WO2021212888A1 - 通过控制lmd工艺预制熔合不良缺陷的方法 - Google Patents

通过控制lmd工艺预制熔合不良缺陷的方法 Download PDF

Info

Publication number
WO2021212888A1
WO2021212888A1 PCT/CN2020/137883 CN2020137883W WO2021212888A1 WO 2021212888 A1 WO2021212888 A1 WO 2021212888A1 CN 2020137883 W CN2020137883 W CN 2020137883W WO 2021212888 A1 WO2021212888 A1 WO 2021212888A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
prefabricated
defect
forming path
path
Prior art date
Application number
PCT/CN2020/137883
Other languages
English (en)
French (fr)
Inventor
付俊
雷力明
李雅莉
周新民
付鑫
Original Assignee
中国航发上海商用航空发动机制造有限责任公司
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发上海商用航空发动机制造有限责任公司, 中国航发商用航空发动机有限责任公司 filed Critical 中国航发上海商用航空发动机制造有限责任公司
Priority to US17/920,548 priority Critical patent/US20230147322A1/en
Priority to EP20931946.6A priority patent/EP4140741A4/en
Priority to JP2022577439A priority patent/JP7418620B2/ja
Publication of WO2021212888A1 publication Critical patent/WO2021212888A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for prefabricating defective fusion defects by controlling a laser melting deposition (LMD) process.
  • LMD laser melting deposition
  • additive manufacturing (AM) technology has gradually matured and has been widely used in aerospace, medical, automotive, nuclear power and other fields.
  • LMD technology for example, using synchronous powder feeding
  • This technology uses powder-carrying gas to transport and converge spherical powder, and uses a high-energy laser beam to melt the metal powder that is simultaneously transported and converged to form a moving non-steady state metal Molten pool, the small molten pool solidifies rapidly under high temperature gradient, melts and accumulates layer by layer, and finally forms solid parts. It is generally suitable for aerospace and defense equipment large and complex metal structural parts with low cost, short cycle and rapid forming, or high value-added parts Quick repair, such as aero engine installation section system, rear section platform, integral blisk, turbine blades and other parts.
  • the LMD metal forming/repairing process involves multi-field coupling such as temperature field and stress field. It is a complex non-equilibrium solidification process. There are many instability factors and inevitably different types and sizes of defects will inevitably occur. The common ones are pores. , Cracks, poor fusion, etc.
  • AM parts Due to the anisotropic structure and performance of AM parts, they are different from traditional casting, forging, welding and other parts, and the defects of poor fusion produced are also different. Compared with traditional parts, there are different detection accuracy and reachability. Due to the poor performance and large detection blind areas, the existing defect detection and evaluation methods are basically not suitable for AM products. Therefore, the preparation of AM standard blocks, defective samples or defective parts with artificial defects can not only prepare for accurate non-destructive testing of defects, but also accurately conduct qualitative and quantitative research on defects generated in AM, and accurately simulate different The effect of type or size of defects on the mechanical properties of AM formed parts, and further research and verification of the effect of defects on the reliability of AM parts are of great significance to the application of AM parts in aerospace and other fields.
  • the second method is to use laser selective melting (SLM) to directly design the poorly fused defects.
  • SLM laser selective melting
  • Defect profile directly forming parts with poor fusion defects inside.
  • the poor fusion defect samples prepared by the first method have damaged the structure and performance of the sample to varying degrees, and cannot effectively simulate the characteristics of poor fusion defects produced in the actual part manufacturing process.
  • the poor fusion defects prepared by the second method generally do not have a continuous structure, and are only suitable for partial poor fusion defects, and cannot fully simulate the characteristics of poor fusion defects produced in the actual part manufacturing process. At the same time, if the size is small, it is easy to be melted by the boundary contour The metal is filled and cannot be formed.
  • the present invention provides a method for controlling poor fusion defects in LMD aircraft engine alloy components.
  • the purpose of the present invention is to provide a method for prefabricating poor fusion defects by controlling the LMD process.
  • Another object of the present invention is to provide a method for prefabricating poor fusion defects, by which the prefabricated poor fusion defects can simulate the defects generated in the actual solidification process, and can retain the continuous and complete characteristics of the structure at the defect.
  • the present invention provides a method for prefabricating poor fusion defects by controlling the LMD process, wherein a model including a forming zone and a prefabricated defective region is obtained, the prefabricated defective region has preset defects; the model is subjected to layered slicing processing, For each deposited layer of the prefabricated defect area, the predetermined defect has a maximum dimension a0 in the vertical direction, and the vertical direction is perpendicular to the laser scanning direction of the LMD process, where a0 takes a value within an interval, The interval range is a variable range of the characteristic size of the defective fusion defect that is desired to be prefabricated, and the characteristic size is the maximum dimension of the poor fusion defect in the vertical direction; for the forming zone, a predetermined forming process of the LMD process is adopted For the prefabricated defect area, control the forming process parameters as follows: For each deposition layer, when a0 ⁇ D, relative to the forming area, change the scanning distance and powder feeding rate between forming paths in the deposition layer, In this way, the
  • set a0 (w1+w2)/2; where w1 and w2 are the lower limit and upper limit of the interval range, respectively.
  • the position, shape, number, and size of the prefabricated defective fusion defects are preset, so as to determine the position, shape, number, and size of the prefabricated defect area with the preset defect in the model. Size, wherein the size of the prefabricated poor fusion defect is expected to include the characteristic size.
  • f(k) and f(k+1) are respectively Set according to h(k-1) and h(k+1); where h(k-1) is the scan formed by the k-1th forming path and the kth forming path at a predetermined position in the deposition layer Interval, h(k) is the scanning interval formed by the kth forming path and the k+1th forming path at the predetermined position in the deposition layer, h(k+1) is the k+1th forming path And the scanning distance formed by the k+2th forming path at the predetermined position in the deposition layer, the predetermined position corresponds to the maximum size of the predetermined defect in the deposition layer, f(k) is Corresponding to the powder feeding rate of the kth forming path, f(k+1) is the powder feeding rate corresponding to the k+1th forming path.
  • the scanning interval formed by the predetermined position in the deposition layer, h(k+2) is formed by the k+2th forming path and the k+3th forming path at the predetermined position in the deposition layer Scanning distance, f(k-1) is the powder feeding rate corresponding to the k-1th forming path, f(k+2) is the powder feeding rate corresponding to the k+2th forming
  • the LMD process adopts a synchronous powder feeding method.
  • the above method can prefabricate poor fusion defects in LMD forming parts by controlling the LMD process.
  • the corresponding size of poor fusion defects can be prepared at the specified position to obtain poor fusion defects, which greatly simplifies the current prefabrication of poor fusion defects. Difficulty.
  • the above-mentioned method can not only produce defects with poor fusion produced in the actual solidification process, but also retain the continuous and complete characteristics of the structure at the defects of the fusion.
  • the above method also adopts different control schemes for defect prefabrication according to different defect sizes.
  • the defect size is small, the defect is prefabricated by controlling path planning and powder feeding rate, and when the defect size is large, the laser power is reduced to prefabricate the defect.
  • Using the above method to prefabricate poor fusion defects is beneficial to accurately analyze the true correspondence between LMD poor fusion defects and non-destructive testing signals, and can be combined with the performance evaluation results of the parts for actual analysis and research on the relationship between poor fusion defects and part performance , Further analyze the relationship between poor fusion defects and the reliability of AM parts.
  • Fig. 1 is a flowchart showing example steps of a method according to the present invention.
  • Fig. 2 is a model diagram of the first embodiment.
  • Fig. 3 is a schematic diagram of the deposited layer of the first embodiment.
  • Fig. 4 is a topography diagram of the polished state of the first embodiment.
  • Fig. 5 is a model diagram of the second embodiment.
  • Fig. 6 is a schematic diagram of the deposited layer of the second embodiment.
  • Fig. 7 is a topography diagram of the polished state of the second embodiment.
  • Fig. 8 is a model diagram of the third embodiment.
  • Fig. 9 is a schematic diagram of the deposited layer of the third embodiment.
  • Fig. 10 is a topography diagram of the polished state of the third embodiment.
  • the first feature described later in the specification is formed above or on the second feature, which may include an embodiment in which the first feature and the second feature are directly connected, or may be included in the first feature and the second feature.
  • An implementation of additional features is formed between them, so that the first feature and the second feature may not be directly connected.
  • the description includes the embodiment in which the first element and the second element are directly connected or combined with each other, and also includes the use of one or more other intervening elements Joining makes the first element and the second element indirectly connected or combined with each other.
  • the invention provides a method for prefabricating poor fusion defects by controlling the LMD process.
  • the LMD process can adopt a synchronous powder feeding method, as shown in the subsequent first embodiment to the third embodiment.
  • Synchronous powder feeding means that the laser scanning and metal powder conveying are carried out at the same time, and the metal powder can be conveyed to the position of the laser scanning in real time to form a moving metal molten pool.
  • the method of the present invention will be described below with reference to FIGS. 1 to 10.
  • step S1 a model 10 including a forming zone 1 and a prefabricated defective zone 2 is obtained.
  • the prefabricated defect area 2 has a preset defect 3.
  • the model of the additively manufactured formed part or repaired part is divided into a forming zone 1 and a prefabricated defect zone 2 with a preset defect 3, thereby obtaining a forming zone 1 and a prefabricated defect zone 2 of the model 10.
  • the position, shape, number, and size of the desired prefabricated defective fusion defects can be preset, so as to determine the position, Shape, quantity and size.
  • the size of the prefabricated poor fusion defect includes the largest size in the vertical direction SD2 described later.
  • step S2 the model 10 is subjected to layered slicing processing.
  • the preset defect 3 For each deposited layer 4 of the prefabricated defect area 2, the preset defect 3 has the largest dimension a0 in the vertical direction SD2, wherein the vertical direction SD2 is perpendicular to the laser scanning direction SD1 of the LMD process.
  • a0 can take a value in an interval, which is the variable range of the maximum size of the desired prefabricated fusion defect in the vertical direction SD2.
  • the aforementioned interval range has a lower limit w1 and an upper limit w2, that is, the maximum size of the expected prefabricated fusion defect in the vertical direction SD2 can vary between the lower limit w1 and the upper limit w2, and a0 can be Take a value between the lower limit w1 and the upper limit w2.
  • a0 can be preset in the modeling process in step S1. For different deposited layers 4, a0 can be different.
  • the maximum size of the defective fusion defect in the vertical direction SD2 of the desired prefabrication is taken as the characteristic size, so as to measure or characterize the defective fusion defect of the desired prefabrication.
  • the desired feature size is usually an indeterminate value or has a variable range. Therefore, correspondingly, the maximum size a0 of the preset defect 3 in the vertical direction SD2 is also taken within the aforementioned variable range or interval range, so that the fusion defect of the corresponding size can be easily obtained.
  • a0 can take the value of the lower limit w1 or the upper limit w2.
  • the size of defect 3 is preset, the size of the actually obtained poor fusion defect has room to float up and down within the aforementioned range, so that the possibility of the actual obtained poor fusion defect within the aforementioned variable range is greatly increased.
  • the model 10 can be set for forming process parameters, for example, path planning processing.
  • step S31 for the forming zone 1, the predetermined forming process parameters of the LMD process are used for forming;
  • predetermined forming process parameters can use conventional, normal or standard forming process parameters (including laser power, scanning distance, powder feeding rate, forming path, etc.) to make the forming zone 1 present a dense metallurgical bond and minimize defects such as The appearance of poor fusion defects.
  • predetermined for example, the predetermined laser power, the predetermined scanning distance, the predetermined powder feeding rate, the predetermined forming path, etc.
  • step S32 for the prefabricated defective area 2, the forming process parameters are controlled as follows: when a0 ⁇ D, relative to the forming area 1, the forming path is changed in the deposited layer 4 (including the k-1th forming path 51 which will be described later) , The scanning distance between the kth forming path 50, the k+1 forming path 61, etc.) and the powder feeding rate, thereby prefabricating poor fusion defects; when a0 ⁇ D, relative to the forming zone 1, in the deposition layer Reduce the energy input of the laser within 4, thereby prefabricating defective fusion defects.
  • D is the laser spot diameter in the deposited layer 4 of the prefabricated defect area 2.
  • a0 is the maximum size of the preset defect 3 in the vertical direction SD2, and is a characterization of the size of the preset defect 3.
  • a0 is set according to the variable range of the maximum size of the defective fusion defect in the vertical direction SD2 of the desired prefabrication. Therefore, a0 is also a characterization of the size of the defective fusion defect of the desired prefabrication.
  • the spot diameter D is the width of the single molten pool of the laser scanning path. It needs to be understood that D can be different for different deposited layers.
  • the energy input of the laser is reduced in units of the width of the single-pass molten pool of the laser scanning path.
  • at least the energy input of the single-pass width of the molten pool is reduced, that is, the poor fusion can be pre-produced by reducing the energy input of the laser
  • the minimum size of the defect is the width of a single weld pool. Therefore, when a0 ⁇ D, it is practically impossible to prefabricate defective fusion defects of a desired size by reducing the energy input of the laser.
  • a gap will be formed in the area where the preset defect 3 is located.
  • a0 ⁇ D means that only a gap smaller than the width of a single molten pool needs to be reserved in the deposition layer 4; a0 ⁇ D, meaning that the width of the reserved gap in the deposition layer 4 is greater than the width of a single molten pool.
  • the width of the gap is too large, the top of the prefabricated defective area 3 cannot be closed by the overlap of the two molten pools in the forming zone 1, or the forming zone 1 cannot be accumulated.
  • the gap width in the prefabricated defect area 2 is greater than
  • the gap below the forming zone 1 When the gap below the forming zone 1 is the gap, it means that there is no area under the forming zone 1 that supports the closure of two or more molten pools. . At this time, if low-power sintering (that is, reducing the energy input of the laser) is adopted, the two or more molten pools on the top of the prefabricated defect area 2 can be supported to close, so as to realize the prefabrication of the defective fusion defect.
  • low-power sintering that is, reducing the energy input of the laser
  • the size of the preset defect 3 or the expected prefabricated poor fusion defect is relatively small, and the poor fusion defect can be prefabricated by changing the scanning distance between the forming paths and the powder feeding rate; and
  • the size of the preset defect 3 or the expected prefabricated poor fusion defect is relatively large, and the poor fusion defect can be prefabricated by reducing the energy input of the laser.
  • the prefabricated defective region 2 may include adjacent k-th forming paths 50 and k+1-th forming paths 61 in the deposition layer 4.
  • the preset defect 3 is located between the k-th forming path 50 and the k+1-th forming path 61.
  • the forming path on the first side of the vertical direction SD2 of the preset defect 3 is, in order, the kth forming path 50, the k-1th forming path 51, the k-2th forming path 52, until the first For one forming path 71, the forming path on the second side of the vertical direction SD2 of the preset defect 3 is the k+1th forming path 61, the k+2th forming path 62, and the last forming path 72.
  • FIG. 3 shows the kth forming path 50, the k-1th forming path 51, the k-2th forming path 52, and the k-3th forming path 53, which are sequentially located on the left side of the preset defect 3.
  • the k+1th forming path 61, the k+2th forming path 62, the k+3th forming path 63, and the k+4th forming path 64 on the right side of the preset defect 3 The numbers increase from left to right.
  • f(k) and f(k+1) are set according to h(k-1) and h(k+1) respectively.
  • h(k-1) is the scanning distance formed by the k-1th forming path 51 and the kth forming path 50 at the predetermined position Z0 in the deposition layer 4
  • h(k) is the kth forming path 50 and The scanning distance formed by the k+1th forming path 61 at the predetermined position Z0 in the deposition layer 4
  • h(k+1) is the k+1th forming path 61 and the k+2th forming path 62 in the deposition layer 4
  • the scanning interval formed by the predetermined position Z0 within, and so on.
  • the predetermined position Z0 corresponds to the maximum size of the predetermined defect 3 in the deposited layer 4.
  • f(k) is the powder feeding rate corresponding to the k-th forming path 50
  • f(k+1) is the powder feeding rate corresponding to the k+1-th forming path 61
  • h(k-1) and h(k+1) are set to be larger
  • f(k) and f(k+1) are respectively set to be larger.
  • the layer thickness t0 is the height at which the deposition layer 4 is deposited. 20%*D ⁇ h(k-1) ⁇ 80%*D, 20%*D ⁇ h(k+1) ⁇ 80%*D, which can guarantee the corresponding overlap rate of 20%-80%.
  • the k ⁇ 1 th forming path 51 and the k+2 th forming path 62 may be located in the deposition layer 4 of the prefabricated defect region 2.
  • h(k-2) is the scanning distance formed by the k-2th forming path 52 and the k-1th forming path 51 at the predetermined position Z0 in the deposition layer 4
  • h(k+2 ) Is the scanning distance formed by the k+2th forming path 62 and the k+3th forming path 63 at the predetermined position Z0 in the deposition layer 4
  • f(k-1) is the corresponding k-1th forming path 51
  • the powder feeding rate, f(k+2) is the powder feeding rate corresponding to the k+2th forming path 62.
  • the scanning pitch gradually increases from the kth forming path 50 to the left, and from the k+1th forming path 61 to the right, the scanning pitch also gradually increases. Increment.
  • the first and second embodiments are aimed at the case where the size of the defective fusion defect in the LMD formed part is relatively small (a0 ⁇ D), and the third embodiment is aimed at The size of poor fusion defects in LMD molded parts is relatively large (a0 ⁇ D).
  • the latter embodiment can use the element numbers and part of the content of the previous embodiment, wherein the same numbers are used to represent the same or similar features, and the description of the same technical content is selectively omitted. For the description of the omitted parts, refer to the previous embodiment, and the latter embodiment will not be repeated.
  • the LMD formed part may be an LMD manufactured part manufactured by using the LMD process, or an LMD repair part manufactured by the LMD process for repairing and forming.
  • the model 10 is subjected to hierarchical slicing processing and path planning processing.
  • the predetermined forming process parameters of the LMD process are used for forming.
  • the boundary of the prefabricated defect area 2 and the boundary of the forming area 1 adopt a normal lap ratio, showing a dense metallurgical bond.
  • FIG. 3 shows the laser scanning direction SD1 and the vertical direction SD2 perpendicular to the laser scanning direction SD1 in the deposition layer 4.
  • the laser scanning direction SD1 is also the extension direction of each forming path.
  • the laser scanning direction SD1 is also the direction from the start point to the end point of each forming path.
  • the laser scanning direction SD1 is determined.
  • the scanning distance and powder feeding rate of the prefabricated defect area 2 are controlled, and the LMD process of synchronous powder feeding is used for layer-by-layer deposition, thereby prefabricating defective fusion defects.
  • the prefabrication of poor fusion defects in the current deposition layer 4 is completed, and the next deposition layer 4 is recycled using the above-mentioned forming process parameters, and the forming process parameters between layers (for example, forming path, powder feeding rate, etc.) can be adjusted appropriately until the final Complete the prefabrication of poor fusion defects.
  • the scanning distance is controlled to be less than or equal to 0.5mm
  • the powder feeding rate is controlled to be less than or equal to 12g/min.
  • the actual polished morphology of the poor fusion defect 7 is shown in Figure 4, and the maximum size of the poor fusion defect 7 in the vertical direction SD2 is about 0.68 mm to 0.85 mm, which is in line with expectations.
  • the model 10 of the LMD formed part is divided into three prefabricated defect areas 2 and a forming area 1, and a model 10 including the forming area 1 and the prefabricated defect area 2 is obtained. .
  • the model 10 is subjected to hierarchical slicing processing and path planning processing.
  • the predetermined forming process parameters of the LMD process are used for forming.
  • the boundary of the prefabricated defect area 2 and the boundary of the forming area 1 adopt a normal lap ratio, showing a dense metallurgical bond.
  • the scanning distance and powder feeding rate of the prefabricated defect area 2 are controlled, and the LMD process of synchronous powder feeding is used for layer-by-layer deposition, thereby prefabricating defective fusion defects.
  • the scanning distance is controlled to be less than or equal to 0.4mm, and the powder feeding rate is controlled to be less than or equal to 8g/min.
  • the actual polished morphology of the poor fusion defect 7 is shown in Figure 7.
  • the maximum size of the poor fusion defect 7 in the vertical direction SD2 is about 25 ⁇ m, which is in line with expectations; in addition, the length of the poor fusion defect 7 is about 105 ⁇ m , Also in line with expectations.
  • the model 10 of the LMD formed part is divided into three prefabricated defect areas 2 and a forming area 1, and a model 10 including the forming area 1 and the prefabricated defect area 2 is obtained. .
  • the model 10 is subjected to hierarchical slicing processing and path planning processing.
  • the predetermined forming process parameters of the LMD process are used for forming.
  • the boundary of the prefabricated defect area 2 and the boundary of the forming area 1 adopt a normal lap ratio, showing a dense metallurgical bond.
  • the laser energy input is reduced in the deposited layer 4, thereby prefabricating the defective fusion defect.
  • the LMD process of simultaneous powder feeding is used for layer-by-layer deposition.
  • the laser energy input of the prefabricated defect area 2 is relatively low, so the powder synchronously transported in the prefabricated defect area 2 cannot be fully melted and deposited, and the pre-sintered powder is filled into the prefabricated defect area 2 to form the pre-sintered loose powder of the deposition layer 4 Support the formation of the next deposited layer.
  • P1 2800W
  • t0 1mm
  • v0 1000mm/min
  • h0 0.25mm
  • D 5mm
  • v0 is the scan rate for the entire prefabricated defective area 2
  • h0 is the scan pitch for the entire prefabricated defective area 2.
  • the actual polished morphology of the poor fusion defect 7 is shown in Figure 10.
  • the maximum size of the poor fusion defect 7 in the vertical direction SD2 is about 6.3 mm, which is in line with expectations; in addition, the height of the poor fusion defect 7 is about 0.93mm, also in line with expectations.
  • the above method controls the LMD process and divides the LMD molded part into a prefabricated defect zone and a forming zone according to the size, position, shape or quantity of the desired prefabricated defective fusion defect, and completes by changing the forming process parameters of the prefabricated defect zone.
  • Prefabrication of poor fusion defects, and the forming process parameters used in the forming zone make it a dense metallurgical bond, which combines the characteristics of the AM process, from points to lines, from lines to surfaces, from two-dimensional to three-dimensional processes.
  • the above method can control the location of poor fusion defects, and actually simulate the poor fusion defects produced by the normal solidification process of AM, without damaging the structure and performance of AM parts.
  • the above method provides the basis for determining the size of the defective fusion defect.
  • the prefabricated defect is realized by controlling the scanning distance between the forming paths in the deposition layer of the prefabricated defect area and the powder feeding rate of the corresponding forming path.
  • the pre-sintered powder is filled into the prefabricated position, and the pre-sintered loose powder forming the deposited layer supports the formation of the next layer.
  • the above method can simulate the generation process of poor fusion defects in the actual LMD process, and prefabricate AM standard samples with poor fusion defects, so as to accurately analyze the relationship between AM product defects and non-destructive testing signals, which is not only beneficial to optimize the non-destructive testing process, and obtain higher
  • the defect detection accuracy is high, and good non-destructive testing results can be obtained at the same time.
  • prefabricating poor fusion defects in the typical structure or key positions of AM performance samples or parts the relationship between poor fusion defects and structure and performance can be effectively analyzed and evaluated, and the relationship between poor fusion defects and the reliability of AM parts can be further analyzed and evaluated. It can predict the service life of parts, provide strong theoretical support for the application of AM parts, and has broad research and application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种通过控制LMD工艺来预制熔合不良缺陷的方法,其中,获得包括成形区(1)和预制缺陷区(2)的模型(10),预制缺陷区(2)具有预设缺陷(3);对模型(10)进行分层切片处理,对于预制缺陷区(2)的每一沉积层(4),预设缺陷(3)具有在垂直方向上的最大尺寸a0;对于成形区(1),采用LMD工艺的预定成形工艺参数进行成形;对于预制缺陷区(2),控制成形工艺参数如下:a0<D时,相对于成形区(1),在沉积层(4)内改变成形路径之间的扫描间距及送粉率,借此预制熔合不良缺陷;a0≥D时,相对于成形区(1),在沉积层(4)内降低激光的能量输入,借此预制熔合不良缺陷;其中,D是激光在预制缺陷区(2)的沉积层(4)内的光斑直径。通过上述方法,可以在任意位置预制熔合不良缺陷。

Description

通过控制LMD工艺预制熔合不良缺陷的方法 技术领域
本发明涉及一种通过控制激光熔化沉积(LMD)工艺预制熔合不良缺陷的方法。
背景技术
增材制造(AM)技术逐渐成熟,已广泛应用于航空航天、医疗、汽车、核电等领域。LMD技术(例如,采用同步送粉方式)是常见的一种AM技术,该技术通过载粉气输送汇聚球形粉末,使用高能激光束将同步输送汇聚的金属粉末熔化,形成移动的非稳态金属熔池,在高温度梯度下小熔池快速凝固,逐层熔化堆积,最终形成实体零件,一般适用于航空航天国防装备大型复杂金属结构件低成本、短周期快速成形,或高附加值零部件快速修复,如航空发动机安装节系统、后节平台、整体叶盘、涡轮叶片等零件。
LMD金属成形/修复过程涉及温度场、应力场等多场耦合,是一个复杂的非平衡态凝固的过程,不稳定性因素多,不可避免地会产生不同类型和尺寸的缺陷,常见的有气孔、裂纹、熔合不良等。
作为典型缺陷的熔合不良缺陷因为金属材料之间未熔化结合在一起而形成。AM制造或修复过程中,熔池道间或层间的搭接不良,或者,在修复界面结合面处,都容易造成熔合不良或未熔合缺陷,缺陷位置应力集中比较严重,危害性仅次于裂纹,会使材料的机械性能明显变差,严重影响构件的使用寿命。
AM制件由于组织和性能具有各向异性的特点,不同于传统的铸造、锻造、焊接等制件,产生的熔合不良缺陷亦有所差异,同传统制件相比存在检测精度不同、可达性差、检测盲区大等问题,因而现有缺陷检测和评价方法基本不适用于AM制件。因此,制备具有人工缺陷的AM标块、缺陷试样或缺陷零件,不仅能为准确地进行缺陷的无损检测做准备,同时能对AM中产生的缺陷精确地进行定性和定量研究,精确模拟不同类型或尺寸的缺陷对AM成形件力学性能的影响,进一步研究和验证缺陷对AM零件可靠性的影响,对航空航天等领域AM零件的应用具有重大的意义。
对于制备熔合不良缺陷金属制件,目前主要有两种方法,一种是通过控制焊 接工艺,制造出具有一定尺寸的熔合不良缺陷;第二种方法是利用激光选区熔化(SLM)直接设计熔合不良缺陷轮廓,直接成形内部具有熔合不良缺陷的制件。第一种方法制备的熔合不良缺陷试样已经对样品的组织、性能等进行了不同程度的破坏,不能有效模拟实际零件制造过程产生的熔合不良缺陷特征。第二种方法制备的熔合不良缺陷一般不具备连续性组织结构,仅适用于部分熔合不良缺陷,不能完全模拟实际零件制造过程产生的熔合不良缺陷特征,同时若尺寸较小则容易被边界轮廓熔化的金属填充,无法成形。
以上两种方法均不能准确模拟制件凝固过程中产生熔合不良缺陷的特征,不能准确表征熔合不良缺陷处组织结构特点,不能准确有效地评价缺陷与力学性能的影响关系、缺陷与零件可靠性的关系,目前金属增材制造成形/修复件典型人工缺陷的制备方法和手段尚不成熟,本发明提供了一种LMD航空发动机合金构件中熔合不良类缺陷的控制方法。
发明内容
本发明的目的是提供一种通过控制LMD工艺预制熔合不良缺陷的方法。
本发明的另一目的是提供一种预制熔合不良缺陷的方法,通过该方法预制的熔合不良缺陷可以模拟实际凝固过程中产生的缺陷,而且能保留缺陷处组织结构的连续完整特征。
本发明提供一种通过控制LMD工艺来预制熔合不良缺陷的方法,其中,获得包括成形区和预制缺陷区的模型,所述预制缺陷区具有预设缺陷;对所述模型进行分层切片处理,对于所述预制缺陷区的每一沉积层,所述预设缺陷具有在垂直方向上的最大尺寸a0,所述垂直方向与LMD工艺的激光扫描方向垂直,其中,a0在区间范围内取值,所述区间范围是期望预制的熔合不良缺陷的特征尺寸的可变范围,所述特征尺寸是熔合不良缺陷在所述垂直方向上的最大尺寸;对于所述成形区,采用LMD工艺的预定成形工艺参数进行成形;对于所述预制缺陷区,控制成形工艺参数如下:对于每一沉积层,a0<D时,相对于成形区,在沉积层内改变成形路径之间的扫描间距及送粉率,借此预制所述熔合不良缺陷;对于每一沉积层,a0≥D时,相对于成形区,在沉积层内降低激光的能量输入,借此预制熔合不良缺陷;其中,D是激光在所述预制缺陷区的沉积层内的光斑直径。
在一个实施方式中,设定a0=(w1+w2)/2;其中,w1、w2分别是所述区间范 围的下限值、上限值。
在一个实施方式中,预设期望预制的熔合不良缺陷的位置、形状、数量和尺寸,借此确定具有所述预设缺陷的所述预制缺陷区在所述模型中的位置、形状、数量和尺寸,其中,期望预制的熔合不良缺陷的尺寸包括所述特征尺寸。
在一个实施方式中,a0<D时,所述预制缺陷区在所述沉积层内包括相邻的第k条成形路径和第k+1条成形路径,所述预设缺陷位于所述第k条成形路径和所述第k+1条成形路径之间,在所述预设缺陷的所述垂直方向的第一侧的成形路径依次为,所述第k条成形路径,第k-1条成形路径,第k-2条成形路径,直到第1条成形路径,在所述预设缺陷的所述垂直方向的第二侧的成形路径依次为,所述第k+1条成形路径,第k+2条成形路径,直到最后一条成形路径,其中,k为大于2的任意自然数;对于所述预制缺陷区,控制成形工艺参数如下:h(k)=a0+D;h(k-1)、h(k+1)预设成D的20%-80%,在保持所述预制缺陷区的沉积层的层厚不变的情况下,f(k)、f(k+1)分别根据h(k-1)和h(k+1)设置;其中,h(k-1)是第k-1条成形路径和第k条成形路径在所述沉积层内的预定位置形成的扫描间距,h(k)是第k条成形路径和第k+1条成形路径在所述沉积层内的所述预定位置形成的扫描间距,h(k+1)是第k+1条成形路径和第k+2条成形路径在所述沉积层内的所述预定位置形成的扫描间距,所述预定位置与所述预设缺陷在所述沉积层内的最大尺寸对应,f(k)是对应第k条成形路径的送粉率,f(k+1)是对应第k+1条成形路径的送粉率。
在一个实施方式中,所述第k-1条成形路径和所述第k+2条成形路径位于所述预制缺陷区的沉积层内;对于所述预制缺陷区,进一步控制成形工艺参数如下:h(k-2)=a*h(k-1);h(k+2)=b*h(k+1);f(k-1)=c*f(k);f(k+2)=d*f(k+1);其中,a、b、c、d为大于1的常数,h(k-2)是第k-2条成形路径和第k-1条成形路径在所述沉积层内的所述预定位置形成的扫描间距,h(k+2)是第k+2条成形路径和第k+3条成形路径在所述沉积层内的所述预定位置形成的扫描间距,f(k-1)是对应第k-1条成形路径的送粉率,f(k+2)是对应第k+2条成形路径的送粉率。
在一个实施方式中,控制成形工艺参数如下:对于所述预制缺陷区,t0=100-200μm,P0=600-1000W,D=0.8-1mm;其中,t0为层厚,P0为激光功率。
在一个实施方式中,a0≥D时,设定P2≤0.1*P1;其中,P2是对应所述预制缺陷区的激光功率,P1是对应所述成形区的所述预定成形工艺参数中的预定激光功 率。
在一个实施方式中,LMD工艺采用同步送粉方式。
上述方法通过控制LMD工艺可以在LMD成形件中预制熔合不良缺陷,通过控制成形工艺参数,可以在指定位置制备相应尺寸的熔合不良缺陷,获得熔合不良缺陷,极大简化了目前熔合不良缺陷预制的难度。上述方法不仅能够制备出具有实际凝固过程中产生的熔合不良缺陷,而且能保留熔合不良缺陷处组织结构的连续完整特征。
上述方法还根据缺陷尺寸的不同采用不同的控制方案进行缺陷预制,缺陷尺寸较小时通过控制路径规划和送粉率来预制缺陷,而缺陷尺寸较大时通过降低激光功率来预制缺陷。
利用上述方法预制熔合不良缺陷有利于准确分析LMD熔合不良缺陷与无损检测信号之间真实的对应关系,可以与制件性能考核结果结合,用于实际分析研究熔合不良缺陷与制件性能的影响关系,进一步分析熔合不良缺陷与AM零件可靠性的关系。
附图概述
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1是示出根据本发明的方法的示例步骤流程图。
图2是第一实施例的模型图。
图3是第一实施例的沉积层的示意图。
图4是第一实施例的抛光态形貌图。
图5是第二实施例的模型图。
图6是第二实施例的沉积层的示意图。
图7是第二实施例的抛光态形貌图。
图8是第三实施例的模型图。
图9是第三实施例的沉积层的示意图。
图10是第三实施例的抛光态形貌图。
本发明的最佳实施方式
下面结合具体实施方式和附图对本发明作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施方式的内容限制本发明的保护范围。
例如,在说明书中随后记载的第一特征在第二特征上方或者上面形成,可以包括第一特征和第二特征通过直接联系的方式形成的实施方式,也可包括在第一特征和第二特征之间形成附加特征的实施方式,从而第一特征和第二特征之间可以不直接联系。进一步地,当第一元件是用与第二元件相连或结合的方式描述的,该说明包括第一元件和第二元件直接相连或彼此结合的实施方式,也包括采用一个或多个其他介入元件加入使第一元件和第二元件间接地相连或彼此结合。
本发明提供一种通过控制LMD工艺来预制熔合不良缺陷的方法。LMD工艺可以采用同步送粉方式,如后续第一实施例至第三实施例所示。同步送粉意指激光扫描和金属粉末输送同时进行,金属粉末能实时输送到激光扫描的位置,形成移动的金属熔池。下面将结合图1至图10描述本发明的方法。
步骤S1中,获得包括成形区1和预制缺陷区2的模型10。
预制缺陷区2具有预设缺陷3。例如,通过UG、CAD等三维建模软件,将增材制造成形件或修复件的模型分成成形区1和具有预设缺陷3的预制缺陷区2,借此获得包括成形区1和预制缺陷区2的模型10。
在后续的实施例中,在步骤S1中,可以预设期望预制的熔合不良缺陷的位置、形状、数量和尺寸,借此确定具有预设缺陷3的预制缺陷区2在模型10中的位置、形状、数量和尺寸。其中,期望预制的熔合不良缺陷的尺寸包括后述在垂直方向SD2上的最大尺寸。
步骤S2中,对模型10进行分层切片处理。
对于预制缺陷区2的每一沉积层4,预设缺陷3具有在垂直方向SD2上的最大尺寸a0,其中,垂直方向SD2与LMD工艺的激光扫描方向SD1垂直。
a0可以在区间范围内取值,该区间范围是期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸的可变范围。换言之,前述区间范围具有下限值w1和上限值w2,也即,期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸可以在下限值 w1和上限值w2之间变动,而a0可以在下限值w1和上限值w2之间取值。a0可以在步骤S1中的建模过程中预设完成。对于不同的沉积层4,a0可以是不同的。
熔合不良缺陷本身为不规则形状的缺陷,难以用某一尺寸进行表征。然而,为了预制或获得某一熔合不良缺陷,需要对期望预制的熔合不良缺陷的尺寸进行描述和衡量。在本发明中,则是将期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸作为特征尺寸,借此对期望预制的熔合不良缺陷进行衡量或尺寸表征。期望达到的特征尺寸通常是一个不确定值,或者,具有可变范围。因此,与之相应地,使得预设缺陷3在垂直方向SD2上的最大尺寸a0也在前述可变范围或区间范围内取值,可以易于获得相应尺寸的熔合不良缺陷。
例如,a0可以取值为下限值w1或上限值w2。优选地,a0是前述区间范围的下限值w1和上限值w2的平均值,也即,a0=(w1+w2)/2。
以a0取值为下限值w1或上限值w2为例,需要考虑依据下限值w1或上限值w2预制熔合不良缺陷时的增量设计,允许实际预制的熔合不良缺陷的特征尺寸在某一范围内浮动。若采用下限值w1来预制熔合不良缺陷,出现实际获得的熔合不良缺陷的尺寸偏小、小于前述区间范围的可能性较大;若采用上限值w2来预制熔合不良缺陷,则出现实际获得的熔合不良缺陷的尺寸偏大、大于前述区间范围的可能性较大。这实际上增加了对实际获得的熔合不良缺陷的尺寸大小进行准确控制的难度。
而相比于a0取值为下限值w1或上限值w2,a0取值为下限值w1和上限值w2的平均值(或者,a0=(w1+w2)/2),从而表征预设缺陷3的尺寸大小时,实际获得的熔合不良缺陷的尺寸大小在前述区间范围内有上下浮动的空间,从而实际获得的熔合不良缺陷在前述期望获得的可变范围内的可能性大大增加,同时由于熔合不良缺陷本身即为不规则形状,实际预制的熔合不良缺陷的尺寸大小有更多浮动空间可以增加缺陷尺寸合格率,提高具有熔合不良缺陷的LMD成形件的预制成功率,增大缺陷无损检测检出率。接下来可以对模型10进行成形工艺参数的设置,例如,路径规划处理。
步骤S31中,对于成形区1,采用LMD工艺的预定成形工艺参数进行成形;
“采用预定成形工艺参数”可以采用常规、正常或标准的成形工艺参数(包括激光功率、扫描间距、送粉率、成形路径等),使得成形区1呈致密的冶金结 合,尽可能减少缺陷例如熔合不良缺陷的出现。文中提及的“预定…”(例如,预定激光功率、预定扫描间距、预定送粉率、预定成形路径等)皆指对于成形区1采用的预定成形工艺参数。
步骤S32中,对于预制缺陷区2,控制成形工艺参数如下:a0<D时,相对于成形区1,在沉积层4内改变成形路径(包括后面将会描述的第k-1条成形路径51、第k条成形路径50、第k+1条成形路径61等等)之间的扫描间距及送粉率,借此预制熔合不良缺陷;a0≥D时,相对于成形区1,在沉积层4内降低激光的能量输入,借此预制熔合不良缺陷。其中,D是激光在预制缺陷区2的沉积层4内的光斑直径。
如前所述,a0是预设缺陷3在垂直方向SD2上的最大尺寸,是对预设缺陷3的尺寸大小的表征。a0是根据期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸的可变范围来设定的,因此,a0也是对期望预制的熔合不良缺陷的尺寸大小的表征。而一般情况下,光斑直径D即为激光扫描路径的单道熔池宽度。需要理解,对于不同沉积层,D可以是不同的。
降低激光的能量输入是以激光扫描路径的单道熔池宽度为单位进行的,换言之,至少降低单道熔池宽度的能量输入,也即,通过降低激光的能量输入的方式能够预制的熔合不良缺陷的最小尺寸为单道熔池宽度。因此,a0<D时,实际上无法通过降低激光的能量输入的方式预制期望尺寸的熔合不良缺陷。
而且,通过改变成形路径之间的扫描间距及送粉率来预制熔合不良缺陷时,由于LMD成形会避开预设缺陷3所在区域,因此会在预设缺陷3所在区域处形成空隙。a0<D,意味着在沉积层4内仅需预留小于单道熔池宽度的空隙;a0≥D,意味着在沉积层4内预留的空隙宽度大于单道熔池宽度。空隙宽度过大时,会导致无法通过成形区1中两道熔池的搭接来闭合预制缺陷区3顶部,或者成形区1无法堆积。分析认为,预制缺陷区2中的空隙宽度小于单道熔池宽度时,可以允许通过两道熔池的搭接来实现预制缺陷区2顶部的闭合;反之,预制缺陷区2中的空隙宽度大于等于单道熔池宽度时,无法完全确保可以通过两道熔池的搭接来实现预制缺陷区2顶部的闭合,特别是在空隙宽度比单道熔池宽度大得多的时候。例如,a0=3D时,空隙宽度达到多道熔池搭接的宽度,此时成形区1下方为该空隙时,则意味着成形区1下方没有支撑两道或多道熔池闭合的任何区域。此时,若 采用低功率烧结(也即,降低激光的能量输入)的方式,则可以支撑预制缺陷区2顶部两道或多道熔池闭合,从而实现熔合不良缺陷的预制。
因此,本发明中,判断a0<D时,预设缺陷3或者期望预制的熔合不良缺陷的尺寸相对较小,可以通过改变成形路径之间的扫描间距及送粉率来预制熔合不良缺陷;而判断a0≥D时,预设缺陷3或者期望预制的熔合不良缺陷的尺寸相对较大,可以通过降低激光的能量输入来预制熔合不良缺陷。通过将a0与D比较来判定期望预制的熔合不良缺陷相对的尺寸大小,并且根据尺寸大小的不同采用不同的控制方案进行缺陷预制,能够更容易获得期望预制的熔合不良缺陷,提高熔合不良缺陷的预制成功率。
对于a0<D的情况,预制缺陷区2可以在沉积层4内包括相邻的第k条成形路径50和第k+1条成形路径61。预设缺陷3位于第k条成形路径50和第k+1条成形路径61之间。以此类推,在预设缺陷3的垂直方向SD2的第一侧的成形路径依次为,第k条成形路径50,第k-1条成形路径51,第k-2条成形路径52,直到第1条成形路径71,在预设缺陷3的垂直方向SD2的第二侧的成形路径依次为第k+1条成形路径61,第k+2条成形路径62,直到最后一条成形路径72。其中,k可以为大于2的任意自然数。例如,图3所示的实施方式中,k>3,进一步,k=6。图3示出了依次位于预设缺陷3左侧的第k条成形路径50、第k-1条成形路径51、第k-2条成形路径52、第k-3条成形路径53,依次位于预设缺陷3右侧的第k+1条成形路径61、第k+2条成形路径62、第k+3条成形路径63、第k+4条成形路径64,总体而言,成形路径的编号从左侧到右侧依次递增。
对于预制缺陷区2,控制成形工艺参数如下:h(k)=a0+D;h(k-1)、h(k+1)可以预设成D的20%-80%,在保持预制缺陷区2的沉积层4的层厚t0不变的情况下,f(k)、f(k+1)分别根据h(k-1)和h(k+1)设置。其中,h(k-1)是第k-1条成形路径51和第k条成形路径50在沉积层4内的预定位置Z0形成的扫描间距,h(k)是第k条成形路径50和第k+1条成形路径61在沉积层4内的预定位置Z0形成的扫描间距,h(k+1)是第k+1条成形路径61和第k+2条成形路径62在沉积层4内的预定位置Z0形成的扫描间距,以此类推。其中,预定位置Z0与预设缺陷3在沉积层4内的最大尺寸对应。f(k)是对应第k条成形路径50的送粉率,f(k+1)是对应第k+1条成形路径61的送粉率,以此类推。大体上,h(k-1)、h(k+1)设置得越大,f(k)、f(k+1)则分别设置得越大。 层厚t0即沉积层4沉积的高度。20%*D≤h(k-1)≤80%*D,20%*D≤h(k+1)≤80%*D,可以保证对应的搭接率在20%-80%。
进一步,第k-1条成形路径51和第k+2条成形路径62可以位于预制缺陷区2的沉积层4内。
对于预制缺陷区2,进一步控制成形工艺参数,使得:h(k-2)=a*h(k-1);h(k+2)=b*h(k+1);f(k-1)=c*f(k);f(k+2)=d*f(k+1);其中,a、b、c、d为大于1的常数。从上面的描述类推可知,h(k-2)是第k-2条成形路径52和第k-1条成形路径51在沉积层4内的预定位置Z0形成的扫描间距,h(k+2)是第k+2条成形路径62和第k+3条成形路径63在沉积层4内的预定位置Z0形成的扫描间距;f(k-1)是对应第k-1条成形路径51的送粉率,f(k+2)是对应第k+2条成形路径62的送粉率。需要理解,预制缺陷区2可以在沉积层4内包括更多条成形路径,从上面的描述类推,例如,h(k-3)=a’*h(k-2),h(k+3)=b’*h(k+2),f(k-2)=c’*f(k-1),f(k+3)=d’*f(k+2)…,其中,a’、b’、c’、d’…皆为大于1的常数。总体上,在预制缺陷区2的沉积层4中,从第k条成形路径50往左侧开始,扫描间距逐渐递增,并且从第k+1条成形路径61往右侧开始,扫描间距也逐渐递增。或者,在预制缺陷区2的沉积层4中,越靠近预设缺陷3所在位置,成形路径间的扫描间距呈减小趋势;越靠近预设缺陷3所在位置,成形路径的送粉率呈对应的减小趋势。
对于a0<D的情况,可以控制成形工艺参数如下:对于预制缺陷区2,t0=100-200μm,P0=600-1000W,D=0.8-1mm。其中,t0为层厚,P0为激光功率。
对于a0≥D,在沉积层4内降低激光的能量输入,换言之,设定P2=m*P1,其中,P2是对应预制缺陷区2的激光功率,P1是对应成形区1的预定成形工艺参数中的预定激光功率,m为小于1的常数。可以设定P2≤0.1*P1。
需要理解,文中描述某一成形工艺参数“=”某一具体数值并非要求数学意义上的严格相等,而是意为“≈”,例如可以含有±10%的余量。
下面提供本发明的具体实施例,其中,第一实施例和第二实施例针对的是LMD成形件中熔合不良缺陷尺寸相对较小(a0<D)的情况,而第三实施例针对的是LMD成形件中熔合不良缺陷尺寸相对较大(a0≥D)的情况。需要理解,后一实施例可以沿用前一实施例的元件标号与部分内容,其中采用相同的标号来表示相同或近似的特征,并且选择性地省略了相同技术内容的说明。关于省略部分的 说明可参照前一实施例,后一实施例不再重复赘述。另外,还需要理解,LMD成形件可以是利用LMD工艺制造而成的LMD制造件,也可以是利用LMD工艺进行修复成形的LMD修复件。
第一实施例
(1)预设期望预制的熔合不良缺陷在LMD成形件中的位置、形状、数量和尺寸。
如图2所示,分别在三个不同沉积层设置一个预设缺陷3,模拟期望预制的熔合不良缺陷。期望预制的熔合不良缺陷近似呈不规则孔状。针对某一沉积层4,期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸约在0.65mm~1mm,也即,w1=0.65mm,w2=1mm。设定a0=(w1+w2)/2=0.825mm。
(2)根据期望预制的熔合不良缺陷的位置、形状、数量及尺寸,将LMD成形件的模型10分为三个预制缺陷区2和成形区1,获得包括成形区1和预制缺陷区2的模型10。
对模型10进行分层切片处理和路径规划处理。对于成形区1采用LMD工艺的预定成形工艺参数进行成形。预制缺陷区2的边界和成形区1的边界采用正常的搭接率,呈致密的冶金结合。
(3)对于预制缺陷区2,根据预设缺陷3的形状和尺寸,针对预制缺陷区2,在沉积层4内进行如图3所示的路径规划。
图3示出了激光扫描方向SD1、在沉积层4内与激光扫描方向SD1垂直的垂直方向SD2。对于成形区1,激光扫描方向SD1也即每条成形路径的延伸方向,对于预制缺陷区2,激光扫描方向SD1也即从每条成形路径的起点指向终点的方向,对于一个沉积层4而言,激光扫描方向SD1是确定的。
控制预制缺陷区2的扫描间距和送粉率,采用同步送粉的LMD工艺逐层沉积,借此预制熔合不良缺陷。其中,完成当前沉积层4内熔合不良缺陷的预制,下一沉积层4再循环采用上述成形工艺参数,层间的成形工艺参数(例如,成形路径、送粉率等)可以适当调整,直到最终完成熔合不良缺陷的预制。
控制成形工艺参数,使得满足:
h(k)=a0+D;
h(k-2)=1.2*h(k-1);
h(k+2)=1.17*h(k+1);
f(k-1)=1.12*f(k);
f(k+2)=1.19*f(k+1);
其中,对于预制缺陷区2,D=1mm,h(k-1)=0.2mm,h(k+1)=0.22mm,f(k)=6g/min,f(k+1)=5g/min,t0=200μm,P0=1000W。对于整个预制缺陷区2,扫描间距控制成小于等于0.5mm,送粉率控制成小于等于12g/min。
经检测,实际获得的熔合不良缺陷7的抛光态形貌如图4所示,熔合不良缺陷7在垂直方向SD2上的最大尺寸约在0.68mm~0.85mm,符合预期。
第二实施例
(1)预设期望预制的熔合不良缺陷在LMD成形件中的位置、形状、数量和尺寸。
如图5和图6所示,在沉积层设置一个预设缺陷3,模拟期望预制的熔合不良缺陷。期望预制的熔合不良缺陷近似呈不规则线状,尺寸较小。针对某一沉积层4,期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸约在20μm~40μm,也即,w1=20μm,w2=40μm。设定a0=(w1+w2)/2=30μm。期望预制的熔合不良缺陷还具有沿着激光扫描方向SD1的长度尺寸,可以预设为约100μm~120μm。
(2)根据期望预制的熔合不良缺陷的位置、形状及尺寸,将LMD成形件的模型10分为三个预制缺陷区2和成形区1,获得包括成形区1和预制缺陷区2的模型10。
对模型10进行分层切片处理和路径规划处理。对于成形区1采用LMD工艺的预定成形工艺参数进行成形。预制缺陷区2的边界和成形区1的边界采用正常的搭接率,呈致密的冶金结合。
(3)对于预制缺陷区2,根据预设缺陷3的形状和尺寸,针对预制缺陷区2,在沉积层4内进行如图6所示的路径规划。
控制预制缺陷区2的扫描间距和送粉率,采用同步送粉的LMD工艺逐层沉积,借此预制熔合不良缺陷。
控制成形工艺参数,使得满足:
h(k)=a0+D;
h(k-2)=1.07*h(k-1);
h(k+2)=1.07*h(k+1);
f(k-1)=1.16*f(k);
f(k+2)=1.16*f(k+1);
其中,对于预制缺陷区2,D=0.8mm,h(k-1)=0.32mm,h(k+1)=0.32mm,f(k)=5g/min,f(k+1)=5g/min,t0=100μm,P0=600W。对于整个预制缺陷区2,扫描间距控制成小于等于0.4mm,送粉率控制成小于等于8g/min。
经检测,实际获得的熔合不良缺陷7的抛光态形貌如图7所示,熔合不良缺陷7在垂直方向SD2上的最大尺寸约25μm,符合预期;另外,熔合不良缺陷7的长度尺寸约105μm,也符合预期。
第三实施例
(1)预设期望预制的熔合不良缺陷在LMD成形件中的位置、形状、数量和尺寸。
如图8和图9所示,在沉积层设置一个预设缺陷3,模拟期望预制的熔合不良缺陷。期望预制的熔合不良缺陷近似呈不规则长条状,尺寸较大。针对某一沉积层4,期望预制的熔合不良缺陷在垂直方向SD2上的最大尺寸约在6mm~7mm,也即,w1=6mm,w2=7mm。设定a0=(w1+w2)/2=6.5mm。期望预制的熔合不良缺陷还具有沿着激光成形高度方向的高度尺寸,可以预设为约0.8mm~1mm。
(2)根据期望预制的熔合不良缺陷的位置、形状及尺寸,将LMD成形件的模型10分为三个预制缺陷区2和成形区1,获得包括成形区1和预制缺陷区2的模型10。
对模型10进行分层切片处理和路径规划处理。对于成形区1采用LMD工艺的预定成形工艺参数进行成形。预制缺陷区2的边界和成形区1的边界采用正常的搭接率,呈致密的冶金结合。
(3)对于预制缺陷区2,通过在沉积层4内降低激光的能量输入,借此预制熔合不良缺陷。
采用同步送粉的LMD工艺逐层沉积。预制缺陷区2的激光的能量输入较低, 因而在预制缺陷区2同步输送的粉末不能充分熔化沉积,成为预烧结状态的粉末填充到预制缺陷区2,形成该沉积层4的预烧结疏松粉末支撑下一沉积层的成形。
控制成形工艺参数,使得满足:
P2=0.1*P1,
其中,P1=2800W,t0=1mm,v0=1000mm/min,h0=0.25mm,D=5mm,v0是对于整个预制缺陷区2的扫描速率,h0是对于整个预制缺陷区2的扫描间距。
经检测,实际获得的熔合不良缺陷7的抛光态形貌如图10所示,熔合不良缺陷7在垂直方向SD2上的最大尺寸约6.3mm,符合预期;另外,熔合不良缺陷7的高度尺寸约0.93mm,也符合预期。
上述方法通过控制LMD工艺,根据期望预制的熔合不良缺陷的尺寸、位置、形状或数量等,将LMD成形件的模型分为预制缺陷区和成形区,通过改变预制缺陷区的成形工艺参数,完成熔合不良缺陷的预制,而成形区则使用的成形工艺参数使其呈致密的冶金结合,其中,结合了AM工艺特点,由点及线、由线及面、由二维到三维的过程。
此外,上述方法可以控制熔合不良缺陷产生的位置,实际模拟AM正常凝固过程产生的熔合不良缺陷,而不对AM制件的组织和性能产生破坏。
另外,上述方法给出了熔合不良缺陷的尺寸判定依据,当a0<D时,通过控制预制缺陷区的沉积层内的成形路径之间的扫描间距以及对应成形路径的送粉率,实现预制缺陷区中熔合不良缺陷的预制位置的搭接率控制;而当a0≥D时,则通过降低预制缺陷区的沉积层内激光的能量输入,使得在熔合不良缺陷的预制位置同步输送的粉末不能充分熔化沉积,成为预烧结状态的粉末填充到该预制位置,形成该沉积层的预烧结疏松粉末支撑下一层的成形。
上述方法可以模拟实际LMD工艺中熔合不良缺陷的产生过程,预制具有熔合不良缺陷的AM标样,从而准确分析AM制件缺陷与无损检测信号的关系,不仅有利于优化无损检测工艺,获得更高的缺陷检测精度,同时也能获得较好的无损检测结果。此外,通过在AM性能试样或零件的典型结构或关键位置的中预制熔合不良缺陷,能有效分析评价AM熔合不良缺陷与组织和性能的关系,进一步分析评价熔合不良缺陷与AM零件可靠性的关系,预估零件的使用寿命,为AM零件的应用提供有力的理论支持,具有广阔的研究和应用前景。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,例如,不同实施方式下的变换方式可以进行适当组合。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (8)

  1. 一种通过控制LMD工艺来预制熔合不良缺陷的方法,其特征在于,
    获得包括成形区和预制缺陷区的模型,所述预制缺陷区具有预设缺陷;
    对所述模型进行分层切片处理,对于所述预制缺陷区的每一沉积层,所述预设缺陷具有在垂直方向上的最大尺寸a0,所述垂直方向与LMD工艺的激光扫描方向垂直,其中,a0在区间范围内取值,所述区间范围是期望预制的熔合不良缺陷的特征尺寸的可变范围,所述特征尺寸是熔合不良缺陷在所述垂直方向上的最大尺寸;
    对于所述成形区,采用LMD工艺的预定成形工艺参数进行成形;
    对于所述预制缺陷区,控制成形工艺参数如下:
    对于每一沉积层,a0<D时,相对于所述成形区,在沉积层内改变成形路径之间的扫描间距及送粉率,借此预制所述熔合不良缺陷;
    对于每一沉积层,a0≥D时,相对于所述成形区,在沉积层内降低激光的能量输入,借此预制熔合不良缺陷;
    其中,D是激光在所述预制缺陷区的沉积层内的光斑直径。
  2. 如权利要求1所述的方法,其特征在于,
    设定a0=(w1+w2)/2;
    其中,w1、w2分别是所述区间范围的下限值、上限值。
  3. 如权利要求1所述的方法,其特征在于,
    预设期望预制的熔合不良缺陷的位置、形状、数量和尺寸,借此确定具有所述预设缺陷的所述预制缺陷区在所述模型中的位置、形状、数量和尺寸,其中,期望预制的熔合不良缺陷的尺寸包括所述特征尺寸。
  4. 如权利要求1所述的方法,其特征在于,
    a0<D时,所述预制缺陷区在所述沉积层内包括相邻的第k条成形路径和第k+1条成形路径,所述预设缺陷位于所述第k条成形路径和所述第k+1条成形路径之间,在所述预设缺陷的所述垂直方向的第一侧的成形路径依次为,所述第k条 成形路径,第k-1条成形路径,第k-2条成形路径,直到第1条成形路径,在所述预设缺陷的所述垂直方向的第二侧的成形路径依次为,所述第k+1条成形路径,第k+2条成形路径,直到最后一条成形路径,其中,k为大于2的任意自然数;
    对于所述预制缺陷区,控制成形工艺参数如下:
    h(k)=a0+D;
    h(k-1)、h(k+1)预设成D的20%-80%,在保持所述预制缺陷区的沉积层的层厚不变的情况下,f(k)、f(k+1)分别根据h(k-1)和h(k+1)设置;
    其中,h(k-1)是第k-1条成形路径和第k条成形路径在所述沉积层内的预定位置形成的扫描间距,h(k)是第k条成形路径和第k+1条成形路径在所述沉积层内的所述预定位置形成的扫描间距,h(k+1)是第k+1条成形路径和第k+2条成形路径在所述沉积层内的所述预定位置形成的扫描间距,所述预定位置与所述预设缺陷在所述沉积层内的最大尺寸对应,f(k)是对应第k条成形路径的送粉率,f(k+1)是对应第k+1条成形路径的送粉率。
  5. 如权利要求4所述的方法,其特征在于,
    所述第k-1条成形路径和所述第k+2条成形路径位于所述预制缺陷区的沉积层内;
    对于所述预制缺陷区,进一步控制成形工艺参数如下:
    h(k-2)=a*h(k-1);
    h(k+2)=b*h(k+1);
    f(k-1)=c*f(k);
    f(k+2)=d*f(k+1);
    其中,a、b、c、d为大于1的常数,h(k-2)是第k-2条成形路径和第k-1条成形路径在所述沉积层内的所述预定位置形成的扫描间距,h(k+2)是第k+2条成形路径和第k+3条成形路径在所述沉积层内的所述预定位置形成的扫描间距,f(k-1)是对应第k-1条成形路径的送粉率,f(k+2)是对应第k+2条成形路径的送粉率。
  6. 如权利要求5所述的方法,其特征在于,
    控制成形工艺参数如下:
    对于所述预制缺陷区,t0=100-200μm,P0=600-1000W,D=0.8-1mm;
    其中,t0为层厚,P0为激光功率。
  7. 如权利要求1所述的方法,其特征在于,
    a0≥D时,设定P2≤0.1*P1;
    其中,P2是对应所述预制缺陷区的激光功率,P1是对应所述成形区的所述预定成形工艺参数中的预定激光功率。
  8. 如权利要求1所述的方法,其特征在于,
    LMD工艺采用同步送粉方式。
PCT/CN2020/137883 2020-04-22 2020-12-21 通过控制lmd工艺预制熔合不良缺陷的方法 WO2021212888A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/920,548 US20230147322A1 (en) 2020-04-22 2020-12-21 Method for prefabricating poor fusion defects by controlling lmd process
EP20931946.6A EP4140741A4 (en) 2020-04-22 2020-12-21 METHOD FOR PREFABRICATING MALFORMATIONS USING LMD PROCESS CONTROL
JP2022577439A JP7418620B2 (ja) 2020-04-22 2020-12-21 Lmdプロセスを制御することによって融合不良欠陥を予備成形する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010319683.2A CN111203537B (zh) 2020-04-22 2020-04-22 通过控制lmd工艺预制熔合不良缺陷的方法
CN202010319683.2 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021212888A1 true WO2021212888A1 (zh) 2021-10-28

Family

ID=70781957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137883 WO2021212888A1 (zh) 2020-04-22 2020-12-21 通过控制lmd工艺预制熔合不良缺陷的方法

Country Status (5)

Country Link
US (1) US20230147322A1 (zh)
EP (1) EP4140741A4 (zh)
JP (1) JP7418620B2 (zh)
CN (1) CN111203537B (zh)
WO (1) WO2021212888A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203537B (zh) * 2020-04-22 2020-07-28 中国航发上海商用航空发动机制造有限责任公司 通过控制lmd工艺预制熔合不良缺陷的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017180116A1 (en) * 2016-04-13 2017-10-19 Gkn Aerospace North America Inc. System and method of additive manufacturing
CN108038325A (zh) * 2017-12-22 2018-05-15 北京工业大学 一种3d打印技术制造的多孔框架结构宏观弹性性能可靠性预测方法
CN108436081A (zh) * 2018-03-06 2018-08-24 无锡市产品质量监督检验院 一种预置缺陷的金属试样3d打印成形方法
CN108817386A (zh) * 2018-06-29 2018-11-16 西北工业大学 用于多光束激光选区熔化成形的层间梳状拼接方法
CN108982181A (zh) * 2018-07-27 2018-12-11 西南交通大学 增材材料高通量试样制备方法、表征平台和表征实验方法
US10252509B2 (en) * 2016-04-12 2019-04-09 United Technologies Corporation System and process for evaluating and validating additive manufacturing operations
CN111203537A (zh) * 2020-04-22 2020-05-29 中国航发上海商用航空发动机制造有限责任公司 通过控制lmd工艺预制熔合不良缺陷的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10353376B2 (en) * 2015-01-29 2019-07-16 Arconic Inc. Systems and methods for modelling additively manufactured bodies
CN107354453B (zh) 2016-09-14 2020-02-18 苏州大学 立面激光熔覆成形工艺中计算临界搭接率的方法的用途
US10919285B2 (en) 2016-11-07 2021-02-16 General Electric Company Method and system for x-ray backscatter inspection of additive manufactured parts
US20180356778A1 (en) 2017-06-13 2018-12-13 United Technologies Corporation Method for modeling additive manufacturing of a part
CN107262716B (zh) * 2017-06-28 2019-03-15 苏州大学 一种用于解决激光熔覆成形开放薄壁件端部塌陷的方法
CN107368642B (zh) * 2017-07-13 2019-12-24 武汉大学 金属增材制造多尺度多物理场耦合仿真方法
CN107976352B (zh) * 2017-12-08 2020-04-07 东北大学 一种模拟含复杂裂隙网络的透明隧道模型的制作方法
EP3626385B1 (en) 2018-07-30 2020-11-25 Mitsubishi Electric Corporation Layering condition control device
CN110472355B (zh) * 2019-08-20 2021-09-07 南京航空航天大学 一种基于多场耦合建模与仿真求解的3d打印预览方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10252509B2 (en) * 2016-04-12 2019-04-09 United Technologies Corporation System and process for evaluating and validating additive manufacturing operations
WO2017180116A1 (en) * 2016-04-13 2017-10-19 Gkn Aerospace North America Inc. System and method of additive manufacturing
CN108038325A (zh) * 2017-12-22 2018-05-15 北京工业大学 一种3d打印技术制造的多孔框架结构宏观弹性性能可靠性预测方法
CN108436081A (zh) * 2018-03-06 2018-08-24 无锡市产品质量监督检验院 一种预置缺陷的金属试样3d打印成形方法
CN108817386A (zh) * 2018-06-29 2018-11-16 西北工业大学 用于多光束激光选区熔化成形的层间梳状拼接方法
CN108982181A (zh) * 2018-07-27 2018-12-11 西南交通大学 增材材料高通量试样制备方法、表征平台和表征实验方法
CN111203537A (zh) * 2020-04-22 2020-05-29 中国航发上海商用航空发动机制造有限责任公司 通过控制lmd工艺预制熔合不良缺陷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4140741A4 *

Also Published As

Publication number Publication date
JP2023516510A (ja) 2023-04-19
US20230147322A1 (en) 2023-05-11
CN111203537A (zh) 2020-05-29
EP4140741A4 (en) 2024-05-15
CN111203537B (zh) 2020-07-28
JP7418620B2 (ja) 2024-01-19
EP4140741A1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
CN111203538B (zh) 预制裂纹缺陷、内置裂纹缺陷的制备方法及预制件
AU2014206669B2 (en) Object production using an additive manufacturing process
CN106825574A (zh) 一种金属梯度材料激光冲击锻打复合增材制造方法及装置
JPH02251389A (ja) 層堆積による部品の製造方法
US10780528B2 (en) Methods for residual stress reduction in additive manufacturing processes
KR20160118342A (ko) 금속 및 플럭스의 프리폼들을 이용한 초합금 솔리드 자유형상 프리폼 제작 및 보수
WO2021212887A1 (zh) 通过控制slm工艺预制气孔缺陷的方法
CN103240414B (zh) 激光熔化技术制造金属零件参数的选择方法及基板试样
WO2021212848A1 (zh) 预制气孔缺陷、内置气孔缺陷的制备方法及预制件
CN105740577A (zh) 一种Invar钢PMIG摆动焊温度场及变形模拟方法
WO2021212888A1 (zh) 通过控制lmd工艺预制熔合不良缺陷的方法
WO2015185001A1 (zh) 一种用于零件或模具的增量制造方法
CN112974845A (zh) 一种金属构件非连续式激光增材制造方法
Zhao et al. Effect of laser cladding on forming qualities of YCF101 alloy powder in the different lap joint modes
CN110202264A (zh) 一种钛合金蒙皮-桁条壁板双激光束双侧同步焊接微观组织的精确调控方法
CN109735843B (zh) 一种增加激光熔覆高硬度合金层厚度的工艺方法及其激光熔覆修复的产品
US11396046B2 (en) Methods for additively manufacturing components with reduced build failures caused by temperature variations
JP7041042B2 (ja) 硬化層の積層方法、及び積層造形物の製造方法
RU2805914C1 (ru) Способ предварительного формирования дефекта несплавления путем управления процессом lmd при аддитивном производстве металлических деталей
KR102652097B1 (ko) 레이저 용융 기반한 고밀도 및 고강도 타이타늄 합금 적층 시스템 및 이를 이용한 고밀도 및 고강도 타이타늄 합금 적층 조형물 제조방법
EP3427869A1 (en) Additive manufacturing methods and related components
AU2021102055A4 (en) Metal Additive Manufacturing Method Based on Double High-energy Beams Technique
US20240058862A1 (en) Build materials having a powder mixture comprising graphene, methods of producing articles therefrom, and articles produced therewith
EP2757429A1 (en) Object production
CN114131042A (zh) 一种夹层流道结构件制备方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577439

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022118200

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020931946

Country of ref document: EP

Effective date: 20221122