WO2021213118A1 - 移动终端 - Google Patents

移动终端 Download PDF

Info

Publication number
WO2021213118A1
WO2021213118A1 PCT/CN2021/082500 CN2021082500W WO2021213118A1 WO 2021213118 A1 WO2021213118 A1 WO 2021213118A1 CN 2021082500 W CN2021082500 W CN 2021082500W WO 2021213118 A1 WO2021213118 A1 WO 2021213118A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation layer
bracket
housing
groove
Prior art date
Application number
PCT/CN2021/082500
Other languages
English (en)
French (fr)
Inventor
孙思强
魏亚蒙
徐西勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21793088.2A priority Critical patent/EP4132244A4/en
Priority to US17/920,519 priority patent/US20230200021A1/en
Publication of WO2021213118A1 publication Critical patent/WO2021213118A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings

Definitions

  • This application relates to the technical field of electronic products, and in particular to a mobile terminal.
  • mobile terminals As a new generation of portable communication equipment, mobile terminals have gained widespread popularity due to their small size and diverse functions. With the rapid development of science and technology and the continuous improvement of people's pursuit of living standards, the functions of mobile terminals are constantly enriched and improved, and the hardware performance is getting higher and higher.
  • the signal transmission capability of the antenna and the pixels of the camera are also constantly improving, so that during the use of the mobile terminal, the antenna and the camera will generate more heat, causing the antenna and the camera corresponding to the terminal housing The location temperature is too high, which reduces the user experience.
  • the present application provides a mobile terminal to avoid the problem of excessively high local temperature of the housing.
  • a mobile terminal including a main board, a heat dissipation layer, a first bracket, and a casing that are stacked in sequence; wherein,
  • a heating element is provided on the main board, and the orthographic projection of the heating element on the housing is located in the orthographic projection of the first bracket on the housing;
  • the heat dissipation layer is attached to the heating element, and the orthographic projection area of the heat dissipation layer on the housing is larger than the orthographic projection area of the first bracket on the housing.
  • a heating component is provided on the motherboard, a heat dissipation layer is arranged on the side of the heating component away from the motherboard, and is attached to the heating component, and the side of the heat dissipation layer away from the motherboard is sequentially provided with a first bracket and a housing ,
  • the orthographic projection area of the heat dissipation layer on the housing is larger than the orthographic projection area of the first bracket on the housing.
  • the heat generated by the heating component is quickly transferred to the heat dissipation layer through thermal conduction, and the heat is conducted in the heat dissipation layer along the plane where the heat dissipation layer is located. Then it is transferred to the shell, and at the same time, the heat in the heat dissipation layer can also be transferred to the first bracket, and then transferred from the first bracket to a position in the shell corresponding to the first bracket.
  • the heat dissipation layer on the housing is larger than the orthographic projection area of the first bracket on the housing, that is, the area of the heat dissipation layer is larger than the area of the first bracket, when the heat generated by the heating element is transferred to the heat dissipation layer, the heat dissipation It plays a role of dispersing, effectively reducing the heat transferred to the first bracket, thereby reducing the temperature at the corresponding position of the housing and the heating element, avoiding the problem of excessively high local temperature of the housing, and improving the user experience.
  • At least one surface of the first bracket facing the heat dissipation layer and the surface facing away from the heat dissipation layer is provided with a first groove.
  • the heat transfer efficiency between the heating element and the part of the housing corresponding to the heating element is reduced.
  • the surface of the first bracket facing the heat dissipation layer is provided with a plurality of the first grooves, and every two adjacent first grooves are arranged in parallel; and/or,
  • the surface of the first bracket away from the heat dissipation layer is provided with a plurality of the first grooves, and every two adjacent first grooves are arranged in parallel.
  • the heat transfer efficiency between the heating element and the part in the housing corresponding to the heating element is further reduced.
  • the first groove includes a first sub-groove and a second sub-groove
  • the surface of the first support facing the heat dissipation layer is provided with the first sub-recess
  • the surface of the first support away from the heat dissipation layer is provided with the second sub-recess
  • the first sub-recess is provided
  • the groove and the second sub-groove are arranged in a staggered manner.
  • the first groove includes a first sub-groove and a second sub-groove
  • the surface of the first support facing the heat dissipation layer is provided with the first sub-recess
  • the surface of the first support away from the heat dissipation layer is provided with the second sub-recess
  • the first sub-recess is provided
  • the orthographic projection of the groove on the housing and the orthographic projection of the second sub-groove on the housing are arranged crosswise.
  • the heat transfer efficiency between the heating element and the first support is reduced, and by providing the second sub-recess, the heat transfer efficiency between the first support and the housing is reduced, thereby effectively reducing the housing
  • the temperature of the part corresponding to the heating element in the middle improves the user experience.
  • a heat insulating material is arranged in the first groove.
  • the heat transfer efficiency between the heating element and the part corresponding to the heating element in the housing is further reduced, thereby reducing the temperature at the part corresponding to the heating element in the housing.
  • a second bracket is further included.
  • the second bracket is provided on a side of the heat dissipation layer away from the main board, and the second bracket is connected to the heat dissipation layer.
  • the orthographic projection of the two brackets on the housing overlaps the orthographic projection of the heat dissipation layer on the housing.
  • the efficiency of heat transfer from the heat dissipation layer to the housing is improved, and the heat dispersion effect of the heat dissipation layer is effectively improved.
  • At least one of the surface of the second bracket facing the heat dissipation layer and the surface facing away from the heat dissipation layer is provided with a second groove, and a second groove is provided in the second groove.
  • Thermally conductive material is provided.
  • the efficiency of heat transfer from the heat dissipation layer to the shell is effectively improved, and the heat at the heat dissipation layer corresponding to the heating element is further dispersed, thereby reducing the amount of heat in the shell.
  • the temperature of the corresponding part of the heating element is arranged in both the third sub-groove and the fourth sub-groove.
  • the thermally conductive material includes at least one of thermally conductive gel, copper foil, and graphite.
  • the second bracket and the thermally conductive material are integrally formed by injection molding.
  • first support and the second support are an integral structure.
  • the heat dissipation layer includes graphite and/or silica gel.
  • the heat dissipation layer and the heating element are arranged in close contact with each other, and the orthographic projection area of the heat dissipation layer on the housing is larger than the orthographic projection area of the first bracket on the housing, so that the heat transferred from the heating element to the heat dissipation layer can not only be directed along the heat dissipation layer to the first
  • the direction of the bracket can also be transferred along the plane where the heat dissipation layer is located, which realizes the dispersion of heat and effectively reduces the heat transferred to the first bracket, thereby reducing the temperature at the corresponding position of the shell and the heating element, and avoiding the partial shell
  • the problem of high temperature improves the user experience.
  • FIG. 1 is a partial exploded view of a mobile terminal provided by an embodiment of this application;
  • Figure 2 is a side view of a mobile terminal provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a first bracket provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another first bracket provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of yet another first bracket provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a direct connection between the heat dissipation layer and the housing provided by an embodiment of the application;
  • FIG. 7 is a partial exploded view of another mobile terminal provided by an embodiment of this application.
  • FIG. 8 is a partial exploded view of another mobile terminal provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a second bracket provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another second bracket provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of yet another second bracket provided by an embodiment of the application.
  • Fig. 12 is a schematic structural diagram of a housing provided by an embodiment of the application.
  • the performance of the hardware in the mobile terminal in the prior art is getting higher and higher.
  • the higher the performance of the hardware the more serious the heat is.
  • the heat of the antenna and camera is more serious.
  • the antenna and camera will generate more heat during the use of the mobile terminal, causing the position of the terminal housing 5 corresponding to the antenna and the camera to be too hot. Reduce the user experience.
  • an embodiment of the present application provides a mobile terminal, which can solve the above technical problem.
  • FIG. 1 is a partial exploded view of a mobile terminal provided by an embodiment of the application
  • FIG. 2 is a side view of the mobile terminal provided by an embodiment of the application.
  • a mobile terminal is provided.
  • the mobile terminal includes a main board 1, a heat dissipation layer 3, a first bracket 4, and a casing 5 stacked in sequence; wherein, the main board 1
  • the heating element 2 is provided on the housing 5, and the orthographic projection of the heating element 2 on the housing 5 is located in the orthographic projection of the first bracket 4 on the housing 5;
  • the projected area is larger than the orthographic projected area of the first bracket 4 on the housing 5.
  • a heat generating component is provided on the main board 1, a heat dissipation layer 3 is disposed on the side of the heat generating component away from the main board 1, and is attached to the heat generating component, and the heat dissipation layer 3 is arranged on the side facing away from the main board 1 in turn
  • a first bracket 4 and a casing 5 are provided, and the orthographic projection area of the heat dissipation layer 3 on the casing 5 is larger than the orthographic projection area of the first bracket 4 on the casing 5.
  • the heat dissipation layer 3 Since the heat dissipation layer 3 is attached to the heat-generating component, the heat generated by the heat-generating component is quickly transferred to the heat dissipation layer 3 by means of thermal conduction. Heat is conducted in the heat dissipation layer 3 along the plane where the heat dissipation layer 3 is located, and part of the heat is transferred in the direction away from the first bracket 4, and is transferred to other parts of the mobile terminal (such as the housing 5) by means of heat radiation or heat conduction. , In order to achieve heat dissipation; at the same time, the heat in the heat dissipation layer 3 can also be transferred to the first bracket 4, and then transferred from the first bracket 4 to a position corresponding to the first bracket 4 in the housing 5.
  • the orthographic projection area of the heat dissipation layer 3 on the housing 5 is greater than the orthographic projection area of the first bracket 4 on the housing 5, that is, the area of the heat dissipation layer 3 is greater than the area of the first bracket 4, the heat generated in the heating element 2 is transferred to the heat dissipation layer 3, the heat dissipation layer 3 plays a role in dispersing the heat, effectively reducing the heat transferred to the first bracket 4, thereby reducing the temperature at the corresponding position of the housing 5 and the heating element 2, and avoiding the local temperature of the housing 5 from overheating. High problems improve the user experience.
  • the heat dissipation layer 3, the first bracket 4, and the housing 5 are sequentially arranged on the side of the heating component away from the main board 1.
  • a bracket 4 and a casing 5 are arranged in different levels, which effectively avoids interference problems between the heat dissipation layer 3, the first bracket 4 and the casing 5, and reduces the difficulty of preparing the mobile terminal.
  • the heating element 2 mentioned above is an antenna or a camera module, or may also be other heating devices.
  • the above-mentioned heat dissipation layer 3 is made of a thermally conductive material.
  • the heat dissipation layer 3 may include graphite and/or silica gel.
  • the heat dissipation layer 3 is made of a thermally conductive material to facilitate heat conduction in the heat dissipation layer 3, thereby improving the effect of dispersing heat.
  • FIG. 3 is a schematic structural diagram of a first bracket provided by an embodiment of the application
  • FIG. 4 is a schematic structural diagram of another first bracket provided by an embodiment of the application.
  • at least one of the surface of the first bracket 4 facing the heat dissipation layer 3 and the surface behind the discrete thermal layer 3 is provided with a first groove 41.
  • the surface of the first support 4 facing the heat dissipation layer 3 is provided with a plurality of first grooves 41, and every two adjacent first grooves 41 are arranged in parallel, and/or the first support 4 is arranged behind the surface of the discrete thermal layer 3
  • first grooves 41 are uniformly arranged on one surface of the first bracket 4, and every two adjacent first grooves are arranged in parallel.
  • two opposite surfaces of the first bracket 4 are provided with first grooves 41, a plurality of first grooves 41 are uniformly provided on each surface, and every two adjacent first grooves 41 are parallel. set up.
  • a first groove 41 is provided on the side of the first bracket 4 facing the heat dissipation layer 3.
  • the heat transfer method is heat radiation;
  • a first groove 41 is provided on the side of the first bracket 4 backing the discrete thermal layer 3, and the housing 5 corresponds to the position of the first groove 41, and the heat between the first bracket 4 and the housing 5
  • the transfer method is heat radiation.
  • the heat transfer efficiency of heat radiation is lower than the heat transfer efficiency of heat conduction, by providing the first groove 41, the heat transfer efficiency between the heating element 2 and the part of the housing 5 corresponding to the heating element 2 is reduced.
  • the heat in the heat dissipation layer 3 is transferred in the heat dissipation layer 3 by means of thermal conduction and is transferred to a position in the housing 5 that does not correspond to the heating element 2, which improves the heat dissipation efficiency of the heat dissipation layer 3 and effectively reduces the heat dissipation in the housing 5.
  • the above-mentioned first groove 41 includes a first sub-recess 411 and a second sub-recess 412.
  • the first sub-recess 411 and the second sub-recess 412 include the following two arrangement modes shown in FIG. 4 and FIG. 5.
  • the surface of the first support 4 facing the heat dissipation layer 3 is provided with a plurality of first sub-grooves 411, and each adjacent first sub-groove 411 is arranged in parallel, and the first support
  • the surface of the 4-back discrete thermal layer 3 is provided with a plurality of second sub-grooves 412, each adjacent second sub-groove 412 is arranged in parallel, and the first sub-groove 411 and the second sub-groove 412 are arranged in a staggered manner.
  • the first sub-groove 411 is arranged on the side of the first support 4 facing the heat dissipation layer 3, and the second sub-groove 412 is arranged on the side of the edge of the first support 4 that faces the discrete thermal layer 3.
  • the heat transfer method between the heat-radiating layer 3 and the first support 4 at the corresponding position of the heat dissipation layer 3 and the first sub-groove 411 is heat radiation;
  • the second sub-groove 412 The heat transfer mode between the first bracket 4 and the housing 5 at the position corresponding to the housing 5 and the second sub-groove 412 is heat radiation.
  • the heat transfer efficiency between the heating element 2 and the first bracket 4 is reduced by providing the first sub-groove 411, and the second sub-groove is provided 412.
  • the heat transfer efficiency between the first bracket 4 and the housing 5 is reduced, thereby effectively reducing the temperature of the part corresponding to the heating element 2 in the housing 5, and improving the user experience.
  • first sub-groove 411 and the second sub-groove 412 are arranged in a staggered manner. It can be understood that, in the orthographic projection of the first bracket 4 in the housing 5, the orthographic projection of every two adjacent first sub-grooves 411 is different. An orthographic projection of the second sub-groove 412 is projected in between, and the orthographic projection of the first sub-groove 411 does not overlap with the orthographic projection of the second sub-groove 412, thereby ensuring the strength of the first bracket 4 and preventing the A bracket 4 is deformed.
  • FIG. 5 is a schematic structural diagram of yet another first bracket 4 provided by an embodiment of the application.
  • the surface of the first bracket 4 facing the heat dissipation layer 3 is provided with a first sub-groove 411
  • the surface of the first bracket 4 facing the discrete thermal layer 3 is provided with a second sub-groove 412.
  • the orthographic projection of the first sub-groove 411 on the housing 5 and the orthographic projection of the second sub-groove 412 on the housing 5 are arranged crosswise.
  • the first sub-groove 411 and the second sub-groove 412 are arranged crosswise to ensure the strength of the first support 4 and prevent the first support 4 from being deformed.
  • the orthographic projection of the first sub-groove 411 on the housing 5 and the orthographic projection of the second sub-groove 412 on the housing 5 are perpendicular, so as to facilitate the preparation of the first bracket 4 and ensure that the first bracket 4 is everywhere. Are equal in intensity.
  • a heat insulating material is provided in the first groove 41.
  • a heat insulation material can be arranged in the first groove 41, and the heat transfer speed through the heat insulation material is significantly reduced, thereby reducing the housing The temperature of the part corresponding to the heating element 2 in 5.
  • One or more of glass fiber, asbestos, and rock wool can be selected for the above-mentioned heat insulation material.
  • a part of the heat dissipation layer 3 away from the first bracket 4 is directly or indirectly connected to the housing 5.
  • the structure of the heat dissipation layer 3 can be a flat structure or an irregular structure. Therefore, the heat dissipation layer 3 can be partially or completely connected to the housing 5 except for the part that is in contact with the first bracket 4.
  • the connection method includes the following figure 6 The direct connection mode and the indirect connection mode shown in Figure 7.
  • FIG. 6 is a schematic diagram of a direct connection between the heat dissipation layer and the housing provided by an embodiment of the application.
  • the heat dissipation layer may be directly connected to the housing to realize heat dissipation. Specifically, as shown in FIG.
  • the heat dissipation layer when the heat dissipation layer is a flexible structure, the heat dissipation layer can be bent in a direction close to the housing, so that the area B of the heat dissipation layer can be directly attached to the area A of the housing, thereby connecting the heat dissipation layer 3 and the housing 5 Direct connection; or, when the heat dissipation layer is a non-flat structure, after assembly, the B area of the heat dissipation layer can be directly attached to the A area of the housing. After the heat is transferred to the B area of the heat dissipation layer, it is directly conducted to the A area through the B area, and the heat transfer from the heat dissipation layer to the shell is realized.
  • Fig. 7 is a partial exploded view of another mobile terminal provided by an embodiment of the application.
  • the side of the heat dissipation layer 3 facing away from the main board 1 is provided with a second bracket 6, and the second bracket 6 is connected to the heat dissipation layer 3, which realizes the indirect connection between the heat dissipation layer 3 and the housing 5.
  • the orthographic projection of the second bracket 6 on the housing 5 overlaps the orthographic projection of the heat dissipation layer 3 on the housing 5.
  • the overlap may be: the orthographic projection of the second bracket 6 on the housing 5 may be completely located within the orthographic projection of the heat dissipation layer 3 on the housing 5, or the orthographic projection of the second bracket 6 on the housing 5 may also be partially located on the heat sink. Layer 3 is in the orthographic projection of housing 5.
  • the indirect connection between the heat dissipation layer 3 and the housing 5 is realized.
  • the heat dissipation layer 3 can transfer heat to the second bracket 6 by means of heat conduction, and then the second bracket 6 transfers the heat to the housing 5 to realize heat dissipation.
  • the second bracket 6 can adopt a plate-like structure.
  • the material of the second bracket 6 includes a thermally conductive material, which has a good thermal conductivity effect. It is transferred to the housing 5 via the second bracket 6.
  • the efficiency of heat transfer from the heat dissipation layer 3 to the housing 5 is improved.
  • the first groove 41 is provided in the first bracket 4 to reduce the heat transfer efficiency between the first bracket 4 and the housing 5. The heat dissipation effect of the heat dissipation layer 3 is effectively improved.
  • FIG. 12 is a schematic structural diagram of the housing 5 provided by an embodiment of the application.
  • the area represented by the dashed frame C in the figure is the part corresponding to the first stent 4
  • the area represented by the dashed frame D is the part corresponding to the second stent 6.
  • the heat generated by the heating element 2 is mainly dissipated through the C area and the D area, which reduces the temperature of the C area and improves the user experience.
  • the area D can be selected as an area with a lower user touch frequency, which ensures the user's experience of using the mobile terminal when the heat is dissipated through the D area.
  • the heat generated by the heating element 2 is mainly dissipated through the C area and the D area, which increases the heat dissipation area and improves the heat dissipation efficiency.
  • the device plays a protective role.
  • FIG. 8 is a partial exploded view of another mobile terminal provided by an embodiment of this application
  • FIG. 9 is a schematic structural diagram of a second bracket provided by an embodiment of this application.
  • at least one of the surface of the second bracket 6 facing the heat dissipation layer 3 and the surface of the back discrete thermal layer 3 is provided with a first Two grooves 61, as shown in FIG. 8, in the second bracket 6, two opposite surfaces are provided with second grooves 61; as shown in FIG. 9, one surface of the second bracket 6 is provided with a second groove 61.
  • a thermally conductive material is arranged in the second groove 61.
  • At least one surface of the second bracket 6 is provided with a second groove 61, and the second groove 61 is filled with a thermally conductive material, which further improves the heat transfer efficiency of the second bracket 6 and reduces the amount of heat transferred from the first bracket 4 to the housing 5. Heat, thereby further reducing the temperature of the part corresponding to the heating element 2 in the housing 5, so as to improve the user experience.
  • FIG. 10 is a schematic structural diagram of another second bracket provided by an embodiment of the application.
  • the second groove 61 includes a third sub-groove 611 and a fourth sub-groove 612, and the second bracket 6 is provided with a third sub-groove on the side facing the heat dissipation layer 3.
  • a fourth sub-groove 612 is provided on the side of the second support 6 backing the discrete thermal layer 3, and the third sub-groove 611 and the fourth sub-groove 612 are both provided with a thermally conductive material.
  • the arrangement of the third sub-groove 611 and the fourth sub-groove may be staggered or crossed. As shown in FIG. 10, the third sub-groove 611 and the fourth sub-groove 612 are arranged in a staggered manner. As shown in FIG. 11, the orthographic projection of the third sub-groove 611 on the housing 5 and the orthographic projection of the fourth sub-groove 612 on the housing 5 are arranged intersectingly, so that the third sub-groove 611 and the fourth sub-groove 612 are arranged crosswise. Cross setting. ,
  • the above-mentioned third sub-groove 611 is provided with a thermally conductive material, which can improve the efficiency of heat transfer from the heat dissipation layer 3 to the second bracket 6.
  • the above-mentioned fourth sub-groove 612 is provided with a thermally conductive material, which can improve the efficiency of heat transfer from the second bracket 6 to the housing 5. Therefore, by arranging thermally conductive materials in both the third sub-groove 611 and the fourth sub-groove 612, the efficiency of heat transfer from the heat dissipation layer 3 to the housing 5 is effectively improved, and the heat dissipation layer 3 corresponding to the heating element 2 is further dispersed. Therefore, the temperature of the part corresponding to the heating element 2 in the housing 5 is reduced.
  • the aforementioned thermally conductive material can be made of one or more of thermally conductive gel, copper foil, and graphite.
  • the above-mentioned second bracket 6 and the thermally conductive material can be integrally formed by a two-color injection molding process, or the thermally conductive material can be filled in the second groove 61 after the preparation of the second bracket 6 is completed.
  • first bracket 4 and the second bracket 6 are an integral structure.
  • first bracket 4 and the second bracket 6 are both brackets used to support and protect the electronic components in the mobile terminal
  • first bracket 4 and the second bracket 6 are an integrated structure or a split structure, which can be based on The specific structure in the mobile terminal is selected, which is not limited here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Set Structure (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及电子产品技术领域,尤其涉及一种移动终端。该移动终端包括依次层叠设置的主板、散热层、第一支架和外壳;其中,主板上设置有发热元件,发热元件在外壳的正投影位于第一支架在外壳的正投影内;散热层与发热元件贴合设置,且散热层在外壳上的正投影的面积大于第一支架在外壳上的正投影面积。本申请所提供的移动终端中,散热层的面积大于第一支架的面积,在发热元件产生的热量传递至散热层中时,散热层对热量起到了分散的作用,有效减少了传递至第一支架中的热量,从而降低了外壳与发热元件对应位置处的温度,避免了外壳局部温度过高的问题,提高了用户的使用体验。

Description

移动终端
本申请要求于2020年04月23日提交中国专利局、申请号为202010328027.9、发明名称为“移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种移动终端。
背景技术
移动终端作为新一代的便携式通信设备以其体积小、功能多样等优点得到了广泛的普及。随着科学技术的迅猛发展及人们对生活水平的追求不断提高,移动终端的功能不断丰富和提高,硬件性能越来越高。
随着硬件性能的提高,天线的信号传输能力以及摄像头的像素也在不断提高,使得在移动终端的使用过程中,天线和摄像头将产生较多热量,造成了天线和摄像头所对应的终端外壳的位置温度过高,降低了用户的使用体验。
申请内容
本申请提供了一种移动终端,以避免外壳局部温度过高的问题。
第一方面,提供了一种移动终端,包括依次层叠设置的主板、散热层、第一支架和外壳;其中,
所述主板上设置有发热元件,所述发热元件在所述外壳的正投影位于所述第一支架在所述外壳的正投影内;
所述散热层与所述发热元件贴合设置,且所述散热层在所述外壳上的正投影的面积大于所述第一支架在所述外壳上的正投影面积。
本申请提供的移动终端中,主板上设置有发热部件,散热层设置在发热部件背离主板的一侧,并与发热部件贴合设置,散热层背离主板的一侧依次设置有第一支架和外壳,散热层在外壳上的正投影面积大于第一支架在外壳上的正投影面积。在移动终端工作过程中,发热部件产生热量,由于散热层与发热部件贴合设置,发热部件产生的热量通过热传导的方式快速传导至散热层中,热量在散热层中沿散热层所在平面传导,然后传递至外壳中,同时,散热层中的热量也可传递至第一支架中,再由第一支架传递至外壳中与第一支架对应的位置处。由于散热层在外壳的正投影面积大于第一支架在外壳的正投影面积,即,散热层的面积大于第一支架的面积,在发热元件产生的热量传递至散热层中时,散热层对热量起到了分散的作用,有效减少了传递至第一支架中的热量,从而降低了外壳与发热元件对应位置处的温度,避免了外壳局部温度过高的问题,提高了用户的使用体验。
在一种可能的实现方式中,所述第一支架朝向所述散热层的表面和背离所述散热层的表面中,至少一个表面设置有第一凹槽。
通过设置第一凹槽,降低了发热元件与外壳中与发热元件对应的部位之间的热传递效率。
在一种可能的实现方式中,所述第一支架朝向所述散热层的表面设置有多个所述第一凹槽,每相邻两个所述第一凹槽平行设置;和/或,
所述第一支架背离所述散热层的表面设置有多个所述第一凹槽,每相邻两个所述第一凹槽平行设置。
通过设置多个第一凹槽,进一步降低了发热元件与外壳中与发热元件对应的部位之间的热传递效率。
在一种可能的实现方式中,所述第一凹槽包括第一子凹槽和第二子凹槽;
所述第一支架朝向所述散热层的表面设置有所述第一子凹槽,所述第一支架背离所述散热层的表面设置有所述第二子凹槽,所述第一子凹槽和所述第二子凹槽错位设置。
在一种可能的实现方式中,所述第一凹槽包括第一子凹槽和第二子凹槽;
所述第一支架朝向所述散热层的表面设置有所述第一子凹槽,所述第一支架背离所述散热层的表面设置有所述第二子凹槽,所述第一子凹槽在所述外壳的正投影和所述第二子凹槽在所述外壳的正投影交叉排布。
通过设置第一子凹槽,降低了发热元件与第一支架之间的热传递效率,通过设置第二子凹槽,降低了第一支架与外壳之间的热传递效率,从而有效降低了外壳中与发热元件对应的部位处的温度,提高了用户的使用体验。
在一种可能的实现方式中,所述第一凹槽内设置有隔热材料。
通过在第一凹槽内设置隔热材料,进一步降低发热元件与外壳中与发热元件对应的部位之间的热传递效率,从而降低了外壳中与发热元件对应的部位处的温度。
在一种可能的实现方式中,还包括第二支架,所述第二支架设置在所述散热层背离所述主板的一侧,且所述第二支架与所述散热层连接,所述第二支架在所述外壳的正投影与所述散热层在所述外壳的正投影交叠。
通过设置第二支架,提高了热量由散热层传递至外壳的效率,有效提高了散热层的热分散效果。
在一种可能的实现方式中,所述第二支架朝向所述散热层的表面和背离所述散热层的表面中,至少一个表面设置有第二凹槽,所述第二凹槽内设置有导热材料。
通过在第三子凹槽和第四子凹槽中均设置导热材料,有效提高了热量由散热层传递至外壳的效率,进一步分散了发热元件对应的散热层处的热量,从而降低了外壳中与发热元件对应部位的温度。
在一种可能的实现方式中,所述导热材料包括导热凝胶、铜箔、石墨中的至少一种。
在一种可能的实现方式中,所述第二支架与所述导热材料注塑一体成型。
在一种可能的实现方式中,所述第一支架和所述第二支架为一体式结构。
在一种可能的实现方式中,所述散热层包括石墨和/或硅胶。
本申请通过将散热层与发热元件贴合设置,且散热层在外壳的正投影面积大于第一支架在外壳的正投影面积,使发热元件传递至散热层中的热量不仅可沿散热层指向第一支架的方向传递,还可以沿散热层所在平面传递,实现了热量的分散,有效减少了传递至第一支架中的热量,从而降低了外壳与发热元件对应位置处的温度,避免了外壳局部温度过高的问题,提高了用户的使用体验。
附图说明
图1为本申请实施例所提供的一种移动终端的局部爆炸图;
图2为本申请实施例所提供的移动终端的侧视图;
图3为本申请实施例所提供的一种第一支架的结构示意图;
图4为本申请实施例所提供的另一种第一支架的结构示意图;
图5为本申请实施例所提供的又一种第一支架的结构示意图;
图6为本申请实施例所提供的散热层与外壳直接连接的示意图;
图7为本申请实施例所提供的另一种移动终端的局部爆炸图;
图8为本申请实施例所提供的又一种移动终端的局部爆炸图;
图9为本申请实施例所提供的一种第二支架的结构示意图;
图10为本申请实施例所提供的另一种第二支架的结构示意图;
图11为本申请实施例所提供的又一种第二支架的结构示意图;
图12为本申请实施例所提供的外壳的结构示意图。
附图标记:
1-主板;2-发热元件;3-散热层;4-第一支架;41-第一凹槽;411-第一子凹槽;412-第二子凹槽;5-外壳;6-第二支架;61-第二凹槽;611-第三子凹槽;612-第四子凹槽。
具体实施方式
在本申请以下各实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接 在另一个元件“上”或者“下”。
为了提高和丰富移动终端的功能,现有技术中的移动终端中硬件的性能越来越高。硬件的性能越高其发热越严重,例如,天线和摄像头发热情况较为严重。
随着天线的信号传输能力和摄像头的像素不断提高,使得在移动终端的使用过程中,天线和摄像头将产生较多的热量,造成了天线和摄像头所对应的终端外壳5的位置温度过高,降低了用户的使用体验。
有鉴于此,本申请实施例提供了一种移动终端,能够解决上述技术问题。
图1为本申请实施例所提供的一种移动终端的局部爆炸图,图2为本申请实施例所提供的移动终端的侧视图。如图1至图2所示,在本申请实施例中,提供了一种移动终端,该移动终端包括依次层叠设置的主板1、散热层3、第一支架4和外壳5;其中,主板1上设置有发热元件2,发热元件2在外壳5的正投影位于第一支架4在外壳5的正投影内;散热层3与发热元件2贴合设置,且散热层3在外壳5上的正投影的面积大于第一支架4在外壳5上的正投影面积。
本申请实施例提供的移动终端中,主板1上设置有发热部件,散热层3设置在发热部件背离主板1的一侧,并与发热部件贴合设置,散热层3背离主板1的一侧依次设置有第一支架4和外壳5,散热层3在外壳5上的正投影面积大于第一支架4在外壳5上的正投影面积。在移动终端工作过程中,发热部件产生热量。由于散热层3与发热部件贴合设置,发热部件产生的热量通过热传导的方式快速传导至散热层3中。热量在散热层3中沿散热层3所在平面传导,其中部分热量沿远离第一支架4的方向传递,并通过热辐射或热传导的传递方式,传递至移动终端的其它部位(例如外壳5)中,以实现散热;同时,散热层3中的热量也可传递至第一支架4中,再由第一支架4传递至外壳5中与第一支架4对应的位置处。由于散热层3在外壳5的正投影面积大于第一支架4在外壳5的正投影面积,即,散热层3的面积大于第一支架4的面积,在发热元件2产生的热量传递至散热层3中时,散热层3对热量起到了分散的作用,有效减少了传递至第一支架4中的热量,从而降低了外壳5与发热元件2对应位置处的温度,避免了外壳5局部温度过高的问题,提高了用户的使用体验。
另外,本申请实施例中,通过在发热部件背离主板1的一侧依次设置散热层3、第一支架4和外壳5,结构简单,利于实现移动终端的轻薄化;并且,散热层3、第一支架4和外壳5设置在不同的层级中,有效避免了散热层3、第一支架4和外壳5之间产生干涉问题,降低了移动终端的制备难度。
上述发热元件2为天线或摄像头模组,或者也可以为其它发热器件。
上述散热层3由导热材料制成,本申请实施例中,散热层3可以包括石墨和/或硅胶。
散热层3由导热材料制成有利于热量在散热层3内进行传导,从而提高对热量的分散效果。
图3为本申请实施例所提供的一种第一支架的结构示意图;图4为本申请实施例所提供的另一种第一支架的结构示意图。如图3至图4所示,在一些实施例中,第一支架4朝向散热层3的表面和背离散热层3的表面中,至少一个表面设置有第一凹槽41。并且,第一支架4朝向散热层3的表面设置有多个第一凹槽41,每相邻两个第一 凹槽41平行设置,和/或,第一支架4背离散热层3的表面设置有多个第一凹槽41,每相邻两个第一凹槽41平行设置。如图3所示,第一支架4的一个表面上均匀设置有多个第一凹槽41,且每相邻两个第一凹槽平行设置。如图4所示,第一支架4的相对两个表面均设置有第一凹槽41,每个表面上均匀设置多个第一凹槽41,且每相邻两个第一凹槽41平行设置。
上述第一支架4中,在第一支架4朝向散热层3的一侧设置第一凹槽41,散热层3与第一凹槽41对应位置处,散热层3与第一支架4之间的热传递方式为热辐射;在第一支架4背离散热层3的一侧设置第一凹槽41,外壳5与第一凹槽41对应的位置处,第一支架4与外壳5之间的热传递方式为热辐射。由于热辐射的热传递效率低于热传导的热传递效率,故,通过设置第一凹槽41,降低了发热元件2与外壳5中与发热元件2对应的部位之间的热传递效率。而散热层3中的热量通过热传导的方式在散热层3中传递并传递到至外壳5中不与发热元件2对应的位置处,提高了散热层3的热分散效率,有效降低了外壳5中与发热元件2对应的部位处的热量。
上述第一凹槽41包括第一子凹槽411和第二子凹槽412,第一子凹槽411和第二子凹槽412包括下面图4和图5两种设置方式。
如图4所示,在一些实施例中,第一支架4朝向散热层3的表面设置有多个第一子凹槽411,每个相邻的第一子凹槽411平行设置,第一支架4背离散热层3的表面设置有多个第二子凹槽412,每个相邻的第二子凹槽412平行设置,第一子凹槽411和第二子凹槽412错位设置。
第一子凹槽411设置在第一支架4朝向散热层3的一侧,第二子凹槽412设置在第一支架4背离散热层3的边缘一侧。通过设置第一子凹槽411,使散热层3与第一子凹槽411对应位置处,散热层3与第一支架4之间的热传递方式为热辐射;通过设置第二子凹槽412,使外壳5与第二子凹槽412对应的位置处,第一支架4与外壳5之间的热传递方式为热辐射。由于热辐射的热传递效率低于热传导的热传递效率,故,通过设置第一子凹槽411,降低了发热元件2与第一支架4之间的热传递效率,通过设置第二子凹槽412,降低了第一支架4与外壳5之间的热传递效率,从而有效降低了外壳5中与发热元件2对应的部位处的温度,提高了用户的使用体验。
另外,上述第一子凹槽411和第二子凹槽412错位设置,可以理解为,第一支架4在外壳5的正投影中,每相邻两个第一子凹槽411的正投影之间投射有一个第二子凹槽412的正投影,且第一子凹槽411的正投影与第二子凹槽412的正投影无交叠,从而保证了第一支架4的强度,防止第一支架4变形。
图5为本申请实施例所提供的又一种第一支架4的结构示意图。如图5所示,在另一些实施例中,第一支架4朝向散热层3的表面设置有第一子凹槽411,第一支架4背离散热层3的表面设置有第二子凹槽412,第一子凹槽411在外壳5的正投影和第二子凹槽412在外壳5的正投影交叉排布。
第一子凹槽411和第二子凹槽412交叉排布,保证了第一支架4的强度,防止第一支架4变形。本申请实施例中,第一子凹槽411在外壳5的正投影和第二子凹槽412在外壳5的正投影垂直,从而便于第一支架4的制备,且保证第一支架4各处的强度相等。
在一些实施例中,第一凹槽41内设置有隔热材料。
为了进一步降低发热元件2与外壳5中与发热元件2对应的部位之间的热传递效率,第一凹槽41中可设置隔热材料,热量经隔热材料传递速度显著降低,从而降低了外壳5中与发热元件2对应的部位处的温度。
上述隔热材料可选用玻璃纤维、石棉、岩棉中的一种或几种。
在一些实施例中,散热层3远离第一支架4的一部分与外壳5直接或间接连接。散热层3的结构可以为平板结构,也可以为不规则结构,故,散热层3除了与第一支架4接触的部分以外,可以部分或全部与外壳5连接,连接方式包括下面图6所示的直接连接方式和图7所示的间接连接方式。
图6为本申请实施例所提供的散热层与外壳直接连接的示意图。上述散热层为柔性结构或者非平板结构时,散热层可与外壳直接连接,以实现散热。具体地,如图6所示,当散热层为柔性结构时,散热层可向靠近外壳的方向弯曲,使散热层的B区域可与外壳的A区域直接贴合,从而将散热层3与外壳5直接连接;或者,当散热层为非平板结构时,在装配之后,散热层的B区域可与外壳的A区域直接贴合。热量传递至散热层的B区域后,经B区域直接传导至A区域中,实现了热量由散热层至外壳的传递。
图7为本申请实施例所提供的另一种移动终端的局部爆炸图。如图7所示,散热层3背离主板1的一侧设置有第二支架6,且第二支架6与散热层3连接,实现了散热层3与外壳5的间接连接。第二支架6在外壳5的正投影与散热层3在外壳5的正投影交叠。例如所述的交叠可以为:第二支架6在外壳5的正投影可以完全位于散热层3在外壳5的正投影内,或者,第二支架6在外壳5的正投影也可以部分位于散热层3在外壳5的正投影内。
上述通过设置第二支架6,并将第二支架6与散热层3连接,实现了散热层3与外壳5的间接连接。散热层3可将热量通过热传导的方式传递至第二支架6中,然后第二支架6将热量传递至外壳5中,从而实现散热。
如图7所示,第二支架6可采用板状结构,第二支架6的材质包括导热材料,具有良好的导热效果,散热层3与第二支架6连接,可将散热层3中的热量经第二支架6传递至外壳5中。
通过设置第二支架6,提高了热量由散热层3传递至外壳5的效率,同时通过在第一支架4设置第一凹槽41,降低第一支架4与外壳5之间的热传递效率,有效提高了散热层3的热分散效果。
图12为本申请实施例所提供的外壳5的结构示意图。如图12所示,以图12为例,图中虚线框C所代表的区域为与第一支架4对应的部位,虚线框D所代表的区域为与第二支架6对应的部位。将发热元件2产生的热量通过C区域和D区域进行主要散热,降低了C区域的温度,提高了用户的使用体验。另外,D区域可选用用户触碰频率较低的区域,保证了通过D区域散热时用户使用移动终端的使用体验。
并且,通过C区域和D区域对发热元件2产生的热量进行主要散热,增大了散热面积,提高了散热效率,有效防止移动终端内温度过高损害电子元器件的使用寿命,从而对电子元器件起到了保护作用。
图8为本申请实施例所提供的又一种移动终端的局部爆炸图,图9为本申请实施例所提供的一种第二支架的结构示意图。如图8至9所示,为了进一步提高散热层3的热分散效果,在一些实施例中,第二支架6朝向散热层3的表面和背离散热层3的表面中,至少一个表面设置有第二凹槽61,如图8所示,第二支架6中,相对的两个表面均设置有第二凹槽61;如图9所示,第二支架6的一个表面设置有第二凹槽61,第二凹槽61内设置有导热材料。
上述第二支架6的至少一个表面设置第二凹槽61,且第二凹槽61内填充导热材料,进一步提高第二支架6的热传递效率,降低由第一支架4传递至外壳5中的热量,从而进一步降低外壳5中与发热元件2对应的部位的温度,以提高用户的使用体验。
设置第二支架6时,在上述外壳5中,选取用户触摸频率较小的区域,第二支架6设置的位置与该触摸频率较小的区域相对应,以减小发热元件2散热对用户使用的影响。
图10为本申请实施例所提供的另一种第二支架的结构示意图。如图8至图10所示,在一些实施例中,第二凹槽61包括第三子凹槽611和第四子凹槽612,第二支架6朝向散热层3的一侧设置有第三子凹槽611,第二支架6背离散热层3的一侧设置有第四子凹槽612,第三子凹槽611和第四子凹槽612中均设置有导热材料。
上述第三子凹槽611和第四子凹槽的设置方式,可以为错位设置也可以为交叉设置。如图10所示,第三子凹槽611和第四子凹槽612错位设置。如图11所示,第三子凹槽611在外壳5的正投影和第四子凹槽612在外壳5的正投影交叉排布,实现第三子凹槽611和第四子凹槽612的交叉设置。,
上述第三子凹槽611中设置导热材料,可提高热量由散热层3向第二支架6传递的效率。上述第四子凹槽612中设置导热材料,可提高热量由第二支架6向外壳5的传递效率。故,通过在第三子凹槽611和第四子凹槽612中均设置导热材料,有效提高了热量由散热层3传递至外壳5的效率,进一步分散了发热元件2对应的散热层3处的热量,从而降低了外壳5中与发热元件2对应部位的温度。
上述导热材料可以由导热凝胶、铜箔、石墨中的一种或几种制成。
上述第二支架6与导热材料可通过双色注塑工艺一体化成型,也可在第二支架6制备完成后再第二凹槽61中填充导热材料。
在一些实施例中,第一支架4和第二支架6为一体式结构。
由于第一支架4和第二支架6均为用于支撑和保护移动终端中的电子元器件的支架,故,第一支架4和第二支架6为一体式结构或者为分体式结构,可根据移动终端内的具体结构进行选取,此处不做限定。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种移动终端,其特征在于,包括依次层叠设置的主板、散热层、第一支架和外壳;其中,
    所述主板上设置有发热元件,所述发热元件在所述外壳的正投影位于所述第一支架在所述外壳的正投影内;
    所述散热层与所述发热元件贴合设置,且所述散热层在所述外壳上的正投影的面积大于所述第一支架在所述外壳上的正投影面积。
  2. 根据权利要求1所述的移动终端,其特征在于,所述第一支架朝向所述散热层的表面和背离所述散热层的表面中,至少一个表面设置有第一凹槽。
  3. 根据权利要求2所述的移动终端,其特征在于,所述第一支架朝向所述散热层的表面设置有多个所述第一凹槽,每相邻两个所述第一凹槽平行设置;和/或,
    所述第一支架背离所述散热层的表面设置有多个所述第一凹槽,每相邻两个所述第一凹槽平行设置。
  4. 根据权利要求3所述的移动终端,其特征在于,所述第一凹槽包括第一子凹槽和第二子凹槽;
    所述第一支架朝向所述散热层的表面设置有所述第一子凹槽,所述第一支架背离所述散热层的表面设置有所述第二子凹槽,所述第一子凹槽和所述第二子凹槽错位设置。
  5. 根据权利要求3所述的移动终端,其特征在于,所述第一凹槽包括第一子凹槽和第二子凹槽;
    所述第一支架朝向所述散热层的表面设置有所述第一子凹槽,所述第一支架背离所述散热层的表面设置有所述第二子凹槽,所述第一子凹槽在所述外壳的正投影和所述第二子凹槽在所述外壳的正投影交叉排布。
  6. 根据权利要求2-5任一项所述的移动终端,其特征在于,所述第一凹槽内设置有隔热材料。
  7. 根据权利要求1-6任一项所述的移动终端,其特征在于,还包括第二支架,所述第二支架设置在所述散热层背离所述主板的一侧,且所述第二支架与所述散热层连接,所述第二支架在所述外壳的正投影与所述散热层在所述外壳的正投影交叠。
  8. 根据权利要求7所述的移动终端,其特征在于,所述第二支架朝向所述散热层的表面和背离所述散热层的表面中,至少一个表面设置有第二凹槽,所述第二凹槽内设置有导热材料。
  9. 根据权利要求8所述的移动终端,其特征在于,所述导热材料包括导热凝胶、铜箔、石墨中的至少一种。
  10. 根据权利要求7或8所述的移动终端,其特征在于,所述第二支架与所述导热材料注塑一体成型。
  11. 根据权利要求7-10任一项所述的移动终端,其特征在于,所述第一支架和 所述第二支架为一体式结构。
  12. 根据权利要求1-11任一项所述的移动终端,其特征在于,所述散热层包括石墨和/或硅胶。
  13. 根据权利要求1-12任一项所述的移动终端,其特征在于,所述散热层远离所述第一支架的一部分与所述外壳直接或间接连接。
PCT/CN2021/082500 2020-04-23 2021-03-24 移动终端 WO2021213118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21793088.2A EP4132244A4 (en) 2020-04-23 2021-03-24 MOBILE DEVICE
US17/920,519 US20230200021A1 (en) 2020-04-23 2021-03-24 Mobile Terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010328027.9 2020-04-23
CN202010328027.9A CN111372433B (zh) 2020-04-23 2020-04-23 移动终端

Publications (1)

Publication Number Publication Date
WO2021213118A1 true WO2021213118A1 (zh) 2021-10-28

Family

ID=71211026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082500 WO2021213118A1 (zh) 2020-04-23 2021-03-24 移动终端

Country Status (4)

Country Link
US (1) US20230200021A1 (zh)
EP (1) EP4132244A4 (zh)
CN (2) CN114698336A (zh)
WO (1) WO2021213118A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072015A (zh) * 2023-03-03 2023-05-05 惠科股份有限公司 支撑件及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698336A (zh) * 2020-04-23 2022-07-01 华为技术有限公司 移动终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055300A1 (en) * 2013-08-22 2015-02-26 Asia Vital Components Co., Ltd. Heat dissipation structure and handheld electronic device with the heat dissipation structure
CN204993472U (zh) * 2015-07-14 2016-01-20 广东欧珀移动通信有限公司 移动终端
CN207124842U (zh) * 2017-09-04 2018-03-20 北京小米移动软件有限公司 散热模组及电子设备
US20180368284A1 (en) * 2013-12-11 2018-12-20 Asia Vital Components Co., Ltd. Back cover unit applied to portable device and having heat conduction function
CN109151139A (zh) * 2018-09-30 2019-01-04 华南理工大学 一种基于热管的强化散热手机套
CN111372433A (zh) * 2020-04-23 2020-07-03 华为技术有限公司 移动终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043784A (ja) * 2000-07-28 2002-02-08 Asahi Optical Co Ltd 携帯機器の断熱装置及び断熱シート
WO2007029311A1 (ja) * 2005-09-06 2007-03-15 Fujitsu Limited 電子機器
CN202009411U (zh) * 2011-03-07 2011-10-12 海能达通信股份有限公司 一种手持通讯终端
CN202003615U (zh) * 2011-03-14 2011-10-05 华为终端有限公司 一种显示屏散热装置
JP2014170856A (ja) * 2013-03-04 2014-09-18 Funai Electric Co Ltd 電子機器
US9282681B2 (en) * 2014-01-21 2016-03-08 Seagate Technology Llc Dissipating heat during device operation
EP3107361B1 (en) * 2014-03-18 2020-10-28 Huawei Device Co., Ltd. Heat dissipation assembly and electronic device
CN105472940B (zh) * 2014-08-20 2018-08-17 南京中兴新软件有限责任公司 终端散热装置及移动终端
US9575523B2 (en) * 2015-01-22 2017-02-21 Microsoft Technology Licensing, Llc Device sandwich structured composite housing
TWM519269U (zh) * 2015-08-13 2016-03-21 Victory Specific Material Co Ltd M 行動電子裝置之散熱緩衝導電複合成型結構(四)
CN206506813U (zh) * 2016-11-30 2017-09-19 珠海市魅族科技有限公司 电子装置
CN107249283B (zh) * 2017-07-12 2019-07-12 普联技术有限公司 一种移动终端
CN209563090U (zh) * 2018-11-30 2019-10-29 维沃移动通信有限公司 终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055300A1 (en) * 2013-08-22 2015-02-26 Asia Vital Components Co., Ltd. Heat dissipation structure and handheld electronic device with the heat dissipation structure
US20180368284A1 (en) * 2013-12-11 2018-12-20 Asia Vital Components Co., Ltd. Back cover unit applied to portable device and having heat conduction function
CN204993472U (zh) * 2015-07-14 2016-01-20 广东欧珀移动通信有限公司 移动终端
CN207124842U (zh) * 2017-09-04 2018-03-20 北京小米移动软件有限公司 散热模组及电子设备
CN109151139A (zh) * 2018-09-30 2019-01-04 华南理工大学 一种基于热管的强化散热手机套
CN111372433A (zh) * 2020-04-23 2020-07-03 华为技术有限公司 移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072015A (zh) * 2023-03-03 2023-05-05 惠科股份有限公司 支撑件及显示装置

Also Published As

Publication number Publication date
EP4132244A4 (en) 2023-09-13
EP4132244A1 (en) 2023-02-08
CN111372433A (zh) 2020-07-03
CN111372433B (zh) 2022-03-08
US20230200021A1 (en) 2023-06-22
CN114698336A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2021213118A1 (zh) 移动终端
US7705536B2 (en) Display device
WO2017067219A1 (zh) 一种移动终端的散热装置和移动终端
JP2010251386A (ja) 熱拡散部材を備える電子機器、熱拡散部材を備える電子機器の製法及び熱拡散部材
TW201008475A (en) Dissipating heat within housings for electrical components
WO2017067202A1 (zh) 一种移动终端的散热装置和移动终端
JP2009060048A (ja) シールドケース装置および表示装置
CN103209574A (zh) 一种移动终端的散热装置、方法及移动终端
WO2017206682A1 (zh) 移动显示设备
JP4006795B2 (ja) 放熱構造を有する情報処理装置
WO2016179915A1 (zh) 移动通信终端
US20200269543A1 (en) Thermal insulation structure
EP3107362B1 (en) Frame and mobile terminal
WO2022067225A1 (en) Thermal-control system of a media-streaming device and associated media-streaming devices
JP2009094196A (ja) 携帯通信機の放熱構造
JP2007049015A (ja) 電子機器構造と、電子機器構造が用いられた電子機器
JP6311222B2 (ja) 電子機器及び放熱方法
JPH10256764A (ja) 放熱材
CN205304903U (zh) 手机
CN209676570U (zh) 屏蔽散热结构及显示装置
TWI761541B (zh) 電子設備的主機板散熱系統
WO2020052028A1 (zh) 柔性电子装置
CN105555107B (zh) 无风扇散热系统及电子设备
WO2013105138A1 (ja) 放熱構造
CN109257868B (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021793088

Country of ref document: EP

Effective date: 20221026

NENP Non-entry into the national phase

Ref country code: DE