WO2021213064A1 - 螺杆压缩机的卸载控制方法 - Google Patents
螺杆压缩机的卸载控制方法 Download PDFInfo
- Publication number
- WO2021213064A1 WO2021213064A1 PCT/CN2021/080348 CN2021080348W WO2021213064A1 WO 2021213064 A1 WO2021213064 A1 WO 2021213064A1 CN 2021080348 W CN2021080348 W CN 2021080348W WO 2021213064 A1 WO2021213064 A1 WO 2021213064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- drain
- piston
- screw compressor
- pipe
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/28—Safety arrangements; Monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/18—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
Definitions
- the invention belongs to the technical field of compressors, and specifically provides a method for unloading control of a screw compressor.
- Compressor is a fluid mechanical equipment that can elevate low-pressure gas to high-pressure gas. According to the category, it can be divided into reciprocating compressor, screw compressor, rotary compressor, scroll compressor and centrifugal compressor, etc. Screw compressors are generally used in large commercial and industrial systems.
- a commercial air conditioner is a device that can adjust the temperature of the indoor environment.
- the working cycle of the screw compressor can be divided into three processes: suction, compression, and exhaust. Circulation provides power.
- the screw compressor of commercial air conditioners often has problems such as shutdown and alarm. Restarting and canceling the alarm will waste a lot of time and affect the normal operation of commercial air conditioners.
- these problems no specific cause has been found, which has also become a problem that Shangkong Air Conditioning has been unable to overcome.
- the present invention provides a screw compressor unloading control method.
- the compressor includes a piston cavity, a piston, a piston rod, an adjustment slider, an oil supply pipe, a first oil drain pipe, a second oil pipe, a third oil drain pipe and an oil tank.
- the first oil drain valve is provided on the first oil drain pipe
- the second drain valve is provided on the second drain pipe
- the third drain valve is provided on the third drain pipe.
- the two ends of the piston rod are respectively connected with the piston and the adjusting slide block.
- the oil volume changes relative to the piston cavity to move the volumetric slider.
- the volumetric slider can cooperate with the rotor of the screw compressor to adjust the load of the screw compressor.
- the inlet of the oil supply pipe is connected to the oil tank, and the outlet of the oil supply pipe Connected with the piston cavity, the inlet of the first oil drain pipe is connected with the oil supply pipe, the inlet of the second oil drain pipe is connected with the first oil drain port of the piston cavity, and the inlet of the third oil drain pipe is connected with the second oil drain port of the piston cavity ,
- the outlet of the first drain pipe, the outlet of the second drain pipe, and the outlet of the third drain pipe are all connected to the oil groove, the first drain port and the second drain port are arranged in sequence along the moving direction of the piston relative to the piston cavity
- the unloading control method includes: when the screw compressor starts to unload from the fully loaded state, controlling the second drain valve and the third drain valve to make the second drain pipe and the third drain pipe drain oil at the same time and maintain the set time, so that The piston moves from the full load position to the position of the second drain
- an oil supply valve is provided on the oil supply pipe. While maintaining the set time" step, the unloading control method further includes: controlling the fuel supply valve to stop the fuel supply pipe from supplying fuel and maintain the set time.
- the unloading control further includes: obtaining the input control instruction; if the input control instruction is an unloading instruction, then the screw compressor is continued unloading.
- a part of the oil supply pipe is configured as a capillary tube.
- the oil supply valve is arranged on the upstream side of the capillary tube along the flow direction of the oil in the oil supply pipe.
- the oil supply valve is arranged on the downstream side of the capillary tube along the flow direction of the oil in the oil supply pipe.
- a filter is provided at the suction port of the screw compressor.
- the oil groove is formed at the inner bottom of the shell of the screw compressor.
- the suction port of the screw compressor is arranged at the end of the casing.
- the exhaust port of the screw compressor is arranged on the top of the shell.
- the second drain valve and the third drain valve are controlled so that the second drain pipe and the third drain valve are unloaded.
- the drain pipe drains oil at the same time and maintains the set time, so that the piston moves from the full load position to the position of the second drain port; when the piston moves to the position of the second drain port, the second drain valve is controlled to make the second drain port.
- the drain pipe stops draining oil and controls the third drain valve to keep the third drain pipe draining, so that the piston is kept at the position of the second drain port.
- the second oil drain pipe and the third oil drain pipe drain oil at the same time, so that the piston can quickly move to the position of the second oil drain port and reach the corresponding load state.
- only one oil drain pipe can drain oil. It greatly improves the unloading speed, shortens the unloading time to the corresponding load state, and avoids that the unloading speed of the screw compressor is too slow under the working conditions of low temperature or high pressure.
- the second drain valve is controlled to stop the second drain pipe from draining oil and control the third drain valve to maintain
- the third oil drain pipe drains the oil so that the piston can remain at the position of the second drain port, so that the screw compressor can maintain the current load state, avoiding the screw compressor from changing the current load state without receiving a control command, and improving users Use experience.
- the screw compressor can discharge oil through the second oil drain pipe and the third oil drain pipe at the same time.
- the oil supply pipe stops supplying oil.
- Figure 1 is a flowchart of the unloading control method of the screw compressor of the commercial air conditioner of the present invention
- Fig. 2 is a partial schematic diagram of the screw compressor of the commercial air conditioner of the present invention.
- connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components.
- connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components.
- the present invention provides a screw compressor unloading control method, which aims to avoid the screw compressor Under low temperature or high pressure, the unloading speed is too slow and the unloading time is too long, causing the air conditioning unit to stop or alarm.
- the screw compressor of the present invention includes a casing, a piston cavity 1, a piston 2, a piston rod 3, an adjustment slider 4, an oil supply pipe 5, a first oil drain pipe 6, and a second oil drain pipe. 7.
- Both the oil tank and the oil tank 9 are arranged in the shell.
- the shell is provided with an air suction port (as a refrigerant inlet) and an exhaust port (as a refrigerant outlet).
- the first oil drain pipe 6 is provided with a first oil drain valve 10 and a second oil drain pipe.
- a second drain valve 11 is provided on 7 and a third drain valve 12 is provided on the third drain pipe 8. Both ends of the piston rod 3 are respectively connected with the piston 2 and the capacity adjustment slider 4, and the piston 2 is set to be able to The change in the amount of oil in the piston chamber 1 moves relative to the piston chamber 1 to move the capacity adjustment slider 4.
- the capacity adjustment slider 4 can cooperate with the rotor 13 of the screw compressor to adjust the load of the screw compressor.
- the inlet is in communication with the oil groove 9, the outlet of the oil supply pipe 5 is in communication with the piston chamber 1, the inlet of the first oil drain pipe 6 is in communication with the oil supply pipe 5, and the inlet of the second oil drain pipe 7 is in communication with the first oil outlet of the piston chamber 1 ,
- the inlet of the third drain pipe 8 is in communication with the second drain port of the piston chamber 1, the outlet of the first drain pipe 6, the outlet of the second drain pipe 7, and the outlet of the third drain pipe 8 are all connected to the oil groove 9.
- An oil drain port and a second oil drain port are arranged in sequence along the moving direction of the piston 2 relative to the piston cavity 1.
- the working principle of the screw compressor is that the oil in the oil groove 9 flows into the piston cavity 1 through the oil supply pipe 5, the oil in the piston cavity 1 flows into the oil groove 9 through the oil drain pipe, and the oil pressure is adjusted by adjusting the amount of oil in the piston cavity 1. Under the action of oil pressure, the piston 2 in the piston chamber 1 is pushed to move. The movement of the piston 2 drives the movement of the volumetric slider 4 through the piston rod 3.
- the volume is achieved by adjusting the position of the volumetric slider 4 and the cooperation with the rotor 13
- the capacity adjustment slider 4 can be adjusted to 25% load, 50% load, 75% load or 100% load (correspondingly, the first drain valve is a 25% drain valve, and the second drain valve It is a 50% drain valve, and the third drain valve is a 75% drain valve.
- the process of increasing the load of the screw compressor is called the loading process, for example, from 75% load to 100% load, at this time, the oil tank 9
- the oil in the piston flows into the piston chamber 1 through the oil supply pipe 5.
- the amount of oil in the piston chamber 1 increases, and the oil pressure increases.
- the piston 2 moves out of the piston chamber 1, which drives the capacity adjustment slider 4 to correspond to 75% load.
- the process of load reduction is called unloading process, for example, from 100% load to 75% load, the amount of oil flowing into the piston chamber 1 through the oil supply pipe 5 is less than
- the oil discharge pipe flows out of the oil volume of the piston chamber 1, the oil volume in the piston chamber 1 decreases, and the oil pressure decreases.
- the piston 2 moves relative to the piston chamber 1, and drives the volume adjustment slider 4 to move from the position corresponding to 100% load.
- To the position corresponding to 75% load that is, the position of the second drain port).
- the third drain valve 12 is controlled so that the third drain pipe 8 starts to drain until the piston 2 moves to the position of the second drain port.
- the capacity adjustment slider 4 is at the position corresponding to 75% load.
- the second drain valve 11 is controlled to make the second drain pipe 7 start to drain until the piston 2 Move to the position of the first drain port.
- the capacity adjustment slider 4 is located at the position corresponding to 50% load.
- the first drain valve 10 is controlled to make the first The oil drain pipe 6 starts to drain oil until the piston 2 moves so that the capacity adjustment slider 4 is located at a position corresponding to 25% of the load. During this process, the oil supply pipe 5 always supplies oil.
- the present invention proposes an unloading control method for screw compressors.
- the unloading control method includes: when the screw compressor starts to unload from a fully loaded state, controlling the second drain valve 11 And the third drain valve 12 to drain the second drain pipe 7 and the third drain pipe 8 at the same time and maintain the set time, so that the piston 2 moves from the fully loaded position to the position of the second drain port; when the piston 2 moves When the position of the second drain port is reached, the second drain valve 11 is controlled to stop the second drain pipe 7 from draining oil and the third drain valve 12 is controlled to keep the third drain pipe 8 drained, thereby keeping the piston 2 at The position of the second oil drain port changes from only one oil drain pipe to two oil drain pipes in the prior art.
- the oil drain speed is increased, the screw compressor is quickly unloaded to the corresponding load, and the unloading time is shortened. Avoid unloading time of the screw compressor due to too slow unloading speed, which will cause the air conditioning unit to stop or alarm and other problems.
- the set time here refers to the time required for the piston 2 to move from the fully loaded position to the position of the second drain port. For the set time, those skilled in the art can test and obtain it through repeated tests.
- the second drain pipe After 7 and the third drain pipe 8 are drained at the same time and maintained for a set time, the piston 2 has moved to the position of the second drain port, that is, it has been unloaded from the full load position to the load position corresponding to the second drain port.
- the piston 2 When the second drain pipe 7 stops draining oil and keeps the third drain pipe 8 draining oil, the piston 2 is kept at the position of the second drain port under the action of pressure. It should be noted that the piston 2 is relative to the piston chamber 1 The moving in movement can be realized by a spring.
- the load position corresponding to the second drain port is the 75% load position
- the load position corresponding to the first drain port is the 50% load position.
- the first drain port corresponds to the 50% load position.
- the load position corresponding to the oil port and the second oil drain port is not limited to this. Those skilled in the art can flexibly set the load position.
- the load position corresponding to the second oil drain port may be the 50% load position.
- the load position corresponding to the drain port is the 75% load position. This specific adjustment and change of the load positions corresponding to the first drain port and the second drain port does not deviate from the principle and scope of the present invention. It should be limited within the protection scope of the present invention.
- the state of the first drain valve 10 can be set arbitrarily.
- the first drain valve 10 can be set to close when the power is on to stop the first drain pipe 6 from draining, and to open when the power is off.
- the first drain pipe 6 starts to drain oil.
- the first drain valve 10 can also be set to open when it is energized so that the first drain pipe 6 starts to drain, and it is closed when it is de-energized to stop the first drain pipe 6 from draining. Oil;
- the state of the second drain valve 11 can also be set arbitrarily, for example, the second drain valve 11 can be set to be closed in the energized state so that the second drain pipe 7 stops draining oil and opens in the de-energized state Start the second drain pipe 7 to drain oil.
- the second drain valve 11 can also be set to open when it is energized so that the second drain pipe 7 starts to drain, and it closes when it is de-energized to stop the second drain pipe 7 Drain; similarly, the state of the third drain valve 12 can also be set arbitrarily, for example, the third drain valve 12 can be set to be closed when the power is on, so that the third drain pipe 8 stops draining, and when the power is off Open to make the third drain pipe 8 start to drain.
- the third drain valve 12 can also be set to open when it is energized to make the third drain pipe 8 start to drain, and close when it is de-energized to make the third drain pipe 8 Stop draining oil.
- an oil supply valve 14 is provided on the oil supply pipe 5, and the second oil drain valve 11 and the third oil drain valve 12 are controlled to make the second oil drain pipe 7 and the third oil drain valve 14 While the oil pipe 8 drains oil at the same time and maintains the set time" step, the unloading control method of the present invention also includes: controlling the oil supply valve 14 so that the oil supply pipe 5 stops supplying oil and maintains the set time, which not only increases the piston cavity 1
- the oil drain pipeline also stops the oil intake of the piston chamber 1, further improving the unloading speed and shortening the time for unloading to the corresponding load state.
- the piston 2 After the oil supply pipe 5 stops supplying oil and maintains the set time, the piston 2 has moved to the position of the second drain port, that is, it has been unloaded from 100% load to 75% load, and the oil supply valve 14 is controlled to make the oil supply pipe 5 The oil supply is restored, so that the piston 2 is maintained at the position of the second oil drain under the action of pressure, so that the volumetric sliding block 4 is maintained at the position corresponding to the 75% load. It should be noted that the state of the fuel supply valve 14 can be set arbitrarily.
- the fuel supply valve 14 can be set to close when the power is on to stop the fuel supply pipe 5 from supplying fuel, and to open when the power is off to start the fuel supply pipe 5 Fuel supply, of course, the fuel supply valve 14 can also be set to open when the power is on to start the fuel supply pipe 5, and close when the power is off to stop the fuel supply pipe 5 from supplying fuel.
- the unloading control method of the present invention also Including: get the input control command; if the input control command is an unloading command, the screw compressor will continue to unload; if the input control command is a loading command, the screw compressor will be loaded; if the control command is not obtained, then Keep the screw compressor at the current load condition.
- a part of the oil supply pipe 5 is set as a capillary tube 15 to slow down the oil supply speed of the oil supply pipe 5 and prevent the oil supply speed of the oil supply pipe 5 from being too fast to affect the loading and unloading of the screw compressor .
- the capillary tube 15 may be arranged on the side of the oil supply pipe 5 close to the outlet, or may be arranged at other positions of the oil supply pipe 5.
- the oil supply valve 14 is arranged on the upstream side of the capillary tube 15 along the flow direction of the oil in the oil supply pipe 5.
- the oil supply valve 14 is arranged on the downstream side of the capillary tube 15 along the flow direction of the oil in the oil supply pipe 5.
- a filter 17 is provided at the suction port 16 of the screw compressor to filter the gas entering the screw compressor.
- the suction port 16 of the screw compressor may not be With the filter 17, the gas enters the screw compressor directly.
- the oil groove 9 is formed at the inner bottom of the housing 18 of the screw compressor, the inlet of the oil supply pipe 5 is connected to the oil groove 9, the outlet of the oil drain pipe is connected to the oil groove 9, and the oil in the oil groove 9 passes through the supply
- the oil pipe 5 enters the piston cavity 1, and the oil in the piston cavity 1 enters the oil groove 9 through the oil drain pipe to form an oil circulation.
- the oil groove 9 can also be formed in other positions of the screw compressor.
- the suction port 16 of the screw compressor is provided at the end of the housing 18.
- the suction port 16 of the screw compressor can also be arranged on the top of the housing 18, or in other positions. This specific adjustment and change of the position of the suction port 16 of the screw compressor does not deviate from the principle of the present invention. And the scope should be limited within the protection scope of the present invention.
- the exhaust port 19 of the screw compressor is provided on the top of the housing 18.
- the screw compressor The exhaust port 19 of the compressor can also be arranged at the end of the casing 18 or in other positions. This specific adjustment and change of the position of the exhaust port 19 of the screw compressor does not deviate from the principle of the present invention. And the scope should be limited within the protection scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
一种螺杆压缩机的卸载控制方法,包括:当螺杆压缩机由满载状态开始卸载时,控制第二泄油阀(11)和第三泄油阀(12)以使第二泄油管(7)和第三泄油管(8)同时泄油并维持设定时间,从而使活塞(2)从满载位置向第二泄油口的位置移动;当活塞(2)移动至第二泄油口的位置时,控制第二泄油阀(11)以使第二泄油管(7)停止泄油并控制第三泄油阀(12)保持第三泄油管(8)泄油,从而使活塞(2)保持在第二泄油口的位置。该方法可以提高螺杆压缩机的卸载速度,缩短卸载时间,避免因卸载时间过长从而使螺杆压缩机出现停机或报警等问题。
Description
本发明属于压缩机技术领域,具体提供一种螺杆压缩机的卸载控制方法。
压缩机是一种能够将低压气体提升为高压气体的流体机械设备,按照类别可分为往复式压缩机、螺杆式压缩机、回转式压缩机、涡旋式压缩机和离心式压缩机等,螺杆式压缩机一般用于大型商用和工业系统。
以商用空调的螺杆压缩机为例,商用空调是一种能够调节室内环境温度的设备,螺杆压缩机的工作循环可分为吸气、压缩和排气三个过程,其能够为商用空调的制冷循环提供动力,然而,在实际应用的过程中,商用空调的螺杆压缩机经常会出现停机、报警等问题,而重新开机和解除报警都会浪费大量的时间,影响商用空调的正常运行,然而这些问题却始终没有找到具体引起的原因,这也成为商空空调一直无法攻克的难题。
因此,本领域需要一种螺杆压缩机的卸载控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有螺杆压缩机经常会出现停机、报警等问题而影响其正常运行的问题,本发明提供了一种螺杆压缩机的卸载控制方法,该螺杆压缩机包括活塞腔、活塞、活塞杆、容调滑块、供油管、第一泄油管、第二泄油管、第三泄油管和油槽,第一泄油管上设置有第一泄油阀,第二泄油管上设置有第二泄油阀,第三泄油管上设置有第三泄油阀,活塞杆的两端分别与活塞和容调滑块连接,活塞设置为能够根据活塞腔中的油量变化相对于活塞腔移动来使容调滑块移动,容调滑块能够与螺杆压缩机的转子配合来调节螺杆压缩机的负荷,供油管的 入口与油槽连通,供油管的出口与活塞腔连通,第一泄油管的入口与供油管连通,第二泄油管的入口与活塞腔的第一泄油口连通,第三泄油管的入口与活塞腔的第二泄油口连通,第一泄油管的出口、第二泄油管的出口以及第三泄油管的出口均与油槽连通,第一泄油口和第二泄油口沿活塞相对于活塞腔的移出方向依次设置,该卸载控制方法包括:当螺杆压缩机由满载状态开始卸载时,控制第二泄油阀和第三泄油阀以使第二泄油管和第三泄油管同时泄油并维持设定时间,从而使活塞从满载位置向第二泄油口的位置移动;当活塞移动至第二泄油口的位置时,控制第二泄油阀以使第二泄油管停止泄油并控制第三泄油阀保持第三泄油管泄油,从而使活塞保持在第二泄油口的位置。
在上述卸载控制方法的优选技术方案中,供油管上设置有供油阀,在“控制第二泄油阀和第三泄油阀以使第二泄油管和第三泄油管同时泄油并维持设定时间”的步骤的同时,该卸载控制方法还包括:控制供油阀以使供油管停止供油并维持设定时间。
在上述卸载控制方法的优选技术方案中,在“控制第二泄油阀以使第二泄油管停止泄油并控制第三泄油阀保持第三泄油管泄油”的步骤之后,该卸载控制方法还包括:获取输入的控制指令;如果输入的控制指令为卸载指令,则使螺杆压缩机继续卸载。
在上述卸载控制方法的优选技术方案中,供油管的一部分设置为毛细管。
在上述卸载控制方法的优选技术方案中,沿供油管中油的流动方向,供油阀设置在毛细管的上游侧。
在上述卸载控制方法的优选技术方案中,沿供油管中油的流动方向,供油阀设置在毛细管的下游侧。
在上述卸载控制方法的优选技术方案中,螺杆压缩机的吸气口处设置有过滤器。
在上述卸载控制方法的优选技术方案中,油槽形成在螺杆压缩机的外壳的内底部。
在上述卸载控制方法的优选技术方案中,螺杆压缩机的吸气口设置在外壳的端部。
在上述卸载控制方法的优选技术方案中,螺杆压缩机的排气口设置在外壳的顶部。
本领域技术人员能够理解的是,在本发明的优选技术方案中,当螺杆压缩机由满载状态开始卸载时,控制第二泄油阀和第三泄油阀以使第二泄油管和第三泄油管同时泄油并维持设定时间,从而使活塞从满载位置向第二泄油口的位置移动;当活塞移动至第二泄油口的位置时,控制第二泄油阀以使第二泄油管停止泄油并控制第三泄油阀保持第三泄油管泄油,从而使活塞保持在第二泄油口的位置,通过这样的设置,使得螺杆压缩机由满载状态开始卸载时可以通过第二泄油管和第三泄油管同时泄油,以使活塞能够快速移动至第二泄油口的位置,达到对应负荷状态,与现有技术中只能通过一个泄油管泄油相比,不仅大大提高了卸载速度,缩短了卸载到对应负荷状态的时间,避免螺杆压缩机在低温或高压等工况下卸载速度太慢导致卸载时间过长从而使空调机组出现停机或报警等问题,还不必额外设置其他结构,不会提高生产成本;此外,当活塞移动至第二泄油口的位置时,通过控制第二泄油阀以使第二泄油管停止泄油并控制第三泄油阀保持第三泄油管泄油,使得活塞能够保持在第二泄油口的位置,以使螺杆压缩机能够保持当前负荷状态,避免螺杆压缩机在未接收到控制指令时就改变当前负荷状态,提升用户使用体验。
进一步地,通过在供油管上设置有供油阀,在“控制第二泄油阀和第三泄油阀以使第二泄油管和第三泄油管同时泄油并维持设定时间”的步骤的同时,控制供油阀以使供油管停止供油并维持设定时间,通过这样的设置,使得螺杆压缩机在通过第二泄油管和第三泄油管同时泄油的同时,还使供油管停止供油,与现有技术相比,不仅增加了活塞腔泄油的管路,还停止了活塞腔的进油,进一步提高卸载速度,缩短卸载到对应负荷状态的时间,避免螺杆压缩机在低温或高压等工况下卸载速度太慢导致卸载时间过长从而使空调机组出现停机或报警等问题,进一步提升用户使用体验。
下面参照附图并结合商用空调的螺杆压缩机来阐述本发明的优选实施方式,附图中:
图1是本发明的商用空调的螺杆压缩机的卸载控制方法的流程图;
图2是本发明的商用空调的螺杆压缩机的局部结构示意图。
附图标记:1、活塞腔;2、活塞;3、活塞杆;4、容调滑块;5、供油管;6、第一泄油管;7、第二泄油管;8、第三泄油管;9、油槽;10、第一泄油阀;11、第二泄油阀;12、第三泄油阀;13、转子;14、供油阀;15、毛细管;16、吸气口;17、过滤器;18、外壳;19、排气口。
首先,本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本发明是结合商用空调的螺杆压缩机来阐述说明的,但是,本发明的螺杆压缩机的卸载控制方法显然还适用于食品生产、药品生产以及纺织等设备中的螺杆压缩机,这种应用对象的调整和改变不构成对本发明的限制,均应限定在本发明的保护范围之内。
需要说明的是,在本发明的描述中,术语“上”、“下”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术指出的现有商用空调的螺杆压缩机经常会出现停机、报警等问题而影响其正常运行的问题,本发明提供了一种螺杆压缩机的卸载控制方法,旨在避免螺杆压缩机在低温或高压等工况下卸载速度太慢导致卸载时间过长从而使空调机组出现停机或报警等问题。
具体地,如图2所示,本发明的螺杆压缩机包括外壳、活塞腔1、活塞2、活塞杆3、容调滑块4、供油管5、第一泄油管6、第二泄油管7、第三泄油管8和油槽9,活塞腔1、活塞2、活塞杆3、容调滑块4、供油管5、第一泄油管6、第二泄油管7、第三泄油管8和油槽9均设置在外壳内,外壳上设置有吸气口(作为冷媒进口)和排气口(作为冷媒出口),第一泄油管6上设置有第一泄油阀10,第二泄油管7上设置有第二泄油阀11,第三泄油管8上设置有第三泄油阀12,活塞杆3的两端分别与活塞2和容调滑块4连接,活塞2设置为能够根据活塞腔1中的油量变化相对于活塞腔1移动来使容调滑块4移动,容调滑块4能够与螺杆压缩机的转子13配合来调节螺杆压缩机的负荷,供油管5的入口与油槽9连通,供油管5的出口与活塞腔1连通,第一泄油管6的入口与供油管5连通,第二泄油管7的入口与活塞腔1的第一泄油口连通,第三泄油管8的入口与活塞腔1的第二泄油口连通,第一泄油管6的出口、第二泄油管7的出口以及第三泄油管8的出口均与油槽9连通,第一泄油口和第二泄油口沿活塞2相对于活塞腔1的移出方向依次设置。螺杆压缩机的工作原理是通过油槽9中的油经供油管5流入活塞腔1内,活塞腔1内的油经泄油管流入油槽9,通过调节活塞腔1中的油量调节油压,在油压的作用下推动活塞腔1中的活塞2移动,活塞2的移动通过活塞杆3带动容调滑块4的移动,通过调节容调滑块4的位置以及与转子13的配合实现容积比的调节,例如可以将容调滑块4调节至25%负荷、50%负荷、75%负荷或100%负荷(对应地,第一泄油阀为25%泄油阀,第二泄油阀为50%泄油阀,第三泄油阀为75%泄油阀),螺杆压缩机的负荷增大的过程被称为加载过程,例如由75%负荷加载到100%负荷,此时油槽9中的油经供油管5流入活塞腔1内,活塞腔1中的油量增加,油压增大,活塞2相对于活塞腔1做移出移动,带动容调滑块4从75%负荷对应的位置移动到100%负荷对应的位置,负荷减小的过程被称为卸载过程,例如由100%负荷卸载到75%负荷,此时经供油管5流入活塞腔1中的油量小于经泄油管流出活塞腔1的油量,活塞腔1中的油量减小,油压减小,活塞2相对于活塞腔1做移入移动,带动容调滑块4从100%负荷对应的位置移动到75%负荷对应的位置(即第二泄油口所处的位置)。现有技术中,当螺杆压缩机由100%负荷卸载到75%负荷时,控制第三泄油阀12使第三泄油管8开始泄油,直至活塞2移动至第二泄油口的位置,此时容调滑块4位于75% 负荷对应的位置,当螺杆压缩机由75%负荷卸载到50%负荷时,控制第二泄油阀11使第二泄油管7开始泄油,直至活塞2移动至第一泄油口的位置,此时容调滑块4位于50%负荷对应的位置,当螺杆压缩机由50%负荷卸载到25%负荷时,控制第一泄油阀10使第一泄油管6开始泄油,直至活塞2移动以使容调滑块4位于25%负荷对应的位置,在此过程中,供油管5始终供油。
针对于背景技术中指出的现有商用空调有时会出现停机、报警等情况,并且这些情况始终没有找到具体引起的原因的问题,经过发明人长时间且反复地试验、分析和比较发现,该问题主要是由于螺杆压缩机在低温或高压等工况下卸载速度太慢导致卸载时间过长引起的。
有鉴于此,本发明特提出一种螺杆压缩机的卸载控制方法,如图1和2所示,该卸载控制方法包括:当螺杆压缩机由满载状态开始卸载时,控制第二泄油阀11和第三泄油阀12以使第二泄油管7和第三泄油管8同时泄油并维持设定时间,从而使活塞2从满载位置向第二泄油口的位置移动;当活塞2移动至第二泄油口的位置时,控制第二泄油阀11以使第二泄油管7停止泄油并控制第三泄油阀12保持第三泄油管8泄油,从而使活塞2保持在第二泄油口的位置,即由现有技术中只通过一个泄油管泄油变为通过两个泄油管泄油,提高泄油速度,使螺杆压缩机快速卸载至相应负荷,缩短卸载时间,避免螺杆压缩机因卸载速度太慢导致卸载时间过长从而使空调机组出现停机或报警等问题。此处的设定时间是指活塞2从满载位置向第二泄油口的位置移动所需的时间,对于该设定时间,本领域技术人员可以通过反复地试验来测试获得,第二泄油管7和第三泄油管8同时泄油并维持设定时间后,活塞2已移动至第二泄油口的位置,即已由满载负荷位置卸载到第二泄油口所对应的负荷位置,此时使第二泄油管7停止泄油并保持第三泄油管8泄油,使活塞2在压力的作用下保持在第二泄油口的位置,需要说明的是,活塞2相对于活塞腔1的移入移动可以通过弹簧来实现。在一种可能的情形中,与前述类似的,第二泄油口所对应的负荷位置是75%负荷位置,第一泄油口所对应的负荷位置是50%负荷位置,当然,第一泄油口和第二泄油口所对应的负荷位置并不仅局限于此,本领域技术人员可以灵活设置,例如,还可以是第二泄油口所对应的负荷位置是50%负荷位置,第一泄油口所对应的负荷位置是75%负荷位置,这种对第一泄油口和第二泄油口所 对应的负荷位置的具体调整和改变,并不偏离本发明的原理和范围,均应限定在本发明的保护范围之内。
需要说明的是,第一泄油阀10的状态可以任意设置,例如,第一泄油阀10可以设置为在通电状态下关闭使第一泄油管6停止泄油、在失电状态下打开使第一泄油管6开始泄油,当然,第一泄油阀10也可以设置为在通电状态下打开使第一泄油管6开始泄油、在失电状态下关闭使第一泄油管6停止泄油;同样的,第二泄油阀11的状态也可以任意设置,例如,第二泄油阀11可以设置为在通电状态下关闭使第二泄油管7停止泄油、在失电状态下打开使第二泄油管7开始泄油,当然,第二泄油阀11也可以设置为在通电状态下打开使第二泄油管7开始泄油、在失电状态下关闭使第二泄油管7停止泄油;同样的,第三泄油阀12的状态也可以任意设置,例如,第三泄油阀12可以设置为在通电状态下关闭使第三泄油管8停止泄油、在失电状态下打开使第三泄油管8开始泄油,当然,第三泄油阀12也可以设置为在通电状态下打开使第三泄油管8开始泄油、在失电状态下关闭使第三泄油管8停止泄油。
优选地,如图1和2所示,供油管5上设置有供油阀14,在“控制第二泄油阀11和第三泄油阀12以使第二泄油管7和第三泄油管8同时泄油并维持设定时间”的步骤的同时,本发明的卸载控制方法还包括:控制供油阀14以使供油管5停止供油并维持设定时间,不仅增加了活塞腔1泄油的管路,还停止了活塞腔1的进油,进一步提高卸载速度,缩短卸载到对应负荷状态的时间。供油管5停止供油并维持设定时间后,活塞2已移动至第二泄油口的位置,即已由100%负荷卸载到75%负荷,控制供油阀14以使供油管5恢复供油,以使活塞2在压力的作用下保持在第二泄油口的位置,从而使容调滑块4保持在75%负荷对应的位置。需要说明的是,供油阀14的状态可以任意设置,例如,供油阀14可以设置为在通电状态下关闭使供油管5停止供油、在失电状态下打开使供油管5开始供油,当然,供油阀14也可以设置为在通电状态下打开使供油管5开始供油、在失电状态下关闭使供油管5停止供油。
优选地,在“控制第二泄油阀11以使第二泄油管7停止泄油并控制第三泄油阀12保持第三泄油管8泄油”的步骤之后,本发明的卸载控制方法还包括:获取输入的控制指令;如果输入的控制指令为卸载指令, 则使螺杆压缩机继续卸载;如果输入的控制指令为加载指令,则使螺杆压缩机进行加载;如果未获取到控制指令,则使螺杆压缩机保持现有负荷状态。
优选地,如图2所示,供油管5的一部分设置为毛细管15,以减缓供油管5的供油速度,避免供油管5的供油速度过快影响螺杆压缩机的加载和卸载。毛细管15可以设置在供油管5靠近出口的一侧,也可以设置在供油管5其他位置。
在一种可能的情形中,如图2所示,沿供油管5中油的流动方向,供油阀14设置在毛细管15的上游侧。
在另一种可能的情形中,沿供油管5中油的流动方向,供油阀14设置在毛细管15的下游侧。
优选地,如图2所示,螺杆压缩机的吸气口16处设置有过滤器17,以对进入螺杆压缩机内部的气体进行过滤,当然,螺杆压缩机的吸气口16处也可以不设置过滤器17,气体直接进入螺杆压缩机内部。
优选地,如图2所示,油槽9形成在螺杆压缩机的外壳18的内底部,供油管5的入口与油槽9连通,泄油管的出口与油槽9连通,油槽9中的油通过供油管5进入活塞腔1,活塞腔1中的油通过泄油管进入油槽9,形成油路循环,当然,油槽9也可以形成在螺杆压缩机的其他位置。
本领域技术人员可以灵活设置螺杆压缩机的吸气口16的位置,在一种可能的情形中,如图2所示,螺杆压缩机的吸气口16设置在外壳18的端部,当然,螺杆压缩机的吸气口16也可以设置在外壳18的顶部,或者设置在其他位置,这种对螺杆压缩机的吸气口16的设置位置的具体调整和改变,并不偏离本发明的原理和范围,均应限定在本发明的保护范围之内。
本领域技术人员可以灵活设置螺杆压缩机的排气口19的位置,在一种可能的情形中,如图2所示,螺杆压缩机的排气口19设置在外壳18的顶部,当然,螺杆压缩机的排气口19也可以设置在外壳18的端部,或者设置在其他位置,这种对螺杆压缩机的排气口19的设置位置的具体调整和改变,并不偏离本发明的原理和范围,均应限定在本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然 不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
Claims (10)
- 一种螺杆压缩机的卸载控制方法,其特征在于,所述螺杆压缩机包括活塞腔、活塞、活塞杆、容调滑块、供油管、第一泄油管、第二泄油管、第三泄油管和油槽,所述第一泄油管上设置有第一泄油阀,所述第二泄油管上设置有第二泄油阀,所述第三泄油管上设置有第三泄油阀,所述活塞杆的两端分别与所述活塞和所述容调滑块连接,所述活塞设置为能够根据所述活塞腔中的油量变化相对于所述活塞腔移动来使所述容调滑块移动,所述容调滑块能够与所述螺杆压缩机的转子配合来调节所述螺杆压缩机的负荷,所述供油管的入口与所述油槽连通,所述供油管的出口与所述活塞腔连通,所述第一泄油管的入口与所述供油管连通,所述第二泄油管的入口与所述活塞腔的第一泄油口连通,所述第三泄油管的入口与所述活塞腔的第二泄油口连通,所述第一泄油管的出口、所述第二泄油管的出口以及所述第三泄油管的出口均与所述油槽连通,所述第一泄油口和所述第二泄油口沿所述活塞相对于所述活塞腔的移出方向依次设置,所述卸载控制方法包括:当所述螺杆压缩机由满载状态开始卸载时,控制所述第二泄油阀和第三泄油阀以使所述第二泄油管和所述第三泄油管同时泄油并维持设定时间,从而使所述活塞从满载位置向所述第二泄油口的位置移动;当所述活塞移动至所述第二泄油口的位置时,控制所述第二泄油阀以使所述第二泄油管停止泄油并控制所述第三泄油阀保持所述第三泄油管泄油,从而使所述活塞保持在所述第二泄油口的位置。
- 根据权利要求1所述的卸载控制方法,其特征在于,所述供油管上设置有供油阀,在“控制所述第二泄油阀和第三泄油阀以使所述第二泄油管和所述第三泄油管同时泄油并维持设定时间”的步骤的同时,所述卸载控制方法还包括:控制所述供油阀以使所述供油管停止供油并维持所述设定时间。
- 根据权利要求1所述的卸载控制方法,其特征在于,在“控制所述第二泄油阀以使所述第二泄油管停止泄油并控制所述第三泄油阀保持所述第 三泄油管泄油”的步骤之后,所述卸载控制方法还包括:获取输入的控制指令;如果所述输入的控制指令为卸载指令,则使所述螺杆压缩机继续卸载。
- 根据权利要求1所述的卸载控制方法,其特征在于,所述供油管的一部分设置为毛细管。
- 根据权利要求4所述的卸载控制方法,其特征在于,沿所述供油管中油的流动方向,所述供油阀设置在所述毛细管的上游侧。
- 根据权利要求4所述的卸载控制方法,其特征在于,沿所述供油管中油的流动方向,所述供油阀设置在所述毛细管的下游侧。
- 根据权利要求1所述的卸载控制方法,其特征在于,所述螺杆压缩机的吸气口处设置有过滤器。
- 根据权利要求1所述的卸载控制方法,其特征在于,所述油槽形成在所述螺杆压缩机的外壳的内底部。
- 根据权利要求8所述的卸载控制方法,其特征在于,所述螺杆压缩机的吸气口设置在所述外壳的端部。
- 根据权利要求8所述的卸载控制方法,其特征在于,所述螺杆压缩机的排气口设置在所述外壳的顶部。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010334494.2A CN113550902B (zh) | 2020-04-24 | 2020-04-24 | 螺杆压缩机的卸载控制方法 |
CN202010334494.2 | 2020-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021213064A1 true WO2021213064A1 (zh) | 2021-10-28 |
Family
ID=78101346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/080348 WO2021213064A1 (zh) | 2020-04-24 | 2021-03-12 | 螺杆压缩机的卸载控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113550902B (zh) |
WO (1) | WO2021213064A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07259778A (ja) * | 1994-03-18 | 1995-10-09 | Daikin Ind Ltd | スクリュー圧縮機の容量制御装置 |
CN101014771A (zh) * | 2004-03-03 | 2007-08-08 | 雷弗孔普股份有限公司 | 设有输送调节装置的容积式螺旋压缩机 |
JP2017089498A (ja) * | 2015-11-10 | 2017-05-25 | 北越工業株式会社 | 油冷式スクリュ圧縮機の制御方法及び油冷式スクリュ圧縮機 |
CN107620709A (zh) * | 2017-07-28 | 2018-01-23 | 无锡锡压压缩机有限公司 | 一种喷油螺杆压缩机的加卸载系统 |
CN110966195A (zh) * | 2019-12-05 | 2020-04-07 | 珠海格力电器股份有限公司 | 精准控制螺杆压缩机自动加载稳定的系统、方法和空调器 |
CN111794969A (zh) * | 2020-04-24 | 2020-10-20 | 青岛海尔空调电子有限公司 | 螺杆压缩机的卸载控制方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173872A (ja) * | 1992-12-03 | 1994-06-21 | Hitachi Ltd | スクリュー圧縮機 |
DE19935041A1 (de) * | 1999-07-26 | 2001-02-08 | Bitzer Kuehlmaschinenbau Gmbh | Schraubenverdichter |
CN104500399B (zh) * | 2014-09-15 | 2016-04-13 | 汉钟精机股份有限公司 | 压缩机滑阀位置控制的结构 |
-
2020
- 2020-04-24 CN CN202010334494.2A patent/CN113550902B/zh active Active
-
2021
- 2021-03-12 WO PCT/CN2021/080348 patent/WO2021213064A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07259778A (ja) * | 1994-03-18 | 1995-10-09 | Daikin Ind Ltd | スクリュー圧縮機の容量制御装置 |
CN101014771A (zh) * | 2004-03-03 | 2007-08-08 | 雷弗孔普股份有限公司 | 设有输送调节装置的容积式螺旋压缩机 |
JP2017089498A (ja) * | 2015-11-10 | 2017-05-25 | 北越工業株式会社 | 油冷式スクリュ圧縮機の制御方法及び油冷式スクリュ圧縮機 |
CN107620709A (zh) * | 2017-07-28 | 2018-01-23 | 无锡锡压压缩机有限公司 | 一种喷油螺杆压缩机的加卸载系统 |
CN110966195A (zh) * | 2019-12-05 | 2020-04-07 | 珠海格力电器股份有限公司 | 精准控制螺杆压缩机自动加载稳定的系统、方法和空调器 |
CN111794969A (zh) * | 2020-04-24 | 2020-10-20 | 青岛海尔空调电子有限公司 | 螺杆压缩机的卸载控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113550902B (zh) | 2023-03-31 |
CN113550902A (zh) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021213063A1 (zh) | 螺杆压缩机的卸载控制方法 | |
CN108139107B (zh) | 空调装置及其运转方法 | |
US8221104B2 (en) | Screw compressor having a slide valve with hot gas bypass port | |
CN109556256A (zh) | 空调器 | |
CN110966195B (zh) | 精准控制螺杆压缩机自动加载稳定的系统、方法和空调器 | |
WO2021022766A1 (zh) | 用于空调机组的压缩机冷却控制方法 | |
CN101846201A (zh) | 二氧化碳汽车空调系统膨胀阀 | |
CN112013496B (zh) | 冷媒循环系统及其控制方法、制冷设备 | |
WO2021213064A1 (zh) | 螺杆压缩机的卸载控制方法 | |
CN106931546B (zh) | 一种热泵喷焓系统及其控制方法、空调器 | |
KR100557760B1 (ko) | 공기조화기 | |
CN114659238B (zh) | 空调系统及空调系统低温启动控制方法 | |
CN109642578B (zh) | 监测压缩机的容积指数阀的方法和诊断系统 | |
CN112594982B (zh) | 一种多联机系统的抽真空控制方法 | |
CN212130793U (zh) | 精准控制螺杆压缩机自动加载稳定的系统和空调器 | |
CN110500269B (zh) | 一种容积式压缩机测试系统 | |
KR20140135103A (ko) | 압축 장치 | |
CN113405284A (zh) | 制冷系统和冰箱 | |
EP3819556A1 (en) | Refrigeration cycle device and method for controlling same | |
CN112361633A (zh) | 制冷系统及其控制方法 | |
CN109611335A (zh) | 一种防乳化系统 | |
CN116242048A (zh) | 一种提高静压气悬浮离心压缩机运行可靠性的系统 | |
CN202747710U (zh) | 带电子旁通式能量调节的冷冻式干燥机 | |
JPS6139584B2 (zh) | ||
CN114353359A (zh) | 空调回油控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21791636 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21791636 Country of ref document: EP Kind code of ref document: A1 |