WO2021213548A1 - 换热设备、热水器和空调 - Google Patents

换热设备、热水器和空调 Download PDF

Info

Publication number
WO2021213548A1
WO2021213548A1 PCT/CN2021/097484 CN2021097484W WO2021213548A1 WO 2021213548 A1 WO2021213548 A1 WO 2021213548A1 CN 2021097484 W CN2021097484 W CN 2021097484W WO 2021213548 A1 WO2021213548 A1 WO 2021213548A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
heat exchange
port
compressor
gas
Prior art date
Application number
PCT/CN2021/097484
Other languages
English (en)
French (fr)
Inventor
杜顺祥
陈炳泉
赵润鹏
余锦剑
黄娟
梁杰
Original Assignee
青岛经济技术开发区海尔热水器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛经济技术开发区海尔热水器有限公司, 海尔智家股份有限公司 filed Critical 青岛经济技术开发区海尔热水器有限公司
Publication of WO2021213548A1 publication Critical patent/WO2021213548A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • This application relates to the technical field of electrical appliances, in particular to a heat exchange device, a water heater and an air conditioner.
  • Heat exchange equipment is a device that allows heat to flow from one heat source to another, and is often used in equipment such as air conditioners and water heaters.
  • the water heater includes heat exchange equipment and hot water exchange pipes; the heat exchange equipment usually includes compressors, condensers, throttles, evaporators, and fluid medium circulating in the refrigerant pipes connected by refrigerant pipes;
  • the hot water pipe is connected with the condenser, and the hot water exchange pipe is provided with water to be heated.
  • the compressor compresses the fluid medium into high-temperature and high-pressure gas.
  • the high-temperature and high-pressure gas enters the condenser, causing the gas to exchange heat with the water in the hot water exchange pipe; the fluid medium is cooled and condensed, and the evaporator absorbs heat and turns it into a gaseous state. Entering the compressor for the next cycle, the water absorption temperature rises.
  • the purpose of this application is to provide a heat exchange device, a water heater and an air conditioner to overcome the problem of poor heating capacity of the heat exchange device in the related art.
  • the present application discloses a heat exchange device, including: a compressor, a first condenser, a second condenser, and an evaporator, the compressor is provided with a compressor outlet, a first inlet, and a second inlet; The second end of the first condenser is connected with the first end of the second condenser, and the second end of the second condenser is connected with the first end of the evaporator; the heat exchange device has heating State, when the heat exchange device is in the heating state, the first end of the first condenser is connected to the outlet of the compressor, and the second end of the evaporator is connected to the first inlet of the compressor , The fluid medium compressed by the compressor enters the first condenser; a gas-liquid separation component connected to the second inlet is also provided between the first condenser and the second condenser, so The gas-liquid separation component is used to separate gas and liquid in the fluid medium, and send the liquid to the second condenser, and
  • the circulating flow of the fluid medium can be realized.
  • the first condenser and the second condenser are connected in series to realize rapid heat exchange and at the same time increase the degree of subcooling of the fluid medium, that is, increase the heat exchange amount of the fluid medium at the first condenser and the second condenser .
  • gas-liquid separation component connected to the second inlet of the compressor between the first condenser and the second condenser; when the heat exchange equipment is working, the fluid medium compressed by the compressor becomes a high-temperature and high-pressure state and enters the first condensation In the first condenser, the fluid medium exchanges heat with the part to be heated and condenses by exothermic heat.
  • the cooled fluid medium enters the gas-liquid separation assembly, and the separated gas enters the compressor.
  • the separated liquid can be further subcooled by the second condenser, and the heat release of the fluid medium becomes higher.
  • the subcooled fluid medium enters the compressor through the evaporator.
  • the gas separated from the gas and liquid is mixed for two-stage compression, which increases the flow rate of the fluid medium at the first condenser and the second condenser, and further increases This improves the heat exchange of the fluid medium at the first condenser and the second condenser, that is, the heating capacity of the heat exchange equipment is improved.
  • the compressor discharge temperature is reduced, and the subcooling degree of the refrigerant flowing out of the second condenser becomes higher, which helps to reduce the dryness of the fluid medium entering the evaporator, and improves the fluid medium in the evaporator.
  • the heat exchange capacity especially when the ambient temperature is low, improves the low-temperature heating capacity of the heat exchange equipment.
  • the compression ratio of the compressor can be increased, the input power of the compressor is increased, and part of the heat is also provided for the heat exchange equipment. That is to say, the heat exchange equipment provided in this application improves the heating capacity of the heat exchange equipment in many aspects.
  • the gas-liquid separation assembly includes: a flash generator connected to the second end of the first condenser and the first end of the second condenser; a gas supplement pipeline, One end of the gas supplement pipeline is connected with the flash generator, and the other end of the gas supplement pipeline is connected with the second inlet of the compressor.
  • the flasher includes a housing, and the housing is provided with a first flasher port, a second flasher port, and a third flasher port, the first flasher The port is connected to the second end of the first condenser, the second flasher port is connected to the supplemental gas pipeline, and the third flasher port is connected to the first end of the second condenser
  • the second flasher port is located at the top of the housing, the first flasher port and the third flasher port are located at the bottom of the housing away from the second flasher port , It is easy for part of the fluid medium to transform from liquid to gas, and the structure is relatively simple.
  • the gas supplement pipeline is also provided with a one-way valve for allowing the gas to flow from the flash generator to the second inlet, so as to prevent the fluid medium from flowing back from the compressor to the flash generator, which is safe High sex.
  • the gas-liquid separation assembly includes a first expansion valve, and two ends of the first expansion valve are respectively connected to the second end of the first condenser and the first flasher port, and In order to reduce the pressure of the fluid medium, to prevent the flasher from being subjected to high pressure, and the pressure of the fluid medium is reduced, which helps the fluid medium to be heated and evaporate.
  • the heat exchange device has a refrigeration state, and when the heat exchange device is in the refrigeration state, the first end of the first condenser is connected to the first inlet of the compressor, and the evaporation The second end of the device is connected to the outlet of the compressor; the fluid medium compressed by the compressor enters the evaporator, and then the fluid medium enters the flasher through the second condenser for gas-liquid separation , The liquid after gas-liquid separation enters the first condenser, and the gas after gas-liquid separation enters the compressor through the second inlet. That is, the heat exchange equipment provided by the present application has two states of heating and cooling, and can be switched as required, which is convenient to use.
  • the heat exchange device includes a four-way valve, the four-way valve is provided with a first port, a second port, a third port, and a fourth port, the first port and the compressor outlet Connected, the second port is connected to the first inlet of the compressor, the third port is connected to the second end of the evaporator, and the fourth port is connected to the first inlet of the first condenser One end is connected; when the heat exchange device is in the heating state, the first port is connected to the fourth port, and the second port is connected to the third port; when the heat exchange device is in cooling In the state, the first port is connected to the third port, and the second port is connected to the fourth port.
  • the heat exchange device can be switched between heating and cooling states.
  • the heat exchange device further includes a second expansion valve connected to the second end of the second condenser and the first end of the evaporator for reducing flow direction evaporation. The pressure of the fluid medium of the device.
  • the present application discloses a water heater, comprising: a hot water exchange pipe and the heat exchange device described in the first aspect, the hot water exchange pipe being connected to the first condenser and the second condenser; The second condenser is located at an upstream position of the first condenser along the water flow direction.
  • the water heater can provide high temperature water at a preset temperature or low temperature water at a preset temperature, and because the heat exchange equipment has better heat exchange capabilities, the water heater can be used in a low temperature environment Provide high temperature water in high temperature environment or low temperature water in high temperature environment.
  • the present application discloses an air conditioner, which includes: a heat exchange air duct and the heat exchange device of the first aspect, the heat exchange air duct is connected to the first condenser and the second condenser ; The second condenser is located upstream of the first condenser along the air flow direction.
  • the present application improves the supercooling degree of the fluid medium by arranging the first condenser and the second condenser in series with each other, that is, increases the heat exchange amount of the fluid medium;
  • the fluid medium at a condenser is divided, and part of the gaseous fluid medium is introduced into the compressor, which increases the flow rate of the fluid medium and further improves the heat exchange of the fluid medium; after the compressor is supplemented with air, it can perform two-stage compression.
  • the discharge temperature of the compressor can be reduced, which improves the heat exchange of the fluid medium at the evaporator; by setting a four-way valve, the heat exchange equipment can be switched between cooling and heating states. That is, this application improves the heat exchange capacity of the heat exchange equipment in many aspects, and helps the water heaters, air conditioners and other equipment that use the heat exchange equipment to adjust in a larger temperature range, and the use safety is relatively high.
  • Figure 1 is a schematic structural diagram of a heat exchange device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another heat exchange device in a heating state according to an embodiment of the application
  • FIG. 3 is a schematic structural diagram of another heat exchange device in a cooling state according to an embodiment of the application.
  • Figure 4 is a schematic diagram of the structure of the flasher in Figure 1, Figure 2 and Figure 3.
  • 50 gas-liquid separation component
  • 51 flasher
  • 511 shell
  • 512 first flasher port
  • 513 second flasher port
  • 514 third flasher port
  • 52 gas supply pipeline
  • 53 the first expansion valve
  • 54 one-way valve
  • 70 four-way valve; 71: first port; 72: second port; 73: third port; 74: fourth port.
  • the fluid medium is the refrigerant, which is compressed by the compressor to become a high-temperature and high-pressure gaseous state.
  • the high-temperature and high-pressure gaseous fluid medium enters the condenser and exchanges heat with the object to be heated, and the object to be heated absorbs heat The temperature rises, and at the same time, the fluid medium releases heat and becomes a low-temperature and high-pressure liquid state.
  • the fluid medium then enters the evaporator through throttling and pressure reduction.
  • the fluid medium absorbs the heat in the environment in the evaporator and turns into a gaseous state to enter the compressor for the next step. cycle.
  • the heat exchange equipment in the evaporator and condenser has a small amount of heat exchange, resulting in poor heating capacity of the heat exchange equipment.
  • the fluid medium in the evaporator is difficult to absorb heat from the environment.
  • this embodiment increases the number of condensers.
  • a first condenser and a second condenser are arranged in series.
  • the large temperature difference between the first condenser and the part to be heated can achieve rapid heating, and the second condenser can further heat the part to be heated.
  • the heating element makes the fluid medium located in the second condenser further radiate heat and supercool, and the heat exchange amount of the fluid medium at the first condenser and the second condenser becomes higher; at the same time, it can also be used in the first condenser and the second condenser.
  • a gas-liquid separation component is arranged between the condensers, so that the separated liquid can enter the compressor for secondary compression, and the separated liquid enters the second condenser for subcooling; the separated gas and the gas entering the compressor from the evaporator
  • Two-stage compression after mixing can reduce the compressor's discharge temperature, increase the subcooling degree of the fluid medium in the second condenser, and reduce the dryness of the fluid medium in the evaporator, which is to improve the fluid medium in the evaporator.
  • the heat absorption further improves the heating capacity of the heat exchange equipment.
  • Fig. 1 is a schematic structural diagram 1 of a heat exchange device provided by an embodiment of this application
  • Fig. 2 is a schematic structural diagram of another heat exchange device provided in an embodiment of this application in heating state
  • Fig. 3 is another schematic diagram of another heat exchange device provided by an embodiment of this application.
  • Figures 1 to 3 For the schematic diagram of the structure of the thermal equipment in the cooling state, please refer to Figures 1 to 3.
  • This embodiment provides a heat exchange equipment, which includes a compressor 10, a first condenser 20, a second condenser 30 and an evaporator 40
  • the compressor 10 is provided with a compressor outlet 11, a first inlet 12 and a second inlet 13; the second end of the first condenser 20 is connected to the first end of the second condenser 30, and the second end of the second condenser 30 Connected to the first end of the evaporator 40;
  • the heat exchange device has a heating state, when the heat exchange device is in the heating state, the first end of the first condenser 20 is connected to the compressor outlet 11, and the second end of the evaporator 40 The end is connected to the first inlet 12 of the compressor 10, and the fluid medium compressed by the compressor 10 enters the first condenser 20; the first condenser 20 and the second condenser 30 are also connected to the second inlet 13
  • the gas-liquid separation component 50 is used to separate gas and liquid in the fluid medium, and send the liquid to the second
  • Heat exchange equipment can be used in electric appliances that require heating or cooling, such as water heaters and air conditioners.
  • the water heater includes a hot water exchange pipe and a heat exchange device; the hot water exchange pipe can be a coiled tube, and the hot water exchange pipe is connected with the heat releasing element in the heat exchange equipment, and the hot water exchange pipe is provided with water to be heated.
  • the hot water exchange pipe can be coiled outside the heat releasing element, with a large contact area and high heat exchange efficiency.
  • the hot water exchange pipe has a water inlet and a water outlet. The water to be heated enters the hot water exchange pipe from the water inlet. The water to be heated absorbs the heat released by the exothermic element in the flow process and then the temperature rises. After the temperature rises, the water to be heated exits The nozzle flows out for use in the next process.
  • the heat exchange equipment may include a compressor 10, a first condenser 20, a second condenser 30, and an evaporator 40 connected by a refrigerant pipeline.
  • a fluid medium circulates in the refrigerant pipeline.
  • the condensation temperature and evaporation temperature of the fluid medium are low, and it is prone to change between the gas and liquid phases, and absorbs heat or releases heat during the change of the gas and liquid phases.
  • the fluid medium can be any of saturated hydrocarbons, azeotropic refrigerants, non-azeotropic refrigerants, and the like.
  • the compressor 10 may be a reciprocating compressor, a rotary compressor, etc., and is used to compress the fluid medium into a high-temperature and high-pressure gas state.
  • the gaseous fluid medium compressed by the compressor 10 enters the first condenser 20 and the second condenser 30 to condense and release heat.
  • the first condenser 20 and the second condenser 30 can be spray condensers, packed condensers, and air. Any of the cooling condensers.
  • the high-temperature and high-pressure fluid medium first exchanges heat with the water to be heated in the first condenser 20 to achieve rapid heating. Then the fluid medium can exchange heat with the water to be heated again in the second condenser 30. The temperature of the water to be heated is further increased, and the temperature of the fluid medium is further reduced, so that the fluid medium is supercooled and the fluid medium in the first condenser is improved. 20 and the heat exchange in the second condenser 30.
  • the fluid medium becomes a low-temperature liquid or gas-liquid mixed state, and then enters the evaporator 40 and absorbs heat from the environment, so that the fluid medium can enter the compressor 10 in a gas state, avoiding liquid compression of the compressor 10 and damage The life of the compressor 10.
  • the evaporator 40, the first condenser 20 and the second condenser 30 are all heat exchanging elements, and their structures can be the same, and the evaporator 40 can also be other types well known to those skilled in the art. Among them, the supercooled fluid medium absorbs more heat in the evaporator 40, especially for heat exchange equipment that produces heat in a low temperature environment, which improves the low temperature heating capacity of the heat exchange equipment.
  • this embodiment is provided with a gas-liquid separation assembly 50 between the first condenser 20 and the second condenser 30, and the fluid medium flowing out of the first condenser 20 enters the gas-liquid separation
  • the compressor 10 compresses the fluid medium that enters from the side of the evaporator 40. When it is compressed to the same pressure as the separated gas, the separated gas enters the compressor 10, and the compressor 10 performs two-stage compression In this way, the displacement of the compressor 10 can be increased, that is, the flow rate of the fluid medium passing through the first condenser 20 and the second condenser 30 becomes higher, and the heat exchange amount of the first condenser and the second condenser 30 becomes higher.
  • the exhaust temperature of the compressor 10 can be reduced, which helps to increase the subcooling degree of the fluid medium at the second condenser 30, so that the dryness of the fluid medium entering the evaporator 40 through throttling expansion is reduced, and the fluid medium is also increased.
  • the heat absorption capacity of the medium in the evaporator 40 improves the low-temperature heating capacity of heat exchange equipment used in a low-temperature environment.
  • the heat exchange equipment provided in this embodiment also increases the degree of subcooling of the fluid medium by setting the first condenser 20 and the second condenser 30 in series to achieve rapid heat exchange, and increases the amount of fluid medium in the first condenser 20.
  • the heat exchange with the second condenser 30 improves the heating capacity of the heat exchange equipment.
  • a gas-liquid separation assembly 50 connected to the second inlet 13 of the compressor 10 is also provided at the first condenser 20 and the second condenser 30 to realize the two-stage compression of the compressor 10 and improve the flow rate of the fluid medium.
  • the flow rate at the first condenser 20 and the second condenser 30 further increases the heat exchange of the fluid medium at the first condenser 20 and the second condenser 30, that is, improves the heating capacity of the heat exchange equipment.
  • the exhaust temperature of the compressor 10 after supplemental air is lowered the fluid medium flowing out of the second condenser 30 has a higher degree of subcooling, and the dryness of the fluid medium entering the evaporator 40 is reduced, which improves the fluid medium in the evaporator.
  • the compression ratio of the compressor 10 can be increased, the input power of the compressor 10 is increased, and part of the heat is also provided for the heat exchange equipment.
  • the gas-liquid separation component 50 may be a gas-liquid separator well known to those skilled in the art, or the gas-liquid separation component 50 may include a gas pipeline connected to the second end of the first condenser 20 through the first
  • the condenser 20 is connected to the second inlet 13 of the compressor 10, and the pipeline is provided with a throttle.
  • the fluid medium flowing out of the first condenser 20 passes through the gas decompressed by the throttle and enters the compressor 10 after heat exchange with the second condenser 30, and the first condenser 20 further cools and supercools during heat exchange with the gas.
  • the gas-liquid separation assembly 50 in this embodiment may include: a flasher 51, and the flasher 51 is connected to the second condenser of the first condenser 20. End and the first end of the second condenser 30; a supplemental gas pipeline 52, one end of the supplementary pipeline 52 is connected to the flash generator 51, and the other end of the supplementary gas pipeline 52 is connected to the second inlet 13 of the compressor 10.
  • the flasher 51 is used as a heat exchange component.
  • the fluid medium can absorb heat in the flasher 51, and part of the fluid medium becomes gaseous.
  • the gaseous fluid medium is introduced into the compressor 10 from the gas supply line 52, and the unevaporated liquid fluid medium is Enter the second condenser 30.
  • Figure 4 is a schematic diagram of the structure of the flasher in Figures 1, 2 and 3, please refer to Figure 4, the flasher 51 includes a housing 511, the housing 511 is provided with a first flasher port 512, a second flasher The transmitter port 513 and the third flasher port 514, the first flasher port 512 is connected to the second end of the first condenser 20, the second flasher port 513 is connected to the supplemental gas pipeline 52, and the third flasher port 512 is connected to the second end of the first condenser 20.
  • the first flasher port 514 is connected to the first end of the second condenser 30; the second flasher port 513 is located at the top of the housing 511, and the first flasher port 512 and the third flasher port 514 are located on the housing 511 away from the first end. The bottom of the second flasher port 513.
  • a flash cavity is formed in the shell 511, and the volume of the flash cavity is relatively large.
  • the pressure decreases, which can also promote part of the liquid fluid medium to become a gaseous fluid medium.
  • the second flasher port 513 connected to the gas supply line 52 can be located at the top of the housing 511 to facilitate gas flow; and considering the fluid entering the flasher 51 The medium and the liquid fluid flowing from the flasher 51 have a high density.
  • the first flasher port 512 connected to the first condenser 20 and the third flasher port 514 connected to the second condenser may be located in the housing 511 bottom of.
  • the number of flashers 51 may include multiple flash cavities in parallel, or multiple flashers 51 may be arranged in parallel.
  • a one-way valve 54 is also provided on the supplemental gas pipeline 52 to allow the gas to flow from the flash generator 51 to the second inlet 13 and to prevent the fluid medium in the compressor 10 from flowing back into the flash generator 51, causing The fluid medium flows in series, and the operation safety of the heat exchange equipment is high.
  • the gas-liquid separation assembly 50 further includes a first expansion valve 53, and two ends of the first expansion valve 53 are respectively connected to the second end of the first condenser 20 and the first flasher port 512.
  • the first throttling of the first expansion valve 53 can reduce the pressure of the fluid medium flowing out of the first condenser 20, and prevent the flasher 51 from being subjected to high pressure.
  • the flasher 51 has high safety and fluidity.
  • the pressure of the medium is reduced, and it is easy to evaporate due to heat; at the same time, by adjusting the opening degree of the first expansion valve 53, the pressure difference between the two sides of the first expansion valve 53 can be increased to meet the demand of the supplemental gas of the supplementary gas pipeline 52.
  • the opening degree of the first regulating valve 53 becomes smaller, the flow rate of the fluid medium flowing through the first regulating valve 53 becomes lower, the condensing pressure and condensing temperature of the first condenser 20 become higher, and the second condenser 30
  • the condensing pressure and the condensing temperature become lower, the pressure difference and temperature difference between the two sides of the first regulating valve 53 increase, the gaseous fluid medium increases, and the air supplement volume increases
  • the discharge temperature of the compressor 10 will also become higher.
  • the supplemental air volume can be increased. After the compressor 10 performs two-stage compression, the discharge temperature of the compressor 10 can be lowered, and the operation stability is high.
  • the opening degree of the first regulating valve 53 in this embodiment can be automatically adjusted according to the condensation temperature of the first condenser 20 and the second condenser 30, which facilitates the automatic balance of the heat exchange equipment and improves the operation stability.
  • the first expansion valve 53 may be a thermal expansion valve, an electronic expansion valve, or the like.
  • a second expansion valve 60 is also provided between the second condenser 30 and the evaporator 40.
  • the second expansion valve 60 connects the second end of the second condenser 30 and the first end of the evaporator 40 through the second condenser 30 and the evaporator 40.
  • the fluid medium after the first condenser 20 and the second condenser 30 becomes a low-temperature and high-pressure liquid state.
  • a second expansion valve 60 and a second expansion valve 60 are provided upstream of the evaporator 40
  • the secondary throttling is used to reduce the pressure of the fluid medium, so that the fluid medium entering the evaporator 40 can become a low-temperature and low-pressure gas-liquid two-phase state.
  • the second expansion valve 60 and the first expansion valve 53 may be the same, or may be a thermal expansion valve, an electronic expansion valve, or the like.
  • the heat exchange equipment provided in this embodiment can also have a cooling state to reduce the temperature of the parts to be cooled, which can be air or water.
  • a cooling state to reduce the temperature of the parts to be cooled, which can be air or water.
  • the first end of the first condenser 20 is connected to the first inlet 12 of the compressor 10
  • the second end of the evaporator 40 is connected to the compressor outlet 11;
  • the compressed fluid medium enters the evaporator 40, and then the fluid medium enters the flasher 51 through the second condenser 30 for gas-liquid separation, the liquid after the gas-liquid separation enters the first condenser 20, and the gas after the gas-liquid separation
  • the second inlet 13 enters the compressor 10.
  • the high-temperature and high-pressure gaseous fluid medium compressed by the compressor 10 enters the evaporator 40, where it exchanges heat with the parts to be cooled and condenses, and the condensed fluid medium passes through the second expansion valve 60 throttling and depressurization for the first time becomes a gas-liquid two-phase mixed state.
  • the fluid medium then enters the second condenser 30, and exchanges heat with the part to be cooled in the second condenser 30.
  • the temperature of the fluid medium in the second condenser 30 differs greatly from the temperature of the part to be cooled.
  • the cooling speed of the components is fast, and part of the fluid medium in the second condenser 30 absorbs heat and evaporates.
  • the fluid medium flowing out of the second condenser 30 enters the flasher 51 through the third flasher port 514, and the gas generated in the flasher 51 enters the gas supply line 52 from the second flasher port 513 and enters The compressor 10 performs secondary compression.
  • the liquid in the flasher 51 flows out from the first flasher port 512, passes through the first expansion valve 53 for secondary throttling, and then enters the first condenser 20 to further superheat and evaporate.
  • the fluid medium is The heat exchange capacity between the first condenser 20 and the second condenser 30 is high, and the refrigeration capacity of the heat exchange equipment is high; and the fluid medium overheating at the first condenser 20 can prevent the liquid fluid medium from entering the compressor 10 to cause liquid compression, The service life of the compressor 10 is reduced.
  • the opening degree of the first expansion valve 53 can also be reduced.
  • the opening degree of the first expansion valve 53 can be automatically adjusted according to the evaporation temperature of the first condenser 20 and the second condenser 30 to prevent the evaporation temperature of the first condenser 20 from being too low, causing the The second condenser 20 is frosted or frozen, which is not conducive to refrigeration of the heat exchange equipment.
  • the heat exchange equipment includes a four-way valve 70.
  • the four-way valve 70 may be a type well known to those skilled in the art.
  • the four-way valve 70 may include a main valve.
  • the pilot valve has two capillary tubes connected to the cavities on both sides of the main valve.
  • the high-pressure fluid medium and the low-pressure fluid medium flow in the two capillary tubes respectively.
  • the pressure difference between the high-pressure fluid medium and the low-pressure fluid medium controls the main valve slide. The sliding of the block to realize the switching of the connection state of different pipelines.
  • the four-way valve 70 is provided with a first port 71, a second port 72, a third port 73, and a fourth port 74.
  • the first port 71 is connected to the compressor outlet 11, and the second port 72 is connected to the compressor 10
  • the first inlet 12 is connected, the third port 73 is connected to the second end of the evaporator 40, and the fourth port 74 is connected to the first end of the first condenser 20; when the heat exchange device is in the heating state, the first port 71 It is connected to the fourth port 74, and the second port 72 is connected to the third port 73; when the heat exchange device is in a cooling state, the first port 71 and the third port 73 are connected, and the second port 72 and the fourth port 74 are connected.
  • the outlet of the compressor 10 When the heat exchange device is in the heating state, the outlet of the compressor 10 is connected to the first end of the first condenser 20 so that the high-temperature and high-pressure fluid medium can release heat at the first condenser 20 and the second condenser 30.
  • the outlet of the compressor 10 When the heat exchange equipment is in the cooling state, the outlet of the compressor 10 is connected to the evaporator 40, so that the high-temperature and high-pressure fluid medium can release heat at the evaporator 40, and then absorb heat at the first condenser and the second condenser 30 .
  • the four-way valve 70 can realize the switching of cooling and heating on the heat exchange equipment, simplifying the structure of the heat exchange equipment.
  • This embodiment provides a water heater, which includes: a hot water exchange pipe and a heat exchange device, and the hot water exchange pipe is connected to the first condenser 20 and the second condenser 30.
  • the hot water exchange tube of the water heater can be in a coiled tube shape.
  • the heat exchange tube has water to be heated, which has a water inlet and a water outlet.
  • the water to be heated can exchange heat with the first condenser 20 and the second condenser 30 during the flow process. process.
  • the first condenser 20 and the second condenser 30 release heat, and the temperature of the water to be heated absorbing heat rises to provide hot water for the next process.
  • the first condenser 20 can be located upstream of the flow direction of the water to be heated, so that the water to be heated can first exchange heat with the first condenser 20.
  • the temperature difference between the medium and the water to be heated is large, and the heating effect is good.
  • This embodiment also provides an air conditioner, which includes a heat exchange air duct and a heat exchange device, and the heat exchange air duct is connected to the first condenser 20 and the second condenser 30.
  • the first condenser 20 and the second condenser 30 may be located in the heat exchange air duct, so that the air can pass through the first condenser 20 and the second condenser 30 when flowing, the contact area is large, and the heat exchange effect is good.
  • the first condenser 20 may be located at an upstream position in the air flow direction.
  • the heat exchange equipment is heating, there is a gas to be heated in the heat exchange air duct.
  • the gas to be heated can first exchange heat with the first condenser 20.
  • the temperature difference between the gas to be heated and the fluid medium is large, and the heating effect is good.
  • the heat exchange air duct is provided with gas to be cooled, and the temperature difference between the fluid medium at the second condenser 30 and the gas to be cooled is large, and the cooling effect is good.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components, Unless otherwise clearly defined.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the first feature "below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Abstract

一种换热设备、热水器和空调,涉及电器技术领域。换热设备包括压缩机(10)、第一冷凝器(20)、第二冷凝器(30)以及蒸发器(40),压缩机(10)设有压缩机出口(11)、第一入口(12)和第二入口(13);第一冷凝器(20)的第二端与所述第二冷凝器(30)的第一端连接,第二冷凝器(30)的第二端与蒸发器(40)的第一端连接;当换热设备处于制热状态时,第一冷凝器(20)的第一端与压缩机出口(11)连接,蒸发器(40)的第二端与压缩机(10)的第一入口(12)连接;第一冷凝器(20)和第二冷凝器(30)之间还设有与第二入口(13)连接的气液分离组件(50),气液分离组件(50)用于将流体介质中的气体和液体分离,并将液体送入第二冷凝器(30),气体由第二入口(13)送入压缩机(10)。

Description

换热设备、热水器和空调
本申请要求于2020年06月01日提交中国专利局、申请号为202010483482.6、申请名称为“换热设备、热水器和空调”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电器技术领域,尤其涉及一种换热设备、热水器和空调。
背景技术
换热设备是一种使热量从一个热源流向另一个热源的装置,常用于空调、热水器等设备。
以热水器为例,热水器包括换热设备和换热水管;换热设备通常包括通过制冷剂管道连接的压缩机、冷凝器、节流件、蒸发器以及在制冷剂管道中循环的流体介质;换热水管与冷凝器连接,换热水管中设置有待加热的水。当需要加热时,压缩机将流体介质压缩为高温高压的气体,高温高压气体进入冷凝器,使得气体与换热水管中的水发生热交换;流体介质降温冷凝后由蒸发器吸热并以气态进入压缩机进行下一循环,水吸热温度升高。
然而,上述换热设备的制热能力差。
发明内容
本申请的目的在于提供一种换热设备、热水器和空调,以克服相关技术中换热设备制热能力差的问题。
第一方面,本申请公开了一种换热设备,包括:压缩机、第一冷凝器、第二冷凝器以及蒸发器,压缩机设有压缩机出口、第一入口和第二入口;所述第一冷凝器的第二端与所述第二冷凝器的第一端连接,所述第二冷凝器的第二端与所述蒸发器的第一端连接;所述换热设备具有制热状态,当所述换热设备处于制热状态时,所述第一冷凝器的第一端与所述压缩机出口连接,所述蒸发器的第二端与所述压缩机的第一入口连接,经所述压缩机压缩的流体介质进入所述第一冷凝器;所述第一冷凝器和所述第二冷凝器之间还设有与所述第二入口连接的气液分离组件,所述气液分离组件用于将流体介质中的气体和液体分离,并将所述液体送入所述第二冷凝器,所述气体由所述第二入口送入所述压缩机。
基于上述技术内容,通过设置压缩机、第一冷凝器、第二冷凝器和蒸发器,可以实现流体介质的循环流动。其中,第一冷凝器和第二冷凝器串联,实现快速换热的同时,能够提高流体介质的过冷度,也就是提高了流体介质在第一冷凝器和第二冷凝器处的换热量。第一冷凝器和第二冷凝器之间还设有与压缩机第二入口相连的气液分离组件;换热设备工作时,经压缩机压缩的流体介质变为高温高压状态并进入第一冷凝器,流体介质在第一冷 凝器中与待加热件发生热交换并放热冷凝,降温后的流体介质进入气液分离组件,分离出的气体进入压缩机中。而分离出的液体可以经第二冷凝器进一步过冷,流体介质的放热量变高。过冷的流体介质经蒸发器进入压缩机,压缩机压缩过程中将气液分离出的气体混合进行二级压缩,提高了流体介质在第一冷凝器和第二冷凝器处的流量,进一步增加了流体介质在第一冷凝器和第二冷凝器处的换热量,也就是提高了换热设备的制热能力。同时,补气后,压缩机的排气温度降低,第二冷凝器处流出的制冷剂过冷度变高,有助于降低流体介质进入蒸发器的干度,提高了流体介质在蒸发器中的换热量,尤其是在环境温度较低时,提高了换热设备的低温制热能力。且通过为压缩机补气,可以提高压缩机的压缩比,压缩机的输入功率增大,也为换热设备提供部分热量。也就是说本申请提供的换热设备从多方面提高了换热设备的制热能力。
在一个实现方式中,所述气液分离组件包括:闪发器,所述闪发器连接所述第一冷凝器的第二端和所述第二冷凝器的第一端;补气管路,所述补气管路的一端与所述闪发器连接,所述补气管路的另一端与所述压缩机的所述第二入口连接。
在一个实现方式中,所述闪发器包括壳体,所述壳体上设置有第一闪发器端口、第二闪发器端口和第三闪发器端口,所述第一闪发器端口与所述第一冷凝器的第二端连接,所述第二闪发器端口与所述补气管路连接,所述第三闪发器端口与所述第二冷凝器的第一端连接;所述第二闪发器端口位于所述壳体的顶部,所述第一闪发器端口和所述第三闪发器端口位于所述壳体背离所述第二闪发器端口的底部,易于部分流体介质从液态转化为气态,结构较为简单。
在一个实现方式中,所述补气管路上还设有单向阀,用于使所述气体从所述闪发器流向所述第二入口,避免流体介质从压缩机回流至闪发器,安全性较高。
在一个实现方式中,所述气液分离组件包括第一膨胀阀,所述第一膨胀阀的两端分别连接所述第一冷凝器的第二端和所述第一闪发器端口,用于降低流体介质的压力,避免闪发器受到高压,且流体介质的压力降低,有助于流体介质受热蒸发。
在一个实现方式中,所述换热设备具有制冷状态,当所述换热设备处于制冷状态时,所述第一冷凝器的第一端与所述压缩机的第一入口连接,所述蒸发器的第二端与所述压缩机出口连接;经所述压缩机压缩的流体介质进入所述蒸发器,然后所述流体介质经所述第二冷凝器进入所述闪发器进行气液分离,经过气液分离后的液体进入第一冷凝器,经气液分离后的气体由所述第二入口进入所述压缩机。即本申请提供的换热设备具有制热和制冷两种状态,且可根据需要进行切换,使用方便。
在一个实现方式中,所述换热设备包括四通阀,所述四通阀设置有第一端口、第二端口、第三端口和第四端口,所述第一端口与所述压缩机出口连接,所述第二端口与所述压缩机的所述第一入口连接,所述第三端口与所述蒸发器的第二端连接,所述第四端口与所述第一冷凝器的第一端连接;当所述换热设备处于制热状态时,所述第一端口和所述第四端口连接,所述第二端口和所述第三端口连接;当所述换热设备处于制冷状态时,所述第一端口和所述第三端口连接,所述第二端口和所述第四端口连接。这样,通过调节四通阀中不同端口之间的连通状态,可以将换热设备在制热和制冷状态之间切换。
在一个实现方式中,所述换热设备还包括第二膨胀阀,所述第二膨胀阀连接所述第二冷凝器的第二端和所述蒸发器的第一端,用于降低流向蒸发器的流体介质的压力。
第二方面,本申请公开了一种热水器,其包括:换热水管和第一方面所述换热设备,所述换热水管与所述第一冷凝器、所述第二冷凝器连接;所述第二冷凝器位于所述第一冷凝器沿水流动方向的上游位置。通过使换热设备在制冷和制热状态之间切换,热水器可以提供预设温度的高温水或预设温度的低温水,且由于换热设备的换热能力较好,热水器可以实现在低温环境中提供高温水或者在高温环境中提供低温水。
第三方面,本申请公开了一种空调,其包括:换热风道和第一方面所述换热设备,所述换热风道与所述第一冷凝器、所述第二冷凝器连接;所述第二冷凝器位于所述第一冷凝器沿空气流动方向的上游位置。通过使换热设备在制冷和制热状态之间切换,空调可以为环境径向制冷或制热,且由于换热设备的换热能力较好,空调可以实现低温制热或高温制冷。
结合上述技术方案,本申请通过设置相互串联的第一冷凝器和第二冷凝器,提高了流体介质的过冷度,也就是提高了流体介质的换热量;且通过气液分离组件将第一冷凝器处的流体介质进行分流,并将部分气态流体介质导入压缩机,提高了流体介质的流量,进一步提高了流体介质的换热量;压缩机补气后可以进行二级压缩,这样,压缩机的排气温度可以降低,提高了流体介质在蒸发器处的换热量;通过设置四通阀,可以使换热设备在制冷和制热状态之间切换。即本申请从多方面提高了换热设备的换热能力,有助于使用换热设备的热水器、空调等设备在较大温度范围内进行调节,使用安全性较高。
附图说明
图1为本申请实施例提供的换热设备结构示意图;
图2为本申请实施例提供的另一换热设备制热状态时的结构示意图;
图3为本申请实施例提供的另一换热设备制冷状态时的结构示意图;
图4为图1、图2和图3中闪发器的结构示意图。
附图标记说明:
10:压缩机;11:压缩机出口;12:第一入口;13:第二入口;
20:第一冷凝器;
30:第二冷凝器;
40:蒸发器;
50:气液分离组件;51:闪发器;511:壳体;512:第一闪发器端口;513:第二闪发器端口;514:第三闪发器端口;52:补气管路;53:第一膨胀阀;54:单向阀;
60:第二膨胀阀;
70:四通阀;71:第一端口;72:第二端口;73:第三端口;74:第四端口。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,本申请不局限于下述的具体实施方式。
当换热设备处于制热状态时,流体介质也就是制冷剂,经压缩机压缩变为高温高压的气态,高温高压的气态流体介质进入冷凝器并与待加热件换热,待加热件吸热温度升高,同时,流体介质放热变为低温高压的液态,流体介质随后经过节流降压进入蒸发器,流体 介质在蒸发器中吸收环境中的热量变为气态重新进入压缩机进行下一个循环。然而,换热设备在蒸发器和冷凝器中的换热量少,导致换热设备制热能力差,尤其是在低温环境中,蒸发器中的流体介质难以从环境中吸收热量。
有鉴于此,本实施例增加冷凝器个数,例如设置串联的第一冷凝器和第二冷凝器,第一冷凝器与待加热件温差大可以实现快速加热,第二冷凝器可以进一步加热待加热件,使得位于第二冷凝器内的流体介质进一步放热过冷,流体介质在第一冷凝器和第二冷凝器处的换热量变高;同时,还可以在第一冷凝器和第二冷凝器之间设置气液分离组件,使得分离出的可以进入压缩机中进行二级压缩,分离出的液体即进入第二冷凝器过冷;分离出的气体与从蒸发器进入压缩机的气体混合后进行二级压缩,可以降低压缩机的排气温度,提高第二冷凝器中流体介质的过冷度,降低流体介质在蒸发器中的干度,也就是提高了流体介质在蒸发器中的吸热量,进一步提高了换热设备的制热能力。
图1为本申请实施例提供的换热设备结构示意图一,图2为本申请实施例提供的另一换热设备制热状态时的结构示意图,图3为本申请实施例提供的另一换热设备制冷状态时的结构示意图,请参阅图1至图3,本实施例提供一种换热设备,其包括:压缩机10、第一冷凝器20、第二冷凝器30以及蒸发器40,压缩机10设有压缩机出口11、第一入口12和第二入口13;第一冷凝器20的第二端与第二冷凝器30的第一端连接,第二冷凝器30的第二端与蒸发器40的第一端连接;换热设备具有制热状态,当换热设备处于制热状态时,第一冷凝器20的第一端与压缩机出口11连接,蒸发器40的第二端与压缩机10的第一入口12连接,经压缩机10压缩的流体介质进入第一冷凝器20;第一冷凝器20和第二冷凝器30之间还设有与第二入口13连接的气液分离组件50,气液分离组件50用于将流体介质中的气体和液体分离,并将液体送入第二冷凝器30,气体由第二入口13送入压缩机10。
换热设备可以应用于热水器、空调等需要制热或制冷的电器中。以热水器为例,热水器包括换热水管和换热设备;换热水管可以为盘管状,换热水管与换热设备中的放热件连接,换热水管内设有待加热水,示例性地换热水管可以盘绕在放热件外,接触面积大,换热效率高。换热水管具有进水口和出水口,待加热水从进水口进入换热水管,待加热水在流动过程中吸收放热件放出的热量后温度升高,温度升高后的待加热水从出水口流出,供下一工序使用。
其中,换热设备可以包括通过制冷剂管道连接的压缩机10、第一冷凝器20、第二冷凝器30和蒸发器40。制冷剂管道内流通有流体介质,流体介质的冷凝温度和蒸发温度低,易于发生气相和液相的变化,并在气相和液相变化过程中吸收热量或放出热量。根据热水器或空调的性能需求,流体介质可以是饱和碳氢化合物、共沸制冷剂、非共沸制冷剂等的任一种。
压缩机10可以是往复式压缩机、回转式压缩机等,用于将流体介质压缩为高温高压的气态。
经压缩机10压缩的气态流体介质进入第一冷凝器20和第二冷凝器30冷凝放热,第一冷凝器20和第二冷凝器30可以为喷淋式冷凝器、充填式冷凝器、空气冷却式冷凝器中的任一种。高温高压的流体介质在第一冷凝器20中首先与待加热水进行热交换,实现快速加热。随后流体介质可以在第二冷凝器30中与待加热水再次进行热交换,待加热水温 度进一步升高,流体介质的温度进一步降低,使流体介质过冷,提高了流体介质在第一冷凝器20和第二冷凝器30中的换热量。
放热后的流体介质变为低温的液态或气液混合状态,其随后进入蒸发器40并从环境中吸热,使得流体介质可以以气体状态进入压缩机10,避免压缩机10液压缩,损害压缩机10的寿命。蒸发器40与第一冷凝器20、第二冷凝器30均属于热交换件,其结构可以相同,蒸发器40也可以是本领域技术人员熟知的其他类型。其中,过冷的流体介质在蒸发器40中吸收的热量变多,尤其对于在低温环境中制热的换热设备,提高了换热设备的低温制热能力。
为了进一步提高换热设备的制热能力,本实施例在第一冷凝器20和第二冷凝器30之间设置了气液分离组件50,从第一冷凝器20流出的流体介质进入气液分离组件50,气液分离组件50分离出的气体进入压缩机10。
在压缩机10中,压缩机10压缩从蒸发器40一侧进入的流体介质,当压缩到与分离出的气体压力相同时,分离出的气体进入压缩机10中,压缩机10进行二级压缩,这样可以增加压缩机10的排气量,即经过第一冷凝器20和第二冷凝器30的流体介质流量变高,第一冷凝器和第二冷凝器30的换热量变高。同时压缩机10的排气温度可以降低,有助于提高流体介质在第二冷凝器30处的过冷度,使得经节流膨胀进入蒸发器40中的流体介质干度降低,也增加了流体介质在蒸发器40中的吸热能力,对于在低温环境中使用的换热设备,提高了其低温制热能力。
本实施例提供的换热设备通过设置串联的第一冷凝器20和第二冷凝器30在实现快速换热时,也提高了流体介质的过冷度,增加了流体介质在第一冷凝器20和第二冷凝器30处的换热量,提高了换热设备的制热能力。本实施例还在第一冷凝器20和第二冷凝器30处设置与压缩机10的第二入口13相连的气液分离组件50,以实现压缩机10的二级压缩,提高了流体介质在第一冷凝器20和第二冷凝器30处的流量,进一步增加了流体介质在第一冷凝器20和第二冷凝器30处的换热量,也就是提高了换热设备的制热能力。同时,补气后的压缩机10排气温度降低,从第二冷凝器30处流出的流体介质过冷度变高,进入蒸发器40中的流体介质干度降低,提高了流体介质在蒸发器40处从环境中的吸热能力,尤其对于环境温度较低时,提高了换热设备的低温制热能力。再者,通过为压缩机10补气,可以提高压缩机10的压缩比,压缩机10的输入功率增大,也为换热设备提供部分热量。
气液分离组件50可以是本领域技术人员熟知的气液分离器,或者气液分离组件50可以包括一个气体管路,该气体管路与第一冷凝器20的第二端连接,经第一冷凝器20后与压缩机10的第二入口13连接,该管路上设有节流件。经第一冷凝器20流出的流体介质通过节流件降压的气体与第二冷凝器30热交换后进入压缩机10,第一冷凝器20与气体热交换时进一步降温过冷。
考虑到本实施例设有可以进行流体介质过冷的第二冷凝器30,本实施例中气液分离组件50可以包括:闪发器51,闪发器51连接第一冷凝器20的第二端和第二冷凝器30的第一端;补气管路52,补气管路52的一端与闪发器51连接,补气管路52的另一端与压缩机10的第二入口13连接。闪发器51作为热交换部件,流体介质可以在闪发器51内吸热,部分流体介质变为气态,气态的流体介质从补气管路52导入压缩机10内,未蒸发的液态流体介质则进入第二冷凝器30。
图4为图1、图2和图3中闪发器的结构示意图,请参阅图4,闪发器51包括壳体511,壳体511上设置有第一闪发器端口512、第二闪发器端口513和第三闪发器端口514,第一闪发器端口512与第一冷凝器20的第二端连接,第二闪发器端口513与补气管路52连接,第三闪发器端口514与第二冷凝器30的第一端连接;第二闪发器端口513位于壳体511的顶部,第一闪发器端口512和第三闪发器端口514位于壳体511背离第二闪发器端口513的底部。
壳体511内形成闪发腔,闪发腔的体积较大,流体介质从第一闪发器端口512进入壳体511内时,压力降低,也能促使部分液态流体介质变为气态流体介质。由于气态流体介质的密度低于液态流体介质的密度,与补气管路52连接的第二闪发器端口513可以位于壳体511的顶部,便于气体流出;且考虑到进入闪发器51的流体介质以及从闪发器51流出的液态流体介质密度大,与第一冷凝器20连接的第一闪发器端口512、与第二冷凝器连接的第三闪发器端口514可以位于壳体511的底部。
为便于蒸汽生成,闪发器51的个数可以包括多个并列的闪发腔,或者并列设置多个闪发器51。
进一步地,补气管路52上还设有单向阀54,用于使气体从闪发器51流向第二入口13,且能防止压缩机10中的流体介质回流至闪发器51内,造成流体介质串流,换热设备运行的安全性高。
气液分离组件50还包括第一膨胀阀53,第一膨胀阀53的两端分别连接第一冷凝器20的第二端和第一闪发器端口512。
换热设备制热时,第一膨胀阀53首次节流可以降低从第一冷凝器20处流出的流体介质的压力,避免闪发器51受到高压,闪发器51的安全性高,且流体介质压力降低,易于受热蒸发;同时通过调节第一膨胀阀53的开度还能增加第一膨胀阀53两侧的压力差,满足补气管路52的补气量需求。示例性的,当第一调节阀53的开度变小,流经第一调节阀53的流体介质流量变低,第一冷凝器20的冷凝压力和冷凝温度变高,第二冷凝器30的冷凝压力和冷凝温度变低,第一调节阀53的两侧的压差以及温度差增大,气态流体介质增多,补气量增大
可以理解地,当第一冷凝器20的冷凝压力和冷凝温度变高,会引起压缩机10的排气温度也变高。而通过降低第一调节阀53的开度又可以增大补气量,压缩机10进行二级压缩后又可以降低压缩机10的排气温度,运行稳定性高。
可选地,本实施例中第一调节阀53的开度可以根据第一冷凝器20和第二冷凝器30的冷凝温度自动调节,易于换热设备实现自动平衡,提高运行稳定性。
其中,第一膨胀阀53可以是热力膨胀阀、电子膨胀阀等。
可以理解地,第二冷凝器30和蒸发器40之间还设有第二膨胀阀60,第二膨胀阀60连接第二冷凝器30的第二端和蒸发器40的第一端,经第一冷凝器20和第二冷凝器30后的流体介质变为低温高压的液态,为便于蒸发器40中的流体介质吸热,蒸发器40上游位置设置第二膨胀阀60,第二膨胀阀60二次节流用于降低流体介质压力,使得进入蒸发器40的流体介质可以变为低温低压的气液两相状态。
第二膨胀阀60和第一膨胀阀53可以相同,也可以是热力膨胀阀、电子膨胀阀等。
考虑到换热设备制热和制冷时,流体介质的流向相反,本实施例提供的换热设备还可 以具有制冷状态,用于降低待冷却件的温度,待冷却件可以是空气或水等。具体地,当换热设备处于制冷状态时,第一冷凝器20的第一端与压缩机10的第一入口12连接,蒸发器40的第二端与压缩机出口11连接;经压缩机10压缩的流体介质进入蒸发器40,然后流体介质经第二冷凝器30进入闪发器51进行气液分离,经过气液分离后的液体进入第一冷凝器20,经气液分离后的气体由第二入口13进入压缩机10。
换热设备制冷时,经压缩机10压缩的高温高压气态流体介质进入蒸发器40内,在蒸发器40中与待冷却件发生热交换并降温冷凝,冷凝降温后的流体介质经第二膨胀阀60首次节流降压变为气液两相的混合状态。
流体介质然后进入第二冷凝器30,并在第二冷凝器30中与待冷却件发生热交换,此时,第二冷凝器30中的流体介质温度与待冷却件温度的差异大,待冷却件降温速度快,第二冷凝器30中部分的流体介质吸热蒸发。
从第二冷凝器30处流出的流体介质通过第三闪发器端口514进入闪发器51中,闪发器51中生成的气体由第二闪发器端口513进入补气管路52,并进入压缩机10进行二次压缩,闪发器51中的液体由第一闪发器端口512流出,通过第一膨胀阀53二次节流后进入第一冷凝器20进一步过热蒸发,流体介质在第一冷凝器20和第二冷凝器30处的热交换量高,换热设备的制冷量高;且流体介质在第一冷凝器20处过热能防止液态流体介质进入压缩机10内发生液压缩,降低压缩机10使用寿命。
可以理解地,换热制备处于制冷状态时,为了增加补气量,也可以减小第一膨胀阀53的开度。可选地,本实施例中,第一膨胀阀53的开度可以根据第一冷凝器20和第二冷凝器30的蒸发温度自动调节,避免第一冷凝器20的蒸发温度过低,导致第二冷凝器20结霜或结冰,不利于换热设备制冷。
为在换热设备上能够实现制热状态和制冷状态的切换,换热设备包括四通阀70,四通阀70可以是本领域技术人员熟知的种类,例如,四通阀70可以包括主阀和先导阀,先导阀具有与主阀中的两侧腔体连接的两个毛细管,两个毛细管内分别流动高压流体介质和低压流体介质,高压流体介质和低压流体介质的压差控制主阀滑块的滑动,以实现不同管路连通状态的切换。
本实施例中四通阀70设置有第一端口71、第二端口72、第三端口73和第四端口74,第一端口71与压缩机出口11连接,第二端口72与压缩机10的第一入口12连接,第三端口73与蒸发器40的第二端连接,第四端口74与第一冷凝器20的第一端连接;当换热设备处于制热状态时,第一端口71和第四端口74连接,第二端口72和第三端口73连接;当换热设备处于制冷状态时,第一端口71和第三端口73连接,第二端口72和第四端口74连接。
当换热设备处于制热状态时,压缩机10的出口与第一冷凝器20的第一端连接,使得高温高压的流体介质可以在第一冷凝器20和第二冷凝器30处放热。当换热设备处于制冷状态时,压缩机10的出口与蒸发器40连接,使得高温高压的流体介质可以在蒸发器40处放热,然后在第一冷凝器和第二冷凝器30处吸热。通过四通阀70可以实现在换热设备上实现制冷和制热的切换,简化换热设备结构。
本实施例提供一种热水器,其包括:换热水管和换热设备,换热水管与第一冷凝器20、第二冷凝器30连接。
热水器的换热水管可以呈盘管状,换热管内具有待加热水,其具有进水口和出水口,待加热水在流动过程中实现与第一冷凝器20和第二冷凝器30的换热过程。当换热设备制热时,第一冷凝器20和第二冷凝器30放热,待加热水吸收热量温度升高,为下一工序提供热水。
制热时由于第一冷凝器20处的流体介质温度高,第一冷凝器20可以位于待加热水的流动方向的上游位置,使得待加热水可以首先与第一冷凝器20进行热交换,流体介质和待加热水的温差大,制热效果好。
可以理解地,当换热设备制冷时,换热管内具有待冷却水,第一冷凝器20和第二冷凝器30吸热,待冷却水可以降温,为下一工序提供低温水。此时,第二冷凝器30处的流体介质与待冷却水的温差大,待冷却水首先与第二冷凝器30进行热交换,流体介质与待冷却水的温差大,制冷效果好。
本实施例还提供一种空调,其包括:换热风道和换热设备,换热风道与第一冷凝器20、第二冷凝器30连接。
第一冷凝器20和第二冷凝器30可以位于换热风道内,使得空气流动时可以穿过第一冷凝器20和第二冷凝器30,接触面积大,换热效果好。
其中,第一冷凝器20可以位于空气流动方向的上游位置。当换热设备制热时,换热风道内设有待加热气体,待加热气体可以首先与第一冷凝器20进行热交换,待加热气体与流体介质的温差大,制热效果好。换热设备制冷时,换热风道内设有待冷却气体,第二冷凝器30处的流体介质与待冷却气体的温差大,制冷效果好。
需要说明的是,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,"多个"的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"、"固定"等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征"上"或"下"可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征"之上"、"上方"和"上面"可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在以上描述中,参考术语"一个实施例"、"一些实施例"、"示例"、"具体示例"、或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组 合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种换热设备,其特征在于,包括:压缩机、第一冷凝器、第二冷凝器以及蒸发器,压缩机设有压缩机出口、第一入口和第二入口;
    所述第一冷凝器的第二端与所述第二冷凝器的第一端连接,所述第二冷凝器的第二端与所述蒸发器的第一端连接;
    所述换热设备具有制热状态,当所述换热设备处于制热状态时,所述第一冷凝器的第一端与所述压缩机出口连接,所述蒸发器的第二端与所述压缩机的第一入口连接,经所述压缩机压缩的流体介质进入所述第一冷凝器;
    所述第一冷凝器和所述第二冷凝器之间还设有与所述第二入口连接的气液分离组件,所述气液分离组件用于将流体介质中的气体和液体分离,并将所述液体送入所述第二冷凝器,所述气体由所述第二入口送入所述压缩机。
  2. 根据权利要求1所述的换热设备,其特征在于,所述气液分离组件包括:
    闪发器,所述闪发器连接所述第一冷凝器的第二端和所述第二冷凝器的第一端;
    补气管路,所述补气管路的一端与所述闪发器连接,所述补气管路的另一端与所述压缩机的所述第二入口连接。
  3. 根据权利要求2所述的换热设备,其特征在于,所述闪发器包括壳体,所述壳体上设置有第一闪发器端口、第二闪发器端口和第三闪发器端口,所述第一闪发器端口与所述第一冷凝器的第二端连接,所述第二闪发器端口与所述补气管路连接,所述第三闪发器端口与所述第二冷凝器的第一端连接;
    所述第二闪发器端口位于所述壳体的顶部,所述第一闪发器端口和所述第三闪发器端口位于所述壳体背离所述第二闪发器端口的底部。
  4. 根据权利要求2或3所述的换热设备,其特征在于,所述补气管路上还设有单向阀,用于使所述气体从所述闪发器流向所述第二入口。
  5. 根据权利要求3或4所述的换热设备,其特征在于,所述气液分离组件包括第一膨胀阀,所述第一膨胀阀的两端分别连接所述第一冷凝器的第二端和所述第一闪发器端口。
  6. 根据权利要求2-5任一项所述的换热设备,其特征在于,所述换热设备具有制冷状态,当所述换热设备处于制冷状态时,所述第一冷凝器的第一端与所述压缩机的第一入口连接,所述蒸发器的第二端与所述压缩机出口连接;
    经所述压缩机压缩的流体介质进入所述蒸发器,然后所述流体介质经所述第二冷凝器进入所述闪发器进行气液分离,经过气液分离后的液体进入第一冷凝器,经气液分离后的气体由所述第二入口进入所述压缩机。
  7. 根据权利要求6所述的换热设备,其特征在于,所述换热设备包括四通阀,所述四通阀设置有第一端口、第二端口、第三端口和第四端口,所述第一端口与所述压缩机出口连接,所述第二端口与所述压缩机的所述第一入口连接,所述第三端口与所述蒸发器的第二端连接,所述第四端口与所述第一冷凝器的第一端连接;
    当所述换热设备处于制热状态时,所述第一端口和所述第四端口连接,所述第二端口和所述第三端口连接;当所述换热设备处于制冷状态时,所述第一端口和所述第三端口连接,所述第二端口和所述第四端口连接。
  8. 根据权利要求1-7任一项所述的换热设备,其特征在于,所述换热设备还包括第二膨胀阀,所述第二膨胀阀连接所述第二冷凝器的第二端和所述蒸发器的第一端。
  9. 一种热水器,其特征在于,包括换热水管和权利要求1-8所述的换热设备,所述换热水管与所述第一冷凝器、所述第二冷凝器连接;
    所述第二冷凝器位于所述第一冷凝器沿水流动方向的上游位置。
  10. 一种空调,其特征在于,包括换热风道和权利要求1-8所述的换热设备,所述换热风道与所述第一冷凝器、所述第二冷凝器连接;
    所述第二冷凝器位于所述第一冷凝器沿空气流动方向的上游位置。
PCT/CN2021/097484 2020-06-01 2021-05-31 换热设备、热水器和空调 WO2021213548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010483482.6A CN111811157A (zh) 2020-06-01 2020-06-01 换热设备、热水器和空调
CN202010483482.6 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021213548A1 true WO2021213548A1 (zh) 2021-10-28

Family

ID=72848179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097484 WO2021213548A1 (zh) 2020-06-01 2021-05-31 换热设备、热水器和空调

Country Status (2)

Country Link
CN (1) CN111811157A (zh)
WO (1) WO2021213548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811157A (zh) * 2020-06-01 2020-10-23 青岛经济技术开发区海尔热水器有限公司 换热设备、热水器和空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202177255U (zh) * 2011-07-08 2012-03-28 浙江大学 一种基于喷射器的涡流管制冷系统
CN105423620A (zh) * 2015-12-25 2016-03-23 浙江工业大学 一种高效的大温升两级节流中间冷却热泵热水机
CN107192153A (zh) * 2017-07-25 2017-09-22 广东工业大学 带喷射器的双级蒸发制冷系统
CN208952452U (zh) * 2018-07-25 2019-06-07 中国科学院广州能源研究所 一种双冷凝器准二级超低温空气能热泵
CN110822755A (zh) * 2019-11-27 2020-02-21 江苏天舒电器有限公司 一种利用非共沸制冷剂混合物的热泵系统
CN111811157A (zh) * 2020-06-01 2020-10-23 青岛经济技术开发区海尔热水器有限公司 换热设备、热水器和空调
CN112815561A (zh) * 2019-10-31 2021-05-18 广东美的白色家电技术创新中心有限公司 制冷设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190561A (ja) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd 冷凍システム
JP4569041B2 (ja) * 2000-07-06 2010-10-27 株式会社デンソー 車両用冷凍サイクル装置
JP2008256281A (ja) * 2007-04-05 2008-10-23 Toshiba Carrier Corp ヒートポンプ式給湯機
CN101603705A (zh) * 2009-07-09 2009-12-16 苏宇贵 调温除湿型水环热泵机组
JP2015210033A (ja) * 2014-04-28 2015-11-24 富士電機株式会社 蒸気生成ヒートポンプ
CN204665734U (zh) * 2015-06-04 2015-09-23 特灵空调系统(中国)有限公司 同时提供不同出水温度的冷水机
CN106257159A (zh) * 2016-07-27 2016-12-28 南京理工大学 一种双热源大温差热泵机组及制热方法
CN106931673A (zh) * 2017-04-11 2017-07-07 珠海格力电器股份有限公司 空气能热水器系统
CN111550944B (zh) * 2020-04-26 2024-03-29 珠海格力电器股份有限公司 一种三次节流增焓双冷凝制冷系统、空调器和控制方法
CN111623546A (zh) * 2020-04-26 2020-09-04 珠海格力电器股份有限公司 一种三次节流增焓双冷凝制冷系统、空调器和控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202177255U (zh) * 2011-07-08 2012-03-28 浙江大学 一种基于喷射器的涡流管制冷系统
CN105423620A (zh) * 2015-12-25 2016-03-23 浙江工业大学 一种高效的大温升两级节流中间冷却热泵热水机
CN107192153A (zh) * 2017-07-25 2017-09-22 广东工业大学 带喷射器的双级蒸发制冷系统
CN208952452U (zh) * 2018-07-25 2019-06-07 中国科学院广州能源研究所 一种双冷凝器准二级超低温空气能热泵
CN112815561A (zh) * 2019-10-31 2021-05-18 广东美的白色家电技术创新中心有限公司 制冷设备
CN110822755A (zh) * 2019-11-27 2020-02-21 江苏天舒电器有限公司 一种利用非共沸制冷剂混合物的热泵系统
CN111811157A (zh) * 2020-06-01 2020-10-23 青岛经济技术开发区海尔热水器有限公司 换热设备、热水器和空调

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Also Published As

Publication number Publication date
CN111811157A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US7104084B2 (en) Heat pump and structure of extraction heat exchanger thereof
JP5991989B2 (ja) 冷凍空調装置
JP5241872B2 (ja) 冷凍サイクル装置
EP2543941B1 (en) Chiller
WO2019091241A1 (zh) 空调制冷循环系统及空调器
TW200921030A (en) Economized vapor compression circuit
JPH03164664A (ja) 冷凍システム
WO2021213548A1 (zh) 换热设备、热水器和空调
JP2007163013A (ja) 冷凍サイクル装置
CN113339909B (zh) 热泵空调系统
JPWO2012053157A1 (ja) 冷凍サイクル及び過冷却部付き凝縮器
CN112432255B (zh) 室外机及空调器
CN113654132A (zh) 热泵机组
CN114001484A (zh) 冷媒系统和制冷设备
CN216481291U (zh) 空调器
CN110455021B (zh) 一种蓄热式热泵融霜系统
CN210688834U (zh) 一种蓄热式热泵融霜系统
JP2017161164A (ja) 空調給湯システム
CN220103448U (zh) 换热系统和换热设备
CN220489436U (zh) 一种变频满液式风冷螺杆机组
CN219550943U (zh) 一种空调系统
CN111964188B (zh) 一种热虹吸管-蒸汽压缩复合制冷系统
CN215637633U (zh) 空调室外机
CN216522045U (zh) 多功能空调器
CN218821124U (zh) 一种低温机组补气增焓系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792780

Country of ref document: EP

Kind code of ref document: A1