WO2021212666A1 - 一种多相dc/dc并联控制方法及其控制电路 - Google Patents

一种多相dc/dc并联控制方法及其控制电路 Download PDF

Info

Publication number
WO2021212666A1
WO2021212666A1 PCT/CN2020/101130 CN2020101130W WO2021212666A1 WO 2021212666 A1 WO2021212666 A1 WO 2021212666A1 CN 2020101130 W CN2020101130 W CN 2020101130W WO 2021212666 A1 WO2021212666 A1 WO 2021212666A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
circuit
current
preset
voltage
Prior art date
Application number
PCT/CN2020/101130
Other languages
English (en)
French (fr)
Inventor
刘钧
冯颖盈
姚顺
徐金柱
张远昭
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2021212666A1 publication Critical patent/WO2021212666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Definitions

  • the invention relates to the field of power supplies, in particular to a multi-phase DC/DC parallel control method.
  • the present invention proposes a multi-phase DC/DC parallel control method and its control circuit.
  • a multi-phase DC/DC parallel control method which is characterized in that it comprises: Step S1: detecting the electrical parameters of the secondary side circuit in the multi-phase DC/DC parallel circuit; Step S2: comparing the electrical parameters with preset electrical parameters Step S3: According to the comparison result, adjust the phase angle difference ⁇ between the on-off drive of the power switch on the bridge arm of the primary side circuit and the on-off drive of the power switch on the bridge arm of the secondary side circuit, so that the electrical parameter is equal to Preset electrical parameters.
  • the electrical parameter is the phase current and/or the phase voltage output by each phase of the secondary side circuit
  • the preset electrical parameter is the preset phase current and/or the preset phase current output by each phase of the secondary side circuit.
  • the phase voltage, the preset phase currents and/or the preset phase voltages of the secondary circuit output phases are balanced.
  • the step S2 includes: comparing the phase current and/or phase voltage with a preset phase current and/or preset phase voltage.
  • the step S3 includes: if the phase current and/or the phase voltage is less than the preset phase current and/or the preset phase voltage, adjusting the power switch of the corresponding phase on the bridge arm of the primary circuit Off, the phase angle difference ⁇ of the corresponding phase is increased by ⁇ ; and/or if the phase current and/or phase voltage is greater than the preset phase current and/or preset phase voltage, adjust the bridge of the secondary circuit
  • the on and off of the power switch of the corresponding phase on the arm reduces the phase angle difference ⁇ of the corresponding phase by ⁇ ; and/or if the phase current and/or phase voltage is equal to the preset phase current and/or preset
  • the phase voltage keeps the phase angle difference ⁇ unchanged.
  • the range of ⁇ is: -30% ⁇ 30% ⁇ .
  • the phase current and/or phase voltage are phase average current and/or phase average voltage.
  • the electrical parameters further include the total current and/or total voltage output by the secondary side circuit, and the preset phase current and/or preset phase voltage is equal to the average value of the total current and/or total voltage One third of the average.
  • it further includes comparing the total current and/or total voltage with the preset total current and/or preset total voltage, so as to adjust the phase angle difference ⁇ so that the total current and/or total voltage reaches the preset total Current and/or preset total voltage.
  • the step S3 further includes: adjusting the phase current and/or the phase voltage by adjusting the switching period Ts of the primary side circuit and/or the secondary side circuit.
  • a multi-phase DC/DC parallel control circuit adopting the above-mentioned multi-phase DC/DC parallel control method, including: a DC/DC parallel circuit, a circuit for detecting the electrical parameters of the secondary side circuit in the multi-phase DC/DC parallel circuit
  • the sampling circuit and the control circuit for controlling the output equalization current of the DC/DC parallel circuit are characterized in that the control circuit includes: a collection circuit for detecting the electrical parameters of the secondary circuit in the multiphase DC/DC parallel circuit;
  • the comparison circuit is used to compare the electrical parameters with the preset electrical parameters; the adjustment circuit is used to adjust the on-off drive of the power switch on the bridge arm of the primary side circuit and the power switch on the bridge arm of the secondary side circuit according to the comparison result
  • the phase angle difference ⁇ between the on and off drives makes the electrical parameters equal to the preset electrical parameters.
  • the present invention detects the electrical parameters of the secondary side circuit in the multi-phase DC/DC parallel circuit and compares and calculates with the preset electrical parameters to adjust the on-off driving and the power switch on the bridge arm of the primary side circuit.
  • the phase angle difference ⁇ between the on-off driving of the power switch on the bridge arm of the secondary side circuit makes the electrical parameters equal to the preset electrical parameters, thereby improving the multi-phase DC/DC parallel circuit because the parameters of the device itself are not completely consistent. Under the situation, the balance of the output current of each phase circuit.
  • Figure 1 is a schematic diagram of a three-phase DC/DC parallel control circuit in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the internal structure of the control circuit in the three-phase DC/DC parallel control circuit in the embodiment of FIG. 1;
  • FIG. 3 is a schematic diagram of the three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit in the embodiment of FIG. 1;
  • FIG. 4 is a schematic diagram of a three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit in another embodiment of FIG. 1;
  • Fig. 5 is a schematic diagram of a three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit in another embodiment of Fig. 1;
  • FIG. 6 is a schematic diagram of a three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit in another embodiment of FIG. 1;
  • FIG. 7 is a schematic diagram of a three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit in another embodiment of FIG. 1;
  • FIG. 8 is a schematic diagram of the three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit in another embodiment of FIG. 1;
  • FIG. 9 is a schematic diagram of a two-phase DC/DC parallel circuit in a two-phase DC/DC parallel control circuit in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a two-phase DC/DC parallel circuit with two output terminals in a two-phase DC/DC parallel control circuit in another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a three-phase DC/DC parallel control method according to an embodiment of the present invention.
  • FIG. 12 is a timing diagram of the power switch tube of the two-phase DC/DC parallel circuit with two output terminals in the two-phase DC/DC parallel control circuit in FIG. 10;
  • FIG. 13 is a drive timing diagram of a set of upper and lower tubes of a bridge arm in a three-phase DC/DC parallel control method according to an embodiment of the present invention
  • FIG. 14 is a timing diagram of three-phase interleaved driving on the secondary side in a three-phase DC/DC parallel control method according to an embodiment of the present invention
  • 15 is a timing diagram of A phase shift control in a three-phase DC/DC parallel control method according to an embodiment of the present invention.
  • 16A is a driving timing diagram of each power switch tube of the DC/DC parallel circuit in the first simulation embodiment of the present invention.
  • 16B is the first simulation embodiment of the present invention, the current waveforms flowing through the resonant inductors L1, L2, and L3 in the A-phase circuit, the B-phase circuit, and the C-phase circuit in the primary circuit;
  • 16C is the output current waveform of each phase of the A-phase circuit, the B-phase circuit, and the C-phase circuit in the secondary side circuit in the first simulation embodiment of the present invention
  • Fig. 16D is the output total current waveform of the secondary side circuit in the first simulation embodiment of the present invention.
  • 17A is a drive timing diagram of the power switch tubes of the DC/DC parallel circuit in the three-phase DC/DC parallel control method of the third simulation embodiment of the present invention.
  • 17B is the third simulation embodiment of the present invention in the three-phase DC/DC parallel control method in the primary circuit in the A-phase circuit, B-phase circuit, and C-phase circuit, the current waveforms and sub-currents flowing through the resonant inductors L1, L2, and L3 The total current waveform output in the side circuit and the phase current waveform output by each phase circuit;
  • Figure 19 is a block diagram of the topological equivalent impedance of the DC/DC parallel circuit in the three-phase DC/DC parallel control circuit of the present invention.
  • the present invention provides a multi-phase DC/DC multi-phase DC/DC parallel control circuit, including: a DC/DC parallel circuit and a control circuit for controlling the DC/DC parallel circuit to output equalizing current, which
  • the control circuit includes: an acquisition circuit for detecting the electrical parameters of the secondary circuit in the multi-phase DC/DC parallel circuit; a comparison circuit for comparing the electrical parameters with preset electrical parameters; adjustment A circuit for adjusting the phase angle difference ⁇ between the on-off drive of the power switch on the bridge arm of the primary side circuit and the on-off drive of the power switch on the bridge arm of the secondary side circuit according to the comparison result, so that the electrical parameter is equal to a preset Electrical parameters.
  • the DC/DC parallel circuit includes a transformer T1, a primary circuit connected to the primary side of the transformer T1, and a secondary circuit connected to the secondary side of the transformer T1.
  • the following are examples of three-phase DC/DC parallel control circuits and two-phase DC/DC parallel control circuits. It should be understood that the present invention is not limited to three-phase DC/DC parallel control circuits and two-phase DC/DC parallel control circuits.
  • the circuit is suitable for any multi-phase DC/DC parallel control circuit of similar structure (including half-bridge drive, full-bridge drive, delta connection, star connection, etc.).
  • FIGs 3-8 for the schematic diagrams of the three-phase DC/DC parallel circuit in the three-phase DC/DC parallel control circuit of various embodiments of the present invention.
  • the conventional conversion or similar circuits shown in the figure but belonging to the circuit in the figure are all within the protection scope of the patent of the present invention.
  • Figure 3 Take Figure 3 as an example for detailed description.
  • the primary circuit of the three-phase DC/DC parallel circuit includes power switch tubes Q1, Q2, Q3, Q4, Q5, and Q6, where Q1 and Q4 form the first group of bridge arms, Q2 , Q5 composes the second group of bridge arms, Q3, Q6 composes the third group of bridge arms.
  • the first group of bridge arms, the second group of bridge arms, and the third group of bridge arms constitute the original side bridge arms.
  • the secondary side circuit includes power switch tubes Q7, Q8, Q9, Q10, Q11, and Q12, among which Q7 and Q10 form the fourth group of bridge arms, Q8 and Q11 form the fifth group of bridge arms, and Q9, Q12 form the sixth group of bridge arms.
  • the fourth group of bridge arms, the fifth group of bridge arms, and the sixth group of bridge arms form the secondary bridge arms.
  • a resonant inductor L1 and a resonant capacitor C3 are connected in series between the power switch tube of the first group of bridge arms and the midpoint N1 of the primary side of the transformer, and the corresponding transformer winding and the power switch tube of the fourth group of bridge arms of the secondary circuit form A Phase circuit (phase A); in the same way, an inductor L2 and a capacitor C4 are connected in series between the power switch tube of the second group of bridge arms and the midpoint N1 of the primary side of the transformer, and the corresponding fifth group of windings of the transformer and the secondary circuit
  • the power switch tubes of the bridge arm form a phase B circuit (phase B); the power switch tubes of the third group of bridge arms are connected in series with the primary side midpoint N1 with an inductor L3, a capacitor C5, and the corresponding transformer winding and secondary circuit
  • the power switch tubes of the sixth group of bridge arms form a phase C circuit (phase C).
  • the acquisition circuit includes: a current transformer for detecting each phase current on the output side of the secondary circuit on the output side of the secondary circuit; a current transformer on the output side bus of the secondary circuit
  • the secondary side current collector for detecting the total current on the output side of the secondary side circuit
  • the secondary side voltage collector for detecting the total voltage on the output side of the secondary side circuit installed on the output side bus of the secondary side circuit; installed on the input side of the primary side circuit
  • the primary side voltage collector on the bus used to detect the total voltage on the input side of the primary side circuit.
  • the current transformer, the secondary side current collector, the secondary side voltage collector and the primary side voltage collector are respectively connected with the comparison circuit.
  • the comparison circuit includes: a current calculator connected to the current collector of the acquisition circuit, a current compensator connected to the current calculator, a voltage calculator connected to the current compensator and the voltage collector of the acquisition circuit, and a voltage calculator connected to the voltage calculator
  • the voltage compensator and comparator also includes a phase current calculator connected with the current transformer, and a phase current compensator connected with the phase current calculator.
  • the adjusting circuit includes: a phase shifter connected with the voltage compensator and the phase current compensator in the comparison circuit, a pulse generator connected with the phase shifter, and a driver connected with the pulse generator.
  • FIG-10 Please refer to Figure 9-10 for the schematic diagram of the two-phase DC/DC parallel circuit in the two-phase DC/DC parallel control circuit.
  • the various two-phase DC/DC parallel circuits shown in the figure are not shown but belong to the figure.
  • the conventional transformation of the middle circuit or the similar circuit all belong to the protection scope of the patent of the present invention. The detailed description will be given below.
  • the primary side circuit includes power switch tubes Q1, Q2, Q3, Q4, Q9, Q10, Q11, and Q12.
  • Q1 and Q3 form the first group of bridge arms
  • Q2 and Q4 form the second group of bridge arms
  • Q9 and Q11 form the third group of bridge arms
  • Q10 and Q12 form the fourth group of bridge arms.
  • the first group of bridge arms, the second group of bridge arms, the third group of bridge arms, and the fourth group of bridge arms constitute the original side bridge arms.
  • the secondary side circuit includes power switch tubes Q5, Q6, Q7, Q8, Q13, Q14, Q15, Q16.
  • Q5 and Q7 form the fifth group of bridge arms
  • Q6 and Q8 form the sixth group of bridge arms
  • Q13 and Q15 form the seventh group of bridge arms
  • Q14 and Q16 form the eighth group of bridge arms.
  • the fifth group of bridge arms, the sixth group of bridge arms, the seventh group of bridge arms, and the eighth group of bridge arms form the secondary bridge arms.
  • the resonant inductor L1 and the resonant capacitor C3 are connected in series between the power switch tubes of the first group of bridge arms and the second group of bridge arms and the primary side of the transformer.
  • the power switch tubes of the group of bridge arms form a phase A circuit (phase A); in the same way, the power switch tubes of the third group of bridge arms and the fourth group of bridge arms are connected in series with the primary side of the transformer with an inductor L2, a capacitor C4, and
  • the corresponding transformer windings and the seventh group of bridge arms of the secondary circuit and the power switch tubes of the eighth group of bridge arms form a phase B circuit (phase B).
  • the two-phase DC/DC parallel control circuit also includes an acquisition circuit, a comparison circuit, and an adjustment circuit.
  • the connection method is similar to the three-phase DC/DC parallel control circuit, and will not be repeated here to avoid redundancy.
  • the two-phase DC/DC parallel control circuit is to add an output terminal on the secondary side of the second transformer of the two-phase DC/DC parallel control circuit in FIG.
  • the rest of the circuit is similar to the two-phase DC/DC parallel control circuit in Fig. 9 to avoid redundancy, which will not be repeated here.
  • the output terminal outputs a stable voltage
  • the output port is composed of power switch tubes Q17, Q18, Q19, Q20, output inductor L3 and output capacitor C10.
  • Q17 and Q18 are synchronous rectification.
  • Q17, Q13, and Q16 are synchronously rectified
  • Q18, Q14, and Q15 are synchronously rectified.
  • the buck control circuit composed of power switch tubes Q19, Q20, output inductor L3 and output capacitor C10 realizes the voltage stabilization of the output voltage V3 by controlling the duty cycle of Q19.
  • the driving signal of Q20 is complementary to the driving signal of Q19.
  • the switching frequency of Q19 is twice that of the V2 side.
  • the turn-off edge driven by Q19 is aligned with the falling edges of Q13, Q16 and Q14, Q15, and the turn-on edge driven by Q19 is determined by the load.
  • the idea of the present invention is: the first group of bridge arms, the second group of bridge arms and the third group of bridge arms in the primary circuit through the controller to send waves Control and/or wave control of the power switch tubes of the fourth, fifth and sixth groups of bridge arms in the secondary side circuit, so that the power switches of the first group of bridge arms are turned on and off.
  • phase angle difference ⁇ B between the on-off waveforms of the power switch tubes of the third group of bridge arms and the on-off waveforms of the power switch tubes of the sixth group of bridge arms, and there is a phase angle difference ⁇ C.
  • the secondary circuit is controlled to output a preset voltage and/or current.
  • the present invention proposes a multi-phase DC/DC parallel control method, including: Step S1: detecting the electrical parameters of the secondary side circuit in the multi-phase DC/DC parallel circuit; Step S2: comparing the The size of the electrical parameters and the preset electrical parameters; Step S3: According to the comparison result, adjust the phase angle difference ⁇ between the on-off drive of the power switch on the bridge arm of the primary circuit and the on-off drive of the power switch on the bridge arm of the secondary circuit , Making the electrical parameters equal to the preset electrical parameters.
  • the electrical parameters include the total current and/or total voltage output by the secondary side circuit, and the phase current and/or phase voltage output by each phase of the secondary side circuit.
  • the preset electrical parameter is a preset phase current and/or a preset phase voltage output by each phase of the secondary side circuit. Wherein, the preset phase currents and/or the preset phase voltages of the output of the secondary side circuit are balanced.
  • Step S2 includes: comparing the phase current and/or phase voltage with the preset phase current and/or preset phase voltage.
  • the phase average current and/or the phase average voltage are first obtained according to the phase current and/or the phase voltage, and the average value of the total current and/or the total voltage is obtained according to the total current and/or total voltage.
  • the phase average current and/or phase average voltage are then compared with the average value of the total current and/or one third of the average value of the total voltage.
  • This embodiment is applied to the deviation of the resonant inductance and resonant capacitance parameters of the three phase circuits.
  • each group of bridge arms on the output side of the secondary circuit is used for fast passage.
  • the current transformer of the flow protection obtains the average value of the phase current output by each phase, that is, the phase average current IoA of the A-phase circuit, the phase average current IoB of the B-phase circuit, and the phase average current IoC of the C-phase circuit.
  • the average current of each phase and/or the average voltage of each phase is compared with the preset phase current and/or the preset phase voltage.
  • step S3 if the phase current and/or phase voltage is less than the preset phase current and/or preset phase voltage, adjust the on and off of the power switch of the corresponding phase on the bridge arm of the primary circuit to make all The phase angle difference ⁇ of the corresponding phase increases by ⁇ ; and/or if the phase current and/or phase voltage is greater than the preset phase current and/or preset phase voltage, adjust the corresponding on the bridge arm of the secondary side circuit
  • the on-off of the power switch of the phase reduces the phase angle difference ⁇ of the corresponding phase by ⁇ ; and/or if the phase current and/or phase voltage is equal to the preset phase current and/or preset phase voltage, then Keep the phase angle difference ⁇ unchanged.
  • phase average current and/or the phase average voltage is less than one third of the average value of the total current and/or the average value of the total voltage, adjust the bridge arm of the primary circuit
  • the on-off of the power switch of the corresponding phase increases the phase angle difference ⁇ of the corresponding phase by ⁇ ; and/or if the average current and/or average voltage of the phase is greater than the average value of the total current and/or total voltage 1/3 of the average value of the second-side circuit, adjust the on-off of the power switch of the corresponding phase on the bridge arm of the secondary side circuit, so that the phase angle difference ⁇ of the corresponding phase is reduced by ⁇ ; and/or if the phase
  • the average current and/or the phase average voltage is equal to one third of the average value of the total current and/or the average value of the total voltage, and the phase angle difference ⁇ is kept unchanged.
  • the range of ⁇ is: -30% ⁇ 30% ⁇ .
  • phase average current of the A-phase circuit is less than one third of the average value of the total output current
  • the phase average current of the A-phase circuit is equal to one-third of the average value of the total output current
  • the range of ⁇ A is preferably -30% ⁇ A ⁇ 30% ⁇ .
  • the range of ⁇ B is preferably -30% ⁇ B ⁇ 30% ⁇ .
  • phase average current of the C-phase circuit is less than one-third of the average value of the total output current
  • the on-duty ratio of the two power switches in each group of bridge arms is 50%, and the conduction phase difference of the two switches in the same group is 180° .
  • a dead time in order to prevent the two switching tubes of the same group of bridge arms from being turned on at the same time and causing a short circuit, a dead time will be set, which is collectively referred to as a 50% duty cycle here.
  • the power switches of each group of the bridge arms of the secondary side circuit form a three-phase interleaving, and the driving signals are different by 120°, that is: the difference between the Q7 and Q8 power tubes 120° conduction, Q8 and Q9 power tubes are turned on with a difference of 120°, and Q9 and Q7 power tubes are turned on with a difference of 120°.
  • the Q10 and Q11 power tubes are turned on at a difference of 120°
  • the Q11 and Q12 power tubes are turned on at a difference of 120°
  • the Q12 and Q10 power tubes are turned on at a difference of 120°.
  • the currents of each phase are close to or equal to one-half of the total current.
  • the on-duty ratio of the two power switches in each group of bridge arms is 50%, and the conduction phases of the two switches in the same group differ by 180°.
  • a dead time will be set, which is collectively referred to as a 50% duty cycle here.
  • the power switches of each group of the bridge arms of the secondary circuit form a two-phase interleaving, and the driving signal is 90° apart, that is: Q5/Q8 and Q13/Q16 phase difference 90° ; Similarly, the phase difference between Q6/Q7 and Q14/Q15 is 90°, and the two phase angles are fine-tuned to achieve current sharing.
  • the conduction duty ratio of the two power switch tubes of each group of bridge arms is 50%
  • the conduction phase difference of the two switch tubes in the same group is 180°.
  • a dead time will be set, which is collectively referred to as a 50% duty cycle here.
  • the power switch tubes of each group of the bridge arms of the secondary side circuit form an N-phase interleaving.
  • the first simulation embodiment is a case where both the inductor parameters and the capacitor parameters are ideal.
  • Table 1 is a device parameter table.
  • the parameters in the table are ideal parameters.
  • FIG. 16A is a driving timing diagram of each power switch tube of the DC/DC parallel circuit.
  • Figure 13B-13D is the simulation result. in:
  • Fig. 16B shows the current waveforms flowing through the resonant inductors L1, L2, and L3 in the A-phase circuit, the B-phase circuit, and the C-phase circuit in the primary circuit.
  • Figure 16C shows the output current waveform of each phase of the A-phase circuit, B-phase circuit, and C-phase circuit in the secondary circuit.
  • Figure 16D shows the total output current waveform of the secondary side circuit.
  • Table 2 shows the average value of the total output current of the secondary circuit and the average current of each phase.
  • Table 1 Device parameter table of the first simulation embodiment
  • the second simulation embodiment is the case where there is a tolerance between the inductance parameter and the capacitance parameter.
  • L1 is increased by 10%
  • L3 is decreased by 10%
  • Table 3 shows the simulation results when the device parameters deviate. It can be seen that when the device exhibits the above deviation, the A-phase output current deviation reaches -4.23%, the B-phase output current deviation reaches -5.22%, and the C-phase output current maximum deviation reaches +9.45%.
  • the resonant inductors L1, L2, L3, and the resonant capacitors C3, C4, C5 all have a certain tolerance, which causes the resonance parameters of each phase to be incompletely consistent, which causes the current imbalance of each phase.
  • the third simulation embodiment is a situation where the inductance parameter and the capacitance parameter have a tolerance and the phase angle difference ⁇ of each phase is adjusted.
  • FIG. 14A is a driving timing diagram of the power switch tube of the DC/DC parallel circuit.
  • Figure 14B shows the current waveforms of the resonant inductors L1, L2, L3 flowing through the resonant inductors L1, L2, and L3 in the primary circuit, the A-phase circuit, the B-phase circuit, and the C-phase circuit, the total current waveform output from the secondary circuit, and the output of each phase circuit. ⁇ phase current waveform.
  • Table 4 shows the average value of the total output current of the secondary circuit and the average current of each phase. It can be seen from Table 4 that the maximum deviation of the phase current drops from the maximum deviation of +9.45% in Table 2 to -0.31%, indicating the effectiveness of this control method.
  • it further includes comparing the total current and/or total voltage with a preset total current and/or preset total voltage, so as to adjust the phase angle difference ⁇ so that the total current and/or total voltage Reach the preset total current and/or preset total voltage.
  • This embodiment is applied when the total current and/or total voltage output by the secondary side circuit does not reach the preset total current and/or preset total voltage.
  • the controller collects the output total current and output total voltage of the secondary circuit through the secondary side current collector and the secondary side voltage collector, and compares the collected output total current and the output total voltage with the preset total current and the preset total output current. The voltage is compared and calculated, and the magnitude and the sign of the phase angle difference ⁇ are adjusted according to the comparison result.
  • the controller compares the total output current of the secondary side circuit with the preset total current or compares the output total voltage with the preset total voltage. When the total output current of the secondary circuit is less than the preset total current or the total output voltage is less than the preset total voltage, the controller adjusts the control of the first group of bridge arms, the second group of bridge arms, and the third group of bridge arms in the primary circuit.
  • the power switch tube emits wave control to increase the phase angle difference ⁇ , so that the total output current is close to or equal to the preset total current, or the total output voltage is close to or equal to the preset total voltage; when the total current output by the secondary circuit is greater than When the total current is preset, or the total output voltage is greater than the preset total voltage, the controller adjusts the power switch control of the fourth, fifth, and sixth groups of bridge arms to make the phase angle difference ⁇ Decrease so that the total output current is close to or equal to the preset total current, or the total output voltage is close to or equal to the preset total voltage; when the total current output by the secondary circuit is equal to the preset total current, or the total output voltage is equal to the preset total current When setting the total voltage, the controller keeps the phase angle difference ⁇ unchanged.
  • the total current and/or total voltage output by the secondary side circuit are first collected and output with the secondary side circuit.
  • the preset total current and/or preset total voltage are compared and calculated, and the magnitude and the sign of the phase angle difference ⁇ of each phase circuit are adjusted together according to the comparison result, so that the total output current is close to or equal to the preset total current, or The total output voltage is close to or equal to the preset total voltage.
  • the step S3 further includes: adjusting the current and/or voltage by adjusting the switching period Ts of the primary side circuit and/or the secondary side circuit.
  • Figure 19 is the simplified primary and secondary equivalent impedance model of the DC/DC parallel circuit in Figure 3.
  • Figure 18 where the equivalent reactance Z (Ts) changes with the changes of Ts, L1 and C3.
  • the present invention can control the switching period Ts to change the equivalent reactance Z(Ts), thereby obtaining the optimal matching characteristic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种多相DC/DC并联控制方法及其控制电路,包括:步骤S1:检测多相DC/DC并联电路中的副边电路的电气参数;步骤S2:比较所述电气参数与预设电气参数的大小;步骤S3:根据比较结果,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数。本发明解决了多相DC/DC并联电路中由于器件本身的参数不完全一致时各相电路输出电流严重不均衡的问题,提升了多相DC/DC并联电路中各相电路输出电流的均衡度。

Description

一种多相DC/DC并联控制方法及其控制电路 技术领域
本发明涉及电源领域,特别是涉及一种多相DC/DC并联控制方法。
背景技术
随着电源技术的不断发展,人们对电源产品的性能要求越来越高。比如:追求产品的成本更低、功率密度更大以及更高的可靠性等。在众多解决方案中,采用多相DC/DC并联的电路拓扑结构是一种有效解决途径。然而,在多相DC/DC并联的电路拓扑结构中,由于器件参数本身存在不完全一致等不理想的情况,而导致各相电流存在不均衡的问题,各相电流不均衡会带来器件应力的风险以及整机效率降低。
因此,如何使得多相DC/DC并联电路中的各相电流能够均衡,是业界亟待解决的技术问题。
发明内容
本发明为了解决上述多相DC/DC并联电路中,由于器件参数问题而导致各相电流不均衡的技术问题,提出一种多相DC/DC并联控制方法及其控制电路。
一种多相DC/DC并联控制方法,其特征是,包括:步骤S1:检测多相DC/DC并联电路中的副边电路的电气参数;步骤S2:比较所述电气参数与预设电气参数的大小;步骤S3:根据比较结果,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数。
优选地,所述电气参数为所述副边电路各相输出的相电流及/或相电压, 所述预设电气参数为所述副边电路各相输出的预设相电流及/或预设相电压,所述副边电路各相输出的预设相电流相均衡及/或预设相电压相均衡。
优选地,所述步骤S2包括:比较所述相电流及/或相电压与预设相电流及/或预设相电压的大小。
优选地,所述步骤S3包括:若所述相电流及/或相电压小于预设相电流及/或预设相电压,则调整所述原边电路的桥臂上对应相的功率开关的通断,使所述对应相的相角差Φ增大△Φ;及/或若所述相电流及/或相电压大于预设相电流及/或预设相电压,则调整副边电路的桥臂上的对应相的功率开关的通断,使所述对应相的相角差Φ减小△Φ;及/或若所述相电流及/或相电压等于预设相电流及/或预设相电压,则保持所述相角差Φ不变。
优选地,所述△Φ的范围为:-30%Φ≤△Φ≤30%Φ。
优选地,所述相电流及/或相电压为相平均电流及/或相平均电压。
优选地,所述电气参数还包括所述所述副边电路输出的总电流及/或总电压,所述预设相电流及/或预设相电压等于总电流的平均值及/或总电压的平均值的三分之一。
优选地,还包括比较所述总电流及/或总电压与预设总电流及/或预设总电压的大小,以调整相角差Φ使得所述总电流及/或总电压达到预设总电流及/或预设总电压。
优选地,所述步骤S3还包括:通过调节所述原边电路及/或所述副边电路的开关周期Ts调节所述相电流及/或相电压。
一种采用上述的多相DC/DC并联控制方法的多相DC/DC并联控制电路,包括:DC/DC并联电路、用于检测多相DC/DC并联电路中的副边电路的电气参数的采样电以及用以控制DC/DC并联电路输出均衡电流的控制电路,其 特征是,所述控制电路包括:采集电路,用于检测多相DC/DC并联电路中的副边电路的电气参数;比较电路,用于比较所述电气参数与预设电气参数的大小;调节电路,用于根据比较结果,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数。
与现有技术比较,本发明通过检测多相DC/DC并联电路中的副边电路的电气参数并与预设电气参数相比较及计算,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数,从而提升了多相DC/DC并联电路中由于器件本身的参数不完全一致情形下各相电路输出电流的均衡度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中三相DC/DC并联控制电路的原理图;
图2为图1实施例三相DC/DC并联控制电路中的控制电路内部结构原理图;
图3为图1实施例三相DC/DC并联控制电路中的三相DC/DC并联电路原理图;
图4为图1另一实施例中三相DC/DC并联控制电路中的三相DC/DC并联电路原理图;
图5为图1另一实施例中三相DC/DC并联控制电路中的三相DC/DC并 联电路原理图;
图6为图1另一实施例中三相DC/DC并联控制电路中的三相DC/DC并联电路原理图;
图7为图1另一实施例中三相DC/DC并联控制电路中的三相DC/DC并联电路原理图;
图8为本图1另一实施例中三相DC/DC并联控制电路中的三相DC/DC并联电路原理图;
图9为本发明一实施例中两相DC/DC并联控制电路中的两相DC/DC并联电路原理图;
图10为本发明另一实施例中两相DC/DC并联控制电路中的两输出端的两相DC/DC并联电路原理图;
图11为本发明一实施例的三相DC/DC并联控制方法的流程示意图;
图12为图10中两相DC/DC并联控制电路中的两输出端的两相DC/DC并联电路的功率开关管时序图;
图13为本发明一实施例的三相DC/DC并联控制方法中一组桥臂上下管驱动时序图;
图14为本发明一实施例的三相DC/DC并联控制方法中副边侧三相交错驱动时序图;
图15为本发明一实施例的三相DC/DC并联控制方法中A相相移控制时序图;
图16A为本发明第一个仿真实施例中,DC/DC并联电路的各个功率开关管的驱动时序图;
图16B为本发明第一个仿真实施例中,原边电路中A相电路、B相电路、 C相电路中,流过谐振电感L1、L2、L3的电流波形;
图16C为本发明第一个仿真实施例中,为副边电路中A相电路、B相电路、C相电路每一相的输出电流波形;
图16D为本发明第一个仿真实施例中,副边电路的输出总电流波形;
图17A为本发明第三个仿真实施例三相DC/DC并联控制方法中的DC/DC并联电路的功率开关管的驱动时序图;
图17B为本发明第三个仿真实施例三相DC/DC并联控制方法中的原边电路中A相电路、B相电路、C相电路中流过谐振电感L1、L2、L3的电流波形、副边电路中输出的总电流波形及各相电路输出的相电流波形;
图18为本发明三相DC/DC并联控制电路中开关频率和等效阻抗的关系图;
图19为本发明三相DC/DC并联控制电路中的DC/DC并联电路的拓扑等效阻抗框图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图以及实施例对本发明的原理及结构进行详细说明。
请参阅图1-2,本发明提供一种多相DC/DC多相DC/DC并联控制电路,包括:DC/DC并联电路以及用以控制DC/DC并联电路输出均衡电流的控制电路,其特征是,所述控制电路包括:采集电路,用于检测多相DC/DC并联电路中的副边电路的电气参数;比较电路,用于比较所述电气参数与预设电气参数的大小;调节电路,用于根据比较结果,调整原边电路的桥臂上功率 开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数。DC/DC并联电路包括变压器T1、连接在变压器T1原边侧的原边电路、及连接在变压器T1副边侧的副边电路。下面分别用三相DC/DC并联控制电路及两相DC/DC并联控制电路进行举例说明,需要知道的是,本发明不局限于三相DC/DC并联控制电路及两相DC/DC并联控制电路,而是适用于类似结构的任意多相DC/DC并联控制电路(包括半桥驱动、全桥驱动、三角形接法、星形接法等)。
请参阅图3-8为本发明多种实施例的三相DC/DC并联控制电路中的三相DC/DC并联电路的原理图,图示出的多种三相DC/DC并联电路及没有图示出但属于图示中电路的常规变换或类似的电路皆属于本发明专利的保护范围。现以图3为例进行详细说明。
请参阅图3,在一实施例中,三相DC/DC并联电路的原边电路包括功率开关管Q1、Q2、Q3、Q4、Q5、Q6,其中Q1、Q4组成第一组桥臂,Q2、Q5组成第二组桥臂,Q3、Q6组成第三组桥臂。第一组桥臂、第二组桥臂、第三组桥臂构成原边桥臂。
副边电路包括功率开关管Q7、Q8、Q9、Q10、Q11、Q12,其中Q7、Q10组成第四组桥臂,Q8、Q11组成第五组桥臂,Q9、Q12组成第六组桥臂。第四组桥臂、第五组桥臂、第六组桥臂组成副边桥臂。
第一组桥臂的功率开关管与变压器原边侧中点N1之间串联有谐振电感L1、谐振电容C3,与对应的变压器绕组及副边电路的第四组桥臂的功率开关管组成A相电路(phase A);同理,第二组桥臂的功率开关管与变压器原边侧中点N1之间串联有电感L2、电容C4,与对应的变压器绕组及副边电路的第五组桥臂的功率开关管组成B相电路(phase B);第三组桥臂的功率开关管与原边 侧中点N1之间串联有电感L3、电容C5,与对应的变压器绕组及副边电路的第六组桥臂的功率开关管组成C相电路(phase C)。
请再次参阅图2,采集电路包括:设于副边电路输出侧每一相电路上用于检测副边电路输出侧每一相电流的电流互感器;设于副边电路输出侧总线上的用于检测副边电路输出侧总电流的副边电流采集器;设于副边电路输出侧总线上的用于检测副边电路输出侧总电压的副边电压采集器;设于原边电路输入侧总线上的用于检测原边电路输入侧总电压的原边电压采集器。电流互感器、副边电流采集器、副边电压采集器与原边电压采集器分别与比较电路连接。
比较电路包括:与采集电路的电流采集器连接的电流运算器、与电流运算器连接的电流补偿器、分别与电流补偿器及采集电路的电压采集器连接的电压运算器、与电压运算器连接的电压补偿器及比较器;还包括与电流互感器连接的相电流运算器,与相电流运算器连接的相电流补偿器。
调节电路包括:分别与比较电路中电压补偿器及相电流补偿器连接的移相器、与移相器连接的脉冲发生器及与脉冲发生器连接的驱动器。
请参阅图9-10为两相DC/DC并联控制电路中的两相DC/DC并联电路的原理图,图示出的多种两相DC/DC并联电路及没有图示出但属于图示中电路的常规变换或类似的电路皆属于本发明专利的保护范围。下面进行详细说明。
请参阅图9,在另一实施例中,原边电路包括功率开关管Q1、Q2、Q3、Q4、Q9、Q10、Q11、Q12。其中Q1、Q3组成第一组桥臂,Q2、Q4组成第二组桥臂,Q9、Q11组成第三组桥臂,Q10、Q12组成第四组桥臂。第一组桥臂、第二组桥臂、第三组桥臂、第四组桥臂构成原边桥臂。
副边电路包括功率开关管Q5、Q6、Q7、Q8、Q13、Q14、Q15、Q16。 其中Q5、Q7组成第五组桥臂,Q6、Q8组成第六组桥臂,Q13、Q15组成第七组桥臂,Q14、Q16组成第八组桥臂。第五组桥臂、第六组桥臂、第七组桥臂,第八组桥臂组成副边桥臂。
第一组桥臂、第二组桥臂的功率开关管与变压器原边侧之间串联有谐振电感L1、谐振电容C3,与对应的变压器绕组及副边电路的第五组桥臂、第六组桥臂的功率开关管组成A相电路(phase A);同理,第三组桥臂、第四组桥臂的功率开关管与变压器原边侧之间串联有电感L2、电容C4,与对应的变压器绕组及副边电路的第七组桥臂、第八组桥臂的功率开关管组成B相电路(phase B)。
在两相DC/DC并联控制电路中还包括采集电路、比较电路与调节电路,其连接方式与三相DC/DC并联控制电路类似,在此不再累述,以避免冗余。
请参阅图10,在又一实施例中,该两相DC/DC并联控制电路是在图9的两相DC/DC并联控制电路的第二路变压器的副边侧再增加一个输出端,下面进行详细说明。该电路的其他地方与图9中两相DC/DC并联控制电路类似,以避免冗余,在此不再累述。
该输出端输出稳定电压,该输出端口由功率开关管Q17、Q18、Q19、Q20、输出电感L3和输出电容C10组成。其中,Q17、Q18为同步整流。具体地,Q17和Q13、Q16同步整流,Q18和Q14、Q15同步整流。功率开关管Q19、Q20、输出电感L3和输出电容C10组成的buck控制电路,通过控制Q19的占空比实现该输出端的电压V3的稳压。
请参阅图12,Q20驱动信号与Q19的驱动信号互补。其中Q19的开关频率为V2侧的两倍。Q19驱动的关断边沿和Q13、Q16及Q14、Q15的下降沿对齐,Q19驱动的开通边沿由负载决定。
请参阅图16、图16及图17A,本发明的思路是:通过控制器对原边电路中的第一组桥臂、第二组桥臂和第三组桥臂的功率管开关管发波控制,及/或对副边电路中的第四组桥臂、第五组桥臂和第六组桥臂的功率开关管发波控制,使第一组桥臂的功率开关管通断的波形与第四组桥臂的功率开关管通断的波形之间存在相角差ΦA,使第二组桥臂的功率开关管通断的波形与第五组桥臂的功率开关管通断的波形之间存在相角差ΦB,使第三组桥臂的功率开关管通断的波形与第六组桥臂的功率开关管通断的波形之间存在相角差ΦC。通过调整相角差ΦA、相角差ΦB、相角差ΦC控制副边电路输出预设电压及/或电流。
请参阅图11,本发明提出了一种一种多相DC/DC并联控制方法,包括:步骤S1:检测多相DC/DC并联电路中的副边电路的电气参数;步骤S2:比较所述电气参数与预设电气参数的大小;步骤S3:根据比较结果,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数。
在步骤S1中,所述电气参数包括所述副边电路输出的总电流及/或总电压,以及所述副边电路各相输出的相电流及/或相电压。所述预设电气参数为所述副边电路各相输出的预设相电流及/或预设相电压。其中,所述副边电路各相输出的预设相电流相均衡及/或预设相电压相均衡。
在步骤S2中,包括:比较所述相电流及/或相电压与预设相电流及/或预设相电压的大小。在一优选实施方式中,先根据相电流及/或相电压得到相平均电流及/或相平均电压,根据总电流及/或总电压得到总电流的平均值及/或总电压的平均值。然后将相平均电流及/或相平均电压与总电流的平均值及/或总电压的平均值的三分之一相比较。
此实施例应用于三个相电路的谐振电感、谐振电容参数出现偏差时,在相移控制ΦA=ΦB=ΦC=Φ的基础上,利用副边电路输出侧每一组桥臂用于快速过流保护的电流互感器得到每一相输出的相电流的平均值,即A相电路的相平均电流IoA、B相电路的相平均电流IoB、C相电路的相平均电流IoC。并用各相相平均电流及/或相平均电压与预设相电流及/或预设相电压相比较。
在步骤S3中,若所述相电流及/或相电压小于预设相电流及/或预设相电压,则调整所述原边电路的桥臂上对应相的功率开关的通断,使所述对应相的相角差Φ增大△Φ;及/或若所述相电流及/或相电压大于预设相电流及/或预设相电压,则调整副边电路的桥臂上的对应相的功率开关的通断,使所述对应相的相角差Φ减小△Φ;及/或若所述相电流及/或相电压等于预设相电流及/或预设相电压,则保持所述相角差Φ不变。
在一优选实施方式中,若所述相平均电流及/或相平均电压小于总电流的平均值及/或总电压的平均值的三分之一,则调整所述原边电路的桥臂上对应相的功率开关的通断,使所述对应相的相角差Φ增大△Φ;及/或若所述相平均电流及/或相平均电压大于总电流的平均值及/或总电压的平均值的三分之一,则调整副边电路的桥臂上的对应相的功率开关的通断,使所述对应相的相角差Φ减小△Φ;及/或若所述相平均电流及/或相平均电压等于总电流的平均值及/或总电压的平均值的三分之一,则保持所述相角差Φ不变。所述△Φ的范围为:-30%Φ≤△Φ≤30%Φ。
具体地,当A相电路的相平均电流小于输出总电流的平均值的三分之一时,则在A相电路的ΦA=Φ基础上将ΦA增大△ΦA;当A相电路的相平均电流大于输出总电流的平均值的三分之一时,则在A相电路的ΦA=Φ的基础上减小△ΦA;当A相电路的相平均电流等于输出总电流的平均值的三分之一时, 则保持A相电路的ΦA=Φ不变。其中△ΦA范围优选为-30%Φ≤△ΦA≤30%Φ。同理,当B相电路的相平均电流小于输出总电流的平均值的三分之一时,则在B相电路的ΦA=Φ基础上将ΦA增大△ΦA;当B相电路的相平均电流大于输出总电流的平均值的三分之一时,则在B相电路的ΦB=Φ的基础上减小△ΦB;当B相电路的相平均电流等于输出总电流的平均值的三分之一时,则保持B相电路的ΦB=Φ不变。其中△ΦB范围优选为-30%Φ≤△ΦB≤30%Φ。当C相电路的相平均电流小于输出总电流的平均值的三分之一时,则在C相电路的ΦC=Φ基础上将ΦC增大△ΦC;当C相电路的相平均电流大于输出总电流的平均值的三分之一时,则在C相电路的ΦC=Φ的基础上减小△ΦC;当C相电路的相平均电流等于输出总电流的平均值的三分之一时,则保持C相电路的ΦC=Φ不变。通过调整微相角△ΦA、△ΦB、△ΦC以实现三相电路之间的电流相均衡,使得各相电流皆接近或等于总电流的三分之一。
请参阅图13,在控制器控制功率开关管的过程中,每组桥臂的两个功率开关管的导通占空比为50%,同一组内的两个开关管导通相位相差180°。在实施时为防止同一组桥臂的两个开关管同时导通导致短路,会设置有死区时间,在这里统称50%占空比。
请参阅图14,为减小副边电路输出侧的纹波电流,副边电路每组桥臂的功率开关管之间形成三相交错,驱动信号相差120°,即:Q7、Q8功率管相差120°导通,Q8、Q9功率管相差120°导通,Q9、Q7功率管相差120°导通。同理,Q10、Q11功率管相差120°导通,Q11、Q12功率管相差120°导通,Q12、Q10功率管相差120°导通。
在另一实施例中,在两相DC/DC并联控制电路中,以实现两相电路之间的电流相均衡,则各相电流皆接近或等于总电流的二分之一。在控制器控制 功率开关管的过程中,每组桥臂的两个功率开关管的导通占空比为50%,同一组内的两个开关管导通相位相差180°。在实施时为防止同一组桥臂的两个开关管同时导通导致短路,会设置有死区时间,在这里统称50%占空比。
为减小副边电路输出侧的纹波电流,副边电路每组桥臂的功率开关管之间形成两相交错,驱动信号相差90°,即:Q5/Q8和Q13/Q16相位相差90°;同理,Q6/Q7和Q14/Q15相位相差90°,微调两个相角实现均流。
可以理解的是,在多相DC/DC并联控制电路中(N相DC/DC并联控制电路),可以理解的是,以实现N相电路之间的电流相均衡,则各相电流皆接近或等于总电流的N分之一。在控制器控制功率开关管的过程中,每组桥臂的两个功率开关管的导通占空比为50%,同一组内的两个开关管导通相位相差180°。在实施时为防止同一组桥臂的两个开关管同时导通导致短路,会设置有死区时间,在这里统称50%占空比。
为减小副边电路输出侧的纹波电流,副边电路每组桥臂的功率开关管之间形成N相交错。
下面通过三个仿真实施例及其对比,对上述控制方法及效果进行说明:
请参阅图16A-16D,第一个仿真实施例为电感参数与电容参数皆理想的情况。
请参阅下表1,表1为器件参数表,表中的参数为理想参数。
请参阅图16A,图16A为DC/DC并联电路的各个功率开关管的驱动时序图。
请参阅图16B-16D,图13B-13D为仿真结果。其中:
图16B为原边电路中A相电路、B相电路、C相电路中,流过谐振电感L1、L2、L3的电流波形。图16C为副边电路中A相电路、B相电路、C相电 路每一相的输出电流波形。图16D为副边电路的输出总电流波形。
请参阅下表2,表2为副边电路的输出总电流的平均值及各相平均电流。通过第一个仿真实施例,可见当DC/DC并联电路中的电感、电容为理想电感、电容时,即每相电路的电感、电容参数相同时,三相输出的相电流几乎相等,皆接近总电流的三分之一。
输入电压 Vin 350V
输出电压 Vout 350V
谐振电容 Cr=C3=C4=C5 272nF
谐振电感 Lr=L1=L2=L3 11uH
输出功率 Pout 6600W
相移 ΦA=ΦB=ΦC=Φ 830nS
表1:第一个仿真实施例的器件参数表
输出总电流 Io 18.905A
A相输出平均电流 IoA 6.2575A(-0.71%)
B相输出平均电流 IoB 6.2938A(-0.135%)
C相输出平均电流 IoC 6.3553A(+0.841)
表2:器件参数一致时的仿真结果
第二个仿真实施例为电感参数与电容参数存在容差的情况。
在第一个仿真实施例的基础上,将L1增大10%,L3减小10%,ΦA=ΦB=ΦC=Φ=830ns进行仿真。
请参阅下表3,表3为器件参数出现偏差时的仿真结果。可见,器件出现上述偏差时,A相输出电流偏移达到-4.23%,B相输出电流偏移达到-5.22%,C相输出电流最大偏移达到+9.45%。
在实际电路中谐振电感L1、L2、L3,谐振电容C3、C4、C5都存在一定的容差,导致每一相的谐振参数不完全一致,从而引起各相电流失衡。
输出总电流 Io 19.009A
A相输出平均电流 IoA 6.0685A(-4.23%)
B相输出平均电流 IoB 6.0054A(-5.22%)
C相输出平均电流 IoC 6.9352A(+9.45%)
表3:器件参数出现偏差时的仿真结果
请参阅图17A、图17B,第三个仿真实施例为电感参数与电容参数存在容差且对各相相角差Φ进行调节后的情况。
在第二个仿真实施例的基础上,调解ΦA=1020ns,ΦB=815ns,ΦC=815ns进行仿真。
请参阅图17A,图14A为DC/DC并联电路的功率开关管的驱动时序图。
请参阅图17B,图14B为原边电路中A相电路、B相电路、C相电路中流过谐振电感L1、L2、L3的电流波形、副边电路中输出的总电流波形及各相电路输出的相电流波形。
请参阅下表4,表4为副边电路的输出总电流的平均值及各相平均电流。从表4可见相电流最大偏移从表2中的最大偏移+9.45%下到-0.31%,表明该控制方式的有效性。
由此可见当器件存在参数偏差,通过微调A相电路、B相电路、C相电路各自的相角差ΦA、ΦB、ΦC,可以使得各相电流更均衡。
输出总电流 Io 19.058A
A相输出平均电流 IoA 6.3336A(-0.31%)
B相输出平均电流 IoB 6.3587A(+0.089%)
C相输出平均电流 IoC 6.3689A(+0.25%)
表4:增加相电路相移单独调整仿真结果
在另一实施方式中,还包括比较所述总电流及/或总电压与预设总电流及/或预设总电压的大小,以调整相角差Φ使得所述总电流及/或总电压达到预设总电流及/或预设总电压。
此实施方式应用于副边电路输出的总电流及/或总电压没有达到预设总电流及/或预设总电压的时候。
在此实施方式的一实施例中,当三个相电路的谐振电感、谐振电容参数都保持一致时,三个相角差相等,即ΦA=ΦB=ΦC=Φ。控制器通过副边电流采集器和副边电压采集器采集到副边电路的输出总电流和输出总电压,将采集到的输出总电流和输出总电压与输出的预设总电流和预设总电压进行比较和计算,根据比较结果调整相角差Φ的大小和正负。
具体地,控制器将副边电路的输出总电流和预设总电流比较或将输出总电压与预设总电压比较。当副边电路输出总电流小于预设总电流时或输出总电压小于预设总电压时,控制器调整对原边电路中第一组桥臂、第二组桥臂、第三组桥臂的功率开关管发波控制,使相角差Φ增大,使得输出的总电流接近或等于预设总电流,或输出的总电压接近或等于预设总电压;当副边电路输出的总电流大于预设总电流时,或输出总电压大于预设总电压时,控制器调整对第四组桥臂、第五组桥臂、第六组桥臂的功率开关发波控制,使相角差Φ减小,使得输出总电流接近或等于预设总电流,或使得输出总电压接近或等 于预设总电压;当副边电路输出的总电流等于预设总电流时,或输出的总电压等于预设总电压时,控制器保持相角差Φ不变。
在此实施方式的另一实施例中,当三个相电路的谐振电感、谐振电容参数不完全一致时,首先采集到的副边电路输出的总电流及/或总电压并与副边电路输出的预设总电流及/或预设总电压进行比较和计算,根据比较结果共同调整各相电路的相角差Φ的大小和正负,使得输出总电流接近或等于预设总电流,或使得输出总电压接近或等于预设总电压。然后采集各相电路输出的相电流及/或相电压并与副边电路预设相电流及/或相电压进行比较和计算,根据各相比较和计算结果,调整各相电路对应的移相角,使得各相电路的相电流及/或相电压相互均衡。
在另一实施方式中,所述步骤S3还包括:通过调节所述原边电路及/或所述副边电路的开关周期Ts调节所述电流及/或电压。
由于原边电路中存在电感L1和电容C3,两者组成一个可以随开关周期Ts变化而导致其等效电抗Z(Ts)发生变化的网络,其数学表达式为:
Figure PCTCN2020101130-appb-000001
请参阅图19,为图3中DC/DC并联电路简化后的原、副边等效阻抗模型。请参阅图18,其中等效电抗Z(Ts)随着Ts、L1和C3的变化而变化。在实际应用中,为了提高效率,避免无功能量过多,本发明可以通过控制开关周期Ts,从而改变等效电抗Z(Ts),进而得出最优匹配特性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多相DC/DC并联控制方法,其特征是,包括:
    步骤S1:检测多相DC/DC并联电路中的副边电路的电气参数;
    步骤S2:比较所述电气参数与预设电气参数的大小;
    步骤S3:根据比较结果,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等于预设电气参数。
  2. 如权利要求1所述的多相DC/DC并联控制方法,其特征是,所述电气参数为所述副边电路各相输出的相电流及/或相电压,所述预设电气参数为所述副边电路各相输出的预设相电流及/或预设相电压,所述副边电路各相输出的预设相电流相均衡及/或预设相电压相均衡。
  3. 如权利要求2述的多相DC/DC并联控制方法,其特征是,所述步骤S2包括:比较所述相电流及/或相电压与预设相电流及/或预设相电压的大小。
  4. 如权利要求3所述的多相DC/DC并联控制方法,其特征是,所述步骤S3包括:
    若所述相电流及/或相电压小于预设相电流及/或预设相电压,则调整所述原边电路的桥臂上对应相的功率开关的通断,使所述对应相的相角差Φ增大△Φ;
    及/或若所述相电流及/或相电压大于预设相电流及/或预设相电压,则调整副边电路的桥臂上的对应相的功率开关的通断,使所述对应相的相角差Φ减小△Φ;
    及/或若所述相电流及/或相电压等于预设相电流及/或预设相电压,则保 持所述相角差Φ不变。
  5. 如权利要求4所述的多相DC/DC并联控制方法,其特征是,所述△Φ的范围为:-30%Φ≤△Φ≤30%Φ。
  6. 如权利要求2-5任一所述的多相DC/DC并联控制方法,其特征是,所述相电流及/或相电压为相平均电流及/或相平均电压。
  7. 如权利要求6所述的多相DC/DC并联控制方法,其特征是,所述电气参数还包括所述所述副边电路输出的总电流及/或总电压,所述副边电路各相输出的预设相电流之和及/或预设相电压之和等于总电流的平均值及/或总电压的平均值。
  8. 如权利要求7所述的多相DC/DC并联控制方法,其特征是,还包括比较所述总电流及/或总电压与预设总电流及/或预设总电压的大小,以调整相角差Φ使得所述总电流及/或总电压达到预设总电流及/或预设总电压。
  9. 如权利要求2所述的多相DC/DC并联控制方法,其特征是,所述步骤S3还包括:通过调节所述原边电路及/或所述副边电路的开关周期Ts调节所述相电流及/或相电压。
  10. 一种采用权利要求1-9任一项所述的多相DC/DC并联控制方法的多相DC/DC并联控制电路,包括:DC/DC并联电路、用于检测多相DC/DC并联电路中的副边电路的电气参数的采样电以及用以控制DC/DC并联电路输出均衡电流的控制电路,其特征是,所述控制电路包括:
    采集电路,用于检测多相DC/DC并联电路中的副边电路的电气参数;
    比较电路,用于比较所述电气参数与预设电气参数的大小;
    调节电路,用于根据比较结果,调整原边电路的桥臂上功率开关通断驱动与副边电路的桥臂上功率开关通断驱动之间的相角差Φ,使所述电气参数等 于预设电气参数。
PCT/CN2020/101130 2020-04-24 2020-07-09 一种多相dc/dc并联控制方法及其控制电路 WO2021212666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010335412.6 2020-04-24
CN202010335412.6A CN111446864B (zh) 2020-04-24 2020-04-24 一种多相dc/dc并联控制方法及其控制电路

Publications (1)

Publication Number Publication Date
WO2021212666A1 true WO2021212666A1 (zh) 2021-10-28

Family

ID=71653451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101130 WO2021212666A1 (zh) 2020-04-24 2020-07-09 一种多相dc/dc并联控制方法及其控制电路

Country Status (2)

Country Link
CN (1) CN111446864B (zh)
WO (1) WO2021212666A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182803A1 (en) * 2009-01-21 2010-07-22 Zhanghe Nan Resonant converter equipped with a phase shifting output circuit
CN104184329A (zh) * 2013-05-21 2014-12-03 丰田自动车株式会社 电力转换设备以及电力转换方法
CN109038736A (zh) * 2018-08-10 2018-12-18 深圳威迈斯电源有限公司 一种充电电路移相控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247090A (zh) * 2008-03-07 2008-08-20 艾默生网络能源有限公司 多相直流-直流变换器
DE102012204035A1 (de) * 2012-03-14 2013-09-19 Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Stromregelung für Gleichspannungswandler
CN103248231B (zh) * 2013-04-02 2015-12-23 浙江大学 多相均流控制的并联调整电路控制方法
CN104935177B (zh) * 2015-07-14 2017-05-24 山东大学 用于多模块并联组合dc‑dc变换器的均流控制系统及控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182803A1 (en) * 2009-01-21 2010-07-22 Zhanghe Nan Resonant converter equipped with a phase shifting output circuit
CN104184329A (zh) * 2013-05-21 2014-12-03 丰田自动车株式会社 电力转换设备以及电力转换方法
CN109038736A (zh) * 2018-08-10 2018-12-18 深圳威迈斯电源有限公司 一种充电电路移相控制方法

Also Published As

Publication number Publication date
CN111446864A (zh) 2020-07-24
CN111446864B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN109039117B (zh) 高功率密度飞机交流变换器及其输入侧低次谐波抑制方法
CN109067219B (zh) 一种三相交直流变换器及其控制方法
CN102223090B (zh) 大功率简化型电解电镀高频开关电源及其控制方法
CN105450038A (zh) 模块化h桥级联多电平电力电子变压器控制系统
Nan et al. Dual active bridge converter with PWM control for solid state transformer application
CN211183826U (zh) 一种交直流微电网接口变换器电路
CN110739857B (zh) 一种多相交错并联llc变换器的均流控制方法
CN111800031A (zh) 一种三相逆变器及三相逆变器的控制方法
CN111953223A (zh) 一种三相四线制三电平变流器中点电压平衡方法
CN112271940A (zh) 一种具有公共高压直流母线的五电平整流器及控制策略
CN115242115A (zh) 一种四桥臂开关功率放大器及其宽频带保真控制方法
CN116599337A (zh) 一种中压电力电子变压器的串级启动方法
Tripathi et al. Closed loop DQ control of high-voltage high-power three-phase dual active bridge converter in presence of real transformer parasitic parameters
CN104993712A (zh) 一种三相-单相交流变换器控制方法
WO2020068022A2 (en) A single phase inverter for photovoltaic panels
Jang et al. Input-voltage balancing of series-connected converters
WO2021212666A1 (zh) 一种多相dc/dc并联控制方法及其控制电路
WO2021082220A1 (zh) 一种三相并网逆变器的控制方法、系统及三相并网逆变器
CN112838769A (zh) 一种无变压器隔离的星接中高压变频调速系统及控制方法
CN110391726B (zh) 单向三相星接可控整流器输入电流过零畸变的抑制方法
CN112636618A (zh) 一种降低vienna整流器电流过零点畸变的调制方法
TWI430557B (zh) 一種用於混合式多階直流轉交流電源轉換裝置的控制方法
US11711029B2 (en) Method of controlling power converter and power converter
TWI488415B (zh) Three - phase feedforward inductor current control device and its control method
TWI759932B (zh) 交錯式三相y-三角接電源轉換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931891

Country of ref document: EP

Kind code of ref document: A1