WO2023100992A1 - Silsesquioxane derivative, curable composition, cured product, and base material - Google Patents

Silsesquioxane derivative, curable composition, cured product, and base material Download PDF

Info

Publication number
WO2023100992A1
WO2023100992A1 PCT/JP2022/044463 JP2022044463W WO2023100992A1 WO 2023100992 A1 WO2023100992 A1 WO 2023100992A1 JP 2022044463 W JP2022044463 W JP 2022044463W WO 2023100992 A1 WO2023100992 A1 WO 2023100992A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
silsesquioxane derivative
meth
cured product
Prior art date
Application number
PCT/JP2022/044463
Other languages
French (fr)
Japanese (ja)
Inventor
賢明 岩瀬
昌之 荒川
成美 尾関
尚正 古田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2023100992A1 publication Critical patent/WO2023100992A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups

Definitions

  • the present invention relates to silsesquioxane derivatives, curable compositions, cured products and substrates.
  • Silsesquioxane derivatives which have both polymerizable groups and fluorine-based components in their molecules, are used as curable coating agents.
  • Patent Document 1 discloses a coating agent having a film-forming component containing an organosilicon compound having a radically polymerizable functional group, a fluoroalkyl group and an alkoxysilyl group, and a photobase generator.
  • Patent Document 2 discloses a polyaliphatic aromatic silsesquioxane containing an ethylenically unsaturated group and a fluorine group, a reactive monomer containing one or more unsaturated groups in the molecule, an organic silane compound, and a photoinitiator.
  • a photocurable organic-inorganic hybrid resin composition comprising
  • US Pat. No. 5,900,002 discloses high fluorine monomers containing M-type monomers with chlorosilane functional groups and fluoroalkane groups, T-type monomers with fluoroalkane groups, T-type monomers with (meth)acryloyl functional groups, and optionally Q-type monomers.
  • a highly fluorinated silicone resin is disclosed, wherein the silicone resin is a highly fluorinated silicone resin having a fluorine content of at least 55 weight percent based on total weight.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2020-33530
  • Patent Document 2 Japanese Patent Publication No. 2014-529631
  • Patent Document 3 Japanese Patent Publication No. 2019-520437
  • the cured product When using a silsesquioxane derivative, it is required that the cured product has good releasability, antifouling properties, etc., and excellent adhesion to the substrate.
  • Patent Document 1 discloses a silsesquioxane consisting only of T units obtained by polycondensation of 3-acryloxypropyltrimethoxysilane and 3,3,3-trifluoropropyltrimethoxysilane, a polymerizable ester. It describes that a coating agent containing a certain trimethylolpropane triacrylate, a photobase generator, and methanol as a solvent was applied to a silicon wafer, pre-baked, followed by ultraviolet irradiation and post-baking to prepare a coating film.
  • Patent Document 2 describes that a photocurable organic-inorganic hybrid resin composition was produced as follows. First, a poly(ethylenically unsaturated group-containing fluorine group obtained by hydrolyzing and polycondensing trimethoxyphenylsilane, ⁇ -methacryloxypropyltrimethoxysilane, methyltrimethoxysilane and perfluorooctyltriethoxysilane). An aliphatic-aromatic silsesquioxane is prepared.
  • a curable composition containing a silsesquioxane derivative containing an ethylenically unsaturated group consisting of only T units and a fluorine group is applied to a substrate, and the applied curable composition is cured to obtain a cured product.
  • the adhesion of the cured product is not sufficient.
  • Patent Document 3 discloses (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane as an M-type monomer and (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane as a T-type monomer. and 3-(trimethoxysilyl)propyl acrylate, and a highly fluorinated silicone resin consisting of M, T and Q units obtained by hydrolysis and polycondensation of tetraethylorthosilicate as the Q monomer.
  • optically transparent adhesive having a low refractive index which contains this highly fluorinated silicone resin, a fluorinated (meth)acrylate monomer or perfluoropolyether, and a photoinitiator.
  • the optically clear adhesive needs to be made liquid by adding fluorinated (meth)acrylate monomers or perfluoropolyethers.
  • a curable composition containing a highly fluorinated silicone resin is applied to a substrate and the applied curable composition is cured to produce a cured product, there is also the problem that the adhesion of the cured product is insufficient. .
  • An object of the present invention is to provide a flexible composition, a cured product obtained by curing the same, and a substrate comprising the cured product.
  • Means for solving the above problems include the following aspects. ⁇ 1> A silsesquioxane derivative represented by the following formula (1).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, a carbon atom an arylene group having 6 to 10 carbon atoms or an aralkylene group having 7 to 12 carbon atoms
  • R 3 is a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms
  • R 4 and R 5 are each independently hydrogen atom, saturated or unsaturated alkyl group having 1 to 20 carbon atoms, saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, aryl group having 6 to 20 carbon atoms or 7 to 20 carbon atoms an aralkyl group
  • R 6 is an organic group having 2 to 12 carbon atoms having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond
  • R 7 and R 8 each independently have 1
  • a plurality of R 8 may be the same or different, each of R 1 to R 8 may be independently partially substituted with a substituent or a halogen atom, and u , v and y are positive numbers, and t, w, x and z are each independently 0 or positive numbers.
  • u , v and y are positive numbers
  • t, w, x and z are each independently 0 or positive numbers.
  • t, w, x and z in the formula (1) are 0 and 0.01 ⁇ y/(u+v) ⁇ 1.
  • ⁇ 3> The silsesquioxane derivative according to ⁇ 1> or ⁇ 2>, which has a viscosity of 10 mP ⁇ s to 7,000 mP ⁇ s at 25°C.
  • ⁇ 4> A curable composition comprising the silsesquioxane derivative according to any one of ⁇ 1> to ⁇ 3> and a polymerization initiator.
  • ⁇ 5> A cured product obtained by curing the curable composition according to ⁇ 4>.
  • ⁇ 6> The cured product according to ⁇ 5>, which has a contact angle with water of 100° or more at 25°C.
  • ⁇ 7> The cured product according to ⁇ 5> or ⁇ 6>, which has a refractive index of less than 1.42 at 25°C.
  • ⁇ 8> A substrate comprising the cured product according to any one of ⁇ 5> to ⁇ 7>.
  • a silsesquioxane derivative capable of producing a cured product having a large contact angle with water and excellent adhesion to a substrate, a curable composition containing the silsesquioxane derivative, and a curable composition containing the silsesquioxane derivative. It is possible to provide a cured product and a substrate comprising this cured product.
  • each of R 1 to R 8 in formula (1) may be independently partially substituted with a substituent or a halogen atom.
  • R 1 to R 8 each independently represent an alkyl group, an aryl group, an aralkyl group, a vinyl group, an epoxy group, an oxetanyl group, a hydroxyl group, an amino group, an alkylamino group, an arylamino group, an aralkylamino group, and an ammonium group. , a thiol group, an isocyanurate group, a ureido group, an isocyanate group, a carboxy group, an acid anhydride group, or a halogen atom.
  • R 1 to R 8 in formula (1) may each independently be unsubstituted, for example, R 1 to R 3 or R 6 to R 8 (preferably R 1 to R 3 and R 6 to R 8 ) may be unsubstituted.
  • silsesquioxane derivative The silsesquioxane derivative of the present invention is represented by the following formula (1).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, a carbon atom an arylene group having 6 to 10 carbon atoms or an aralkylene group having 7 to 12 carbon atoms
  • R 3 is a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms
  • R 4 and R 5 are each independently hydrogen atom, saturated or unsaturated alkyl group having 1 to 20 carbon atoms, saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, aryl group having 6 to 20 carbon atoms or 7 to 20 carbon atoms an aralkyl group
  • R 6 is an organic group having 2 to 12 carbon atoms having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond
  • R 7 and R 8 each independently have 1
  • a plurality of R 8 may be the same or different, each of R 1 to R 8 may be independently partially substituted with a substituent or a halogen atom, and u , v and y are positive numbers, and t, w, x and z are each independently 0 or positive numbers.
  • structural units (a) to (g) Each structural unit that the silsesquioxane derivative of the present invention may contain is referred to as structural units (a) to (g) as follows.
  • the silsesquioxane derivative of the present invention includes structural units (b), (c) and (f) among the structural units (a) to (g) described above, and optionally It contains at least one of structural unit (a), structural unit (d), structural unit (e), and structural unit (g).
  • the silsesquioxane derivative of the present invention contains the structural unit (b), the structural unit (c), and the structural unit (f), so that a cured product having a large contact angle with water and excellent adhesion to a substrate can be obtained. It is possible to manufacture. The reason for this is not particularly limited, but is presumed as follows. Since the silsesquioxane derivative of the present invention contains the structural unit (c), the contact angle of the cured product tends to increase, and the refractive index of the cured product tends to decrease. On the other hand, when a fluorine-based component is introduced into a silsesquioxane derivative, the adhesiveness of the cured product to the substrate tends to decrease.
  • the silsesquioxane derivative of the present invention contains the structural unit (f), so that the silsesquioxane derivative and the curable composition containing the same have good storage stability and excellent adhesion to the substrate. Cured products can be given.
  • curable compositions containing a silsesquioxane derivative or the like When applying a curable composition containing a silsesquioxane derivative or the like to a substrate, it is common to mix the curable composition and a solvent from the viewpoint of improving the coating properties of the curable composition. .
  • the curable composition contains a solvent, it is necessary to remove the solvent before curing the coating film, and it is desirable to reduce the amount of solvent used from the viewpoint of reducing environmental load and energy consumption.
  • curable compositions that are solvent-free (solvent-free systems) and have low viscosities.
  • the silsesquioxane derivative of the present invention contains the structural unit (b), the structural unit (c), and the structural unit (f), so that the adhesiveness of the cured product is improved, and the silsesquioxane derivative Low viscosity is possible. Therefore, the amount of solvent used can be reduced, and it is also possible to use in a solvent-free system.
  • t, u, v, w, x, y and z in formula (1) represent molar ratios of structural units (a) to (g).
  • t, u, v, w, x, y, and z are the structural units (a) to (g) that may be included in the silsesquioxane derivative represented by formula (1).
  • the molar ratio can be obtained from NMR (nuclear magnetic resonance) analysis values of the silsesquioxane derivative of the present invention. Further, when the reaction rate of each raw material of the silsesquioxane derivative is known, or when the yield is 100%, it can be determined from the charged amount of the raw material.
  • the molar ratio of each structural unit of the silsesquioxane derivative is calculated by performing 1 H-NMR analysis on a sample dissolved in deuterated chloroform or the like and, if necessary, further performing 29 Si-NMR analysis. You may The structure of the original silsesquioxane derivative may be estimated from the ratio of the structural units obtained by decomposing the structural units with an alkali or the like. If necessary, known techniques such as mass spectrometry and IR (infrared absorption spectroscopy) analysis may be combined to determine the molar ratio of each structural unit of the silsesquioxane derivative.
  • Each of the structural units (b) to (g) in formula (1) may be of only one type, or may be of two or more types.
  • the order of arrangement in formula (1) indicates the composition of the structural units, and does not mean the order of arrangement of the silsesquioxane derivatives. Therefore, the condensed form of the structural units in the silsesquioxane derivative of the present invention does not necessarily have to follow the sequence of formula (1). Details of the structural units (a) to (g) will be described below.
  • Structural unit (a) is a Q unit having 4 O 1/2 atoms (2 oxygen atoms) per silicon atom.
  • the Q unit means a unit having 4 O 1/2 atoms per silicon atom.
  • the proportion of the structural unit (a) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (t/(t+u+v+w+x+y+z)) of the structural unit (a) to all structural units is 0.1 or less from the viewpoint of the viscosity of the silsesquioxane derivative and the hardness of the cured product. is preferred, 0.05 or less is more preferred, and 0 is even more preferred.
  • a molar ratio of 0 means that the corresponding structural unit is not included, and the same applies hereinafter.
  • Structural unit (b) has 3 O 1/2 (1.5 oxygen atoms) per silicon atom, and through R 2 , the hydrogen atoms in the acryloyloxy group are other than hydrogen atoms
  • the acryloyloxy group substituted by R 1 is the T unit attached to the silicon atom.
  • the T unit means a unit having 3 O 1/2 atoms per 1 silicon atom.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group, preferably methyl group or ethyl group, more preferably methyl group.
  • R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, or an aralkylene group having 7 to 12 carbon atoms. is the base.
  • R 2 is preferably an alkylene group having 1 to 10 carbon atoms or a cycloalkylene group having 3 to 10 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms is preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and even more preferably a propylene group. .
  • the alkylene group having 1 to 10 carbon atoms may be linear or branched.
  • the cycloalkylene group having 3 to 10 carbon atoms is preferably a cycloalkylene group having 3 to 6 carbon atoms, more preferably a cycloalkylene group having 4 to 6 carbon atoms.
  • the cycloalkylene group having 3 to 10 carbon atoms may have a branch.
  • the ratio of the structural unit (b) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (u/(t+u+v+w+x+y+z)) of the structural unit (b) to all structural units is, from the viewpoint of ultraviolet (hereinafter also referred to as UV) curability, 0.1 to 0.9. It is preferably 0.2 to 0.8, and even more preferably 0.25 to 0.6.
  • Structural unit (c) is a T unit having 3 O 1/2 (1.5 oxygen atoms) per silicon atom and R 3 being bonded to the silicon atom.
  • R 3 is a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms.
  • the fluoroalkyl group having 1 to 20 carbon atoms is preferably a fluoroalkyl group having 3 to 10 carbon atoms, more preferably a fluoroalkyl group having 5 to 10 carbon atoms.
  • the number of fluorine atoms in the fluoroalkyl group having 1 to 20 carbon atoms is not particularly limited, and may be, for example, 3 or more, 5 to 37, or 7 to 17. good too.
  • a fluoroalkyl group having 1 to 20 carbon atoms has an ethylene group (—CH 2 CH 2 —) as a structure bonded to a silicon atom when the number of carbon atoms is 3 or more, and the ethylene group has carbon It may be a substituent to which a perfluoroalkyl group having 1 to 18 atoms is bonded.
  • the perfluoroalkyl group having 1 to 18 carbon atoms may be a perfluoroalkyl group having 3 to 10 carbon atoms or a perfluoroalkyl group having 5 to 8 carbon atoms.
  • fluoroalkyl group having 1 to 20 carbon atoms examples include 3,3,3-trifluoro-propyl group, 1H,1H,2H,2H-nonafluoro-n-hexyl group, 1H,1H,2H,2H- tridecafluoro-n-octyl group and 1H,1H,2H,2H-heptadecafluoro-n-decyl group.
  • the ratio of the structural unit (c) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (v / (t + u + v + w + x + y + z)) of the structural unit (c) to all structural units is 0.1 to 0 from the viewpoint of storage stability and contact angle and / or refractive index when cured. It is preferably 0.9, more preferably 0.2 to 0.8, even more preferably 0.25 to 0.6.
  • the molar ratio of the structural unit (b) to the structural unit (c) is determined from the viewpoint of storage stability and contact angle and / or refractive index when cured. , 0.1:0.9 to 0.9:0.1, more preferably 0.2:0.8 to 0.8:0.2, and 0.3:0. More preferably, it is 7-0.7:0.3.
  • the molar ratio ((u + v ) / (u + v + w)) is preferably 0.3 to 1, more preferably 0.5 to 1, from the viewpoint of storage stability and contact angle and / or refractive index when cured. It is preferably from 0.7 to 1, more preferably from 0.7 to 1.
  • Structural unit (d) is a T unit having 3 O 1/2 (1.5 oxygen atoms) per silicon atom and R 4 bonded to the silicon atom.
  • R 4 is a hydrogen atom, a saturated or unsaturated alkyl group having 1 to 20 carbon atoms, a saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, or 6 to It is an aryl group of 20 or an aralkyl group of 7 to 20 carbon atoms.
  • Each substituent in R 4 is a substituent that does not correspond to a fluoroalkyl group having 1 to 20 carbon atoms, even if part of its structure is substituted.
  • a saturated or unsaturated alkyl group having 1 to 20 carbon atoms may be linear or branched.
  • the saturated or unsaturated alkyl group having 1 to 20 carbon atoms is preferably a saturated or unsaturated alkyl group having 1 to 10 carbon atoms, more preferably a saturated alkyl group having 1 to 10 carbon atoms. more preferred.
  • saturated alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. From the viewpoint of heat resistance and hardness of the cured product, a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • Examples of unsaturated alkyl groups having 1 to 10 carbon atoms include vinyl groups, 2-propenyl groups, and ethynyl groups.
  • a saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms may have a branch.
  • a saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms is preferably a saturated or unsaturated cycloalkyl group having 4 to 6 carbon atoms.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 10 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a group in which one or more hydrogen atoms of the phenyl group are substituted with an alkyl group having 1 to 10 carbon atoms, and a naphthyl group.
  • a phenyl group is preferred from the viewpoint of heat resistance and hardness of the cured product.
  • the aralkyl group having 7 to 20 carbon atoms is preferably an aralkyl group having 7 to 10 carbon atoms.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include groups in which one hydrogen atom of an alkyl group having 1 to 10 carbon atoms is substituted with an aryl group such as a phenyl group. Examples thereof include benzyl group and phenethyl group, and benzyl group is preferable from the viewpoint of heat resistance and hardness of the cured product.
  • examples of R 4 include a 3-glycidoxypropyl group and a 2-(3,4-epoxycyclohexyl)ethyl group.
  • 3-(3-ethyloxetan-3-yl)methoxypropyl group 3-hydroxypropyl group, 3-aminopropyl group, 3-dimethylaminopropyl group, 3-hydroxypropyl group, 3-aminopropyl hydrochloride , hydrochloride of 3-dimethylaminopropyl group, p-styryl group, N-2-(aminoethyl)-3-aminopropyl group, N-phenyl-3-aminopropyl group, N-(vinylbenzyl)-2- Hydrochloride of aminoethyl-3-aminopropyl group, 3-ureidopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, 3-carboxypropyl group and 3-chloropropyl group.
  • the ratio of the structural unit (d) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (w / (t + u + v + w + x + y + z)) of the structural unit (d) to the total structural units is preferably 0.1 or less, and 0.05 or less, from the viewpoint of the hardness of the cured product. It is more preferably 0, and more preferably 0.
  • Structural unit (e) is a D unit having two O 1/2 per silicon atom (one oxygen atom) and two R 5 bonds to the silicon atom.
  • the D unit means a unit having two O 1/2 atoms per one silicon atom.
  • R 5 is a hydrogen atom, a saturated or unsaturated alkyl group having 1 to 20 carbon atoms, a saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, or 6 to It is an aryl group of 20 or an aralkyl group of 7 to 20 carbon atoms.
  • multiple R 5 may be the same or different.
  • Preferred embodiments of R 5 are the same as R 4 in structural unit (d).
  • the ratio of the structural unit (e) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (x/(t + u + v + w + x + y + z)) of the structural unit (e) to the total structural units is preferably 0.1 or less, and 0.05 or less, from the viewpoint of the hardness of the cured product. It is more preferably 0, and more preferably 0.
  • Structural unit (f) has one O 1/2 per silicon atom (0.5 oxygen atoms), one R 6 and two R 5 are bonded to the silicon atom M Units.
  • the M unit means a unit having one O 1/2 per one silicon atom.
  • R 6 is an organic group having 2 to 12 carbon atoms and having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond.
  • Examples of the organic group having 2 to 12 carbon atoms and having an ethylenically unsaturated bond include a vinyl group, an orthostyryl group, a methstyryl group, a parastyryl group, an acryloyloxymethyl group, a methacryloyloxymethyl group, and a 2-acryloyloxyethyl group.
  • R 7 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms. In the structural unit (f), multiple R 7 may be the same or different.
  • alkyl groups having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. From the viewpoint of heat resistance and hardness of the cured product, a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • aryl group having 6 to 10 carbon atoms examples include a phenyl group, a group in which one or more hydrogen atoms of the phenyl group are substituted with an alkyl group having 1 to 4 carbon atoms, and a naphthyl group.
  • a phenyl group is preferred from the viewpoint of heat resistance and hardness of the cured product.
  • Examples of the aralkyl group having 7 to 10 carbon atoms include groups in which one hydrogen atom of an alkyl group having 1 to 4 carbon atoms is substituted with an aryl group such as a phenyl group. Examples thereof include benzyl group and phenethyl group, and benzyl group is preferable from the viewpoint of heat resistance and hardness of the cured product.
  • the proportion of the structural unit (f) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (y/(t+u+v+w+x+y+z)) of the structural unit (f) to all structural units is preferably 0.01 to 0.5 from the viewpoint of viscosity and adhesion when cured. , more preferably 0.02 to 0.4, even more preferably 0.03 to 0.35, and particularly preferably 0.1 to 0.35.
  • the total molar ratio ((u + v + y) / (t + u + v + w + x + y + z)) of the structural unit (b), the structural unit (c) and the structural unit (f) occupying all structural units is the cured product From the viewpoint of adhesion and refractive index, it is preferably from 0.5 to 1, more preferably from 0.6 to 1, and even more preferably from 0.7 to 1.
  • the molar ratio between the structural unit (b) and the structural unit (f) is from 10:1 to 10:1 from the viewpoint of UV curability and adhesion when cured. It is preferably 1:2, more preferably 5:1 to 1:2.
  • Structural unit (g) is an M unit having one O 1/2 (0.5 oxygen atom) per silicon atom and three R 8 bonds to the silicon atom.
  • R 8 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms. In the structural unit (g), multiple R 8 may be the same or different. Preferred embodiments of R 8 are the same as R 7 in structural unit (f). Each substituent in R 8 is a substituent that does not correspond to an organic group having 2 to 12 carbon atoms and having an ethylenically unsaturated bond, even if the structure is partially substituted. .
  • the proportion of the structural unit (g) in the silsesquioxane derivative of the present invention is not particularly limited.
  • the molar ratio (z / (t + u + v + w + x + y + z)) of the structural unit (g) to all structural units is preferably 0.1 or less, and 0.05 or less, from the viewpoint of the hardness of the cured product. It is more preferably 0, and more preferably 0.
  • the silsesquioxane derivative of the present invention may further contain (R 9 O 1/2 ) as a structural unit not containing Si (hereinafter also referred to as structural unit (h)).
  • R 9 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of alkyl groups having 1 to 6 carbon atoms include methyl, ethyl, propyl, butyl, pentyl and hexyl groups.
  • Structural unit (h) is an alkoxy group which is a hydrolyzable group contained in the silicon compound described later, or an alkoxy group formed by substituting the hydrolyzable group of the silicon compound with an alcohol contained in the reaction solvent. It may be a hydroxyl group that remains in the molecule without hydrolysis or polycondensation, or a hydroxyl group that remains in the molecule without polycondensation after hydrolysis.
  • t, w, x and z are preferably 0.
  • 0.01 ⁇ y/(u + v) ⁇ 1 is preferred, 0.1 ⁇ y/(u + v) ⁇ 0.8 is more preferred, and 0.3 ⁇ y/( It is more preferable that u+v) ⁇ 0.6.
  • the weight average molecular weight (hereinafter also referred to as "Mw") of the silsesquioxane derivative of the present invention is not particularly limited, and may be, for example, 300 to 30,000, or 500 to 15,000. may be from 700 to 10,000, or from 1,000 to 5,000.
  • Mw in the present invention means a value obtained by converting the molecular weight measured by GPC (gel permeation chromatography) using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • the silsesquioxane derivative of the present invention preferably has a viscosity at 25° C. (viscosity when no accelerated test is performed) of 10 mPa ⁇ s to 7,000 mPa ⁇ s, more preferably 100 mPa ⁇ s to 6,000 mPa ⁇ s. s, more preferably 200 mPa ⁇ s to 5,000 mPa ⁇ s.
  • the viscosity at 25° C. means a value measured using an E-type viscometer (cone and plate type viscometer; for example, Toki Sangyo Co., Ltd. TVE22H-type viscometer).
  • the silsesquioxane derivative of the present invention can be produced by known methods.
  • a method for producing a silsesquioxane derivative is disclosed in detail as a method for producing polysiloxane in WO 2013/031798 pamphlet and the like.
  • the silsesquioxane derivative of the present invention can be produced, for example, by the following method.
  • the method for producing a silsesquioxane derivative of the present invention comprises a condensation step of hydrolyzing and polycondensing the silicon compound to give the structural unit of formula (1) by condensation in a suitable reaction solvent.
  • a compound hereinafter also referred to as “silicon compound 3”
  • silicon compound 4" silicon compound 5 (also referred to as “silicon compound 6” or “silicon compound 7").
  • silicon compounds 1 to 3 and, if necessary, other silicon compounds may be hydrolyzed and polycondensed.
  • a part of the silicon compounds 1 to 3 and, if necessary, other silicon compounds are hydrolyzed and polycondensed to obtain an intermediate silsesquioxane derivative, and then the obtained intermediate product may be further subjected to hydrolysis and polycondensation reactions with the rest of the silicon compounds 1 to 3 and the like.
  • the silicon compound 1, the silicon compound 2 and, if necessary, other silicon compounds are hydrolyzed and polycondensed, and then the obtained intermediate product and the silicon compound 3 are combined. may be further subjected to hydrolysis and polycondensation reactions.
  • a silicon compound is hydrolyzed and polycondensed in the presence of a reaction solvent, and then the reaction solvent, by-products, residual monomers, water, etc. in the reaction solution are removed. It is preferable to provide a distillation step for distilling off.
  • Examples of the silicon compound 1 include (3-acryloyloxypropyl)trimethoxysilane, (3-acryloyloxypropyl)triethoxysilane, (8-acryloyloxyoctyl)trimethoxysilane, (3-methacryloyloxypropyl)trimethoxysilane. silane, (3-methacryloyloxypropyl)triethoxysilane, (8-methacryloyloxyoctyl)trimethoxysilane, (3-acryloyloxypropyl)trichlorosilane, (3-methacryloyloxypropyl)trichlorosilane.
  • Examples of the silicon compound 2 include trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy-1H,1H,2H,2H-nonafluoro-n-hexylsilane, triethoxy-1H,1H,2H,2H-tri Decafluoro-n-octylsilane and trimethoxy-1H,1H,2H,2H-heptadecafluoro-n-decylsilane.
  • Examples of the silicon compound 3 include 1,3-divinyltetramethyldisiloxane, 1,3-bis(p-styryl)tetramethyldisiloxane, 1,3-bis(3 -acryloyloxypropyl)tetramethyldisiloxane, 1,3-bis(3-methacryloyloxypropyl)tetramethyldisiloxane, etc., methoxydimethylvinylsilane, ethoxydimethylvinylsilane, chlorodimethylvinylsilane, dimethylvinylsilanol, (3-acryloyl oxypropyl)dimethylmethoxysilane, (3-methacryloyloxypropyl)dimethylmethoxysilane, p-styryldimethylmethoxysilane, ethynyldimethylmethoxysilane and the like.
  • Examples of the silicon compound 4 include tetramethoxysilane, tetraethoxysilane, and the like.
  • Silicon compound 5 includes, for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, benzyltrimethoxysilane, cyclohexyltri methoxysilane, vinyltrimethoxysilane, allyltrimethoxysilane, p-styryltrimethoxysilane, ethynyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-
  • Examples of the silicon compound 6 include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldidiethoxysilane, propylmethyldimethoxysilane, octylmethyldimethoxysilane, phenylmethyldimethoxysilane, diphenyldiethoxysilane, benzylmethyldimethoxysilane, cyclohexylmethyldimethoxysilane, vinylmethyldimethoxysilane, allylmethyldimethoxysilane, p-styrylmethyldimethoxysilane, ethynylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, N-2 -(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropy
  • Examples of the silicon compound 7 include hexamethyldisiloxane, trimethylmethoxysilane, trimethylethoxysilane, trimethylchlorosilane, dimethylphenylmethoxysilane, and the like.
  • Alcohol may be used as a reaction solvent in the condensation step.
  • Alcohol is a narrowly defined alcohol represented by the general formula R--OH, and is a compound having no functional group other than an alcoholic hydroxyl group.
  • Alcohol is not particularly limited, and examples include methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol, 3-methyl-2- butanol, cyclopentanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3-pentanol, 2-ethyl-2-butanol, 2,3-dimethyl-2-butanol, cyclohexanol and the like.
  • 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 3-methyl-2-pentanol and secondary alcohols such as cyclohexanol are preferred.
  • these alcohols may be used singly or in combination of two or more.
  • the reaction solvent used in the condensation step may be alcohol alone, or may be a mixed solvent with at least one sub-solvent.
  • the co-solvent may be either a polar solvent, a non-polar solvent, or a combination of both.
  • Hydrolysis and polycondensation reactions in the condensation step proceed in the presence of water.
  • the amount of water used to hydrolyze the hydrolyzable group contained in the silicon compound is preferably 0.5 to 5 times the amount (mol) of the substance of the hydrolyzable group, more preferably 1 to 2 times the molar amount.
  • the hydrolysis and polycondensation reaction of the silicon compound may be carried out without a catalyst or with a catalyst.
  • inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid
  • acid catalysts exemplified by organic acids such as formic acid, acetic acid, oxalic acid and p-toluenesulfonic acid, ammonia, tetramethylammonium hydroxide, water
  • Base catalysts such as sodium oxide, potassium hydroxide, sodium carbonate and potassium carbonate are preferably used, and acid catalysts are more preferably used.
  • the amount of the catalyst used is preferably an amount corresponding to 0.01 mol% to 20 mol%, and preferably 0.1 mol% to 10 mol, relative to the total amount (mol) of silicon atoms contained in the silicon compound. % is more preferable.
  • an auxiliary agent can be added to the reaction system.
  • distillation can be carried out under normal pressure or reduced pressure, can be carried out at room temperature or under heating, and can also be carried out under cooling.
  • the method for producing a silsesquioxane derivative can include a neutralization step for neutralizing the catalyst before the distillation step.
  • a step of removing salts generated by neutralization by washing with water or the like can also be provided.
  • the silsesquioxane derivative represented by formula (1) is a group obtained by adding an acid or the like to an oxetanyl group or an epoxy group to open the ring, among the side chain functional groups derived from the silicon compound used in the production as a raw material. or may contain a hydroxyalkyl group formed by decomposition of an organic group having a (meth)acryloyl group, or a group obtained by adding an acid or the like to an unsaturated hydrocarbon group or the like.
  • You can Specific examples thereof include those in which a part of formula (1) includes a structure represented by formula (A) and/or a structure represented by formula (B) below.
  • the original organic group having an oxetanyl group or an epoxy group, the original organic group having a (meth)acryloyl group, or the original unsaturated hydrocarbon group derived from the silicon compound as a raw material As long as it is 50 mol % or less with respect to the amount corresponding to the group, there is no problem in carrying out the present invention, and it is preferably 30 mol % or less, more preferably 10 mol % or less.
  • the T unit is exemplified, but the same D unit, M unit, etc. may be used.
  • the curable composition of the present invention contains the silsesquioxane derivative of the present invention described above and a polymerization initiator.
  • the curable composition of the present invention may contain various components (hereinafter also referred to as "other components") as necessary.
  • the polymerization initiator is not particularly limited, and examples thereof include photopolymerization initiators and thermal polymerization initiators.
  • Photopolymerization initiators include, for example, radical photopolymerization initiators.
  • Thermal polymerization initiators include, for example, thermal radical polymerization initiators. A known compound may be used as the photopolymerization initiator and the thermal polymerization initiator.
  • Photoradical polymerization initiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1 -[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, diethoxyacetophenone, oligo[2-hydroxy-2-methyl-1-[4-(1 -methylvinyl)phenyl]propanone] and acetophenones such as 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)benzyl]phenyl ⁇ -2-methyl-propan-1-one Compound; benzophenone compounds such as benzophenone, 4-phenylbenz
  • the thermal radical polymerization initiator is not particularly limited, and examples include peroxides and azo initiators.
  • peroxides examples include hydrogen peroxide; inorganic peroxides such as sodium persulfate, ammonium persulfate and potassium persulfate; 1,1-bis(t-butylperoxy) 2-methylcyclohexane, 1,1-bis( t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)-3,3,5-trimethyl cyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(4,4-di-butylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy)cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-tri
  • Azo initiators include 2,2′-azobisisobutyronitrile, 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4 Azo compounds such as -methoxy-2,4-dimethylvaleronitrile, azodi-t-octane, azodi-t-butane, etc., may be used alone, or two or more of them may be used in combination.
  • a redox reaction can be achieved by combining with a redox polymerization initiation system using a reducing agent such as iron.
  • the content of the polymerization initiator is 0.01 parts by mass to 20 parts by mass with respect to 100 parts by mass of the silsesquioxane derivative represented by formula (1). is preferred, 0.1 to 10 parts by mass is more preferred, and 1 to 5 parts by weight is even more preferred.
  • Other components are not particularly limited, and examples include solvents, polymerizable compounds other than the silsesquioxane derivative represented by formula (1), resins, silicones, monomers, fillers, surfactants, antistatic agents ( For example, conductive polymer), leveling agent, photosensitizer, UV absorber, antioxidant, heat resistance improver, stabilizer, lubricant, pigment, dye, plasticizer, suspending agent, adhesion imparting agent, nano Examples include particles, nanofibers, nanosheets, and the like.
  • the curable composition of the present invention may contain silane-based reactive diluents such as tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, monoalkoxysilanes and disiloxanes.
  • silane-based reactive diluents such as tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, monoalkoxysilanes and disiloxanes.
  • the curable composition of the present invention may or may not contain a solvent.
  • the solvent include various organic solvents such as aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, chlorinated hydrocarbon solvents, alcohol solvents, ether solvents, amide solvents, ketone solvents, ester solvents and cellosolve solvents. be done.
  • the curable composition of the present invention may contain a polymerizable compound other than the silsesquioxane derivative represented by formula (1) (hereinafter also referred to as "other polymerizable compound"). You don't have to.
  • Other polymerizable compounds are not particularly limited as long as they are capable of undergoing a polymerization reaction in the presence of the silsesquioxane derivative represented by formula (1) and the polymerization initiator.
  • Other polymerizable compounds include silsesquioxane derivatives other than the silsesquioxane derivative represented by formula (1), (meth)acrylate compounds, compounds having an ethylenically unsaturated group, epoxy compounds (having an epoxy group oxetanyl group-containing compounds), compounds having an oxetanyl group (oxetanyl group-containing compounds), and compounds having a vinyl ether group (vinyl ether compounds).
  • silsesquioxane derivatives other than the silsesquioxane derivatives represented by formula (1) include silsesquioxane derivatives consisting only of T units, silsesquioxane derivatives containing T units and D units, and the like. .
  • (Meth) acrylate compounds are not particularly limited, compounds having one (meth) acryloyl group (hereinafter also referred to as “monofunctional (meth) acrylate”), and compounds having two or more (meth) acryloyl groups (hereinafter also referred to as “polyfunctional (meth)acrylate”).
  • Examples of monofunctional (meth)acrylates include Alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; monofunctional (meth)acrylates having an alicyclic group such as cyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, and tricyclodecanemethylol (meth)acrylate; Monofunctional (meth)acrylates having aromatic groups of benzyl (meth)acrylate and phenyl (meth)acrylate; (Meth)acrylates of phenol ethylene oxide adducts, (meth) acrylates of phenol propylene oxide adducts, (meth) acrylates of modified nonylphenol ethylene oxide adducts, and (meth) acrylates of non
  • polyfunctional (meth)acrylates include Polyethylene glycol di(meth)acrylates such as diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate; Polypropylene glycol di(meth)acrylates such as dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate; 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-modified neopentyl glycol di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, propylene oxide-modified bisphenol A di(meth)acrylate, ethylene oxide-modified hydrogenated bisphenol A di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropan
  • Urethane (meth)acrylates can also be used as polyfunctional (meth)acrylates.
  • urethane (meth)acrylate include a compound obtained by addition reaction of organic polyisocyanate and hydroxyl group-containing (meth)acrylate, and a compound obtained by addition reaction of organic polyisocyanate, polyol and hydroxyl group-containing (meth)acrylate.
  • Monofunctional (meth)acrylates, polyfunctional (meth)acrylates, and the like may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
  • polyols examples include low-molecular-weight polyols, polyether polyols, polyester polyols and polycarbonate polyols.
  • Low molecular weight polyols include ethylene glycol, propylene glycol, neopentyl glycol, cyclohexanedimethylol, 3-methyl-1,5-pentanediol, and the like.
  • polyether polyols include polypropylene glycol and polytetramethylene glycol.
  • polyester polyols reaction products of these low molecular weight polyols and/or polyether polyols with dibasic acids such as adipic acid, succinic acid, phthalic acid, hexahydrophthalic acid and terephthalic acid, or acid components such as anhydrides thereof is mentioned. These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
  • dibasic acids such as adipic acid, succinic acid, phthalic acid, hexahydrophthalic acid and terephthalic acid, or acid components such as anhydrides thereof.
  • Organic polyisocyanates include tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • hydroxyl group-containing (meth)acrylates examples include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; pentaerythritol tri(meth)acrylate; ) acrylates, di(meth)acrylates of isocyanuric acid 3-mol alkylene oxide adducts, and hydroxyl group-containing polyfunctional (meth)acrylates such as dipentaerythritol penta(meth)acrylates. These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
  • the mixing ratio is not particularly limited, for example, 100 mass of the silsesquioxane derivative represented by the formula (1)
  • the mixing ratio of the (meth)acrylate compound to 1 part is preferably 0 to 100 parts by mass, more preferably 0 to 50 parts by mass, even more preferably 0 to 20 parts by mass. From the viewpoint of adhesion to the inorganic substance layer, the mixing ratio of the (meth)acrylate compound is preferably low.
  • a compound having one ethylenically unsaturated group in one molecule other than the (meth)acrylate compound may be added to the curable composition.
  • the ethylenically unsaturated group is preferably a (meth)acryloyl group, a maleimide group, a (meth)acrylamide group, or a vinyl group.
  • Specific examples of the compound having an ethylenically unsaturated group include (meth)acrylic acid, a Michael addition type dimer of acrylic acid, N-(2-hydroxyethyl)citraconimide, N,N-dimethylacrylamide, acryloylmorpho Phosphorus, N-vinylpyrrolidone, N-vinylcaprolactam and the like. These may be used alone or in combination of two or more.
  • Examples of epoxy compounds include monofunctional epoxy compounds and polyfunctional epoxy compounds.
  • Examples of oxetanyl group-containing compounds include monofunctional oxetane compounds and polyfunctional oxetane compounds.
  • Examples of vinyl ether compounds include monofunctional vinyl ether compounds and polyfunctional vinyl ether compounds. As these compounds, for example, compounds described in JP-A-2011-42755 may be used.
  • the silicone is not particularly limited, and known silicones can be used. Examples include polydimethylsilicone, polydiphenylsilicone, polymethylphenylsilicone, etc., which have functional groups at their terminals and/or side chains. things are preferred.
  • the functional group is not particularly limited, and examples thereof include (meth)acryloyl group, epoxy group, oxetanyl group, vinyl group, hydroxyl group, carboxy group, amino group, thiol group and the like.
  • the content of the other polymerizable compounds is 0.01 per 100 parts by mass of the silsesquioxane derivative represented by formula (1). It is preferably from 0.1 to 50 parts by mass, even more preferably from 1 to 25 parts by mass.
  • the cured product of the present invention is obtained by curing the aforementioned curable composition of the present invention.
  • the cured product of the present invention can be obtained by irradiating the curable composition of the present invention with an active energy ray or by heating the curable composition of the present invention.
  • the contact angle of water at 25° C. is preferably 90° or more, more preferably 100° or more, and even more preferably 105° or more.
  • the contact angle at 25°C can be measured by the method described in Examples below.
  • the upper limit of the contact angle of water at 25°C is not particularly limited, and may be, for example, 150° or less.
  • the cured product of the present invention preferably has a refractive index at 25° C. of less than 1.45, more preferably less than 1.42, even more preferably less than 1.4.
  • the lower limit of the refractive index at 25°C is not particularly limited, and may be, for example, 1.3 or more.
  • the refractive index at 25°C can be measured by the method described in Examples below.
  • the curable composition of the present invention When curing the curable composition of the present invention, it may be after applying the curable composition to the substrate.
  • the curable composition of the present invention may or may not contain a solvent. When a solvent is included, it is preferable to cure after removing the solvent. By applying the curable composition to the substrate and then curing the curable composition, a substrate having a cured product can be obtained.
  • the method of applying the curable composition is not particularly limited.
  • coating methods include ordinary coating methods such as casting, spin coating, bar coating, dip coating, spray coating, roll coating, flow coating and gravure coating.
  • the thickness to which the curable composition of the present invention is applied is not particularly limited, and is appropriately set according to the purpose.
  • the substrate to which the curable composition of the present invention is applied is not particularly limited, and examples thereof include wood, metal, inorganic materials, plastics, paper, fibers and fabrics. Metals include copper, silver, iron, aluminum, silicon, silicon steel and stainless steel.
  • inorganic materials include metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, zinc oxide, indium tin oxide and gallium oxide; metal nitrides such as aluminum nitride, gallium nitride and silicon nitride; silicon carbide and nitride; Examples include ceramics such as boron, mortar, concrete and glass.
  • plastics include acrylic resins such as polymethyl methacrylate, polyester resins such as polyethylene terephthalate, polyvinyl chloride resins, polycarbonate resins, epoxy resins, polyamide resins such as nylon and aramid, polyimide resins, polyamideimide resins, 4-fluoro Fluorine resins such as ethylene chloride resins, polyolefin resins such as crosslinked polyethylene resins, vinylidene chloride resins, acrylonitrile-butadiene-styrene (ABS) resins, polystyrene resins, polyacrylonitrile resins, cycloolefin polymers (COP), cycloolefin copolymers (COC) , acetate resins, polyarylates, cellophane, norbornene resins, acetyl cellulose resins such as triacetyl cellulose (TAC), polychloroprene, polyphenylene sulfide, polysulfone
  • fibers include natural fibers, regenerated fibers, semi-synthetic fibers, metal fibers, glass fibers, carbon fibers, ceramic fibers and known chemical fibers.
  • the fabric may be woven or non-woven, and may be made, for example, using the fibers described above. These materials may be used alone, or two or more of them may be combined, mixed, or composited for use.
  • the shape of the substrate is not particularly limited, and examples thereof include plate-like, sheet-like, film-like, rod-like, spherical, fiber-like, powder-like, lens-like and other regular or irregular shapes.
  • the curing method and curing conditions are selected depending on whether the curable composition is active energy ray-curable and/or thermosetting. Further, the curing conditions (in the case of active energy ray curing, for example, the type of light source and the amount of light irradiation, and in the case of thermosetting, heating temperature, heating time, etc.) It is appropriately selected depending on the type and amount of the polymerization initiator to be contained, the type of other polymerizable compound, and the like.
  • the curing method may be irradiation with an active energy ray using a known active energy ray irradiation device or the like.
  • active energy rays include electron beams, and light such as ultraviolet rays, visible rays, and X-rays. Light is preferred, and ultraviolet rays are more preferred from the viewpoint that inexpensive devices can be used.
  • Ultraviolet irradiation devices include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, ultraviolet (UV) electrodeless lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and light-emitting diodes (LEDs). mentioned.
  • the intensity of light irradiation to the film coated with the present composition may be selected according to the purpose, application, etc.
  • the light irradiation intensity in the light wavelength range effective for polymerization (light with a wavelength of 220 nm to 460 nm is preferably used, although it varies depending on the type of photopolymerization initiator) is 0.1 mW/cm 2 to 1000 mW/cm 2 .
  • the irradiation energy should be set as appropriate according to the type of active energy ray, the compounding composition, and the like.
  • the light irradiation time to the coating may also be selected according to the purpose, application, etc., and the integrated light amount represented as the product of the light irradiation intensity and the light irradiation time in the light wavelength region is 10 mJ/cm 2 to 7, It is preferable to set the light irradiation time so as to achieve 000 mJ/cm 2 .
  • the integrated amount of light is more preferably 200 mJ/cm 2 to 5,000 mJ/cm 2 and even more preferably 500 mJ/cm 2 to 4,000 mJ/cm 2 . When the integrated amount of light is within the above range, curing of the composition proceeds smoothly, and a uniform cured product can be easily obtained.
  • heat curing can be appropriately combined before and/or after photocuring.
  • the composition is first cured in the portion exposed to light by irradiating light, and then, A two-stage cure can also be performed in which heat is applied to cure the composition in the areas not exposed to light.
  • substrates are not particularly limited, and examples thereof include substrates having complex shapes such as fabric, fibrous, powdery, porous, and uneven shapes, and two or more of these shapes. may be combined.
  • Thermosetting method When the present composition is a thermosetting composition, its curing method and curing conditions are not particularly limited.
  • the curing temperature is preferably 80°C to 200°C, more preferably 100°C to 180°C, even more preferably 110°C to 150°C.
  • the curing temperature may be constant or may be increased. You may combine temperature rise and temperature fall.
  • the curing time is appropriately selected according to the type of thermal polymerization initiator and the content of other components, and is preferably 10 minutes to 360 minutes, more preferably 30 minutes to 300 minutes, and even more preferably 60 minutes to 240 minutes.
  • the cured product obtained using the silsesquioxane derivative of the present invention has a large contact angle with water, antifouling properties such as high water repellency, and high releasability. Furthermore, when the curable composition containing the silsesquioxane derivative of the present invention is applied to a substrate and then the curable composition is cured, the adhesion between the resulting cured product and the substrate is excellent.
  • the cured product has excellent adhesion to the above-mentioned "substrate to which the curable composition of the present invention is applied", and has excellent adhesion to glass, plastic, and the like, for example.
  • the silsesquioxane derivative of the present invention and the curable composition containing the same have low viscosity, so that they are excellent in solvent-free coating properties, and even when using a solvent, the amount used can be reduced. can do.
  • INDUSTRIAL APPLICABILITY The silsesquioxane derivative of the present invention and the curable composition containing the same are inhibited from increasing in viscosity over time and under high temperature conditions, and have good storage stability.
  • the structural unit (c) containing a fluorine atom is introduced, the cured product obtained using the silsesquioxane derivative of the present invention exhibits heat resistance, chemical resistance, It tends to be excellent in weather resistance and the like.
  • the silsesquioxane derivative of the present invention can be applied to applications requiring antifouling properties such as water repellency, releasability, adhesion, heat resistance, chemical resistance, weather resistance, and the like.
  • the silsesquioxane derivative of the present invention can be applied to, for example, optical lenses, displays, optical discs, low refractive index materials for optical fibers, antireflection materials, release films, replica molds, adhesives, and the like.
  • Releasability is essential for nanoimprint replica molds, but if a replica mold is produced using a composition containing a release agent, the release agent may bleed during use.
  • the structural unit (c) contributing to releasability is introduced into the silsesquioxane derivative, and there is no need to use a release agent.
  • silsesquioxane derivatives of the present invention do not necessarily require formulations other than initiators. Since the silsesquioxane derivative of the present disclosure and the curable composition containing the same have low viscosity, they can be easily applied. It can be used for fouling coating agent compositions and the like. Since the silsesquioxane derivative of the present disclosure and the curable composition containing the same have low viscosity, they can be suitably used for applications requiring low viscosity. For example, it can be applied to adhesive applications, inkjet printing, printing applications such as 3D printing, coating agent applications, nanoprinting applications, and the like.
  • the silsesquioxane derivative of the present invention when applied to nanoprinting, has a low viscosity and is therefore excellent in fine transfer properties. Moreover, since the silsesquioxane derivative of the present invention can be used without a solvent, it can be cured as it is after being poured into a mold. The silsesquioxane derivative of the present invention may be used in combination with fillers, other polymerizable compounds and the like. Moreover, since the silsesquioxane derivative of the present invention has a low viscosity, it can be mixed with a large amount of filler.
  • the weight average molecular weight (Mw) of the silsesquioxane derivative in each example and each comparative example was measured as follows. Specifically, by gel permeation chromatography (manufactured by Tosoh Corporation, HLC-8320GPC, hereinafter abbreviated as "GPC"), in a tetrahydrofuran solvent at 40 ° C., a GPC column "TSK gel SuperMultiporeHZ-M" (manufactured by Tosoh Corporation ), and the molecular weight in terms of standard polystyrene was calculated from the retention time.
  • GPC gel permeation chromatography
  • the synthesized silsesquioxane derivative 1 had a viscosity of 814 mPa ⁇ s at 25° C. (before the accelerated test) and a weight average molecular weight (Mw) of 2,580. Also, the viscosity at 25° C. after the accelerated test was 891 mPa ⁇ s.
  • Example 2 A silsesquioxane derivative 2 (S2) was obtained in the same manner as in Example 1, except that the amounts of raw materials charged were changed to those in Example 1 and changed as shown in Table 1, and the amounts of the solvent and the like were changed as appropriate. .
  • S2 By 1 H-NMR analysis of S2, it was confirmed that each structural unit was introduced quantitatively according to the charging ratio of the raw materials.
  • Table 1 shows the molar ratio of each structural unit in the silsesquioxane derivative, the viscosity at 25°C (before accelerated test), and the weight average molecular weight (Mw).
  • photocurable compositions 1 to 6 were prepared as follows. Adhesion test, contact angle measurement and refractive index measurement were performed using the prepared photocurable compositions 1 to 6, respectively. Details are described below.
  • Photocurable composition 0.09 part by mass of 2-hydroxy-2-methyl-1-phenylpropan-1-one is added to 1 to 33 parts by mass of the synthesized silsesquioxane derivative, and the mixture is stirred with a rotation/revolution mixer. By doing so, photocurable compositions 1 to 3 were prepared. Photocurable Compositions 1 to 3 do not substantially contain a solvent since the solvent and the like are removed by distillation during the synthesis of Silsesquioxane Derivatives 1 to 3.
  • Adhesion test An adhesion test was performed on the photocured film prepared as described above in accordance with JIS K5600-5-6. It represents the number of squares remaining without peeling out of 25 squares, and the larger the number, the higher the adhesion to the substrate. Table 1 shows the results.
  • a formwork was prepared from a silicone rubber sheet with a thickness of 1 mm, a PET film was placed on a glass plate, and the formwork was further placed.
  • Each of the photocurable compositions 1 to 6 was poured into this mold, and the mold was covered with a PET film and a glass plate to prevent air bubbles from entering.
  • Photocurable compositions 1 to 6 covered with a PET film and a glass plate are cured to a thickness of 1 mm by changing the number of passes to 20 under the same ultraviolet irradiation conditions as described above (Preparation of photocured film). made each one.
  • the refractive index was determined at 25° C. with a light source of 589 nm for the cured product having a thickness of 1 mm. Table 1 shows the results.

Abstract

A silsesquioxane derivative represented by formula (1). In formula (1), R1 is a hydrogen atom or a C1-6 alkyl group, R2 is a C1-10 alkylene group, a C3-10 cycloalkylene group, a C6-10 arylene group, or a C7-12 aralkylene group, R3 is a fluoro group or a C1-20 fluoroalkyl group, R6 is a C2-12 organic group having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond, R7 is a C1-10 alkyl group, a C6-10 aryl group, or a C7-10 aralkyl group, and u, v, and y are positive numbers.

Description

シルセスキオキサン誘導体、硬化性組成物、硬化物及び基材Silsesquioxane derivative, curable composition, cured product and substrate
 本発明は、シルセスキオキサン誘導体、硬化性組成物、硬化物及び基材に関する。 The present invention relates to silsesquioxane derivatives, curable compositions, cured products and substrates.
 重合性基とフッ素系成分を分子内に併せ持つシルセスキオキサン誘導体は、硬化性コーティング剤用途に適用されている。 Silsesquioxane derivatives, which have both polymerizable groups and fluorine-based components in their molecules, are used as curable coating agents.
 例えば、特許文献1には、ラジカル重合性官能基、フルオロアルキル基及びアルコキシシリル基を備えた有機ケイ素化合物を含む膜形成成分と光塩基発生剤とを有するコーティング剤が開示されている。 For example, Patent Document 1 discloses a coating agent having a film-forming component containing an organosilicon compound having a radically polymerizable functional group, a fluoroalkyl group and an alkoxysilyl group, and a photobase generator.
 特許文献2には、エチレン性不飽和基とフッ素基を含むポリ脂肪族芳香族シルセスキオキサン、分子内に一つ以上の不飽和基を含む反応性モノマー、有機シラン系化合物及び光開始剤を含む光硬化型有機-無機ハイブリッド樹脂組成物が開示されている。 Patent Document 2 discloses a polyaliphatic aromatic silsesquioxane containing an ethylenically unsaturated group and a fluorine group, a reactive monomer containing one or more unsaturated groups in the molecule, an organic silane compound, and a photoinitiator. A photocurable organic-inorganic hybrid resin composition comprising
 特許文献3には、クロロシラン官能基とフルオロアルカン基を有するM型モノマー、フルオロアルカン基を有するT型モノマー、(メタ)アクリロイル官能基を有するT型モノマー、および任意にQ型モノマーを含む高フッ素化シリコーン樹脂であって、シリコーン樹脂は、全重量を基準にして少なくとも55重量パーセントのフッ素含有量を有する高フッ素化シリコーン樹脂が開示されている。 US Pat. No. 5,900,002 discloses high fluorine monomers containing M-type monomers with chlorosilane functional groups and fluoroalkane groups, T-type monomers with fluoroalkane groups, T-type monomers with (meth)acryloyl functional groups, and optionally Q-type monomers. A highly fluorinated silicone resin is disclosed, wherein the silicone resin is a highly fluorinated silicone resin having a fluorine content of at least 55 weight percent based on total weight.
  [特許文献1]特開2020-33530号公報
  [特許文献2]特表2014-529631号公報
  [特許文献3]特表2019-520437号公報
[Patent Document 1] Japanese Unexamined Patent Publication No. 2020-33530 [Patent Document 2] Japanese Patent Publication No. 2014-529631 [Patent Document 3] Japanese Patent Publication No. 2019-520437
 シルセスキオキサン誘導体を使用する際、その硬化物の離型性、防汚性等が良好で、かつ基材との密着性に優れることが求められている。 When using a silsesquioxane derivative, it is required that the cured product has good releasability, antifouling properties, etc., and excellent adhesion to the substrate.
 特許文献1には、3-アクリロキシプロピルトリメトキシシランと3,3,3-トリフルオロプロピルトリメトキシシランとを重縮合して得られたT単位のみからなるシルセスキオキサン、重合性エステルであるトリメチロールプロパントリアクリレート、光塩基発生剤及び溶媒であるメタノールを含むコーティング剤をシリコンウエハに塗布し、プリベークした後、紫外線照射及びポストベークしてコーティング膜を作製したことが記載されている。しかし、シルセスキオキサンの重合性基をフルオロアルキル基に置換することにより低下する物理的特性、例えば引っかき硬度、基材への密着性等を補うために、重合性エステルである他官能アクリレート等を配合している。そのため、水の接触角が小さく、防汚性が低下する。 Patent Document 1 discloses a silsesquioxane consisting only of T units obtained by polycondensation of 3-acryloxypropyltrimethoxysilane and 3,3,3-trifluoropropyltrimethoxysilane, a polymerizable ester. It describes that a coating agent containing a certain trimethylolpropane triacrylate, a photobase generator, and methanol as a solvent was applied to a silicon wafer, pre-baked, followed by ultraviolet irradiation and post-baking to prepare a coating film. However, in order to compensate for physical properties, such as scratch hardness and adhesion to substrates, which are degraded by substituting the polymerizable group of silsesquioxane with a fluoroalkyl group, polyfunctional acrylates, etc., which are polymerizable esters, are used. is compounded. Therefore, the contact angle of water is small, and the antifouling property is lowered.
 特許文献2には、以下のようにして光硬化型有機-無機ハイブリッド樹脂組成物を製造したことが記載されている。まず、トリメトキシフェニルシラン、γ-メタアクリルオキシプロピルトリメトキシシラン、メチルトリメトキシシラン及びペルフルオロオクチルトリエトキシシランを加水分解及び重縮合して得られたエチレン性不飽和基とフッ素基とを含むポリ脂肪族芳香族シルセスキオキサンを準備している。そして、前述のポリ脂肪族芳香族シルセスキオキサン、2-(ペルフルオロヘキシル)エチルアクリレート、メタアクリル酸グリシジル、(3-グリシドキシプロピル)トリメトキシシラン及び光開始剤を常温で均一に攪拌した後、ろ過して光硬化型有機-無機ハイブリッド樹脂組成物を製造している。このように、T単位のみからなるエチレン性不飽和基とフッ素基とを含むシルセスキオキサン誘導体を無溶剤系で塗布するためには、反応性モノマー、有機シラン系化合物等を配合する必要がある。また、組成物の耐化学性、硬化密度の増加のために有機シラン系化合物を配合して硬化物の物性を補う必要がある。さらに、T単位のみからなるエチレン性不飽和基とフッ素基とを含むシルセスキオキサン誘導体を含む硬化性組成物を基材に塗布し、塗布された硬化性組成物を硬化させて硬化物を製造した場合、硬化物の密着性が充分でないという問題もある。 Patent Document 2 describes that a photocurable organic-inorganic hybrid resin composition was produced as follows. First, a poly(ethylenically unsaturated group-containing fluorine group obtained by hydrolyzing and polycondensing trimethoxyphenylsilane, γ-methacryloxypropyltrimethoxysilane, methyltrimethoxysilane and perfluorooctyltriethoxysilane). An aliphatic-aromatic silsesquioxane is prepared. Then, the aforementioned polyaliphatic aromatic silsesquioxane, 2-(perfluorohexyl)ethyl acrylate, glycidyl methacrylate, (3-glycidoxypropyl)trimethoxysilane and photoinitiator were uniformly stirred at room temperature. After that, it is filtered to produce a photocurable organic-inorganic hybrid resin composition. Thus, in order to apply a silsesquioxane derivative containing an ethylenically unsaturated group consisting of only T units and a fluorine group in a solventless system, it is necessary to blend a reactive monomer, an organic silane compound, and the like. be. Also, in order to increase the chemical resistance of the composition and the cured density, it is necessary to add an organic silane compound to supplement the physical properties of the cured product. Furthermore, a curable composition containing a silsesquioxane derivative containing an ethylenically unsaturated group consisting of only T units and a fluorine group is applied to a substrate, and the applied curable composition is cured to obtain a cured product. When produced, there is also the problem that the adhesion of the cured product is not sufficient.
 特許文献3には、M型モノマーとして(トリデカフルオロ1,1,2,2-テトラヒドロオクチル)ジメチルクロロシラン、T型モノマーとして(トリデカフルオロ1,1,2,2-テトラヒドロオクチル)トリエトキシシラン及び3-(トリメトキシシリル)プロピルアクリレート、並びにQモノマーとしてテトラエチルオルトシリケートを加水分解及び重縮合して得られたM単位、T単位及びQ単位からなる高フッ素化シリコーン樹脂が記載されている。この高フッ素化シリコーン樹脂とフッ素化(メタ)アクリレートモノマー又はパーフルオロポリエーテルと、光開始剤とを添加した低屈折率を有する光学的透明接着剤が開示されている。特許文献3では、フッ素化(メタ)アクリレートモノマー又はパーフルオロポリエーテルを添加することによって光学的透明接着剤を液体とする必要がある。さらに、高フッ素化シリコーン樹脂を含む硬化性組成物を基材に塗布し、塗布された硬化性組成物を硬化させて硬化物を製造した場合、硬化物の密着性が充分でないという問題もある。 Patent Document 3 discloses (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane as an M-type monomer and (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane as a T-type monomer. and 3-(trimethoxysilyl)propyl acrylate, and a highly fluorinated silicone resin consisting of M, T and Q units obtained by hydrolysis and polycondensation of tetraethylorthosilicate as the Q monomer. An optically transparent adhesive having a low refractive index is disclosed which contains this highly fluorinated silicone resin, a fluorinated (meth)acrylate monomer or perfluoropolyether, and a photoinitiator. In US Pat. No. 5,400,004, the optically clear adhesive needs to be made liquid by adding fluorinated (meth)acrylate monomers or perfluoropolyethers. Furthermore, when a curable composition containing a highly fluorinated silicone resin is applied to a substrate and the applied curable composition is cured to produce a cured product, there is also the problem that the adhesion of the cured product is insufficient. .
 本発明は、上記に鑑みてなされたものであり、水に対する接触角が大きく、かつ基材に対する密着性に優れる硬化物を作製可能なシルセスキオキサン誘導体、このシルセスキオキサン誘導体を含む硬化性組成物、これを硬化してなる硬化物及びこの硬化物を備える基材を提供することを目的とする。 The present invention has been made in view of the above. An object of the present invention is to provide a flexible composition, a cured product obtained by curing the same, and a substrate comprising the cured product.
 前記課題を解決するための手段には、以下の態様が含まれる。
<1> 下記式(1)で表されるシルセスキオキサン誘導体。
Means for solving the above problems include the following aspects.
<1> A silsesquioxane derivative represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Rは水素原子又は炭素原子数1~6のアルキル基であり、Rは炭素原子数1~10のアルキレン基、炭素原子数3~10のシクロアルキレン基、炭素原子数6~10のアリーレン基又は炭素原子数7~12のアラルキレン基であり、Rはフルオロ基又は炭素原子数1~20のフルオロアルキル基であり、R及びRは、それぞれ独立に水素原子、炭素原子数1~20の飽和若しくは不飽和のアルキル基、炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基、炭素原子数6~20のアリール基又は炭素原子数7~20のアラルキル基であり、Rはエチレン性不飽和結合及び炭素炭素三重結合の少なくとも一方を有する炭素原子数2~12の有機基であり、R及びRはそれぞれ独立に炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基又は炭素原子数7~10のアラルキル基であり、複数存在するRは互いに同一でも異なっていてもよく、複数存在するRは互いに同一でも異なっていてもよく、複数存在するRは互いに同一でも異なっていてもよく、R~Rは、それぞれ独立に置換基又はハロゲン原子で構造の一部が置換されていてもよく、u、v及びyは正の数であり、t、w、x及びzはそれぞれ独立に0又は正の数である。
<2> 前記式(1)中、t、w、x及びzが0であり、0.01≦y/(u+v)≦1である、<1>に記載のシルセスキオキサン誘導体。
<3> 25℃における粘度は、10mP・s~7,000mP・sである、<1>又は<2>に記載のシルセスキオキサン誘導体。
In formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, a carbon atom an arylene group having 6 to 10 carbon atoms or an aralkylene group having 7 to 12 carbon atoms, R 3 is a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms, and R 4 and R 5 are each independently hydrogen atom, saturated or unsaturated alkyl group having 1 to 20 carbon atoms, saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, aryl group having 6 to 20 carbon atoms or 7 to 20 carbon atoms an aralkyl group, R 6 is an organic group having 2 to 12 carbon atoms having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond, and R 7 and R 8 each independently have 1 to 10 carbon atoms; an alkyl group, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms, wherein a plurality of R 5 may be the same or different, and a plurality of R 7 may be the same. A plurality of R 8 may be the same or different, each of R 1 to R 8 may be independently partially substituted with a substituent or a halogen atom, and u , v and y are positive numbers, and t, w, x and z are each independently 0 or positive numbers.
<2> The silsesquioxane derivative according to <1>, wherein t, w, x and z in the formula (1) are 0 and 0.01≤y/(u+v)≤1.
<3> The silsesquioxane derivative according to <1> or <2>, which has a viscosity of 10 mP·s to 7,000 mP·s at 25°C.
<4> <1>~<3>のいずれか1つに記載のシルセスキオキサン誘導体と重合開始剤とを含む、硬化性組成物。
<5> <4>に記載の硬化性組成物を硬化させてなる、硬化物。
<6> 25℃における水に対する接触角が100°以上である、<5>に記載の硬化物。
<7> 25℃における屈折率が1.42未満である、<5>又は<6>に記載の硬化物。
<8> <5>~<7>のいずれか1つに記載の硬化物を備える、基材。
<4> A curable composition comprising the silsesquioxane derivative according to any one of <1> to <3> and a polymerization initiator.
<5> A cured product obtained by curing the curable composition according to <4>.
<6> The cured product according to <5>, which has a contact angle with water of 100° or more at 25°C.
<7> The cured product according to <5> or <6>, which has a refractive index of less than 1.42 at 25°C.
<8> A substrate comprising the cured product according to any one of <5> to <7>.
 本発明によれば、水に対する接触角が大きく、かつ基材に対する密着性に優れる硬化物を作製可能なシルセスキオキサン誘導体、このシルセスキオキサン誘導体を含む硬化性組成物、これを硬化してなる硬化物及びこの硬化物を備える基材を提供することができる。 According to the present invention, there are provided a silsesquioxane derivative capable of producing a cured product having a large contact angle with water and excellent adhesion to a substrate, a curable composition containing the silsesquioxane derivative, and a curable composition containing the silsesquioxane derivative. It is possible to provide a cured product and a substrate comprising this cured product.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present invention.
In this specification, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other steps. good. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
Moreover, in the present specification, a combination of two or more preferred aspects is a more preferred aspect.
 本明細書において、式(1)中のR~Rは、それぞれ独立に置換基又はハロゲン原子で構造の一部が置換されていてもよい。例えば、R~Rは、それぞれ独立に、アルキル基、アリール基、アラルキル基、ビニル基、エポキシ基、オキセタニル基、水酸基、アミノ基、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基、アンモニウム基、チオール基、イソシアヌレート基、ウレイド基、イソシアナート基、カルボキシ基、酸無水物基又はハロゲン原子で構造の一部が置換されていてもよい。
 式(1)中のR~Rは、それぞれ独立に無置換であってもよく、例えば、R~R又はR~R(好ましくは、R~R及びR~R)は、無置換であってもよい。
In the present specification, each of R 1 to R 8 in formula (1) may be independently partially substituted with a substituent or a halogen atom. For example, R 1 to R 8 each independently represent an alkyl group, an aryl group, an aralkyl group, a vinyl group, an epoxy group, an oxetanyl group, a hydroxyl group, an amino group, an alkylamino group, an arylamino group, an aralkylamino group, and an ammonium group. , a thiol group, an isocyanurate group, a ureido group, an isocyanate group, a carboxy group, an acid anhydride group, or a halogen atom.
R 1 to R 8 in formula (1) may each independently be unsubstituted, for example, R 1 to R 3 or R 6 to R 8 (preferably R 1 to R 3 and R 6 to R 8 ) may be unsubstituted.
[シルセスキオキサン誘導体]
 本発明のシルセスキオキサン誘導体は、下記式(1)で表される。
[Silsesquioxane derivative]
The silsesquioxane derivative of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは水素原子又は炭素原子数1~6のアルキル基であり、Rは炭素原子数1~10のアルキレン基、炭素原子数3~10のシクロアルキレン基、炭素原子数6~10のアリーレン基又は炭素原子数7~12のアラルキレン基であり、Rはフルオロ基又は炭素原子数1~20のフルオロアルキル基であり、R及びRは、それぞれ独立に水素原子、炭素原子数1~20の飽和若しくは不飽和のアルキル基、炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基、炭素原子数6~20のアリール基又は炭素原子数7~20のアラルキル基であり、Rはエチレン性不飽和結合及び炭素炭素三重結合の少なくとも一方を有する炭素原子数2~12の有機基であり、R及びRはそれぞれ独立に炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基又は炭素原子数7~10のアラルキル基であり、複数存在するRは互いに同一でも異なっていてもよく、複数存在するRは互いに同一でも異なっていてもよく、複数存在するRは互いに同一でも異なっていてもよく、R~Rは、それぞれ独立に置換基又はハロゲン原子で構造の一部が置換されていてもよく、u、v及びyは正の数であり、t、w、x及びzはそれぞれ独立に0又は正の数である。 In formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, a carbon atom an arylene group having 6 to 10 carbon atoms or an aralkylene group having 7 to 12 carbon atoms, R 3 is a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms, and R 4 and R 5 are each independently hydrogen atom, saturated or unsaturated alkyl group having 1 to 20 carbon atoms, saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, aryl group having 6 to 20 carbon atoms or 7 to 20 carbon atoms an aralkyl group, R 6 is an organic group having 2 to 12 carbon atoms having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond, and R 7 and R 8 each independently have 1 to 10 carbon atoms; an alkyl group, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms, wherein a plurality of R 5 may be the same or different, and a plurality of R 7 may be the same. A plurality of R 8 may be the same or different, each of R 1 to R 8 may be independently partially substituted with a substituent or a halogen atom, and u , v and y are positive numbers, and t, w, x and z are each independently 0 or positive numbers.
 本発明のシルセスキオキサン誘導体が含み得る各構成単位を、以下のように構成単位(a)~(g)と称する。 Each structural unit that the silsesquioxane derivative of the present invention may contain is referred to as structural units (a) to (g) as follows.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本発明のシルセスキオキサン誘導体では、式(1)中においてu、v及びyは正の数であり、t、w、x及びzはそれぞれ独立に0又は正の数である。つまり、本発明のシルセスキオキサン誘導体は、上記した構成単位(a)~(g)の内、構成単位(b)、構成単位(c)及び構成単位(f)を含み、必要に応じて構成単位(a)、構成単位(d)、構成単位(e)、及び構成単位(g)の少なくとも1つを含む。 In the silsesquioxane derivative of the present invention, u, v and y are positive numbers in formula (1), and t, w, x and z are each independently 0 or a positive number. That is, the silsesquioxane derivative of the present invention includes structural units (b), (c) and (f) among the structural units (a) to (g) described above, and optionally It contains at least one of structural unit (a), structural unit (d), structural unit (e), and structural unit (g).
 本発明のシルセスキオキサン誘導体は、構成単位(b)、構成単位(c)及び構成単位(f)を含むことで、水に対する接触角が大きく、かつ基材に対する密着性に優れる硬化物を作製可能である。この理由は特に限定されないが、以下のように推測される。
 本発明のシルセスキオキサン誘導体が構成単位(c)を含むことで硬化物としたときの接触角が大きくなる傾向にあり、硬化物の屈折率も低下する傾向にある。一方、シルセスキオキサン誘導体にフッ素系成分を導入した場合、その硬化物の基材に対する密着性が低下する傾向にある。
 さらに、本発明のシルセスキオキサン誘導体は構成単位(f)を含むことで、シルセスキオキサン誘導体及びこれを含む硬化性組成物の貯蔵安定性を良好としつつ、基材に対する密着性に優れる硬化物を与えることができる。
The silsesquioxane derivative of the present invention contains the structural unit (b), the structural unit (c), and the structural unit (f), so that a cured product having a large contact angle with water and excellent adhesion to a substrate can be obtained. It is possible to manufacture. The reason for this is not particularly limited, but is presumed as follows.
Since the silsesquioxane derivative of the present invention contains the structural unit (c), the contact angle of the cured product tends to increase, and the refractive index of the cured product tends to decrease. On the other hand, when a fluorine-based component is introduced into a silsesquioxane derivative, the adhesiveness of the cured product to the substrate tends to decrease.
Furthermore, the silsesquioxane derivative of the present invention contains the structural unit (f), so that the silsesquioxane derivative and the curable composition containing the same have good storage stability and excellent adhesion to the substrate. Cured products can be given.
 シルセスキオキサン誘導体等を含む硬化性組成物を基材に塗布する際は、硬化性組成物の塗布性を向上させる観点から、硬化性組成物と溶媒とを混合することが一般的である。しかし、硬化性組成物が溶媒を含む場合、塗膜の硬化前に溶媒を除去する工程が必要となること、環境負荷及びエネルギー消費量の低減の観点から溶媒の使用量低減が望ましいこと等を考慮すると、溶媒を含まずに(無溶媒系で)粘度が低い硬化性組成物が求められる。 When applying a curable composition containing a silsesquioxane derivative or the like to a substrate, it is common to mix the curable composition and a solvent from the viewpoint of improving the coating properties of the curable composition. . However, when the curable composition contains a solvent, it is necessary to remove the solvent before curing the coating film, and it is desirable to reduce the amount of solvent used from the viewpoint of reducing environmental load and energy consumption. Considering this, there is a need for curable compositions that are solvent-free (solvent-free systems) and have low viscosities.
 本発明のシルセスキオキサン誘導体は、構成単位(b)、構成単位(c)及び構成単位(f)を含むことで、硬化物としたときの密着性を高めつつ、シルセスキオキサン誘導体の低粘度化が可能となる。そのため、溶媒の使用量を削減することができ、無溶媒系にて使用することも可能となる。 The silsesquioxane derivative of the present invention contains the structural unit (b), the structural unit (c), and the structural unit (f), so that the adhesiveness of the cured product is improved, and the silsesquioxane derivative Low viscosity is possible. Therefore, the amount of solvent used can be reduced, and it is also possible to use in a solvent-free system.
 式(1)におけるt、u、v、w、x、y及びzは、構成単位(a)~(g)のモル比を表す。なお、式(1)において、t、u、v、w、x、y及びzは、式(1)で表されるシルセスキオキサン誘導体が含み得る構成単位(a)~(g)の相対的なモル比を表す。モル比は、本発明のシルセスキオキサン誘導体のNMR(核磁気共鳴)分析値から求めることができる。又、シルセスキオキサン誘導体の各原料の反応率が明らかなとき、又は、収率が100%のときには、その原料の仕込み量から求めることができる。
 例えば、シルセスキオキサン誘導体の各構成単位のモル比については、重クロロホルム等に溶解した試料に対してH-NMR分析を行い、必要に応じてさらに29Si-NMR分析も行うことにより算出してもよい。
 アルカリ等で構成単位に分解して構成単位の比率等から元々のシルセスキオキサン誘導体の構造を推定してもよい。
 必要に応じて質量分析、IR(赤外吸収分光)分析等の公知の手法を組み合わせてシルセスキオキサン誘導体の各構成単位のモル比を求めてもよい。
t, u, v, w, x, y and z in formula (1) represent molar ratios of structural units (a) to (g). In formula (1), t, u, v, w, x, y, and z are the structural units (a) to (g) that may be included in the silsesquioxane derivative represented by formula (1). represents a typical molar ratio. The molar ratio can be obtained from NMR (nuclear magnetic resonance) analysis values of the silsesquioxane derivative of the present invention. Further, when the reaction rate of each raw material of the silsesquioxane derivative is known, or when the yield is 100%, it can be determined from the charged amount of the raw material.
For example, the molar ratio of each structural unit of the silsesquioxane derivative is calculated by performing 1 H-NMR analysis on a sample dissolved in deuterated chloroform or the like and, if necessary, further performing 29 Si-NMR analysis. You may
The structure of the original silsesquioxane derivative may be estimated from the ratio of the structural units obtained by decomposing the structural units with an alkali or the like.
If necessary, known techniques such as mass spectrometry and IR (infrared absorption spectroscopy) analysis may be combined to determine the molar ratio of each structural unit of the silsesquioxane derivative.
 式(1)における構成単位(b)~(g)のそれぞれについては、1種のみであってよいし、2種以上であってもよい。又、式(1)における配列順序は、構成単位の組成を示すものであって、シルセスキオキサン誘導体の配列順序を意味するものではない。したがって、本発明のシルセスキオキサン誘導体における構成単位の縮合形態は、必ずしも式(1)の配列順通りでなくてよい。
 以下、構成単位(a)~(g)の詳細について説明する。
Each of the structural units (b) to (g) in formula (1) may be of only one type, or may be of two or more types. The order of arrangement in formula (1) indicates the composition of the structural units, and does not mean the order of arrangement of the silsesquioxane derivatives. Therefore, the condensed form of the structural units in the silsesquioxane derivative of the present invention does not necessarily have to follow the sequence of formula (1).
Details of the structural units (a) to (g) will be described below.
(構成単位(a))
 構成単位(a)は、ケイ素原子1個に対してO1/2を4個(酸素原子として2個)備えるQ単位である。なお、Q単位とは、ケイ素原子1個に対してO1/2を4個有する単位を意味する。
(Constituent unit (a))
Structural unit (a) is a Q unit having 4 O 1/2 atoms (2 oxygen atoms) per silicon atom. The Q unit means a unit having 4 O 1/2 atoms per silicon atom.
 本発明のシルセスキオキサン誘導体における構成単位(a)の割合は特に限定されない。例えば、全構成単位に占める構成単位(a)のモル比(t/(t+u+v+w+x+y+z))は、シルセスキオキサン誘導体の粘度及び硬化物としたときの硬度の観点から、0.1以下であることが好ましく、0.05以下であることがより好ましく、0であることがさらに好ましい。ここで、モル比が0であることは、該当する構成単位を含んでいないことを意味しており、以下、同様のことを意味する。 The proportion of the structural unit (a) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (t/(t+u+v+w+x+y+z)) of the structural unit (a) to all structural units is 0.1 or less from the viewpoint of the viscosity of the silsesquioxane derivative and the hardness of the cured product. is preferred, 0.05 or less is more preferred, and 0 is even more preferred. Here, a molar ratio of 0 means that the corresponding structural unit is not included, and the same applies hereinafter.
(構成単位(b))
 構成単位(b)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備え、Rを介して、アクリロイルオキシ基における水素原子が、水素原子以外のRに置換されたアクリロイルオキシ基がケイ素原子に結合しているT単位である。なお、T単位とは、ケイ素原子1個に対してO1/2を3個有する単位を意味する。
(Constituent unit (b))
Structural unit (b) has 3 O 1/2 (1.5 oxygen atoms) per silicon atom, and through R 2 , the hydrogen atoms in the acryloyloxy group are other than hydrogen atoms The acryloyloxy group substituted by R 1 is the T unit attached to the silicon atom. The T unit means a unit having 3 O 1/2 atoms per 1 silicon atom.
 構成単位(b)において、Rは水素原子又は炭素原子数1~6のアルキル基である。炭素原子数1~6のアルキル基は、直鎖であってもよく、分岐を有していてもよい。 In structural unit (b), R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. The alkyl group having 1 to 6 carbon atoms may be linear or branched.
 炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基及びヘキシル基が挙げられ、メチル基又はエチル基が好ましく、メチル基がより好ましい。 Examples of alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group, preferably methyl group or ethyl group, more preferably methyl group.
 構成単位(b)において、Rは、炭素原子数1~10のアルキレン基、炭素原子数3~10のシクロアルキレン基、炭素原子数6~10のアリーレン基又は炭素原子数7~12のアラルキレン基である。Rは、炭素原子数1~10のアルキレン基又は炭素原子数3~10のシクロアルキレン基であることが好ましく、炭素原子数1~10のアルキレン基であることがより好ましい。 In structural unit (b), R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, or an aralkylene group having 7 to 12 carbon atoms. is the base. R 2 is preferably an alkylene group having 1 to 10 carbon atoms or a cycloalkylene group having 3 to 10 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms.
 炭素原子数1~10のアルキレン基は、炭素原子数1~6のアルキレン基であることが好ましく、炭素原子数2~4のアルキレン基であることがより好ましく、プロピレン基であることがさらに好ましい。炭素原子数1~10のアルキレン基は、直鎖であってもよく、分岐を有していてもよい。
 炭素原子数3~10のシクロアルキレン基は、炭素原子数3~6のシクロアルキレン基であることが好ましく、炭素原子数4~6のシクロアルキレン基であることがより好ましい。炭素原子数3~10のシクロアルキレン基は、分岐を有していてもよい。
The alkylene group having 1 to 10 carbon atoms is preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and even more preferably a propylene group. . The alkylene group having 1 to 10 carbon atoms may be linear or branched.
The cycloalkylene group having 3 to 10 carbon atoms is preferably a cycloalkylene group having 3 to 6 carbon atoms, more preferably a cycloalkylene group having 4 to 6 carbon atoms. The cycloalkylene group having 3 to 10 carbon atoms may have a branch.
 本発明のシルセスキオキサン誘導体における構成単位(b)の割合は特に限定されない。例えば、全構成単位に占める構成単位(b)のモル比(u/(t+u+v+w+x+y+z))は、紫外線(以下、UVとも称する。)硬化性の観点から、0.1~0.9であることが好ましく、0.2~0.8であることがより好ましく、0.25~0.6であることがさらに好ましい。 The ratio of the structural unit (b) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (u/(t+u+v+w+x+y+z)) of the structural unit (b) to all structural units is, from the viewpoint of ultraviolet (hereinafter also referred to as UV) curability, 0.1 to 0.9. It is preferably 0.2 to 0.8, and even more preferably 0.25 to 0.6.
(構成単位(c))
 構成単位(c)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備え、Rがケイ素原子に結合しているT単位である。
(Constituent unit (c))
Structural unit (c) is a T unit having 3 O 1/2 (1.5 oxygen atoms) per silicon atom and R 3 being bonded to the silicon atom.
 構成単位(c)において、Rは、フルオロ基又は炭素原子数1~20のフルオロアルキル基である。 In structural unit (c), R 3 is a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms.
 炭素原子数1~20のフルオロアルキル基は、炭素原子数3~10のフルオロアルキル基であることが好ましく、炭素原子数5~10のフルオロアルキル基であることがより好ましい。炭素原子数1~20のフルオロアルキル基におけるフッ素原子の数は特に限定されず、例えば3個以上であってもよく、5個~37個であってもよく、7個~17個であってもよい。 The fluoroalkyl group having 1 to 20 carbon atoms is preferably a fluoroalkyl group having 3 to 10 carbon atoms, more preferably a fluoroalkyl group having 5 to 10 carbon atoms. The number of fluorine atoms in the fluoroalkyl group having 1 to 20 carbon atoms is not particularly limited, and may be, for example, 3 or more, 5 to 37, or 7 to 17. good too.
 例えば、炭素原子数1~20のフルオロアルキル基は、炭素原子数が3個以上である場合、ケイ素原子に結合する構造としてエチレン基(-CHCH-)を有し、エチレン基に炭素原子数1~18であるパーフルオロアルキル基が結合した置換基であってもよい。炭素原子数1~18であるパーフルオロアルキル基は、炭素原子数3~10であるパーフルオロアルキル基であってもよく、炭素原子数5~8であるパーフルオロアルキル基であってもよい。 For example, a fluoroalkyl group having 1 to 20 carbon atoms has an ethylene group (—CH 2 CH 2 —) as a structure bonded to a silicon atom when the number of carbon atoms is 3 or more, and the ethylene group has carbon It may be a substituent to which a perfluoroalkyl group having 1 to 18 atoms is bonded. The perfluoroalkyl group having 1 to 18 carbon atoms may be a perfluoroalkyl group having 3 to 10 carbon atoms or a perfluoroalkyl group having 5 to 8 carbon atoms.
 炭素原子数1~20のフルオロアルキル基としては、例えば、3,3,3-トリフルオロ-プロピル基、1H,1H,2H,2H-ノナフルオロ-n-ヘキシル基、1H,1H,2H,2H-トリデカフルオロ-n-オクチル基及び1H,1H,2H,2H-ヘプタデカフルオロ-n-デシル基が挙げられる。 Examples of the fluoroalkyl group having 1 to 20 carbon atoms include 3,3,3-trifluoro-propyl group, 1H,1H,2H,2H-nonafluoro-n-hexyl group, 1H,1H,2H,2H- tridecafluoro-n-octyl group and 1H,1H,2H,2H-heptadecafluoro-n-decyl group.
 本発明のシルセスキオキサン誘導体における構成単位(c)の割合は特に限定されない。例えば、全構成単位に占める構成単位(c)のモル比(v/(t+u+v+w+x+y+z))は、貯蔵安定性及び硬化物としたときの接触角及び/又は屈折率の観点から、0.1~0.9であることが好ましく、0.2~0.8であることがより好ましく、0.25~0.6であることがさらに好ましい。 The ratio of the structural unit (c) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (v / (t + u + v + w + x + y + z)) of the structural unit (c) to all structural units is 0.1 to 0 from the viewpoint of storage stability and contact angle and / or refractive index when cured. It is preferably 0.9, more preferably 0.2 to 0.8, even more preferably 0.25 to 0.6.
 構成単位(b)と構成単位(c)とのモル比(構成単位(b):構成単位(c))は、貯蔵安定性及び硬化物としたときの接触角及び/又は屈折率の観点から、0.1:0.9~0.9:0.1であることが好ましく、0.2:0.8~0.8:0.2であることがより好ましく、0.3:0.7~0.7:0.3であることがさらに好ましい。 The molar ratio of the structural unit (b) to the structural unit (c) (structural unit (b): structural unit (c)) is determined from the viewpoint of storage stability and contact angle and / or refractive index when cured. , 0.1:0.9 to 0.9:0.1, more preferably 0.2:0.8 to 0.8:0.2, and 0.3:0. More preferably, it is 7-0.7:0.3.
 本発明のシルセスキオキサン誘導体において、構成単位(b)~構成単位(d)の合計(T単位の合計)に占める構成単位(b)及び構成単位(c)の合計のモル比((u+v)/(u+v+w))は、貯蔵安定性及び硬化物としたときの接触角及び/又は屈折率の観点から、0.3~1であることが好ましく、0.5~1であることがより好ましく、0.7~1であることがさらに好ましい。 In the silsesquioxane derivative of the present invention, the molar ratio ((u + v ) / (u + v + w)) is preferably 0.3 to 1, more preferably 0.5 to 1, from the viewpoint of storage stability and contact angle and / or refractive index when cured. It is preferably from 0.7 to 1, more preferably from 0.7 to 1.
(構成単位(d))
 構成単位(d)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備え、Rがケイ素原子に結合しているT単位である。
(Constituent unit (d))
Structural unit (d) is a T unit having 3 O 1/2 (1.5 oxygen atoms) per silicon atom and R 4 bonded to the silicon atom.
 構成単位(d)において、Rは、水素原子、炭素原子数1~20の飽和若しくは不飽和のアルキル基、炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基、炭素原子数6~20のアリール基又は炭素原子数7~20のアラルキル基である。なお、Rにおける各置換基は、その構造の一部が置換されている場合であっても、炭素原子数1~20のフルオロアルキル基には該当しない置換基である。 In structural unit (d), R 4 is a hydrogen atom, a saturated or unsaturated alkyl group having 1 to 20 carbon atoms, a saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, or 6 to It is an aryl group of 20 or an aralkyl group of 7 to 20 carbon atoms. Each substituent in R 4 is a substituent that does not correspond to a fluoroalkyl group having 1 to 20 carbon atoms, even if part of its structure is substituted.
 炭素原子数1~20の飽和若しくは不飽和のアルキル基は、直鎖であってもよく、分岐を有していてもよい。炭素原子数1~20の飽和若しくは不飽和のアルキル基は、炭素原子数1~10の飽和若しくは不飽和のアルキル基であることが好ましく、炭素原子数1~10の飽和アルキル基であることがより好ましい。 A saturated or unsaturated alkyl group having 1 to 20 carbon atoms may be linear or branched. The saturated or unsaturated alkyl group having 1 to 20 carbon atoms is preferably a saturated or unsaturated alkyl group having 1 to 10 carbon atoms, more preferably a saturated alkyl group having 1 to 10 carbon atoms. more preferred.
 炭素原子数1~10の飽和アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及びデシル基等が挙げられる。耐熱性及び硬化物の硬度の観点からは、メチル基又はエチル基が好ましく、メチル基がより好ましい。 Examples of saturated alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. From the viewpoint of heat resistance and hardness of the cured product, a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
 炭素原子数1~10の不飽和アルキル基としては、例えば、ビニル基、2-プロペニル基、エチニル基等が挙げられる。 Examples of unsaturated alkyl groups having 1 to 10 carbon atoms include vinyl groups, 2-propenyl groups, and ethynyl groups.
 炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基は、分岐を有していてもよい。炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基は、炭素原子数4~6の飽和若しくは不飽和のシクロアルキル基であることが好ましい。 A saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms may have a branch. A saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms is preferably a saturated or unsaturated cycloalkyl group having 4 to 6 carbon atoms.
 炭素原子数6~20のアリール基は、炭素原子数6~10のアリール基であることが好ましい。 The aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 10 carbon atoms.
 炭素原子数6~20のアリール基としては、例えば、フェニル基、フェニル基の水素原子の1つ以上が炭素原子数1~10のアルキル基で置換された基、及びナフチル基が挙げられる。耐熱性及び硬化物の硬度の観点からは、フェニル基が好ましい。 Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a group in which one or more hydrogen atoms of the phenyl group are substituted with an alkyl group having 1 to 10 carbon atoms, and a naphthyl group. A phenyl group is preferred from the viewpoint of heat resistance and hardness of the cured product.
 炭素原子数7~20のアラルキル基は、炭素原子数7~10のアラルキル基であることが好ましい。 The aralkyl group having 7 to 20 carbon atoms is preferably an aralkyl group having 7 to 10 carbon atoms.
 炭素原子数7~20のアラルキル基としては、例えば、炭素原子数1~10のアルキル基の水素原子の1つがフェニル基などのアリール基で置換された基等が挙げられる。例えば、ベンジル基及びフェネチル基等が挙げられ、耐熱性及び硬化物の硬度の観点からは、ベンジル基が好ましい。 Examples of the aralkyl group having 7 to 20 carbon atoms include groups in which one hydrogen atom of an alkyl group having 1 to 10 carbon atoms is substituted with an aryl group such as a phenyl group. Examples thereof include benzyl group and phenethyl group, and benzyl group is preferable from the viewpoint of heat resistance and hardness of the cured product.
 Rで表される構造の一部が置換基又はハロゲン原子で置換されている場合、Rとしては、例えば、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-(3-エチルオキセタン-3-イル)メトキシプロピル基、3-ヒドロキシプロピル基、3-アミノプロピル基、3-ジメチルアミノプロピル基、3-ヒドロキシプロピル基、3-アミノプロピル基の塩酸塩、3-ジメチルアミノプロピル基の塩酸塩、p-スチリル基、N-2-(アミノエチル)-3-アミノプロピル基、N-フェニル-3-アミノプロピル基、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピル基の塩酸塩、3-ウレイドプロピル基、3-メルカプトプロピル基、3-イソシアナートプロピル基、3-カルボキシプロピル基及び3-クロロプロピル基が挙げられる。 When part of the structure represented by R 4 is substituted with a substituent or a halogen atom, examples of R 4 include a 3-glycidoxypropyl group and a 2-(3,4-epoxycyclohexyl)ethyl group. , 3-(3-ethyloxetan-3-yl)methoxypropyl group, 3-hydroxypropyl group, 3-aminopropyl group, 3-dimethylaminopropyl group, 3-hydroxypropyl group, 3-aminopropyl hydrochloride , hydrochloride of 3-dimethylaminopropyl group, p-styryl group, N-2-(aminoethyl)-3-aminopropyl group, N-phenyl-3-aminopropyl group, N-(vinylbenzyl)-2- Hydrochloride of aminoethyl-3-aminopropyl group, 3-ureidopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, 3-carboxypropyl group and 3-chloropropyl group.
 本発明のシルセスキオキサン誘導体における構成単位(d)の割合は特に限定されない。例えば、全構成単位に占める構成単位(d)のモル比(w/(t+u+v+w+x+y+z))は、硬化物としたときの硬度の観点から、0.1以下であることが好ましく、0.05以下であることがより好ましく、0であることがさらに好ましい。 The ratio of the structural unit (d) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (w / (t + u + v + w + x + y + z)) of the structural unit (d) to the total structural units is preferably 0.1 or less, and 0.05 or less, from the viewpoint of the hardness of the cured product. It is more preferably 0, and more preferably 0.
(構成単位(e))
 構成単位(e)は、ケイ素原子1個に対してO1/2を2個(酸素原子として1個)備え、2つのRがケイ素原子に結合しているD単位である。なお、D単位とは、ケイ素原子1個に対してO1/2を2個有する単位を意味する。
(Constituent unit (e))
Structural unit (e) is a D unit having two O 1/2 per silicon atom (one oxygen atom) and two R 5 bonds to the silicon atom. The D unit means a unit having two O 1/2 atoms per one silicon atom.
 構成単位(e)において、Rは、水素原子、炭素原子数1~20の飽和若しくは不飽和のアルキル基、炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基、炭素原子数6~20のアリール基又は炭素原子数7~20のアラルキル基である。構成単位(d)において、複数存在するRは互いに同一でも異なっていてもよい。Rの好ましい態様は、構成単位(d)におけるRと同様である。 In structural unit (e), R 5 is a hydrogen atom, a saturated or unsaturated alkyl group having 1 to 20 carbon atoms, a saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, or 6 to It is an aryl group of 20 or an aralkyl group of 7 to 20 carbon atoms. In the structural unit (d), multiple R 5 may be the same or different. Preferred embodiments of R 5 are the same as R 4 in structural unit (d).
 本発明のシルセスキオキサン誘導体における構成単位(e)の割合は特に限定されない。例えば、全構成単位に占める構成単位(e)のモル比(x/(t+u+v+w+x+y+z))は、硬化物としたときの硬度の観点から、0.1以下であることが好ましく、0.05以下であることがより好ましく、0であることがさらに好ましい。 The ratio of the structural unit (e) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (x/(t + u + v + w + x + y + z)) of the structural unit (e) to the total structural units is preferably 0.1 or less, and 0.05 or less, from the viewpoint of the hardness of the cured product. It is more preferably 0, and more preferably 0.
(構成単位(f))
 構成単位(f)は、ケイ素原子1個に対してO1/2を1個(酸素原子として0.5個)備え、1つのR及び2つのRがケイ素原子に結合しているM単位である。なお、M単位とは、ケイ素原子1個に対してO1/2を1個有する単位を意味する。
(Constituent unit (f))
Structural unit (f) has one O 1/2 per silicon atom (0.5 oxygen atoms), one R 6 and two R 5 are bonded to the silicon atom M Units. The M unit means a unit having one O 1/2 per one silicon atom.
 構成単位(f)において、Rは、エチレン性不飽和結合及び炭素炭素三重結合の少なくとも一方を有する炭素原子数2~12の有機基である。 In structural unit (f), R 6 is an organic group having 2 to 12 carbon atoms and having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond.
 エチレン性不飽和結合を有する炭素原子数2~12の有機基としては、例えば、ビニル基、オルトスチリル基、メタスチリル基、パラスチリル基、アクリロイルオキシメチル基、メタクリロイルオキシメチル基、2-アクリロイルオキシエチル基、2-メタクリロイルオキシエチル基、3-アクリロイルオキシプロピル基、3-メタクリロイルオキシプロピル基、8-アクリロイルオキシオクチル基、8-メタクリロイルオキシオクチル基、1-プロペニル基、2-プロペニル基、1-メチルエテニル基、1-ブテニル基、3-ブテニル基、1-ペンテニル基、4-ペンテニル基、3-メチル-1-ブテニル基、1-フェニルエテニル基、2-フェニルエテニル基、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ブチニル基、1-ペンチニル基、4-ペンチニル基、3-メチル-1-ブチニル基及びフェニルブチニル基が挙げられる。硬化物としたときの硬度の観点から、ビニル基、2-プロペニル基、オルトスチリル基、メタスチリル基又はパラスチリル基が好ましく、ビニル基がより好ましい。 Examples of the organic group having 2 to 12 carbon atoms and having an ethylenically unsaturated bond include a vinyl group, an orthostyryl group, a methstyryl group, a parastyryl group, an acryloyloxymethyl group, a methacryloyloxymethyl group, and a 2-acryloyloxyethyl group. , 2-methacryloyloxyethyl group, 3-acryloyloxypropyl group, 3-methacryloyloxypropyl group, 8-acryloyloxyoctyl group, 8-methacryloyloxyoctyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group , 1-butenyl group, 3-butenyl group, 1-pentenyl group, 4-pentenyl group, 3-methyl-1-butenyl group, 1-phenylethenyl group, 2-phenylethenyl group, ethynyl group, 1-propynyl 2-propynyl, 1-butynyl, 3-butynyl, 1-pentynyl, 4-pentynyl, 3-methyl-1-butynyl and phenylbutynyl groups. A vinyl group, a 2-propenyl group, an orthostyryl group, a metastyryl group or a parastyryl group is preferred, and a vinyl group is more preferred, from the viewpoint of hardness when cured.
 構成単位(f)において、Rは、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基又は炭素原子数7~10のアラルキル基である。構成単位(f)において、複数存在するRは互いに同一でも異なっていてもよい。 In structural unit (f), R 7 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms. In the structural unit (f), multiple R 7 may be the same or different.
 炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及びデシル基等が挙げられる。耐熱性及び硬化物の硬度の観点からは、メチル基又はエチル基が好ましく、メチル基がより好ましい。 Examples of alkyl groups having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. From the viewpoint of heat resistance and hardness of the cured product, a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
 炭素原子数6~10のアリール基としては、例えば、フェニル基、フェニル基の水素原子の1つ以上が炭素原子数1~4のアルキル基で置換された基、及びナフチル基が挙げられる。耐熱性及び硬化物の硬度の観点からは、フェニル基が好ましい。 Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a group in which one or more hydrogen atoms of the phenyl group are substituted with an alkyl group having 1 to 4 carbon atoms, and a naphthyl group. A phenyl group is preferred from the viewpoint of heat resistance and hardness of the cured product.
 炭素原子数7~10のアラルキル基としては、例えば、炭素原子数1~4のアルキル基の水素原子の1つがフェニル基などのアリール基で置換された基等が挙げられる。例えば、ベンジル基及びフェネチル基等が挙げられ、耐熱性及び硬化物の硬度の観点からは、ベンジル基が好ましい。 Examples of the aralkyl group having 7 to 10 carbon atoms include groups in which one hydrogen atom of an alkyl group having 1 to 4 carbon atoms is substituted with an aryl group such as a phenyl group. Examples thereof include benzyl group and phenethyl group, and benzyl group is preferable from the viewpoint of heat resistance and hardness of the cured product.
 本発明のシルセスキオキサン誘導体における構成単位(f)の割合は特に限定されない。例えば、全構成単位に占める構成単位(f)のモル比(y/(t+u+v+w+x+y+z))は、粘度及び硬化物としたときの密着性の観点から、0.01~0.5であることが好ましく、0.02~0.4であることがより好ましく、0.03~0.35であることがさらに好ましく、0.1~0.35であることが特に好ましい。 The proportion of the structural unit (f) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (y/(t+u+v+w+x+y+z)) of the structural unit (f) to all structural units is preferably 0.01 to 0.5 from the viewpoint of viscosity and adhesion when cured. , more preferably 0.02 to 0.4, even more preferably 0.03 to 0.35, and particularly preferably 0.1 to 0.35.
 本発明のシルセスキオキサン誘導体において、全構成単位に占める構成単位(b)、構成単位(c)及び構成単位(f)の合計のモル比((u+v+y)/(t+u+v+w+x+y+z))は、硬化物としたときの密着性及び屈折率の観点から、0.5~1であることが好ましく、0.6~1であることがより好ましく、0.7~1であることがさらに好ましい。 In the silsesquioxane derivative of the present invention, the total molar ratio ((u + v + y) / (t + u + v + w + x + y + z)) of the structural unit (b), the structural unit (c) and the structural unit (f) occupying all structural units is the cured product From the viewpoint of adhesion and refractive index, it is preferably from 0.5 to 1, more preferably from 0.6 to 1, and even more preferably from 0.7 to 1.
 構成単位(b)と構成単位(f)とのモル比(構成単位(b):構成単位(f))は、UV硬化性及び硬化物としたときの密着性の観点から、10:1~1:2であることが好ましく、5:1~1:2であることがより好ましい。 The molar ratio between the structural unit (b) and the structural unit (f) (structural unit (b): structural unit (f)) is from 10:1 to 10:1 from the viewpoint of UV curability and adhesion when cured. It is preferably 1:2, more preferably 5:1 to 1:2.
(構成単位(g))
 構成単位(g)は、ケイ素原子1個に対してO1/2を1個(酸素原子として0.5個)備え、3つのRがケイ素原子に結合しているM単位である。
(Constituent unit (g))
Structural unit (g) is an M unit having one O 1/2 (0.5 oxygen atom) per silicon atom and three R 8 bonds to the silicon atom.
 構成単位(g)において、Rは、炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基又は炭素原子数7~10のアラルキル基である。構成単位(g)において、複数存在するRは互いに同一でも異なっていてもよい。Rの好ましい態様は、構成単位(f)におけるRと同様である。なお、Rにおける各置換基は、その構造の一部が置換されている場合であっても、エチレン性不飽和結合を有する炭素原子数2~12の有機基には該当しない置換基である。 In structural unit (g), R 8 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms. In the structural unit (g), multiple R 8 may be the same or different. Preferred embodiments of R 8 are the same as R 7 in structural unit (f). Each substituent in R 8 is a substituent that does not correspond to an organic group having 2 to 12 carbon atoms and having an ethylenically unsaturated bond, even if the structure is partially substituted. .
 本発明のシルセスキオキサン誘導体における構成単位(g)の割合は特に限定されない。例えば、全構成単位に占める構成単位(g)のモル比(z/(t+u+v+w+x+y+z))は、硬化物としたときの硬度の観点から、0.1以下であることが好ましく、0.05以下であることがより好ましく、0であることがさらに好ましい。 The proportion of the structural unit (g) in the silsesquioxane derivative of the present invention is not particularly limited. For example, the molar ratio (z / (t + u + v + w + x + y + z)) of the structural unit (g) to all structural units is preferably 0.1 or less, and 0.05 or less, from the viewpoint of the hardness of the cured product. It is more preferably 0, and more preferably 0.
(その他の構成単位(h))
 本発明のシルセスキオキサン誘導体は、さらにSiを含まない構成単位として(R1/2)を含んでいてもよい(以下、構成単位(h)とも称する)。
 ここで、Rは水素原子又は炭素原子数1~6のアルキル基である。炭素原子数1~6のアルキル基は、脂肪族基及び脂環族基のいずれでもよく、又、直鎖状及び分岐状のいずれでもよい。炭素原子数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基が挙げられる。
(Other structural units (h))
The silsesquioxane derivative of the present invention may further contain (R 9 O 1/2 ) as a structural unit not containing Si (hereinafter also referred to as structural unit (h)).
Here, R 9 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. The alkyl group having 1 to 6 carbon atoms may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of alkyl groups having 1 to 6 carbon atoms include methyl, ethyl, propyl, butyl, pentyl and hexyl groups.
 構成単位(h)は、後述するケイ素化合物に含まれる加水分解性基であるアルコキシ基、又は、反応溶媒に含まれるアルコールが、ケイ素化合物の加水分解性基と置換して生成したアルコキシ基であり、加水分解又は重縮合せずに分子内に残存したものであってもよく、あるいは、加水分解後、重縮合せずに分子内に残存した水酸基であってもよい。 Structural unit (h) is an alkoxy group which is a hydrolyzable group contained in the silicon compound described later, or an alkoxy group formed by substituting the hydrolyzable group of the silicon compound with an alcohol contained in the reaction solvent. It may be a hydroxyl group that remains in the molecule without hydrolysis or polycondensation, or a hydroxyl group that remains in the molecule without polycondensation after hydrolysis.
 式(1)中、t、w、x及びzが0であることが好ましい。式(1)中、0.01≦y/(u+v)≦1であることが好ましく、0.1≦y/(u+v)≦0.8であることがより好ましく、0.3≦y/(u+v)≦0.6であることがさらに好ましい。 In formula (1), t, w, x and z are preferably 0. In formula (1), 0.01 ≤ y/(u + v) ≤ 1 is preferred, 0.1 ≤ y/(u + v) ≤ 0.8 is more preferred, and 0.3 ≤ y/( It is more preferable that u+v)≦0.6.
(シルセスキオキサン誘導体の重量平均分子量)
 本発明のシルセスキオキサン誘導体の重量平均分子量(以下、「Mw」とも称する。)は、特に限定されず、例えば、300~30,000であってもよく、500~15,000であってもよく、700~10,000であってもよく、1,000~5,000であってもよい。
 なお、本発明におけるMwは、GPC(ゲル浸透クロマトグラフィー)により測定した分子量を、標準物質としてポリスチレンを使用して換算した値を意味する。Mwの測定条件としては、例えば、後述の〔実施例〕における測定条件を用いることができる。
(Weight average molecular weight of silsesquioxane derivative)
The weight average molecular weight (hereinafter also referred to as "Mw") of the silsesquioxane derivative of the present invention is not particularly limited, and may be, for example, 300 to 30,000, or 500 to 15,000. may be from 700 to 10,000, or from 1,000 to 5,000.
In addition, Mw in the present invention means a value obtained by converting the molecular weight measured by GPC (gel permeation chromatography) using polystyrene as a standard substance. As the measurement conditions for Mw, for example, the measurement conditions in [Examples] described later can be used.
(シルセスキオキサン誘導体の粘度)
 本発明のシルセスキオキサン誘導体では、25℃における粘度(加速試験を行っていないときの粘度)は、10mPa・s~7,000mPa・sであることが好ましく、100mPa・s~6,000mPa・sであることがより好ましく、200mP・s~5,000mPa・sであることがさらに好ましい。
 なお、本発明において25℃における粘度とは、E型粘度計(コーンプレート型粘度計。例えば、東機産業(株)TVE22H形粘度計)を使用して測定した値を意味する。
(Viscosity of silsesquioxane derivative)
The silsesquioxane derivative of the present invention preferably has a viscosity at 25° C. (viscosity when no accelerated test is performed) of 10 mPa·s to 7,000 mPa·s, more preferably 100 mPa·s to 6,000 mPa·s. s, more preferably 200 mPa·s to 5,000 mPa·s.
In the present invention, the viscosity at 25° C. means a value measured using an E-type viscometer (cone and plate type viscometer; for example, Toki Sangyo Co., Ltd. TVE22H-type viscometer).
(シルセスキオキサン誘導体の製造方法)
 本発明のシルセスキオキサン誘導体は、公知の方法で製造することができる。シルセスキオキサン誘導体の製造方法は、国際公開2013/031798号パンフレット等においてポリシロキサンの製造方法として詳細に開示されている。
(Method for producing silsesquioxane derivative)
The silsesquioxane derivative of the present invention can be produced by known methods. A method for producing a silsesquioxane derivative is disclosed in detail as a method for producing polysiloxane in WO 2013/031798 pamphlet and the like.
 本発明のシルセスキオキサン誘導体は、例えば、以下の方法で製造することができる。
 本発明のシルセスキオキサン誘導体の製造方法は、適当な反応溶媒中で、縮合により、上記式(1)中の構成単位を与えるケイ素化合物の加水分解及び重縮合反応を行う縮合工程を備える。縮合工程においては、例えば、構成単位(b)(T単位)を形成するシロキサン結合生成基を3個有するケイ素化合物(以下、「ケイ素化合物1」とも称する。)と、構成単位(c)(T単位)を形成するシロキサン結合生成基を3個有するケイ素化合物(以下、「ケイ素化合物2」とも称する。)と、シロキサン結合生成基を1個有する構成単位(f)(M単位)を形成するケイ素化合物(以下、「ケイ素化合物3」とも称する。)と、を少なくとも用いる。また、必要に応じて、構成単位(a)、構成単位(d)、構成単位(e)又は構成単位(g)を形成するその他のケイ素化合物(以下、それぞれ「ケイ素化合物4」「ケイ素化合物5」「ケイ素化合物6」又は「ケイ素化合物7」とも称する。)を使用してもよい。
The silsesquioxane derivative of the present invention can be produced, for example, by the following method.
The method for producing a silsesquioxane derivative of the present invention comprises a condensation step of hydrolyzing and polycondensing the silicon compound to give the structural unit of formula (1) by condensation in a suitable reaction solvent. In the condensation step, for example, a silicon compound having three siloxane bond forming groups forming the structural unit (b) (T unit) (hereinafter also referred to as “silicon compound 1”) and the structural unit (c) (T a silicon compound (hereinafter also referred to as "silicon compound 2") having three siloxane bond-forming groups forming a unit) and a silicon forming a structural unit (f) (M unit) having one siloxane bond-forming group A compound (hereinafter also referred to as “silicon compound 3”) is used at least. In addition, if necessary, other silicon compounds forming the structural unit (a), the structural unit (d), the structural unit (e) or the structural unit (g) (hereinafter referred to as "silicon compound 4", "silicon compound 5 (also referred to as "silicon compound 6" or "silicon compound 7").
 縮合工程においては、ケイ素化合物1~3及び必要に応じてその他のケイ素化合物の加水分解及び重縮合反応を行ってもよい。あるいは、ケイ素化合物1~3の一部及び必要に応じてその他のケイ素化合物の加水分解及び重縮合反応を行って中間生成物であるシルセスキオキサン誘導体を得た後、得られた中間生成物と、ケイ素化合物1~3の残り等との加水分解及び重縮合反応をさらに行ってもよい。 In the condensation step, silicon compounds 1 to 3 and, if necessary, other silicon compounds may be hydrolyzed and polycondensed. Alternatively, a part of the silicon compounds 1 to 3 and, if necessary, other silicon compounds are hydrolyzed and polycondensed to obtain an intermediate silsesquioxane derivative, and then the obtained intermediate product may be further subjected to hydrolysis and polycondensation reactions with the rest of the silicon compounds 1 to 3 and the like.
 前述のように中間生成物を得る場合、ケイ素化合物1とケイ素化合物2と必要に応じてその他のケイ素化合物との加水分解及び重縮合反応を行った後、得られる中間生成物とケイ素化合物3との加水分解及び重縮合反応をさらに行ってもよい。これにより、末端部分がケイ素化合物3に由来する構成単位(f)で封止されたシルセスキオキサン誘導体を好適に合成することができ、シルセスキオキサン誘導体の粘度上昇が抑制され、貯蔵安定性が良好となる。 When the intermediate product is obtained as described above, the silicon compound 1, the silicon compound 2 and, if necessary, other silicon compounds are hydrolyzed and polycondensed, and then the obtained intermediate product and the silicon compound 3 are combined. may be further subjected to hydrolysis and polycondensation reactions. As a result, it is possible to suitably synthesize a silsesquioxane derivative whose terminal portion is blocked with the structural unit (f) derived from the silicon compound 3, suppresses the increase in viscosity of the silsesquioxane derivative, and is stable in storage. good properties.
 本発明のシルセスキオキサン誘導体の製造方法は、ケイ素化合物を、反応溶媒の存在下に、加水分解及び重縮合反応させた後に、反応液中の反応溶媒、副生物、残留モノマー及び水等を留去させる留去工程を備えることが好ましい。 In the method for producing a silsesquioxane derivative of the present invention, a silicon compound is hydrolyzed and polycondensed in the presence of a reaction solvent, and then the reaction solvent, by-products, residual monomers, water, etc. in the reaction solution are removed. It is preferable to provide a distillation step for distilling off.
 ケイ素化合物1としては、例えば、(3-アクリロイルオキシプロピル)トリメトキシシラン、(3-アクリロイルオキシプロピル)トリエトキシシラン、(8-アクリロイルオキシオクチル)トリメトキシシラン、(3-メタクリロイルオキシプロピル)トリメトキシシラン、(3-メタクリロイルオキシプロピル)トリエトキシシラン、(8-メタクリロイルオキシオクチル)トリメトキシシラン、(3-アクリロイルオキシプロピル)トリクロロシシラン、(3-メタクリロイルオキシプロピル)トリクロロシシランが挙げられる。 Examples of the silicon compound 1 include (3-acryloyloxypropyl)trimethoxysilane, (3-acryloyloxypropyl)triethoxysilane, (8-acryloyloxyoctyl)trimethoxysilane, (3-methacryloyloxypropyl)trimethoxysilane. silane, (3-methacryloyloxypropyl)triethoxysilane, (8-methacryloyloxyoctyl)trimethoxysilane, (3-acryloyloxypropyl)trichlorosilane, (3-methacryloyloxypropyl)trichlorosilane.
 ケイ素化合物2としては、例えば、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、トリメトキシ-1H,1H,2H,2H-ノナフルオロ-n-ヘキシルシラン、トリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン及びトリメトキシ-1H,1H,2H,2H-ヘプタデカフルオロ-n-デシルシランが挙げられる。 Examples of the silicon compound 2 include trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy-1H,1H,2H,2H-nonafluoro-n-hexylsilane, triethoxy-1H,1H,2H,2H-tri Decafluoro-n-octylsilane and trimethoxy-1H,1H,2H,2H-heptadecafluoro-n-decylsilane.
 ケイ素化合物3としては、加水分解により2つの構成単位(f)を与える1,3-ジビニルテトラメチルジシロキサン、1,3-ビス(p-スチリル)テトラメチルジシロキサン、1,3-ビス(3-アクリロイルオキシプロピル)テトラメチルジシロキサン、1,3-ビス(3-メタクリロイルオキシプロピル)テトラメチルジシロキサン等の他、メトキシジメチルビニルシラン、エトキシジメチルビニルシラン、クロロジメチルビニルシラン、ジメチルビニルシラノール、(3-アクリロイルオキシプロピル)ジメチルメトキシシラン、(3-メタクリロイルオキシプロピル)ジメチルメトキシシラン、p-スチリルジメチルメトキシシラン、エチニルジメチルメトキシシラン等が挙げられる。 Examples of the silicon compound 3 include 1,3-divinyltetramethyldisiloxane, 1,3-bis(p-styryl)tetramethyldisiloxane, 1,3-bis(3 -acryloyloxypropyl)tetramethyldisiloxane, 1,3-bis(3-methacryloyloxypropyl)tetramethyldisiloxane, etc., methoxydimethylvinylsilane, ethoxydimethylvinylsilane, chlorodimethylvinylsilane, dimethylvinylsilanol, (3-acryloyl oxypropyl)dimethylmethoxysilane, (3-methacryloyloxypropyl)dimethylmethoxysilane, p-styryldimethylmethoxysilane, ethynyldimethylmethoxysilane and the like.
 ケイ素化合物4としては、例えば、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。 Examples of the silicon compound 4 include tetramethoxysilane, tetraethoxysilane, and the like.
 ケイ素化合物5としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ベンジルトリメトキシシラン、シクロヘキシルトリメトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、p-スチリルトリメトキシシラン、エチニルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルトリメトキシシラン、3-エチル-3-[{3-(トリメトキシシリル)プロポキシ}メチル]オキセタン、3-エチル-3-[{3-(トリエトキシシリル)プロポキシ}メチル]オキセタンが挙げられる。 Silicon compound 5 includes, for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, benzyltrimethoxysilane, cyclohexyltri methoxysilane, vinyltrimethoxysilane, allyltrimethoxysilane, p-styryltrimethoxysilane, ethynyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3 -aminopropyltrimethoxysilane, hydrochloride of N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltrialkoxysilane, 3-isocyanatopropyltriethoxysilane, tris-(tri methoxysilylpropyl)isocyanurate, 3-mercaptopropyltrimethoxysilane, 3-ethyl-3-[{3-(trimethoxysilyl)propoxy}methyl]oxetane, 3-ethyl-3-[{3-(triethoxysilyl ) propoxy}methyl]oxetane.
 ケイ素化合物6としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジジエトキシシラン、プロピルメチルジメトキシシラン、オクチルメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジエトキシシラン、ベンジルメチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ビニルメチルジメトキシシラン、アリルメチルジメトキシシラン、p-スチリルメチルジメトキシシラン、エチニルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルメチルジメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシシランの塩酸塩、3-ウレイドプロピルメチルジアルコキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、(3-アクリロキシプロピル)メチルジメトキシシラン、(3-メタクリロキシプロピル)メチルジエトキシシラン等が挙げられる。 Examples of the silicon compound 6 include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldidiethoxysilane, propylmethyldimethoxysilane, octylmethyldimethoxysilane, phenylmethyldimethoxysilane, diphenyldiethoxysilane, benzylmethyldimethoxysilane, cyclohexylmethyldimethoxysilane, vinylmethyldimethoxysilane, allylmethyldimethoxysilane, p-styrylmethyldimethoxysilane, ethynylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, N-2 -(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropylmethyldimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyl hydrochloride of methyldimethoxysilane, 3-ureidopropylmethyldialkoxysilane, 3-isocyanatopropylmethyldiethoxysilane, (3-acryloxypropyl)methyldimethoxysilane, (3-methacryloxypropyl)methyldiethoxysilane and the like. be done.
 ケイ素化合物7としては、例えば、ヘキサメチルジシロキサン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン、ジメチルフェニルメトキシ
シラン等が挙げられる。
Examples of the silicon compound 7 include hexamethyldisiloxane, trimethylmethoxysilane, trimethylethoxysilane, trimethylchlorosilane, dimethylphenylmethoxysilane, and the like.
 縮合工程においては、反応溶媒としてアルコールを用いてもよい。アルコールは、一般式R-OHで表される、狭義のアルコールであり、アルコール性水酸基の他には官能基を有さない化合物である。
 アルコールとしては特に限定されず、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、2-メチル-2-ペンタノール、3-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-3-ペンタノール、2-エチル-2-ブタノール、2,3-ジメチル-2-ブタノール及びシクロヘキサノール等が挙げられる。これらの中でも、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、3-メチル-2-ペンタノール及びシクロヘキサノール等の第2級アルコールが好ましい。
 縮合工程においては、これらのアルコールを1種又は2種以上組み合わせて用いてもよい。
Alcohol may be used as a reaction solvent in the condensation step. Alcohol is a narrowly defined alcohol represented by the general formula R--OH, and is a compound having no functional group other than an alcoholic hydroxyl group.
Alcohol is not particularly limited, and examples include methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol, 3-methyl-2- butanol, cyclopentanol, 2-hexanol, 3-hexanol, 2-methyl-2-pentanol, 3-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-3-pentanol, 2-ethyl-2-butanol, 2,3-dimethyl-2-butanol, cyclohexanol and the like. Among these, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 3-methyl-2-pentanol and secondary alcohols such as cyclohexanol are preferred.
In the condensation step, these alcohols may be used singly or in combination of two or more.
 縮合工程で用いる反応溶媒は、アルコールのみであってよいし、更に、少なくとも1種類の副溶媒との混合溶媒としてもよい。副溶媒は、極性溶媒及び非極性溶媒のいずれでもよいし、両者の組み合わせでもよい。 The reaction solvent used in the condensation step may be alcohol alone, or may be a mixed solvent with at least one sub-solvent. The co-solvent may be either a polar solvent, a non-polar solvent, or a combination of both.
 縮合工程における加水分解及び重縮合反応は、水の存在下にて進行する。
 ケイ素化合物に含まれる加水分解性基を加水分解させるために用いられる水の量は、加水分解性基の物質量(モル)に対して好ましくは0.5~5倍モル、より好ましくは1~2倍モルである。
 又、ケイ素化合物の加水分解及び重縮合反応は、無触媒で行ってもよいし、触媒を使用して行ってもよい。触媒を用いる場合は、硫酸、硝酸、塩酸及びリン酸等の無機酸;ギ酸、酢酸、シュウ酸及びパラトルエンスルホン酸等の有機酸に例示される酸触媒、アンモニア、水酸化テトラメチルアンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム及び炭酸カリウム等の塩基触媒などが好ましく用いられ、酸触媒がより好ましく用いられる。
 触媒の使用量は、ケイ素化合物に含まれるケイ素原子の合計量(モル)に対して、0.01モル%~20モル%に相当する量であることが好ましく、0.1モル%~10モル%に相当する量であることがより好ましい。
Hydrolysis and polycondensation reactions in the condensation step proceed in the presence of water.
The amount of water used to hydrolyze the hydrolyzable group contained in the silicon compound is preferably 0.5 to 5 times the amount (mol) of the substance of the hydrolyzable group, more preferably 1 to 2 times the molar amount.
Moreover, the hydrolysis and polycondensation reaction of the silicon compound may be carried out without a catalyst or with a catalyst. When using a catalyst, inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; acid catalysts exemplified by organic acids such as formic acid, acetic acid, oxalic acid and p-toluenesulfonic acid, ammonia, tetramethylammonium hydroxide, water Base catalysts such as sodium oxide, potassium hydroxide, sodium carbonate and potassium carbonate are preferably used, and acid catalysts are more preferably used.
The amount of the catalyst used is preferably an amount corresponding to 0.01 mol% to 20 mol%, and preferably 0.1 mol% to 10 mol, relative to the total amount (mol) of silicon atoms contained in the silicon compound. % is more preferable.
 縮合工程における加水分解及び重縮合反応の終了は、各種公報等に記載される方法で適宜検出することができる。なお、本発明のシルセスキオキサン誘導体の製造の縮合工程においては、反応系に助剤を添加することができる。 The completion of hydrolysis and polycondensation reaction in the condensation step can be detected as appropriate by methods described in various publications. In addition, in the condensation step for producing the silsesquioxane derivative of the present invention, an auxiliary agent can be added to the reaction system.
 本発明のシルセスキオキサン誘導体の製造における縮合工程後、前述の留去工程を備えることにより、生成した本発明のシルセスキオキサン誘導体の安定性を向上させることができる。留去は、常圧又は減圧下で行うことができ、常温下又は加熱下で行うことができ、冷却下で行うこともできる。 By providing the aforementioned distillation step after the condensation step in the production of the silsesquioxane derivative of the present invention, the stability of the produced silsesquioxane derivative of the present invention can be improved. Distillation can be carried out under normal pressure or reduced pressure, can be carried out at room temperature or under heating, and can also be carried out under cooling.
 シルセスキオキサン誘導体の製造方法は、留去工程の前に、触媒を中和する中和工程を備えることができる。又、中和により生成した塩を水洗などにより除去する工程を備えることもできる。 The method for producing a silsesquioxane derivative can include a neutralization step for neutralizing the catalyst before the distillation step. A step of removing salts generated by neutralization by washing with water or the like can also be provided.
 又、式(1)で表されるシルセスキオキサン誘導体は、原料として製造に使用したケイ素化合物由来の側鎖官能基のうち、オキセタニル基又はエポキシ基に酸等が付加して開環した基を含んでいてもよく、又、(メタ)アクリロイル基を有する有機基が分解して生成したヒドロキシアルキル基を含んでいてもよく、不飽和炭化水素基等に酸等が付加した基を含んでいてもよい。その具体例としては、例えば、式(1)の一部に下記式(A)で表される構造及び/又は式(B)で表される構造が含まれるものが挙げられる。その含有割合としては、原料であるケイ素化合物に由来する、元のオキセタニル基又はエポキシ基を有する有機基、元の(メタ)アクリロイル基を有する有機基、あるいは元の不飽和炭化水素基を有する有機基に相当する量に対して50モル%以下であれば、本発明を実施するうえで差し支えなく、30モル%以下であることが好ましく、10モル%以下であることがより好ましい。式(A)及び式(B)では、いずれもT単位を例示したが、同様のD単位、M単位等であってもよい。 In addition, the silsesquioxane derivative represented by formula (1) is a group obtained by adding an acid or the like to an oxetanyl group or an epoxy group to open the ring, among the side chain functional groups derived from the silicon compound used in the production as a raw material. or may contain a hydroxyalkyl group formed by decomposition of an organic group having a (meth)acryloyl group, or a group obtained by adding an acid or the like to an unsaturated hydrocarbon group or the like. You can Specific examples thereof include those in which a part of formula (1) includes a structure represented by formula (A) and/or a structure represented by formula (B) below. As the content ratio, the original organic group having an oxetanyl group or an epoxy group, the original organic group having a (meth)acryloyl group, or the original unsaturated hydrocarbon group derived from the silicon compound as a raw material. As long as it is 50 mol % or less with respect to the amount corresponding to the group, there is no problem in carrying out the present invention, and it is preferably 30 mol % or less, more preferably 10 mol % or less. In formulas (A) and (B), the T unit is exemplified, but the same D unit, M unit, etc. may be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[硬化性組成物]
 本発明の硬化性組成物は、前述の本発明のシルセスキオキサン誘導体と重合開始剤とを含む。
 本発明の硬化性組成物は、必要に応じて種々の成分(以下、「その他の成分」とも称する)を含んでいてもよい。
[Curable composition]
The curable composition of the present invention contains the silsesquioxane derivative of the present invention described above and a polymerization initiator.
The curable composition of the present invention may contain various components (hereinafter also referred to as "other components") as necessary.
(重合開始剤)
 重合開始剤としては、特に限定されず、例えば、光重合開始剤及び熱重合開始剤が挙げられる。光重合開始剤としては、例えば、光ラジカル重合開始剤が挙げられる。
 熱重合開始剤としては、例えば、熱ラジカル重合開始剤が挙げられる。
 光重合開始剤及び熱重合開始剤としては、公知の化合物を用いてもよい。
(Polymerization initiator)
The polymerization initiator is not particularly limited, and examples thereof include photopolymerization initiators and thermal polymerization initiators. Photopolymerization initiators include, for example, radical photopolymerization initiators.
Thermal polymerization initiators include, for example, thermal radical polymerization initiators.
A known compound may be used as the photopolymerization initiator and the thermal polymerization initiator.
 光ラジカル重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ジエトキシアセトフェノン、オリゴ〔2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパノン〕及び2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル〕フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン系化合物;ベンゾフェノン、4-フェニルベンゾフェノン、2,4,6-トリメチルベンゾフェノン及び4-ベンゾイル-4’-メチルジフェニルスルファイド等のベンゾフェノン系化合物;メチルベンゾイルフォルメート、オキシフェニル酢酸2-〔2-オキソ-2-フェニルアセトキシエトキシ〕エチルエステル及びオキシフェニル酢酸2-〔2-ヒドロキシエトキシ〕エチルエステル等のα-ケトエステル系化合物;2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のフォスフィンオキサイド系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル及びベンゾインイソブチルエーテル等のベンゾイン系化合物;チタノセン系化合物;1-(4-(4-ベンゾイルフェニルスルファニル)フェニル)-2-メチル-2-(4-メチルフェニルスルフィニル)プロパン-1-オン等のアセトフェノン/ベンゾフェノンハイブリッド系光開始剤;1-(4-フェニルチオフェニル)-2-(O-ベンゾイルオキシム)-1,2-オクタンジオン等のオキシムエステル系光重合開始剤;並びにカンファーキノン等が挙げられる。これらは1種のみ用いてもよく、2種以上を併用することもできる。 Photoradical polymerization initiators include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1 -[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, diethoxyacetophenone, oligo[2-hydroxy-2-methyl-1-[4-(1 -methylvinyl)phenyl]propanone] and acetophenones such as 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)benzyl]phenyl}-2-methyl-propan-1-one Compound; benzophenone compounds such as benzophenone, 4-phenylbenzophenone, 2,4,6-trimethylbenzophenone and 4-benzoyl-4'-methyldiphenylsulfide; methylbenzoyl formate, oxyphenylacetic acid 2-[2-oxo- α-Ketoester compounds such as 2-phenylacetoxyethoxy]ethyl ester and oxyphenylacetic acid 2-[2-hydroxyethoxy]ethyl ester; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6 Phosphine oxide compounds such as -trimethylbenzoyl)phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl Benzoin compounds such as ether and benzoin isobutyl ether; titanocene compounds; 1-(4-(4-benzoylphenylsulfanyl)phenyl)-2-methyl-2-(4-methylphenylsulfinyl)propan-1-one Acetophenone/benzophenone hybrid photoinitiators; oxime ester photopolymerization initiators such as 1-(4-phenylthiophenyl)-2-(O-benzoyloxime)-1,2-octanedione; and camphorquinone. be done. These may be used alone or in combination of two or more.
 熱ラジカル重合開始剤に特に制限はなく、例えば、過酸化物及びアゾ系開始剤が挙げられる。 The thermal radical polymerization initiator is not particularly limited, and examples include peroxides and azo initiators.
 過酸化物としては、過酸化水素;過硫酸ナトリウム、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物;1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
Examples of peroxides include hydrogen peroxide; inorganic peroxides such as sodium persulfate, ammonium persulfate and potassium persulfate; 1,1-bis(t-butylperoxy) 2-methylcyclohexane, 1,1-bis( t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)-3,3,5-trimethyl cyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(4,4-di-butylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy)cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2, 5-di(m-toluoylperoxy)hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexylmonocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5- Di(benzoylperoxy)hexane, t-butylperoxyacetate, 2,2-bis(t-butylperoxy)butane, t-butylperoxybenzoate, n-butyl-4,4-bis(t-butylperoxy) oxy)valerate, di-t-butylperoxyisophthalate, α,α'-bis(t-butylperoxy)diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butyl peroxy)hexane, t-butylcumyl peroxide, di-t-butylperoxide, p-menthane hydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, diisopropyl Organic peroxides such as benzene hydroperoxide, t-butyltrimethylsilyl peroxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, and t-butyl hydroperoxide things are mentioned.
These may be used alone or in combination of two or more.
 アゾ系開始剤としては、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、アゾジ-t-オクタン、アゾジ-t-ブタン等のアゾ化合物が挙げられ、これらは1種のみ用いてもよく、2種以上を併用することもできる。
 又、過酸化物と、アスコルビン酸、アスコルビン酸ナトリウム、エリソルビン酸ナトリウム、酒石酸、クエン酸、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム、塩化第二鉄等の還元剤とを併用したレドックス重合開始系と組み合わせることによりレドックス反応とすることも可能である。
Azo initiators include 2,2′-azobisisobutyronitrile, 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4 Azo compounds such as -methoxy-2,4-dimethylvaleronitrile, azodi-t-octane, azodi-t-butane, etc., may be used alone, or two or more of them may be used in combination.
Also, peroxides, ascorbic acid, sodium ascorbate, sodium erythorbate, tartaric acid, citric acid, metal salts of formaldehyde sulfoxylate, sodium thiosulfate, sodium sulfite, sodium bisulfite, sodium metabisulfite, ferric chloride A redox reaction can be achieved by combining with a redox polymerization initiation system using a reducing agent such as iron.
 本発明の硬化性組成物にて、重合開始剤の含有量は、式(1)で表されるシルセスキオキサン誘導体100質量部に対して、0.01質量部~20質量部であることが好ましく、0.1質量部~10質量部であることがより好ましく、1質量部~5質量部であることがさらに好ましい。 In the curable composition of the present invention, the content of the polymerization initiator is 0.01 parts by mass to 20 parts by mass with respect to 100 parts by mass of the silsesquioxane derivative represented by formula (1). is preferred, 0.1 to 10 parts by mass is more preferred, and 1 to 5 parts by weight is even more preferred.
(その他の成分)
 その他の成分としては、特に限定されず、例えば、溶媒、式(1)で表されるシルセスキオキサン誘導体以外の重合性化合物、樹脂、シリコーン、モノマー、フィラー、界面活性剤、帯電防止剤(例えば導電性ポリマー)、レベリング剤、光増感剤、紫外線吸収剤、酸化防止剤、耐熱性向上剤、安定剤、潤滑剤、顔料、染料、可塑剤、懸濁剤、密着性付与剤、ナノ粒子、ナノファイバー、ナノシート等が挙げられる。本発明の硬化性組成物は、テトラアルコキシシラン類、トリアルコキシシラン類、ジアルコキシシラン類、モノアルコキシシラン類及びジシロキサン類等のシラン系反応性希釈剤等を含んでいてもよい。
(other ingredients)
Other components are not particularly limited, and examples include solvents, polymerizable compounds other than the silsesquioxane derivative represented by formula (1), resins, silicones, monomers, fillers, surfactants, antistatic agents ( For example, conductive polymer), leveling agent, photosensitizer, UV absorber, antioxidant, heat resistance improver, stabilizer, lubricant, pigment, dye, plasticizer, suspending agent, adhesion imparting agent, nano Examples include particles, nanofibers, nanosheets, and the like. The curable composition of the present invention may contain silane-based reactive diluents such as tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, monoalkoxysilanes and disiloxanes.
 本発明の硬化性組成物は、溶媒を含んでいてもよく、溶媒を含んでいなくてもよい。
 溶媒としては、例えば、脂肪族系炭化水素溶媒、芳香族系炭化水素溶媒、塩素化炭化水素溶媒、アルコール溶媒、エーテル溶媒、アミド溶媒、ケトン溶媒、エステル溶媒及びセロソルブ溶媒等の各種有機溶媒が挙げられる。
The curable composition of the present invention may or may not contain a solvent.
Examples of the solvent include various organic solvents such as aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, chlorinated hydrocarbon solvents, alcohol solvents, ether solvents, amide solvents, ketone solvents, ester solvents and cellosolve solvents. be done.
 本発明の硬化性組成物は、式(1)で表されるシルセスキオキサン誘導体以外の重合性化合物(以下、「その他の重合性化合物」とも称する。)を含んでいてもよく、含んでいなくてもよい。
 その他の重合性化合物としては、式(1)で表されるシルセスキオキサン誘導体及び重合開始剤の存在下にて重合反応可能な化合物であれば特に限定されない。その他の重合性化合物としては、式(1)で表されるシルセスキオキサン誘導体以外のシルセスキオキサン誘導体、(メタ)アクリレート化合物、エチレン性不飽和基を有する化合物、エポキシ化合物(エポキシ基を有する化合物)、オキセタニル基を有する化合物(オキセタニル基含有化合物)、ビニルエーテル基を有する化合物(ビニルエーテル化合物)等が挙げられる。
The curable composition of the present invention may contain a polymerizable compound other than the silsesquioxane derivative represented by formula (1) (hereinafter also referred to as "other polymerizable compound"). You don't have to.
Other polymerizable compounds are not particularly limited as long as they are capable of undergoing a polymerization reaction in the presence of the silsesquioxane derivative represented by formula (1) and the polymerization initiator. Other polymerizable compounds include silsesquioxane derivatives other than the silsesquioxane derivative represented by formula (1), (meth)acrylate compounds, compounds having an ethylenically unsaturated group, epoxy compounds (having an epoxy group oxetanyl group-containing compounds), compounds having an oxetanyl group (oxetanyl group-containing compounds), and compounds having a vinyl ether group (vinyl ether compounds).
 式(1)で表されるシルセスキオキサン誘導体以外のシルセスキオキサン誘導体としては、T単位のみからなるシルセスキオキサン誘導体、T単位及びD単位を含むシルセスキオキサン誘導体等が挙げられる。 Examples of silsesquioxane derivatives other than the silsesquioxane derivatives represented by formula (1) include silsesquioxane derivatives consisting only of T units, silsesquioxane derivatives containing T units and D units, and the like. .
 (メタ)アクリレート化合物に特に制限はなく、1個の(メタ)アクリロイル基を有する化合物(以下、「単官能(メタ)アクリレート」とも称する)、及び2個以上の(メタ)アクリロイル基を有する化合物(以下、「多官能(メタ)アクリレート」とも称する)が挙げられる。 (Meth) acrylate compounds are not particularly limited, compounds having one (meth) acryloyl group (hereinafter also referred to as "monofunctional (meth) acrylate"), and compounds having two or more (meth) acryloyl groups (hereinafter also referred to as "polyfunctional (meth)acrylate").
 単官能(メタ)アクリレートとしては、例えば、
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート;
 シクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、及びトリシクロデカンメチロール(メタ)アクリレート等の脂環式基を有する単官能(メタ)アクリレート;
 ベンジル(メタ)アクリレート、及びフェニル(メタ)アクリレートの芳香族基を有する単官能(メタ)アクリレート;
 フェノールエチレンオキサイド付加物の(メタ)アクリレート、フェノールプロピレンオキサイド付加物の(メタ)アクリレート、変性ノニルフェノールエチレンオキサイド付加物の(メタ)アクリレート、及びノニルフェノールプロピレンオキサイド付加物の(メタ)アクリレート、パラクミルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、オルトフェニルフェノール(メタ)アクリレート、及びオルトフェニルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート等のフェノール誘導体のアルキレンオキサイド付加物の(メタ)アクリレート;
 2-エチルヘキシルカルビトール(メタ)アクリレート等のアルコキシアルキル基を有する単官能(メタ)アクリレート;
 テトラヒドロフルフリル(メタ)アクリレート、及びN-(2-(メタ)アクリロキシエチル)ヘキサヒドロフタルイミド等の複素環を有する単官能(メタ)アクリレート;
 ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、及びヒドロキシヘキシル(メタ)アクリレート等のヒドロキシルアルキル(メタ)アクリレート;
 2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等のヒドロキシル基及び芳香族基を有する単官能(メタ)アクリレート;
 ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート等のアルキレングルコールモノ(メタ)アクリレート;並びに
 ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、及びフタル酸モノヒドロキシエチル(メタ)アクリレート等のカルボキシ基を有する単官能(メタ)アクリレート等が挙げられる。
Examples of monofunctional (meth)acrylates include
Alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate;
monofunctional (meth)acrylates having an alicyclic group such as cyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, and tricyclodecanemethylol (meth)acrylate;
Monofunctional (meth)acrylates having aromatic groups of benzyl (meth)acrylate and phenyl (meth)acrylate;
(Meth)acrylates of phenol ethylene oxide adducts, (meth) acrylates of phenol propylene oxide adducts, (meth) acrylates of modified nonylphenol ethylene oxide adducts, and (meth) acrylates of nonylphenol propylene oxide adducts, paracumylphenol (meth)acrylates of alkylene oxide adducts of phenol derivatives, such as (meth)acrylates of alkylene oxide adducts, orthophenylphenol (meth)acrylates, and (meth)acrylates of alkylene oxide adducts of orthophenylphenol;
Monofunctional (meth)acrylates having an alkoxyalkyl group such as 2-ethylhexylcarbitol (meth)acrylate;
Monofunctional (meth)acrylates having a heterocyclic ring such as tetrahydrofurfuryl (meth)acrylate and N-(2-(meth)acryloxyethyl)hexahydrophthalimide;
hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, and hydroxyhexyl (meth)acrylate;
Monofunctional (meth)acrylates having a hydroxyl group and an aromatic group such as 2-hydroxy-3-phenoxypropyl (meth)acrylate;
Alkylene glycol mono(meth)acrylates such as diethylene glycol mono(meth)acrylate, dipropylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tripropylene glycol mono(meth)acrylate; and ω-carboxypolycaprolactone monofunctional (meth)acrylates having a carboxy group such as mono(meth)acrylates and monohydroxyethyl (meth)acrylate phthalate;
 多官能(メタ)アクリレートとしては、例えば、
 ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のポリエチレングリコールジ(メタ)アクリレート;
 ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート等のポリプロピレングリコールジ(メタ)アクリレート;
 1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ネオペンチルグリコールのジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAのジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAのジ(メタ)アクリレート、エチレンオキサイド変性水添ビスフェノールAのジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパンアリルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート及びジペンタエリスリトールヘキサアクリレート等が挙げられる。
Examples of polyfunctional (meth)acrylates include
Polyethylene glycol di(meth)acrylates such as diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate;
Polypropylene glycol di(meth)acrylates such as dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate;
1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-modified neopentyl glycol di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, propylene oxide-modified bisphenol A di(meth)acrylate, ethylene oxide-modified hydrogenated bisphenol A di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane allyl ether di(meth)acrylate, trimethylolpropane tri(meth)acrylate , ethylene oxide-modified trimethylolpropane tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate and dipentaerythritol hexaacrylate. .
 多官能(メタ)アクリレートとしては、ウレタン(メタ)アクリレートを使用することもできる。
 ウレタン(メタ)アクリレートとしては、有機ポリイソシアネートとヒドロキシル基含有(メタ)アクリレートを付加反応させた化合物、有機ポリイソシアネートとポリオールとヒドロキシル基含有(メタ)アクリレートとを付加反応させた化合物等が挙げられる。
 単官能(メタ)アクリレート、多官能(メタ)アクリレート等は、1種のみ用いてもよく、2種以上を併用することもでき、異なる種類のものを併用することもできる。
Urethane (meth)acrylates can also be used as polyfunctional (meth)acrylates.
Examples of urethane (meth)acrylate include a compound obtained by addition reaction of organic polyisocyanate and hydroxyl group-containing (meth)acrylate, and a compound obtained by addition reaction of organic polyisocyanate, polyol and hydroxyl group-containing (meth)acrylate. .
Monofunctional (meth)acrylates, polyfunctional (meth)acrylates, and the like may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
 ここで、ポリオールとしては、低分子量ポリオール、ポリエーテルポリオール、ポリエステルポリオール及びポリカーボネートポリオール等が挙げられる。
 低分子量ポリオールとしては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、シクロヘキサンジメチロール、及び3-メチル-1,5-ペンタンジオール等が挙げられる。
 ポリエーテルポリオールとしては、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。
 ポリエステルポリオールとしては、これら低分子量ポリオール及び/又はポリエーテルポリオールと、アジピン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸及びテレフタル酸等の二塩基酸又はその無水物等の酸成分との反応物が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもでき、異なる種類のものを併用することもできる。
Examples of polyols include low-molecular-weight polyols, polyether polyols, polyester polyols and polycarbonate polyols.
Low molecular weight polyols include ethylene glycol, propylene glycol, neopentyl glycol, cyclohexanedimethylol, 3-methyl-1,5-pentanediol, and the like.
Examples of polyether polyols include polypropylene glycol and polytetramethylene glycol.
As polyester polyols, reaction products of these low molecular weight polyols and/or polyether polyols with dibasic acids such as adipic acid, succinic acid, phthalic acid, hexahydrophthalic acid and terephthalic acid, or acid components such as anhydrides thereof is mentioned.
These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
 有機ポリイソシアネートとしては、トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート、及びイソホロンジイソシアネート等が挙げられる。
 ヒドロキシル基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、イソシアヌル酸のアルキレンオキサイド3モル付加物のジ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシル基含有多官能(メタ)アクリレート等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもでき、異なる種類のものを併用することもできる。
Organic polyisocyanates include tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
Examples of hydroxyl group-containing (meth)acrylates include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; pentaerythritol tri(meth)acrylate; ) acrylates, di(meth)acrylates of isocyanuric acid 3-mol alkylene oxide adducts, and hydroxyl group-containing polyfunctional (meth)acrylates such as dipentaerythritol penta(meth)acrylates.
These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
 本発明の硬化性組成物において、(メタ)アクリレート化合物が併用される場合には、その配合割合は、特に制限されず、例えば、前記式(1)で表されるシルセスキオキサン誘導体100質量部に対する(メタ)アクリレート化合物の配合割合は、0質量部~100質量部が好ましく、0質量部~50質量部がより好ましく、0質量部~20質量部がさらに好ましい。無機物質層との密着性の観点からは、(メタ)アクリレート化合物の配合割合は低い方が好ましく、含有しないか、又は、組成物全量に対して10質量%以下の含有量であることが好ましく、含有しないか、又は、組成物全量に対して5質量%以下であることがより好ましく、含有しないか、又は、組成物全量に対して1質量%以下の含有量であることがさらに好ましく、含有しないことが特に好ましい。 In the curable composition of the present invention, when a (meth)acrylate compound is used in combination, the mixing ratio is not particularly limited, for example, 100 mass of the silsesquioxane derivative represented by the formula (1) The mixing ratio of the (meth)acrylate compound to 1 part is preferably 0 to 100 parts by mass, more preferably 0 to 50 parts by mass, even more preferably 0 to 20 parts by mass. From the viewpoint of adhesion to the inorganic substance layer, the mixing ratio of the (meth)acrylate compound is preferably low. , It is more preferable that it does not contain, or is 5% by mass or less with respect to the total amount of the composition, and it is more preferable that it does not contain or has a content of 1% by mass or less with respect to the total amount of the composition, Not containing is particularly preferred.
 前記(メタ)アクリレート化合物以外の1分子中に1個のエチレン性不飽和基を有する化合物を硬化性組成物に添加してもよい。
 前記エチレン性不飽和基としては、(メタ)アクリロイル基、マレイミド基、(メタ)アクリルアミド基、又はビニル基が好ましい。
 前記エチレン性不飽和基を有する化合物の具体例としては、(メタ)アクリル酸、アクリル酸のマイケル付加型のダイマー、N-(2-ヒドロキシエチル)シトラコンイミド、N,N-ジメチルアクリルアミド、アクリロイルモルフォリン、N-ビニルピロリドン及びN-ビニルカプロラクタム等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
A compound having one ethylenically unsaturated group in one molecule other than the (meth)acrylate compound may be added to the curable composition.
The ethylenically unsaturated group is preferably a (meth)acryloyl group, a maleimide group, a (meth)acrylamide group, or a vinyl group.
Specific examples of the compound having an ethylenically unsaturated group include (meth)acrylic acid, a Michael addition type dimer of acrylic acid, N-(2-hydroxyethyl)citraconimide, N,N-dimethylacrylamide, acryloylmorpho Phosphorus, N-vinylpyrrolidone, N-vinylcaprolactam and the like.
These may be used alone or in combination of two or more.
 エポキシ化合物としては、単官能エポキシ化合物、多官能エポキシ化合物等が挙げられる。
 オキセタニル基含有化合物としては、単官能オキセタン化合物、多官能オキセタン化合物等が挙げられる。
 ビニルエーテル化合物としては、単官能ビニルエーテル化合物、多官能ビニルエーテル化合物等が挙げられる。
 これらの化合物として、例えば、特開2011-42755号公報に記載の化合物を用いてもよい。
 シリコーンとしては、特に制限はなく、公知のものが使用でき、例えば、ポリジメチルシリコーン、ポリジフェニルシリコーン、ポリメチルフェニルシリコーン等が挙げられ、その末端及び/又は側鎖に官能基を有しているものが好ましい。前記官能基としては、特に制限はなく、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、ビニル基、水酸基、カルボキシ基、アミノ基、チオール基等が挙げられる。
Examples of epoxy compounds include monofunctional epoxy compounds and polyfunctional epoxy compounds.
Examples of oxetanyl group-containing compounds include monofunctional oxetane compounds and polyfunctional oxetane compounds.
Examples of vinyl ether compounds include monofunctional vinyl ether compounds and polyfunctional vinyl ether compounds.
As these compounds, for example, compounds described in JP-A-2011-42755 may be used.
The silicone is not particularly limited, and known silicones can be used. Examples include polydimethylsilicone, polydiphenylsilicone, polymethylphenylsilicone, etc., which have functional groups at their terminals and/or side chains. things are preferred. The functional group is not particularly limited, and examples thereof include (meth)acryloyl group, epoxy group, oxetanyl group, vinyl group, hydroxyl group, carboxy group, amino group, thiol group and the like.
 本発明の硬化性組成物がその他の重合性化合物を含む場合、その他の重合性化合物の含有量は、式(1)で表されるシルセスキオキサン誘導体100質量部に対して、0.01質量部~100質量部であることが好ましく、0.1質量部~50質量部であることがより好ましく、1質量部~25質量部であることがさらに好ましい。 When the curable composition of the present invention contains other polymerizable compounds, the content of the other polymerizable compounds is 0.01 per 100 parts by mass of the silsesquioxane derivative represented by formula (1). It is preferably from 0.1 to 50 parts by mass, even more preferably from 1 to 25 parts by mass.
[硬化物]
 本発明の硬化物は、前述の本発明の硬化性組成物を硬化させてなる。例えば、本発明の硬化性組成物に活性エネルギー線を照射する、あるいは本発明の硬化性組成物を加熱することで、本発明の硬化物が得られる。
[Cured product]
The cured product of the present invention is obtained by curing the aforementioned curable composition of the present invention. For example, the cured product of the present invention can be obtained by irradiating the curable composition of the present invention with an active energy ray or by heating the curable composition of the present invention.
 本発明の硬化物では、25℃における水の接触角は、90°以上が好ましく、100°以上がより好ましく、105°以上がさらに好ましい。
 本発明の硬化物において、25℃における接触角は後述の実施例に記載の方法によって測定することができる。
 25℃における水の接触角の上限は特に限定されず、例えば、150°以下であってもよい。
In the cured product of the present invention, the contact angle of water at 25° C. is preferably 90° or more, more preferably 100° or more, and even more preferably 105° or more.
In the cured product of the present invention, the contact angle at 25°C can be measured by the method described in Examples below.
The upper limit of the contact angle of water at 25°C is not particularly limited, and may be, for example, 150° or less.
 本発明の硬化物では、25℃における屈折率が1.45未満であることが好ましく、1.42未満であることがより好ましく、1.4未満であることがさらに好ましい。
 25℃における屈折率の下限は特に限定されず、例えば、1.3以上であってもよい。
 本発明の硬化物において、25℃における屈折率は後述の実施例に記載の方法によって測定することができる。
The cured product of the present invention preferably has a refractive index at 25° C. of less than 1.45, more preferably less than 1.42, even more preferably less than 1.4.
The lower limit of the refractive index at 25°C is not particularly limited, and may be, for example, 1.3 or more.
In the cured product of the present invention, the refractive index at 25°C can be measured by the method described in Examples below.
 本発明の硬化性組成物を硬化する場合、当該硬化性組成物を基材に塗布した後であってもよい。
 本発明の硬化性組成物は溶媒を含んでも、含まなくてもよい。溶媒を含む場合には、溶媒を除去してから硬化させることが好ましい。
 硬化性組成物を基材に塗布した後に当該硬化性組成物を硬化させることで、硬化物を備える基材が得られる。
When curing the curable composition of the present invention, it may be after applying the curable composition to the substrate.
The curable composition of the present invention may or may not contain a solvent. When a solvent is included, it is preferable to cure after removing the solvent.
By applying the curable composition to the substrate and then curing the curable composition, a substrate having a cured product can be obtained.
 本発明の硬化性組成物を基材に塗布する場合、硬化性組成物の塗布方法に特に制限されない。塗布方法としては、例えば、キャスト法、スピンコート法、バーコート法、ディップコート法、スプレーコート法、ロールコート法、フローコート法及びグラビアコート法等の通常の塗工方法が挙げられる。
 本発明の硬化性組成物を塗布する厚さに特に制限はなく、目的に応じて適切に設定される。
 本発明の硬化性組成物が塗布される基材としては、特に制限はなく、木材、金属、無機材料、プラスチック、紙、繊維及び布帛等が挙げられる。
 金属としては、銅、銀、鉄、アルミニウム、シリコン、ケイ素鋼及びステンレス等が挙げられる。無機材料としては、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化インジウムスズ、酸化ガリウム等の金属酸化物、窒化アルミニウム、窒化ガリウム、窒化ケイ素等の金属窒化物、炭化ケイ素及び窒化ホウ素等のセラミックス、モルタル、コンクリート及びガラス等が挙げられる。
プラスチックの具体例としては、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、エポキシ樹脂、ナイロンやアラミド等のポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、4フッ化エチレン樹脂等のフッ素樹脂、架橋ポリエチレン樹脂等のポリオレフィン樹脂、塩化ビニリデン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、アセテート系樹脂、ポリアリレート、セロファン、ノルボルネン系樹脂、トリアセチルセルロース(TAC)等のアセチルセルロース樹脂、ポリクロロプレン、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリウレタン樹脂及びガラスエポキシ樹脂等の複合樹脂、各種の繊維強強化樹脂等が挙げられる。
繊維としては、天然繊維、再生繊維、半合成繊維、金属繊維、ガラス繊維、カーボン繊維、セラミック繊維及び公知の化学繊維等が挙げられる。布帛は織布であっても不織布であってもよく、例えば前述の繊維を用いて作製することができる。
 これらの材料は単独で用いてもよく、2種以上を組み合わせたり、混合したり、複合化して用いても良い。
 基材の形状に特に制限はなく、例えば、板状、シート状、フィルム状、棒状、球状、繊維状、粉末状、レンズ状及びその他の規則的又は不規則的な形状等が挙げられる。
When applying the curable composition of the present invention to a substrate, the method of applying the curable composition is not particularly limited. Examples of coating methods include ordinary coating methods such as casting, spin coating, bar coating, dip coating, spray coating, roll coating, flow coating and gravure coating.
The thickness to which the curable composition of the present invention is applied is not particularly limited, and is appropriately set according to the purpose.
The substrate to which the curable composition of the present invention is applied is not particularly limited, and examples thereof include wood, metal, inorganic materials, plastics, paper, fibers and fabrics.
Metals include copper, silver, iron, aluminum, silicon, silicon steel and stainless steel. Examples of inorganic materials include metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, zinc oxide, indium tin oxide and gallium oxide; metal nitrides such as aluminum nitride, gallium nitride and silicon nitride; silicon carbide and nitride; Examples include ceramics such as boron, mortar, concrete and glass.
Specific examples of plastics include acrylic resins such as polymethyl methacrylate, polyester resins such as polyethylene terephthalate, polyvinyl chloride resins, polycarbonate resins, epoxy resins, polyamide resins such as nylon and aramid, polyimide resins, polyamideimide resins, 4-fluoro Fluorine resins such as ethylene chloride resins, polyolefin resins such as crosslinked polyethylene resins, vinylidene chloride resins, acrylonitrile-butadiene-styrene (ABS) resins, polystyrene resins, polyacrylonitrile resins, cycloolefin polymers (COP), cycloolefin copolymers (COC) , acetate resins, polyarylates, cellophane, norbornene resins, acetyl cellulose resins such as triacetyl cellulose (TAC), polychloroprene, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyurethane resin, glass epoxy resin, etc. composite resins, various fiber-reinforced resins, and the like.
Examples of fibers include natural fibers, regenerated fibers, semi-synthetic fibers, metal fibers, glass fibers, carbon fibers, ceramic fibers and known chemical fibers. The fabric may be woven or non-woven, and may be made, for example, using the fibers described above.
These materials may be used alone, or two or more of them may be combined, mixed, or composited for use.
The shape of the substrate is not particularly limited, and examples thereof include plate-like, sheet-like, film-like, rod-like, spherical, fiber-like, powder-like, lens-like and other regular or irregular shapes.
(硬化方法)
 本発明において、硬化性組成物が、活性エネルギー線硬化性であるか、及び/又は熱硬化性であるかにより、その硬化方法及び硬化条件が選択される。又、硬化条件(活性エネルギー線硬化性の場合は、例えば、光源の種類及び光照射量等であり、熱硬化性の場合は、加熱温度及び加熱時間等である。)は、本組成物に含有される重合開始剤の種類、量及び他の重合性化合物の種類等によって、適宜、選択される。
(Curing method)
In the present invention, the curing method and curing conditions are selected depending on whether the curable composition is active energy ray-curable and/or thermosetting. Further, the curing conditions (in the case of active energy ray curing, for example, the type of light source and the amount of light irradiation, and in the case of thermosetting, heating temperature, heating time, etc.) It is appropriately selected depending on the type and amount of the polymerization initiator to be contained, the type of other polymerizable compound, and the like.
(1)活性エネルギー線硬化方法
 本組成物が、活性エネルギー線硬化性組成物である場合、その硬化方法としては、公知の活性エネルギー線照射装置等によって活性エネルギー線照射を行えばよい。活性エネルギー線としては、電子線、及び、紫外線、可視光線並びにX線等の光等が挙げられ、光が好ましく、安価な装置を使用できる観点から、紫外線がより好ましい。
 紫外線照射装置としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、紫外線(UV)無電極ランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯及び発光ダイオード(LED)等が挙げられる。
 本組成物を塗布した被膜への光照射強度は、目的、用途等に応じて選択すればよく、活性エネルギー線重合開始剤(光硬化性の場合は、光重合開始剤と称する。)の活性化に有効な光波長領域(光重合開始剤の種類によって異なるが、好ましくは220nm~460nmの波長の光が用いられる。)における光照射強度は、0.1mW/cm~1000mW/cmであることが好ましい。
 又、照射エネルギーは、活性エネルギー線の種類、配合組成等に応じて適宜設定すべきものである。前記被膜への光照射時間も、目的、用途等に応じて選択すればよく、前記光波長領域における光照射強度及び光照射時間の積として表される積算光量が、10mJ/cm~7,000mJ/cmとなるように光照射時間が設定されることが好ましい。積算光量は、200mJ/cm~5,000mJ/cmがより好ましく、500mJ/cm~4,000mJ/cmがさらに好ましい。積算光量が前記範囲にあれば、組成物の硬化が円滑に進行し、均一な硬化物を容易に得ることができる。
(1) Active energy ray curing method When the present composition is an active energy ray curable composition, the curing method may be irradiation with an active energy ray using a known active energy ray irradiation device or the like. Examples of active energy rays include electron beams, and light such as ultraviolet rays, visible rays, and X-rays. Light is preferred, and ultraviolet rays are more preferred from the viewpoint that inexpensive devices can be used.
Ultraviolet irradiation devices include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, ultraviolet (UV) electrodeless lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and light-emitting diodes (LEDs). mentioned.
The intensity of light irradiation to the film coated with the present composition may be selected according to the purpose, application, etc. The light irradiation intensity in the light wavelength range effective for polymerization (light with a wavelength of 220 nm to 460 nm is preferably used, although it varies depending on the type of photopolymerization initiator) is 0.1 mW/cm 2 to 1000 mW/cm 2 . Preferably.
Also, the irradiation energy should be set as appropriate according to the type of active energy ray, the compounding composition, and the like. The light irradiation time to the coating may also be selected according to the purpose, application, etc., and the integrated light amount represented as the product of the light irradiation intensity and the light irradiation time in the light wavelength region is 10 mJ/cm 2 to 7, It is preferable to set the light irradiation time so as to achieve 000 mJ/cm 2 . The integrated amount of light is more preferably 200 mJ/cm 2 to 5,000 mJ/cm 2 and even more preferably 500 mJ/cm 2 to 4,000 mJ/cm 2 . When the integrated amount of light is within the above range, curing of the composition proceeds smoothly, and a uniform cured product can be easily obtained.
 又、光硬化の前及び/又は後に、適宜、加熱硬化を組み合わせることもできる。
 例えば、光を照射した際に、陰となる部位を持つ基材に、本組成物を染み込ませる等した後に、光を照射して、光が当たる部位の本組成物をまず硬化し、その後、熱を加えて光の当たらない部位の本組成物を硬化させる、二段階硬化を行うこともできる。このような基材に特に制限はなく、例えば、布帛状、繊維状、粉末状、多孔質状及び凹凸状等の複雑な形状である基材が挙げられ、これらの形状のうちの2つ以上が組み合わせられた形状であってもよい。
Also, heat curing can be appropriately combined before and/or after photocuring.
For example, after impregnating the present composition into a substrate having a portion that is shaded when irradiated with light, the composition is first cured in the portion exposed to light by irradiating light, and then, A two-stage cure can also be performed in which heat is applied to cure the composition in the areas not exposed to light. Such substrates are not particularly limited, and examples thereof include substrates having complex shapes such as fabric, fibrous, powdery, porous, and uneven shapes, and two or more of these shapes. may be combined.
(2)熱硬化方法
 本組成物が、熱硬化性組成物である場合、その硬化方法及び硬化条件は、特に限定されない。
 硬化温度は、80℃~200℃が好ましく、100℃~180℃がより好ましく、110℃~150℃がさらに好ましい。硬化温度は、温度を一定としてもよいし、昇温させてもよい。昇温と降温とを組み合わせてもよい。
 硬化時間は、熱重合開始剤の種類及び他の成分の含有割合等により適宜選択され、10分~360分が好ましく、30分~300分がより好ましく、60分~240分がさらに好ましい。前記の好ましい条件で組成物を硬化させることにより、膨れ、クラック等のない均一な硬化膜を形成することができる。
(2) Thermosetting method When the present composition is a thermosetting composition, its curing method and curing conditions are not particularly limited.
The curing temperature is preferably 80°C to 200°C, more preferably 100°C to 180°C, even more preferably 110°C to 150°C. The curing temperature may be constant or may be increased. You may combine temperature rise and temperature fall.
The curing time is appropriately selected according to the type of thermal polymerization initiator and the content of other components, and is preferably 10 minutes to 360 minutes, more preferably 30 minutes to 300 minutes, and even more preferably 60 minutes to 240 minutes. By curing the composition under the above preferable conditions, a uniform cured film free from blisters, cracks and the like can be formed.
(シルセスキオキサン誘導体等の用途)
 本発明のシルセスキオキサン誘導体を用いて得られる硬化物では、水に対する接触角が大きく、高い撥水性等の防汚性、高い離型性等を有する。さらに、本発明のシルセスキオキサン誘導体を含む硬化性組成物を基材に塗布した後に、硬化性組成物を硬化した場合、得られる硬化物と基材との密着性に優れる。硬化物は、前述の「本発明の硬化性組成物が塗布される基材」との密着性に優れ、例えば、ガラス、プラスチック等との密着性に優れる。
 本発明のシルセスキオキサン誘導体、及びこれを含む硬化性組成物は、低粘度であることにより、無溶媒での塗布性に優れ、また溶媒を使用する場合であってもその使用量を削減することができる。
 本発明のシルセスキオキサン誘導体、及びこれを含む硬化性組成物は、時間経過後の粘度上昇、高温条件下での粘度上昇等が抑制されており、貯蔵安定性が良好である。
 本発明のシルセスキオキサン誘導体では、フッ素原子を含む構成単位(c)が導入されているため、本発明のシルセスキオキサン誘導体を用いて得られる硬化物は、耐熱性、耐薬品性、耐候性等に優れる傾向にある。
(Uses of silsesquioxane derivatives, etc.)
The cured product obtained using the silsesquioxane derivative of the present invention has a large contact angle with water, antifouling properties such as high water repellency, and high releasability. Furthermore, when the curable composition containing the silsesquioxane derivative of the present invention is applied to a substrate and then the curable composition is cured, the adhesion between the resulting cured product and the substrate is excellent. The cured product has excellent adhesion to the above-mentioned "substrate to which the curable composition of the present invention is applied", and has excellent adhesion to glass, plastic, and the like, for example.
The silsesquioxane derivative of the present invention and the curable composition containing the same have low viscosity, so that they are excellent in solvent-free coating properties, and even when using a solvent, the amount used can be reduced. can do.
INDUSTRIAL APPLICABILITY The silsesquioxane derivative of the present invention and the curable composition containing the same are inhibited from increasing in viscosity over time and under high temperature conditions, and have good storage stability.
In the silsesquioxane derivative of the present invention, since the structural unit (c) containing a fluorine atom is introduced, the cured product obtained using the silsesquioxane derivative of the present invention exhibits heat resistance, chemical resistance, It tends to be excellent in weather resistance and the like.
 本発明のシルセスキオキサン誘導体は、撥水性等の防汚性、離型性、密着性、耐熱性、耐薬品性、耐候性等が要求される用途に適用可能である。
 本発明のシルセスキオキサン誘導体は、例えば、光学レンズ、ディスプレイ、光ディスク、光ファイバー等用の低屈折率材料、反射防止材、離型フィルム、レプリカモールド、接着剤等に適用可能である。
The silsesquioxane derivative of the present invention can be applied to applications requiring antifouling properties such as water repellency, releasability, adhesion, heat resistance, chemical resistance, weather resistance, and the like.
The silsesquioxane derivative of the present invention can be applied to, for example, optical lenses, displays, optical discs, low refractive index materials for optical fibers, antireflection materials, release films, replica molds, adhesives, and the like.
 ナノインプリントのレプリカモールドには離型性が不可欠となっているが、離型剤を添加した組成物を用いてレプリカモールドを作製した場合には、その使用時に離型剤がブリードするおそれがある。
 一方、本発明のシルセスキオキサン誘導体では、離型性に寄与する構成単位(c)がシルセスキオキサン誘導体に導入されており、離型剤を使用する必要がない。
Releasability is essential for nanoimprint replica molds, but if a replica mold is produced using a composition containing a release agent, the release agent may bleed during use.
On the other hand, in the silsesquioxane derivative of the present invention, the structural unit (c) contributing to releasability is introduced into the silsesquioxane derivative, and there is no need to use a release agent.
 本発明のシルセスキオキサン誘導体は、開始剤以外の配合物を必ずしも必要としない。
 本開示のシルセスキオキサン誘導体及びこれを含む硬化性組成物は、低粘度であるため、容易に塗工可能であり、例えば、離型コーティング剤組成物、低屈折率コーティング剤組成物、防汚性コーティング剤組成物等に利用可能である。
 本開示のシルセスキオキサン誘導体及びこれを含む硬化性組成物は、低粘度であるため、低粘度が要求される用途に好適に使用可能である。例えば、接着剤用途、インクジェット、3Dプリント等の印刷用途、コーティング剤用途、ナノプリント用途等に適用可能である。また、ナノプリント用途に適用した場合に、本発明のシルセスキオキサン誘導体は低粘度であるため、微細転写性に優れる。また、本発明のシルセスキオキサン誘導体は無溶媒で使用可能なため、型に流し込んだ後、そのまま硬化させることが可能となる。
 本発明のシルセスキオキサン誘導体をフィラー、他の重合性化合物等と併用して使用してもよい。また、本発明のシルセスキオキサン誘導体は低粘度であるため、多量のフィラーと混合することも可能である。
The silsesquioxane derivatives of the present invention do not necessarily require formulations other than initiators.
Since the silsesquioxane derivative of the present disclosure and the curable composition containing the same have low viscosity, they can be easily applied. It can be used for fouling coating agent compositions and the like.
Since the silsesquioxane derivative of the present disclosure and the curable composition containing the same have low viscosity, they can be suitably used for applications requiring low viscosity. For example, it can be applied to adhesive applications, inkjet printing, printing applications such as 3D printing, coating agent applications, nanoprinting applications, and the like. Moreover, when applied to nanoprinting, the silsesquioxane derivative of the present invention has a low viscosity and is therefore excellent in fine transfer properties. Moreover, since the silsesquioxane derivative of the present invention can be used without a solvent, it can be cured as it is after being poured into a mold.
The silsesquioxane derivative of the present invention may be used in combination with fillers, other polymerizable compounds and the like. Moreover, since the silsesquioxane derivative of the present invention has a low viscosity, it can be mixed with a large amount of filler.
 次に、本発明を実施例及び比較例に基づいて具体的に説明する。本発明は、以下の実施例に限定されるものではない。なお、表1中の「-」は該当する物性が未測定であることを意味する。 Next, the present invention will be specifically described based on examples and comparative examples. The invention is not limited to the following examples. "-" in Table 1 means that the corresponding physical properties have not been measured.
(重量平均分子量の測定)
 各実施例及び各比較例におけるシルセスキオキサン誘導体の重量平均分子量(Mw)は以下のようにして測定した。具体的には、ゲルパーミエーションクロマトグラフ(東ソー社製、HLC-8320GPC、以下、「GPC」と略す)により、テトラヒドロフラン溶媒中、40℃において、GPCカラム「TSK gel SuperMultiporeHZ-M」(東ソー社製)を用いて分離し、リテンションタイムから標準ポリスチレン換算の分子量を算出した。
(Measurement of weight average molecular weight)
The weight average molecular weight (Mw) of the silsesquioxane derivative in each example and each comparative example was measured as follows. Specifically, by gel permeation chromatography (manufactured by Tosoh Corporation, HLC-8320GPC, hereinafter abbreviated as "GPC"), in a tetrahydrofuran solvent at 40 ° C., a GPC column "TSK gel SuperMultiporeHZ-M" (manufactured by Tosoh Corporation ), and the molecular weight in terms of standard polystyrene was calculated from the retention time.
(加速試験前の粘度の測定)
 各実施例及び各比較例におけるシルセスキオキサン誘導体について、東機産業(株)製TVE22H形粘度計を用い、25℃における粘度を測定した。
(Measurement of viscosity before accelerated test)
The silsesquioxane derivatives in each example and each comparative example were measured for viscosity at 25° C. using a TVE22H viscometer manufactured by Toki Sangyo Co., Ltd.
(加速試験後の粘度の測定)
 各実施例及び各比較例におけるシルセスキオキサン誘導体1gを9mLスクリュー管瓶に秤取し、60℃の恒温槽内で7日間静置した。その後、前述の(加速試験前の粘度の測定)と同様にして25℃における粘度を測定し、測定により得られた粘度を加速試験後の粘度とした。
(Measurement of viscosity after accelerated test)
1 g of the silsesquioxane derivative in each example and each comparative example was weighed into a 9 mL screw tube bottle and allowed to stand in a constant temperature bath at 60° C. for 7 days. Thereafter, the viscosity at 25° C. was measured in the same manner as described above (measurement of viscosity before accelerated test), and the viscosity obtained by measurement was taken as the viscosity after accelerated test.
(シルセスキオキサン誘導体の各構成単位のモル比の算出)
 各実施例及び各比較例におけるシルセスキオキサン誘導体の各構成単位のモル比については、重クロロホルムに溶解した試料に対してH-NMR分析を行い、必要に応じてさらに29Si-NMR分析も行うことにより算出した。
(Calculation of molar ratio of each structural unit of silsesquioxane derivative)
Regarding the molar ratio of each structural unit of the silsesquioxane derivative in each example and each comparative example, a sample dissolved in heavy chloroform was subjected to 1 H-NMR analysis, and if necessary, further 29 Si-NMR analysis. It was calculated by also performing
<実施例1>
(シルセスキオキサン誘導体1の合成)
 温度計、滴下ロート及び攪拌翼を取り付けた200mLの4つ口丸底フラスコに、(3-アクリロイルオキシ)プロピルトリメトキシシラン(5.98g、25.5mmol、構成単位(b)に対応)、トリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン(13.0g、25.5mmol、構成単位(c)に対応)、4-メトキシフェノール(0.003g)及び2-プロパノール(45.0g)を量り取り、混合液を室温で攪拌した。別途35%塩酸(0.063g、0.61mmol)及び水(2.7g)を混合して水溶液を調製した。混合液に調製した水溶液を、滴下ロートから約1時間かけて滴下しながら反応液を攪拌した後、1,3-ジビニルテトラメチルジシロキサン(2.38g、12.75mmol、構成単位(f)に対応)を加えて一晩静置した。その後、反応液を60℃まで加熱しながら反応液中の溶媒等を減圧留去し、無色透明液体のシルセスキオキサン誘導体1(S1)16.9gを得た。S1に対するH-NMR分析により、各構成単位は原料の仕込み比通りに定量的に導入されていることを確認した。合成されたシルセスキオキサン誘導体1について、25℃における粘度(加速試験前)は814mPa・sであり、重量平均分子量(Mw)は2580であった。また、加速試験後の25℃における粘度は891mPa・sであった。
<Example 1>
(Synthesis of silsesquioxane derivative 1)
Into a 200 mL four-necked round-bottomed flask equipped with a thermometer, dropping funnel and stirring blade, (3-acryloyloxy)propyltrimethoxysilane (5.98 g, 25.5 mmol, corresponding to structural unit (b)), triethoxy -1H,1H,2H,2H-tridecafluoro-n-octylsilane (13.0 g, 25.5 mmol, corresponding to structural unit (c)), 4-methoxyphenol (0.003 g) and 2-propanol (45 .0 g) was weighed out and the mixture was stirred at room temperature. Separately, 35% hydrochloric acid (0.063 g, 0.61 mmol) and water (2.7 g) were mixed to prepare an aqueous solution. After stirring the reaction solution while dropping the aqueous solution prepared in the mixed solution from the dropping funnel over about 1 hour, 1,3-divinyltetramethyldisiloxane (2.38 g, 12.75 mmol, to the structural unit (f) corresponding) was added and allowed to stand overnight. Thereafter, the solvent and the like in the reaction solution were distilled off under reduced pressure while the reaction solution was heated to 60° C. to obtain 16.9 g of a colorless transparent liquid silsesquioxane derivative 1 (S1). By 1 H-NMR analysis of S1, it was confirmed that each structural unit was introduced quantitatively according to the charging ratio of the raw materials. The synthesized silsesquioxane derivative 1 had a viscosity of 814 mPa·s at 25° C. (before the accelerated test) and a weight average molecular weight (Mw) of 2,580. Also, the viscosity at 25° C. after the accelerated test was 891 mPa·s.
<実施例2>
 原材料の仕込み量を実施例1に替えて表1のように変更し、溶媒等の量を適宜変更したこと以外は、実施例1と同様にしてシルセスキオキサン誘導体2(S2)を得た。S2に対するH-NMR分析により、各構成単位は原料の仕込み比通りに定量的に導入されていることを確認した。
 合成されたシルセスキオキサン誘導体2について、シルセスキオキサン誘導体における各構成単位のモル比、25℃における粘度(加速試験前)及び重量平均分子量(Mw)を表1に示す。
<Example 2>
A silsesquioxane derivative 2 (S2) was obtained in the same manner as in Example 1, except that the amounts of raw materials charged were changed to those in Example 1 and changed as shown in Table 1, and the amounts of the solvent and the like were changed as appropriate. . By 1 H-NMR analysis of S2, it was confirmed that each structural unit was introduced quantitatively according to the charging ratio of the raw materials.
Regarding the synthesized silsesquioxane derivative 2, Table 1 shows the molar ratio of each structural unit in the silsesquioxane derivative, the viscosity at 25°C (before accelerated test), and the weight average molecular weight (Mw).
<比較例1~4>
 原材料の仕込み量を実施例1に替えて表1のように変更し、溶媒等の量を適宜変更したこと以外は、実施例1と同様にしてシルセスキオキサン誘導体3~6(S3~S6)を得た。なお、比較例4では、シルセスキオキサン誘導体のM単位を構成する原料として、1,3-ジビニルテトラメチルジシロキサンに替えてヘキサメチルジシロキサン(構成単位(g)に対応)を使用した。S3~S6に対するH-NMR分析により、各構成単位は原料の仕込み比通りに定量的に導入されていることを確認した。
 合成されたシルセスキオキサン誘導体3~6について、シルセスキオキサン誘導体における各構成単位のモル比、25℃における粘度(加速試験前及び加速試験後)並びに重量平均分子量(Mw)を表1に示す。
<Comparative Examples 1 to 4>
Silsesquioxane derivatives 3 to 6 (S3 to S6 ). In Comparative Example 4, hexamethyldisiloxane (corresponding to the structural unit (g)) was used instead of 1,3-divinyltetramethyldisiloxane as a raw material constituting the M unit of the silsesquioxane derivative. 1 H-NMR analysis of S3 to S6 confirmed that each structural unit was introduced quantitatively according to the charging ratio of the raw materials.
Regarding the synthesized silsesquioxane derivatives 3 to 6, the molar ratio of each structural unit in the silsesquioxane derivative, the viscosity at 25° C. (before and after the accelerated test) and the weight average molecular weight (Mw) are shown in Table 1. show.
 前述のようにして合成したシルセスキオキサン誘導体1~6を用いて光硬化性組成物1~6を以下のようにしてそれぞれ調製した。調製された光硬化性組成物1~6を用いて密着性試験、接触角の測定及び屈折率の測定をそれぞれ行った。詳細を以下に説明する。 Using the silsesquioxane derivatives 1 to 6 synthesized as described above, photocurable compositions 1 to 6 were prepared as follows. Adhesion test, contact angle measurement and refractive index measurement were performed using the prepared photocurable compositions 1 to 6, respectively. Details are described below.
(光硬化性組成物の調製)
 合成されたシルセスキオキサン誘導体1~3 3質量部に対し、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン0.09質量部を添加し、混合物を自転・公転ミキサーで攪拌することで光硬化性組成物1~3をそれぞれ調製した。シルセスキオキサン誘導体1~3の合成の際に溶媒等が留去により除去されているため、光硬化性組成物1~3は実質的に溶媒を含んでいない。
(Preparation of photocurable composition)
0.09 part by mass of 2-hydroxy-2-methyl-1-phenylpropan-1-one is added to 1 to 33 parts by mass of the synthesized silsesquioxane derivative, and the mixture is stirred with a rotation/revolution mixer. By doing so, photocurable compositions 1 to 3 were prepared. Photocurable Compositions 1 to 3 do not substantially contain a solvent since the solvent and the like are removed by distillation during the synthesis of Silsesquioxane Derivatives 1 to 3.
(光硬化膜の作製)
 光硬化性組成物1~6を基材である白板ガラス上にそれぞれ載せ、No.8のバーコーターを用いてそれぞれ塗布した後、以下の条件で紫外線照射して、光硬化膜を作製した。膜厚はいずれも約5μmであった。
[紫外線照射条件]
ランプ:高圧水銀灯
ランプ高さ:10cm
コンベアスピード:5.75m/min
1パスあたりの積算光量:360mJ/cm(UV-A)
雰囲気:大気中
パス回数:10回
(Preparation of photocured film)
Each of the photocurable compositions 1 to 6 was placed on a white plate glass as a substrate, and No. After each application using a No. 8 bar coater, UV irradiation was performed under the following conditions to prepare a photocured film. Each film thickness was about 5 μm.
[Ultraviolet irradiation conditions]
Lamp: High pressure mercury lamp Height: 10cm
Conveyor speed: 5.75m/min
Accumulated amount of light per pass: 360 mJ/cm 2 (UV-A)
Atmosphere: Atmosphere Number of passes: 10 times
(密着性試験)
 前記のようにして作製した光硬化膜に対し、JIS K5600-5-6に準拠して密着性試験を行った。25マス中、剥がれずに残存したマス数で表し、その数が多いほど基材への密着性が高いことを表す。結果を表1に示す。
(Adhesion test)
An adhesion test was performed on the photocured film prepared as described above in accordance with JIS K5600-5-6. It represents the number of squares remaining without peeling out of 25 squares, and the larger the number, the higher the adhesion to the substrate. Table 1 shows the results.
(接触角の測定)
 前記のようにして作製した光硬化膜について、英弘精機(株)製OCA20を用い、24℃での純水に対する接触角を測定した。接触角が大きいほど撥水性に優れることを示す。結果を表1に示す。
(Measurement of contact angle)
For the photocured film prepared as described above, the contact angle with respect to pure water at 24° C. was measured using OCA20 manufactured by Eko Seiki Co., Ltd. A larger contact angle indicates better water repellency. Table 1 shows the results.
(屈折率の測定)
 1mm厚のシリコーンゴムシートで型枠を作製し、ガラス板上にPETフィルムを載せ、さらに前記型枠を載せた。この型枠内に光硬化性組成物1~6をそれぞれ流し込み、気泡が入らないようにPETフィルム及びガラス板で蓋をして挟んだ。PETフィルム及びガラス板で蓋をした光硬化性組成物1~6に前述の(光硬化膜の作製)と同様の紫外線照射条件下にて、パス回数を20に変更して厚さ1mmの硬化物をそれぞれ作製した。
 得られた厚さ1mmの硬化物に対し、(株)アタゴ製アッベ屈折率計NAR-1Tを用い、光源を589nmとし、25℃での屈折率を求めた。結果を表1に示す。
(Measurement of refractive index)
A formwork was prepared from a silicone rubber sheet with a thickness of 1 mm, a PET film was placed on a glass plate, and the formwork was further placed. Each of the photocurable compositions 1 to 6 was poured into this mold, and the mold was covered with a PET film and a glass plate to prevent air bubbles from entering. Photocurable compositions 1 to 6 covered with a PET film and a glass plate are cured to a thickness of 1 mm by changing the number of passes to 20 under the same ultraviolet irradiation conditions as described above (Preparation of photocured film). made each one.
Using an Abbe refractometer NAR-1T manufactured by Atago Co., Ltd., the refractive index was determined at 25° C. with a light source of 589 nm for the cured product having a thickness of 1 mm. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、実施例1及び2では、比較例1、3及び4よりも密着性の結果が良好であった。
 実施例1及び2では、比較例2よりも接触角及び屈折率の結果が良好であった。
As shown in Table 1, Examples 1 and 2 had better adhesion results than Comparative Examples 1, 3 and 4.
Examples 1 and 2 gave better contact angle and refractive index results than Comparative Example 2.
 2021年12月1日に出願された日本国特許出願2021-195434の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2021-195434 filed on December 1, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (8)

  1.  下記式(1)で表されるシルセスキオキサン誘導体。
    Figure JPOXMLDOC01-appb-C000001

    〔式(1)中、Rは水素原子又は炭素原子数1~6のアルキル基であり、Rは炭素原子数1~10のアルキレン基、炭素原子数3~10のシクロアルキレン基、炭素原子数6~10のアリーレン基又は炭素原子数7~12のアラルキレン基であり、Rはフルオロ基又は炭素原子数1~20のフルオロアルキル基であり、R及びRは、それぞれ独立に水素原子、炭素原子数1~20の飽和若しくは不飽和のアルキル基、炭素原子数3~8の飽和若しくは不飽和のシクロアルキル基、炭素原子数6~20のアリール基又は炭素原子数7~20のアラルキル基であり、Rはエチレン性不飽和結合及び炭素炭素三重結合の少なくとも一方を有する炭素原子数2~12の有機基であり、R及びRはそれぞれ独立に炭素原子数1~10のアルキル基、炭素原子数6~10のアリール基又は炭素原子数7~10のアラルキル基であり、複数存在するRは互いに同一でも異なっていてもよく、複数存在するRは互いに同一でも異なっていてもよく、複数存在するRは互いに同一でも異なっていてもよく、R~Rは、それぞれ独立に置換基又はハロゲン原子で構造の一部が置換されていてもよく、u、v及びyは正の数であり、t、w、x及びzはそれぞれ独立に0又は正の数である。〕
    A silsesquioxane derivative represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    [In the formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 3 to 10 carbon atoms, a carbon an arylene group having 6 to 10 atoms or an aralkylene group having 7 to 12 carbon atoms, R 3 being a fluoro group or a fluoroalkyl group having 1 to 20 carbon atoms, and R 4 and R 5 each independently hydrogen atom, saturated or unsaturated alkyl group having 1 to 20 carbon atoms, saturated or unsaturated cycloalkyl group having 3 to 8 carbon atoms, aryl group having 6 to 20 carbon atoms or 7 to 20 carbon atoms is an aralkyl group, R 6 is an organic group having 2 to 12 carbon atoms having at least one of an ethylenically unsaturated bond and a carbon-carbon triple bond, and R 7 and R 8 each independently have 1 to an alkyl group having 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 10 carbon atoms, wherein a plurality of R 5 may be the same or different, and a plurality of R 7 may be the same may be different, multiple R 8 may be the same or different, each of R 1 to R 8 may be independently partially substituted with a substituent or a halogen atom, u, v and y are positive numbers and t, w, x and z are each independently 0 or a positive number. ]
  2.  前記式(1)中、t、w、x及びzが0であり、0.01≦y/(u+v)≦1である、請求項1に記載のシルセスキオキサン誘導体。 The silsesquioxane derivative according to claim 1, wherein t, w, x and z in the formula (1) are 0 and 0.01≤y/(u+v)≤1.
  3.  25℃における粘度は、10mPa・s~7,000mPa・sである、請求項1又は請求項2に記載のシルセスキオキサン誘導体。 The silsesquioxane derivative according to claim 1 or claim 2, which has a viscosity at 25°C of 10 mPa·s to 7,000 mPa·s.
  4.  請求項1~請求項3のいずれか1項に記載のシルセスキオキサン誘導体と重合開始剤とを含む、硬化性組成物。 A curable composition comprising the silsesquioxane derivative according to any one of claims 1 to 3 and a polymerization initiator.
  5.  請求項4に記載の硬化性組成物を硬化させてなる、硬化物。 A cured product obtained by curing the curable composition according to claim 4.
  6.  25℃における水に対する接触角が100°以上である、請求項5に記載の硬化物。 The cured product according to claim 5, which has a contact angle with water of 100° or more at 25°C.
  7.  25℃における屈折率が1.42未満である、請求項5又は請求項6に記載の硬化物。 The cured product according to claim 5 or 6, which has a refractive index of less than 1.42 at 25°C.
  8.  請求項5~請求項7のいずれか1項に記載の硬化物を備える、基材。 A substrate comprising the cured product according to any one of claims 5 to 7.
PCT/JP2022/044463 2021-12-01 2022-12-01 Silsesquioxane derivative, curable composition, cured product, and base material WO2023100992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195434 2021-12-01
JP2021-195434 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100992A1 true WO2023100992A1 (en) 2023-06-08

Family

ID=86612365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044463 WO2023100992A1 (en) 2021-12-01 2022-12-01 Silsesquioxane derivative, curable composition, cured product, and base material

Country Status (1)

Country Link
WO (1) WO2023100992A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123122A1 (en) * 2007-03-23 2008-10-16 Chisso Corporation Polymer and surface-treating agent containing the polymer
KR20100131312A (en) * 2009-06-05 2010-12-15 한국과학기술연구원 Fluorinated polysilsesquioxane and method for preparing the same
CN104610549A (en) * 2015-01-29 2015-05-13 苏州大学 Modified fluorine-containing silicone oil and preparation method thereof
JP2017508013A (en) * 2013-12-09 2017-03-23 スリーエム イノベイティブ プロパティズ カンパニー Curable silsesquioxane polymers, compositions, articles, and methods
JP2017529452A (en) * 2014-09-24 2017-10-05 エヌビーディー ナノテクノロジーズ, インコーポレイテッド F-POSS coating or additive and method for producing the same
JP2019501148A (en) * 2016-03-17 2019-01-17 エルジー・ケム・リミテッド Polyhedral oligomeric silsesquioxane and process for producing the same
JP2019070071A (en) * 2017-10-06 2019-05-09 東亞合成株式会社 Curable composition and use thereof
JP2019094381A (en) * 2017-11-20 2019-06-20 信越化学工業株式会社 Photocurable composition and cured product of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123122A1 (en) * 2007-03-23 2008-10-16 Chisso Corporation Polymer and surface-treating agent containing the polymer
KR20100131312A (en) * 2009-06-05 2010-12-15 한국과학기술연구원 Fluorinated polysilsesquioxane and method for preparing the same
JP2017508013A (en) * 2013-12-09 2017-03-23 スリーエム イノベイティブ プロパティズ カンパニー Curable silsesquioxane polymers, compositions, articles, and methods
JP2017529452A (en) * 2014-09-24 2017-10-05 エヌビーディー ナノテクノロジーズ, インコーポレイテッド F-POSS coating or additive and method for producing the same
CN104610549A (en) * 2015-01-29 2015-05-13 苏州大学 Modified fluorine-containing silicone oil and preparation method thereof
JP2019501148A (en) * 2016-03-17 2019-01-17 エルジー・ケム・リミテッド Polyhedral oligomeric silsesquioxane and process for producing the same
JP2019070071A (en) * 2017-10-06 2019-05-09 東亞合成株式会社 Curable composition and use thereof
JP2019094381A (en) * 2017-11-20 2019-06-20 信越化学工業株式会社 Photocurable composition and cured product of the same

Similar Documents

Publication Publication Date Title
JP5625182B2 (en) Curable composition and method for producing organosilicon compound
JP5826341B2 (en) Method for producing cured product
KR102510268B1 (en) Fluorine-containing acrylic compound and method for producing the same, curable composition, and article
JP5640381B2 (en) Active energy ray-curable coating agent composition comprising a condensate of alkoxysilane
JP5477299B2 (en) Curable composition comprising inorganic oxide fine particles surface-modified with maleimide groups
JP5051383B2 (en) (Meth) acrylic modified siloxane compound and curable composition containing the same
KR20130132477A (en) Curable composition for coating containing fluorine-containing hyperbranched polymer
KR101804864B1 (en) Coating agent composition
JPWO2013157643A1 (en) Polysiloxane composition having radically crosslinkable groups
US20140323677A1 (en) Thermal-shock-resistant cured product and method for producing same
WO2020230723A1 (en) Radiation curable organopolysiloxane composition, and release sheet
WO2023100991A1 (en) Silsesquioxane derivative, curable composition, hard coat agent, cured product, hard coat, and base material
JP2014084360A (en) Active energy ray-curable undercoat composition, and laminate
JP5073738B2 (en) lens
WO2023100992A1 (en) Silsesquioxane derivative, curable composition, cured product, and base material
WO2023238835A1 (en) Silsesquioxane derivative and method for producing same, curable composition, hard coat agent, cured product, hard coat, and base material
TW202406993A (en) Silsesquioxane derivative and method of producing the same, curable composition, hard coating agent, cured product, hard coating, and base material
JP7276183B2 (en) Active energy ray-curable composition, coating agent, and coated article
JP7414642B2 (en) Photocurable organopolysiloxane composition for release sheet and release sheet
JP2012116173A (en) Laminate having protective coating
JP2012223910A (en) Laminate and method for manufacturing the same
WO2023238836A1 (en) Silsesquioxane derivative and method for producing same, curable composition, hard coat agent, cured product, hard coat, and base material
WO2023120495A1 (en) Photocurable silicone resin composition and cured product thereof
JP2022157239A (en) Resin composition for photo-molding and photo-molded article
JP2023151036A (en) Active energy ray-curable composition, cured film, hard coat film, flexible member, and flexible image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901422

Country of ref document: EP

Kind code of ref document: A1