WO2021213258A1 - 一种高密封性的类椭圆转子发动机 - Google Patents

一种高密封性的类椭圆转子发动机 Download PDF

Info

Publication number
WO2021213258A1
WO2021213258A1 PCT/CN2021/087709 CN2021087709W WO2021213258A1 WO 2021213258 A1 WO2021213258 A1 WO 2021213258A1 CN 2021087709 W CN2021087709 W CN 2021087709W WO 2021213258 A1 WO2021213258 A1 WO 2021213258A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
sealing
engine
sealing pin
pin
Prior art date
Application number
PCT/CN2021/087709
Other languages
English (en)
French (fr)
Inventor
蒋崇文
皮思源
许晨豪
李志豪
高振勋
李椿萱
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US17/613,070 priority Critical patent/US11668232B2/en
Publication of WO2021213258A1 publication Critical patent/WO2021213258A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/10Fuel supply; Introducing fuel to combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/12Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F11/00Arrangements of sealings in combustion engines 
    • F02F11/007Arrangements of sealings in combustion engines  involving rotary applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the technical field of engines, and in particular relates to an elliptical rotary engine with improved sealing performance.
  • the rotary engine is a novel internal combustion engine that appeared in the 1950s. Compared with the general reciprocating piston internal combustion engine, the rotary engine has the advantages of small size, high power-to-weight ratio, and lower vibration and noise. Among them, the triangular rotor engine is a more commonly used scheme.
  • the engine is also called Wankel engine. It uses the double-arc outer trochoidal line as the cylinder block profile and its inner envelope line as the rotor profile line. Engagement drives the rotor to make planetary motions around the cylinder, and it is a four-stroke engine.
  • the three protruding points on the triangular rotor of the traditional triangular rotor engine will always rotate at a high speed while keeping close to the cylinder wall.
  • the sealing pin on this part is prone to severe abrasion.
  • the wear of the seal pin will result in the inability to effectively isolate the adjacent cylinder blocks, which will easily lead to the difference between adjacent cylinder blocks of the engine.
  • the design of the rotor and cylinder block profile of the Wankel engine is more complicated, and the allowable machining error margin is also small, which also greatly increases the machining difficulty in actual production.
  • LiquidPiston has proposed another rotary engine solution, also known as the X engine. Its overall structure is similar to that of a Wankel engine that is reversed inside and outside.
  • the double-arc outer trochoidal line is used as the rotor profile and the outer winding line is used as the cylinder block. According to the design of the profile line, the two still ensure the planetary movement of the rotor through gear meshing.
  • the X engine redesigned the rotor profile and cylinder block profile of the rotary engine from the perspective of internal and external adjustments. However, this scheme only exchanged the internal and external order of the rotor profile and the cylinder block profile, and failed to change the structure and the profile of the profile itself. Movement characteristics. Therefore, this solution still has problems such as severe seal wear, gas leakage in the cylinder, and high processing costs.
  • the present invention proposes a highly sealed elliptical rotary engine which is different from the existing rotary engine.
  • the engine has a new engine profile and proposes a new engine sealing method based on the profile change.
  • the rotary engine proposed by the present invention has better space sealing performance, can better prevent the engine structure from wearing out, and effectively reduce the gas leakage between adjacent combustion cylinders.
  • the cylinder block profile and the rotor profile are simpler and easier to process, which greatly reduces the processing cost of the engine.
  • the specific technical scheme of the present invention is as follows:
  • An elliptical-like rotor engine with high sealing performance characterized in that the engine includes an upper end cover, a lower end cover, a rotor, three combustion chambers, three isolation belts, a fuel injection ignition device, a sealing pin row and an eccentric drive shaft, in,
  • the upper end cover and the lower end cover are connected by screws to form a cylinder block of the engine;
  • the hollow cavity inside the cylinder is a working cavity for engine operation, used for the rotation of the rotor and the thermal cycle of the three combustion chambers, and the working state in the working cavity is determined by the cylinder profile and The rotor profile is determined;
  • the overall contour of the cylinder block profile is triangular, and three protruding inner cavities are evenly distributed around the cylinder block to form the three combustion chambers.
  • the cylinder block profile is formed by the three combustion chamber wall curves and The three-section isolation belt curve is formed, and the wall surface curves of the three combustion chambers and the three-section isolation belt curve are alternately distributed around the cylinder body so that the cylinder body profile is 120-degree rotationally symmetrical;
  • the overall profile of the rotor is oval-like, the central cavity of the rotor, the central cavity of the upper end cover and the central cavity of the lower end cover are connected by the eccentric drive shaft; the tops of the three combustion chambers are all installed with
  • the fuel injection ignition device is used for fuel injection and ignition;
  • the eccentric drive shaft and the cylinder block shape restrict the rotor to make planetary gear movement.
  • the rotor rotates to form a compression-expansion periodic movement in the three combustion chambers.
  • Each rotation of the rotor, a compression-expansion motion cycle is performed twice to form a separate thermal cycle in the three combustion chambers and drive the rotor to rotate together, and output useful work to the outside through the eccentric drive shaft;
  • a sealing pin row consisting of at least four sealing pins is arranged equidistantly on the three-section isolation belt, the sealing pins are installed in the pin holes on the three-section isolation belt, and sliding grooves are installed on the inner walls of the pin holes,
  • the sealing pin can slide through the sliding groove, and the sliding range is limited by the stopper at the end of the sliding groove, the bottom of the sealing pin is connected with the bottom of the pin hole by a spring, and the head is equipped with an arc-shaped sliding sealing sheet During the rotation of the rotor, the sealing pin row maintains constant contact with the side wall of the rotor, and the areas on both sides of the sealing pin row are stably sealed and isolated by the sliding sealing sheet.
  • the three-section isolation belt curves are all circular arc curves, and the parameter equation is:
  • the three-stage combustion chamber wall curve has a smooth transition at the intersection with the three-stage isolation belt curve, and the parameter equation of the three-stage combustion chamber wall curve is:
  • is the change parameter, and the value range is and Respectively are the three-stage combustion chamber wall curve;
  • is the change parameter, the value range is [0, 2 ⁇ ], and ⁇ is the rotation angle of the rotor;
  • the seal pin On the line of action of the seal pin, the distance between the intersection of the cylinder profile and the line of action of the seal pin and the intersection of the rotor profile and the line of action of the seal pin is the seal The effective distance between the pin and the rotor; if the distance between the rotor and the seal pin is less than the effective distance, the seal pin contacts the side of the rotor, and the seal pin is in a sealed state; If the distance between the rotor and the sealing pin is greater than the effective distance, the sealing pin does not contact the side of the rotor, and the sealing pin is in an idle state.
  • the rotor curve and cylinder profile proposed in the present invention adopt a smooth arc that smoothly transitions from the contour line of the combustion chamber to isolate adjacent cylinders to ensure that the rotor movement is planetary gear movement, regardless of the rotation angle of the rotor ,
  • the rotor and the cylinder block are kept tangent, and the tangent point must fall on the curve of the isolation belt.
  • the rotation of the engine rotor will also be more stable, which improves the operation of the engine Characteristic, it can better prevent the structure abrasion effect; the structure abrasion effect produced by the high-speed rotation of the rotor will also be greatly reduced.
  • the engine sealing method proposed by the present invention in which the sealing pin rows are arranged on the smooth arcs at all the boundaries can effectively improve the sealing performance of the engine and prevent gas leakage between adjacent cylinders; the increase in the number of sealing pins, the cylinder The coupling error margin between the body and the rotor also becomes larger, which can further reduce the processing cost of the engine.
  • the elliptic curve-like shape of the rotor proposed in the present invention can effectively reduce the difficulty of structural processing and reduce the production cost of the engine.
  • Figure 1 is a schematic view of the structure of the upper end cover of the engine of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the lower end cover and rotor of the engine of the present invention
  • Figure 3 is a schematic view of the structure of the engine isolation belt and the sealing pin row of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the engine sealing pin of the present invention.
  • Fig. 5 is a diagram showing the variation of the distance between the sealing pin and the rotor with the rotation angle in a single rotation period of the present invention
  • Fig. 6(a)- Fig. 6(h) are schematic diagrams of the sealing principle of the sealing pin row at different stages of the engine of the present invention.
  • an elliptical-like rotor engine with high airtightness includes an upper end cover 1, a lower end cover 2, a rotor 3, three combustion chambers 4, a three-section isolation belt 6, a fuel injection ignition device 5, and a seal Pin row 7 and eccentric drive shaft 8, of which,
  • the upper end cover 1 and the lower end cover 2 are connected by screws 9 to form the cylinder block of the engine;
  • the hollow cavity inside the cylinder block is the working cavity used for engine operation, which is used for the rotation of the rotor 3 and the thermal cycle of the three combustion chambers 4.
  • the working state in the working cavity is determined by the cylinder block profile and the rotor 3 profile;
  • the overall contour of the cylinder block profile is triangular, and three protruding inner cavities are evenly distributed around the cylinder block to form three combustion chambers 4.
  • the cylinder block profile is composed of three combustion chambers 4 wall curves and three isolation belts 6 curves It is composed of three combustion chambers 4 wall surface curves and three sections of isolation belt 6 curves staggered around the cylinder body, making the cylinder body profile 120 degree rotationally symmetrical;
  • the overall contour of the rotor 3 is elliptical.
  • the central cavity of the rotor 3 is connected with the central cavity of the upper end cover 1 and the central cavity of the lower end cover 2 through an eccentric drive shaft 8;
  • the eccentric drive shaft 8 and the cylinder block shape restrict the rotor 3 to make planetary gear movement.
  • the rotor 3 rotates to form a compression-expansion cyclical movement in the three combustion chambers 4.
  • Each revolution of the rotor 3 compresses- Expansion motion cycles twice, and the fuel injection ignition device 5 injects and ignites the interior of the three combustion chambers 4 at the end of the compression phase.
  • This thermal cycle process forms a separate thermal cycle in the three combustion chambers 4 and drives them together.
  • the rotor 3 rotates and outputs useful work to the outside through the eccentric drive shaft 8;
  • the sealing pin rows 7 composed of at least four sealing pins are arranged equidistantly on the three-section isolating belt 6.
  • the sealing pins are installed in the pin holes on the three-section isolating belt 6, and the inner wall of the pin hole is equipped with a sliding groove 10, and the sealing pin It can slide through the sliding groove 10, and the sliding range is limited by the stopper at the end of the sliding groove 10.
  • the bottom of the sealing pin is connected to the bottom of the pin hole through a spring 11, and the length of the spring 11 directly affects the size and scope of the sealing pin.
  • the parts are equipped with arc-shaped sliding sealing sheets 12.
  • the 6 curves of the three isolation belts are all circular arc curves, and the parameter equation is:
  • the wall surface curve of the three-stage combustion chamber 4 has a smooth transition at the intersection with the curve of the three-stage isolation zone 6 and the parameter equation of the wall surface curve of the three-stage combustion chamber 4 is:
  • is the change parameter, and the value range is and Respectively are three-stage combustion chamber 4 wall surface curves;
  • is the change parameter, the value range is [0, 2 ⁇ ], and ⁇ is the rotation angle of the rotor 3;
  • the present invention modifies the cylinder block profile and the rotor curve, so that the original boundary point that divides the adjacent combustion chamber wall curve is expanded into a certain length of arc-shaped isolation belt, and the rotor curve
  • the original double-arc outer trochoid is improved to an elliptical curve. This improvement can greatly reduce the difficulty of machining the engine rotor and reduce the processing cost of the cylinder block profile and the rotor profile.
  • the engine equidistantly arranges the sealing pin rows 7 composed of at least four sealing pins on the three-section isolation belt 6, and the rotor 3 rotates During the process, the sealing pin row 7 keeps constant contact with the side wall of the rotor 3, and the areas on both sides of the sealing pin row 7 are stably sealed and isolated by sliding the sealing sheet 12 to reduce the flow leakage between adjacent combustion chambers. Ensure that each combustion chamber has a good seal.
  • the distance between the intersection of the cylinder block profile and the seal pin action line and the intersection of the rotor 3 profile and the seal pin action line is the effective distance between the seal pin and the rotor 3; If the distance between the seal pin and the rotor 3 is less than the effective distance, the seal pin contacts the side of the rotor 3, and the seal pin is in a sealed state; if the distance between the rotor 3 and the seal pin is greater than the effective distance, the seal pin does not contact the side of the rotor 3, and the seal pin is in an idle state .
  • the present invention proposes a highly sealed elliptical rotor engine, and proposes a new design plan for the rotor and cylinder block profile, and introduces it on this basis
  • the sealing pin array seals the transition area between different combustion cylinders.
  • the present invention proposes a new rotor profile and cylinder profile.
  • the scheme proposed by the present invention uses a smooth arc that smoothly transitions to the contour of the combustion chamber to isolate adjacent cylinder blocks.
  • the improved scheme can still ensure that the rotor movement mode is planetary gear movement, and no matter what angle the rotor rotates, the rotor and the cylinder remain tangent, and the tangent point must fall on the curve of the isolation belt. Taking into account the disappearance of the demarcation point on the cylinder block profile, the rotation of the engine rotor is more stable, and the structural wear effect caused by the high-speed rotation of the rotor will also be greatly reduced.
  • the present invention proposes a new engine sealing method based on the profile change.
  • the engine proposed in the present invention arranges a sealing pin row composed of a plurality of sealing pins on the smooth arcs of all the boundaries, by ensuring that multiple sealings are performed during the rotation of the rotor
  • the joint action of the pins extends the length of the pressure difference between adjacent combustion cylinders, reduces the pressure gradient in the leakage passage, and effectively reduces the gas leakage between the cylinders.
  • the sealing pin row arranged on the smooth arc should ensure that no matter when the rotor rotates to any position, at least two sliding sealing pins in the sealing pin row are in a sealed state. Considering that when the sealing pin row has only two sliding sealing pins, the two sealing pins are staggered to seal, which is similar to the effect of a single sealing pin; when the sealing pin row has only three sliding sealing pins, the middle sealing pin is permanently sealed, and both sides The sealing pins are staggered and sealed, and there is no difference from a single sealing pin. Considering the above factors, the number of sealing pins included in the sealing pin row arranged on the smooth arc should be greater than or equal to 4 to meet the requirements of the present invention.
  • the present invention proposes a new rotor curve.
  • the elliptic curve-like shape used in the present invention is simpler, and the processing difficulty is less, and the processing cost is lower. , More suitable for large-scale industrial production.
  • the coupling error margin between the cylinder block and the rotor also increases, thereby further reducing the processing cost of the engine.
  • a sealing pin row 7 composed of 4 sealing pins is arranged longitudinally on the isolation belt 6, and the sealing pin rows 7 are arranged equidistantly along the longitudinal direction.
  • the sealing pin rows 7 are arranged according to the longitudinal coordinate size. They are the sealing pins 7.1-7.4 respectively.
  • Figure 5 since the distance between each sealing pin and the rotor 3 is different when the rotor 3 is in a different position, it is considered that the distance between each sealing pin and the rotor 3 during one cycle of the rotor 3 is rotated.
  • the distance change, the first four curves in the figure represent the change curve of the distance between the sealing pin 7.1-7.4 and the rotor 3 with the rotation angle of the rotor 3 (hereinafter referred to as the sealing pin 7.1-7.4 distance curve), the fifth curve represents the four seals
  • the effective distance of the pin hereinafter referred to as the effective distance curve of the seal pin.
  • the rotation angle of the rotor 3 corresponding to stage A is -2° to 2°. It can be seen from Figure 5 that the sealing pins 7.2 and 7.3 are in the sealed state, while the sealing pins 7.1 and 7.4 are in the idle state.
  • the specific physical image of the sealing pin row As shown in Figure 6a, the rotor 3 and the cylinder wall are sealed by sealing pins 7.2 and 7.3. As the rotor 3 continues to rotate, the distance between the sealing pin 7.4 and the rotor 3 begins to decrease, until the rotor 3 rotates to 3 degrees, the sealing pin 7.4 contacts the side wall of the rotor 3 and begins to enter the sealing state.
  • sealing pin 7.2 is in contact with the side wall of the rotor 3 again, and the rotor 3 rotates into the D stage, as shown in Figure 6d, the rotor 3 and the cylinder
  • the body wall is sealed by sealing pins 7.2-7.4.
  • the distance between the sealing pin 7.1 and the rotor 3 is rapidly reduced until the sealing pin 7.1 enters the sealed state when it is turned to 87 degrees. Sealing with the cylinder wall, the rotor 3 rotates into the E stage, as shown in Fig. 6e.
  • the present invention increases the length of the pressure difference between adjacent combustion chambers by at least one time. It can be reasonably inferred from this that the pressure gradient in the leakage channel of the technical solution of the present invention is at most 1/2 of the pressure gradient of the original solution.
  • the gas leakage of the solution of the present invention is only Half of the original plan is even smaller, and it has better sealing performance than the original plan.
  • the coupling support between the engine rotor and the cylinder block is improved from three separate sealing pins to three sets of sealing pin rows, considering the increase in the number of sealing pins, the coupling error margin between the cylinder block and the rotor is indirectly increased. It can further reduce the processing difficulty and processing cost of the engine, and is more suitable for large-scale industrial production.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above”, and “above” the first feature of the second feature include the first feature being directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the features “below”, below”, and “below” the second feature include the first feature directly below and obliquely below the second feature, or simply indicate that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

一种高密封性的类椭圆转子发动机,包括上端盖(1)、下端盖(2)、转子(3)、三个燃烧腔(4)、三段隔离带(6)、喷油点火装置(5)、密封销列(7)和偏心驱动轴(8);发动机工作时通过偏心驱动轴(8)和缸体型线限制约束转子(3)做行星齿轮运动,转子(3)每旋转一周,压缩-扩张运动循环两次,在三个燃烧腔(4)内形成单独的热力循环并通过偏心驱动轴(8)对外输出有用功;对转子(3)与缸体型线设计进行了改进,并引入密封销列(7)对不同燃烧腔之间的过渡区进行密封;能较好地防止结构磨损效应,有效增强燃烧腔之间的密封性,减轻缸体之间的燃气泄露;经过改进的型线与密封方式能增大发动机的设计误差裕度,降低发动机的加工难度,从而有效降低发动机的生产成本。

Description

一种高密封性的类椭圆转子发动机 技术领域
本发明属于发动机技术领域,尤其涉及一种提高密封性的类椭圆转子发动机。
背景技术
转子发动机是20世纪50年代出现的一种结构新颖的内燃发动机,相比于一般的往复活塞式内燃发动机,转子发动机拥有体积小,功重比高,振动与噪声较低等优点。其中,三角转子发动机是一种较为常用的方案,该发动机又称汪克尔发动机,以双弧外次摆线为缸体型线并以其内包络线为转子型线所设计,通过齿轮啮合驱使转子围绕缸体做行星运动,是一种四冲程发动机。
为了保证运行过程中发动机的密封性,传统三角转子发动机的三角转子上的三个凸出尖点将始终以保持紧贴缸体壁面的状态进行高速旋转运动。随着使用时间的延长,该部分上密封销易出现较为严重的磨损。进一步的,考虑到在发动机运行过程中相邻缸体之间易出现较大的压力落差,密封销的磨损将导致无法对相邻缸体进行有效隔离,由此易导致发动机相邻缸体之间出现燃气泄漏问题。此外,汪克尔发动机的转子及缸体型线设计较为复杂,其所允许的加工误差裕度也较小,这也大大增加了实际生产中的加工难度。
LiquidPiston公司提出了另一种转子发动机方案,又称X发动机,其整体结构类似于内外对调的汪克尔发动机,以双弧外次摆线为转子型线并以其外包络线为缸体型线所设计,两者依然通过齿轮啮合来保证转子的行星运动。X发动机从内外对调的视角重新设计了转子发动机的转子型线及缸体型线,然而该方案仅交换了转子型线与缸体型线的内外次序,而未能改变型线本身的结构及运动特征。故该方案依然存在密封磨损严重,缸体燃气泄漏,以及加工成本较高等问题。
为了解决上述问题,需要设计一种防止结构磨损,减轻燃气泄漏,降低加工成本的转子发动机。
发明内容
本发明提出了有别于现有的转子发动机的一种高密封性的类椭圆转子发动机,该发动机具有新的发动机型线,并在型线变化的基础上提出了新的发动机密封方式。相比于现有的转 子发动机,本发明所提出的转子发动机具有更好的空间密封性,能较好地防止发动机结构磨损,有效减轻相邻燃烧缸之间的燃气泄露现象。此外,缸体型线与转子型线更为简单且易加工,使得发动机的加工成本大幅度降低。本发明的具体技术方案如下:
一种高密封性的类椭圆转子发动机,其特征在于,所述发动机包括上端盖、下端盖,转子,三个燃烧腔,三段隔离带,喷油点火装置、密封销列和偏心驱动轴,其中,
所述上端盖和所述下端盖通过螺钉相连接,构成发动机的缸体;
所述缸体内部的中空腔为用于发动机工作的工作腔,用于所述转子的转动与所述三个燃烧腔的热力循环,所述工作腔内的工作状态由缸体型线与所述转子型线决定;
所述缸体型线整体轮廓呈三角型,三个突出的内凹腔环绕缸体一周均匀分布,构成所述三个燃烧腔,所述缸体型线由所述三个燃烧腔壁面曲线与所述三段隔离带曲线构成,所述三个燃烧腔壁面曲线和所述三段隔离带曲线环所述绕缸体一周交错分布,使所述缸体型线呈120度旋转对称;
所述转子整体轮廓呈类椭圆型,所述转子的中心空洞与所述上端盖的中心空洞和所述下端盖的中心空洞通过所述偏心驱动轴连接;所述三个燃烧腔顶部均安装所述喷油点火装置,用于喷油与点火;
发动机工作时通过所述偏心驱动轴和所述缸体型线限制约束所述转子做行星齿轮运动,所述转子旋转,在所述三个燃烧腔内形成压缩-扩张的周期性运动,所述转子每转一周,压缩-扩张运动循环两次,在所述三个燃烧腔内形成单独的热力循环并共同驱动所述转子旋转,通过所述偏心驱动轴对外输出有用功;
在所述三段隔离带上等距排列由至少四个密封销构成的密封销列,所述密封销安装于所述三段隔离带上的销孔内,销孔内壁上安装有滑槽,所述密封销能够通过所述滑槽滑动,并通过所述滑槽尽头的挡块限制滑动范围,所述密封销底部通过弹簧与销孔底部相连,头部均装有弧形的滑动密封片,所述转子转动过程中,所述密封销列与所述转子侧壁保持恒定接触,并通过所述滑动密封片对所述密封销列两侧的区域进行稳定密封与隔离。
进一步地,所述三段隔离带曲线均为圆弧曲线,参数方程为:
Figure PCTCN2021087709-appb-000001
其中,m为隔离带编号,取值范围为1~3,分别表示三段隔离带曲线;t为变化参数,取值范围为[-1.0,1.0];k为缸体形状系数,取值范围为10.0~12.0;e为偏心驱动轴上偏心柱 的偏心距,取值范围为0.005m~0.007m;q为三段隔离带形状参数,表征隔离带曲率半径与偏心驱动轴上偏心柱的偏心距之间的比值,取值范围为3.0~6.0;
所述三段燃烧腔壁面曲线在与所述三段隔离带曲线相交处均为光滑过渡,所述三段燃烧腔壁面曲线的参数方程为:
Figure PCTCN2021087709-appb-000002
其中,θ为变化参数,取值范围为
Figure PCTCN2021087709-appb-000003
Figure PCTCN2021087709-appb-000004
分别为三段燃烧腔壁面曲线;
与所述缸体型线相对应,所述转子曲线的参数方程为:
Figure PCTCN2021087709-appb-000005
其中,α为变化参数,取值范围为[0,2π],β为转子转动角度;
当所述转子沿上述方程的规律旋转时,其运动为行星齿轮运动,无论所述转子旋转至何角度,所述转子曲线与所述缸体型线均保持相切状态,且相切点恒落于所述三段隔离带曲线上各一个,相邻燃烧腔通过落在其中间的隔离带上的相切点互相隔离。
进一步地,在所述密封销作用线上,所述缸体型线与所述密封销作用线的交点和所述转子型线与所述密封销作用线的交点之间的距离为所述密封销与所述转子之间的有效距离;若所述转子与所述密封销的距离小于所述有效距离,则所述密封销与所述转子侧面接触,所述密封销处于密封状态;若所述转子与所述密封销的距离大于所述有效距离,则所述密封销与所述转子侧面不接触,所述密封销处于闲置状态。
本发明的有益效果在于:
1.本发明提出的转子曲线与缸体型线,采用与燃烧腔外形线平稳过渡的光滑圆弧对相邻缸体进行隔离,保证转子运动方式为行星齿轮运动,且无论转子转动至何角度,转子与缸体均保持相切状态,且相切点必然落在隔离带曲线上,考虑到缸体型线上分界尖点的消失,发 动机转子的转动也将更加平稳,改善了发动机的运行特征,能较好地防止结构磨损效应;因转子的高速旋转所产生的结构磨损效应也将大幅度减弱。
2.本发明提出的在所有分界处的光滑圆弧上布置密封销列的发动机密封方式能够有效提高发动机的密封性,防止相邻缸体之间出现燃气泄漏;密封销个数的增加,缸体与转子之间的耦合误差裕度也随之变大,也能进一步降低发动机的加工成本。
3.本发明的提出的转子采用的类椭圆曲线形状,能够有效减少结构加工难度,降低发动机生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。其中:
图1是本发明的发动机上端盖结构示意图;
图2是本发明的发动机下端盖及转子结构示意图;
图3是本发明的发动机隔离带及密封销列结构示意图;
图4是本发明的发动机密封销结构示意图;
图5是本发明的单旋转周期内密封销与转子之间距离随旋转角度变化图;
图6(a)-图6(h)是本发明的发动机不同阶段下密封销列的密封原理示意图。
附图标号说明:
1-上端盖;2-下端盖;3-转子;4-燃烧腔;5-喷油点火装置;6-隔离带;7-密封销列;7.1-密封销;7.2-密封销;7.3-密封销;7.4-密封销;8-偏心驱动轴;9-螺钉;10-滑槽;11-弹簧;12-滑动密封片。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
如图1-2所示,一种高密封性的类椭圆转子发动机,包括上端盖1、下端盖2,转子3,三个燃烧腔4,三段隔离带6,喷油点火装置5、密封销列7和偏心驱动轴8,其中,
上端盖1和下端盖2通过螺钉9相连接,构成发动机的缸体;
缸体内部的中空腔为用于发动机工作的工作腔,用于转子3的转动与三个燃烧腔4的热力循环,工作腔内的工作状态由缸体型线与转子3型线决定;
缸体型线整体轮廓呈三角型,三个突出的内凹腔环绕缸体一周均匀分布,构成三个燃烧腔4,缸体型线由三个燃烧腔4壁面曲线与三段隔离带6曲线构成,三个燃烧腔4壁面曲线和三段隔离带6曲线环绕缸体一周交错分布,使缸体型线呈120度旋转对称;
转子3整体轮廓呈类椭圆型,转子3的中心空洞与上端盖1的中心空洞和下端盖2的中心空洞通过偏心驱动轴8连接;三个燃烧腔4顶部均安装喷油点火装置5,用于喷油与点火;
发动机工作时通过偏心驱动轴8和缸体型线限制约束转子3做行星齿轮运动,转子3旋转,在三个燃烧腔4内形成压缩-扩张的周期性运动,转子3每转一周,压缩-扩张运动循环两次,喷油点火装置5在压缩阶段结束时对三个燃烧腔4内部进行喷油与点火,以此热循环过程,在三个燃烧腔4内形成单独的热力循环并共同驱动转子3旋转,通过偏心驱动轴8对外输出有用功;
在三段隔离带6上等距排列由至少四个密封销构成的密封销列7,密封销安装于三段隔离带6上的销孔内,销孔内壁上安装有滑槽10,密封销能够通过滑槽10滑动,并通过滑槽10尽头的挡块限制滑动范围,密封销底部通过弹簧11与销孔底部相连,弹簧11的长度直接影响密封销的作用大小与作用范围,密封销头部均装有弧形的滑动密封片12。
三段隔离带6曲线均为圆弧曲线,参数方程为:
Figure PCTCN2021087709-appb-000006
其中,m为隔离带编号,取值范围为1~3,分别表示三段隔离带曲线;t为变化参数,取值范围为[-1.0,1.0];k为缸体形状系数,取值范围为10.0~12.0;e为偏心驱动轴上偏心柱的偏心距,取值范围为0.005m~0.007m;q为三段隔离带形状参数,表征隔离带曲率半径与偏心驱动轴上偏心柱的偏心距之间的比值,取值范围为3.0~6.0;
三段燃烧腔4壁面曲线在与三段隔离带6曲线相交处均为光滑过渡,三段燃烧腔4壁面曲线的参数方程为:
Figure PCTCN2021087709-appb-000007
其中,θ为变化参数,取值范围为
Figure PCTCN2021087709-appb-000008
Figure PCTCN2021087709-appb-000009
分别为三段燃烧腔4壁面曲线;
与缸体型线相对应,转子3曲线的参数方程为:
Figure PCTCN2021087709-appb-000010
其中,α为变化参数,取值范围为[0,2π],β为转子3转动角度;
当转子3沿上述方程的规律旋转时,其运动为行星齿轮运动,无论转子3旋转至何角度,转子3曲线与缸体型线均保持相切状态,且相切点恒落于三段隔离带6曲线上各一个,相邻燃烧腔4通过落在其中间的隔离带6上的相切点互相隔离。
上述各项方程中,当参数k,e,q在可行范围内取不同的值时,以此可以得到不同的发动机方案。相比于原X发动机,本发明对缸体型线与转子曲线进行了修正,使得原来分割相邻燃烧腔壁面曲线的分界尖点扩展为一段具有一定长度的圆弧形隔离带,且转子曲线由原来的双弧外次摆线改进为类椭圆型曲线,这一改进能大大降低发动机转子的加工难度,减少缸体型线与转子型线的加工成本。
为了保证在转子3高速旋转过程中,相邻缸体之间依然有良好的密封性,发动机在三段隔离带6上等距排列由至少四个密封销构成的密封销列7,转子3转动过程中,密封销列7与转子3侧壁保持恒定接触,并通过滑动密封片12对密封销列7两侧的区域进行稳定密封与隔离,以此降低相邻燃烧腔之间的流动泄漏,保证每个燃烧腔均拥有良好的密封性。在密封销作用线上,缸体型线与密封销作用线的交点和转子3型线与密封销作用线的交点之间的距离为密封销与转子3之间的有效距离;若转子3与密封销的距离小于有效距离,则密封销与转子3侧面接触,密封销处于密封状态;若转子3与密封销的距离大于有效距离,则密封销与转子3侧面不接触,密封销处于闲置状态。
本发明从防止结构磨损,减轻燃气泄漏,降低生产成本的角度出发,提出了一种高密封性的类椭圆转子发动机,对转子与缸体型线提出了新的设计方案,在此基础上引入密封销列对不同燃烧缸之间的过渡区进行密封。
为了改善发动机的运行特征,防止发动机结构磨损,本发明提出了新的转子型线与缸体型线。与X发动机方案利用分界尖点对相邻缸体进行隔离的思想不同,本发明所提出的方案采用与燃烧腔外形线平稳过渡的光滑圆弧对相邻缸体进行隔离。改进后的方案依然可以保证转子运动方式为行星齿轮运动,且无论转子转动至何角度,转子与缸体均保持相切状态,且相切点必然落在隔离带曲线上。考虑到缸体型线上分界尖点的消失,发动机转子的转动更加平稳,因转子的高速旋转所产生的结构磨损效应也将大幅度减弱。
为了提高发动机的密封性,防止相邻缸体之间出现燃气泄漏,本发明在型线变化的基础上提出了新的发动机密封方式。为了保证新的发动机拥有更好的密封性,本发明所提出的发动机在所有分界处的光滑圆弧上布置了多个密封销所组成的密封销列,通过保证在转子旋转过程中多个密封销的共同作用,以此延长相邻燃烧缸之间的的压力差的作用长度,降低了泄露通道中的压力梯度,从而有效减轻了缸体之间的燃气泄露。为了满足上述要求,在光滑圆弧上所布置的密封销列应保证无论当转子转动至任何位置,密封销列中至少有两个滑动密封销处于密封状态。考虑到当密封销列只有两个滑动密封销时,两个密封销交错密封,与单个密封销效果近似;当密封销列只有三个滑动密封销时,其中间的密封销恒密封,两侧的密封销交错密封,与单个密封销亦无任何区别。考虑到以上因素,光滑圆弧上布置的密封销列所包含的密封销数量应大于等于4才能满足本发明的要求。
为了减少结构加工难度,降低发动机生产成本,本发明提出了新的转子曲线。相比于汪克尔发动机转子所使用的类三角曲线与X发动机转子所使用双弧外次摆线,本发明所采用的类椭圆曲线形状更为简单,其加工难度较小,加工成本较低,更适用于大规模工业生产。由于密封销个数的增加,缸体与转子之间的耦合误差裕度也随之变大,由此能进一步降低发动机的加工成本。
为了方便理解本发明的上述技术方案,以下通过具体实施例对本发明的上述技术方案进行详细说明。
实施例1
参数k=11,e=0.006m,q=4.5,假定每个密封销列包含4个密封销,每个密封销有效距离为0.0016m,以此为例来描述发动机的具体运转方式。
由于缸体型线整体呈120度的旋转对称,在本实施方式中只需考虑其中1/3的部分即可。如图3所示,隔离带6上纵向排列4个密封销组成的密封销列7,密封销列7沿纵向方向等 距排列,为了方便说明,将该密封销列7按纵向坐标大小排列,分别为密封销7.1-7.4。如图5所示,由于当转子3处于不同位置时,每个密封销与转子3之间的距离不同,故考虑在转子3旋转一个周期的过程中,每个密封销与转子3之间的距离变化,图中前四条曲线代表密封销7.1-7.4与转子3之间的距离随转子3转动角度的变化曲线(以下记为密封销7.1-7.4距离曲线),第五条曲线代表四个密封销的有效距离(以下记为密封销有效距离曲线)。由上述分析可知,当某一密封销曲线处于密封销有效距离曲线之下时,该密封销处于密封状态,反之则处于闲置状态,以此将转子3旋转过程分为如图5所示的A-H共八个阶段,下面对这八个阶段分别描述。
A阶段所对应的转子3转动角度为-2度至2度,由图5可知此时密封销7.2与7.3处于密封状态,而密封销7.1与7.4处于闲置状态,密封销列处的具体物理图像如图6a所示,转子3与缸体壁之间通过密封销7.2与7.3密封。随着转子3的继续旋转,密封销7.4与转子3之间的距离开始变小,直至转子3转动至3度时,密封销7.4与转子3侧壁相接触并开始进入密封状态,此时转子3转动进入B阶段,物理图像由图6a变为图6b,转子3与缸体壁之间通过密封销7.2-7.4进行密封。但由于此时密封销7.2与转子3之间的距离较大且该距离依然在变大,故转子3转动将很快进入C阶段,此时转子3转动角度为22度,密封销7.2由密封状态转变为闲置状态,物理图像变为图6c,转子3与缸体壁通过密封销7.3与7.4进行密封。该阶段将持续较长的一段时间,直至转子3转动至72度,此时密封销7.2又重新与转子3侧壁相接触,转子3转动进入D阶段,如图6d所示,转子3与缸体壁通过密封销7.2-7.4进行密封。随着转子3的继续转动,密封销7.1与转子3之间的距离迅速缩小,直至转至87度时密封销7.1进入密封状态,此时4个密封销均处于密封状态,它们同时对转子3与缸体壁之间进行密封,转子3转动进入E阶段,如图6e所示。由图5可知,密封销曲线1-4与有效距离曲线均是以90度的转子3转动角度为对称轴的对称图形,故F-H阶段为B-D阶段的对称反演,分别如图6f-6h所示。
通过上述单个周期内的转子3转动及密封状态可知,在新的几何曲线与密封方式下,无论当转子3转动至何角度,相邻燃烧腔之间均能保证至少有两道密封销对其之间的泄露通道进行密封。相比于现有技术中相邻燃烧腔之间只有一道密封销进行密封,本发明将相邻燃烧腔之间的压力差作用长度增加了至少一倍。由此可合理推测,本发明的技术方案其泄露通道中的压力梯度至多达到原方案压力梯度的1/2,考虑到燃气泄漏量与压力梯度成正比,本发明的方案的燃气泄漏量仅有原方案的一半甚至更小,拥有比原方案更好的密封性。此外,由于发动机转子与缸体之间耦合支撑由三个单独的密封销改进为三组密封销列,考虑到密封销个 数的增加,间接增大了缸体与转子之间的耦合误差裕度,可进一步降低发动机的加工难度与加工成本,更适合于投入大规模工业化生产。
值得注意的是,在以上对发动机密封状态的讨论与研究的基础上,考虑每个密封销列所包含的密封销个数进一步增加的情况,由于密封销个数的增加,缸体与转子之间的耦合误差裕度将进一步增加。此外,通过对发动机设计参数与密封销有效距离进行调整,可以保证在转子转动过程中,至少能有更多道密封销保持密封,由此可进一步增加相邻燃烧缸之间的压力差作用长度,进而进一步减少燃烧缸之间的燃气泄漏。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明中,术语“第一”、“第二”、第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种高密封性的类椭圆转子发动机,其特征在于,所述发动机包括上端盖(1)、下端盖(2),转子(3),三个燃烧腔(4),三段隔离带(6),喷油点火装置(5)、密封销列(7)和偏心驱动轴(8),其中,
    所述上端盖(1)和所述下端盖(2)通过螺钉(9)相连接,构成发动机的缸体;
    所述缸体内部的中空腔为用于发动机工作的工作腔,用于所述转子(3)的转动与所述三个燃烧腔(4)的热力循环,所述工作腔内的工作状态由缸体型线与所述转子(3)型线决定;
    所述缸体型线整体轮廓呈三角型,三个突出的内凹腔环绕缸体一周均匀分布,构成所述三个燃烧腔(4),所述缸体型线由所述三个燃烧腔(4)壁面曲线与所述三段隔离带(6)曲线构成,所述三个燃烧腔(4)壁面曲线和所述三段隔离带(6)曲线环所述绕缸体一周交错分布,使所述缸体型线呈120度旋转对称;
    所述转子(3)整体轮廓呈类椭圆型,所述转子(3)的中心空洞与所述上端盖(1)的中心空洞和所述下端盖(2)的中心空洞通过所述偏心驱动轴(8)连接;所述三个燃烧腔(4)顶部均安装所述喷油点火装置(5),用于喷油与点火;
    发动机工作时通过所述偏心驱动轴(8)和所述缸体型线限制约束所述转子(3)做行星齿轮运动,所述转子(3)旋转,在所述三个燃烧腔(4)内形成压缩-扩张的周期性运动,所述转子(3)每转一周,压缩-扩张运动循环两次,在所述三个燃烧腔(4)内形成单独的热力循环并共同驱动所述转子(3)旋转,通过所述偏心驱动轴(8)对外输出有用功;
    在所述三段隔离带(6)上等距排列由至少四个密封销构成的密封销列(7),所述密封销安装于所述三段隔离带(6)上的销孔内,销孔内壁上安装有滑槽(10),所述密封销能够通过所述滑槽(10)滑动,并通过所述滑槽(10)尽头的挡块限制滑动范围,所述密封销底部通过弹簧(11)与销孔底部相连,头部均装有弧形的滑动密封片(12),所述转子(3)转动过程中,所述密封销列(7)与所述转子(3)侧壁保持恒定接触,并通过所述滑动密封片(12)对所述密封销列(7)两侧的区域进行稳定密封与隔离;
    所述三段隔离带(6)曲线均为圆弧曲线,参数方程为:
    Figure PCTCN2021087709-appb-100001
    其中,m为隔离带编号,取值范围为1~3,分别表示三段隔离带曲线;t为变化参数,取值范围为[-1.0,1.0];k为缸体形状系数,取值范围为10.0~12.0;e为偏心驱动轴上偏心柱 的偏心距,取值范围为0.005m~0.007m;q为三段隔离带形状参数,表征隔离带曲率半径与偏心驱动轴上偏心柱的偏心距之间的比值,取值范围为3.0~6.0;
    所述三段燃烧腔(4)壁面曲线在与所述三段隔离带(6)曲线相交处均为光滑过渡,所述三段燃烧腔(4)壁面曲线的参数方程为:
    Figure PCTCN2021087709-appb-100002
    其中,θ为变化参数,取值范围为
    Figure PCTCN2021087709-appb-100003
    分别为三段燃烧腔(4)壁面曲线;
    与所述缸体型线相对应,所述转子(3)曲线的参数方程为:
    Figure PCTCN2021087709-appb-100004
    其中,α为变化参数,取值范围为[0,2π],β为转子(3)转动角度;
    当所述转子(3)沿上述方程的规律旋转时,其运动为行星齿轮运动,无论所述转子(3)旋转至何角度,所述转子(3)曲线与所述缸体型线均保持相切状态,且相切点恒落于所述三段隔离带(6)曲线上各一个,相邻燃烧腔(4)通过落在其中间的隔离带(6)上的相切点互相隔离。
  2. 根据权利要求1所述的一种高密封性的类椭圆转子发动机,其特征在于,在所述密封销作用线上,所述缸体型线与所述密封销作用线的交点和所述转子(3)型线与所述密封销作用线的交点之间的距离为所述密封销与所述转子(3)之间的距离;若所述转子(3)与所述密封销的距离小于密封销有效距离,则所述密封销与所述转子(3)侧面接触,所述密封销处于密封状态;若所述转子(3)与所述密封销的距离大于密封销有效距离,则所述密封销与所述转子(3)侧面不接触,所述密封销处于闲置状态。
PCT/CN2021/087709 2020-04-22 2021-04-16 一种高密封性的类椭圆转子发动机 WO2021213258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/613,070 US11668232B2 (en) 2020-04-22 2021-04-16 Oblong-shaped rotor engine having high sealing performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010320469.9 2020-04-22
CN202010320469.9A CN111594311B (zh) 2020-04-22 2020-04-22 一种高密封性的类椭圆转子发动机

Publications (1)

Publication Number Publication Date
WO2021213258A1 true WO2021213258A1 (zh) 2021-10-28

Family

ID=72180342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087709 WO2021213258A1 (zh) 2020-04-22 2021-04-16 一种高密封性的类椭圆转子发动机

Country Status (3)

Country Link
US (1) US11668232B2 (zh)
CN (1) CN111594311B (zh)
WO (1) WO2021213258A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111594311B (zh) * 2020-04-22 2021-05-11 北京航空航天大学 一种高密封性的类椭圆转子发动机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB961872A (en) * 1960-10-27 1964-06-24 Girodin Marius Georges Henri Fluid-handling rotary machine
FR2567571A1 (fr) * 1983-12-19 1986-01-17 Lima Mendes Caldas Jose De Moteur rotatif a combustion interne
JP2004308639A (ja) * 2003-04-08 2004-11-04 Masashi Soranaka ニューロータリーエンジン
CN101230788A (zh) * 2007-01-23 2008-07-30 谭波 旋转活塞发动机的气密封系统
CN101532422A (zh) * 2009-04-27 2009-09-16 毛德祥 无死点式三角转子发动机
CN103477030A (zh) * 2011-03-29 2013-12-25 液体活塞公司 摆线转子发动机
CN105164373A (zh) * 2013-11-29 2015-12-16 彼得·布罗特施 旋转机械
KR20190130934A (ko) * 2018-05-15 2019-11-25 엘지전자 주식회사 로터리 엔진
CN111594311A (zh) * 2020-04-22 2020-08-28 北京航空航天大学 一种高密封性的类椭圆转子发动机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2292326B1 (es) * 2005-11-23 2009-04-01 Rosa Maria Quicler Carballido Motor rotativo hipocicloide de combustion interna.
CN103046999A (zh) * 2012-12-09 2013-04-17 马燕翔 一种密封良好的转子发动机
MX2017011439A (es) * 2015-03-10 2018-06-27 Liquidpiston Inc Motor rotatorio epitrocoidal de alta densidad de potencia y eficiencia.
CN110242407B (zh) * 2019-06-28 2021-06-25 中国航发南方工业有限公司 四瓣梅花形转子发动机及无人机
CN110344964A (zh) * 2019-07-04 2019-10-18 西北工业大学 转子发动机径向密封装置及转子发动机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB961872A (en) * 1960-10-27 1964-06-24 Girodin Marius Georges Henri Fluid-handling rotary machine
FR2567571A1 (fr) * 1983-12-19 1986-01-17 Lima Mendes Caldas Jose De Moteur rotatif a combustion interne
JP2004308639A (ja) * 2003-04-08 2004-11-04 Masashi Soranaka ニューロータリーエンジン
CN101230788A (zh) * 2007-01-23 2008-07-30 谭波 旋转活塞发动机的气密封系统
CN101532422A (zh) * 2009-04-27 2009-09-16 毛德祥 无死点式三角转子发动机
CN103477030A (zh) * 2011-03-29 2013-12-25 液体活塞公司 摆线转子发动机
CN105164373A (zh) * 2013-11-29 2015-12-16 彼得·布罗特施 旋转机械
KR20190130934A (ko) * 2018-05-15 2019-11-25 엘지전자 주식회사 로터리 엔진
CN111594311A (zh) * 2020-04-22 2020-08-28 北京航空航天大学 一种高密封性的类椭圆转子发动机

Also Published As

Publication number Publication date
US20230053217A1 (en) 2023-02-16
CN111594311A (zh) 2020-08-28
US11668232B2 (en) 2023-06-06
CN111594311B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
JPS5821082B2 (ja) 歯車なしロ−タ案内装置付き回転機関およびポンプ
WO2021213258A1 (zh) 一种高密封性的类椭圆转子发动机
KR20070027558A (ko) 스크류 로터 및 스크류식 유체 기계
US3990817A (en) Rotary combustion engine having a modified trochoid
US3799126A (en) Rotary machines
KR101032262B1 (ko) 회전식 연소 장치
GB2097474A (en) Rotary positiv-displacement fluid-machines
US7303380B1 (en) Rotary engine with improved seal assembly
JP6211591B2 (ja) スクリューエキスパンダ、スクリューマシン設計方法、スクリューマシン製造方法、スクリューマシン及び発電機
RU2619153C2 (ru) Ротор, включающий поверхность с эвольвентным профилем
US4782802A (en) Positive displacement rotary mechanism
CN105443159B (zh) 正反转可调的转动装置
AU672389B2 (en) Positive displacement machine with reciprocating and rotating pistons, particulary four-stroke engine
JP2924997B2 (ja) スクリュー機械
US5039289A (en) Rotary piston blower having piston lobe portions shaped to avoid compression pockets
US11143029B2 (en) Sealing member
JP4880040B2 (ja) 容積式機械の設計(改良型)
CN212508795U (zh) 一种双螺杆泵的多点啮合螺杆转子
US4860705A (en) Positive displacement rotary mechanism
US4877385A (en) Positive displacement rotary mechanism
CN111648956A (zh) 一种双螺杆泵的多点啮合螺杆转子
JPS614882A (ja) 歯車ポンプ
US4841930A (en) Positive displacement rotary mechanism
US10451065B2 (en) Pair of co-operating screw rotors
JP2011247115A (ja) スクリュー圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21792354

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21792354

Country of ref document: EP

Kind code of ref document: A1