベリング剤、レオロジー調整剤、シランカップリング剤等の接着補助剤、顔料、染料、消泡剤などの添加剤を含有することができる。
<Other additives>
Further, the photocurable composition of the present invention can be used as a monofunctional acrylate, a chain transfer agent, an ultraviolet absorber, a light stabilizer, a leveling agent, a rheology adjuster, if necessary, as long as the effects of the present invention are not impaired. Adhesive aids such as silane coupling agents and additives such as pigments, dyes and defoamers can be contained.
<光硬化性組成物の調製方法>
本発明の光硬化性組成物の調製方法は、特に限定されない。調製法としては、例えば、(a)成分、(b)成分、(c)成分及び(d)成分、並びに必要により(e)成分、(f)成分及び/又は(g)成分、及び(h)成分を所定の割合で混合し、均一な溶液とする方法が挙げられる。
<Preparation method of photocurable composition>
The method for preparing the photocurable composition of the present invention is not particularly limited. The preparation method includes, for example, (a) component, (b) component, (c) component and (d) component, and if necessary, (e) component, (f) component and / or (g) component, and (h). ) A method of mixing the components at a predetermined ratio to obtain a uniform solution can be mentioned.
また、溶液に調製した本発明の光硬化性組成物は、孔径が0.1μm乃至10μmのフィルターなどを用いてろ過した後、使用することが好ましい。 Further, the photocurable composition of the present invention prepared in a solution is preferably used after being filtered using a filter having a pore size of 0.1 μm to 10 μm or the like.
<硬化物>
本発明の光硬化性組成物を、露光(光硬化)して、硬化物を得ることができ、本発明は該硬化物も対象とする。露光する光線としては、前記硬化物を得ることができる限り特に限定されないが、例えば、紫外線、電子線及びX線が挙げられる。紫外線照射に用いる光源としては、例えば、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、及びUV-LEDが使用できる。また、露光後、前記硬化物の物性を安定化させるためにポストベークを施してもよい。前記ポストベークの方法としては、特に限定されないが、通常、ホットプレート、オーブン等を使用して、50℃乃至260℃、1分間乃至24時間の範囲で行われる。
<Cured product>
The photocurable composition of the present invention can be exposed (photocured) to obtain a cured product, and the present invention also covers the cured product. The light beam to be exposed is not particularly limited as long as the cured product can be obtained, and examples thereof include ultraviolet rays, electron beams, and X-rays. As the light source used for ultraviolet irradiation, for example, a sunbeam, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used. Further, after exposure, post-baking may be applied to stabilize the physical properties of the cured product. The method of post-baking is not particularly limited, but is usually carried out in the range of 50 ° C. to 260 ° C. for 1 minute to 24 hours using a hot plate, an oven or the like.
本発明の光硬化性組成物を光硬化することにより得られる硬化物は、波長410nmにおいて透過率が90%以上と高いものである。そのため、本発明の光硬化性組成物は、樹脂レンズ形成用として好適に使用することができる。 The cured product obtained by photocuring the photocurable composition of the present invention has a high transmittance of 90% or more at a wavelength of 410 nm. Therefore, the photocurable composition of the present invention can be suitably used for forming a resin lens.
<成形体>
本発明の光硬化性組成物は、例えばインプリント成形法を使用することによって、硬化物の形成と並行して各種成形体を容易に製造することができる。以下、成形体の製造に関して詳細なプロセスを記載する。
<Molded body>
In the photocurable composition of the present invention, various molded bodies can be easily produced in parallel with the formation of the cured product, for example, by using an imprint molding method. Hereinafter, a detailed process regarding the production of the molded product will be described.
<塗布工程>
本発明の成形体の製造方法は、支持体上に本発明の光硬化性組成物を塗布する工程を有する。前記支持体は、開口部を有するパターンを有していてもよく、該パターンは、ネガ型感光性樹脂組成物又はポジ型感光性樹脂組成物をパターニングして形成され、その形状は例えば格子状である。前記支持体は、例えば、酸化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素膜又は酸化窒化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素基板、石英基板、ガラス基板(無アルカリガラス、低アルカリガラス、結晶化ガラスを含む)、ITO膜が形成されたガラス基板が挙げられる。その上に、ディスペンサー、スピナー等の適当な塗布方法により、前記光硬化性組成物を塗布する。
<Applying process>
The method for producing a molded product of the present invention includes a step of applying the photocurable composition of the present invention on a support. The support may have a pattern having an opening, and the pattern is formed by patterning a negative photosensitive resin composition or a positive photosensitive resin composition, and the shape thereof is, for example, a grid pattern. Is. The support may be, for example, a semiconductor substrate such as silicon coated with a silicon oxide film, a semiconductor substrate such as silicon nitride film or silicon coated with a silicon oxide film, a silicon nitride substrate, a quartz substrate, or a glass substrate (non-alkali). (Including glass, low alkali glass, and crystallized glass), and a glass substrate on which an ITO film is formed can be mentioned. The photocurable composition is applied onto the photocurable composition by an appropriate application method such as a dispenser or a spinner.
<インプリント工程>
本発明の成形体の製造方法は、前記光硬化性組成物と、目的のレンズ形状の反転パターン及び遮光膜を有するモールドとを接触させるインプリント工程を有する。ここで、前記目的のレンズ形状が凹レンズである場合、前記反転パターンは凸レンズパターンである。前記モールドの材料は、後述する光硬化工程で使用する紫外線等の光を透過する材料である限り限定されないが、例えば、ポリメチルメタクリレート等の(メタ)アクリル樹脂、シクロオレフィンポリマー(COP)樹脂、石英、硼珪酸ガラス及びフッ化カルシウムが挙げられる。前記モールドの材料が樹脂である場合、非感光性樹脂、感光性樹脂いずれであってもよい。前記感光性樹脂として、例えば、国際公開第2019/031359号に開示されているインプリント用レプリカモールド材料が挙げられる。また、前記遮光膜の材料は、後述する光硬化工程で使用する紫外線等の光を透過しない材料である限り限定されないが、例えば、アルミニウム、クロム、ニッケル、コバルト、チタン、タンタル、タングステン及びモリブデンが挙げられる。前記モールドは、後述する離型工程のために、離型剤を塗布し乾燥することで離型処理した後に使用することが望ましい。前記離型剤は、市販品として入手が可能であり、例えば、Novec(登録商標)1700、同1710、同1720(以上、スリーエムジャパン(株)製)、フロロサーフ(登録商標)FG-5084、同FG-5093(以上、(株)フロロテクノロジー製)、デュラサーフ(登録商標)DP-500、同DP-200、同DS-5400、同DH-100、同DH-405TH、同DH-610、同DS-5800、同DS-5935(以上、(株)ハーベス製)、ポリフロン(登録商標)PTFE TC-7105GN、同PTFE TC-7109BK、同PTFE TC-7113LB、同PTFE TC-7400CR、同PTFE TC-7405GN、同PTFE TC-7408GY、同PTFE TC-7409BK、同PTFE TC-7609M1、同PTFE TC-7808GY、同PTFE TC-7809BK、同PTFE TD-7139BD、オプツール(登録商標)DAC-HP、同DSX-E、オプトエース(登録商標)WP-140、ダイフリー(登録商標)GW-4000、同GW-4010、同GW-4500、同GW-4510、同GW-8000、同GW-8500、同MS-175、同GF-700、同GF-750、同MS-600、同GA-3000、同GA-9700、同GA-9750(以上、ダイキン工業(株)製)、メガファック(登録商標)F-553、同F-555、同F-558、同F-561(以上、DIC(株)製)、SFE-DP02H、SNF-DP20H、SFE-B002H、SNF-B200A、SCV-X008、SFEX008、SNF-X800、SR-4000A、S-680、S-685、MR F-6441-AL、MR F-6711-AL、MR F-6758-AL、MR F-6811-AL、及びMR EF-6521-AL(以上、AGCセイミケミカル(株)製)が挙げられる。前記離型剤として、上記市販品以外に、例えば国際公開第2019/031312号に開示されているモールド用離型剤が挙げられる。
<Imprint process>
The method for producing a molded product of the present invention includes an imprinting step of bringing the photocurable composition into contact with a mold having an inverted pattern of a target lens shape and a light-shielding film. Here, when the target lens shape is a concave lens, the inversion pattern is a convex lens pattern. The material of the mold is not limited as long as it is a material that transmits light such as ultraviolet rays used in the photocuring step described later, and for example, a (meth) acrylic resin such as polymethylmethacrylate, a cycloolefin polymer (COP) resin, and the like. Examples include quartz, borosilicate glass and calcium fluoride. When the material of the mold is a resin, it may be either a non-photosensitive resin or a photosensitive resin. Examples of the photosensitive resin include replica molding materials for imprints disclosed in International Publication No. 2019/031359. The material of the light-shielding film is not limited as long as it is a material that does not transmit light such as ultraviolet rays used in the photocuring step described later, and examples thereof include aluminum, chromium, nickel, cobalt, titanium, tantalum, tungsten, and molybdenum. Can be mentioned. It is desirable that the mold is used after the mold release treatment is performed by applying a mold release agent and drying for the mold release step described later. The release agent is available as a commercially available product, and is, for example, Novec (registered trademark) 1700, 1710, 1720 (all manufactured by 3M Japan Co., Ltd.), Fluorosurf (registered trademark) FG-5084, and the same. FG-5093 (above, manufactured by Fluoro Technology Co., Ltd.), Durasurf (registered trademark) DP-500, DP-200, DS-5400, DH-100, DH-405TH, DH-610, same DS-5800, DS-5935 (all manufactured by Harves Co., Ltd.), Polyflon (registered trademark) PTFE TC-7105GN, PTFE TC-7109BK, PTFE TC-7113LB, PTFE TC-7400CR, PTFE TC- 7405GN, PTFE TC-7408GY, PTFE TC-7409BK, PTFE TC-7609M1, PTFE TC-7808GY, PTFE TC-7809BK, PTFE TD-7139BD, Optool (registered trademark) DC E, Optoace (registered trademark) WP-140, Diefree (registered trademark) GW-4000, GW-4010, GW-4500, GW-4510, GW-8000, GW-8500, MS- 175, GF-700, GF-750, MS-600, GA-3000, GA-9700, GA-9750 (all manufactured by Daikin Industries, Ltd.), Megafuck (registered trademark) F- 553, F-555, F-558, F-561 (all manufactured by DIC Co., Ltd.), SFE-DP02H, SNF-DP20H, SFE-B002H, SNF-B200A, SCV-X008, SFEX008, SNF- X800, SR-4000A, S-680, S-685, MR F-6441-AL, MR F-6711-AL, MR F-6758-AL, MR F-681-AL, and MR EF-6521-AL ( As mentioned above, AGC Seimi Chemical Co., Ltd.) can be mentioned. Examples of the mold release agent include mold release agents disclosed in International Publication No. 2019/031312, in addition to the above-mentioned commercial products.
<光硬化工程>
本発明の成形体の製造方法は、前記インプリント工程の後、前記モールドを介して前記光硬化性組成物を露光して光硬化部を形成する光硬化工程を有する。露光する光線としては、前記光硬化部を形成することができる限り特に限定されないが、例えば、紫外線、電子線及びX線が挙げられる。紫外線照射に用いる光源としては、例えば、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、及びUV-LEDが使用できる。前記光硬化部の膜厚は、好ましくは100μm乃至1000μmであり、より好ましくは300μm乃至700μmである。前記モールドは、紫外線等の光を透過する材料から作製され、且つ該紫外線等の光を透過しない遮光膜を有するため、本工程ではマスクとして使用される。
<Photo-curing process>
The method for producing a molded product of the present invention includes, after the imprinting step, a photocuring step of exposing the photocurable composition through the mold to form a photocurable portion. The light beam to be exposed is not particularly limited as long as the photocurable portion can be formed, and examples thereof include ultraviolet rays, electron beams, and X-rays. As the light source used for ultraviolet irradiation, for example, a sunbeam, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used. The film thickness of the photocurable portion is preferably 100 μm to 1000 μm, and more preferably 300 μm to 700 μm. Since the mold is made of a material that transmits light such as ultraviolet rays and has a light-shielding film that does not transmit light such as ultraviolet rays, it is used as a mask in this step.
<離型工程>
本発明の成形体の製造方法は、前記光硬化部と前記モールドとを分離する離型工程を有する。離型方法は、前記光硬化部が損傷及び変形することなく、前記モールドから完全に分離することができる限り、特に限定されない。前記モールドは、前記離型剤を塗布し乾燥する離型処理によって、前記光硬化部と該モールドとの分離が容易となる。前記光硬化工程の後、本離型工程の前、中途又は後に、前記光硬化部を加熱する工程をさらに有してもよく、その場合、該光硬化部の加熱条件は、例えば、50℃乃至260℃、1分乃至24時間の範囲から適宜選択される。また、加熱手段としては、特に限定されないが、例えば、ホットプレート及びオーブンが挙げられる。
<Release process>
The method for producing a molded product of the present invention includes a mold release step for separating the photocurable portion and the mold. The mold release method is not particularly limited as long as the photocurable portion can be completely separated from the mold without being damaged or deformed. The mold can be easily separated from the photocurable portion by a mold release process in which the mold release agent is applied and dried. After the photo-curing step, before, during, or after the main release step, there may be further a step of heating the photo-curing portion, in which case the heating conditions of the photo-curing portion are, for example, 50 ° C. It is appropriately selected from the range of about 260 ° C. for 1 minute to 24 hours. The heating means is not particularly limited, and examples thereof include a hot plate and an oven.
<現像工程>
本発明の成形体の製造方法は、前記離型工程の後、前記光硬化性組成物の未硬化部を現像液により除去して前記光硬化部を露出させる現像工程を有する。現像方法は特に限定されないが、例えば、ディップ法、パドル法、スプレー法、ダイナミックディスペンス法及びスタティックディスペンス法が挙げられる。現像の条件は、例えば、現像温度5℃乃至50℃、現像時間10秒乃至300秒の範囲から適宜選択される。
<Development process>
The method for producing a molded product of the present invention includes a developing step of removing the uncured portion of the photocurable composition with a developing solution to expose the photocurable portion after the mold release step. The developing method is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic dispensing method, and a static dispensing method. The development conditions are appropriately selected from, for example, a development temperature of 5 ° C. to 50 ° C. and a development time of 10 seconds to 300 seconds.
前記現像液としては、前記光硬化性組成物の未硬化部を除去することができる限り特に限定されないが、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、テトラヒドロフルフリルアルコール、γ-ブチロラクトン等の有機溶剤が好ましい。前記現像液は1種単独で、又は2種以上を組み合わせて使用することができる。 The developer is not particularly limited as long as it can remove the uncured portion of the photocurable composition, but is organic such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, tetrahydrofurfuryl alcohol, and γ-butyrolactone. Solvents are preferred. The developer can be used alone or in combination of two or more.
<リンス工程>
本発明の成形体の製造方法は、前記現像工程の後、後述する乾燥工程の前に、前記光硬化部に対してリンス液を用いてリンス処理するリンス工程を有してもよい。リンス処理方法は特に限定されないが、例えば、ディップ法、パドル法、スプレー法、ダイナミックディスペンス法及びスタティックディスペンス法が挙げられる。リンス処理の条件は、リンス温度5℃乃至50℃、リンス時間10秒乃至300秒の範囲から適宜選択される。
<Rinse process>
The method for producing a molded product of the present invention may include a rinsing step of rinsing the photocured portion with a rinsing solution after the developing step and before the drying step described later. The rinsing method is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic discharge method, and a static discharge method. The rinsing conditions are appropriately selected from the range of a rinsing temperature of 5 ° C. to 50 ° C. and a rinsing time of 10 seconds to 300 seconds.
前記リンス液としては、前記光硬化部にダメージを与えることなく、前記現像液を洗い流すことができる限り特に限定されない。前記リンス液としては、例えば、エタノール、テトラヒドロフルフリルアルコール、1,1,1,2,3,4,4,5,5,5-デカフルオロペンタン、乳酸エチル、シクロヘキサノール及びメチルシクロヘキサンが挙げられる。前記リンス液は1種単独で、又は2種以上を組み合わせて使用することができる。 The rinse solution is not particularly limited as long as the developer can be washed away without damaging the photocurable portion. Examples of the rinsing solution include ethanol, tetrahydrofurfuryl alcohol, 1,1,1,2,3,4,5,5,5-decafluoropentane, ethyl lactate, cyclohexanol and methylcyclohexane. .. The rinse liquid can be used alone or in combination of two or more.
本発明の成形体の製造方法において使用する現像液及びリンス液は、前記光硬化部に対する濡れ性を向上させて現像及びリンスを効率的に進行させる目的で、添加剤として界面活性剤をさらに含有することもできる。前記界面活性剤は1種単独で、又は2種以上を組み合わせて用いることができる。また、前記界面活性剤が使用される場合、前記現像液又はリンス液におけるその含有量は、該現像液又リンス液100質量部に対して、0.001質量部乃至5質量部であり、好ましくは0.01質量部乃至3質量部であり、さらに好ましくは0.05質量部乃至1質量部である。本発明の成形体の製造方法において使用する現像液及びリンス液は、必要に応じて、酸化防止剤をその他添加剤として含むことができる。前記酸化防止剤としては、例えば、前記(f)成分のフェノール系酸化防止剤、前記(g)成分のスルフィド系酸化防止剤、及びホスファイト系酸化防止剤が挙げられる。 The developer and rinse solution used in the method for producing a molded product of the present invention further contains a surfactant as an additive for the purpose of improving the wettability to the photocured portion and efficiently proceeding with development and rinsing. You can also do it. The surfactant may be used alone or in combination of two or more. When the surfactant is used, its content in the developer or rinse solution is preferably 0.001 part by mass to 5 parts by mass with respect to 100 parts by mass of the developer or rinse solution. Is 0.01 part by mass to 3 parts by mass, more preferably 0.05 part by mass to 1 part by mass. The developer and rinse solution used in the method for producing a molded product of the present invention may contain an antioxidant as another additive, if necessary. Examples of the antioxidant include a phenol-based antioxidant of the component (f), a sulfide-based antioxidant of the component (g), and a phosphite-based antioxidant.
<乾燥工程>
本発明の成形体の製造方法は、前記現像工程の後、前記光硬化部が形成された支持体をスピン乾燥させる乾燥工程を有する。前記支持体をスピナー、コーター等のスピン乾燥可能な装置により回転させることにより、本工程を実施することができる。乾燥条件は特に限定されないが、例えば、回転数200rpm乃至3000rpm、10秒乃至10分の範囲から適宜選択される。
<Drying process>
The method for producing a molded product of the present invention includes, after the developing step, a drying step of spin-drying the support on which the photocurable portion is formed. This step can be carried out by rotating the support with a spin-drying device such as a spinner or a coater. The drying conditions are not particularly limited, but are appropriately selected from, for example, a rotation speed of 200 rpm to 3000 rpm, 10 seconds to 10 minutes.
<ポスト露光工程>
本発明の成形体の製造方法は、前記乾燥工程の後、前記光硬化部の全面を露光するポスト露光工程を有してもよい。本工程において露光する光線は、前記光硬化工程で使用可能な光線を使用することができる。
<Post-exposure process>
The method for producing a molded product of the present invention may include a post-exposure step of exposing the entire surface of the photocurable portion after the drying step. As the light beam exposed in this step, a light ray that can be used in the photocuring step can be used.
<ポストベーク工程>
本発明の成形体の製造方法は、前記ポスト露光工程の後、前記光硬化部を加熱するポストベーク工程を有してもよい。ポストベークの条件は、例えば、50℃乃至260℃、1分乃至24時間の範囲から適宜選択される。また、加熱手段としては、特に限定されないが、例えば、ホットプレート及びオーブンが挙げられる。
<Post-baking process>
The method for producing a molded product of the present invention may include a post-baking step of heating the photocurable portion after the post-exposure step. The post-baking conditions are appropriately selected from, for example, 50 ° C. to 260 ° C., 1 minute to 24 hours. The heating means is not particularly limited, and examples thereof include a hot plate and an oven.
<反射防止膜形成工程>
本発明の成形体の製造方法は、前記ポスト露光工程の後、又は前記ポストベーク工程を行う場合は該ポストベーク工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに有してもよい。前記反射防止膜は、前記光硬化物に入射する光の反射を抑制し、透過率を向上させるために、該光硬化物の表面に形成される。前記反射防止膜の形成方法としては、例えば、真空蒸着法、スパッタ法、CVD法、ミスト法、スピンコート法、ディップコート法及びスプレーコート法が挙げられる。また、前記反射防止膜として、フッ化マグネシウム、二酸化ケイ素等の無機膜、及びオルガノポリシロキサン等の有機膜が挙げられる。
<Anti-reflection film forming process>
The method for producing a molded product of the present invention further includes a step of forming an antireflection film on the surface of the photocurable portion after the post-exposure step or, if the post-baking step is performed, the post-baking step. You may. The antireflection film is formed on the surface of the photocured product in order to suppress the reflection of light incident on the photocured product and improve the transmittance. Examples of the method for forming the antireflection film include a vacuum deposition method, a sputtering method, a CVD method, a mist method, a spin coating method, a dip coating method and a spray coating method. Further, examples of the antireflection film include an inorganic film such as magnesium fluoride and silicon dioxide, and an organic film such as organopolysiloxane.
このような方法によって製造された成形体は、カメラモジュール用レンズとして好適に使用することができる。 The molded product produced by such a method can be suitably used as a lens for a camera module.
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記実施例及び比較例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following Examples and Comparative Examples, the devices and conditions used for sample preparation and analysis of physical properties are as follows.
(1)撹拌脱泡
装置:(株)シンキー製 自転・公転ミキサーあわとり練太郎(登録商標)ARE-310
(2)UV露光
装置1:シーシーエス(株)製 バッチ式UV-LED照射装置(波長365nm)
装置2:岩崎電気(株)製 UV-LED照射装置LHPUV365/2501
(3)現像
装置:アクテス京三(株)製 小型現像装置ADE-3000S
(4)裾部クラック観察
装置:オリンパス(株)製 光学顕微鏡MX61A
条件:明視野、対物10倍
(5)透過率測定
装置:日本分光(株)製 紫外可視近赤外分光光度計V-670
リファレンス:空気
(6)基板反り量測定
装置:三鷹光器(株)製 非接触表面性状測定装置PF-60
(1) Stirring and defoaming device: Made by Shinky Co., Ltd. Rotation / revolution mixer Awatori Rentaro (registered trademark) ARE-310
(2) UV exposure device 1: Batch type UV-LED irradiation device manufactured by CCS Inc. (wavelength 365 nm)
Device 2: UV-LED irradiation device LHPUV365 / 2501 manufactured by Iwasaki Electric Co., Ltd.
(3) Developing device: Small developing device ADE-3000S manufactured by Actes Kyozo Co., Ltd.
(4) Hem crack observation device: Optical microscope MX61A manufactured by Olympus Corporation
Conditions: Bright field, objective 10 times (5) Transmittance measuring device: JASCO Corporation Ultraviolet visible near infrared spectrophotometer V-670
Reference: Air (6) Substrate warpage measuring device: Non-contact surface property measuring device PF-60 manufactured by Mitaka Kohki Co., Ltd.
各製造例、実施例及び比較例において使用した化合物の供給元は以下の通りである。
A-DOG:新中村化学工業(株)製 商品名:NKエステル A-DOG
APG-100:新中村化学工業(株)製 商品名:NKエステル APG-100
APG-400:新中村化学工業(株)製 商品名:NKエステル APG-400
A-TMPT:新中村化学工業(株)製 商品名:NKエステル A-TMPT
UA-4200:新中村化学工業(株)製 商品名:NKオリゴ UA-4200
V#195:大阪有機化学工業(株)製 商品名:ビスコート#195
V#260:大阪有機化学工業(株)製 商品名:ビスコート#260
I184:IGM Resins社製 商品名:OMNIRAD(登録商標)184
OTES:東京化成工業(株)製 商品名:n-オクチルトリエトキシシラン
MOTMS:信越化学工業(株)製 商品名:KBM-5803
MPTMS:信越化学工業(株)製 商品名:KBM-503
シリカゾルi:日産化学(株)製 商品名:MA-ST-M
シリカゾルii:日産化学(株)製 商品名:メタノールシリカゾル
NR1:昭和電工(株)製 商品名:カレンズMT(登録商標)NR1
PEPT:SC有機化学(株)製 商品名:PEPT
SA1303P:(株)ASM(旧アドバンスト・ソフトマテリアルズ(株))製 商品名:セルム(登録商標)スーパーポリマーSA1303P
I245:BASFジャパン(株)製 商品名:IRGANOX(登録商標)245
AO503:(株)ADEKA製 商品名:アデカスタブ(登録商標)AO-503
IBXA:大阪有機化学工業(株)製 商品名:IBXA
AOMA:(株)日本触媒製 商品名:FX-AO-MA
The sources of the compounds used in each production example, example and comparative example are as follows.
A-DOG: Made by Shin-Nakamura Chemical Industry Co., Ltd. Product name: NK ester A-DOG
APG-100: Made by Shin-Nakamura Chemical Industry Co., Ltd. Product name: NK Ester APG-100
APG-400: Made by Shin-Nakamura Chemical Industry Co., Ltd. Product name: NK ester APG-400
A-TMPT: Made by Shin-Nakamura Chemical Industry Co., Ltd. Product name: NK ester A-TMPT
UA-4200: Made by Shin-Nakamura Chemical Industry Co., Ltd. Product name: NK Oligo UA-4200
V # 195: Made by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscoat # 195
V # 260: Made by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscort # 260
I184: Made by IGM Resins Product name: OMNIRAD (registered trademark) 184
OTES: Made by Tokyo Chemical Industry Co., Ltd. Product name: n-octyltriethoxysilane MOTMS: Made by Shin-Etsu Chemical Co., Ltd. Product name: KBM-5803
MPTMS: Made by Shin-Etsu Chemical Co., Ltd. Product name: KBM-503
Silica sol i: Made by Nissan Chemical Industries, Ltd. Product name: MA-ST-M
Silica sol ii: Made by Nissan Chemical Industries, Ltd. Product name: Methanol Silica sol NR1: Made by Showa Denko Co., Ltd. Product name: Karenz MT (registered trademark) NR1
PEPT: Made by SC Organic Chemistry Co., Ltd. Product name: PEPT
SA1303P: Made by ASM Co., Ltd. (formerly Advanced Soft Materials Co., Ltd.) Product name: CELM (registered trademark) Superpolymer SA1303P
I245: Made by BASF Japan Ltd. Product name: IRGANOX (registered trademark) 245
AO503: Made by ADEKA Corporation Product name: ADEKA STAB (registered trademark) AO-503
IBXA: Made by Osaka Organic Chemical Industry Co., Ltd. Product name: IBXA
AOMA: Made by Nippon Shokubai Co., Ltd. Product name: FX-AO-MA
A-DOG、APG-100、APG-400、A-TMPT、UA-4200、V#195及びV#260は、前記(a)成分として使用可能な、(メタ)アクリロイルオキシ基を1分子中に2つ以上有する多官能(メタ)アクリレートである。これらの内、A-DOG、APG-100、APG-400、UA-4200、V#195及びV#260は、(メタ)アクリロイルオキシ基を1分子中に2つ有する二官能(メタ)アクリレートであり、さらにこれらの内、UA-4200は前記(a1)成分の二官能ウレタン(メタ)アクリレートであり、V#195及びV#260は前記(a2)成分の前記式(3)で表される二官能(メタ)アクリレートである。 A-DOG, APG-100, APG-400, A-TMPT, UA-4200, V # 195 and V # 260 have a (meth) acryloyloxy group in one molecule that can be used as the component (a). It is a polyfunctional (meth) acrylate having two or more. Of these, A-DOG, APG-100, APG-400, UA-4200, V # 195 and V # 260 are bifunctional (meth) acrylates having two (meth) acryloyloxy groups in one molecule. Of these, UA-4200 is the bifunctional urethane (meth) acrylate of the component (a1), and V # 195 and V # 260 are represented by the formula (3) of the component (a2). It is a bifunctional (meth) acrylate.
I184は、前記(b)成分として使用可能な、光ラジカル開始剤である。 I184 is a photoradical initiator that can be used as the component (b).
OTES及びMOTMSは、前記(c)成分のシリカ粒子の表面を修飾する、前記式(1)で表されるシランカップリング剤であり、前記MPTMSは、前記式(1)で表されないその他のシランカップリング剤である。 OTES and MOTMS are silane coupling agents represented by the formula (1) that modify the surface of silica particles of the component (c), and MPTMS is another silane not represented by the formula (1). It is a coupling agent.
シリカゾルi(メタノール分散シリカゾル、一次粒子径20nm乃至25nm、シリカ粒子の濃度40質量%)及び前記シリカゾルii(メタノール分散シリカゾル、一次粒子径10nm乃至15nm、シリカ粒子の濃度30質量%)は、前記(c)成分のシリカ粒子の原料である、一次粒子径が1nm乃至100nmの表面修飾されていないシリカ粒子を含むオルガノシリカゾルである。 Silica sol i (methanol-dispersed silica sol, primary particle diameter 20 nm to 25 nm, silica particle concentration 40% by mass) and said silica sol ii (methanol-dispersed silica sol, primary particle diameter 10 nm to 15 nm, silica particle concentration 30% by mass) are described above. c) An organosilica sol containing unsurface-modified silica particles having a primary particle size of 1 nm to 100 nm, which is a raw material for the component silica particles.
NR1及びPEPTは、前記(d)成分として使用可能な、前記式(2)で表される多官能チオールである。 NR1 and PEPT are polyfunctional thiols represented by the formula (2) that can be used as the component (d).
SA1303P(環状分子がシクロデキストリン、直鎖状分子がポリエチレングリコール鎖、封鎖基がアダマンチル基からなり、該環状分子の側鎖にスペーサーを介してアクリルロイルオキシ基を有するポリロタキサンのメチルエチルケトン分散液、固形分濃度50質量%)は、前記(e)成分として使用可能な、(メタ)アクリロイルオキシ基を有するポリロタキサンである。 SA1303P (Cyclic molecule is cyclodextrin, linear molecule is polyethylene glycol chain, blocking group is adamantyl group, and the side chain of the cyclic molecule is a methylethylketone dispersion of polyrotaxane having an acrylicloyloxy group via a spacer, solid content. (Concentration: 50% by mass) is a polyrotaxane having a (meth) acryloyloxy group that can be used as the component (e).
I245は、前記(f)成分として使用可能な、フェノール系酸化防止剤である。前記AO503は、前記(g)成分として使用可能な、スルフィド系酸化防止剤である。 I245 is a phenolic antioxidant that can be used as the component (f). The AO503 is a sulfide-based antioxidant that can be used as the component (g).
IBXA及びAOMAは、前記(h)成分として使用可能な、(メタ)アクリロイルオキシ基又はアリルオキシ基を1分子中に1つ有するモノマーである。 IBXA and AOMA are monomers having one (meth) acryloyloxy group or allyloxy group in one molecule, which can be used as the component (h).
[製造例1]
100mLナスフラスコに、シリカゾルiを50g、MOTMSを5g(シリカ粒子1g当たり0.8ミリモル)秤量し、65℃のオイルバスにて計6時間、加水分解縮合反応を行った。続いて、200mLナスフラスコに、得られたMOTMS修飾シリカ粒子のメタノール分散液(固形分濃度45質量%)を40g、UA-4200を15g秤量し、撹拌して均一化した後、エバポレーターを用いて、60℃、減圧度133.3Pa以下の条件でメタノールを留去し、MOTMS修飾シリカ粒子のUA-4200分散液(該MOTMS修飾シリカ粒子の濃度55質量%)を得た。
[Manufacturing Example 1]
50 g of silica sol i and 5 g of MOTMS (0.8 mmol per 1 g of silica particles) were weighed in a 100 mL eggplant flask, and a hydrolysis condensation reaction was carried out in an oil bath at 65 ° C. for a total of 6 hours. Subsequently, 40 g of the obtained MOTMS-modified silica particles in a methanol dispersion (solid content concentration: 45% by mass) and 15 g of UA-4200 were weighed in a 200 mL eggplant flask, stirred and homogenized, and then using an evaporator. Methanol was distilled off under the conditions of 60 ° C. and a reduced pressure of 133.3 Pa or less to obtain a UA-4200 dispersion of MOTMS-modified silica particles (concentration of the MOTMS-modified silica particles was 55% by mass).
[製造例2]
UA-4200の代わりにAPG-100を使用する以外は製造例1と同様の手順にて、MOTMS修飾シリカ粒子のAPG-100分散液(該MOTMS修飾シリカ粒子の濃度55質量%)を得た。
[Manufacturing Example 2]
An APG-100 dispersion of MOTMS-modified silica particles (concentration of the MOTMS-modified silica particles 55% by mass) was obtained by the same procedure as in Production Example 1 except that APG-100 was used instead of UA-4200.
[製造例3]
MOTMSの使用量が3.5g(シリカ粒子1g当たり0.5ミリモル)である以外は製造例1と同様の手順にて、MOTMS修飾シリカ粒子のUA-4200分散液(該MOTMS修飾シリカ粒子の濃度55質量%)を得た。
[Manufacturing Example 3]
UA-4200 dispersion of MOTMS-modified silica particles (concentration of the MOTMS-modified silica particles) in the same procedure as in Production Example 1 except that the amount of MOTMS used is 3.5 g (0.5 mmol per 1 g of silica particles). 55% by mass) was obtained.
[製造例4]
100mLナスフラスコに、シリカゾルiを50g、MOTMSを2.5g(シリカ粒子1g当たり0.4ミリモル)、MPTMSを2g(シリカ粒子1g当たり0.4ミリモル)秤量し、65℃のオイルバスにて計6時間加水分解縮合反応を行った。続いて、200mLナスフラスコに、得られたMOTMS及びMPTMS修飾シリカ粒子のメタノール分散液(固形分濃度45質量%)を40g、UA-4200を15g秤量し、撹拌して均一化した後、エバポレーターを用いて、60℃、減圧度133.3Pa以下の条件でメタノールを留去し、MOTMS及びMPTMS修飾シリカ粒子のUA-4200分散液(該MOTMS及びMPTMS修飾シリカ粒子の濃度55質量%)を得た。
[Manufacturing Example 4]
Weigh 50 g of silica sol i, 2.5 g of MOTMS (0.4 mmol per 1 g of silica particles), and 2 g of MPTMS (0.4 mmol per 1 g of silica particles) in a 100 mL eggplant flask, and measure them in an oil bath at 65 ° C. The hydrolysis condensation reaction was carried out for 6 hours. Subsequently, 40 g of the obtained MOTMS and MPTMS-modified silica particles in a methanol dispersion (solid content concentration: 45% by mass) and 15 g of UA-4200 were weighed in a 200 mL eggplant flask, stirred and homogenized, and then the evaporator was added. Methanol was distilled off under the conditions of 60 ° C. and a reduced pressure of 133.3 Pa or less to obtain a UA-4200 dispersion of MOTMS and MPTMS-modified silica particles (concentration of the MOTMS and MPTMS-modified silica particles was 55% by mass). ..
[製造例5]
MPTMSの代わりにOTESを2.2g(シリカ粒子1g当たり0.4ミリモル)使用する以外は製造例4と同様の手順にて、MOTMS及びOTES修飾シリカ粒子のUA-4200分散液(該MOTMS及びOTES修飾シリカ粒子の濃度55質量%)を得た。
[Manufacturing Example 5]
UA-4200 dispersion of MOTMS and OTES-modified silica particles (the MOTMS and OTES) in the same procedure as in Production Example 4 except that 2.2 g (0.4 mmol per 1 g of silica particles) of OTES is used instead of MPTMS. The concentration of the modified silica particles was 55% by mass).
[製造例6]
100mLナスフラスコに、シリカゾルiiを50g、MOTMSを4g(シリカ粒子1g当たり0.8ミリモル)秤量し、65℃のオイルバスにて計6時間加水分解縮合反応を行った。続いて、200mLナスフラスコに、得られたMOTMS修飾シリカ粒子のメタノール分散液(固形分濃度36質量%)を34g、UA-4200を15g秤量し、撹拌して均一化した後、エバポレーターを用いて、60℃、減圧度133.3Pa以下の条件でメタノールを留去し、MOTMS修飾シリカ粒子のUA-4200分散液(該MOTMS修飾シリカ粒子の濃度45質量%)を得た。
[Manufacturing Example 6]
50 g of silica sol ii and 4 g of MOTMS (0.8 mmol per 1 g of silica particles) were weighed in a 100 mL eggplant flask, and a hydrolysis condensation reaction was carried out in an oil bath at 65 ° C. for a total of 6 hours. Subsequently, 34 g of the obtained MOTMS-modified silica particles in a methanol dispersion (solid content concentration: 36% by mass) and 15 g of UA-4200 were weighed in a 200 mL eggplant flask, stirred and homogenized, and then using an evaporator. Methanol was distilled off under the conditions of 60 ° C. and a reduced pressure of 133.3 Pa or less to obtain a UA-4200 dispersion of MOTMS-modified silica particles (concentration of the MOTMS-modified silica particles was 45% by mass).
[製造例7]
MOTMSを5g使用する代わりに、MPTMSを4g(シリカ粒子1g当たり0.8ミリモル)使用する以外は製造例1と同様の手順にて、MPTMS修飾シリカ粒子のUA-4200分散液(該MPTMS修飾シリカ粒子の濃度55質量%)を得た。
[Manufacturing Example 7]
A UA-4200 dispersion of MPTMS-modified silica particles (the MPTMS-modified silica) was prepared in the same procedure as in Production Example 1 except that 4 g of MPTMS (0.8 mmol per 1 g of silica particles) was used instead of 5 g of MOTMS. Particle concentration 55% by mass) was obtained.
前記製造例1乃至製造例7で得られた表面修飾シリカ粒子について、シリカ粒子の種類、シランカップリング剤の種類及び使用量を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000007
Regarding the surface-modified silica particles obtained in Production Examples 1 to 7, the types of silica particles, the types of silane coupling agents, and the amounts used are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000007
[製造例8]
100mLナスフラスコに、V#260を20g、SA1303Pを40g秤量し、撹拌して均一化した後、エバポレーターを用いて、50℃、減圧度133.3Pa以下の条件でメチルエチルケトンを留去し、前記ポリロタキサンのV#260分散液(該ポリロタキサンの濃度50質量%)を得た。
[Manufacturing Example 8]
In a 100 mL eggplant flask, 20 g of V # 260 and 40 g of SA1303P were weighed, stirred and homogenized, and then methyl ethyl ketone was distilled off under the conditions of 50 ° C. and a reduced pressure of 133.3 Pa or less using an evaporator, and the polyrotaxane was distilled off. V # 260 dispersion (concentration of the polyrotaxane of 50% by mass) was obtained.
後述する実施例及び比較例の光硬化性組成物の調製において、前記(c)成分の表面修飾されたシリカ粒子を配合する際は、前記製造例1乃至製造例7で得られたUA-4200分散液又はAPG-100分散液として配合し、前記(e)成分のポリロタキサンを配合する際は、前記製造例8で得られたV#260分散液として配合した。 In the preparation of the photocurable compositions of Examples and Comparative Examples described later, when the surface-modified silica particles of the component (c) are blended, the UA-4200 obtained in Production Examples 1 to 7 is used. It was blended as a dispersion liquid or an APG-100 dispersion liquid, and when the polyrotaxane of the component (e) was blended, it was blended as the V # 260 dispersion liquid obtained in Production Example 8.
[実施例1]
前記(a)成分としてUA-4200を1.0g及びV#260を4.3g、前記(b)成分としてI184を0.1g、前記(c)成分として製造例1で得たUA-4200分散液を4.2g(MOTMS修飾シリカ粒子換算で2.3g)、前記(f)成分としてI245を0.07g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記(d)成分としてPEPTを0.5g添加し、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、光硬化性組成物1を調製した。
[Example 1]
1.0 g of UA-4200 and 4.3 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c). 4.2 g of the liquid (2.3 g in terms of MOTMS-modified silica particles) and 0.07 g of I245 as the component (f) were mixed, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the component (d). As a result, 0.5 g of PEPT was added, and the mixture was stirred and defoamed for 10 minutes using the stirring defoaming machine to prepare a photocurable composition 1.
[実施例2]
前記(a)成分としてUA-4200を2.0g及びV#195を3.3g使用する以外は実施例1と同様の手順にて、光硬化性組成物2を調製した。
[Example 2]
The photocurable composition 2 was prepared in the same procedure as in Example 1 except that 2.0 g of UA-4200 and 3.3 g of V # 195 were used as the component (a).
[実施例3]
前記(a)成分としてUA-4200を2.0g及びA-DOGを3.3g使用する以外は実施例1と同様の手順にて、光硬化性組成物3を調製した。
[Example 3]
The photocurable composition 3 was prepared in the same procedure as in Example 1 except that 2.0 g of UA-4200 and 3.3 g of A-DOG were used as the component (a).
[実施例4]
前記(a)成分としてUA-4200を2.6g及びA-TMPTを2.7g使用する以外は実施例1と同様の手順にて、光硬化性組成物4を調製した。
[Example 4]
The photocurable composition 4 was prepared in the same procedure as in Example 1 except that 2.6 g of UA-4200 and 2.7 g of A-TMPT were used as the component (a).
[実施例5]
前記(a)成分としてAPG-400を4.2g及びAPG-100を1.1g使用し、前記(c)成分として製造例2で得たAPG-100分散液を4.2g(MOTMS修飾シリカ粒子換算で2.3g)使用し、前記(d)成分としてNR1を0.5g使用する以外は実施例1と同様の手順にて、光硬化性組成物5を調製した。
[Example 5]
4.2 g of APG-400 and 1.1 g of APG-100 were used as the component (a), and 4.2 g (MOTMS-modified silica particles) of the APG-100 dispersion obtained in Production Example 2 was used as the component (c). The photocurable composition 5 was prepared in the same procedure as in Example 1 except that 2.3 g) was used in terms of conversion and 0.5 g of NR1 was used as the component (d).
[実施例6]
前記(c)成分として製造例3で得たUA-4200分散液を4.2g(MOTMS修飾シリカ粒子換算で2.3g)使用する以外は実施例1と同様の手順にて、光硬化性組成物6を調製した。
[Example 6]
The photocurable composition was prepared in the same procedure as in Example 1 except that 4.2 g (2.3 g in terms of MOTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 3 was used as the component (c). Object 6 was prepared.
[実施例7]
前記(c)成分として製造例4で得たUA-4200分散液を4.2g(MOTMS及びMPTMS修飾シリカ粒子換算で2.3g)使用する以外は実施例1と同様の手順にて、光硬化性組成物7を調製した。
[Example 7]
Photo-curing in the same procedure as in Example 1 except that 4.2 g (2.3 g in terms of MOTMS and MPTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 4 was used as the component (c). The sex composition 7 was prepared.
[実施例8]
前記(c)成分として製造例5で得たUA-4200分散液を4.2g(MOTMS及びOTES修飾シリカ粒子換算で2.3g)使用する以外は実施例1と同様の手順にて、光硬化性組成物8を調製した。
[Example 8]
Photo-curing in the same procedure as in Example 1 except that 4.2 g (2.3 g in terms of MOTMS and OTES-modified silica particles) of the UA-4200 dispersion obtained in Production Example 5 was used as the component (c). The sex composition 8 was prepared.
[実施例9]
前記(a)成分としてUA-4200を1.7g及びV#260を5.1g使用し、前記(c)成分として製造例6で得たUA-4200分散液を2.7g(MOTMS修飾シリカ粒子換算で1.2g)使用する以外は実施例1と同様の手順にて、光硬化性組成物9を調製した。
[Example 9]
1.7 g of UA-4200 and 5.1 g of V # 260 were used as the component (a), and 2.7 g (MOTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 6 was used as the component (c). The photocurable composition 9 was prepared in the same procedure as in Example 1 except that it was used (1.2 g in conversion).
[実施例10]
前記(a)成分としてUA-4200を1.2g及びV#260を5.0g、前記(b)成分としてI184を0.1g、前記(c)成分として製造例1で得たUA-4200分散液を3.3g(MOTMS修飾シリカ粒子換算で1.8g)、前記(f)成分としてI245を0.07g、前記(g)成分としてAO-503を0.05g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記(d)成分としてPEPTを0.5g添加し、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、光硬化性組成物10を調製した。
[Example 10]
1.2 g of UA-4200 and 5.0 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c). 3.3 g of the liquid (1.8 g in terms of MOTMS-modified silica particles), 0.07 g of I245 as the component (f), and 0.05 g of AO-503 as the component (g) were blended at 50 ° C. After shaking and mixing for 15 hours, 0.5 g of PEPT was added as the component (d), and the mixture was stirred and defoamed for 10 minutes using the stirring defoaming machine to prepare a photocurable composition 10.
[実施例11]
前記(d)成分としてNR1を使用する以外は実施例1と同様の手順にて、光硬化性組成物11を調製した。
[Example 11]
The photocurable composition 11 was prepared in the same procedure as in Example 1 except that NR1 was used as the component (d).
[実施例12]
前記(a)成分としてUA-4200を0.8g及びV#260を4.3g、前記(b)成分としてI184を0.1g、前記(c)成分として製造例1で得たUA-4200分散液を4.2g(MOTMS修飾シリカ粒子換算で2.3g)、前記(e)成分として製造例8で得た分散液を0.2g(ポリロタキサン換算で0.1g)、前記(f)成分としてI245を0.07g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記(d)成分としてPEPTを0.5g添加し、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、光硬化性組成物12を調製した。
[Example 12]
0.8 g of UA-4200 and 4.3 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c). 4.2 g of the solution (2.3 g in terms of MOTMS-modified silica particles), 0.2 g of the dispersion obtained in Production Example 8 as the component (e) (0.1 g in terms of polyrotaxane), as the component (f). 0.07 g of I245 is mixed, and the mixture is shaken at 50 ° C. for 15 hours to mix, then 0.5 g of PEPT is added as the component (d), and the mixture is stirred and defoamed for 10 minutes using the stirring defoaming machine. As a result, the photocurable composition 12 was prepared.
[実施例13]
前記(a)成分としてUA-4200を0.5g及びV#260を4.0g使用し、前記(e)成分として製造例8で得た分散液を0.8g(ポリロタキサン換算で0.4g)使用する以外は実施例12と同様の手順にて、光硬化性組成物13を調製した。
[Example 13]
0.5 g of UA-4200 and 4.0 g of V # 260 were used as the component (a), and 0.8 g of the dispersion obtained in Production Example 8 as the component (e) (0.4 g in terms of polyrotaxane). The photocurable composition 13 was prepared in the same procedure as in Example 12 except that it was used.
[実施例14]
前記(a)成分としてUA-4200を0.3g及びV#260を3.6g使用し、前記(e)成分として製造例8で得た分散液を1.4g(ポリロタキサン換算で0.7g)使用する以外は実施例12と同様の手順にて、光硬化性組成物14を調製した。
[Example 14]
0.3 g of UA-4200 and 3.6 g of V # 260 were used as the component (a), and 1.4 g of the dispersion obtained in Production Example 8 as the component (e) (0.7 g in terms of polyrotaxane). The photocurable composition 14 was prepared in the same procedure as in Example 12 except that it was used.
[実施例15]
前記(a)成分としてUA-4200を0.2g及びV#260を3.3g使用し、前記(e)成分として製造例8で得たV#260分散液を1.8g(ポリロタキサン換算で0.9g)使用する以外は実施例12と同様の手順にて、光硬化性組成物15を調製した。
[Example 15]
0.2 g of UA-4200 and 3.3 g of V # 260 were used as the component (a), and 1.8 g of the V # 260 dispersion obtained in Production Example 8 as the component (e) (0 in terms of polyrotaxan). .9 g) The photocurable composition 15 was prepared in the same procedure as in Example 12 except that it was used.
[実施例16]
前記(a)成分としてV#260を4.7g、前記(b)成分としてI184を0.1g、前記(c)成分として製造例1で得たUA-4200分散液を3.3g(MOTMS修飾シリカ粒子換算で1.8g)、前記(f)成分としてI245を0.07g、前記(h)成分としてIBXAを1.5g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記(d)成分としてPEPTを0.5g添加し、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、光硬化性組成物16を調製した。
[Example 16]
4.7 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and 3.3 g (MOTMS-modified) of the UA-4200 dispersion obtained in Production Example 1 as the component (c). 1.8 g in terms of silica particles), 0.07 g of I245 as the component (f), and 1.5 g of IBXA as the component (h), respectively, and shaking at 50 ° C. for 15 hours to mix, and then the above. The photocurable composition 16 was prepared by adding 0.5 g of PEPT as a component (d) and stirring and defoaming for 10 minutes using the stirring defoaming machine.
[実施例17]
前記(a)成分としてUA-4200を1.7g及びV#260を5.1g使用し、前記(c)成分として製造例1で得たUA-4200分散液を2.2g(MOTMS修飾シリカ粒子換算で1.2g)使用し、前記(h)成分としてAOMAを0.5g使用する以外は実施例16と同様の手順にて、光硬化性組成物17を調製した。
[Example 17]
1.7 g of UA-4200 and 5.1 g of V # 260 were used as the component (a), and 2.2 g (MOTMS-modified silica particles) of the UA-4200 dispersion obtained in Production Example 1 was used as the component (c). The photocurable composition 17 was prepared in the same procedure as in Example 16 except that 1.2 g) was used in conversion and 0.5 g of AOMA was used as the component (h).
[比較例1]
前記(a)成分としてUA-4200を0.2g及びV#260を3.3g使用し、前記(c)成分の代わりに製造例7で得たUA-4200分散液を4.2g(MPTMS修飾シリカ粒子換算で2.3g)を使用し、前記(e)成分として製造例8で得たV#260分散液を1.8g(ポリロタキサン換算で0.9g)使用する以外は実施例12と同様の手順にて、光硬化性組成物18を調製した。
[Comparative Example 1]
0.2 g of UA-4200 and 3.3 g of V # 260 were used as the component (a), and 4.2 g (MPTMS modified) of the UA-4200 dispersion obtained in Production Example 7 was used instead of the component (c). Same as in Example 12 except that 2.3 g) in terms of silica particles is used and 1.8 g (0.9 g in terms of polyrotaxane) of the V # 260 dispersion obtained in Production Example 8 is used as the component (e). The photocurable composition 18 was prepared according to the above procedure.
[比較例2]
前記(a)成分としてUA-4200を1.2g及びV#260を4.6g、前記(b)成分としてI184を0.1g、前記(c)成分として製造例1で得たUA-4200分散液を4.2g(MOTMS修飾シリカ粒子換算で2.3g)、前記(f)成分としてI245を0.07g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、光硬化性組成物19を調製した。
[Comparative Example 2]
1.2 g of UA-4200 and 4.6 g of V # 260 as the component (a), 0.1 g of I184 as the component (b), and the UA-4200 dispersion obtained in Production Example 1 as the component (c). 4.2 g of the liquid (2.3 g in terms of MOTMS-modified silica particles) and 0.07 g of I245 as the component (f) were mixed, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the stirring defoamer. The photocurable composition 19 was prepared by stirring and defoaming the mixture for 10 minutes.
[比較例3]
前記(a)成分としてUA-4200を2.2g及びV#195を3.6g使用する以外は比較例2と同様の手順にて、光硬化性組成物20を調製した。
[Comparative Example 3]
The photocurable composition 20 was prepared in the same procedure as in Comparative Example 2 except that 2.2 g of UA-4200 and 3.6 g of V # 195 were used as the component (a).
前記実施例1乃至実施例17及び比較例1乃至比較例3で調製した光硬化性組成物1乃至光硬化性組成物20の成分を、下記表2に示す。なお、下記表2中、「部」は「質量部」を表す。また、下記表2中、(c)成分の質量部は、前記製造例1乃至製造例7で得られたUA-4200分散液又はAPG-100分散液中の表面修飾されたシリカ粒子成分のみを表し、(e)成分の質量部は、前記製造例8で得られたV#260分散液中のポリロタキサン成分のみを表す。 The components of the photocurable compositions 1 to 20 prepared in Examples 1 to 17 and Comparative Examples 1 to 3 are shown in Table 2 below. In Table 2 below, "part" represents "part by mass". Further, in Table 2 below, the mass part of the component (c) is only the surface-modified silica particle component in the UA-4200 dispersion or the APG-100 dispersion obtained in Production Examples 1 to 7. The mass part of the component (e) represents only the polyrotaxane component in the V # 260 dispersion obtained in Production Example 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[透過率測定]
実施例1乃至実施例17及び比較例1乃至比較例3で調製した各光硬化性組成物を、Novec(登録商標)1720(スリーエムジャパン(株)製)を塗布し乾燥することで離型処理したガラス基板2枚で、500μm厚のシリコーンゴム製スペーサーを介して挟み込んだ。その後、前記離型処理したガラス基板2枚に挟まれた光硬化性組成物を、前記UV-LED照射装置を用いて30mW/cmで200秒間UV露光した。露光後得られた硬化物を、前記離型処理したガラス基板から剥離した後、100℃のホットプレートで10分間加熱することで、直径3cm、500μm厚の硬化物を作製した。前記硬化物の波長410nmにおける透過率を、前記分光光度計を用いて測定した。その結果を下記表4に示す。
[Transmittance measurement]
Each photocurable composition prepared in Examples 1 to 17 and Comparative Examples 1 to 3 is subjected to mold release treatment by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) and drying. The two glass substrates were sandwiched between the two glass substrates via a silicone rubber spacer having a thickness of 500 μm. Then, the photocurable composition sandwiched between the two release-treated glass substrates was UV- exposed at 30 mW / cm 2 for 200 seconds using the UV-LED irradiation device. The cured product obtained after exposure was peeled from the mold-released glass substrate and then heated on a hot plate at 100 ° C. for 10 minutes to prepare a cured product having a diameter of 3 cm and a thickness of 500 μm. The transmittance of the cured product at a wavelength of 410 nm was measured using the spectrophotometer. The results are shown in Table 4 below.
[基板反り量測定]
Novec(登録商標)1720(スリーエムジャパン(株)製)を塗布し乾燥することで離型処理したガラス基板上に、実施例1乃至実施例17及び比較例1乃至比較例3で調製した光硬化性組成物を0.01g滴下した。その後、500μm厚のシリコーンゴム製スペーサーを介して、無アルカリガラス基板(1cm角、700μm厚)で挟み込んだ。前記無アルカリガラス基板は、信越化学工業(株)製接着補助剤(製品名:KBM-503)をプロピレングリコールモノメチルエーテルアセテートで5質量%に希釈した溶液を塗布し乾燥することで、密着処理したものである。続いて、前記光硬化性組成物を、UV-LED照射装置を用いて30mW/cmで200秒間UV露光した。露光後得られた硬化物を、前記離型処理したガラス基板から剥離した後、100℃のホットプレートで10分間加熱することで、前記密着処理した無アルカリガラス基板上に、直径0.5cm、500μm厚の硬化物を作製した。さらに、175℃のホットプレートで2分30秒間加熱した。
[Measurement of substrate warpage]
Photocuring prepared in Examples 1 to 17 and Comparative Examples 1 to 3 on a glass substrate which was released by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) and drying it. 0.01 g of the sex composition was added dropwise. Then, it was sandwiched between non-alkali glass substrates (1 cm square, 700 μm thick) via a silicone rubber spacer having a thickness of 500 μm. The non-alkali glass substrate was adhered by applying a solution of an adhesive auxiliary agent (product name: KBM-503) manufactured by Shin-Etsu Chemical Co., Ltd. diluted to 5% by mass with propylene glycol monomethyl ether acetate and drying. It is a thing. Subsequently, the photocurable composition was UV- exposed at 30 mW / cm 2 for 200 seconds using a UV-LED irradiator. The cured product obtained after the exposure was peeled off from the mold release-treated glass substrate, and then heated on a hot plate at 100 ° C. for 10 minutes on the non-alkali glass substrate to be subjected to the close contact treatment to have a diameter of 0.5 cm. A cured product having a thickness of 500 μm was prepared. Further, it was heated on a hot plate at 175 ° C. for 2 minutes and 30 seconds.
前記硬化物が作製された無アルカリガラス基板を、前記非接触表面性状測定装置のステージ上に、該無アルカリガラス基板が上面になるよう配置した。前記無アルカリガラス基板の中心を測定開始点とし、該無アルカリガラス基板の4つの頂点に向け、前記ステージに対して垂直方向(Z軸)の変位を測定した。測定データから、前記無アルカリガラス基板の中心と該無アルカリガラス基板の各頂点との間の垂直方向(Z軸)の変位量を算出し、それらの平均値を反り量と定義した。図1にガラス基板の反り量の評価方法を模式図で示す。得られた結果を下記表4に示す。 The non-alkali glass substrate on which the cured product was produced was placed on the stage of the non-contact surface property measuring device so that the non-alkali glass substrate was on the upper surface. With the center of the non-alkali glass substrate as the measurement start point, the displacement in the direction perpendicular to the stage (Z-axis) was measured toward the four vertices of the non-alkali glass substrate. From the measurement data, the amount of displacement in the vertical direction (Z-axis) between the center of the non-alkali glass substrate and each apex of the non-alkali glass substrate was calculated, and the average value thereof was defined as the amount of warpage. FIG. 1 is a schematic diagram showing a method for evaluating the amount of warpage of a glass substrate. The obtained results are shown in Table 4 below.
[裾部クラック評価]
Novec(登録商標)1720(スリーエムジャパン(株)製)を塗布し乾燥することで離型処理したフォトマスク基板(開口部1cm角)上に、実施例1乃至実施例17及び比較例1で調製した各光硬化性組成物を適量滴下した。その後、500μm厚のシリコーンゴム製スペーサーを介して、無アルカリガラス基板(10cm角、700μm厚)で挟み込んだ。前記無アルカリガラス基板は、信越化学工業(株)製接着補助剤(製品名:KBM-5803)をプロピレングリコールモノメチルエーテルアセテートで10質量%に希釈した溶液を塗布し乾燥することで、密着処理したものである。続いて、前記光硬化性組成物を、前記岩崎電気(株)製UV-LED照射装置を用いて、前記離型処理したフォトマスク基板を介して50mW/cmで9秒間UV露光し、光硬化部を形成した。前記光硬化部が密着した無アルカリガラス基板を、前記離型処理したフォトマスク基板から剥離した後、前記現像装置を用いて、現像のみを、又は現像及びリンスを行った。用いた現像液及び現像時間、並びにリンス液及びリンス時間は、下記表3に記載の現像・リンス条件の条件A乃至条件Eのいずれかである。現像時の前記無アルカリガラス基板の回転数は300rpm、リンス時の前記無アルカリガラス基板の回転数は200rpm、現像液及びリンス液の吐出流量は200mL/分である。前記現像後、又はリンスを行ったものについてはリンス後、前記現像装置を用いて3000rpmで前記無アルカリガラス基板を30秒間回転し、乾燥を行った。次いで、23℃の温度条件下にて2時間静置した後、前記シーシーエス(株)製UV-LED装置を用いて50mW/cmで111秒間UV露光し、さらに100℃のホットプレートで10分間加熱することで、前記密着処理した無アルカリガラス基板上に、1cm角、500μm厚の硬化物を作製した。作製した1cm角、500μm厚の硬化物の天面は、平面形状である。
[Evaluation of cracks at the hem]
Prepared in Examples 1 to 17 and Comparative Example 1 on a photomask substrate (opening 1 cm square) that was released by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) and drying it. An appropriate amount of each photocurable composition was added dropwise. Then, it was sandwiched between non-alkali glass substrates (10 cm square, 700 μm thick) via a silicone rubber spacer having a thickness of 500 μm. The non-alkali glass substrate was adhered by applying a solution of an adhesive auxiliary agent (product name: KBM-5803) manufactured by Shin-Etsu Chemical Co., Ltd. diluted to 10% by mass with propylene glycol monomethyl ether acetate and drying. It is a thing. Subsequently, the photocurable composition was UV-exposed at 50 mW / cm 2 for 9 seconds via the photomask substrate that had been demolded using the UV-LED irradiator manufactured by Iwasaki Electric Co., Ltd. to obtain light. A hardened part was formed. After the non-alkali glass substrate to which the photocurable portion was in close contact was peeled off from the photomask substrate which had been subjected to the mold release treatment, only development or development and rinsing were performed using the developing apparatus. The developing solution and developing time used, and the rinsing solution and rinsing time are any of the conditions A to E of the developing / rinsing conditions shown in Table 3 below. The rotation speed of the non-alkali glass substrate during development is 300 rpm, the rotation speed of the non-alkali glass substrate during rinsing is 200 rpm, and the discharge flow rate of the developer and the rinse liquid is 200 mL / min. After the development or after rinsing, the non-alkali glass substrate was rotated at 3000 rpm for 30 seconds using the developing apparatus to dry the glass substrate. Then, after allowing to stand for 2 hours under a temperature condition of 23 ° C., UV exposure was performed at 50 mW / cm 2 for 111 seconds using the UV-LED device manufactured by CCS Inc., and further 10 minutes on a hot plate at 100 ° C. By heating, a cured product having a thickness of 1 cm square and 500 μm was prepared on the non-alkali glass substrate which had been subjected to the close contact treatment. The top surface of the produced 1 cm square, 500 μm thick cured product has a planar shape.
さらに、実施例1で調製した光硬化性組成物1を用いて、以下の手順にてレンズ形状を有する硬化物も作製した。すなわち、前記離型処理したフォトマスク基板を、離型処理した遮光膜付き樹脂製モールド(約100μm厚の反転レンズ形状)に変更し、前記500μm厚のシリコーンゴム製スペーサーを600μm厚のシリコーンゴム製スペーサーに変更した以外は、前記1cm角、500μm厚の硬化物の作製方法と同様の方法で、レンズ形状を有する硬化物を作製した。作製したレンズ形状を有する硬化物の天面は、曲面形状である。前記遮光膜付き樹脂製モールドの離型処理方法は、前記フォトマスク基板の離型処理方法と同様である。 Further, using the photocurable composition 1 prepared in Example 1, a cured product having a lens shape was also prepared by the following procedure. That is, the release-treated photomask substrate is changed to a resin mold with a light-shielding film (a shape of an inverting lens having a thickness of about 100 μm), and the 500 μm-thick silicone rubber spacer is made of 600 μm-thick silicone rubber. A cured product having a lens shape was produced by the same method as the method for producing a cured product having a thickness of 1 cm square and 500 μm except that the spacer was used. The top surface of the produced cured product having a lens shape has a curved surface shape. The mold release treatment method for the resin mold with a light-shielding film is the same as the mold release treatment method for the photomask substrate.
Figure JPOXMLDOC01-appb-T000009
上記表3において、PGMEAはプロピレングリコールモノメチルエーテルアセテートを、PGMEはプロピレングリコールモノメチルエーテルを、GBLはγ-ブチロラクトンを、ELは乳酸エチルを、THFAはテトラヒドロフルフリルアルコールを、CHAはシクロヘキサノールを、MCHはメチルシクロヘキサンを表す。条件Cの現像液、並びに条件Eの現像液及びリンス液は混合溶剤であり、その成分及び混合比率を表3に質量比で表す。
Figure JPOXMLDOC01-appb-T000009
In Table 3 above, PGMEA is propylene glycol monomethyl ether acetate, PGME is propylene glycol monomethyl ether, GBL is γ-butyrolactone, EL is ethyl lactate, THFA is tetrahydrofurfuryl alcohol, CHA is cyclohexanol, and MCH. Represents methylcyclohexane. The developer under condition C and the developer and rinse solution under condition E are mixed solvents, and their components and mixing ratios are shown in Table 3 by mass ratio.
前記天面が平面形状の硬化物及び前記天面が曲面形状の硬化物の裾部について、それぞれ前記光学顕微鏡を用いて観察した。これらの硬化物の裾部にクラックが確認される場合を“×”と判定し、該硬化物の裾部にクラックが確認されない場合を“○”と判定した。その結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000010
The hem of the cured product having a flat top surface and the cured product having a curved top surface were observed using the optical microscope, respectively. When cracks were confirmed at the hem of these cured products, it was determined as “x”, and when no cracks were confirmed at the hem of the cured product, it was determined as “◯”. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000010
実施例1乃至実施例17で調製した光硬化性組成物から作製された硬化物においては、高い透過率(90%以上)及び低い基板反り量(3.0μm未満)を示し、さらに条件A乃至条件Eいずれの現像・リンス条件、あるいは平面、曲面いずれの天面形状であっても裾部にクラックが観察されなかった。図2は、実施例15で調製した光硬化性組成物15から作製された硬化物を、条件Dの現像・リンス条件にて処理した際の裾部を示す。 The cured product prepared from the photocurable compositions prepared in Examples 1 to 17 showed high transmittance (90% or more) and a low substrate warpage amount (less than 3.0 μm), and further, Conditions A to Condition E No cracks were observed at the hem regardless of the development / rinsing conditions, or the top surface shape of either a flat surface or a curved surface. FIG. 2 shows the hem portion when the cured product prepared from the photocurable composition 15 prepared in Example 15 is treated under the development / rinsing condition of Condition D.
一方、前記(c)成分の代わりに、前記式(1)で表されないその他のシランカップリング剤(MPTMS)で表面修飾されたシリカ粒子を使用した比較例1で調製した光硬化性組成物から作製された硬化物においては、透過率が90%を下回り、さらに裾部にクラックが観察された。図3は、比較例1で調製した光硬化性組成物18から作製された硬化物を、条件Dの現像・リンス条件にて処理した際の裾部を示す。図3中の複数の矢印は、クラック発生箇所を示す。また、前記(d)成分を使用しなかった比較例2及び比較例3で調製した光硬化性組成物から作製された硬化物においては、基板反り量が3.0μm以上となった。 On the other hand, from the photocurable composition prepared in Comparative Example 1 in which silica particles surface-modified with another silane coupling agent (MPTMS) not represented by the formula (1) were used instead of the component (c). In the produced cured product, the transmittance was less than 90%, and cracks were observed at the hem. FIG. 3 shows the hem portion when the cured product prepared from the photocurable composition 18 prepared in Comparative Example 1 was treated under the development / rinsing condition of Condition D. The plurality of arrows in FIG. 3 indicate the crack occurrence location. Further, in the cured product prepared from the photocurable compositions prepared in Comparative Example 2 and Comparative Example 3 in which the component (d) was not used, the amount of substrate warpage was 3.0 μm or more.
以上より、本発明の前記(a)成分乃至前記(d)成分を含む光硬化性組成物から得られる硬化物(成形体)は、高い透過率を示し、支持体上に該硬化物(成形体)を形成した際の該支持体の反り量が小さく、さらには、有機溶剤を用いた現像工程を経ても該硬化物(成形体)の裾部にクラックが発生しない、高解像度カメラモジュール用のレンズとして望ましい特性を有することが示された。
 
From the above, the cured product (molded product) obtained from the photocurable composition containing the component (a) to the component (d) of the present invention exhibits high transmittance, and the cured product (molded product) is placed on the support. For high-resolution camera modules, the amount of warpage of the support when the body) is formed is small, and cracks do not occur at the hem of the cured product (molded product) even after undergoing a development process using an organic solvent. It was shown to have desirable properties as a lens of.

Claims (17)

  1. 下記(a)成分、下記(b)成分、下記(c)成分及び下記(d)成分を含む、光硬化性組成物。
    (a):(メタ)アクリロイルオキシ基を1分子中に2つ以上有する少なくとも1種の多官能(メタ)アクリレート
    (b):光ラジカル開始剤
    (c):下記式(1)で表される少なくとも1種のシランカップリング剤で表面修飾された、一次粒子径が1nm乃至100nmのシリカ粒子
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは水素原子、又は(メタ)アクリロイルオキシ基を表し、R及びRはそれぞれ独立して水素原子又は炭素原子数1又は2のアルキル基を表し、mは8乃至14の整数を表し、nは0乃至2の整数を表す。)
    (d):下記式(2)で表される多官能チオール
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは単結合、炭素原子数1乃至6の直鎖状アルキレン基又は炭素原子数3乃至6の分岐鎖状のアルキレン基を表し、Xは単結合、エステル結合又はエーテル結合を表し、Qはヘテロ原子を少なくとも1つ含むもしくはヘテロ原子を含まない炭素原子数2乃至12の有機基、又はヘテロ原子を表し、pは2乃至6の整数を表す。)
    A photocurable composition containing the following component (a), the following component (b), the following component (c), and the following component (d).
    (A): At least one polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule: photoradical initiator (c): represented by the following formula (1). Silane particles having a primary particle diameter of 1 nm to 100 nm, which are surface-modified with at least one silane coupling agent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X 1 represents a hydrogen atom or a (meth) acryloyloxy group, R 1 and R 2 independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, and m is 8 to 14 Represents an integer of, and n represents an integer of 0 to 2.)
    (D): Polyfunctional thiol represented by the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 represents a single bond, a linear alkylene group having 1 to 6 carbon atoms or a branched alkylene group having 3 to 6 carbon atoms, and X 2 represents a single bond, an ester bond or an ether bond. the stands, Q 1 represents at least one containing or organic group having a carbon number of 2 to 12 containing no hetero atoms or hetero atom, the hetero atom, p is an integer of 2 to 6.)
  2. さらに、下記(e)成分を含む、請求項1に記載の光硬化性組成物。
    (e):(メタ)アクリロイルオキシ基を有するポリロタキサン
    The photocurable composition according to claim 1, further comprising the following component (e).
    (E): Polyrotaxane having a (meth) acryloyloxy group
  3. さらに、下記(f)成分及び/又は下記(g)成分を含む、請求項1又は請求項2に記載の光硬化性組成物。
    (f):フェノール系酸化防止剤
    (g):スルフィド系酸化防止剤
    The photocurable composition according to claim 1 or 2, further comprising the following component (f) and / or the following component (g).
    (F): Phenolic antioxidant (g): Sulfide antioxidant
  4. さらに、下記(h)成分を含む、請求項1乃至請求項3のいずれか一項に記載の光硬化性組成物。
    (h):(メタ)アクリロイルオキシ基又はアリルオキシ基を1分子中に1つ有するモノマー
    The photocurable composition according to any one of claims 1 to 3, further comprising the following component (h).
    (H): Monomer having one (meth) acryloyloxy group or allyloxy group in one molecule
  5. 前記(a)成分は、(メタ)アクリロイルオキシ基を1分子中に2つ有する二官能(メタ)アクリレートであるか、又は該二官能(メタ)アクリレート及び(メタ)アクリロイルオキシ基を1分子中に3つ有する三官能(メタ)アクリレートである、請求項1乃至請求項4のいずれか一項に記載の光硬化性組成物。 The component (a) is a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in one molecule, or the bifunctional (meth) acrylate and the (meth) acryloyloxy group in one molecule. The photocurable composition according to any one of claims 1 to 4, which is a trifunctional (meth) acrylate having three of the above.
  6. 前記(a)成分は、下記(a1)成分及び下記(a2)成分を含む、請求項5に記載の光硬化性組成物。
    (a1):二官能ウレタン(メタ)アクリレート
    (a2):下記式(3)で表される二官能(メタ)アクリレート
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは水素原子又はメチル基を表し、Qは炭素原子数4乃至10の直鎖状又は分岐鎖状のアルキレン基を表す。)
    The photocurable composition according to claim 5, wherein the component (a) contains the following component (a1) and the following component (a2).
    (A1): Bifunctional urethane (meth) acrylate (a2): Bifunctional (meth) acrylate represented by the following formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 4 represents a hydrogen atom or a methyl group, and Q 2 represents a linear or branched alkylene group having 4 to 10 carbon atoms.)
  7. 前記(c)成分は、前記式(1)におけるXが(メタ)アクリロイルオキシ基を表すシランカップリング剤で表面修飾されたシリカ粒子である、請求項1乃至請求項6のいずれか一項に記載の光硬化性組成物。 The component (c) is any one of claims 1 to 6, wherein X 1 in the formula (1) is a silica particle surface-modified with a silane coupling agent representing a (meth) acryloyloxy group. The photocurable composition according to.
  8. 請求項1乃至請求項7のいずれか一項に記載の光硬化性組成物の硬化物。 The cured product of the photocurable composition according to any one of claims 1 to 7.
  9. 請求項1乃至請求項7のいずれか一項に記載の光硬化性組成物をインプリント成形する工程を含む、成形体の製造方法。 A method for producing a molded product, which comprises a step of imprint molding the photocurable composition according to any one of claims 1 to 7.
  10. 光硬化性組成物の成形体の製造方法であって、支持体上に請求項1乃至請求項7のいずれか一項に記載の光硬化性組成物を塗布する工程、該光硬化性組成物と、目的とする成形体の形状の反転パターン及び遮光膜を有するモールドとを接触させるインプリント工程、該インプリント工程の後、該モールドを介して該光硬化性組成物を露光して光硬化部を形成する光硬化工程、該光硬化部と該モールドとを分離する離型工程、該離型工程の後、該光硬化性組成物の未硬化部を現像液により除去して該光硬化部を露出させる現像工程、及び該現像工程の後、該光硬化部が形成された支持体をスピン乾燥させる乾燥工程を含む、成形体の製造方法。 A method for producing a molded product of a photocurable composition, wherein the photocurable composition according to any one of claims 1 to 7 is applied onto a support, the photocurable composition. After the imprinting step of contacting the molding with the inverted pattern of the shape of the target molded product and the mold having a light-shielding film, and the imprinting step, the photocurable composition is exposed through the mold and photocured. After a photocuring step of forming a portion, a mold release step of separating the photocurable portion and the mold, and the mold release step, the uncured portion of the photocurable composition is removed with a developing solution and the photocuring is performed. A method for producing a molded product, which comprises a developing step of exposing a portion, and a drying step of spin-drying a support on which the photocurable portion is formed after the developing step.
  11. 前記光硬化工程の後、前記離型工程の前、中途又は後に、前記光硬化部を加熱する工程をさらに含む、請求項10に記載の成形体の製造方法。 The method for producing a molded product according to claim 10, further comprising a step of heating the photocurable portion after the photocuring step and before, during, or after the mold release step.
  12. 前記現像工程の後、前記乾燥工程の前に、前記光硬化部に対してリンス液を用いてリンス処理するリンス工程をさらに含む、請求項10又は請求項11に記載の成形体の製造方法。 The method for producing a molded product according to claim 10 or 11, further comprising a rinsing step of rinsing the photocured portion with a rinsing solution after the developing step and before the drying step.
  13. 前記乾燥工程の後、前記光硬化部の全面を露光するポスト露光工程をさらに含む、請求項10乃至請求項12のいずれか一項に記載の成形体の製造方法。 The method for producing a molded product according to any one of claims 10 to 12, further comprising a post-exposure step of exposing the entire surface of the photocurable portion after the drying step.
  14. 前記ポスト露光工程の後、前記光硬化部を加熱するポストベーク工程をさらに含む、請求項13に記載の成形体の製造方法。 The method for producing a molded product according to claim 13, further comprising a post-baking step of heating the photocurable portion after the post-exposure step.
  15. 前記ポスト露光工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含む、請求項13に記載の成形体の製造方法。 The method for producing a molded product according to claim 13, further comprising a step of forming an antireflection film on the surface of the photocurable portion after the post-exposure step.
  16. 前記ポストベーク工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含む、請求項14に記載の成形体の製造方法。 The method for producing a molded product according to claim 14, further comprising a step of forming an antireflection film on the surface of the photocurable portion after the post-baking step.
  17. 前記成形体がカメラモジュール用レンズである、請求項9乃至請求項16のいずれか一項に記載の成形体の製造方法。
     
    The method for manufacturing a molded product according to any one of claims 9 to 16, wherein the molded product is a lens for a camera module.
PCT/JP2021/011251 2020-04-20 2021-03-18 Photocurable composition WO2021215155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022516891A JP7469746B2 (en) 2020-04-20 2021-03-18 Photocurable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020074903 2020-04-20
JP2020-074903 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215155A1 true WO2021215155A1 (en) 2021-10-28

Family

ID=78269411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011251 WO2021215155A1 (en) 2020-04-20 2021-03-18 Photocurable composition

Country Status (3)

Country Link
JP (1) JP7469746B2 (en)
TW (1) TW202206466A (en)
WO (1) WO2021215155A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202127A (en) * 2010-03-26 2011-10-13 Asahi Kasei E-Materials Corp Light sensitive resin composition and cured product
JP2013151609A (en) * 2012-01-25 2013-08-08 Shin-Etsu Chemical Co Ltd Curing resin composition, cured molded article thereof, and article having cured film
JP2015172176A (en) * 2014-02-18 2015-10-01 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal panel, liquid crystal display and photo-curing method
JP2017114962A (en) * 2015-12-22 2017-06-29 日立化成株式会社 Prior-supply type underfill material, cured product of the same, electronic component device, and method for producing the same
WO2017203979A1 (en) * 2016-05-27 2017-11-30 富士フイルム株式会社 Curable composition, cured film, color filter, light blocking film, solid-state imaging element, image display device, and method for producing cured film
WO2018155013A1 (en) * 2017-02-22 2018-08-30 日産化学工業株式会社 Photocurable composition for imprinting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202127A (en) * 2010-03-26 2011-10-13 Asahi Kasei E-Materials Corp Light sensitive resin composition and cured product
JP2013151609A (en) * 2012-01-25 2013-08-08 Shin-Etsu Chemical Co Ltd Curing resin composition, cured molded article thereof, and article having cured film
JP2015172176A (en) * 2014-02-18 2015-10-01 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal panel, liquid crystal display and photo-curing method
JP2017114962A (en) * 2015-12-22 2017-06-29 日立化成株式会社 Prior-supply type underfill material, cured product of the same, electronic component device, and method for producing the same
WO2017203979A1 (en) * 2016-05-27 2017-11-30 富士フイルム株式会社 Curable composition, cured film, color filter, light blocking film, solid-state imaging element, image display device, and method for producing cured film
WO2018155013A1 (en) * 2017-02-22 2018-08-30 日産化学工業株式会社 Photocurable composition for imprinting

Also Published As

Publication number Publication date
JPWO2021215155A1 (en) 2021-10-28
JP7469746B2 (en) 2024-04-17
TW202206466A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
TWI522413B (en) Hardened resin composition
KR101070656B1 (en) Curable composition and anti-reflective laminate
KR102549487B1 (en) Photocurable composition for imprint
WO2020003863A1 (en) Photocurable composition for imprinting
KR102496908B1 (en) Photocurable composition for imprint
TWI363764B (en)
KR20200128404A (en) Photocurable composition for imprint containing polymer
WO2021215155A1 (en) Photocurable composition
WO2023100991A1 (en) Silsesquioxane derivative, curable composition, hard coat agent, cured product, hard coat, and base material
WO2022202005A1 (en) Photocurable composition for film formation
JP7091683B2 (en) Organopolysiloxane
TWI785132B (en) Photocurable composition for imprint
WO2022044743A1 (en) Photocurable composition for imprinting
WO2020213373A1 (en) Photocurable composition for imprint
WO2006054470A1 (en) Method for producing multilayer body
WO2023100992A1 (en) Silsesquioxane derivative, curable composition, cured product, and base material
TW202406993A (en) Silsesquioxane derivative and method of producing the same, curable composition, hard coating agent, cured product, hard coating, and base material
JP2022182542A (en) Photocurable resin composition and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792400

Country of ref document: EP

Kind code of ref document: A1