WO2022044743A1 - Photocurable composition for imprinting - Google Patents

Photocurable composition for imprinting Download PDF

Info

Publication number
WO2022044743A1
WO2022044743A1 PCT/JP2021/028993 JP2021028993W WO2022044743A1 WO 2022044743 A1 WO2022044743 A1 WO 2022044743A1 JP 2021028993 W JP2021028993 W JP 2021028993W WO 2022044743 A1 WO2022044743 A1 WO 2022044743A1
Authority
WO
WIPO (PCT)
Prior art keywords
imprint
photocurable composition
resin
photocurable
photo
Prior art date
Application number
PCT/JP2021/028993
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 今井
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022545602A priority Critical patent/JPWO2022044743A1/ja
Publication of WO2022044743A1 publication Critical patent/WO2022044743A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a photocurable composition for imprint that specifies a range of storage elastic modulus of the cured product.
  • Resin lenses are used in camera modules mounted on electronic devices such as mobile phones, smartphones, digital cameras, and in-vehicle cameras.
  • electronic devices have become smaller and more sophisticated, and along with this, there has been a demand for thinner and higher resolution camera modules.
  • a shift from injection molding of a thermoplastic resin to wafer-level molding by UV imprinting of a photocurable resin is being actively studied.
  • a photocurable resin is applied on a support such as a glass substrate, and then the mold is pressed against the photocurable resin to irradiate the light with light.
  • a resin lens on the body
  • the other is to mold a monolithic resin lens by sandwiching a photocurable resin between a pair of molds and irradiating it with light without using a support.
  • the one obtained by the former method is called a hybrid lens because it has a structure in which an inorganic support and an organic resin lens are combined, and is preferably used from the viewpoint of productivity.
  • a camera module is manufactured by laminating a lens molded by such a method in combination with an optical member such as an IR cut filter and an image sensor.
  • a camera module particularly a high-resolution camera module, requires a plurality of lenses whose shapes are precisely designed in order to suppress image blurring and distortion called aberration. Since the deviation of the lens shape causes aberration, the lens is required to maintain the shape at the time of molding. As a means for improving the shape retention of the resin, it is known to increase the storage elastic modulus of the resin.
  • Patent Document 1 proposes an optical ultraviolet curable adhesive composition having an elastic modulus of 1.0 ⁇ 10 4 to 1.0 ⁇ 105 Pa, and has an elastic modulus of 1. It is stated that when it is 0 ⁇ 10 5 Pa or less, the cushioning property against thermal impact and external impact is improved, and when it is 1.0 ⁇ 10 4 or more, the mechanical strength is improved.
  • Patent Document 2 states that a wafer level lens having excellent shape retention even in a high temperature environment can be formed by setting the storage elastic modulus of the cured product at 160 ° C. to 0.1 ⁇ 109 Pa or more. Is mentioned, but impact resistance is not mentioned.
  • the range of elastic modulus proposed in Patent Document 1 is insufficient for the resin lens for a camera module to secure shape retention.
  • shape retention and impact resistance are in a trade-off relationship from the viewpoint of storage elastic modulus, and there is still no resin lens for camera modules that sufficiently satisfies both characteristics, and its development is desired.
  • the present invention has been made in view of such circumstances, and is capable of producing a resin lens for a camera module, particularly a hybrid lens, which has both shape retention and impact resistance, and is photocurable for imprinting. It is an object of the present invention to provide a sex composition.
  • the present inventor has found that the shape retention and impact resistance of the resin lens for a camera module are closely related to the storage elastic modulus of the cured product. .. Specifically, if the storage elastic modulus of the cured product measured by dynamic viscoelasticity measurement (hereinafter, abbreviated as DMA) is less than 4.0 ⁇ 109 Pa at ⁇ 40 ° C., impact resistance It was found that the property was dramatically improved, and the shape retention was dramatically improved when the temperature was 1.0 ⁇ 107 Pa or more at 100 ° C. Furthermore, they have found a unique parameter that defines the conditions necessary to satisfy the range of the storage elastic modulus, and have completed the present invention.
  • DMA dynamic viscoelasticity measurement
  • the first aspect of the present invention is a photocurable composition for imprint containing a resin and a photoinitiator, and the curing of the photocurable composition for imprint measured by dynamic viscoelastic measurement.
  • a photocurable composition for imprint which has a storage elastic modulus of less than 4.0 ⁇ 10 9 Pa at ⁇ 40 ° C. and 1.0 ⁇ 10 7 Pa or more at 100 ° C.
  • the resin contains, for example, at least one crosslinkable resin as an essential component and a non-crosslinkable resin as an optional component, and the parameter X represented by the following formula (1) is 0.10 or more and less than 0.60.
  • m represents the number of the crosslinkable resins contained in the resin
  • xi is the ratio (unit::) of each of the crosslinkable resins to 100 parts by mass of the sum of all the components of the resin. (Parts by mass)
  • y i represents the polymerizable functional group equivalent (unit: g / eq) of each of the crosslinkable resins
  • i represents a positive integer from 1 to m).
  • the resin comprises, for example, a radically polymerizable resin, and the photoinitiator comprises, for example, a photoradical generator.
  • the resin comprises, for example, a cationically polymerizable resin, and the photoinitiator comprises, for example, a photoacid generator.
  • the photocurable composition for imprint may further contain silica particles.
  • the second aspect of the present invention is a cured product of the photocurable composition for imprinting.
  • a third aspect of the present invention is a molded body of the photocurable composition for imprinting.
  • the molded body is, for example, a lens for a camera module.
  • the lens for the camera module is, for example, a hybrid lens.
  • a fourth aspect of the present invention is a method for producing a molded body of a photocurable composition for imprint, which is a coating step of applying the photocurable composition for imprint on a support, the photo for imprint.
  • the mold-removing step of separating the photo-curing portion from the mold, and the demolding step, the uncured portion of the photo-curable composition for imprinting.
  • Is a method for producing a molded product which comprises a developing step of removing the photo-cured portion with a developing solution to expose the photo-cured portion, and a drying step of spin-drying the support on which the photo-cured portion is formed after the developing step. ..
  • a step of heating the photo-curing portion may be further included.
  • a rinsing step of rinsing the photocured portion with a rinsing liquid may be further included.
  • a post-exposure step of exposing the entire surface of the photo-cured portion may be further included.
  • a post-baking step of heating the photo-cured portion may be further included.
  • a step of forming an antireflection film on the surface of the photocurable portion may be further included.
  • a step of forming an antireflection film on the surface of the photo-curing portion may be further included.
  • the storage elastic modulus of the cured product of the photocurable composition for imprint satisfies the above range, and the parameter X satisfies the above range. Both excellent retention and impact resistance. Therefore, the photocurable composition for imprint of the present invention can be suitably used as a resin lens for a camera module, particularly a hybrid lens.
  • DMA Dynamic Mechanical Analysis (dynamic viscoelasticity measurement), and refers to a measurement carried out under the following conditions with reference to the contents described in JIS K 7244-4.
  • the photocurable composition for imprint of the present invention is sandwiched between two glass substrates so as to have a thickness of 200 ⁇ m, and an illuminance of 50 mW / cm under an air atmosphere using a UV-LED irradiation device having a maximum wavelength of 365 nm.
  • UV exposure is performed at 2 for 120 seconds (exposure amount 6 J / cm 2 ), and the obtained cured product is cut to prepare a strip-shaped test piece (length 30 mm, width 4 mm, thickness 200 ⁇ m).
  • Measurement mode Tension vibration
  • Tension strain 0.1%
  • Frequency 1Hz
  • Measurement temperature range -50 ° C to 200 ° C
  • Temperature rise rate 2 ° C / min
  • Measurement atmosphere Air
  • the storage elastic modulus in the present invention refers to the tensile storage elastic modulus measured by the DMA.
  • the storage modulus is a physical property that represents the elastic properties of a material.
  • a material having an extremely large storage elastic modulus such as metal and glass is hard and difficult to deform, but has poor dissipative property of stress generated by the deformation, and on the other hand, a storage elastic modulus represented by rubber or the like is extremely small.
  • the material is soft and easily deformed, but is excellent in dissipating the stress generated by the deformation.
  • the temperature of a general resin decreases, the storage elastic modulus increases and the elastic property becomes stronger, while as the temperature increases, the storage elastic modulus decreases and the elastic property becomes weaker.
  • the impact resistance of the cured product and the molded product obtained from the photocurable composition for imprint of the present invention is closely related to the storage elastic modulus of the cured product at ⁇ 40 ° C., and the cured product is ⁇ 40.
  • the storage elastic modulus at ° C. is 4.0 ⁇ 109 Pa or more
  • the dissipative property of the stress generated during the thermal impact test becomes poor, so that the cured product and the molded product crack, peel off from the support, and the like.
  • Impact resistance is significantly reduced.
  • the reason for paying attention to the temperature of ⁇ 40 ° C. is that the minimum temperature in a general thermal shock test is around ⁇ 40 ° C.
  • the shape retention of the cured product and the molded product obtained from the photocurable composition for imprint of the present invention is closely related to the storage elastic modulus of the cured product at 100 ° C., and the cured product at 100 ° C.
  • the storage elastic modulus is less than 1.0 ⁇ 107 Pa
  • the shape retention of the cured product and the molded product is significantly reduced.
  • the reason for paying attention to the temperature of 100 ° C. is that the preferable maximum process temperature in wafer level molding by UV imprinting is around 100 ° C.
  • the resin in the present invention is roughly classified into a crosslinkable resin and a non-crosslinkable resin.
  • the crosslinkable resin in the present invention is a resin capable of forming a three-dimensional crosslinked product by polymerization, and at least one polymerizable functional group selected from a methacryloyloxy group, an acryloyloxy group, an epoxy group and an oxetanyl group is contained in one molecule. It is a resin having two.
  • the type of polymerizable functional group contained in one molecule may be the same or different.
  • the non-crosslinkable resin in the present invention is a resin having only one (meth) acryloyloxy group, an epoxy group or an oxetanyl group in one molecule, or no resin.
  • the (meth) acrylate in the present invention refers to a methacrylate having at least one methacryloyloxy group in one molecule or an acrylate having at least one acryloyloxy group in one molecule.
  • examples of the radically polymerizable resin include the following products and compounds. Viscoat # 195, # 230, # 260, # 310HP, # 335HP (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), BD, NPG, A-NPG, HD-N, A-HD-N, NOD-N, A-NOD-N, A-IND, DOD-N, A-DOD-N, DCP, A-DCP, A-DOG, 1G, 2G, 3G, 4G, 9G, 14G, 23G, A- 200, A-400, A-600, A-1000, APG-100, APG-200, APG-400, APG-700, 3PG, 9PG, A-1206PE, A-0612PE, A-0412PE, A-1000PER, A-3000PER, A-PTMG-65, ABE-300, A-BPE-4, A-BPE
  • BP-4EAL, BP-4PA, HPP-A epoxy ester 40EM, 70PA, 200PA, 80MFA, 3002M (N), 3002A (N), 3000MK, 3000A (Kyoeisha Chemical Industry Co., Ltd. (Manufactured by Co., Ltd.), HDDA, DPGDA, TPGDA, IRR 214-K, EBECRYL (registered trademark) 11, 130, 145, 150, 210, 230, 270, 280/15 IB, 284, 284.
  • DPE-6A (all manufactured by Kyoeisha Chemical Co., Ltd.), PETA, DPHA, PETIA, PETRA, TMPTA, OTA480, EBECRYL (registered trademark) 160S, 40, 140, 1142, 220, 8800, 294 / 25HD, 4220, 4513, 4738, 4740, 4820, 8311, 9260, 8701, 4265, 4587, 4666, 4680, 8210, 8405, 1290, 5129, 8301R, 4501, 2221, 8465, 1258, 4101, 4201, 8209, 1291, 8602, 225, KRM (registered trademark) 8667, 8296, 8528, same 8200, 8200AE, 8530, 8904, 8531BA, 8452 (all manufactured by Daicel Ornex Co., Ltd.), TMPTM, TMPT, TMP-2P, TMP-3P, TMP-3, PET-3, PETA- 4, TEICA,
  • examples of the cationically polymerizable resin include the following products and compounds.
  • EPICLON registered trademark
  • DENACOL registered trademark
  • Oxetane resins such as ETENCOLL (registered trademark) OXBP, OXIPA (above, manufactured by Ube Industries, Ltd.), Aron Oxetane (registered trademark) OXT-121 and OXT-221 (above, manufactured by Toagosei Co., Ltd.).
  • examples of the radically polymerizable resin include the following products and compounds.
  • FA-512MT, FA-512AS, FA-513M, FA-513AS (all manufactured by Hitachi Chemical Co., Ltd.), LMA, LA, S, AS, S-1800M, S-1800A, IB, A -IB, PHE-1G, AMP-10G, PHE-2G, AMP-20GY, M-20G, M-30G, AM-30G, M-40G, M-90G, AM-90G, M-130G, AM-130G , M-230G, AM-230G, M-30PG, AM-30PG, 702A (all manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Light Ester M, E, NB, IB, TB, EH, Same L, Same S, Same CH, Same IB-X, Same BZ, Same PO, Same THF (1000), Same 130MA, Same 041MA, Same HO-250 (N), Same HOA (N), Same DM, Same DE, Light Acrylate® LA, SA, IB-XA, PO-A, THF
  • examples of the cationically polymerizable resin include the following products and compounds.
  • DENACOL registered trademark
  • EX-121, EX-141, EX-145, EX-146, EX-147, EX-171, EX-192, EX-731 aboveve, Nagase Chemtex (above, Nagase Chemtex) Monofunctional epoxy resin such as ED-502, ED-502S, ED-509E, ED-509S and ED-529 (all manufactured by ADEKA Corporation).
  • Monofunctional oxetane resins such as ETERNCOLL (registered trademark) EHO, HBOX (above, manufactured by Ube Industries, Ltd.), Aron Oxetane (registered trademark) OXT-101 and OXT-212 (above, manufactured by Toagosei Co., Ltd.) ..
  • the photocurable composition for imprint of the present invention contains a resin in which the parameter X represented by the following formula (1) is 0.10 or more and less than 0.60.
  • m represents the number of the crosslinkable resins contained in the resin
  • xi is the ratio (unit::) of each of the crosslinkable resins to 100 parts by mass of the sum of all the components of the resin. (Parts by mass)
  • y i represents the polymerizable functional group equivalent (unit: g / eq) of each of the crosslinkable resins, and i represents a positive integer from 1 to m).
  • the polymerizable functional group equivalent means the mass of the resin containing 1 gram equivalent of the polymerizable functional group, and simply, the molecular weight or the average molecular weight of the resin containing the polymerizable functional group is the number of the polymerizable functional groups. It is calculated by dividing by, or by quantitatively analyzing by various methods such as nuclear magnetic resonance spectroscopy and infrared spectroscopy.
  • the resin containing the polymerizable functional group is (meth) acrylate
  • the (meth) acrylic equivalent is measured by the method described in JIS K 2605
  • the epoxy equivalent is measured by the method described in JIS K 7236. be able to.
  • Parameter X is a unique parameter found by the present inventor that estimates the crosslink density of a three-dimensional crosslinked product obtained by curing the photocurable composition for imprint of the present invention at the stage of the composition before curing. , Consists of sections relating to crosslinkable resins.
  • the content ratio is multiplied by the inverse of the polymerizable functional group equivalent, that is, the number of polymerizable functional groups per unit mass (x i / y i ), and each crosslinkable resin x It is the sum of i / y i and means the contribution of the crosslinkable resin to the crosslink density of the three-dimensional crosslinker.
  • the contribution of the non-crosslinkable resin to the crosslink density of the three-dimensional crosslinked product was regarded as zero. The reason is that the non-crosslinkable resin does not polymerize by itself, or even if it polymerizes, it does not form a three-dimensional crosslinked product and only extends between the crosslink points.
  • the more the crosslinkable resin or the non-crosslinkable resin having a large polymerizable functional group equivalent is contained in the resin the smaller the parameter X becomes, and the cured product of the photocurable composition for imprint of the present invention.
  • the parameter X of the photocurable composition for imprint of the present invention is closely related to the storage elastic modulus of the cured product of the photocurable composition for imprint, and the parameter X is 0.10 or more and 0.60.
  • the storage elastic modulus of the cured product of the photocurable composition for imprint is less than 4.0 ⁇ 109 Pa at ⁇ 40 ° C. and 1 at 100 ° C. The condition that it is 0.0 ⁇ 10 7 Pa or more is satisfied.
  • the storage elastic modulus of the cured product of the photocurable composition for imprint is 4.0 ⁇ 109 Pa or more at ⁇ 40 ° C.
  • the impact resistance of the cured product and the molded product obtained from the photocurable composition for imprinting is significantly reduced.
  • the storage elastic modulus of the cured product of the photocurable composition for imprint is less than 1.0 ⁇ 107 Pa at 100 ° C.
  • the shape retention of the cured product and the molded product obtained from the photocurable composition for imprint is significantly reduced.
  • the type of resin contained in the photocurable composition for imprinting in the present invention is not particularly limited as long as the parameter X is 0.10 or more and less than 0.60. Even if the photocurable composition for imprint in the present invention contains silica particles and other additives in addition to the resin and the photoinitiator, the resin is prepared so that the parameter X is 0.10 or more and less than 0.60. It is desirable to contain it.
  • the photoinitiator in the present invention is roughly classified into a photoradical generator and a photoacid generator. It is desirable to use the photoradical generator in combination with a radically polymerizable resin and the photoacid generator in combination with a cationically polymerizable resin.
  • intramolecular cleavage type photoradical generators are preferable.
  • Commercially available products may be used as the photoradical generator, for example, OMNIRAD (registered trademark) 127, 184, 369, 369E, 379EG, 500, 651, 819, 784, 907.
  • IGM Resins 1173, 2959, TPO H (above, IGM Resins), IRGACURE (registered trademark) OXE01, OXE02, OXE03, OXE04, CGI1700, CGI1750, CGI1850, CG24-61 (above, BASF) Examples thereof include ESACURE KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46 and KIP75 (all manufactured by Lamberti).
  • Examples of the photoacid generator that can be used in the photocurable composition for imprint of the present invention include aryl sulfonium salts and aryl iodonium salts.
  • Commercially available products may be used as the photoacid generator, for example, CPI (registered trademark) -100P, -101A, -110P, -200K, -210S, -300, -310B, -.
  • TPS-PFBS examples thereof include TPS-PFBS and DTBPI-PFBS (all manufactured by Toyo Synthetic Industry Co., Ltd.).
  • the content of the photoinitiator of the photocurable composition for imprint of the present invention is 0.05 part by mass with respect to 100 parts by mass of the sum of all the resin components contained in the photocurable composition for imprint. It is 5 parts by mass, preferably 0.1 part by mass to 3 parts by mass, and more preferably 0.5 part by mass to 2 parts by mass.
  • the photoinitiator may be used alone or in combination of two or more.
  • the photocurable composition for imprint of the present invention may contain silica particles, and the silica particles that can be used have a primary particle diameter of 1 nm to 100 nm.
  • the primary particles are particles constituting the powder, and the particles in which the primary particles are aggregated are referred to as secondary particles.
  • the primary particle diameter calculated from the above relational expression is an average particle diameter, which is the diameter of the primary particle.
  • silica particles either the surface-modified silica particles or the surface-modified silica particles may be used.
  • the unsurface-modified silica particles include CHO-ST-M, DMAC-ST, DMAC-ST-ZL, EAC-ST, EG-ST, EG-ST-ZL, EG-ST-XL30, IPA-.
  • Examples of the surface-modified silica particles include MEK-AC-2140Z, MEK-AC-4130Y, MEK-AC-5140Z, PGM-AC-2140Y, PGM-AC-4130Y, MIBK-AC-2140Z, and MIBK-SD-L. (The above is manufactured by Nissan Chemical Industries, Ltd.), ELCOM (registered trademark) V-8802 and V-8804 (all manufactured by JGC Catalysts and Chemicals Co., Ltd.). In addition to commercially available products, those obtained by reacting the unsurface-modified silica particles with a silane coupling agent by various known methods can be used.
  • the content thereof is 100 parts by mass based on the sum of all the components of the resin contained in the photocurable composition for imprint. 5, 60 parts by mass, preferably 8 parts by mass to 45 parts by mass, and more preferably 10 parts by mass to 30 parts by mass.
  • the silica particles can be used alone or in combination of two or more. For example, a plurality of silica particles having different primary particle diameters may be combined, or a plurality of silica particles having different types or amounts of silane coupling agents used for surface modification may be combined.
  • the photocurable composition for imprint of the present invention may be used as an antioxidant, a chain transfer agent, an ultraviolet absorber, a light stabilizer, a leveling agent, if necessary, as long as the effects of the present invention are not impaired. It can contain a rheology adjuster, an adhesion aid such as a silane coupling agent, and an additive such as a pigment, a dye, and an antifoaming agent.
  • the method for preparing the photocurable composition for imprint of the present invention is not particularly limited.
  • the preparation method include a method of mixing a resin, a photoinitiator, and if necessary, silica particles and other additives in a predetermined ratio to obtain a uniform solution. It is desirable that the photocurable composition for imprint of the present invention prepared in a solution is used after being filtered using a filter having a pore size of 0.1 ⁇ m to 10 ⁇ m or the like.
  • the photocurable composition for imprint of the present invention can be exposed (photocured) to obtain a cured product, and the present invention also covers the cured product.
  • the light beam to be exposed is not particularly limited as long as the cured product can be obtained, and examples thereof include ultraviolet rays, electron beams, and X-rays.
  • the light source used for ultraviolet irradiation for example, a sunbeam, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used.
  • the method for producing a molded product of the present invention includes a coating step of applying the photocurable composition for imprint of the present invention onto a support.
  • the imprint photocurable composition is applied onto the support by an appropriate application method such as a dispenser or a spinner.
  • the support may have a pattern having an opening, and the pattern is formed by patterning a negative photosensitive resin composition or a positive photosensitive resin composition, and the shape thereof is, for example, a grid pattern. Is.
  • the support may be, for example, a semiconductor substrate such as silicon coated with a silicon oxide film, a semiconductor substrate such as silicon coated with a silicon nitride film or a silicon oxide film, a silicon nitride substrate, a quartz substrate, or a glass substrate (non-alkali). (Including glass, low-alkali glass, and crystallized glass), and glass substrates on which an ITO film is formed.
  • the support is a primer between the support and the photocurable composition for imprint in order to improve the adhesion to the cured product and the molded body obtained from the photocurable composition for imprint. It may have a layer.
  • the method for producing a molded body of the present invention includes an imprinting step of bringing the photocurable composition for imprint into contact with a mold having an inverted pattern of the outer shape of the desired molded body and a light-shielding film.
  • the inverted pattern is a convex surface.
  • the material of the mold is not limited as long as it is a material that transmits light such as ultraviolet rays used in the photocuring step described later, and for example, a (meth) acrylic resin such as polymethylmethacrylate, a cycloolefin polymer (COP) resin, and the like.
  • Examples include quartz, borosilicate glass and calcium fluoride.
  • the material of the mold is a resin
  • it may be either a non-photosensitive resin or a photosensitive resin.
  • the photosensitive resin include replica mold materials for imprints disclosed in International Publication No. 2019/031359.
  • the material of the light-shielding film is not limited as long as it is a material that does not transmit light such as ultraviolet rays used in the photocuring step described later, and examples thereof include aluminum, chromium, nickel, cobalt, titanium, tantalum, tungsten, and molybdenum. Can be mentioned. It is desirable that the mold is used after the mold release treatment is performed by applying a mold release agent and drying for the mold release step described later.
  • the release agent is available as a commercially available product, and is, for example, Novec (registered trademark) 1700, 1710, 1720 (all manufactured by 3M Japan Co., Ltd.), Fluorosurf (registered trademark) FG-5084, and the same.
  • the method for producing a molded product of the present invention includes a photocuring step of exposing the photocurable composition for imprint through the mold to form a photocurable portion after the imprinting step.
  • the light beam to be exposed is not particularly limited as long as the photocurable portion can be formed, and examples thereof include ultraviolet rays, electron beams, and X-rays.
  • the light source used for ultraviolet irradiation for example, a sunbeam, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used.
  • the film thickness of the photo-cured portion is usually 1 ⁇ m to 2000 ⁇ m, preferably 100 ⁇ m to 1000 ⁇ m, and more preferably 300 ⁇ m to 700 ⁇ m. Since the mold is made of a material that transmits light such as ultraviolet rays and has a light-shielding film that does not transmit light such as ultraviolet rays, it is used as a mask in this step.
  • the method for producing a molded product of the present invention includes a mold release step for separating the photocurable portion and the mold.
  • the mold release method is not particularly limited as long as the photocurable portion can be completely separated from the mold without being damaged or deformed.
  • the mold can be easily separated from the photocurable portion by a mold release treatment in which the mold release agent is applied and dried.
  • the photo-curing portion may be further heated.
  • the means for heating the photo-cured portion is not particularly limited, and examples thereof include a hot plate and an oven.
  • the step of heating the photocured portion is 1 minute to 1 hour, preferably 1 minute to 30 minutes in a temperature range of 50 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C., more preferably 50 ° C. to 100 ° C. , More preferably for 1 to 10 minutes.
  • the method for producing a molded product of the present invention includes, after the mold release step, a developing step of removing the uncured portion of the photocurable composition for imprint with a developing solution to expose the photocured portion.
  • the means of this development step is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic discharge method, and a static discharge method.
  • the main development step is carried out in a temperature range of 5 ° C. to 50 ° C., preferably 15 ° C. to 35 ° C., more preferably 20 ° C. to 30 ° C. for 10 seconds to 10 minutes, preferably 10 seconds to 3 minutes, more preferably 10. It is performed for 1 second to 1 minute.
  • the developing solution is not particularly limited as long as it can remove the uncured portion of the photocurable composition for imprint, but propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclopentanone, cyclohexanone and ⁇ -. Butyrolactone is preferred, with propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate being more preferred.
  • the developer can be used alone or in combination of two or more.
  • the method for producing a molded product of the present invention may include a rinsing step of rinsing the photocured portion with a rinsing solution after the developing step and before the drying step described later.
  • the means of this rinsing step is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic discharge method, and a static discharge method.
  • This rinsing step takes 10 seconds to 10 minutes, preferably 10 seconds to 3 minutes, more preferably 10 in a temperature range of 5 ° C to 50 ° C, preferably 15 ° C to 35 ° C, more preferably 20 ° C to 30 ° C. It is performed for 1 second to 1 minute.
  • the rinse solution is not particularly limited as long as the developer can be washed away without damaging the photocured portion.
  • the developer and the rinse solution used in the method for producing a molded product of the present invention further contain a surfactant for the purpose of improving the wettability to the photocured portion and efficiently advancing the development and rinsing. You may.
  • the surfactant may be used alone or in combination of two or more. When the surfactant is used, its content is 0.001 part by mass to 5 parts by mass, preferably 0.01 part by mass with respect to 100 parts by mass of the developer or the rinse solution. It is 3 parts by mass, more preferably 0.05 part by mass to 1 part by mass.
  • the method for producing a molded product of the present invention includes, after the developing step, a drying step of spin-drying the support on which the photocurable portion is formed.
  • the means of this drying step is not particularly limited, and examples thereof include a method of rotating the support using a spin-drying device such as a spinner or a coater.
  • This drying step is carried out in a rotation speed range of 200 rpm to 3000 rpm, preferably 500 rpm to 2000 rpm, more preferably 1000 rpm to 1500 rpm for 10 seconds to 10 minutes, preferably 10 seconds to 3 minutes, more preferably 10 seconds to 1 minute. Will be.
  • the method for producing a molded product of the present invention may include a post-exposure step of exposing the entire surface of the light-cured portion after the drying step.
  • the atmosphere of the post-exposure process is not particularly limited, and examples thereof include an air atmosphere and a nitrogen atmosphere.
  • a light ray that can be used in the photocuring step can be used.
  • the method for producing a molded product of the present invention may include a post-baking step of heating the photo-cured portion after the post-exposure step.
  • the means of this post-baking process is not particularly limited, and examples thereof include a hot plate and an oven.
  • This post-baking step is carried out in a temperature range of 50 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C., more preferably 50 ° C. to 100 ° C. for 1 minute to 1 hour, preferably 1 minute to 30 minutes, more preferably. It is carried out for 1 to 10 minutes.
  • the method for producing a molded product of the present invention further includes a step of forming an antireflection film on the surface of the photocurable portion after the post-exposure step or, in the case of performing the post-baking step, the post-baking step. You may.
  • the antireflection film is formed on the surface of the photocured product in order to suppress the reflection of light incident on the photocured product and improve the transmittance.
  • Examples of the method for forming the antireflection film include a vacuum vapor deposition method, a sputtering method, a CVD method, a mist method, a spin coating method, a dip coating method and a spray coating method.
  • examples of the antireflection film include an inorganic film such as magnesium fluoride and silicon dioxide, and an organic film such as organopolysiloxane.
  • the molded body produced by such a method can be suitably used as a lens for a camera module.
  • the sources of the resin, photoinitiator and silica particles used in the following production examples, examples and comparative examples are as follows.
  • A-DCP Made by Shin Nakamura Chemical Industry Co., Ltd.
  • A-DOG Made by Shin Nakamura Chemical Industry Co., Ltd.
  • Product name: NK Ester A-DOG APG-700 Made by Shin Nakamura Chemical Industry Co., Ltd.
  • Product name: NK Ester APG-700 A-600 Made by Shin Nakamura Chemical Industry Co., Ltd.
  • Product name: NK Ester A-600 AM-90G Made by Shin Nakamura Chemical Industry Co., Ltd.
  • NK Ester AM-90G 1G Made by Shin Nakamura Chemical Industry Co., Ltd.
  • Product name: NK Ester 1G DCP Made by Shin Nakamura Chemical Industry Co., Ltd.
  • Product name: NK Ester DCP UA-4200 Made by Shin Nakamura Chemical Industry Co., Ltd.
  • Product name: NK Oligo UA-4200 UA-510H Made by Kyoeisha Chemical Co., Ltd.
  • Product name: UA-510H E4513 Made by Daisel Ornex Co., Ltd.
  • Product name: EBECRYL (registered trademark) 4513 E5129 Made by Daisel Ornex Co., Ltd.
  • Example 1 6.0 g of A-DCP and 4.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • a photocurable composition 1 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 2 4.0 g of A-DCP and 6.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • the photocurable composition 2 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 3 3.0 g of A-DCP and 7.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • the photocurable composition 3 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 4 2.0 g of A-DCP and 8.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • the photocurable composition 4 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 5 4.0 g of A-DCP and 4.0 g of APG-700 as the crosslinkable resin, and 2.0 g of the A-DCP dispersion liquid of the silica particles prepared in Production Example 1 as the silica particles (1.0 g as the silica particles). ) And 0.1 g of I184 as the photoinitiator, each of which is shaken at 50 ° C. for 15 hours to mix, and then stirred and defoamed for 10 minutes using the stirring defoaming machine for imprinting. A photocurable composition 5 was prepared.
  • Example 6 8.0 g of A-DCP and 2.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • a photocurable composition 6 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 7 6.0 g of A-DCP and 4.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • a photocurable composition 7 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 8 4.0 g of A-DCP and 6.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • a photocurable composition 8 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 9 6.0 g of A-DOG and 4.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • a photocurable composition 9 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 10 3.0 g of A-DOG and 7.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • the photocurable composition 10 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 11 2.0 g of A-DOG and 8.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed.
  • the photocurable composition 11 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
  • Example 12 10.0 g of UM-90 (1/3) DA as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the stirring was removed.
  • the photocurable composition 12 for imprint was prepared by stirring and defoaming for 10 minutes using a foaming machine.
  • Example 13 9.0 g of UM-90 (1/3) DA as the crosslinkable resin, 1.0 g of V # 190 as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended and 50.
  • the photocurable composition 13 for imprint was prepared by shaking and mixing at ° C. for 15 hours and then stirring and defoaming for 10 minutes using the stirring defoaming machine.
  • Example 14 8.0 g of UM-90 (1/3) DA as the crosslinkable resin, 2.0 g of V # 190 as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended and 50.
  • the photocurable composition 14 for imprint was prepared by shaking and mixing at ° C. for 15 hours and then stirring and defoaming for 10 minutes using the stirring defoaming machine.
  • Example 15 9.0 g of UM-90 (1/3) DA as the crosslinkable resin, 1.0 g of AM-90G as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended and 50.
  • the photocurable composition 15 for imprint was prepared by shaking and mixing at ° C. for 15 hours and then stirring and defoaming for 10 minutes using the stirring defoaming machine.
  • Example 16 10.0 g of E4513 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator are blended, and the mixture is shaken at 50 ° C. for 15 hours to mix, and then stirred for 10 minutes using the stirring defoaming machine. By defoaming, a photocurable composition 16 for imprint was prepared.
  • the cured product obtained after exposure was peeled off from the mold-released glass substrate and cut to prepare a strip-shaped test piece (length 30 mm, width 4 mm, thickness 200 ⁇ m).
  • the storage elastic modulus of the strip-shaped test piece was measured using the dynamic viscoelasticity measuring device connected to the air chiller system.
  • the measurement conditions are as follows. ⁇ Measurement conditions> Measurement mode: Tension vibration Tension strain: 0.1% Frequency: 1Hz Measurement temperature range: -50 ° C to 200 ° C Temperature rise rate: 2 ° C / min Measurement atmosphere: Air
  • the photocurable composition for imprinting dropped onto the non-alkali glass substrate was sandwiched between convex molds made of transparent resin with a light-shielding film (opening 6 mm ⁇ 7 mm).
  • the mold is mold-released by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) and drying.
  • the photocurable composition for imprint sandwiched between the non-alkali glass substrate and the mold is passed through the mold with an illuminance of 50 mW / cm 2 for a predetermined time using the UV-LED irradiation device. UV exposure was performed to form a photocurable portion.
  • the UV exposure time at this time was 5 seconds for Examples 1 to 7, Examples 10 to 16, and Comparative Examples 1 to 10, and Examples 8 and 9 and Comparative Example. It takes 3 seconds for 12 to 14 and 20 seconds for Comparative Example 11.
  • the mold is released, the non-alkali glass substrate to which the photocurable portion is in close contact is immersed (developed) in agitated PGMEA for 1 minute, and further rinsed with PGMEA to unexposed portion (undured portion). Part) was removed.
  • a lens having a concave surface of 6 mm ⁇ 7 mm, a thickest portion of 400 ⁇ m, and a thinnest portion of about 30 ⁇ m was molded on the non-alkali glass substrate.
  • the lens molded on the non-alkali glass substrate was UV-exposed again at an illuminance of 50 mW / cm 2 for a predetermined time using the UV-LED irradiation device, and then put into the thermal shock tester.
  • a thermal shock test was performed.
  • the UV exposure time at this time was 115 seconds for Examples 1 to 7, Examples 10 to 16, Comparative Examples 1 to 10, and Examples 8, 9, and Comparative Examples 12 to 12. It is 117 seconds for Comparative Example 14 and 100 seconds for Comparative Example 11 (for each of the above-mentioned photocurable compositions for imprint, the total exposure time of the two UV exposures is 120 seconds, that is, the total exposure amount is the same (the total exposure amount is the same). Unified to 6J / cm 2 )).
  • the non-alkali glass substrate on which the lens was molded was placed on a hot plate at 100 ° C. for 10 minutes to heat it, and 10 minutes after it was removed from the hot plate, the concave shape of the lens was again reshaped.
  • the difference ( ⁇ m) between the thickness of the thickest part and the thickness of the thinnest part of the lens was calculated by measuring using the non-contact surface property measuring device (the value calculated here is referred to as “difference B”). ).
  • the value obtained by subtracting the difference B from the difference A was defined as the amount of change in the shape of the lens ( ⁇ m).
  • the shape retention when the shape change amount was 10 ⁇ m or more was determined to be “x”, and the shape retention when the shape change amount was 2 ⁇ m or less was determined to be “ ⁇ ”. ..
  • the results are shown in Table 3 below.
  • the storage elastic modulus of the cured product obtained from the composition was less than 4.0 ⁇ 109 Pa at ⁇ 40 ° C. Moreover, it was 1.0 ⁇ 107 Pa or more at 100 ° C., and the parameter X was 0.10 or more and less than 0.60.
  • the lens produced from the photocurable composition for imprint was judged as " ⁇ " in the impact resistance evaluation and the shape retention evaluation.
  • the storage elastic modulus of the cured product obtained from the composition was 1.0 ⁇ 107 Pa or more at 100 ° C. However, it was 4.0 ⁇ 109 Pa or more at ⁇ 40 ° C., and the parameter X was 0.60 or more.
  • the lenses produced from the photocurable composition for imprint were all judged as "x" in the impact resistance evaluation.
  • the storage elastic modulus of the cured product obtained from the composition was 4.0 ⁇ 109 Pa or more at ⁇ 40 ° C. and at 100 ° C. It was less than 1.0 ⁇ 10 7 Pa, and the parameter X was 0.60 or more.
  • the lens produced from the photocurable composition for imprint was judged as "x" in the impact resistance evaluation and the shape retention evaluation.
  • the storage elastic modulus of the cured product obtained from the composition was less than 4.0 ⁇ 109 Pa at ⁇ 40 ° C. However, it was less than 1.0 ⁇ 107 Pa at 100 ° C., and the parameter X was less than 0.10.
  • the lenses produced from the photocurable composition for imprint were judged as " ⁇ " in the impact resistance evaluation, but were judged as "x" in the shape retention evaluation.
  • the photocurable composition for imprint in which the parameter X is 0.10 or more and less than 0.60 has both shape retention and impact resistance, while the storage elastic modulus and the parameter X of the cured product are described above. It has been shown that the photocurable composition for imprint, which is out of the range, cannot achieve both shape retention and impact resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

[Problem] To provide a novel photocurable composition for imprinting. [Solution] This photocurable composition for imprinting contains a resin and a photoinitiator. The storage elastic modulus of a cured product of the photocurable composition for imprinting, as measured using dynamic viscoelasticity measurements, is less than 4.0×109 Pa at -40°C and is 1.0×107 Pa or more at 100°C. This resin contains at least one type of crosslinkable resin as an essential component and a non-crosslinkable resin as an optional component, and has a parameter X represented by formula (1) of not less than 0.10 but less than 0.60. (In the formula, m denotes the number of crosslinkable resins contained in the resin, xi denotes the ratio (units: parts by mass) of each crosslinkable resin relative to a total of 100 parts by mass of all components of the resin, yi denotes the polymerizable functional group equivalent amount (units: g/eq) of each crosslinkable resin, and i denotes a positive integer between 1 and m.)

Description

インプリント用光硬化性組成物Photocurable composition for imprint
本発明は、硬化物の貯蔵弾性率の範囲を特定したインプリント用光硬化性組成物に関する。 The present invention relates to a photocurable composition for imprint that specifies a range of storage elastic modulus of the cured product.
樹脂製レンズは、携帯電話、スマートフォン、デジタルカメラ、車載カメラ等の電子機器に搭載されるカメラモジュールに使用されている。近年、電子機器の小型化や高性能化がますます進んでおり、それに伴い、カメラモジュールの薄型化や高解像度化が求められるようになった。このような背景から、樹脂製レンズの製造方法として、熱可塑性樹脂の射出成型から、光硬化性樹脂のUVインプリントによるウェハレベル成型への移行が盛んに検討されている。 Resin lenses are used in camera modules mounted on electronic devices such as mobile phones, smartphones, digital cameras, and in-vehicle cameras. In recent years, electronic devices have become smaller and more sophisticated, and along with this, there has been a demand for thinner and higher resolution camera modules. Against this background, as a method for manufacturing a resin lens, a shift from injection molding of a thermoplastic resin to wafer-level molding by UV imprinting of a photocurable resin is being actively studied.
UVインプリントによるウェハレベル成型の方法としては、ガラス基板等の支持体上に光硬化性樹脂を塗布した後その光硬化性樹脂にモールドを押し当てて光を照射する過程を経ることで、支持体上に樹脂製レンズを成型する方法と、支持体を使わずに光硬化性樹脂を一対のモールドで挟み込んで光を照射する過程を経ることで、モノリシックな樹脂製レンズを成型する方法とが挙げられる。特に、前者の方法で得られるものは、無機系の支持体と有機系の樹脂製レンズとを組み合わせた構造であることからハイブリッドレンズと呼ばれ、生産性の観点から好んで使用されている。このような方法で成型されたレンズを、IRカットフィルター、イメージセンサー等の光学部材と組み合わせて積層することで、カメラモジュールが製造される。 As a method of wafer level molding by UV imprint, a photocurable resin is applied on a support such as a glass substrate, and then the mold is pressed against the photocurable resin to irradiate the light with light. There are two methods, one is to mold a resin lens on the body, and the other is to mold a monolithic resin lens by sandwiching a photocurable resin between a pair of molds and irradiating it with light without using a support. Can be mentioned. In particular, the one obtained by the former method is called a hybrid lens because it has a structure in which an inorganic support and an organic resin lens are combined, and is preferably used from the viewpoint of productivity. A camera module is manufactured by laminating a lens molded by such a method in combination with an optical member such as an IR cut filter and an image sensor.
ここで、カメラモジュール、特に高解像度カメラモジュールは、収差と呼ばれる像のボケや歪みを抑制するために、形状を精密に設計した複数枚のレンズを必要とする。レンズ形状のずれは収差の発生を招くため、レンズには成型時の形状を保持することが求められる。樹脂の形状保持性を高めるための手段として、該樹脂の貯蔵弾性率を大きくすることが知られている。 Here, a camera module, particularly a high-resolution camera module, requires a plurality of lenses whose shapes are precisely designed in order to suppress image blurring and distortion called aberration. Since the deviation of the lens shape causes aberration, the lens is required to maintain the shape at the time of molding. As a means for improving the shape retention of the resin, it is known to increase the storage elastic modulus of the resin.
一方、カメラモジュールは日常生活に欠かせない電子機器に搭載されているため、安定して品質を保つことができる信頼性も必要である。信頼性を評価するための代表的な試験として、熱衝撃試験(例えば-20℃以下の低温及び80℃以上の高温に交互に繰り返し曝す試験)があり、レンズには、該試験を経てもクラックが生じないような耐衝撃性が求められる。樹脂の耐衝撃性を高めるための手段として、該樹脂の貯蔵弾性率を小さくすることが知られている。 On the other hand, since camera modules are installed in electronic devices that are indispensable in daily life, reliability that can maintain stable quality is also required. As a typical test for evaluating reliability, there is a thermal shock test (for example, a test in which the lens is repeatedly exposed to a low temperature of -20 ° C or lower and a high temperature of 80 ° C or higher alternately), and the lens cracks even after the test. Impact resistance is required so that As a means for increasing the impact resistance of a resin, it is known to reduce the storage elastic modulus of the resin.
すなわち、カメラモジュール用樹脂製レンズにとって、形状保持性と耐衝撃性が非常に重要であるものの、貯蔵弾性率の観点から両特性はトレードオフの関係にあるため、これらの両立が困難であった。 That is, although shape retention and impact resistance are very important for a resin lens for a camera module, it is difficult to achieve both of them because the two characteristics are in a trade-off relationship from the viewpoint of storage elastic modulus. ..
例えば、特許文献1には、硬化物の弾性率が1.0×10乃至1.0×10Paである光学用紫外線硬化型接着剤組成物が提案されており、弾性率を1.0×10Pa以下にすることで熱衝撃及び外部衝撃に対する緩衝性が向上し、1.0×10以上にすることで機械的強度が向上すると記載されている。特許文献2には、160℃における硬化物の貯蔵弾性率を0.1×10Pa以上にすることで、高温環境下でも優れた形状保持性を有するウェハレベルレンズを形成することができる旨が記載されているが、耐衝撃性には言及されていない。加えて、特許文献2においてハイブリッドレンズは想定されていないため、特許文献2で提案されている貯蔵弾性率の範囲が、樹脂製レンズの1つの面がガラス基板等の支持体と接している、ハイブリッドレンズならではの特殊な場合にもあてはまるかどうか、不明である。 For example, Patent Document 1 proposes an optical ultraviolet curable adhesive composition having an elastic modulus of 1.0 × 10 4 to 1.0 × 105 Pa, and has an elastic modulus of 1. It is stated that when it is 0 × 10 5 Pa or less, the cushioning property against thermal impact and external impact is improved, and when it is 1.0 × 10 4 or more, the mechanical strength is improved. Patent Document 2 states that a wafer level lens having excellent shape retention even in a high temperature environment can be formed by setting the storage elastic modulus of the cured product at 160 ° C. to 0.1 × 109 Pa or more. Is mentioned, but impact resistance is not mentioned. In addition, since a hybrid lens is not assumed in Patent Document 2, the range of the storage elastic modulus proposed in Patent Document 2 is such that one surface of the resin lens is in contact with a support such as a glass substrate. It is unclear whether this applies to special cases unique to hybrid lenses.
特開2015-209520号公報Japanese Patent Application Laid-Open No. 2015-209520 特開2016-27403号公報Japanese Unexamined Patent Publication No. 2016-27403
特許文献1で提案されている弾性率の範囲は、カメラモジュール用樹脂製レンズが形状保持性を確保するには不十分である。前述のように、形状保持性と耐衝撃性は貯蔵弾性率の観点からトレードオフの関係にあり、両特性をどちらも十分に満たすカメラモジュール用樹脂製レンズは未だなく、その開発が望まれていた。本発明は、このような事情を鑑みてなされたものであり、形状保持性と耐衝撃性を両立するカメラモジュール用樹脂製レンズ、特にハイブリッドレンズを作製することが可能な、インプリント用光硬化性組成物を提供することを目的とする。 The range of elastic modulus proposed in Patent Document 1 is insufficient for the resin lens for a camera module to secure shape retention. As mentioned above, shape retention and impact resistance are in a trade-off relationship from the viewpoint of storage elastic modulus, and there is still no resin lens for camera modules that sufficiently satisfies both characteristics, and its development is desired. rice field. The present invention has been made in view of such circumstances, and is capable of producing a resin lens for a camera module, particularly a hybrid lens, which has both shape retention and impact resistance, and is photocurable for imprinting. It is an object of the present invention to provide a sex composition.
本発明者は、前記課題を解決するべく鋭意検討を行った結果、カメラモジュール用樹脂製レンズの形状保持性と耐衝撃性は、硬化物の貯蔵弾性率と密接な関係があることを突き止めた。具体的には、動的粘弾性測定(以下、DMAと略称することがある。)により測定した硬化物の貯蔵弾性率が、-40℃において4.0×10Pa未満であれば耐衝撃性が劇的に向上し、100℃において1.0×10Pa以上であれば形状保持性が劇的に向上することを見出した。さらに、前記貯蔵弾性率の範囲を満足するために必要な条件を規定した独自のパラメータを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor has found that the shape retention and impact resistance of the resin lens for a camera module are closely related to the storage elastic modulus of the cured product. .. Specifically, if the storage elastic modulus of the cured product measured by dynamic viscoelasticity measurement (hereinafter, abbreviated as DMA) is less than 4.0 × 109 Pa at −40 ° C., impact resistance It was found that the property was dramatically improved, and the shape retention was dramatically improved when the temperature was 1.0 × 107 Pa or more at 100 ° C. Furthermore, they have found a unique parameter that defines the conditions necessary to satisfy the range of the storage elastic modulus, and have completed the present invention.
すなわち、本発明の第一態様は、樹脂と光開始剤とを含有するインプリント用光硬化性組成物であって、動的粘弾性測定により測定した該インプリント用光硬化性組成物の硬化物の貯蔵弾性率が、-40℃において4.0×10Pa未満であり、且つ100℃において1.0×10Pa以上である、インプリント用光硬化性組成物である。 That is, the first aspect of the present invention is a photocurable composition for imprint containing a resin and a photoinitiator, and the curing of the photocurable composition for imprint measured by dynamic viscoelastic measurement. A photocurable composition for imprint, which has a storage elastic modulus of less than 4.0 × 10 9 Pa at −40 ° C. and 1.0 × 10 7 Pa or more at 100 ° C.
前記樹脂は、例えば必須成分として少なくとも一種の架橋性樹脂及び任意成分として非架橋性樹脂を含み、下記式(1)で表されるパラメータXが0.10以上0.60未満である。
Figure JPOXMLDOC01-appb-M000002

(式(1)中、mは前記樹脂に含まれる前記架橋性樹脂の数を表し、xは前記樹脂の全ての成分の和100質量部に占める各々の該架橋性樹脂の割合(単位:質量部)を表し、yは各々の該架橋性樹脂が有する重合性官能基当量(単位:g/eq)を表し、iは1乃至mの正の整数を表す。)
The resin contains, for example, at least one crosslinkable resin as an essential component and a non-crosslinkable resin as an optional component, and the parameter X represented by the following formula (1) is 0.10 or more and less than 0.60.
Figure JPOXMLDOC01-appb-M000002

(In the formula (1), m represents the number of the crosslinkable resins contained in the resin, and xi is the ratio (unit::) of each of the crosslinkable resins to 100 parts by mass of the sum of all the components of the resin. (Parts by mass), y i represents the polymerizable functional group equivalent (unit: g / eq) of each of the crosslinkable resins, and i represents a positive integer from 1 to m).
前記樹脂は例えばラジカル重合性樹脂を含み、前記光開始剤は例えば光ラジカル発生剤を含む。または、前記樹脂は例えばカチオン重合性樹脂を含み、前記光開始剤は例えば光酸発生剤を含む。 The resin comprises, for example, a radically polymerizable resin, and the photoinitiator comprises, for example, a photoradical generator. Alternatively, the resin comprises, for example, a cationically polymerizable resin, and the photoinitiator comprises, for example, a photoacid generator.
前記インプリント用光硬化性組成物は、さらにシリカ粒子を含有してもよい。 The photocurable composition for imprint may further contain silica particles.
本発明の第二態様は、前記インプリント用光硬化性組成物の硬化物である。 The second aspect of the present invention is a cured product of the photocurable composition for imprinting.
本発明の第三態様は、前記インプリント用光硬化性組成物の成型体である。 A third aspect of the present invention is a molded body of the photocurable composition for imprinting.
前記成型体は、例えばカメラモジュール用レンズである。前記カメラモジュール用レンズは、例えばハイブリッドレンズである。 The molded body is, for example, a lens for a camera module. The lens for the camera module is, for example, a hybrid lens.
本発明の第四態様は、インプリント用光硬化性組成物の成型体の製造方法であって、支持体上に前記インプリント用光硬化性組成物を塗布する塗布工程、該インプリント用光硬化性組成物と、目的とする成型体の外形の反転パターン及び遮光膜を有するモールドとを接触させるインプリント工程、該インプリント工程の後、該モールドを介して該インプリント用光硬化性組成物を露光して光硬化部を形成する光硬化工程、該光硬化部と該モールドとを分離する離型工程、該離型工程の後、該インプリント用光硬化性組成物の未硬化部を現像液により除去して該光硬化部を露出させる現像工程、及び該現像工程の後、該光硬化部が形成された支持体をスピン乾燥させる乾燥工程を含む、成型体の製造方法である。 A fourth aspect of the present invention is a method for producing a molded body of a photocurable composition for imprint, which is a coating step of applying the photocurable composition for imprint on a support, the photo for imprint. An imprint step of bringing the curable composition into contact with a mold having an inverted pattern of the outer shape of a target molded body and a light-shielding film, and after the imprint step, the photocurable composition for imprint via the mold. After the photo-curing step of exposing an object to form a photo-curing portion, the mold-removing step of separating the photo-curing portion from the mold, and the demolding step, the uncured portion of the photo-curable composition for imprinting. Is a method for producing a molded product, which comprises a developing step of removing the photo-cured portion with a developing solution to expose the photo-cured portion, and a drying step of spin-drying the support on which the photo-cured portion is formed after the developing step. ..
前記光硬化工程の後、前記離型工程の前、中途又は後に、前記光硬化部を加熱する工程をさらに含んでもよい。 After the photo-curing step, before, during, or after the mold release step, a step of heating the photo-curing portion may be further included.
前記現像工程の後、前記乾燥工程の前に、リンス液を用いて前記光硬化部をリンス処理するリンス工程をさらに含んでもよい。 After the developing step and before the drying step, a rinsing step of rinsing the photocured portion with a rinsing liquid may be further included.
前記乾燥工程の後、前記光硬化部の全面を露光するポスト露光工程をさらに含んでもよい。 After the drying step, a post-exposure step of exposing the entire surface of the photo-cured portion may be further included.
前記ポスト露光工程の後、前記光硬化部を加熱するポストベーク工程をさらに含んでもよい。 After the post-exposure step, a post-baking step of heating the photo-cured portion may be further included.
前記ポスト露光工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含んでもよい。 After the post-exposure step, a step of forming an antireflection film on the surface of the photocurable portion may be further included.
前記ポストベーク工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含んでもよい。 After the post-baking step, a step of forming an antireflection film on the surface of the photo-curing portion may be further included.
本発明のインプリント用光硬化性組成物は、該インプリント用光硬化性組成物の硬化物の貯蔵弾性率が前記範囲を満たし、前記パラメータXが前記範囲を満たすため、該硬化物の形状保持性と耐衝撃性いずれも優れる。したがって、本発明のインプリント用光硬化性組成物は、カメラモジュール用樹脂製レンズ、特にハイブリッドレンズとして好適に使用することができる。 In the photocurable composition for imprint of the present invention, the storage elastic modulus of the cured product of the photocurable composition for imprint satisfies the above range, and the parameter X satisfies the above range. Both excellent retention and impact resistance. Therefore, the photocurable composition for imprint of the present invention can be suitably used as a resin lens for a camera module, particularly a hybrid lens.
本発明のインプリント用光硬化性組成物について、より詳細に説明する。
[DMA]
DMAとは、Dynamic Mechanical Analysis(動的粘弾性測定)であって、JIS K 7244-4に記載の内容を参考にした下記条件で実施される測定を指す。
<試験片作製条件>
本発明のインプリント用光硬化性組成物を、厚さが200μmとなるようにガラス基板2枚で挟み込み、極大波長365nmのUV-LED照射装置を用いて、空気雰囲気下にて照度50mW/cmで120秒間(露光量6J/cm)UV露光し、得られた硬化物を裁断することで短冊状試験片(長さ30mm、幅4mm、厚さ200μm)を作製する。
<測定条件>
測定モード:引張振動
引張ひずみ:0.1%
周波数:1Hz
測定温度範囲:-50℃から200℃
昇温速度:2℃/分
測定雰囲気:空気
The photocurable composition for imprint of the present invention will be described in more detail.
[DMA]
DMA is a Dynamic Mechanical Analysis (dynamic viscoelasticity measurement), and refers to a measurement carried out under the following conditions with reference to the contents described in JIS K 7244-4.
<Test piece preparation conditions>
The photocurable composition for imprint of the present invention is sandwiched between two glass substrates so as to have a thickness of 200 μm, and an illuminance of 50 mW / cm under an air atmosphere using a UV-LED irradiation device having a maximum wavelength of 365 nm. UV exposure is performed at 2 for 120 seconds (exposure amount 6 J / cm 2 ), and the obtained cured product is cut to prepare a strip-shaped test piece (length 30 mm, width 4 mm, thickness 200 μm).
<Measurement conditions>
Measurement mode: Tension vibration Tension strain: 0.1%
Frequency: 1Hz
Measurement temperature range: -50 ° C to 200 ° C
Temperature rise rate: 2 ° C / min Measurement atmosphere: Air
[貯蔵弾性率]
本発明における貯蔵弾性率とは、前記DMAによって測定された引張貯蔵弾性率を指す。貯蔵弾性率は、材料の弾性的性質を表す物性である。例えば、金属及びガラス等に代表される貯蔵弾性率が極めて大きい材料は、硬く変形しにくいが、変形によって生じたストレスの散逸性に乏しく、一方、ゴム等に代表される貯蔵弾性率が極めて小さい材料は、柔らかく変形しやすいが、変形によって生じたストレスの散逸性に優れる。一般的な樹脂は、温度が低くなるにつれて貯蔵弾性率が大きくなり、弾性的性質が強くなる一方、温度が高くなるにつれて貯蔵弾性率が小さくなり、弾性的性質が弱くなる。
[Storage modulus]
The storage elastic modulus in the present invention refers to the tensile storage elastic modulus measured by the DMA. The storage modulus is a physical property that represents the elastic properties of a material. For example, a material having an extremely large storage elastic modulus such as metal and glass is hard and difficult to deform, but has poor dissipative property of stress generated by the deformation, and on the other hand, a storage elastic modulus represented by rubber or the like is extremely small. The material is soft and easily deformed, but is excellent in dissipating the stress generated by the deformation. As the temperature of a general resin decreases, the storage elastic modulus increases and the elastic property becomes stronger, while as the temperature increases, the storage elastic modulus decreases and the elastic property becomes weaker.
本発明のインプリント用光硬化性組成物から得られる硬化物及び成型体の耐衝撃性は、該硬化物の-40℃における貯蔵弾性率と密接に関係しており、該硬化物の-40℃における貯蔵弾性率が4.0×10Pa以上であると、熱衝撃試験中に生じたストレスの散逸性に乏しくなることで、該硬化物及び成型体が割れる、支持体から剥離する等、耐衝撃性が著しく低下する。ここで、-40℃という温度に着目した理由は、一般的な熱衝撃試験における最低温度が-40℃付近であることによる。 The impact resistance of the cured product and the molded product obtained from the photocurable composition for imprint of the present invention is closely related to the storage elastic modulus of the cured product at −40 ° C., and the cured product is −40. When the storage elastic modulus at ° C. is 4.0 × 109 Pa or more, the dissipative property of the stress generated during the thermal impact test becomes poor, so that the cured product and the molded product crack, peel off from the support, and the like. , Impact resistance is significantly reduced. Here, the reason for paying attention to the temperature of −40 ° C. is that the minimum temperature in a general thermal shock test is around −40 ° C.
本発明のインプリント用光硬化性組成物から得られる硬化物及び成型体の形状保持性は、該硬化物の100℃における貯蔵弾性率と密接に関係しており、該硬化物の100℃における貯蔵弾性率が1.0×10Pa未満であると、該硬化物及び成型体の形状保持性が著しく低下する。ここで、100℃という温度に着目した理由は、UVインプリントによるウェハレベル成型における好ましいプロセス最高温度が100℃付近であることによる。 The shape retention of the cured product and the molded product obtained from the photocurable composition for imprint of the present invention is closely related to the storage elastic modulus of the cured product at 100 ° C., and the cured product at 100 ° C. When the storage elastic modulus is less than 1.0 × 107 Pa, the shape retention of the cured product and the molded product is significantly reduced. Here, the reason for paying attention to the temperature of 100 ° C. is that the preferable maximum process temperature in wafer level molding by UV imprinting is around 100 ° C.
[樹脂]
本発明における樹脂は、架橋性樹脂と非架橋性樹脂とに大別される。本発明における架橋性樹脂とは、重合によって3次元架橋体を形成し得る樹脂であり、メタクリロイルオキシ基、アクリロイルオキシ基、エポキシ基及びオキセタニル基から選択される重合性官能基を1分子中に少なくとも2つ有する樹脂である。1分子中に有する重合性官能基の種類は同じであっても異なっていてもよい。また、本発明における非架橋性樹脂とは、(メタ)アクリロイルオキシ基、エポキシ基又はオキセタニル基を1分子中に1つしか有しないか、または1つも有しない樹脂である。なお、本発明における(メタ)アクリレートとは、1分子中にメタクリロイルオキシ基を少なくとも1つ有するメタクリレート又は1分子中にアクリロイルオキシ基を少なくとも1つ有するアクリレートを指す。
[resin]
The resin in the present invention is roughly classified into a crosslinkable resin and a non-crosslinkable resin. The crosslinkable resin in the present invention is a resin capable of forming a three-dimensional crosslinked product by polymerization, and at least one polymerizable functional group selected from a methacryloyloxy group, an acryloyloxy group, an epoxy group and an oxetanyl group is contained in one molecule. It is a resin having two. The type of polymerizable functional group contained in one molecule may be the same or different. Further, the non-crosslinkable resin in the present invention is a resin having only one (meth) acryloyloxy group, an epoxy group or an oxetanyl group in one molecule, or no resin. The (meth) acrylate in the present invention refers to a methacrylate having at least one methacryloyloxy group in one molecule or an acrylate having at least one acryloyloxy group in one molecule.
本発明のインプリント用光硬化性組成物に使用可能な架橋性樹脂のうち、ラジカル重合性樹脂として、例えば、以下に示す商品及び化合物が挙げられる。
ビスコート#195、同#230、同#260、同#310HP、同#335HP(以上、大阪有機化学工業(株)製)、BD、NPG、A-NPG、HD-N、A-HD-N、NOD-N、A-NOD-N、A-IND、DOD-N、A-DOD-N、DCP、A-DCP、A-DOG、1G、2G、3G、4G、9G、14G、23G、A-200、A-400、A-600、A-1000、APG-100、APG-200、APG-400、APG-700、3PG、9PG、A-1206PE、A-0612PE、A-0412PE、A-1000PER、A-3000PER、A-PTMG-65、ABE-300、A-BPE-4、A-BPE-10、A-BPE-20、A-BPE-30、A-BPP-3、U-2PPA、U-200PA、U-160TM、U-290TM、UA-4200、UA-4400、UA-122P、UA-W2A(以上、新中村化学工業(株)製)、ファンクリル(登録商標)FA-121M、同FA-124M、同FA-125M、同FA-129AS、同FA-222A、同FA-220M、同FA-240M、同FA-240A、同FA-P240A、同FA-P270A、同FA-023M、同FA-PTG9M、同FA-PTG9A、同FA-320M、同FA-321M、同FA-3218M、同FA-321A、同FA-324A(以上、日立化成(株)製)、AH-600、UF-8001G、ライトエステル1.4BG、同NP、同1.6HX、同1.9ND、同2EG、同3EG、同4EG、同9EG、同14EG、同BP-2EMK、ライトアクリレート(登録商標)1.6HX-A、同1.9ND-A、同NP-A、同MPD-A、同DCP-A、同3EG-A、同4EG-A、同9EG-A、同14EG-A、同PTMGA-250、同BP-4EAL、同BP-4PA、同HPP-A、エポキシエステル40EM、同70PA、同200PA、同80MFA、同3002M(N)、同3002A(N)、同3000MK、同3000A(以上、共栄社化学(株)製)、HDDA、DPGDA、TPGDA、IRR 214-K、EBECRYL(登録商標)11、同130、同145、同150、同210、同230、同270、同280/15IB、同284、同4491、同4683、同4858、同8307、同8402、同8411、同8413、同8804、同8807、同9270、同246/20HEMA、同1271、同286、同4859、同8409、同8809、同8810、同8811、KRM(登録商標)7735、同8961、同8191(以上、ダイセル・オルネクス(株)製)、HDDA、L-C9A、ND-DA、PE-200、PE-300、PE-400、PE-600、PEM-1000、BPEM-4、BPE-4、BPEM-10、BPE-10、BPE-20、HBPE-4、HBPEM-10、HPN(第一工業製薬(株)製)、M-1100、M-1200(以上、東亞合成(株)製)、UM-90(3/1)DM、UM-90(1/1)DM、UM-90(1/3)DM、UM-90(3/1)DA、UM-90(1/1)DA、UM-90(1/3)DA(以上、宇部興産(株)製)、UV-2000B、UV-3000B、UV-3200B、UV-3300B、UV-3310B、UV-3500BA、UV-3520EA、UV-3700B、UV-6640B及びUV-6630B(以上、三菱ケミカル(株)製)等の二官能(メタ)アクリレート;
ビスコート#295、同#300、同#802(以上、大阪有機化学工業(株)製)、A-9300、A-9300-1CL、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、TMPT、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH、U-6LPA、U-10HA、U-10PA、UA-1100H、U-15HA、UA-53H、UA-33H、UA-7100(以上、新中村化学工業(株)製)、ファンクリル(登録商標)FA-731A、同FA-137M(以上、日立化成(株)製)、UA-306H、UA-306T、UA-306I、UA-510H、ライトエステルTMP、ライトアクリレート(登録商標)TMP-A、同PE-3A、同PE-4A、同DPE-6A(以上、共栄社化学(株)製)、PETA、DPHA、PETIA、PETRA、TMPTA、OTA480、EBECRYL(登録商標)160S、同40、同140、同1142、同220、同8800、同294/25HD、同4220、同4513、同4738、同4740、同4820、同8311、同9260、同8701、同4265、同4587、同4666、同4680、同8210、同8405、同1290、同5129、同8301R、同4501、同2221、同8465、同1258、同4101、同4201、同8209、同1291、同8602、同225、KRM(登録商標)8667、同8296、同8528、同8200、同8200AE、同8530、同8904、同8531BA、同8452(以上、ダイセル・オルネクス(株)製)、TMPTM、TMPT、TMP-2P、TMP-3P、TMP-3、PET-3、PETA-4、TEICA、MF-001、MF-101(以上、第一工業製薬(株)製)、M-305、M-306、M-309、M-310、M-313、M-315、M-321、M-350、M-360、M-400、M-402、M-403、M-404、M-405、M-406、M-408、M-450、M-460、M-471(以上、東亞合成(株)製)、UV-2750B、UV-7000B、UV-7510B、UV-1700B、UV-6300B、UV-7550B、UV-7600B、UV-7605B、UV-7610B、UV-7620EA、UV-7630B、UV-7640B及びUV-7650B(以上、三菱ケミカル(株)製)等の多官能(メタ)アクリレート;
その他、前記重合性官能基を1分子中に少なくとも2つ有するポリマー及びデンドリマー。
Among the crosslinkable resins that can be used in the photocurable composition for imprint of the present invention, examples of the radically polymerizable resin include the following products and compounds.
Viscoat # 195, # 230, # 260, # 310HP, # 335HP (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), BD, NPG, A-NPG, HD-N, A-HD-N, NOD-N, A-NOD-N, A-IND, DOD-N, A-DOD-N, DCP, A-DCP, A-DOG, 1G, 2G, 3G, 4G, 9G, 14G, 23G, A- 200, A-400, A-600, A-1000, APG-100, APG-200, APG-400, APG-700, 3PG, 9PG, A-1206PE, A-0612PE, A-0412PE, A-1000PER, A-3000PER, A-PTMG-65, ABE-300, A-BPE-4, A-BPE-10, A-BPE-20, A-BPE-30, A-BPP-3, U-2PPA, U- 200PA, U-160TM, U-290TM, UA-4200, UA-4400, UA-122P, UA-W2A (all manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Funkrill (registered trademark) FA-121M, FA -124M, FA-125M, FA-129AS, FA-222A, FA-220M, FA-240M, FA-240A, FA-P240A, FA-P270A, FA-023M, FA -PTG9M, FA-PTG9A, FA-320M, FA-321M, FA-3218M, FA-321A, FA-324A (all manufactured by Hitachi Chemical Co., Ltd.), AH-600, UF-8001G , Light Ester 1.4BG, NP, 1.6HX, 1.9ND, 2EG, 3EG, 4EG, 9EG, 14EG, BP-2EMK, Light Acrylate (registered trademark) 1.6HX- A, 1.9ND-A, NP-A, MPD-A, DCP-A, 3EG-A, 4EG-A, 9EG-A, 14EG-A, PTMGA-250, PTMGA-250. BP-4EAL, BP-4PA, HPP-A, epoxy ester 40EM, 70PA, 200PA, 80MFA, 3002M (N), 3002A (N), 3000MK, 3000A (Kyoeisha Chemical Industry Co., Ltd. (Manufactured by Co., Ltd.), HDDA, DPGDA, TPGDA, IRR 214-K, EBECRYL (registered trademark) 11, 130, 145, 150, 210, 230, 270, 280/15 IB, 284, 284. 4491, 4683, 4858, 8307, 8402, 8411, 8413, 8804, 8807, 9270, 246/20 HEMA, 1271, 286, 4859, 8409, 8809, 8810, 8811, KRM 7735, 8961, 8191. (The above is manufactured by Daicel Ornex Co., Ltd.), HDDA, L-C9A, ND-DA, PE-200, PE-300, PE-400, PE-600, PEM-1000, BPEM-4, BPE-4, BPEM-10, BPE-10, BPE-20, HBPE-4, HBPEM-10, HPN (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), M-1100, M-1200 (all manufactured by Toa Synthetic Co., Ltd.), UM-90 (3/1) DM, UM-90 (1/1) DM, UM-90 (1/3) DM, UM-90 (3/1) DA, UM-90 (1/1) DA, UM-90 (1/3) DA (above, manufactured by Ube Industries, Ltd.), UV-2000B, UV-3000B, UV-3200B, UV-3300B, UV-3310B, UV-3500BA, UV-3520EA, UV- Bifunctional (meth) acrylates such as 3700B, UV-6640B and UV-6630B (all manufactured by Mitsubishi Chemical Corporation);
Viscoat # 295, # 300, # 802 (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), A-9300, A-9300-1CL, A-GLY-9E, A-GLY-20E, A-TMM- 3, A-TMM-3L, A-TMM-3LM-N, TMPT, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH, U-6LPA, U-10HA, U-10PA, UA-1100H, U-15HA, UA-53H, UA-33H, UA-7100 (all manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Funkrill (registered trademark) FA-731A, FA-137M (The above is manufactured by Hitachi Chemical Co., Ltd.), UA-306H, UA-306T, UA-306I, UA-510H, Light Ester TMP, Light Acrylate (registered trademark) TMP-A, PE-3A, PE-4A. , DPE-6A (all manufactured by Kyoeisha Chemical Co., Ltd.), PETA, DPHA, PETIA, PETRA, TMPTA, OTA480, EBECRYL (registered trademark) 160S, 40, 140, 1142, 220, 8800, 294 / 25HD, 4220, 4513, 4738, 4740, 4820, 8311, 9260, 8701, 4265, 4587, 4666, 4680, 8210, 8405, 1290, 5129, 8301R, 4501, 2221, 8465, 1258, 4101, 4201, 8209, 1291, 8602, 225, KRM (registered trademark) 8667, 8296, 8528, same 8200, 8200AE, 8530, 8904, 8531BA, 8452 (all manufactured by Daicel Ornex Co., Ltd.), TMPTM, TMPT, TMP-2P, TMP-3P, TMP-3, PET-3, PETA- 4, TEICA, MF-001, MF-101 (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), M-305, M-306, M-309, M-310, M-313, M-315, M- 321, M-350, M-360, M-400, M-402, M-403, M-404, M-405, M-406, M-408, M-450, M-460, M-471 ( As mentioned above, manufactured by Toa Synthetic Co., Ltd.), UV-2750B, UV-77000B, UV-7510B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620E A, UV-7630B, UV-7640B, UV-7650B (all manufactured by Mitsubishi Chemical Corporation) and other polyfunctional (meth) acrylates;
In addition, a polymer and a dendrimer having at least two polymerizable functional groups in one molecule.
本発明のインプリント用光硬化性組成物に使用可能な架橋性樹脂のうち、カチオン重合性樹脂として、例えば、以下に示す商品及び化合物が挙げられる。
EPICLON(登録商標)830、同830-S、同835、同840、同840-S、同850、同850-S、同850-LC、同HP-820(以上、DIC(株)製)、DENACOL(登録商標)EX-201、同EX-211、同EX-212、同EX-252、同EX-810、同EX-811、同EX-821、同EX-830、同EX-832、同EX-841、同EX-850、同EX-851、同EX-861、同EX-920、同EX-931、同EX-991L、同EX-313、同EX-314、同EX-321、同EX-321L、同EX-411、同EX-421、同EX-512、同EX-521、同EX-612、同EX-614、同EX-614B、同EX-622(以上、ナガセケムテックス(株)製)、jER(登録商標)152、同630、同825、同827、同828、同828EL、同828US、同828XA(以上、三菱ケミカル(株)製)、TETRAD(登録商標)-C、同-X(以上、三菱ガス化学(株)製)、セロキサイド(登録商標)2021P、同2081、エポリード(登録商標)GT401(以上、(株)ダイセル製)、エポトート(登録商標)YD-115、同YD-115CA、同YD-127、同YD-128、同YD-128G、同YD-128S、同YD-128CA、同YD-8125、同YD-825GS、同YDF-170、同YDF-170N、同YDF-8170C、同YDF-870GS、同ZX-1059、同YH-404、同YH-434、同YH-434L、同YH-513、同YH-523、同ST-3000(以上、日鉄ケミカル&マテリアル(株)製)、アデカレジン(登録商標)EP-4100、同EP-4100G、同EP-4100E、同EP-4100TX、同EP-4300E、同EP-4100、同EP-4400、同EP-4520S、同EP-4530、同EP-4901、同EP-4901E、同EP-4000、同EP-4005、同EP-7001、同EP-4080E、同EPU-6、同EPU-7N、同EPU-11F、同EPU-15F、同EPU-1395、同EPU-73B、同EPU-17、同EPU-17T-6、同EPR-1415-1、同EPR-2000、同EPR-2007、アデカグリシロール(登録商標)ED-503、同ED-503G、同ED-506、同ED-523T、同ED-505(以上、(株)ADEKA製)、スミエポキシ(登録商標)ELM-434、同ELM-434L、同ELM-434VL、同ELM-100、同ELM-100H(以上、住友化学(株)製)、エポライトM-1230、同40E,同100E、同200E、同400E、同70P、同200P、同400P、同1500NP、同1600、同80MF、同4000、同3002(N)(以上、共栄社化学(株)製)及びTHI-DE(ENEOS(株)製)等のエポキシ樹脂;
ETERNACOLL(登録商標)OXBP、同OXIPA(以上、宇部興産(株)製)、アロンオキセタン(登録商標)OXT-121及び同OXT-221(以上、東亞合成(株)製)等のオキセタン樹脂。
Among the crosslinkable resins that can be used in the photocurable composition for imprinting of the present invention, examples of the cationically polymerizable resin include the following products and compounds.
EPICLON (registered trademark) 830, 830-S, 835, 840, 840-S, 850, 850-S, 850-LC, HP-820 (all manufactured by DIC Co., Ltd.), DENACOL (registered trademark) EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX-821, EX-830, EX-832, EX-832. EX-841, EX-850, EX-851, EX-861, EX-920, EX-931, EX-991L, EX-313, EX-314, EX-321, EX-321L, EX-411, EX-421, EX-512, EX-521, EX-612, EX-614, EX-614B, EX-622 (above, Nagase Chemtex (above, Nagase Chemtex) (Co., Ltd.), jER (registered trademark) 152, 630, 825, 827, 828, 828EL, 828US, 828XA (above, Mitsubishi Chemical Co., Ltd.), TETRAD (registered trademark) -C , X (above, manufactured by Mitsubishi Gas Chemicals Co., Ltd.), Cellokiside (registered trademark) 2021P, 2081, Eporide (registered trademark) GT401 (above, manufactured by Daicel Co., Ltd.), Epototo (registered trademark) YD-115 , YD-115CA, YD-127, YD-128, YD-128G, YD-128S, YD-128CA, YD-8125, YD-825GS, YDF-170, YDF-170N , YDF-8170C, YDF-870GS, ZX-1059, YH-404, YH-434, YH-434L, YH-513, YH-523, ST-3000 (all, Nittetsu) Chemical & Materials Co., Ltd.), Adecaledin (registered trademark) EP-4100, EP-4100G, EP-4100E, EP-4100TX, EP-4300E, EP-4100, EP-4400, EP -4520S, EP-4530, EP-4901, EP-4901E, EP-4000, EP-4005, EP-7001, EP-4080E, EPU-6, EPU-7N, EPU -11F, EPU-15F, EPU-1395, EPU-73B, EPU-17, EPU-17T-6, EPR-1415-1, EPR-2000, EPR-2007, Adecaglycyllol (Registered Trademarks) ED-503, ED-503G, ED-5 06, ED-523T, ED-505 (all manufactured by ADEKA Corporation), Sumiepoxy (registered trademark) ELM-434, ELM-434L, ELM-434VL, ELM-100, ELM-100H ( Sumitomo Chemical Co., Ltd.), Epolite M-1230, 40E, 100E, 200E, 400E, 70P, 200P, 400P, 1500NP, 1600, 80MF, 4000, 3002. (N) (These are manufactured by Kyoeisha Chemical Co., Ltd.) and THI-DE (manufactured by ENEOS Co., Ltd.) and other epoxy resins;
Oxetane resins such as ETENCOLL (registered trademark) OXBP, OXIPA (above, manufactured by Ube Industries, Ltd.), Aron Oxetane (registered trademark) OXT-121 and OXT-221 (above, manufactured by Toagosei Co., Ltd.).
本発明のインプリント用光硬化性組成物に使用可能な非架橋性樹脂のうち、ラジカル重合性樹脂として、例えば、以下に示す商品及び化合物が挙げられる。
AIB、TBA、NOAA、IOAA、LA、STA、ISTA、IBXA、1-ADA、1-ADMA、ビスコート#150、同#155、同#160、同#190、同#192、同#MTG、ビスマー#MPE400A、同#MPE500A、HEA、4-HBA(以上、大阪有機化学工業(株)製)、ファンクリル(登録商標)FA-BZM、同FA-BZA、同FA-511AS、同FA-512M、同FA-512MT、同FA-512AS、同FA-513M、同FA-513AS(以上、日立化成(株)製)、LMA、LA、S、A-S、S-1800M、S-1800A、IB、A-IB、PHE-1G、AMP-10G、PHE-2G、AMP-20GY、M-20G、M-30G、AM-30G、M-40G、M-90G、AM-90G、M-130G、AM-130G、M-230G、AM-230G、M-30PG、AM-30PG、702A(以上、新中村化学工業(株)製)、ライトエステルM、同E、同NB、同IB、同TB、同EH、同L、同S、同CH、同IB-X、同BZ、同PО、同THF(1000)、同130MA、同041MA、同HO-250(N)、同HOA(N)、同DM、同DE、ライトアクリレート(登録商標)L-A、同S-A、同IB-XA、同PO-A、同THF-A、同MTG-A、同130A、同DPM-A、同EC-A、エポキシエステルM-600A、(以上、共栄社化学(株)製)、VEEM及びVEEA(以上、(株)日本触媒製)等の単官能(メタ)アクリレート;
FX-AO-MA((株)日本触媒製)等のラジカル環化重合性化合物。
Among the non-crosslinkable resins that can be used in the photocurable composition for imprinting of the present invention, examples of the radically polymerizable resin include the following products and compounds.
AIB, TBA, NOAA, IOAA, LA, STA, ISTA, IBXA, 1-ADA, 1-ADMA, Viscort # 150, # 155, # 160, # 190, # 192, # MTG, Bismer # MPE400A, # MPE500A, HEA, 4-HBA (all manufactured by Osaka Organic Chemical Industry Co., Ltd.), Funkrill (registered trademark) FA-BZM, FA-BZA, FA-511AS, FA-512M, the same. FA-512MT, FA-512AS, FA-513M, FA-513AS (all manufactured by Hitachi Chemical Co., Ltd.), LMA, LA, S, AS, S-1800M, S-1800A, IB, A -IB, PHE-1G, AMP-10G, PHE-2G, AMP-20GY, M-20G, M-30G, AM-30G, M-40G, M-90G, AM-90G, M-130G, AM-130G , M-230G, AM-230G, M-30PG, AM-30PG, 702A (all manufactured by Shin Nakamura Chemical Industry Co., Ltd.), Light Ester M, E, NB, IB, TB, EH, Same L, Same S, Same CH, Same IB-X, Same BZ, Same PO, Same THF (1000), Same 130MA, Same 041MA, Same HO-250 (N), Same HOA (N), Same DM, Same DE, Light Acrylate® LA, SA, IB-XA, PO-A, THF-A, MTG-A, 130A, DPM-A, EC-A, Monofunctional (meth) acrylates such as epoxy ester M-600A (above, manufactured by Kyoeisha Chemical Co., Ltd.), VEEM and VEEA (above, manufactured by Nippon Catalyst Co., Ltd.);
Radical cyclization polymerizable compound such as FX-AO-MA (manufactured by Nippon Shokubai Co., Ltd.).
本発明のインプリント用光硬化性組成物に使用可能な非架橋性樹脂のうち、カチオン重合性樹脂として、例えば、以下に示す商品及び化合物が挙げられる。
DENACOL(登録商標)EX-121、同EX-141、同EX-145、同EX-146、同EX-147、同EX-171、同EX-192、同EX-731(以上、ナガセケムテックス(株)製)、アデカグリシロール(登録商標)ED-502、同ED-502S、同ED-509E、同ED-509S及び同ED-529(以上、(株)ADEKA製)等の単官能エポキシ樹脂;
ETERNACOLL(登録商標)EHO、同HBOX(以上、宇部興産(株)製)、アロンオキセタン(登録商標)OXT-101及び同OXT-212(以上、東亞合成(株)製)等の単官能オキセタン樹脂。
Among the non-crosslinkable resins that can be used in the photocurable composition for imprinting of the present invention, examples of the cationically polymerizable resin include the following products and compounds.
DENACOL (registered trademark) EX-121, EX-141, EX-145, EX-146, EX-147, EX-171, EX-192, EX-731 (above, Nagase Chemtex (above, Nagase Chemtex) Monofunctional epoxy resin such as ED-502, ED-502S, ED-509E, ED-509S and ED-529 (all manufactured by ADEKA Corporation). ;
Monofunctional oxetane resins such as ETERNCOLL (registered trademark) EHO, HBOX (above, manufactured by Ube Industries, Ltd.), Aron Oxetane (registered trademark) OXT-101 and OXT-212 (above, manufactured by Toagosei Co., Ltd.) ..
[パラメータX]
本発明のインプリント用光硬化性組成物は、下記式(1)で表されるパラメータXが0.10以上0.60未満となる樹脂を含有する。
Figure JPOXMLDOC01-appb-M000003

(式(1)中、mは前記樹脂に含まれる前記架橋性樹脂の数を表し、xは前記樹脂の全ての成分の和100質量部に占める各々の該架橋性樹脂の割合(単位:質量部)を表し、yは各々の該架橋性樹脂が有する重合性官能基当量(単位:g/eq)を表し、iは1乃至mの正の整数を表す。)
[Parameter X]
The photocurable composition for imprint of the present invention contains a resin in which the parameter X represented by the following formula (1) is 0.10 or more and less than 0.60.
Figure JPOXMLDOC01-appb-M000003

(In the formula (1), m represents the number of the crosslinkable resins contained in the resin, and xi is the ratio (unit::) of each of the crosslinkable resins to 100 parts by mass of the sum of all the components of the resin. (Parts by mass), y i represents the polymerizable functional group equivalent (unit: g / eq) of each of the crosslinkable resins, and i represents a positive integer from 1 to m).
前記重合性官能基当量とは、1グラム当量の重合性官能基を含む樹脂の質量を指し、簡易的には、重合性官能基を含む樹脂の分子量又は平均分子量を該重合性官能基の数で除す、または核磁気共鳴分光法、赤外分光法等の各種手法によって定量的に分析することで算出される。重合性官能基を含む樹脂が(メタ)アクリレートの場合は、JIS K 2605に記載の方法によって(メタ)アクリル当量を、エポキシ樹脂の場合は、JIS K 7236に記載の方法によってエポキシ当量を測定することができる。 The polymerizable functional group equivalent means the mass of the resin containing 1 gram equivalent of the polymerizable functional group, and simply, the molecular weight or the average molecular weight of the resin containing the polymerizable functional group is the number of the polymerizable functional groups. It is calculated by dividing by, or by quantitatively analyzing by various methods such as nuclear magnetic resonance spectroscopy and infrared spectroscopy. When the resin containing the polymerizable functional group is (meth) acrylate, the (meth) acrylic equivalent is measured by the method described in JIS K 2605, and in the case of an epoxy resin, the epoxy equivalent is measured by the method described in JIS K 7236. be able to.
ここで、本発明におけるパラメータXの意味について説明する。パラメータXは、本発明のインプリント用光硬化性組成物を硬化させて成る三次元架橋体の架橋密度を、硬化前の組成物の段階で見積もる、本発明者が見出した独自のパラメータであり、架橋性樹脂に関する項から成る。上記式(1)は、各々の架橋性樹脂について、含有割合と、重合性官能基当量の逆数すなわち単位質量当たり重合性官能基数とを乗じ(x/y)、各々の架橋性樹脂x/yの総和をとったものであり、三次元架橋体の架橋密度に対する、架橋性樹脂の寄与を意味する。三次元架橋体の架橋密度に対する非架橋性樹脂の寄与をゼロと見做した。その理由は、非架橋性樹脂は、それ自身が重合しないか、または重合しても三次元架橋体を形成せずに架橋点間を伸長するのみであることによる。重合性官能基当量が小さい架橋性樹脂を樹脂中に多く含有するほど、パラメータXは大きい値をとり、本発明のインプリント用光硬化性組成物の硬化物は架橋密度が大きくなる。反対に、重合性官能基当量が大きい架橋性樹脂、または非架橋性樹脂を樹脂中に多く含有するほど、パラメータXは小さい値をとり、本発明のインプリント用光硬化性組成物の硬化物は架橋密度が小さくなる。 Here, the meaning of the parameter X in the present invention will be described. Parameter X is a unique parameter found by the present inventor that estimates the crosslink density of a three-dimensional crosslinked product obtained by curing the photocurable composition for imprint of the present invention at the stage of the composition before curing. , Consists of sections relating to crosslinkable resins. In the above formula (1), for each crosslinkable resin, the content ratio is multiplied by the inverse of the polymerizable functional group equivalent, that is, the number of polymerizable functional groups per unit mass (x i / y i ), and each crosslinkable resin x It is the sum of i / y i and means the contribution of the crosslinkable resin to the crosslink density of the three-dimensional crosslinker. The contribution of the non-crosslinkable resin to the crosslink density of the three-dimensional crosslinked product was regarded as zero. The reason is that the non-crosslinkable resin does not polymerize by itself, or even if it polymerizes, it does not form a three-dimensional crosslinked product and only extends between the crosslink points. The more the crosslinkable resin having a small polymerizable functional group equivalent is contained in the resin, the larger the parameter X becomes, and the higher the crosslink density of the cured product of the photocurable composition for imprint of the present invention. On the contrary, the more the crosslinkable resin or the non-crosslinkable resin having a large polymerizable functional group equivalent is contained in the resin, the smaller the parameter X becomes, and the cured product of the photocurable composition for imprint of the present invention. Has a smaller crosslink density.
本発明のインプリント用光硬化性組成物のパラメータXは、該インプリント用光硬化性組成物の硬化物の貯蔵弾性率と密接に関係しており、パラメータXが0.10以上0.60未満となるように樹脂を選択することで、該インプリント用光硬化性組成物の硬化物の貯蔵弾性率は、-40℃において4.0×10Pa未満であり、且つ100℃において1.0×10Pa以上であるという条件を満足する。パラメータXが0.60以上であるインプリント用光硬化性組成物は、該インプリント用光硬化性組成物の硬化物の貯蔵弾性率が、-40℃において4.0×10Pa以上となり、該インプリント用光硬化性組成物から得られる硬化物及び成型体の耐衝撃性が著しく低下する。パラメータXが0.10未満であるインプリント用光硬化性組成物は、該インプリント用光硬化性組成物の硬化物の貯蔵弾性率が、100℃において1.0×10Pa未満となり、該インプリント用光硬化性組成物から得られる硬化物及び成型体の形状保持性が著しく低下する。 The parameter X of the photocurable composition for imprint of the present invention is closely related to the storage elastic modulus of the cured product of the photocurable composition for imprint, and the parameter X is 0.10 or more and 0.60. By selecting the resin so as to be less than, the storage elastic modulus of the cured product of the photocurable composition for imprint is less than 4.0 × 109 Pa at −40 ° C. and 1 at 100 ° C. The condition that it is 0.0 × 10 7 Pa or more is satisfied. In the photocurable composition for imprint having a parameter X of 0.60 or more, the storage elastic modulus of the cured product of the photocurable composition for imprint is 4.0 × 109 Pa or more at −40 ° C. The impact resistance of the cured product and the molded product obtained from the photocurable composition for imprinting is significantly reduced. In the photocurable composition for imprint having a parameter X of less than 0.10, the storage elastic modulus of the cured product of the photocurable composition for imprint is less than 1.0 × 107 Pa at 100 ° C. The shape retention of the cured product and the molded product obtained from the photocurable composition for imprint is significantly reduced.
本発明におけるインプリント用光硬化性組成物が含有する樹脂の種類は、パラメータXが0.10以上0.60未満である限り特に限定されない。本発明におけるインプリント用光硬化性組成物が、樹脂及び光開始剤以外にシリカ粒子及びその他添加剤を含有していても、パラメータXが0.10以上0.60未満となるように樹脂を含有することが望ましい。 The type of resin contained in the photocurable composition for imprinting in the present invention is not particularly limited as long as the parameter X is 0.10 or more and less than 0.60. Even if the photocurable composition for imprint in the present invention contains silica particles and other additives in addition to the resin and the photoinitiator, the resin is prepared so that the parameter X is 0.10 or more and less than 0.60. It is desirable to contain it.
[光開始剤]
本発明における光開始剤は、光ラジカル発生剤及び光酸発生剤に大別される。光ラジカル発生剤はラジカル重合性樹脂と、光酸発生剤はカチオン重合性樹脂と組み合わせて用いることが望ましい。
[Light initiator]
The photoinitiator in the present invention is roughly classified into a photoradical generator and a photoacid generator. It is desirable to use the photoradical generator in combination with a radically polymerizable resin and the photoacid generator in combination with a cationically polymerizable resin.
本発明のインプリント用光硬化性組成物に使用可能な光ラジカル発生剤として、例えば、アルキルフェノン類、ベンゾフェノン類、ジベンゾイル類、アントラキノン類、アシルホスフィンオキシド類、ベンゾイルベンゾエート類、オキシムエステル類及びチオキサントン類が挙げられ、特に、分子内開裂型の光ラジカル発生剤が好ましい。前記光ラジカル発生剤として市販品を用いてもよく、例えば、OMNIRAD(登録商標)127、同184、同369、同369E、同379EG、同500、同651、同819、同784、同907、同1173、同2959、同TPO H(以上、IGM Resins社製)、IRGACURE(登録商標)OXE01、同OXE02、同OXE03、同OXE04、CGI1700、同CGI1750、同CGI1850、同CG24-61(以上、BASFジャパン(株)製)、ESACURE KIP150、同KIP65LT、同KIP100F、同KT37、同KT55、同KTO46及び同KIP75(以上、Lamberti社製)が挙げられる。 Examples of photoradical generators that can be used in the photocurable composition for imprint of the present invention include alkylphenones, benzophenones, dibenzoyls, anthraquinones, acylphosphine oxides, benzoylbenzoates, oxime esters and thioxanthones. In particular, intramolecular cleavage type photoradical generators are preferable. Commercially available products may be used as the photoradical generator, for example, OMNIRAD (registered trademark) 127, 184, 369, 369E, 379EG, 500, 651, 819, 784, 907. 1173, 2959, TPO H (above, IGM Resins), IRGACURE (registered trademark) OXE01, OXE02, OXE03, OXE04, CGI1700, CGI1750, CGI1850, CG24-61 (above, BASF) Examples thereof include ESACURE KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46 and KIP75 (all manufactured by Lamberti).
本発明のインプリント用光硬化性組成物に使用可能な光酸発生剤として、例えば、アリールスルホニウム塩類及びアリールヨードニウム塩類が挙げられる。前記光酸発生剤として市販品を用いてもよく、例えば、CPI(登録商標)-100P、同-101A、同-110P、同-200K、同-210S、同-300、同-310B、同-400、同-410S、IK-1(以上、サンアプロ(株)製)、IRGACURE(登録商標)PAG103、同PAG121、同PAG203(以上、BASFジャパン(株)製)、TPS-TF、TPS-CS、TPS-PFBS及びDTBPI-PFBS(以上、東洋合成工業(株)製)が挙げられる。 Examples of the photoacid generator that can be used in the photocurable composition for imprint of the present invention include aryl sulfonium salts and aryl iodonium salts. Commercially available products may be used as the photoacid generator, for example, CPI (registered trademark) -100P, -101A, -110P, -200K, -210S, -300, -310B, -. 400, -410S, IK-1 (above, manufactured by San-Apro Co., Ltd.), IRGACURE (registered trademark) PAG103, PAG121, the same PAG203 (above, manufactured by BASF Japan Ltd.), TPS-TF, TPS-CS, Examples thereof include TPS-PFBS and DTBPI-PFBS (all manufactured by Toyo Synthetic Industry Co., Ltd.).
本発明のインプリント用光硬化性組成物の光開始剤の含有量は、該インプリント用光硬化性組成物が含有する全ての樹脂成分の和100質量部に対して、0.05質量部乃至5質量部、好ましくは0.1質量部乃至3質量部、より好ましくは0.5質量部乃至2質量部である。前記光開始剤の含有量を上記範囲内とすることで、本発明のインプリント用光硬化性組成物は、露光により硬化させることができる。
前記光開始剤は1種単独で、又は2種以上を組み合わせて使用することができる。
The content of the photoinitiator of the photocurable composition for imprint of the present invention is 0.05 part by mass with respect to 100 parts by mass of the sum of all the resin components contained in the photocurable composition for imprint. It is 5 parts by mass, preferably 0.1 part by mass to 3 parts by mass, and more preferably 0.5 part by mass to 2 parts by mass. By setting the content of the photoinitiator within the above range, the photocurable composition for imprinting of the present invention can be cured by exposure.
The photoinitiator may be used alone or in combination of two or more.
[シリカ粒子]
本発明のインプリント用光硬化性組成物はシリカ粒子を含有してもよく、使用可能なシリカ粒子は、一次粒子径が1nm乃至100nmである。ここで、一次粒子とは、粉体を構成する粒子であり、この一次粒子が凝集した粒子を二次粒子という。前記一次粒子径は、ガス吸着法(BET法)により測定される前記シリカ粒子の比表面積(単位質量あたりの表面積)S、該シリカ粒子の密度ρ、及び一次粒子径Dとの間に成り立つ関係式:D=6/(ρS)から算出することができる。前記関係式から算出される一次粒子径は、平均粒子径であり、一次粒子の直径である。一次粒子径を上記範囲内とすることで、本発明のインプリント用光硬化性組成物の透明性を損なうことなくシリカ粒子を配合することができる。
[Silica particles]
The photocurable composition for imprint of the present invention may contain silica particles, and the silica particles that can be used have a primary particle diameter of 1 nm to 100 nm. Here, the primary particles are particles constituting the powder, and the particles in which the primary particles are aggregated are referred to as secondary particles. The primary particle diameter is a relationship established between the specific surface area (surface area per unit mass) S of the silica particles measured by the gas adsorption method (BET method), the density ρ of the silica particles, and the primary particle diameter D. It can be calculated from the formula: D = 6 / (ρS). The primary particle diameter calculated from the above relational expression is an average particle diameter, which is the diameter of the primary particle. By setting the primary particle size within the above range, silica particles can be blended without impairing the transparency of the photocurable composition for imprint of the present invention.
前記シリカ粒子は、表面修飾されていないシリカ粒子及び表面修飾シリカ粒子のうち、どちらを使用してもよい。前記表面修飾されていないシリカ粒子として、例えば、CHO-ST-M、DMAC-ST、DMAC-ST-ZL、EAC-ST、EG-ST、EG-ST-ZL、EG-ST-XL30、IPA-ST、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、メタノールシリカゾル、MA-ST-M、MA-ST-L、MA-ST-ZL、MA-ST-UP、MEK-ST、MEK-ST-40、MEK-ST-L、MEK-ST-ZL、MEK-ST-UP、MIBK-ST、MIBK-ST-L、NMP-ST、NPC-ST-30、PMA-ST、PGM-ST、PGM-ST、PGM-ST-UP、及びTOL-ST(以上、日産化学(株)製)が挙げられる。前記表面修飾シリカ粒子として、例えば、MEK-AC-2140Z、MEK-AC-4130Y、MEK-AC-5140Z、PGM-AC-2140Y、PGM-AC-4130Y、MIBK-AC-2140Z、MIBK-SD-L(以上、日産化学(株)製)、ELCOM(登録商標)V-8802及び同V-8804(以上、日揮触媒化成(株)製)が挙げられる。市販品以外にも、前記表面修飾されていないシリカ粒子とシランカップリング剤とを、各種公知の方法により反応させたものを使用することができる。 As the silica particles, either the surface-modified silica particles or the surface-modified silica particles may be used. Examples of the unsurface-modified silica particles include CHO-ST-M, DMAC-ST, DMAC-ST-ZL, EAC-ST, EG-ST, EG-ST-ZL, EG-ST-XL30, IPA-. ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, methanol silica sol, MA-ST-M, MA-ST-L, MA-ST-ZL, MA-ST-UP, MEK-ST , MEK-ST-40, MEK-ST-L, MEK-ST-ZL, MEK-ST-UP, MIBK-ST, MIBK-ST-L, NMP-ST, NPC-ST-30, PMA-ST, PGM -ST, PGM-ST, PGM-ST-UP, and TOR-ST (all manufactured by Nissan Chemical Industries, Ltd.) can be mentioned. Examples of the surface-modified silica particles include MEK-AC-2140Z, MEK-AC-4130Y, MEK-AC-5140Z, PGM-AC-2140Y, PGM-AC-4130Y, MIBK-AC-2140Z, and MIBK-SD-L. (The above is manufactured by Nissan Chemical Industries, Ltd.), ELCOM (registered trademark) V-8802 and V-8804 (all manufactured by JGC Catalysts and Chemicals Co., Ltd.). In addition to commercially available products, those obtained by reacting the unsurface-modified silica particles with a silane coupling agent by various known methods can be used.
本発明のインプリント用光硬化性組成物が前記シリカ粒子を含有する場合、その含有量は、該インプリント用光硬化性組成物が含有する樹脂の全ての成分の和100質量部に対して、5質量部乃至60質量部、好ましくは8質量部乃至45質量部、より好ましくは10質量部乃至30質量部である。前記シリカ粒子を上記範囲内で含有することによって、本発明のインプリント用光硬化性組成物から得られる硬化物及び成型体の耐熱性向上等の効果を付与することができる。 When the photocurable composition for imprint of the present invention contains the silica particles, the content thereof is 100 parts by mass based on the sum of all the components of the resin contained in the photocurable composition for imprint. 5, 60 parts by mass, preferably 8 parts by mass to 45 parts by mass, and more preferably 10 parts by mass to 30 parts by mass. By containing the silica particles within the above range, the effect of improving the heat resistance of the cured product and the molded product obtained from the photocurable composition for imprinting of the present invention can be imparted.
前記シリカ粒子は、1種単独で又は2種以上を組み合わせて使用することができる。例えば、一次粒子径の異なる複数のシリカ粒子を組み合わせてもよいし、表面修飾に用いたシランカップリング剤の種類または量が異なる複数のシリカ粒子を組み合わせてもよい。 The silica particles can be used alone or in combination of two or more. For example, a plurality of silica particles having different primary particle diameters may be combined, or a plurality of silica particles having different types or amounts of silane coupling agents used for surface modification may be combined.
[その他添加剤]
さらに、本発明のインプリント用光硬化性組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、酸化防止剤、連鎖移動剤、紫外線吸収剤、光安定化剤、レベリング剤、レオロジー調整剤、シランカップリング剤等の接着補助剤、顔料、染料、消泡剤などの添加剤を含有することができる。
[Other additives]
Further, the photocurable composition for imprint of the present invention may be used as an antioxidant, a chain transfer agent, an ultraviolet absorber, a light stabilizer, a leveling agent, if necessary, as long as the effects of the present invention are not impaired. It can contain a rheology adjuster, an adhesion aid such as a silane coupling agent, and an additive such as a pigment, a dye, and an antifoaming agent.
[インプリント用光硬化性組成物の調製方法]
本発明のインプリント用光硬化性組成物の調製方法は、特に限定されない。調製方法として、例えば、樹脂、光開始剤、並びに必要によりシリカ粒子及びその他添加剤を所定の割合で混合し、均一な溶液とする方法が挙げられる。溶液に調製した本発明のインプリント用光硬化性組成物は、孔径が0.1μm乃至10μmのフィルターなどを用いてろ過した後、使用することが望ましい。
[Method for preparing photocurable composition for imprint]
The method for preparing the photocurable composition for imprint of the present invention is not particularly limited. Examples of the preparation method include a method of mixing a resin, a photoinitiator, and if necessary, silica particles and other additives in a predetermined ratio to obtain a uniform solution. It is desirable that the photocurable composition for imprint of the present invention prepared in a solution is used after being filtered using a filter having a pore size of 0.1 μm to 10 μm or the like.
[硬化物]
本発明のインプリント用光硬化性組成物を露光(光硬化)して、硬化物を得ることができ、本発明は該硬化物も対象とする。露光する光線としては、前記硬化物を得ることができる限り特に限定されないが、例えば、紫外線、電子線及びX線が挙げられる。紫外線照射に用いる光源としては、例えば、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、及びUV-LEDが使用できる。
[Cursed product]
The photocurable composition for imprint of the present invention can be exposed (photocured) to obtain a cured product, and the present invention also covers the cured product. The light beam to be exposed is not particularly limited as long as the cured product can be obtained, and examples thereof include ultraviolet rays, electron beams, and X-rays. As the light source used for ultraviolet irradiation, for example, a sunbeam, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used.
[成型体]
本発明のインプリント用光硬化性組成物は、UVインプリント法によって、硬化物の形成と並行して各種成型体を容易に製造することができる。以下、成型体の製造に関して詳細なプロセスを記載する。
[Molded body]
In the photocurable composition for imprint of the present invention, various molded bodies can be easily produced in parallel with the formation of the cured product by the UV imprint method. Hereinafter, a detailed process regarding the production of the molded body will be described.
[塗布工程]
本発明の成型体の製造方法は、支持体上に、本発明のインプリント用光硬化性組成物を塗布する塗布工程を有する。前記インプリント用光硬化性組成物は、ディスペンサー、スピナー等の適当な塗布方法により前記支持体上に塗布される。前記支持体は、開口部を有するパターンを有していてもよく、該パターンは、ネガ型感光性樹脂組成物又はポジ型感光性樹脂組成物をパターニングして形成され、その形状は例えば格子状である。前記支持体は、例えば、酸化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素膜又は酸化窒化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素基板、石英基板、ガラス基板(無アルカリガラス、低アルカリガラス、結晶化ガラスを含む)、ITO膜が形成されたガラス基板が挙げられる。前記支持体は、前記インプリント用光硬化性組成物から得られる硬化物及び成型体との密着性を向上させるために、該支持体と該インプリント用光硬化性組成物との間にプライマー層を有していてもよい。
[Applying process]
The method for producing a molded product of the present invention includes a coating step of applying the photocurable composition for imprint of the present invention onto a support. The imprint photocurable composition is applied onto the support by an appropriate application method such as a dispenser or a spinner. The support may have a pattern having an opening, and the pattern is formed by patterning a negative photosensitive resin composition or a positive photosensitive resin composition, and the shape thereof is, for example, a grid pattern. Is. The support may be, for example, a semiconductor substrate such as silicon coated with a silicon oxide film, a semiconductor substrate such as silicon coated with a silicon nitride film or a silicon oxide film, a silicon nitride substrate, a quartz substrate, or a glass substrate (non-alkali). (Including glass, low-alkali glass, and crystallized glass), and glass substrates on which an ITO film is formed. The support is a primer between the support and the photocurable composition for imprint in order to improve the adhesion to the cured product and the molded body obtained from the photocurable composition for imprint. It may have a layer.
[インプリント工程]
本発明の成型体の製造方法は、前記インプリント用光硬化性組成物と、目的とする成型体の外形の反転パターン及び遮光膜を有するモールドとを接触させるインプリント工程を有する。ここで、前記目的とする成型体の形状が凹面である場合、前記反転パターンは凸面である。前記モールドの材料は、後述する光硬化工程で使用する紫外線等の光を透過する材料である限り限定されないが、例えば、ポリメチルメタクリレート等の(メタ)アクリル樹脂、シクロオレフィンポリマー(COP)樹脂、石英、硼珪酸ガラス及びフッ化カルシウムが挙げられる。前記モールドの材料が樹脂である場合、非感光性樹脂、感光性樹脂いずれであってもよい。前記感光性樹脂として、例えば、国際公開第2019/031359号に開示されているインプリント用レプリカモールド材料が挙げられる。また、前記遮光膜の材料は、後述する光硬化工程で使用する紫外線等の光を透過しない材料である限り限定されないが、例えば、アルミニウム、クロム、ニッケル、コバルト、チタン、タンタル、タングステン及びモリブデンが挙げられる。前記モールドは、後述する離型工程のために、離型剤を塗布し乾燥することで離型処理した後に使用することが望ましい。前記離型剤は、市販品として入手が可能であり、例えば、Novec(登録商標)1700、同1710、同1720(以上、スリーエムジャパン(株)製)、フロロサーフ(登録商標)FG-5084、同FG-5093(以上、(株)フロロテクノロジー製)、デュラサーフ(登録商標)DP-500、同DP-200、同DS-5400、同DH-100、同DH-405TH、同DH-610、同DS-5800、同DS-5935(以上、(株)ハーベス製)、ポリフロン(登録商標)PTFE TC-7105GN、同PTFE TC-7109BK、同PTFE TC-7113LB、同PTFE TC-7400CR、同PTFE TC-7405GN、同PTFE TC-7408GY、同PTFE TC-7409BK、同PTFE TC-7609M1、同PTFE TC-7808GY、同PTFE TC-7809BK、同PTFE TD-7139BD、オプツール(登録商標)DAC-HP、同DSX-E、オプトエース(登録商標)WP-140、ダイフリー(登録商標)GW-4000、同GW-4010、同GW-4500、同GW-4510、同GW-8000、同GW-8500、同MS-175、同GF-700、同GF-750、同MS-600、同GA-3000、同GA-9700、同GA-9750(以上、ダイキン工業(株)製)、メガファック(登録商標)F-553、同F-555、同F-558、同F-561(以上、DIC(株)製)、SFE-DP02H、SNF-DP20H、SFE-B002H、SNF-B200A、SCV-X008、SFEX008、SNF-X800、SR-4000A、S-680、S-685、MR F-6441-AL、MR F-6711-AL、MR F-6758-AL、MR F-6811-AL、及びMR EF-6521-AL(以上、AGCセイミケミカル(株)製)が挙げられる。前記離型剤として、上記市販品以外に、例えば国際公開第2019/031312号に開示されているモールド用離型剤が挙げられる。
[Imprint process]
The method for producing a molded body of the present invention includes an imprinting step of bringing the photocurable composition for imprint into contact with a mold having an inverted pattern of the outer shape of the desired molded body and a light-shielding film. Here, when the shape of the target molded body is a concave surface, the inverted pattern is a convex surface. The material of the mold is not limited as long as it is a material that transmits light such as ultraviolet rays used in the photocuring step described later, and for example, a (meth) acrylic resin such as polymethylmethacrylate, a cycloolefin polymer (COP) resin, and the like. Examples include quartz, borosilicate glass and calcium fluoride. When the material of the mold is a resin, it may be either a non-photosensitive resin or a photosensitive resin. Examples of the photosensitive resin include replica mold materials for imprints disclosed in International Publication No. 2019/031359. The material of the light-shielding film is not limited as long as it is a material that does not transmit light such as ultraviolet rays used in the photocuring step described later, and examples thereof include aluminum, chromium, nickel, cobalt, titanium, tantalum, tungsten, and molybdenum. Can be mentioned. It is desirable that the mold is used after the mold release treatment is performed by applying a mold release agent and drying for the mold release step described later. The release agent is available as a commercially available product, and is, for example, Novec (registered trademark) 1700, 1710, 1720 (all manufactured by 3M Japan Co., Ltd.), Fluorosurf (registered trademark) FG-5084, and the same. FG-5093 (above, manufactured by Fluoro Technology Co., Ltd.), Durasurf (registered trademark) DP-500, DP-200, DS-5400, DH-100, DH-405TH, DH-610, same DS-5800, DS-5935 (all manufactured by Harves Co., Ltd.), Polyflon (registered trademark) PTFE TC-7105GN, PTFE TC-7109BK, PTFE TC-7113LB, PTFE TC-7400CR, PTFE TC- 7405GN, PTFE TC-7408GY, PTFE TC-7409BK, PTFE TC-7609M1, PTFE TC-7808GY, PTFE TC-7809BK, PTFE TD-7139BD, Optool (registered trademark) E, Optoace (registered trademark) WP-140, Die-free (registered trademark) GW-4000, GW-4010, GW-4500, GW-4510, GW-8000, GW-8500, MS- 175, GF-700, GF-750, MS-600, GA-3000, GA-9700, GA-9750 (all manufactured by Daikin Industries, Ltd.), Megafuck (registered trademark) F- 553, F-555, F-558, F-561 (all manufactured by DIC Co., Ltd.), SFE-DP02H, SNF-DP20H, SFE-B002H, SNF-B200A, SCV-X008, SFEX008, SNF- X800, SR-4000A, S-680, S-685, MR F-6441-AL, MR F-6711-AL, MR F-6758-AL, MR F-681-AL, and MR EF-6521-AL ( As mentioned above, AGC Seimi Chemical Co., Ltd.) can be mentioned. Examples of the mold release agent include mold release agents disclosed in International Publication No. 2019/031312, in addition to the above-mentioned commercial products.
[光硬化工程]
本発明の成型体の製造方法は、前記インプリント工程の後、前記モールドを介して前記インプリント用光硬化性組成物を露光して光硬化部を形成する光硬化工程を有する。露光する光線としては、前記光硬化部を形成することができる限り特に限定されないが、例えば、紫外線、電子線及びX線が挙げられる。紫外線照射に用いる光源としては、例えば、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、及びUV-LEDが使用できる。前記光硬化部の膜厚は、通常1μm乃至2000μmであり、好ましくは100μm乃至1000μmであり、より好ましくは300μm乃至700μmである。前記モールドは、紫外線等の光を透過する材料から作成され、且つ該紫外線等の光を透過しない遮光膜を有するため、本工程ではマスクとして使用される。
[Photo-curing process]
The method for producing a molded product of the present invention includes a photocuring step of exposing the photocurable composition for imprint through the mold to form a photocurable portion after the imprinting step. The light beam to be exposed is not particularly limited as long as the photocurable portion can be formed, and examples thereof include ultraviolet rays, electron beams, and X-rays. As the light source used for ultraviolet irradiation, for example, a sunbeam, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, and a UV-LED can be used. The film thickness of the photo-cured portion is usually 1 μm to 2000 μm, preferably 100 μm to 1000 μm, and more preferably 300 μm to 700 μm. Since the mold is made of a material that transmits light such as ultraviolet rays and has a light-shielding film that does not transmit light such as ultraviolet rays, it is used as a mask in this step.
[離型工程]
本発明の成型体の製造方法は、前記光硬化部と前記モールドとを分離する離型工程を有する。離型方法は、前記光硬化部が損傷及び変形することなく、前記モールドから完全に分離することができる限り、特に限定されない。前記モールドは、前記離型剤を塗布し乾燥する離型処理によって、前記光硬化部と該モールドとの分離が容易となる。前記光硬化工程の後、本離型工程の前、中途又は後に、前記光硬化部を加熱する工程をさらに有してもよい。前記光硬化部を加熱する手段としては、特に限定されないが、例えば、ホットプレート及びオーブン等が挙げられる。前記光硬化部を加熱する工程は、50℃乃至200℃、好ましくは50℃乃至150℃、より好ましくは50℃乃至100℃の温度範囲で、1分間乃至1時間、好ましくは1分間乃至30分間、より好ましくは1分間乃至10分間行われる。
[Release process]
The method for producing a molded product of the present invention includes a mold release step for separating the photocurable portion and the mold. The mold release method is not particularly limited as long as the photocurable portion can be completely separated from the mold without being damaged or deformed. The mold can be easily separated from the photocurable portion by a mold release treatment in which the mold release agent is applied and dried. After the photo-curing step, before, during, or after the main release step, the photo-curing portion may be further heated. The means for heating the photo-cured portion is not particularly limited, and examples thereof include a hot plate and an oven. The step of heating the photocured portion is 1 minute to 1 hour, preferably 1 minute to 30 minutes in a temperature range of 50 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C., more preferably 50 ° C. to 100 ° C. , More preferably for 1 to 10 minutes.
[現像工程]
本発明の成型体の製造方法は、前記離型工程の後、前記インプリント用光硬化性組成物の未硬化部を現像液により除去して前記光硬化部を露出させる現像工程を有する。本現像工程の手段としては、特に限定されないが、例えば、ディップ法、パドル法、スプレー法、ダイナミックディスペンス法及びスタティックディスペンス法が挙げられる。本現像工程は、5℃乃至50℃、好ましくは15℃乃至35℃、より好ましくは20℃乃至30℃の温度範囲で、10秒間乃至10分間、好ましくは10秒間乃至3分間、より好ましくは10秒間乃至1分間行われる。
[Development process]
The method for producing a molded product of the present invention includes, after the mold release step, a developing step of removing the uncured portion of the photocurable composition for imprint with a developing solution to expose the photocured portion. The means of this development step is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic discharge method, and a static discharge method. The main development step is carried out in a temperature range of 5 ° C. to 50 ° C., preferably 15 ° C. to 35 ° C., more preferably 20 ° C. to 30 ° C. for 10 seconds to 10 minutes, preferably 10 seconds to 3 minutes, more preferably 10. It is performed for 1 second to 1 minute.
前記現像液としては、前記インプリント用光硬化性組成物の未硬化部を除去することができる限り特に限定されないが、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロペンタノン、シクロヘキサノン及びγ-ブチロラクトンが好ましく、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートがより好ましい。前記現像液は1種単独で、又は2種以上を組み合わせて使用することができる。 The developing solution is not particularly limited as long as it can remove the uncured portion of the photocurable composition for imprint, but propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclopentanone, cyclohexanone and γ-. Butyrolactone is preferred, with propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate being more preferred. The developer can be used alone or in combination of two or more.
[リンス工程]
本発明の成型体の製造方法は、前記現像工程の後、後述する乾燥工程の前に、リンス液を用いて前記光硬化部をリンス処理するリンス工程を有してもよい。本リンス工程の手段としては、特に限定されないが、例えば、ディップ法、パドル法、スプレー法、ダイナミックディスペンス法及びスタティックディスペンス法が挙げられる。本リンス工程は、5℃乃至50℃、好ましくは15℃乃至35℃、より好ましくは20℃乃至30℃の温度範囲で、10秒間乃至10分間、好ましくは10秒間乃至3分間、より好ましくは10秒間乃至1分間行われる。前記リンス液としては、前記光硬化部にダメージを与えることなく、前記現像液を洗い流すことができる限り特に限定されない。
[Rinse process]
The method for producing a molded product of the present invention may include a rinsing step of rinsing the photocured portion with a rinsing solution after the developing step and before the drying step described later. The means of this rinsing step is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, a dynamic discharge method, and a static discharge method. This rinsing step takes 10 seconds to 10 minutes, preferably 10 seconds to 3 minutes, more preferably 10 in a temperature range of 5 ° C to 50 ° C, preferably 15 ° C to 35 ° C, more preferably 20 ° C to 30 ° C. It is performed for 1 second to 1 minute. The rinse solution is not particularly limited as long as the developer can be washed away without damaging the photocured portion.
本発明の成型体の製造方法において使用する前記現像液及び前記リンス液は、前記光硬化部に対する濡れ性を向上させて現像及びリンスを効率的に進行させる目的で、界面活性剤をさらに含有してもよい。前記界面活性剤は1種単独で、又は2種以上を組み合わせて用いることができる。また、前記界面活性剤が使用される場合、その含有量は、前記現像液又は前記リンス液100質量部に対して、0.001質量部乃至5質量部であり、好ましくは0.01質量部乃至3質量部であり、より好ましくは0.05質量部乃至1質量部である。 The developer and the rinse solution used in the method for producing a molded product of the present invention further contain a surfactant for the purpose of improving the wettability to the photocured portion and efficiently advancing the development and rinsing. You may. The surfactant may be used alone or in combination of two or more. When the surfactant is used, its content is 0.001 part by mass to 5 parts by mass, preferably 0.01 part by mass with respect to 100 parts by mass of the developer or the rinse solution. It is 3 parts by mass, more preferably 0.05 part by mass to 1 part by mass.
[乾燥工程]
本発明の成型体の製造方法は、前記現像工程の後、前記光硬化部が形成された支持体をスピン乾燥させる乾燥工程を有する。本乾燥工程の手段としては、特に限定されないが、例えば、前記支持体をスピナー、コーター等のスピン乾燥可能な装置を使用して回転させる方法が挙げられる。本乾燥工程は、200rpm乃至3000rpm、好ましくは500rpm乃至2000rpm、より好ましくは1000rpm乃至1500rpmの回転数範囲で、10秒間乃至10分間、好ましくは10秒間乃至3分間、より好ましくは10秒間乃至1分間行われる。
[Drying process]
The method for producing a molded product of the present invention includes, after the developing step, a drying step of spin-drying the support on which the photocurable portion is formed. The means of this drying step is not particularly limited, and examples thereof include a method of rotating the support using a spin-drying device such as a spinner or a coater. This drying step is carried out in a rotation speed range of 200 rpm to 3000 rpm, preferably 500 rpm to 2000 rpm, more preferably 1000 rpm to 1500 rpm for 10 seconds to 10 minutes, preferably 10 seconds to 3 minutes, more preferably 10 seconds to 1 minute. Will be.
[ポスト露光工程]
本発明の成型体の製造方法は、前記乾燥工程の後、前記光硬化部の全面を露光するポスト露光工程を有してもよい。本ポスト露光工程の雰囲気としては、特に限定されないが、例えば、空気雰囲気及び窒素雰囲気が挙げられる。本ポスト露光工程において露光する光線は、前記光硬化工程で使用可能な光線を使用することができる。
[Post-exposure process]
The method for producing a molded product of the present invention may include a post-exposure step of exposing the entire surface of the light-cured portion after the drying step. The atmosphere of the post-exposure process is not particularly limited, and examples thereof include an air atmosphere and a nitrogen atmosphere. As the light beam exposed in this post-exposure step, a light ray that can be used in the photocuring step can be used.
[ポストベーク工程]
本発明の成型体の製造方法は、前記ポスト露光工程の後、前記光硬化部を加熱するポストベーク工程を有してもよい。本ポストベーク工程の手段としては、特に限定されないが、例えば、ホットプレート及びオーブンが挙げられる。本ポストベーク工程は、50℃乃至200℃、好ましくは50℃乃至150℃、より好ましくは50℃乃至100℃の温度範囲で、1分間乃至1時間、好ましくは1分間乃至30分間、より好ましくは1分間乃至10分間行われる。
[Post-baking process]
The method for producing a molded product of the present invention may include a post-baking step of heating the photo-cured portion after the post-exposure step. The means of this post-baking process is not particularly limited, and examples thereof include a hot plate and an oven. This post-baking step is carried out in a temperature range of 50 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C., more preferably 50 ° C. to 100 ° C. for 1 minute to 1 hour, preferably 1 minute to 30 minutes, more preferably. It is carried out for 1 to 10 minutes.
[反射防止膜形成工程]
本発明の成型体の製造方法は、前記ポスト露光工程の後、又は前記ポストベーク工程を行う場合は該ポストベーク工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに有してもよい。前記反射防止膜は、前記光硬化物に入射する光の反射を抑制し、透過率を向上させるために、該光硬化物の表面に形成される。前記反射防止膜の形成方法としては、例えば、真空蒸着法、スパッタ法、CVD法、ミスト法、スピンコート法、ディップコート法及びスプレーコート法が挙げられる。また、前記反射防止膜として、フッ化マグネシウム、二酸化ケイ素等の無機膜、及びオルガノポリシロキサン等の有機膜が挙げられる。
[Antireflection film forming process]
The method for producing a molded product of the present invention further includes a step of forming an antireflection film on the surface of the photocurable portion after the post-exposure step or, in the case of performing the post-baking step, the post-baking step. You may. The antireflection film is formed on the surface of the photocured product in order to suppress the reflection of light incident on the photocured product and improve the transmittance. Examples of the method for forming the antireflection film include a vacuum vapor deposition method, a sputtering method, a CVD method, a mist method, a spin coating method, a dip coating method and a spray coating method. Further, examples of the antireflection film include an inorganic film such as magnesium fluoride and silicon dioxide, and an organic film such as organopolysiloxane.
このような方法によって製造された成型体は、カメラモジュール用レンズとして好適に使用することができる。 The molded body produced by such a method can be suitably used as a lens for a camera module.
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記実施例及び比較例において、試料の調製及び評価に用いた装置は下記の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. The devices used for sample preparation and evaluation in the following Examples and Comparative Examples are as follows.
(1)撹拌脱泡
(株)シンキー製 自転・公転ミキサーあわとり練太郎(登録商標)ARE-310
(2)UV露光
シーシーエス(株)製 バッチ式UV-LED照射装置(極大波長365nm)
(3)貯蔵弾性率測定
ティーエイインスツルメントジャパン(株)製 動的粘弾性測定装置Q800
ティーエイインスツルメントジャパン(株)製 エアチラーシステムACS-3
(4)耐衝撃性評価
エスペック(株)製 小型熱衝撃試験機TSE-11-A
(5)形状保持性評価
三鷹光器(株)製 非接触表面性状測定装置PF-60
(1) Stirring and defoaming Co., Ltd. Shinky Co., Ltd. Rotating / revolutioning mixer Awatori Rentaro (registered trademark) ARE-310
(2) UV exposure Batch type UV-LED irradiation device manufactured by CCS Inc. (maximum wavelength 365 nm)
(3) Storage elastic modulus measurement Dynamic viscoelasticity measuring device Q800 manufactured by TA Instruments Japan Co., Ltd.
Air Chiller System ACS-3 manufactured by TA Instruments Japan Co., Ltd.
(4) Impact resistance evaluation Small thermal impact tester TSE-11-A manufactured by ESPEC CORPORATION
(5) Shape retention evaluation Mitaka Kohki Co., Ltd. non-contact surface property measuring device PF-60
下記製造例、実施例及び比較例において使用した樹脂、光開始剤及びシリカ粒子の供給元は下記の通りである。
A-DCP:新中村化学工業(株)製 製品名:NKエステル A-DCP
A-DOG:新中村化学工業(株)製 製品名:NKエステル A-DOG
APG-700:新中村化学工業(株)製 製品名:NKエステル APG-700
A-600:新中村化学工業(株)製 製品名:NKエステル A-600
AM-90G:新中村化学工業(株)製 製品名:NKエステル AM-90G
1G:新中村化学工業(株)製 製品名:NKエステル 1G
DCP:新中村化学工業(株)製 製品名:NKエステル DCP
UA-4200:新中村化学工業(株)製 製品名:NKオリゴ UA-4200
UA-510H:共栄社化学(株)製 製品名:UA-510H
E4513:ダイセル・オルネクス(株)製 製品名:EBECRYL(登録商標)4513
E5129:ダイセル・オルネクス(株)製 製品名:EBECRYL(登録商標)5129
V#190:大阪有機化学工業(株)製 製品名:ビスコート#190
V#260:大阪有機化学工業(株)製 製品名:ビスコート#260
UM-90(1/3)DA:宇部興産(株)製 製品名:UM-90(1/3)DA
THI-DE:ENEOS(株)製 製品名:THI-DE
GT401:(株)ダイセル製 製品名:エポリード(登録商標)GT401
I184:IGM Resins社製 製品名:OMNIRAD(登録商標)184
I110P:サンアプロ(株)製 製品名:CPI(登録商標)-110P
MEK-AC-2140Z:日産化学(株)製 製品名:MEK-AC-2140Z
The sources of the resin, photoinitiator and silica particles used in the following production examples, examples and comparative examples are as follows.
A-DCP: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK ester A-DCP
A-DOG: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Ester A-DOG
APG-700: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Ester APG-700
A-600: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Ester A-600
AM-90G: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Ester AM-90G
1G: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Ester 1G
DCP: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Ester DCP
UA-4200: Made by Shin Nakamura Chemical Industry Co., Ltd. Product name: NK Oligo UA-4200
UA-510H: Made by Kyoeisha Chemical Co., Ltd. Product name: UA-510H
E4513: Made by Daisel Ornex Co., Ltd. Product name: EBECRYL (registered trademark) 4513
E5129: Made by Daisel Ornex Co., Ltd. Product name: EBECRYL (registered trademark) 5129
V # 190: Made by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscote # 190
V # 260: Made by Osaka Organic Chemical Industry Co., Ltd. Product name: Viscote # 260
UM-90 (1/3) DA: Made by Ube Industries, Ltd. Product name: UM-90 (1/3) DA
THI-DE: Made by ENEOS Co., Ltd. Product name: THI-DE
GT401: Made by Daicel Co., Ltd. Product name: Epolide (registered trademark) GT401
I184: Made by IGM Resins Product name: OMNIRAD (registered trademark) 184
I110P: Made by Sun Appro Co., Ltd. Product name: CPI (registered trademark) -110P
MEK-AC-2140Z: Made by Nissan Chemical Industries, Ltd. Product name: MEK-AC-2140Z
[製造例1]
500mLナスフラスコに、A-DCPを120g、及びメチルエチルケトンを120g秤量し、撹拌して均一化した。その後、MEK-AC-2140Z(メタクリロイルオキシ基で表面修飾された一次粒子径10nm乃至15nmのシリカ粒子、固形分46質量%、メチルエチルケトン分散液)260gを加え、攪拌して均一化した。その後、エバポレーターを用いて、50℃、減圧度133.3Pa以下の条件でメチルエチルケトンを留去し、シリカ粒子のA-DCP分散液(該シリカ粒子濃度50質量%)を得た。
[Manufacturing Example 1]
120 g of A-DCP and 120 g of methyl ethyl ketone were weighed in a 500 mL eggplant flask and stirred to homogenize. Then, 260 g of MEK-AC-2140Z (silica particles having a primary particle diameter of 10 nm to 15 nm surface-modified with a methacryloyloxy group, a solid content of 46% by mass, a methyl ethyl ketone dispersion) was added, and the mixture was stirred and homogenized. Then, using an evaporator, methyl ethyl ketone was distilled off under the conditions of 50 ° C. and a reduced pressure of 133.3 Pa or less to obtain an A-DCP dispersion liquid of silica particles (silica particle concentration 50% by mass).
[実施例1]
前記架橋性樹脂としてA-DCPを6.0g及びAPG-700を4.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物1を調製した。
[Example 1]
6.0 g of A-DCP and 4.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. A photocurable composition 1 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例2]
前記架橋性樹脂としてA-DCPを4.0g及びAPG-700を6.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物2を調製した。
[Example 2]
4.0 g of A-DCP and 6.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. The photocurable composition 2 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例3]
前記架橋性樹脂としてA-DCPを3.0g及びAPG-700を7.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物3を調製した。
[Example 3]
3.0 g of A-DCP and 7.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. The photocurable composition 3 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例4]
前記架橋性樹脂としてA-DCPを2.0g及びAPG-700を8.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物4を調製した。
[Example 4]
2.0 g of A-DCP and 8.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. The photocurable composition 4 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例5]
前記架橋性樹脂としてA-DCPを4.0g及びAPG-700を4.0g、前記シリカ粒子として製造例1で調製したシリカ粒子のA-DCP分散液を2.0g(シリカ粒子として1.0g)、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物5を調製した。
[Example 5]
4.0 g of A-DCP and 4.0 g of APG-700 as the crosslinkable resin, and 2.0 g of the A-DCP dispersion liquid of the silica particles prepared in Production Example 1 as the silica particles (1.0 g as the silica particles). ) And 0.1 g of I184 as the photoinitiator, each of which is shaken at 50 ° C. for 15 hours to mix, and then stirred and defoamed for 10 minutes using the stirring defoaming machine for imprinting. A photocurable composition 5 was prepared.
[実施例6]
前記架橋性樹脂としてA-DCPを8.0g及びA-600を2.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物6を調製した。
[Example 6]
8.0 g of A-DCP and 2.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. A photocurable composition 6 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例7]
前記架橋性樹脂としてA-DCPを6.0g及びA-600を4.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物7を調製した。
[Example 7]
6.0 g of A-DCP and 4.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. A photocurable composition 7 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例8]
前記架橋性樹脂としてA-DCPを4.0g及びA-600を6.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物8を調製した。
[Example 8]
4.0 g of A-DCP and 6.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. A photocurable composition 8 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例9]
前記架橋性樹脂としてA-DOGを6.0g及びA-600を4.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物9を調製した。
[Example 9]
6.0 g of A-DOG and 4.0 g of A-600 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. A photocurable composition 9 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例10]
前記架橋性樹脂としてA-DOGを3.0g及びAPG-700を7.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物10を調製した。
[Example 10]
3.0 g of A-DOG and 7.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. The photocurable composition 10 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例11]
前記架橋性樹脂としてA-DOGを2.0g及びAPG-700を8.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物11を調製した。
[Example 11]
2.0 g of A-DOG and 8.0 g of APG-700 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours and mixed. The photocurable composition 11 for imprint was prepared by stirring and defoaming for 10 minutes using a stirring defoaming machine.
[実施例12]
前記架橋性樹脂としてUM-90(1/3)DAを10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物12を調製した。
[Example 12]
10.0 g of UM-90 (1/3) DA as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the stirring was removed. The photocurable composition 12 for imprint was prepared by stirring and defoaming for 10 minutes using a foaming machine.
[実施例13]
前記架橋性樹脂としてUM-90(1/3)DAを9.0g、前記非架橋性樹脂としてV#190を1.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物13を調製した。
[Example 13]
9.0 g of UM-90 (1/3) DA as the crosslinkable resin, 1.0 g of V # 190 as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended and 50. The photocurable composition 13 for imprint was prepared by shaking and mixing at ° C. for 15 hours and then stirring and defoaming for 10 minutes using the stirring defoaming machine.
[実施例14]
前記架橋性樹脂としてUM-90(1/3)DAを8.0g、前記非架橋性樹脂としてV#190を2.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物14を調製した。
[Example 14]
8.0 g of UM-90 (1/3) DA as the crosslinkable resin, 2.0 g of V # 190 as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended and 50. The photocurable composition 14 for imprint was prepared by shaking and mixing at ° C. for 15 hours and then stirring and defoaming for 10 minutes using the stirring defoaming machine.
[実施例15]
前記架橋性樹脂としてUM-90(1/3)DAを9.0g、前記非架橋性樹脂としてAM-90Gを1.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物15を調製した。
[Example 15]
9.0 g of UM-90 (1/3) DA as the crosslinkable resin, 1.0 g of AM-90G as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended and 50. The photocurable composition 15 for imprint was prepared by shaking and mixing at ° C. for 15 hours and then stirring and defoaming for 10 minutes using the stirring defoaming machine.
[実施例16]
前記架橋性樹脂としてE4513を10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物16を調製した。
[Example 16]
10.0 g of E4513 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator are blended, and the mixture is shaken at 50 ° C. for 15 hours to mix, and then stirred for 10 minutes using the stirring defoaming machine. By defoaming, a photocurable composition 16 for imprint was prepared.
[比較例1]
前記架橋性樹脂としてA-DCPを10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物17を調製した。
[Comparative Example 1]
10.0 g of A-DCP as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then 10 using the stirring defoaming machine. A photocurable composition 17 for imprint was prepared by stirring and defoaming for a minute.
[比較例2]
前記架橋性樹脂としてA-DCPを7.0g及びAPG-700を1.0g、前記シリカ粒子として製造例1で調製したシリカ粒子のA-DCP分散液を2.0g(シリカ粒子として1.0g)、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物18を調製した。
[Comparative Example 2]
7.0 g of A-DCP and 1.0 g of APG-700 as the crosslinkable resin, and 2.0 g of the A-DCP dispersion liquid of the silica particles prepared in Production Example 1 as the silica particles (1.0 g as silica particles). ) And 0.1 g of I184 as the photoinitiator, each of which is shaken at 50 ° C. for 15 hours to mix, and then stirred and defoamed for 10 minutes using the stirring defoaming machine for imprinting. A photocurable composition 18 was prepared.
[比較例3]
前記架橋性樹脂としてA-DCPを3.0g及びAPG-700を1.0g、前記シリカ粒子として製造例1で調製したシリカ粒子のA-DCP分散液を6.0g(シリカ粒子として3.0g)、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物19を調製した。
[Comparative Example 3]
As the crosslinkable resin, 3.0 g of A-DCP and 1.0 g of APG-700, and 6.0 g of the A-DCP dispersion liquid of the silica particles prepared in Production Example 1 as the silica particles (3.0 g as silica particles). ) And 0.1 g of I184 as the photoinitiator, each of which is shaken at 50 ° C. for 15 hours to mix, and then stirred and defoamed for 10 minutes using the stirring defoaming machine for imprinting. A photocurable composition 19 was prepared.
[比較例4]
前記架橋性樹脂としてA-DOGを10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物20を調製した。
[Comparative Example 4]
10.0 g of A-DOG as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then 10 using the stirring defoaming machine. A photocurable composition 20 for imprint was prepared by stirring and defoaming for a minute.
[比較例5]
前記架橋性樹脂としてE5129を10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物21を調製した。
[Comparative Example 5]
10.0 g of E5129 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator are mixed, shaken at 50 ° C. for 15 hours to mix, and then stirred for 10 minutes using the stirring defoaming machine. By defoaming, a photocurable composition 21 for imprint was prepared.
[比較例6]
前記架橋性樹脂としてE5129を8.0g及びV#260を2.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物22を調製した。
[Comparative Example 6]
8.0 g of E5129 and 2.0 g of V # 260 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the stirring was removed. The photocurable composition 22 for imprint was prepared by stirring and defoaming for 10 minutes using a foaming machine.
[比較例7]
前記架橋性樹脂としてE5129を6.0g及びV#260を4.0g、並びに前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物23を調製した。
[Comparative Example 7]
6.0 g of E5129 and 4.0 g of V # 260 as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the stirring was removed. The photocurable composition 23 for imprint was prepared by stirring and defoaming for 10 minutes using a foaming machine.
[比較例8]
前記架橋性樹脂としてUA-510Hを10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物24を調製した。
[Comparative Example 8]
10.0 g of UA-510H as the crosslinkable resin and 0.1 g of I184 as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then 10 using the stirring defoaming machine. A photocurable composition 24 for imprint was prepared by stirring and defoaming for a minute.
[比較例9]
前記架橋性樹脂として1Gを10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物25を調製した。
[Comparative Example 9]
10.0 g of 1 G as the crosslinkable resin and 0.1 g of I184 as the photoinitiator are mixed, shaken at 50 ° C. for 15 hours to mix, and then stirred for 10 minutes using the stirring defoaming machine. By defoaming, a photocurable composition 25 for imprint was prepared.
[比較例10]
前記架橋性樹脂としてDCPを10.0g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物26を調製した。
[Comparative Example 10]
10.0 g of DCP as the crosslinkable resin and 0.1 g of I184 as the photoinitiator are blended, shaken at 50 ° C. for 15 hours to mix, and then stirred for 10 minutes using the stirring defoaming machine. By defoaming, a photocurable composition 26 for imprint was prepared.
[比較例11]
前記架橋性樹脂としてTHI-DEを6.0g及びGT401を4.0g、並びに前記光開始剤としてI110Pを0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物27を調製した。
[Comparative Example 11]
6.0 g of THI-DE and 4.0 g of GT401 as the crosslinkable resin and 0.1 g of I110P as the photoinitiator were blended, and the mixture was shaken at 50 ° C. for 15 hours to mix, and then the stirring was removed. The photocurable composition 27 for imprint was prepared by stirring and defoaming for 10 minutes using a foaming machine.
[比較例12]
前記架橋性樹脂としてUM-90(1/3)DAを2.5g、前記非架橋性樹脂としてAM-90Gを7.5g、前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物28を調製した。
[Comparative Example 12]
2.5 g of UM-90 (1/3) DA as the crosslinkable resin, 7.5 g of AM-90G as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were blended at 50 ° C. The photocurable composition 28 for imprint was prepared by stirring and defoaming for 10 minutes using the stirring defoaming machine after shaking and mixing for 15 hours.
[比較例13]
前記架橋性樹脂としてUA-4200を2.5g、前記非架橋性樹脂としてAM-90Gを7.5g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物29を調製した。
[Comparative Example 13]
Add 2.5 g of UA-4200 as the crosslinkable resin, 7.5 g of AM-90G as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator, and shake at 50 ° C. for 15 hours. After mixing and stirring, the photocurable composition 29 for imprint was prepared by stirring and defoaming for 10 minutes using the stirring defoaming machine.
[比較例14]
前記架橋性樹脂としてE4513を2.5g、前記非架橋性樹脂としてAM-90Gを7.5g、及び前記光開始剤としてI184を0.1g、それぞれ配合し、50℃で15時間振とうさせ混合した後、前記撹拌脱泡機を用いて10分間撹拌脱泡することで、インプリント用光硬化性組成物30を調製した。
[Comparative Example 14]
2.5 g of E4513 as the crosslinkable resin, 7.5 g of AM-90G as the non-crosslinkable resin, and 0.1 g of I184 as the photoinitiator were mixed and shaken at 50 ° C. for 15 hours to mix. Then, the photocurable composition 30 for imprint was prepared by stirring and defoaming for 10 minutes using the stirring defoaming machine.
前記実施例1乃至実施例16及び比較例1乃至比較例14で調製したインプリント用光硬化性組成物1乃至30の配合比を、下記表1に示す。なお、下記表1中、「部」は「質量部」を表す。 The compounding ratios of the photocurable compositions for imprint 1 to 30 prepared in Examples 1 to 16 and Comparative Examples 1 to 14 are shown in Table 1 below. In Table 1 below, "part" represents "part by mass".
表1
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Table 1
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
[貯蔵弾性率測定]
実施例1乃至実施例16及び比較例1乃至比較例14で調製した各インプリント用光硬化性組成物を、200μm厚のシリコーンゴム製スペーサーを介して、ガラス基板2枚で挟み込んだ。前記ガラス基板は、予めNovec(登録商標)1720(スリーエムジャパン(株)製)を塗布し乾燥することで離型処理したものである。その後、前記離型処理したガラス基板2枚に挟まれた前記インプリント用光硬化性組成物を、前記UV-LED照射装置を用いて、空気雰囲気下にて照度50mW/cmで120秒間(露光量6J/cm)UV露光した。露光後得られた硬化物を、前記離型処理したガラス基板から剥離し、裁断することで短冊状試験片(長さ30mm、幅4mm、厚さ200μm)を作製した。前記短冊状試験片の貯蔵弾性率を、前記エアチラーシステムを接続した前記動的粘弾性測定装置を用いて測定した。なお、測定条件は下記の通りである。
<測定条件>
測定モード:引張振動
引張ひずみ:0.1%
周波数:1Hz
測定温度範囲:-50℃から200℃
昇温速度:2℃/分
測定雰囲気:空気
[Measurement of storage elastic modulus]
The photocurable compositions for imprint prepared in Examples 1 to 16 and Comparative Examples 1 to 14 were sandwiched between two glass substrates via a silicone rubber spacer having a thickness of 200 μm. The glass substrate is mold-released by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) in advance and drying it. Then, the photocurable composition for imprint sandwiched between the two demolded glass substrates was subjected to 120 seconds at an illuminance of 50 mW / cm 2 in an air atmosphere using the UV-LED irradiation device (the UV-LED irradiation device). Exposure amount 6J / cm 2 ) UV exposure. The cured product obtained after exposure was peeled off from the mold-released glass substrate and cut to prepare a strip-shaped test piece (length 30 mm, width 4 mm, thickness 200 μm). The storage elastic modulus of the strip-shaped test piece was measured using the dynamic viscoelasticity measuring device connected to the air chiller system. The measurement conditions are as follows.
<Measurement conditions>
Measurement mode: Tension vibration Tension strain: 0.1%
Frequency: 1Hz
Measurement temperature range: -50 ° C to 200 ° C
Temperature rise rate: 2 ° C / min Measurement atmosphere: Air
前記各インプリント用光硬化性組成物から前記短冊状試験片を2つ作製し、該2つの短冊状試験片それぞれの貯蔵弾性率を測定し、それらの平均値を最終的な貯蔵弾性率として採用した。前記各インプリント用光硬化性組成物について、-40℃における貯蔵弾性率の平均値及び100℃における貯蔵弾性率の平均値を下記表3に示す。 Two strip-shaped test pieces were prepared from each of the imprint photocurable compositions, the storage elastic modulus of each of the two strip-shaped test pieces was measured, and the average value thereof was used as the final storage elastic modulus. Adopted. For each of the imprint photocurable compositions, the average value of the storage elastic modulus at −40 ° C. and the average value of the storage elastic modulus at 100 ° C. are shown in Table 3 below.
[パラメータXの算出]
実施例1乃至実施例16及び比較例1乃至比較例14で調製した各インプリント用光硬化性組成物について、前記式(1)に基づいてパラメータXを算出した。なお、架橋性樹脂の重合性官能基当量(単位:g/eq)としては、製品のカタログ等に記載の数値をそのまま採用し、記載されていないものについては、製品のカタログ等に記載の構造式、平均分子量及び官能基数の情報を参考にして求めたものを採用した。各架橋性樹脂の重合性官能基当量(単位:g/eq)は下記表2の通りである。
表2
Figure JPOXMLDOC01-appb-T000006
[Calculation of parameter X]
For each imprint photocurable composition prepared in Examples 1 to 16 and Comparative Examples 1 to 14, the parameter X was calculated based on the above formula (1). As the polymerizable functional group equivalent (unit: g / eq) of the crosslinkable resin, the numerical values described in the product catalog etc. are adopted as they are, and those not described are the structures described in the product catalog etc. The one obtained by referring to the information of the formula, the average molecular weight and the number of functional groups was adopted. The polymerizable functional group equivalent (unit: g / eq) of each crosslinkable resin is shown in Table 2 below.
Table 2
Figure JPOXMLDOC01-appb-T000006
[耐衝撃性評価]
実施例1乃至実施例16及び比較例1乃至比較例14で調製した各インプリント用光硬化性組成物を、無アルカリガラス基板(5cm角、700μm厚)上に適量滴下した。前記無アルカリガラス基板は、予めKBM-503(信越化学工業(株)製)をプロピレングリコールモノメチルエーテルアセテート(以下、本明細書ではPGMEAと略称する。)で10重量%に希釈した溶液を塗布し乾燥することで、密着処理したものである。その後、前記無アルカリガラス基板上に滴下した前記インプリント用光硬化性組成物を、遮光膜付き透明樹脂製凸面モールド(開口部6mm×7mm)で挟み込んだ。前記モールドは、Novec(登録商標)1720(スリーエムジャパン(株)製)を塗布し乾燥することで離型処理したものである。続いて、前記無アルカリガラス基板と前記モールドとで挟まれた前記インプリント用光硬化性組成物を、前記UV-LED照射装置を用いて、前記モールドを介して照度50mW/cmで所定時間UV露光し、光硬化部を形成した。なお、この時のUV露光時間は、実施例1乃至実施例7、実施例10乃至実施例16、及び比較例1乃至比較例10については5秒間、実施例8、実施例9、及び比較例12乃至比較例14については3秒間、比較例11については20秒間である。その後、前記モールドを離型し、前記光硬化部が密着した前記無アルカリガラス基板を、攪拌されたPGMEA中に1分間浸漬(現像)し、さらにPGMEAでリンスすることで未露光部(未硬化部)を除去した。その結果、前記無アルカリガラス基板上に、6mm×7mm、最厚部400μm、最薄部約30μmの凹面を有するレンズが成型された。
[Impact resistance evaluation]
An appropriate amount of each imprint photocurable composition prepared in Examples 1 to 16 and Comparative Examples 1 to 14 was dropped onto a non-alkali glass substrate (5 cm square, 700 μm thick). The non-alkali glass substrate is previously coated with a solution of KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.) diluted to 10% by weight with propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA in the present specification). By drying, it is adhered. Then, the photocurable composition for imprinting dropped onto the non-alkali glass substrate was sandwiched between convex molds made of transparent resin with a light-shielding film (opening 6 mm × 7 mm). The mold is mold-released by applying Novec (registered trademark) 1720 (manufactured by 3M Japan Ltd.) and drying. Subsequently, the photocurable composition for imprint sandwiched between the non-alkali glass substrate and the mold is passed through the mold with an illuminance of 50 mW / cm 2 for a predetermined time using the UV-LED irradiation device. UV exposure was performed to form a photocurable portion. The UV exposure time at this time was 5 seconds for Examples 1 to 7, Examples 10 to 16, and Comparative Examples 1 to 10, and Examples 8 and 9 and Comparative Example. It takes 3 seconds for 12 to 14 and 20 seconds for Comparative Example 11. After that, the mold is released, the non-alkali glass substrate to which the photocurable portion is in close contact is immersed (developed) in agitated PGMEA for 1 minute, and further rinsed with PGMEA to unexposed portion (undured portion). Part) was removed. As a result, a lens having a concave surface of 6 mm × 7 mm, a thickest portion of 400 μm, and a thinnest portion of about 30 μm was molded on the non-alkali glass substrate.
次に、前記無アルカリガラス基板上に成型された前記レンズを、前記UV-LED照射装置を用いて、再び照度50mW/cmで所定時間UV露光した後、前記熱衝撃試験機へ投入し、熱衝撃試験を行った。なお、この時のUV露光時間は、実施例1乃至実施例7、実施例10乃至実施例16、比較例1乃至比較例10については115秒間、実施例8、実施例9、比較例12乃至比較例14については117秒間、比較例11については100秒間である(前記各インプリント用光硬化性組成物につき、2度のUV露光の合計露光時間が120秒間、すなわち合計露光量が同一(6J/cm)となるように統一した)。また、熱衝撃試験条件は下記の通りである。
<熱衝撃試験条件>
低温槽温度:-40℃
高温槽温度:85℃
各温度での曝し時間:30分(1サイクル=1時間)
サイクル数:50
Next, the lens molded on the non-alkali glass substrate was UV-exposed again at an illuminance of 50 mW / cm 2 for a predetermined time using the UV-LED irradiation device, and then put into the thermal shock tester. A thermal shock test was performed. The UV exposure time at this time was 115 seconds for Examples 1 to 7, Examples 10 to 16, Comparative Examples 1 to 10, and Examples 8, 9, and Comparative Examples 12 to 12. It is 117 seconds for Comparative Example 14 and 100 seconds for Comparative Example 11 (for each of the above-mentioned photocurable compositions for imprint, the total exposure time of the two UV exposures is 120 seconds, that is, the total exposure amount is the same (the total exposure amount is the same). Unified to 6J / cm 2 )). The thermal shock test conditions are as follows.
<Thermal impact test conditions>
Low temperature tank temperature: -40 ° C
High temperature tank temperature: 85 ° C
Exposure time at each temperature: 30 minutes (1 cycle = 1 hour)
Number of cycles: 50
熱衝撃試験終了後、目視観察で前記レンズにクラックが確認できるものの耐衝撃性を“×”、クラックが確認できないものの耐衝撃性を“○”と判定した。その結果を下記表3に示す。 After the completion of the thermal impact test, the impact resistance of the lens was determined to be "x" although cracks could be confirmed by visual observation, and the impact resistance was determined to be "◯" even though no cracks could be confirmed. The results are shown in Table 3 below.
[形状保持性評価]
実施例1乃至実施例16、比較例1、比較例4、比較例10乃至比較例14で調製した各インプリント用光硬化性組成物について、前記[耐衝撃性評価]に記載の、熱衝撃試験機へ投入する直前までの手順と同じ手順で、前記無アルカリガラス基板上に前記レンズを成型した。前記レンズの凹面の形状を、前記非接触表面性状測定装置を用いて測定し、該レンズの最厚部の厚さと最薄部の厚さの差(μm)を算出した(ここで算出された値を“差A”と呼ぶ)。続いて、前記レンズが成型された前記無アルカリガラス基板を、100℃のホットプレート上に10分間置いて加熱し、ホットプレート上から取り外してから10分後に、再度前記レンズの凹面の形状を、前記非接触表面性状測定装置を用いて測定し、該レンズの最厚部の厚さと最薄部の厚さの差(μm)を算出した(ここで算出された値を“差B”と呼ぶ)。差Aから差Bを減じた値をレンズの形状変化量(μm)と定義した。前記各インプリント用光硬化性組成物について、前記形状変化量が10μm以上の場合の形状保持性を“×”、前記形状変化量が2μm以下の場合の形状保持性を“○”と判定した。その結果を下記表3に示す。
[Evaluation of shape retention]
The photocurable compositions for imprints prepared in Examples 1 to 16, Comparative Example 1, Comparative Example 4, and Comparative Examples 10 to 14 are subjected to the thermal shock described in the above-mentioned [Impact resistance evaluation]. The lens was molded on the non-alkali glass substrate in the same procedure as the procedure immediately before charging into the testing machine. The shape of the concave surface of the lens was measured using the non-contact surface property measuring device, and the difference (μm) between the thickness of the thickest part and the thickness of the thinnest part of the lens was calculated (calculated here). The value is called "difference A"). Subsequently, the non-alkali glass substrate on which the lens was molded was placed on a hot plate at 100 ° C. for 10 minutes to heat it, and 10 minutes after it was removed from the hot plate, the concave shape of the lens was again reshaped. The difference (μm) between the thickness of the thickest part and the thickness of the thinnest part of the lens was calculated by measuring using the non-contact surface property measuring device (the value calculated here is referred to as “difference B”). ). The value obtained by subtracting the difference B from the difference A was defined as the amount of change in the shape of the lens (μm). For each of the imprint photocurable compositions, the shape retention when the shape change amount was 10 μm or more was determined to be “x”, and the shape retention when the shape change amount was 2 μm or less was determined to be “◯”. .. The results are shown in Table 3 below.
表3
Figure JPOXMLDOC01-appb-T000007
Table 3
Figure JPOXMLDOC01-appb-T000007
実施例1乃至実施例16で調製したインプリント用光硬化性組成物は、該組成物から得られた硬化物の貯蔵弾性率が、-40℃において4.0×10Pa未満であり、且つ100℃において1.0×10Pa以上であり、さらに、パラメータXが0.10以上0.60未満であった。前記インプリント用光硬化性組成物から作製されたレンズは、耐衝撃性評価及び形状保持性評価において“○”判定であった。 In the photocurable compositions for imprints prepared in Examples 1 to 16, the storage elastic modulus of the cured product obtained from the composition was less than 4.0 × 109 Pa at −40 ° C. Moreover, it was 1.0 × 107 Pa or more at 100 ° C., and the parameter X was 0.10 or more and less than 0.60. The lens produced from the photocurable composition for imprint was judged as "◯" in the impact resistance evaluation and the shape retention evaluation.
一方、比較例1乃至比較例10で調製したインプリント用光硬化性組成物は、該組成物から得られた硬化物の貯蔵弾性率が、100℃において1.0×10Pa以上であったものの、-40℃において4.0×10Pa以上であり、さらに、パラメータXが0.60以上であった。前記インプリント用光硬化性組成物から作製されたレンズは、耐衝撃性評価において軒並み“×”判定であった。 On the other hand, in the photocurable compositions for imprints prepared in Comparative Examples 1 to 10, the storage elastic modulus of the cured product obtained from the composition was 1.0 × 107 Pa or more at 100 ° C. However, it was 4.0 × 109 Pa or more at −40 ° C., and the parameter X was 0.60 or more. The lenses produced from the photocurable composition for imprint were all judged as "x" in the impact resistance evaluation.
比較例11で調製したインプリント用光硬化性組成物は、該組成物から得られた硬化物の貯蔵弾性率が、-40℃において4.0×10Pa以上であり、且つ100℃において1.0×10Pa未満であり、さらに、パラメータXが0.60以上であった。前記インプリント用光硬化性組成物から作製されたレンズは、耐衝撃性評価及び形状保持性評価において“×”判定であった。 In the photocurable composition for imprint prepared in Comparative Example 11, the storage elastic modulus of the cured product obtained from the composition was 4.0 × 109 Pa or more at −40 ° C. and at 100 ° C. It was less than 1.0 × 10 7 Pa, and the parameter X was 0.60 or more. The lens produced from the photocurable composition for imprint was judged as "x" in the impact resistance evaluation and the shape retention evaluation.
比較例12乃至比較例14で調製したインプリント用光硬化性組成物は、該組成物から得られた硬化物の貯蔵弾性率が、-40℃において4.0×10Pa未満であったものの、100℃において1.0×10Pa未満であり、さらに、パラメータXが0.10未満であった。前記インプリント用光硬化性組成物から作製されたレンズは、耐衝撃性評価において “○”判定であったものの、形状保持性評価において軒並み“×”判定であった。 In the photocurable compositions for imprint prepared in Comparative Examples 12 to 14, the storage elastic modulus of the cured product obtained from the composition was less than 4.0 × 109 Pa at −40 ° C. However, it was less than 1.0 × 107 Pa at 100 ° C., and the parameter X was less than 0.10. The lenses produced from the photocurable composition for imprint were judged as "◯" in the impact resistance evaluation, but were judged as "x" in the shape retention evaluation.
以上の結果より、硬化物の貯蔵弾性率が、-40℃において4.0×10Pa未満であり、且つ100℃において1.0×10Pa以上であるインプリント用光硬化性組成物、及びパラメータXが0.10以上0.60未満であるインプリント用光硬化性組成物は、形状保持性及び耐衝撃性を両立し、一方で、硬化物の貯蔵弾性率及びパラメータXが前記範囲から外れるインプリント用光硬化性組成物は、形状保持性及び耐衝撃性を両立することができないことが示された。
 
From the above results, a photocurable composition for imprint in which the storage elastic modulus of the cured product is less than 4.0 × 10 9 Pa at −40 ° C. and 1.0 × 10 7 Pa or more at 100 ° C. , And the photocurable composition for imprint in which the parameter X is 0.10 or more and less than 0.60 has both shape retention and impact resistance, while the storage elastic modulus and the parameter X of the cured product are described above. It has been shown that the photocurable composition for imprint, which is out of the range, cannot achieve both shape retention and impact resistance.

Claims (16)

  1. 樹脂と光開始剤とを含有するインプリント用光硬化性組成物であって、動的粘弾性測定により測定した該インプリント用光硬化性組成物の硬化物の貯蔵弾性率が、-40℃において4.0×10Pa未満であり、且つ100℃において1.0×10Pa以上である、インプリント用光硬化性組成物。 A photocurable composition for imprint containing a resin and a photoinitiator, and the storage elastic modulus of the cured product of the photocurable composition for imprint measured by dynamic viscoelasticity measurement is −40 ° C. A photocurable composition for imprint, which is less than 4.0 × 10 9 Pa and 1.0 × 10 7 Pa or more at 100 ° C.
  2. 前記樹脂は必須成分として少なくとも一種の架橋性樹脂及び任意成分として非架橋性樹脂を含み、下記式(1)で表されるパラメータXが0.10以上0.60未満である、請求項1に記載のインプリント用光硬化性組成物。
    Figure JPOXMLDOC01-appb-M000001
    (式(1)中、mは前記樹脂に含まれる前記架橋性樹脂の数を表し、xは前記樹脂の全ての成分の和100質量部に占める各々の該架橋性樹脂の割合(単位:質量部)を表し、yは各々の該架橋性樹脂が有する重合性官能基当量(単位:g/eq)を表し、iは1乃至mの正の整数を表す。)
    According to claim 1, the resin contains at least one crosslinkable resin as an essential component and a non-crosslinkable resin as an optional component, and the parameter X represented by the following formula (1) is 0.10 or more and less than 0.60. The photocurable composition for imprint described.
    Figure JPOXMLDOC01-appb-M000001
    (In the formula (1), m represents the number of the crosslinkable resins contained in the resin, and xi is the ratio (unit::) of each of the crosslinkable resins to 100 parts by mass of the sum of all the components of the resin. (Parts by mass), y i represents the polymerizable functional group equivalent (unit: g / eq) of each of the crosslinkable resins, and i represents a positive integer from 1 to m).
  3. 前記樹脂はラジカル重合性樹脂を含み、前記光開始剤は光ラジカル発生剤を含む、請求項1又は請求項2に記載のインプリント用光硬化性組成物。 The photocurable composition for imprint according to claim 1 or 2, wherein the resin contains a radically polymerizable resin, and the photoinitiator contains a photoradical generator.
  4. 前記樹脂はカチオン重合性樹脂を含み、前記光開始剤は光酸発生剤を含む、請求項1又は請求項2に記載のインプリント用光硬化性組成物。 The photocurable composition for imprint according to claim 1 or 2, wherein the resin contains a cationically polymerizable resin, and the photoinitiator contains a photoacid generator.
  5. さらにシリカ粒子を含有する、請求項1乃至請求項4のいずれか一項に記載のインプリント用光硬化性組成物。 The photocurable composition for imprint according to any one of claims 1 to 4, further comprising silica particles.
  6. 請求項1乃至請求項5のいずれか一項に記載のインプリント用光硬化性組成物の硬化物。 The cured product of the photocurable composition for imprint according to any one of claims 1 to 5.
  7. 請求項1乃至請求項5のいずれか一項に記載のインプリント用光硬化性組成物の成型体。 The molded body of the photocurable composition for imprint according to any one of claims 1 to 5.
  8. カメラモジュール用レンズである請求項7に記載の成型体。 The molded body according to claim 7, which is a lens for a camera module.
  9. 前記カメラモジュール用レンズはハイブリッドレンズである、請求項8に記載の成型体。 The molded body according to claim 8, wherein the lens for the camera module is a hybrid lens.
  10. インプリント用光硬化性組成物の成型体の製造方法であって、支持体上に請求項1乃至請求項5のいずれか一項に記載のインプリント用光硬化性組成物を塗布する塗布工程、該インプリント用光硬化性組成物と、目的とする成型体の外形の反転パターン及び遮光膜を有するモールドとを接触させるインプリント工程、該インプリント工程の後、該モールドを介して該インプリント用光硬化性組成物を露光して光硬化部を形成する光硬化工程、該光硬化部と該モールドとを分離する離型工程、及び該離型工程の後、該インプリント用光硬化性組成物の未硬化部を現像液により除去して該光硬化部を露出させる現像工程、及び該現像工程の後、該光硬化部が形成された支持体をスピン乾燥させる乾燥工程を含む、成型体の製造方法。 A coating step for producing a molded product of a photocurable composition for imprint, wherein the photocurable composition for imprint according to any one of claims 1 to 5 is applied onto a support. An imprint step of bringing the photocurable composition for imprint into contact with a mold having an inverted pattern of the outer shape of a target molded body and a light-shielding film, and after the imprint step, the inn via the mold. After the photo-curing step of exposing the photo-curable composition for printing to form a photo-curing portion, the mold-removing step of separating the photo-curing portion from the mold, and the mold-removing step, the photo-curing for imprinting. The present invention comprises a developing step of removing the uncured portion of the sex composition with a developing solution to expose the photocured portion, and a drying step of spin-drying the support on which the photocured portion is formed after the developing step. Manufacturing method of molded body.
  11. 前記光硬化工程の後、前記離型工程の前、中途又は後に、前記光硬化部を加熱する工程をさらに含む、請求項10に記載の成型体の製造方法。 The method for producing a molded product according to claim 10, further comprising a step of heating the photo-curing portion after the photo-curing step and before, during, or after the mold release step.
  12. 前記現像工程の後、前記乾燥工程の前に、リンス液を用いて前記光硬化部をリンス処理するリンス工程をさらに含む、請求項10又は請求項11に記載の成型体の製造方法。 The method for producing a molded product according to claim 10 or 11, further comprising a rinsing step of rinsing the photocurable portion with a rinsing solution after the developing step and before the drying step.
  13. 前記乾燥工程の後、前記光硬化部の全面を露光するポスト露光工程をさらに含む、請求項10乃至請求項12のいずれか一項に記載の成型体の製造方法。 The method for producing a molded product according to any one of claims 10 to 12, further comprising a post-exposure step of exposing the entire surface of the light-cured portion after the drying step.
  14. 前記ポスト露光工程の後、前記光硬化部を加熱するポストベーク工程をさらに含む、請求項13に記載の成型体の製造方法。 The method for producing a molded product according to claim 13, further comprising a post-baking step of heating the photo-cured portion after the post-exposure step.
  15. 前記ポスト露光工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含む、請求項13に記載の成型体の製造方法。 The method for manufacturing a molded product according to claim 13, further comprising a step of forming an antireflection film on the surface of the photocurable portion after the post-exposure step.
  16. 前記ポストベーク工程の後、前記光硬化部の表面に反射防止膜を形成する工程をさらに含む、請求項14に記載の成型体の製造方法。
     
    The method for producing a molded product according to claim 14, further comprising a step of forming an antireflection film on the surface of the photocurable portion after the post-baking step.
PCT/JP2021/028993 2020-08-28 2021-08-04 Photocurable composition for imprinting WO2022044743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545602A JPWO2022044743A1 (en) 2020-08-28 2021-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-144179 2020-08-28
JP2020144179 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022044743A1 true WO2022044743A1 (en) 2022-03-03

Family

ID=80355048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028993 WO2022044743A1 (en) 2020-08-28 2021-08-04 Photocurable composition for imprinting

Country Status (3)

Country Link
JP (1) JPWO2022044743A1 (en)
TW (1) TW202219188A (en)
WO (1) WO2022044743A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171804A (en) * 1998-12-05 2000-06-23 Dainippon Printing Co Ltd Liquid crystal display device and its manufacture
JP2009166486A (en) * 2007-12-19 2009-07-30 Asahi Kasei Corp Mold with photoabsorption, pattern forming method of photosensitive resin using this mold and manufacturing method of printing plate
JP2012130906A (en) * 2010-11-30 2012-07-12 Dainippon Printing Co Ltd Method for curing photocurable resin composition, and method of manufacturing relief pattern
WO2019142601A1 (en) * 2018-01-17 2019-07-25 日産化学株式会社 Photocurable composition for imprint
US20200071541A1 (en) * 2017-08-08 2020-03-05 International Business Machines Corporation Tailorable surface topology for antifouling coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171804A (en) * 1998-12-05 2000-06-23 Dainippon Printing Co Ltd Liquid crystal display device and its manufacture
JP2009166486A (en) * 2007-12-19 2009-07-30 Asahi Kasei Corp Mold with photoabsorption, pattern forming method of photosensitive resin using this mold and manufacturing method of printing plate
JP2012130906A (en) * 2010-11-30 2012-07-12 Dainippon Printing Co Ltd Method for curing photocurable resin composition, and method of manufacturing relief pattern
US20200071541A1 (en) * 2017-08-08 2020-03-05 International Business Machines Corporation Tailorable surface topology for antifouling coatings
WO2019142601A1 (en) * 2018-01-17 2019-07-25 日産化学株式会社 Photocurable composition for imprint

Also Published As

Publication number Publication date
TW202219188A (en) 2022-05-16
JPWO2022044743A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP7060849B2 (en) Photocurable composition for imprint
KR102549487B1 (en) Photocurable composition for imprint
JP2012082393A (en) Polysiloxane composition, cured film thereof and method of forming the same
JPWO2019156000A1 (en) Photosensitive resin composition
KR101273993B1 (en) Polysiloxane composition and process for producing the same, and cured film and process for forming the same
TW201940602A (en) Photocurable composition for imprinting containing polymer
KR102496908B1 (en) Photocurable composition for imprint
WO2022044743A1 (en) Photocurable composition for imprinting
JP2007327018A (en) Curable resin composition and antireflective film
TWI378322B (en) Photosensitive resin composition
WO2021215155A1 (en) Photocurable composition
Su et al. New photocurable acrylic/silsesquioxane hybrid optical materials: Synthesis, properties, and patterning
WO2022054624A1 (en) Primer layer forming composition for imprint
TWI785132B (en) Photocurable composition for imprint
WO2020213373A1 (en) Photocurable composition for imprint
TW583506B (en) Preserving method for color resist
JP6871526B2 (en) Hydrophilic fluorine-containing highly branched polymer and polymerizable composition containing the same
TW202307036A (en) Photocurable composition for film formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861171

Country of ref document: EP

Kind code of ref document: A1