WO2021212792A1 - 变光阑数据处理方法 - Google Patents

变光阑数据处理方法 Download PDF

Info

Publication number
WO2021212792A1
WO2021212792A1 PCT/CN2020/124286 CN2020124286W WO2021212792A1 WO 2021212792 A1 WO2021212792 A1 WO 2021212792A1 CN 2020124286 W CN2020124286 W CN 2020124286W WO 2021212792 A1 WO2021212792 A1 WO 2021212792A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional model
image data
long strip
layer
layers
Prior art date
Application number
PCT/CN2020/124286
Other languages
English (en)
French (fr)
Inventor
朱鸣
吕帅
邵仁锦
朱鹏飞
浦东林
Original Assignee
苏州苏大维格科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021212792A1 publication Critical patent/WO2021212792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2057Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using an addressed light valve, e.g. a liquid crystal device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images

Definitions

  • the invention relates to a variable aperture data processing method, which belongs to the technical field of lithography.
  • micromachining includes precision diamond turning, 3D printing, photolithography and other technologies.
  • Diamond turning is a preferred method for producing tens of microns in size and regularly arranged 3D topography microstructures, and its typical application is microprism films.
  • 3D printing technology can produce complex 3D structures, but the resolution of traditional galvanometer scanning 3D printing technology is tens of microns; DLP projection 3D printing has a resolution of 10-20um; two-photon 3D printing technology, although the resolution can reach Sub-micron, but belongs to the serial processing method, the efficiency is extremely low.
  • Microlithography technology is still the mainstream technology of modern micromachining, and it is also the highest precision machining method that can be achieved so far.
  • 2D projection lithography has been widely used in the field of microelectronics.
  • 3D profile lithography technology is still in its infancy, and there is no mature technical solution. The current progress is as follows:
  • the traditional mask engraving method is used to make a multi-step structure, combined with ion etching to control the depth of the structure, the process requires multiple alignments, the process requirements are high, and it is difficult to process a continuous 3D topography.
  • the technical solution is to make a halftone mask (halftone). After the mercury lamp light source is irradiated, a gray-scale distributed light field is generated, and the photoresist is exposed to light to form a 3D surface structure.
  • this type of mask is difficult to produce and very expensive.
  • the moving mask exposure method can produce regular microlens arrays and other structures.
  • Acousto-optic scanning direct writing (for example, Heidelberg Instruments ⁇ PG101), using single beam direct writing, has low efficiency and still has the problem of pattern stitching.
  • Electron beam grayscale direct writing (Japan Joel JBX9300, Germany Vistec, Leica VB6), the preparation efficiency of larger-format devices is still low, limited by the energy of the electron beam, and the 3D profile depth control ability is insufficient, which is suitable for small preparation.
  • Digital grayscale lithography is a micro-nano processing technology developed by combining grayscale masks and digital light processing technologies. DMD spatial light modulators are used as digital masks to process continuous three-dimensional surface shapes through one exposure.
  • Embossed microstructures graphics larger than an exposure field of view adopt a step-by-step splicing method, but its gray-scale modulation ability is limited by the gray level of DMD, there are steps and field-of-view seams, and the uniformity of light intensity inside the spot will be affected The face quality of the 3D morphology.
  • the purpose of the present invention is to provide a variable aperture data processing method, so that the process of exposing the photoresist is not restricted by the pattern and the scanning direction, which is convenient and quick.
  • variable aperture data processing method the method includes the following steps:
  • Each of the divided M layers is then divided into N layers along the vertical direction of the three-dimensional model to obtain several layers of two-dimensional image data;
  • M and N are positive integers.
  • the width UnitX of the cell image or the height UnitY of the cell image multiplied by M is not greater than the horizontal pixel resolution of the digital micromirror
  • the height UnitY of the cell image or the width of the cell image UnitX multiplied by N is not greater than the vertical pixel resolution of the digital micromirror.
  • the "converting the two-dimensional image data of each of the N layers into a monochrome bitmap" specifically includes:
  • the two-dimensional image data is pixelated and filled with a fill factor to form a monochrome bitmap; where the fill factor is the number of pixels that need to be filled in a unit millimeter distance.
  • the "segmenting each of the monochrome bitmaps into several equal cell images” specifically includes:
  • the maximum width value of the three-dimensional model cannot divide the width of the cell image UnitX and/or the maximum length value of the three-dimensional model cannot divide the height of the cell image UnitY, continue to fill in the monochrome bitmap, Until the maximum width value of the three-dimensional model can divide the width UnitX of the cell image and/or the maximum length value of the three-dimensional model can divide the height UnitY of the cell image.
  • the M first long strips are horizontally spliced to obtain the first basic long strip image data, until the M XMaxth long strips are horizontally spliced to obtain the XMaxth basic long strip image data.
  • sequentially extracting the cells of the monochrome bitmap in the N layer to form the first long strip to the XMax long strip is specifically as follows:
  • the first cell image in the first column of each monochromatic bitmap is extracted from the largest to the smallest for stitching and superimposing along the longitudinal direction of the three-dimensional model, and based on this Then sequentially extract the second cell image in the first column of each layer of monochrome bitmap along the longitudinal direction of the three-dimensional model and continue to splicing and superimpose until the YMax cell in the first column is sequentially extracted along the three-dimensional model Splicing and superimposing in the longitudinal direction to form the first long strip;
  • the cells in the remaining XMax-1 column of each layer of the monochrome bitmap in the N layer are spliced and superimposed according to the above method until the XMax long strip is obtained.
  • the method further includes:
  • a photoresist of a corresponding thickness is coated on the substrate to form a photoresist plate.
  • the method further includes:
  • the number of rolling pixels during photolithography and the step distance of the imaging device are set.
  • the beneficial effects of the present invention are: according to the number of slices and the number of equal parts of the cell image, the cell image is reorganized to form a plurality of basic long strip image data, and several basic long strip image data are combined. After stitching, a new long strip of image data is formed, so that it is not restricted by graphics and direction during the exposure process; by stitching the data in the X and Y directions, only one photolithography is required to complete the lithography of the entire format, without Repeating zero return and multiple photoetching improves the precision and efficiency of photoetching.
  • Fig. 1 is a flowchart of the variable aperture data processing method of the present invention.
  • Fig. 2 is a flowchart of the dislocation and reorganization of the cell image in Fig. 1.
  • Fig. 3 is a flow chart of dividing the monochrome bitmap into several equal cell images in Fig. 1.
  • FIG. 4 is a schematic diagram of the formation of four long strips in A1 of the quadrangular pyramid in Example 1.
  • FIG. 4 is a schematic diagram of the formation of four long strips in A1 of the quadrangular pyramid in Example 1.
  • FIG. 5 is a schematic diagram of the formation of four long strips in A2 of the quadrangular pyramid in Example 1.
  • FIG. 5 is a schematic diagram of the formation of four long strips in A2 of the quadrangular pyramid in Example 1.
  • FIG. 6 is a schematic diagram of the formation of four long strips in A3 of the quadrangular pyramid in Example 1.
  • FIG. 6 is a schematic diagram of the formation of four long strips in A3 of the quadrangular pyramid in Example 1.
  • FIG. 7 is a schematic diagram of the horizontal splicing of the first long strips in A1, A2, and A3.
  • FIG. 8 is a schematic diagram of the horizontal splicing of the second long strips in A1, A2, and A3.
  • Fig. 9 is a schematic diagram of the horizontal splicing of the third long strips in A1, A2, and A3.
  • Fig. 10 is a schematic diagram of the horizontal splicing of the fourth long strips in A1, A2, and A3.
  • variable aperture data processing method in a preferred embodiment of the present invention is implemented, it is necessary to coat a corresponding thickness of photoresist on the substrate according to the groove depth requirements of the microstructure to form a light. The photoresist plate is then exposed in the imaging device.
  • variable aperture data processing method includes the following steps:
  • the three-dimensional shape data is generated by three-dimensional modeling software, which can export general three-dimensional data formats for computer analysis, such as: STL, 3DS, STP, IGS, OBJ, etc.
  • the three-dimensional topography data is consistent with the size of the film microstructure.
  • the three-dimensional model is divided into M layers along the vertical direction of the three-dimensional model; each of the M layers after being cut is divided into the vertical direction of the three-dimensional model. Cut into N layers to obtain several layers of two-dimensional image data.
  • the pixel resolution of the digital micromirror includes horizontal pixel resolution and vertical pixel resolution. The direction of the horizontal pixel resolution is parallel to the x-axis of the three-dimensional coordinate system, and the direction of the vertical pixel resolution is parallel to the y-axis of the three-dimensional coordinate system.
  • the three-dimensional model is divided into M layers, and then each of the divided M layers is again along the vertical direction of the three-dimensional model. Cut into N layers in the straight direction, M and N are both positive integers.
  • the three-dimensional model is divided into M layers along the longitudinal direction of the three-dimensional model, and each of the M layers is divided into N layers along the longitudinal direction of the three-dimensional model.
  • the three-dimensional model sets the slicing pitch in the vertical direction according to the process requirements.
  • the slicing pitch can be equal or non-equal, depending on the actual situation, which is not specifically limited here.
  • each of the N layers Please refer to FIG. 3 to convert the two-dimensional image data of each of the N layers into a monochrome bitmap, and divide each of the monochrome bitmaps into several equal cell images.
  • the width of each cell image is UnitX
  • the height of each cell image is UnitY.
  • UnitX multiplied by M is not greater than the horizontal pixel resolution of the digital micromirror
  • UnitY multiplied by N is not greater than the vertical pixel resolution of the digital micromirror.
  • converting each layer of two-dimensional image data into a monochrome bitmap specifically includes: using a fill factor to pixelate and fill the two-dimensional image data to form a monochrome bitmap; the fill factor is the number of pixels that need to be filled in a unit millimeter distance. When segmenting, it is based on the maximum width and maximum length of the three-dimensional model, and uses the monochrome bitmap of each layer as the center and fills it in, and then fills in the white based on the pixel resolution of the digital micromirror. After each layer of monochrome bitmap is divided into several equal cell images.
  • the maximum width of the 3D model cannot divide the width of the cell UnitX and/or the maximum length of the 3D model cannot divide the height of the cell UnitY, continue to fill in the monochrome bitmap until the maximum width of the 3D model
  • the cell width UnitX and/or the maximum length value can be divided evenly by the cell height UnitY.
  • the width direction of the three-dimensional model is the X-axis direction in the three-dimensional model
  • the length direction of the three-dimensional model is the Y-axis direction in the three-dimensional model.
  • the method of sequentially extracting the cells of the monochrome bitmap in the N layer to form the first long strip to the XMax long strip is as follows:
  • the first cell image in the first column of each monochromatic bitmap is extracted from the largest to the smallest for stitching and superimposing along the longitudinal direction of the three-dimensional model, and based on this Then sequentially extract the second cell image in the first column of each layer of monochrome bitmap along the longitudinal direction of the three-dimensional model and continue to splicing and superimpose until the YMax cell in the first column is sequentially extracted along the three-dimensional model
  • the first long strip is spliced and superimposed in the longitudinal direction of the N layer; the cells in the remaining XMax-1 column of each layer of the monochrome bitmap in the N layer are spliced and superimposed according to the above method, until the XMax long strip is obtained.
  • the number of rolling pixels during lithography and the step distance of the imaging device are set.
  • the horizontal pixel resolution of the digital micromirror is 1920
  • the vertical pixel resolution of the digital micromirror is 1080
  • the shape of the three-dimensional model It is a four-sided pyramid.
  • the quadrangular pyramid model is divided into 3 equal parts of the two-dimensional image data in the vertical direction.
  • the divisions are expressed as vertical, and the height of each division is equal.
  • Number the 3 equal parts of the two-dimensional image data as A1, A2, A3, where A3 has the maximum length and the maximum width, and then divide each of the three equal parts of the two-dimensional image data into a vertical longitudinal direction. 4 equal parts of two-dimensional image data.
  • the 4 equal parts of two-dimensional image data in A1 are a1, a2, a3, and a4, respectively.
  • a1, a2, a3, and a4 are all equally divided into 16 cell images, and the shaded parts are the original areas of a1, a2, a3, and a4.
  • 16 cell images in a1 are marked as jx-y
  • a2, a3, and a4 are marked in the same way as a1
  • 16 cell images in a2 are marked as kx-y
  • 16 cells in a3 The image is marked as mx-y
  • the 16 cell images in a4 are marked as nx-y.
  • the value range of x is 1-4
  • the value range of y is 1-4
  • both x and y are positive integers.
  • A2 is divided into four equal parts of two-dimensional image data as b1, b2, b3, and b4, and A3 is divided into four equal parts of two-dimensional image data as c1, c2, c3, and c4.
  • the label of each cell in b1, b2, b3, and b4, c1, c2, c3, and c4 is the same as the label of each cell in a1, a2, a3, and a4.
  • K3-1 in a2, j3-1 in a1, n3-2 in a4, m3-2 in a3, k3-2 in a2, j3-2 in a1..., to n3 in a4 -4, m3-4 in a3, k3-4 in a2, and j3-4 in a1 are superimposed along the longitudinal direction to form the third long strip; then take the n4-1 and a3 in a4 m4-1, k4-1 in a2, j4-1 in a1, n4-2 in a4, m4-2 in a3, k4-2 in a2, j4-2 in a1..., until a4 N4-4 in a3, m4-4 in a3, k4-4 in a2, and j4-4 in a1 are stacked in the longitudinal direction to form the fourth long strip.
  • A2 and A3 obtain the first long strip to the fourth long strip in sequence with the above method.
  • first long strips in A1, A2, and A3 are stitched along the lateral direction of the three-dimensional model to obtain the first basic long strip image data
  • the second long strips in A1, A2, and A3 are aligned along the three-dimensional model. Stitching in the horizontal direction to obtain the second basic long strip image data, and stitching the third long strips in A1, A2, and A3 in the horizontal direction of the three-dimensional model to obtain the third basic long strip image data, combine A1,
  • the fourth long strips in A2 and A3 are stitched along the transverse direction of the three-dimensional model to obtain the fourth basic long strip image data.
  • the cell image is dislocated and reorganized to form several basic long strip image data, and several basic long strip image data are stitched together Form new long strip image data so that it is not restricted by graphics and direction during the exposure process; by splicing the data in the X and Y directions, only one photolithography is required to complete the lithography of the entire format, without repeating back Zero and multiple lithography improve the accuracy and efficiency of lithography.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Image Processing (AREA)

Abstract

一种变光阑数据处理方法,包括:获取三维模型;沿三维模型的竖直方向将三维模型分切成M层;将分切后的每一层再沿竖直方向分切成N层,以获取若干层二维图像数据;将N层中的每层二维图像数据转换为单色位图并将其分割成若干等份单元格图像;每个单元格图像的宽度为UnitX,高度为UnitY;对N层中的若干等份单元格图像进行错位重组以形成若干个基础长条带图像数据;将M层中的若干个基础长条带图像数据拼接后形成新的长条带图像数据,并将新的长条带图像数据上载至成像设备进行逐条带扫描光刻;其中,M及N为正整数。在光刻胶曝光成三维模型的过程中,图形不受限,方向不受限,被打印的三维模型的形状也不受限,方便快捷。

Description

变光阑数据处理方法
本申请要求了申请日为2020年04月23日,申请号为202010325531.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种变光阑数据处理方法,属于光刻技术领域。
背景技术
当前,微加工的主要技术手段有精密金刚石车削、3D打印、光刻等技术。金刚石车削是制作数十微米尺寸、规则排列3D形貌微结构的优选方法,其典型应用是微棱镜膜。3D打印技术可以制作复杂的3D结构,但传统振镜扫描3D打印技术的分辨率为数十微米;DLP投影式3D打印的分辨率为10-20um;双光子3D打印技术,虽然分辨率能达到亚微米,但属于串行加工方式,效率极低。
微光刻技术仍然是现代微加工的主流技术手段,也是目前为止所能达到的最高精度的加工手段。2D投影光刻已经广泛应用于微电子领域,3D形貌光刻技术目前还处于初级阶段,没有形成成熟的技术方案,目前进展如下:
传统掩膜套刻法用于做多台阶结构,结合离子刻蚀控制结构深度,工艺过程需要多次对准,工艺要求高,难以加工连续的3D形貌。灰度掩模曝光法,其技术方案是制作半色调掩模版(halftone),汞灯光源照射后产生灰度分布的透过光场,对光刻胶进行感光,形成3D表面结构。然而,这类掩模版制作难度大,且价格非常昂贵。移动掩膜曝光法,可以制作规则的微透镜阵列等结构。声光扫描直写法(如,海德堡仪器μPG101),使用单光束直写,效率较低,仍然存在图形拼缝问题。电子束灰度直写(日本Joel JBX9300、德国Vistec、Leica VB6),面向较大幅面的器件制备效率仍然较低,受限于电子束的能量,3D形貌深度调控能力不足,适用于制备小尺度的3D形貌微结构。数字灰度光刻技术是一种将灰度掩模和数字光处理技术结合而发展来的微纳加工技术,采用DMD空间光调制器作为数字掩膜,通过一次曝光加工出连续三维面形的浮雕微结构,大于一个曝光视场的图形采用步进拼接的方法,但是其灰度调制能力受DMD灰度等级 的限制,存在台阶状和视场拼缝,并且光斑内部光强均匀性会影响3D形貌的面型品质。
综上,3D形貌光刻的研究现状与前沿需求之间存在着明显差距,因此,研究可实现任意3D形貌的高品质光刻技术成为了相关领域对微光刻技术提出的重要和迫切需求。
发明内容
本发明的目的在于提供一种变光阑数据处理方法,以使得在将光刻胶曝光的过程中不受图形及扫描方向的限制,方便快捷。
为达到上述目的,本发明提供如下技术方案:一种变光阑数据处理方法,所述方法包括如下步骤:
获取三维模型,确定曝光所需的数字微镜的像素分辨率;
根据所述三维模型的高度,沿所述三维模型的竖直方向将所述三维模型分切成M层;
将分切后M层中的每一层再沿所述三维模型的竖直方向分切成N层,以获取若干层二维图像数据;
将N层中的每层所述二维图像数据转换为单色位图,将每个所述单色位图分割成若干等份单元格图像;其中,每个单元格图像的宽度为UnitX,每个单元格图像的高度为UnitY;
对N层中的若干等份所述单元格图像进行错位重组以形成若干个基础长条带图像数据;
将M层中的若干个所述基础长条带图像数据拼接后形成新的长条带图像数据,并将新的所述长条带图像数据上载至成像设备进行逐条带扫描光刻;
其中,M及N为正整数。
进一步地,所述单元格图像的宽度UnitX或所述单元格图像的高度UnitY乘以M不大于数字微镜的水平像素分辨率,所述单元格图像的高度UnitY或所述单元格图像的宽度UnitX乘以N不大于数字微镜的垂直像素分辨率。
进一步地,所述“将N层中的每层所述二维图像数据转换为单色位图”具 体为:
利用填充因子对所述二维图像数据进行像素化填充,以形成单色位图;其中,填充因子为单位毫米距离需要填充的像素数。
进一步地,所述“将每个所述单色位图分割成若干等份单元格图像”具体为:
以所述三维模型的最大宽度及最大长度为基础,且以每一层的所述单色位图为中心并对其进行填白,将填白后的每一层的所述单色位图分割成若干等份单元格图像。
进一步地,若所述三维模型的最大宽度值不能整除单元格图像的宽度UnitX和/或三维模型的最大长度值不能整除单元格图像的高度UnitY,则对所述单色位图继续填白,直至所述三维模型的最大宽度值能够整除整除单元格图像的宽度UnitX和/或所述三维模型的最大长度值能够整除单元格图像的高度UnitY。
进一步地,所述“错位重组”具体为:
N层中的每层单色位图包括XMax×YMax个单元格,XMax=所述单色位图的最大长度或填充后的最大长度/UnitX,YMax=所述单色位图的最大宽度或填充后的最大宽度/UnitY;
依次提取N层中单色位图的单元格,组成第一长条带至第XMax长条带;
将M个第一长条带横向拼接以获得第一基础长条带图像数据,直至将M个第XMax长条带横向拼接以获得第XMax基础长条带图像数据。
进一步地,依次提取N层中单色位图的单元格,组成第一长条带至第XMax长条带具体为:
根据N层的单色位图的大小,从大到小依次提取每层单色位图的第1列的第1份单元格图像沿所述三维模型的纵向方向进行拼接叠加,并在此基础上再依次提取每层单色位图的第1列的第2份单元格图像沿所述三维模型的纵向方向继续拼接叠加,直至依次提取第1列的第YMax份单元格沿所述三维模型的纵向方向进行拼接叠加形成第一长条带;
将N层中的每层单色位图的剩余XMax-1列的单元格按照上述方法进行拼接 叠加,直至获取第XMax长条带。
进一步地,所述方法还包括:
在获取三维模型数据之前,根据薄膜微结构的深度要求,在基板上涂布相应厚度的光刻胶以形成光刻胶板。
进一步地,所述方法还包括:
在将新的所述长条带图像数据上载至成像设备进行逐条带扫描光刻之前,设置光刻时的滚动像素数及成像设备的步距。
本发明的有益效果在于:通过根据分切的层数及若干等份单元格图像,对单元格图像进行错位重组以形成若干个基础长条带图像数据,并将若干个基础长条带图像数据拼接后形成新的长条带图像数据,使其在曝光过程中不受图形及方向限制;通过将数据进行X和Y方向的拼接,只需要一次光刻即可完成整个幅面的光刻,无需重复回零及多次光刻,提高了光刻的精度和效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明的变光阑数据处理方法的流程图。
图2为图1中的单元格图像错位重组的流程图。
图3为图1中将单色位图分割成若干等份单元格图像的流程图。
图4为实施例1中的四棱锥的A1中四个长条带形成的示意图。
图5为实施例1中的四棱锥的A2中四个长条带形成的示意图。
图6为实施例1中的四棱锥的A3中四个长条带形成的示意图。
图7为A1、A2及A3中的第一长条带横向拼接的示意图。
图8为A1、A2及A3中的第二长条带横向拼接的示意图。
图9为A1、A2及A3中的第三长条带横向拼接的示意图。
图10为A1、A2及A3中的第四长条带横向拼接的示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
请参见图1,本发明的一较佳实施例中的变光阑数据处理方法在实施之前,需要根据微结构的槽型深度要求,在基板上涂布相应厚度的光刻胶,以形成光刻胶板,然后将光刻胶板在成像设备中进行曝光。
变光阑数据处理方法包括如下步骤:
获取三维模型,确定曝光所需的数字微镜的像素分辨率。该三维形貌数据通过三维造型软件生成,该三维造型软件可以导出供计算机解析的通用三维数据格式,例如:STL、3DS、STP、IGS、OBJ等。优选地,该三维形貌数据与薄膜微结构尺寸一致。
根据所述三维模型的高度,沿所述三维模型的竖直方向将所述三维模型分切成M层;将分切后M层中的每一层再沿所述三维模型的竖直方向分切成N层,以获取若干层二维图像数据。其中,数字微镜的像素分辨率包括水平像素分辨率及垂直像素分辨率,水平像素分辨率的方向与三维坐标系的x轴平行,垂直像素分辨率的方向与三维坐标系的y轴平行。具体的,沿所述三维模型的竖直方向(即Z轴),将所述三维模型分切成M层,然后再将分切后M层中的每一层再次沿所述三维模型的竖直方向分切成N层,M和N皆为正整数。在本实施例中,将三维模型分切成M层为沿三维模型的纵向方向,将M层中的每一层分切成N层为沿三维模型的纵向方向。三维模型在竖直方向上根据工艺需求设置切片间距,切片间距可以为等间距,也可以为非等间距,根据实际情况而定,在此不做具体限定。
请结合图3,将N层中的每层所述二维图像数据转换为单色位图,将每个所述单色位图分割成若干等份单元格图像。其中,每个单元格图像的宽度为UnitX,每个单元格图像的高度为UnitY。呈上述,UnitX乘以M不大于数字微镜的水平像素分辨率,UnitY乘以N不大于数字微镜的垂直像素分辨率。其中,将每层二维图像数据转换为单色位图具体为:利用填充因子对二维图像数据进行像素化填充,以形成单色位图;填充因子为单位毫米距离需要填充的像素数。在分割 时,以三维模型的最大宽度及最大长度为基础,且以每一层的单色位图为中心并对其进行填白,再根据所述数字微镜的像素分辨率,将填白后的每一层的单色位图分割成若干等份单元格图像。若三维模型的最大宽度值不能整除单元格的宽度UnitX和/或三维模型的最大长度值不能整除单元格的高度UnitY,则对所述单色位图继续填白,直至三维模型的最大宽度值能够整除单元格的宽度UnitX和/或最大长度值能够整除单元格的高度UnitY。在本实施例中,三维模型的宽度方向为三维模型中的X轴方向,三维模型的长度方向为三维模型中的Y轴方向。
对N层中的若干等份所述单元格图像进行错位重组以形成若干个基础长条带图像数据,将M层中的若干个所述基础长条带图像数据拼接后形成新的长条带图像数据。
请结合图2,所述“错位重组”具体为:N层中的每层单色位图包括XMax×YMax个单元格,XMax=所述单色位图的最大长度或填充后的最大长度/UnitX,YMax=所述单色位图的最大宽度或填充后的最大宽度/UnitY;依次提取N层中单色位图的单元格,组成第一长条带至第XMax长条带;将M个第一长条带横向拼接以获得第一基础长条带图像数据,直至将M个第XMax长条带横向拼接以获得第XMax基础长条带图像数据。
具体的,依次提取N层中单色位图的单元格,组成第一长条带至第XMax长条带的方法具体为:
根据N层的单色位图的大小,从大到小依次提取每层单色位图的第1列的第1份单元格图像沿所述三维模型的纵向方向进行拼接叠加,并在此基础上再依次提取每层单色位图的第1列的第2份单元格图像沿所述三维模型的纵向方向继续拼接叠加,直至依次提取第1列的第YMax份单元格沿所述三维模型的纵向方向进行拼接叠加形成第一长条带;将N层中的每层单色位图的剩余XMax-1列的单元格按照上述方法进行拼接叠加,直至获取第XMax长条带。
将新的长条带图像数据上载至成像设备进行逐条带扫描光刻。
其中,在将新的长条带图像数据上载至成像设备进行逐条带扫描光刻之前,设置光刻时的滚动像素数及成像设备的步距。
下面以具体实施例对本发明的变光阑数据处理方法进行具体说明,在该实施例中,数字微镜的水平像素分辨率为1920,数字微镜的垂直像素分辨率为1080,三维模型的形状为四棱锥。
实施例1:
请参见图4至图6,获取四棱锥模型,将四棱锥模型沿竖直方向切分为12份,其中,先将四棱锥模型沿竖直方向横向切分为3等份二维图像数据,该等份表示为在竖直方向上,每份的高度相等。将该3等份二维图像数据分别编号为A1、A2、A3,其中A3具有最大长度及最大宽度,然后再将3等份二维图像数据中的每一份沿竖直方向纵向切分为4等份二维图像数据。
呈上述,A1中的4等份二维图像数据分别为a1、a2、a3及a4,以a1、a2、a3及a4为中心对a1、a2、a3及a4进行填充以转换为单色位图,以A3中的最大长度及最大宽度为基础,分别对a1、a2、a3及a4单色位图进行填白,填白后的a1、a2、a3及a4的图像大小相等,其中,阴影部分为a1、a2、a3及a4的原始大小。然后将填白后的a1、a2、a3及a4的宽度分别除以单元格图像的宽度UnitX、将填白后的a1、a2、a3及a4的长度分别除以单元格图像的高度UnitY,如果a1、a2、a3及a4的长度和/或宽度不能被单元格图像的高度UnitY和/或单元格图像的宽度UnitX整除则继续填白以使得a1、a2、a3及a4的长度和/或宽度正好被整除(即加一)。在本实施例中,a1、a2、a3及a4皆被等分成16份单元格图像,其中,阴影部分为a1、a2、a3及a4的原有部分面积。则a1中的16份单元格图像被标记为jx-y,a2、a3、a4与a1标记方式相同,则a2中的16份单元格图像被标记为kx-y;a3中的16份单元格图像被标记为mx-y;a4中的16份单元格图像被标记为nx-y。其中,x取值范围为1-4,y的取值范围为1-4,且x及y皆为正整数。相应的,A2被分切成的四等份二维图像数据为b1、b2、b3及b4,A3被分切成的四等份二维图像数据为c1、c2、c3及c4。b1、b2、b3及b4、c1、c2、c3及c4中的各个单元格的标号同a1、a2、a3及a4中各个单元格的标号。
请参见图7至图10,然后根据a1、a2、a3及a4的二维图像数据的大小, 从大到小纵向依次提取a4中的n1-1、a3中的m1-1、a2中的k1-1、a1中的j1-1、a4中的n1-2…、a3中的m1-2、a2中的k1-2、a1中的j1-2,…,直至a4中的n1-4、a3中的m1-4、a2中的k1-4、a1中的j1-4沿纵长方向进行错位叠加以形成第一长条带;再取a4中的n2-1、a3中的m2-1、a2中的k2-1、a1中的j2-1、a4中的n2-2、a3中的m2-2、a2中的k2-2、a1中的j2-2…,直至a4中的n2-4、a3中的m2-4、a2中的k2-4、a1中的j2-4沿纵长方向进行错位叠加以形成第二长条带;再取a4中的n3-1、a3中的m3-1、a2中的k3-1、a1中的j3-1、a4中的n3-2、a3中的m3-2、a2中的k3-2、a1中的j3-2…,直至a4中的n3-4、a3中的m3-4、a2中的k3-4、a1中的j3-4沿纵长方向进行错位叠加以形成第三长条带;再取a4中的n4-1、a3中的m4-1、a2中的k4-1、a1中的j4-1、a4中的n4-2、a3中的m4-2、a2中的k4-2、a1中的j4-2…,直至a4中的n4-4、a3中的m4-4、a2中的k4-4、a1中的j4-4沿纵长方向进行错位叠加以形成第四长条带。A2及A3同上述方法依次获取第一长条带至第四长条带。
然后将A1、A2及A3中的第一长条带沿三维模型的横向方向进行拼接以获取第一基础长条带图像数据,将A1、A2及A3中的第二长条带沿三维模型的横向方向进行拼接以获取第二基础长条带图像数据,将A1、A2及A3中的第三长条带沿三维模型的横向方向进行拼接以获取第三基础长条带图像数据,将A1、A2及A3中的第四长条带沿三维模型的横向方向进行拼接以获取第四基础长条带图像数据。
综上所述:通过根据分切的层数及若干等份单元格图像,对单元格图像进行错位重组以形成若干个基础长条带图像数据,并将若干个基础长条带图像数据拼接后形成新的长条带图像数据,使其在曝光过程中不受图形及方向限制;通过将数据进行X和Y方向的拼接,只需要一次光刻即可完成整个幅面的光刻,无需重复回零及多次光刻,提高了光刻的精度和效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种变光阑数据处理方法,其特征在于,所述方法包括如下步骤:
    获取三维模型,确定曝光所需的数字微镜的像素分辨率;
    根据所述三维模型的高度,沿所述三维模型的竖直方向将所述三维模型分切成M层;
    将分切后M层中的每一层再沿所述三维模型的竖直方向分切成N层,以获取若干层二维图像数据;
    将N层中的每层所述二维图像数据转换为单色位图,将每个所述单色位图分割成若干等份单元格图像;其中,每个单元格图像的宽度为UnitX,每个单元格图像的高度为UnitY;
    对N层中的若干等份所述单元格图像进行错位重组以形成若干个基础长条带图像数据;
    将M层中的若干个所述基础长条带图像数据拼接后形成新的长条带图像数据,并将新的所述长条带图像数据上载至成像设备进行逐条带扫描光刻;
    其中,M及N为正整数。
  2. 如权利要求1所述的变光阑数据处理方法,其特征在于,所述单元格图像的宽度UnitX或所述单元格图像的高度UnitY乘以M不大于数字微镜的水平像素分辨率,所述单元格图像的高度UnitY或所述单元格图像的宽度UnitX乘以N不大于数字微镜的垂直像素分辨率。
  3. 如权利要求1所述的变光阑数据处理方法,其特征在于,所述“将N层中的每层所述二维图像数据转换为单色位图”具体为:
    利用填充因子对所述二维图像数据进行像素化填充,以形成单色位图;其中,填充因子为单位毫米距离需要填充的像素数。
  4. 如权利要求1所述的变光阑数据处理方法,其特征在于,所述“将每个所述单色位图分割成若干等份单元格图像”具体为:
    以所述三维模型的最大宽度及最大长度为基础,且以每一层的所述单色位图为中心并对其进行填白,将填白后的每一层的所述单色位图分割成若干等份单元格图像。
  5. 如权利要求4所述的变光阑数据处理方法,其特征在于,若所述三维模型的最大宽度值不能整除单元格图像的宽度UnitX和/或三维模型的最大长度值不能整除单元格图像的高度UnitY,则对所述单色位图继续填白,直至所述三维模型的最大宽度值能够整除整除单元格图像的宽度UnitX和/或所述三维模型的最大长度值能够整除单元格图像的高度UnitY。
  6. 如权利要求1所述的变光阑数据处理方法,其特征在于,所述“错位重组”具体为:
    N层中的每层单色位图包括XMax×YMax个单元格,XMax=所述单色位图的最大长度或填充后的最大长度/UnitX,YMax=所述单色位图的最大宽度或填充后的最大宽度/UnitY;
    依次提取N层中单色位图的单元格,组成第一长条带至第XMax长条带;
    将M个第一长条带横向拼接以获得第一基础长条带图像数据,直至将M个第XMax长条带横向拼接以获得第XMax基础长条带图像数据。
  7. 如权利要求6所述的变光阑数据处理方法,其特征在于,依次提取N层中单色位图的单元格,组成第一长条带至第XMax长条带具体为:
    根据N层的单色位图的大小,从大到小依次提取每层单色位图的第1列的第1份单元格图像沿所述三维模型的纵向方向进行拼接叠加,并在此基础上再依次提取每层单色位图的第1列的第2份单元格图像沿所述三维模型的纵向方向继续拼接叠加,直至依次提取第1列的第YMax份单元格沿所述三维模型的纵向方向进行拼接叠加形成第一长条带;
    将N层中的每层单色位图的剩余XMax-1列的单元格按照上述方法进行拼接叠加,直至获取第XMax长条带。
  8. 如权利要求1所述的变光阑数据处理方法,其特征在于,所述方法还包括:
    在获取三维模型数据之前,根据薄膜微结构的深度要求,在基板上涂布相应厚度的光刻胶以形成光刻胶板。
  9. 如权利要求8所述的变光阑数据处理方法,其特征在于,所述方法还包 括:
    在将新的所述长条带图像数据上载至成像设备进行逐条带扫描光刻之前,设置光刻时的滚动像素数及成像设备的步距。
PCT/CN2020/124286 2020-04-23 2020-10-28 变光阑数据处理方法 WO2021212792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010325531.3A CN113552772B (zh) 2020-04-23 2020-04-23 变光阑数据处理方法
CN202010325531.3 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021212792A1 true WO2021212792A1 (zh) 2021-10-28

Family

ID=78100996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124286 WO2021212792A1 (zh) 2020-04-23 2020-10-28 变光阑数据处理方法

Country Status (2)

Country Link
CN (1) CN113552772B (zh)
WO (1) WO2021212792A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060000056A (ko) * 2004-06-28 2006-01-06 재단법인서울대학교산학협력재단 순차적 양극산화를 기반으로 하는 원자간 인력 현미경을이용한 3차원 나노전사법
CN1748288A (zh) * 2003-02-06 2006-03-15 索尼株式会社 掩模处理装置、掩模处理方法、程序和掩模
KR20100058998A (ko) * 2008-11-25 2010-06-04 주식회사 이오테크닉스 디지털 3차원 리소그래피 방법
CN102722085A (zh) * 2012-05-11 2012-10-10 中国科学院光电技术研究所 一种无掩模数字投影光刻的图形拼接方法
CN109932869A (zh) * 2017-12-19 2019-06-25 苏州苏大维格光电科技股份有限公司 数字光刻方法及系统
CN110573966A (zh) * 2017-04-28 2019-12-13 Asml荷兰有限公司 用于优化光刻工艺的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540746B (zh) * 2010-12-22 2014-05-21 上海微电子装备有限公司 投影式光刻机分层曝光进行三维光刻的方法
CN105652607A (zh) * 2016-04-08 2016-06-08 长春长光天辰光电科技有限公司 一种用于数字光刻系统的光强不均匀性测量与校正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748288A (zh) * 2003-02-06 2006-03-15 索尼株式会社 掩模处理装置、掩模处理方法、程序和掩模
KR20060000056A (ko) * 2004-06-28 2006-01-06 재단법인서울대학교산학협력재단 순차적 양극산화를 기반으로 하는 원자간 인력 현미경을이용한 3차원 나노전사법
KR20100058998A (ko) * 2008-11-25 2010-06-04 주식회사 이오테크닉스 디지털 3차원 리소그래피 방법
CN102722085A (zh) * 2012-05-11 2012-10-10 中国科学院光电技术研究所 一种无掩模数字投影光刻的图形拼接方法
CN110573966A (zh) * 2017-04-28 2019-12-13 Asml荷兰有限公司 用于优化光刻工艺的方法和装置
CN109932869A (zh) * 2017-12-19 2019-06-25 苏州苏大维格光电科技股份有限公司 数字光刻方法及系统

Also Published As

Publication number Publication date
CN113552772A (zh) 2021-10-26
CN113552772B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN103403621B (zh) 用于在大面积上产生纳米结构的系统和方法
CN102621816B (zh) 直写式光刻系统中采用灰度方式提高曝光图形质量的方法
US20090098479A1 (en) Exposure method and tool
CN101561637A (zh) 基于光子筛的激光直写光刻系统
CN101952746A (zh) 光学元件
CN111923411A (zh) 一种动态成像3d打印系统及其打印方法
JP7345769B2 (ja) 直接描画露光システム及び直接描画露光方法
CN103901519A (zh) 矩形孔单级衍射光栅
CN105216320A (zh) 一种双光路投影曝光3d打印装置及方法
CN101826127A (zh) 一种将gdsⅱ文件转换为无掩模光刻机曝光数据的方法
US20230213869A1 (en) Three-Dimensional Micro-Nano Morphological Structure Manufactured by Laser Direct Writing Lithography Machine, and Preparation Method Therefor
CN107145038B (zh) 一种基于大面积超分辨激光直写系统的图形刻写方法
CN109932869A (zh) 数字光刻方法及系统
WO2021212792A1 (zh) 变光阑数据处理方法
KR100989863B1 (ko) 디지털 3차원 리소그래피 방법
CN104698769A (zh) 蓝宝石衬底的拼接曝光方法
CN101907825B (zh) 一种光刻加密防伪方法
JP5391701B2 (ja) 濃度分布マスクとその設計装置及び微小立体形状配列の製造方法
JP2013033878A (ja) 半導体インプリント用テンプレート
US20220001601A1 (en) Systems, devices, and methods for kaleidoscopic 3d printing
TWI613522B (zh) 微細構造體之製造方法及微細構造體
Qiao et al. Nanofabrication Toward High-Resolution and Large Area
CN111562725B (zh) 一种基于时空协同变换曝光提高光刻分辨率的方法
JP2013041078A (ja) パターン位相差フィルムの製造方法及び光学フィルムの製造方法
US20150085266A1 (en) Differential dose and focus monitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932219

Country of ref document: EP

Kind code of ref document: A1