WO2021212504A1 - 车辆和车舱域控制器 - Google Patents

车辆和车舱域控制器 Download PDF

Info

Publication number
WO2021212504A1
WO2021212504A1 PCT/CN2020/086801 CN2020086801W WO2021212504A1 WO 2021212504 A1 WO2021212504 A1 WO 2021212504A1 CN 2020086801 W CN2020086801 W CN 2020086801W WO 2021212504 A1 WO2021212504 A1 WO 2021212504A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
processing chip
video
vehicle
video processing
Prior art date
Application number
PCT/CN2020/086801
Other languages
English (en)
French (fr)
Inventor
李轲
曾珊优
张宣彪
孙牵宇
黎建平
周群艳
许亮
Original Assignee
上海商汤临港智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤临港智能科技有限公司 filed Critical 上海商汤临港智能科技有限公司
Priority to PCT/CN2020/086801 priority Critical patent/WO2021212504A1/zh
Priority to CN202080003232.6A priority patent/CN112351915A/zh
Publication of WO2021212504A1 publication Critical patent/WO2021212504A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to a vehicle and a cabin domain controller.
  • the present disclosure provides a technical solution for a vehicle and a cabin domain controller.
  • a vehicle body including:
  • the camera group includes at least one first camera installed outside the cabin and/or at least one camera installed in the cabin;
  • the cabin domain controller includes a video processing chip and a micro-control unit that are connected to each other; the video processing chip is also connected to the camera group for face recognition based on the video stream from the at least one first camera , Generate a door control instruction corresponding to the result of face recognition, and/or generate an in-cabin control instruction based on the video stream from at least one camera installed in the vehicle cabin, and combine the door control instruction with /Or the cabin control instruction is sent to the micro control unit; the micro control unit is connected to the main body of the vehicle in control, and is used to control the vehicle door control instruction and/or the cabin control instruction The main body of the car controls.
  • a vehicle cabin domain controller including a video processing chip and a micro control unit connected to each other;
  • the video processing chip is used to perform face recognition based on the video stream from at least one first camera installed outside the cabin, generate a door control instruction corresponding to the face recognition result, and/or, according to the
  • the video stream of at least one camera in the cabin enters the video analysis, generates cabin control instructions, and sends the door control instructions and/or the cabin control instructions to the micro control unit;
  • the micro-control unit is used to control the main body of the vehicle in communication with it according to the door control instruction and/or the cabin control instruction.
  • the cabin domain controller integrates multiple video streams from multiple cameras outside the cabin and inside the cabin for cabin control, and uses the same hardware platform to implement more visual-related functions and reduce costs Synergistic.
  • Fig. 1 shows a schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • Fig. 2 shows a schematic diagram of the installation position of the first camera in an embodiment of the present disclosure.
  • Fig. 3 shows a schematic diagram of the installation positions of the second camera, the third camera, and the front-view camera in an embodiment of the present disclosure.
  • Fig. 4 shows another schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • Fig. 5 shows another schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a cabin domain controller 300 provided by an embodiment of the present disclosure.
  • Fig. 7 shows a schematic diagram of a system architecture of a cabin domain controller provided by an embodiment of the present disclosure.
  • Fig. 1 shows a schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • the vehicle includes a vehicle body 100, and further includes: a camera group 200, including at least one first camera installed outside the cabin and/or at least one camera installed in the cabin; cabin domain control
  • the device 300 includes a video processing chip 310 and a MicroController Unit (MCU) 320 that are connected to each other; the video processing chip 310 is also connected to the camera group 200, and is configured to receive data from the at least one first camera Perform face recognition on the video stream, generate door control instructions corresponding to the result of face recognition, and/or analyze the video stream from at least one camera installed in the cabin to generate cabin control instructions, and
  • the door control instruction and/or the cabin control instruction are sent to the micro control unit 320;
  • the micro control unit 320 is controlly connected to the vehicle body 100, and is used to control the door according to the door control instruction and/or The control command in the cabin controls the main body 100 of the vehicle.
  • the first camera may be used to collect a video stream required for face recognition.
  • the at least one camera installed in the cabin can be used to collect a video stream in the cabin or can be used to collect a video stream outside the cabin. That is, the camera installed in the vehicle cabin may include a camera installed toward the inside of the vehicle cabin and/or a camera installed toward the outside of the vehicle cabin.
  • the video processing chip 310 may be connected to each camera in the camera group 200 respectively.
  • the micro control unit 320 may be used to be responsible for communication with the exterior of the cabin domain controller 300.
  • the micro control unit 320 may be used to be responsible for communicating with the vehicle body 100 to control the vehicle body 100.
  • the micro control unit 320 may also be used to control the I/O (Input/Output, input/output) pins of the cabin domain controller 300.
  • the video processing chip 310 and the micro control unit 320 may communicate via SPI (Serial Peripheral Interface), and the door control instructions generated by the video processing chip 310 and/ Or the cabin control command can be transmitted to the micro control unit 320 through SPI, so as to send the door control command and/or cabin control command to the vehicle body through the micro control unit 320.
  • SPI Serial Peripheral Interface
  • the cabin domain controller may be installed in a non-heat source and invisible position in the cabin.
  • the cabin domain controller integrates multiple video streams from multiple cameras outside the cabin and inside the cabin for cabin control, and uses the same hardware platform to implement more visual-related functions and reduce costs Synergistic.
  • the embodiments of the present disclosure can realize the face-swiping to open the door. Compared with fingerprint unlocking, it has better anti-attack performance and higher security; compared with Bluetooth unlocking, it is more convenient and does not require the user to open the mobile phone to confirm the unlocking.
  • the action of the mobile phone can reduce the occurrence of the stolen vehicle unlocking the car door after the mobile phone is stolen. Therefore, the embodiments of the present disclosure can realize a safe, convenient and non-inductive keyless unlocking solution.
  • the video processing chip 310 includes: a neural network processing unit (Neural-network Processing Unit, NPU), which stores multiple neural network models, and is used to run the multiple neural network models To perform face recognition according to the video stream from the at least one first camera to obtain a face recognition result, and/or run at least one neural network model of the plurality of neural network models To perform video analysis according to the video stream from at least one camera installed in the cabin to obtain the video analysis result in the cabin; the control instruction generation unit is connected to the neural network processing unit and the micro-control unit 320 respectively, For generating the door control instruction according to the face recognition result output by the neural network processing unit, and/or generating the cabin according to the video analysis result in the cabin output by the neural network processing unit Control instructions, and send the door control instructions and/or the cabin control instructions to the micro-control unit 320.
  • NPU Neural-network Processing Unit
  • the accuracy of the video processing result can be improved, and the video processing speed can be increased.
  • the at least one first camera is installed at at least one of the following positions: a B-pillar of the vehicle, at least one door, and at least one rearview mirror.
  • Fig. 2 shows a schematic diagram of the installation position of the first camera in an embodiment of the present disclosure. As shown in Figure 2, the first camera can be installed on the B-pillar.
  • the at least one first camera includes a ToF (Time of Flight) camera.
  • a ToF camera 3D (3 Dimensions, three-dimensional) face recognition can be realized, thereby improving the accuracy of face recognition.
  • the at least one camera installed in the cabin includes: at least one second camera, which is installed toward the driving area in the cabin;
  • the video stream of the second camera performs video analysis of at least one of driver identity recognition, gesture recognition, fatigue state detection, dangerous motion detection, attention recognition, gaze area recognition, and departure detection to generate cabin control instructions.
  • the second camera may be used to collect the video stream of the driving area in the cabin, that is, the second camera may be used to collect the video stream of the driver.
  • the function of the DMS Driver Monitor System, driver monitoring system
  • the driver’s identity information can be identified, the driver’s preference information corresponding to the driver’s identity information can be obtained, and the seat position and position can be adjusted according to the driver’s preference information. / Or the position of the rearview mirror.
  • the driver can interact with the car through gestures, such as adjusting the volume, switching music, and so on.
  • the driver can be prompted not to drive fatigued.
  • dangerous action detection if dangerous actions such as drinking, smoking, or making a phone call by the driver are detected, the driver can be prompted not to perform dangerous actions.
  • attention recognition if it is detected that the driver is not paying attention, such as looking left and right, it can prompt the driver to concentrate, instead of looking left and right.
  • the gaze area when it is detected that the driver is gazing on the navigation screen, the brightness of the navigation screen can be automatically adjusted.
  • departure detection it can be detected whether the driver is in the driver's seat, and if not, an alarm message can be issued.
  • the at least one second camera is installed in at least one of the following positions: A-pillar, instrument panel, and center console.
  • the second camera can be installed near the main driver's seat to collect the driver's video stream.
  • the at least one camera installed in the cabin includes: at least one third camera, which is installed toward the non-driving area in the cabin;
  • the video stream of a third camera performs video analysis of at least one of occupant attribute recognition, leftover object detection, and rear-seat occupant alarm to generate cabin control instructions.
  • the third camera may be used to collect a video stream of the non-driving area in the cabin.
  • in-vehicle monitoring can be performed, for example, people, animals, objects, etc. in the vehicle can be monitored.
  • the preference information of the occupant can be obtained, and the seat position can be adjusted according to the preference information of the occupant.
  • leftover object detection if a valuable leftover object (such as a laptop computer, mobile phone, etc.) is detected in the car when the driver leaves the car, it can be prompted.
  • ROA Rear Occupant Alert
  • the at least one third camera is installed on the inner rearview mirror.
  • the video processing chip 310 can determine the number of passengers and/or the status of the passengers in the cabin according to the video stream from the at least one second camera and/or the at least one third camera.
  • the number and/or the status of the occupants adjust the atmosphere of the vehicle, such as playing music.
  • the state of the occupant may include the emotional state and action state of the occupant. For example, if you analyze the video stream in the cabin and determine that the occupants have heavy expressions, you can play relaxing music; if you determine that the occupants include children, you can play children’s songs; if you detect that an occupant is sleeping, you can play quiet Music, or don’t play music.
  • the gender and number of passengers can be counted through identification of occupant attributes.
  • the vehicle body 100 includes: a body control module (BCM, Body Control Module); the micro control unit 320, through a controller area network (Controller Area Network, CAN) bus interface and/ Or the Ethernet interface is connected to the body control module, and is used to send the door control instruction and/or the cabin control instruction to the body control module.
  • BCM Body Control Module
  • CAN Controller Area Network
  • the micro-control unit 320 can communicate with the vehicle body based on at least one of CAN, CAN-FD (Controller Area Network with Flexible Data-rate, Controller Area Network with flexible data transmission rate) and Ethernet (Ethernet). 100 for control.
  • CAN Controller Area Network with Flexible Data-rate
  • Ethernet Ethernet
  • the body control module can control the unlocking, opening, locking, closing, etc. of the vehicle door according to the vehicle door control instruction.
  • the vehicle body includes: a multimedia control module; the micro control unit is connected to the multimedia control module through the controller area network bus interface and/or the Ethernet interface, It is used to send the in-cabin control instruction to the multimedia control module.
  • the micro control unit 320 can control the multimedia control module, for example, can control the multimedia control module to play music.
  • the cabin domain controller 300 further includes: a deserializer, which is connected to the camera group 200 and the video processing chip 310, respectively, and is configured to connect to the camera group 200 and the video processing chip 310. Deserialize the video stream in the video stream, and send the deserialized video stream to the video processing chip 310; The module connection is used for stringing the video output by the video processing chip 310, and sending the stringed video to the multimedia control module.
  • a deserializer which is connected to the camera group 200 and the video processing chip 310, respectively, and is configured to connect to the camera group 200 and the video processing chip 310. Deserialize the video stream in the video stream, and send the deserialized video stream to the video processing chip 310;
  • the module connection is used for stringing the video output by the video processing chip 310, and sending the stringed video to the multimedia control module.
  • different cameras in the camera group 200 can be connected to different deserializers, and each deserializer is connected to the video processing chip 310 respectively.
  • different cameras in the camera group 200 may be connected to the same deserializer, and the deserializer is connected to the video processing chip 310.
  • the deserialization of the video stream input to the video processing chip 310 and/or the addition of the serialization of the video output from the video processing chip 310 can be realized.
  • the vehicle further includes: a distance sensor and/or a micro switch, connected to the micro control unit 320, and used to send a distance sensing signal and/or a distance sensor to the micro control unit 320 Trigger action signal; the micro control unit 320 is also used to wake up the video processing chip 310 in a dormant state according to the distance sensing signal and/or the trigger action signal, via the awakened video processing chip 310 Control the at least one first camera to collect a video stream and/or perform face recognition based on the video stream from the at least one first camera; the micro control unit 320 is also used to control the video processing when a predetermined condition is satisfied The chip 310 is in a sleep state.
  • a distance sensor and/or a micro switch connected to the micro control unit 320, and used to send a distance sensing signal and/or a distance sensor to the micro control unit 320 Trigger action signal
  • the micro control unit 320 is also used to wake up the video processing chip 310 in a dormant state according to the
  • the distance sensor can send a distance sensing signal to the micro control unit 320, and the micro switch can send a trigger action signal to the micro control unit 320.
  • the distance sensor may send the detected distance as a distance sensing signal to the micro control unit 320, so that the micro control unit 320 can determine whether someone is approaching the vehicle according to the distance.
  • the micro switch may generate a trigger action signal in response to detecting being touched, and send the trigger action signal to the micro control unit 320.
  • the distance sensor may include at least one of an infrared distance measuring sensor, an ultrasonic distance measuring sensor, a Bluetooth sensor, and the like.
  • the micro control unit 320 may wake up the video processing chip 310 in response to determining that a person is approaching the vehicle according to the distance sensing signal, so that the function of waking up the door without feeling can be realized.
  • the micro switch may be installed at the position of the door handle. After the user touches the micro switch, the function of swiping the face to open the door can be awakened.
  • the micro-control unit 320 wakes up the video processing chip 310 in response to receiving the trigger action signal, which can also facilitate the wake-up of the function of brushing the face and driving the door.
  • the video processing chip 310 may be in a dormant state, that is, when a person is detected approaching the vehicle or detected Before the micro switch is touched, the video processing chip 310 may be in a sleep state to maintain low power consumption operation. According to this implementation manner, the operating power consumption of the cabin domain controller 300 can be reduced.
  • the micro-control unit 320 controls the video processing chip 310 to be in a sleep state when a predetermined condition is met, thereby saving power consumption.
  • the predetermined condition may be that the face recognition is not passed within a predetermined time or the face image is not collected within a predetermined time, and so on.
  • the video processing chip 310 may be a SoC (System on Chip).
  • SoC System on Chip
  • the algorithm module of the face-sweeping door can be placed in the Boot phase of the SoC to run. After the SoC is awakened, face recognition can be performed quickly and the result of face recognition can be obtained.
  • the distance sensor is installed in at least one of the following positions: the B-pillar of the vehicle, at least one door, at least one rearview mirror, and in the cabin of the vehicle; and/or,
  • the micro switch is installed in at least one of the following positions: the door handle of at least one vehicle door, and the B-pillar of the vehicle.
  • the distance between the user who wants to get on the vehicle outside the car and the vehicle can be easily obtained; by installing a micro switch at the above position, it can be convenient for users Trigger the micro switch before getting in the car.
  • the vehicle main body 100 includes: a power supply circuit connected to the vehicle main body 100, the video processing chip 310, and the micro control unit 320; the vehicle cabin domain controller 300 It includes a capacitor circuit; in response to the power supply circuit being in an abnormal power supply state, the capacitor circuit is electrically connected to the video processing chip 310 for the video processing chip 310 to obtain information before the power supply circuit is in the abnormal power supply state. At least part of the video stream is stored in the non-volatile memory of the vehicle body 100 or the vehicle cabin domain controller 300.
  • the capacitor circuit can provide short-term power supply so that the video processing chip 310 can provide power to the power circuit.
  • At least part of the video stream obtained before the abnormal power supply state is stored.
  • the video processing chip 310 may store the video stream obtained for a preset period of time before the power supply circuit is in the abnormal power supply state. The video data during this period of time is relative to For other video data, it is of great value for analyzing the causes of vehicle failures or accidents, and these important video data can be saved in time through this implementation method.
  • the micro-control unit 320 may also be used to manage the power supply circuit.
  • the capacitor circuit includes: a super capacitor, electrically connected to the video processing chip 310, for charging when the power supply circuit is in a normal power supply state, and when the power supply circuit is abnormal In the power supply state, the battery is discharged to supply power to the video processing chip 310.
  • supercapacitors also known as electrochemical capacitors
  • the supercapacitor can provide short-term power supply to the video processing chip 310, so that the video processing chip 310 can perform processing on at least part of the video stream obtained before the power supply circuit is in the abnormal power supply state. storage.
  • the cabin domain controller 300 further includes: a gravity sensor (G-sensor), which is connected to the micro control unit 320, and is used to send a gravity sensor signal to the micro control unit
  • the micro-control unit 320 is also used to send acceleration abnormal information to the video processing chip 310 in response to determining that the acceleration of the vehicle is abnormal according to the gravity sensing signal; the video processing chip 310 is also used to respond
  • a gravity sensor G-sensor
  • the video processing chip 310 is also used to respond
  • at least part of the video stream acquired during the acceleration abnormality is stored in the non-volatile memory of the vehicle body 100 or the cabin domain controller 300.
  • the gravity sensor can be used to detect the acceleration of the vehicle, and can send a gravity sensing signal to the micro-control unit 320.
  • the gravity sensor may send the detected acceleration as a gravity sensing signal to the micro control unit 320, and the micro control unit 320 may determine whether the acceleration of the vehicle is abnormal according to the received gravity sensing signal.
  • the micro-control unit 320 can control the video processing chip 310 to perform video storage in response to the abnormal acceleration of the vehicle.
  • the micro-control unit 320 may control the video processing chip 310 to store at least part of the acquired video stream in the non-volatile memory of the vehicle body 100 or the cabin domain controller 300 in response to abnormal acceleration of the vehicle.
  • the micro-control unit 320 receives acceleration information from the gravity sensor, so that abnormal acceleration of the vehicle can be detected in time, for example, a collision of the vehicle can be detected in time. According to this implementation, when the vehicle is in a collision or a severe bump, subsequent analysis can be performed based on the video stored in the non-volatile memory.
  • the camera group 200 further includes at least one front-view camera and/or a surround-view camera, the at least one front-view camera is installed in or outside the cabin, and the surround-view camera is installed in Outside the cabin; the video processing chip 310 is also used to receive lane departure warning (Lane Departure Warning, LDW) and pedestrian collisions based on the video stream from the at least one front-view camera and/or the surround-view camera.
  • LDW Lane Departure Warning
  • PCW Pedestrian Collision Warning
  • FCW Forward Collision Warning
  • TSR Traffic Sign Recognition
  • TLR Traffic Light Recognition
  • the ADAS Advanced Driving Assistance System, advanced driving assistance system
  • the function of a DVR (Digital Video Recorder, digital video recorder) driving recorder can also be realized to realize the recording of audio and video information.
  • a prompt can be given.
  • the pedestrian collision warning when it is detected that the vehicle is close to the pedestrian, the warning can be carried out.
  • the warning can be given.
  • a forward departure warning if the vehicle in front is detected to be far away when the vehicle is stationary (for example, waiting for a traffic light), the driver can be notified.
  • traffic sign recognition and/or traffic signal light recognition traffic lights and other traffic signs can be intelligently recognized during driving.
  • the video processing chip 310 can analyze whether a collision occurs during the driving of the vehicle or when the vehicle is stationary according to the video stream from at least one front-view camera and/or surround-view camera.
  • the video in the process is stored.
  • the video during the collision can be stored in non-volatile memory.
  • the at least one front-view camera is installed in at least one of the following positions: on the inner rearview mirror, the left rearview mirror, the right rearview mirror, the front license plate holder, and the front windshield.
  • the front-view camera can be installed toward the front of the vehicle.
  • the front-view camera can be directed toward the front of the vehicle, that is, toward the outside of the vehicle.
  • the number of the surround view cameras is multiple; the vehicle body 100 includes: a display screen connected to the video processing chip 310; the video processing chip 310 is also used to The video streams of multiple surround view cameras are spliced to obtain a panoramic video stream, and the panoramic video stream is sent to the display screen; the display screen is used to display the panoramic video stream.
  • the number of surround view cameras can be deployed according to actual needs.
  • the number of surround view cameras is 4, and the video processing chip 310 can splice the video streams from the 4 surround view cameras to obtain a panoramic video.
  • the panoramic video stream can present the effect similar to the aerial shot from above the vehicle.
  • the panoramic video stream is generated by splicing the video streams collected by multiple surround view cameras and displayed on the display screen, which can facilitate the driver to observe the surrounding environment of the vehicle, thereby making it convenient for the driver to park.
  • the surround view camera is installed in at least one of the following positions: the front grille, the rear grille, the left rearview mirror, the right rearview mirror, the front license plate frame, and the rear license plate of the vehicle shelf.
  • any camera in the camera group 200 may communicate with the video processing chip through LVDS (Low-Voltage Differential Signaling, low-voltage differential signaling) or Ethernet. That is, any camera in the camera group 200 can transmit a video stream to the video processing chip via LVDS or Ethernet.
  • LVDS Low-Voltage Differential Signaling, low-voltage differential signaling
  • Ethernet Ethernet
  • Fig. 3 shows a schematic diagram of the installation positions of the second camera, the third camera, and the front-view camera in an embodiment of the present disclosure.
  • the second camera can be installed on the A-pillar, dashboard and center console
  • the third camera can be installed on the inner rearview mirror and facing the car
  • the front-view camera can be installed on the inner rearview mirror. It faces the outside of the car.
  • the vehicle may also include millimeter wave radar and/or lidar.
  • the cabin domain controller may generate an assisted driving instruction and/or an automatic driving instruction.
  • Fig. 4 shows another schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • the vehicle includes a vehicle body 100, a camera group 200, and a cabin domain controller 300.
  • the camera group 200 includes at least one first camera 210, at least one second camera 220, and at least one third camera. 230. At least one front-view camera 240 and a surround-view camera 250.
  • the cabin domain controller 300 includes a video processing chip 310 and a micro-control unit 320 connected to each other.
  • the video processing chip 310 is connected to at least one first camera 210 and at least one second camera, respectively.
  • the camera 220, at least one third camera 230, at least one front view camera 240 and a surround view camera 250 are connected, and the micro control unit 320 is connected to the vehicle body 100.
  • the cabin domain controller 300 further includes: an over-the-air (OTA) module, which is connected to the video processing chip 310 and is used to update the video processing chip 310 online The processing logic.
  • OTA over-the-air
  • the over-the-air download module can communicate with the outside through an Ethernet switch to obtain optimized processing logic (such as software and algorithms), so that the processing logic of the video processing chip 310 can be updated online.
  • the over-the-air download module can also be connected to the micro-control unit for online updating the processing logic of the micro-control unit.
  • the cabin domain controller 300 further includes: a wireless Internet access (Wi-Fi) module and/or a Bluetooth module, connected to the video processing chip 310, and configured to provide information to the display screen and/or a Bluetooth module.
  • Wi-Fi wireless Internet access
  • the vehicle owner terminal sends the video processed by the video processing chip 310.
  • the video processing chip 310 may send video to the display screen and/or the vehicle owner terminal through the Wi-Fi module and/or the Bluetooth module.
  • the vehicle after detecting that the driver enters the cockpit, the vehicle can be automatically started, without the need for the driver to manually start.
  • Fig. 5 shows another schematic diagram of a vehicle provided by an embodiment of the present disclosure.
  • the video processing chip in the cabin domain controller may be a SoC, and the SoC is connected to the MCU through SPI.
  • the camera group may include a first camera, a second camera, a third camera, a front-view camera, and a surround-view camera.
  • the SoC is respectively connected to the first camera, the second camera, the third camera, the front view camera and the surround view camera.
  • the vehicle domain controller may include a deserializer, and the deserializer may be connected to the camera group through an LVDS interface, and connected to an SoC through MIPI (Mobile Industry Processor Interface).
  • MIPI Mobile Industry Processor Interface
  • the vehicle domain controller may include an Ethernet switch, and the Ethernet switch may be connected to the SoC and the camera group through RGMII (Reduced Gigabit Media Independent Interface).
  • the cabin domain controller may also include a super capacitor connected to the SoC.
  • the memory connected to the SoC can include LPDDR4 (Low Power Double Date Rate 4, fourth-generation low-power double data rate) memory, EMMC (Embedded MultiMedia Card) and SD (Secure Digital) Card.
  • the SoC may include an SD card interface.
  • the SoC may include a USB (Universal Serial Bus, Universal Serial Bus) interface, and the SoC may communicate with the outside based on USB2.0 or USB3.0.
  • the cabin domain controller may include a Wi-Fi module and/or a Bluetooth module connected to the SoC, and the SoC may communicate with the outside through the Wi-Fi module and/or the Bluetooth module.
  • the cabin domain controller may also include a serializer, and the serializer is connected to the SoC through MIPI.
  • the vehicle body may include a display screen, and the serializer may be connected to the display screen through an LVDS interface.
  • the serializer can be implemented with TI and/or Maxim chips.
  • the cabin domain controller may include an Ethernet switch, and the Ethernet switch is connected to the SoC and the display screen through RGMII.
  • the SoC can also be connected to the display screen through the I2S (Inter-IC Sound, integrated circuit built-in audio) bus interface.
  • the MCU can also be connected to the Ethernet switch through the RGMII to output video to the outside through the Ethernet, for example, it can send the video to the car owner's terminal.
  • the vehicle-mounted domain controller may include a transceiver (Transceiver) connected to the MCU.
  • the transceiver may be a UART (Universal Asynchronous Receiver/Transmitter, Universal Asynchronous Receiver/Transmitter).
  • the transceiver may include a CAN bus interface to control the vehicle body through the CAN bus and/or the CAN-FD bus.
  • the MCU may also be connected to an LED (Light Emitting Diode, light emitting diode), for example, the number of LEDs may be two.
  • the MCU may include an LED driver to realize the control of the LED.
  • the cabin domain controller may also include a gravity sensor, which is connected to the MCU through SPI.
  • the cabin domain controller may also include a PMIC (Power Management Integrated Circuit, power management integrated circuit), and the PMIC may be connected to the MCU and the SoC respectively.
  • the PMIC can also be connected to BAT (Battery, storage battery), ACC (Accessory, accessories)/IGN (IGnition On, igniter), and GND (wire grounding terminal).
  • the vehicle may also include a distance sensor and/or a micro switch connected to the MCU.
  • FIG. 6 shows a schematic diagram of a cabin domain controller 300 provided by an embodiment of the present disclosure.
  • the cabin domain controller 300 includes a video processing chip 310 and a micro-control unit 320 that are connected to each other;
  • the video stream performs face recognition, generates door control instructions corresponding to the face recognition results, and/or, according to the video stream from at least one camera installed in the vehicle cabin, enters the video analysis to generate cabin control instructions, and
  • the door control instruction and/or the cabin control instruction are sent to the micro control unit 320;
  • the micro control unit 320 is configured to respond to the vehicle door control instruction and/or the cabin control instruction according to the vehicle door control instruction and/or the cabin control instruction.
  • the main body of the vehicle connected by communication is controlled.
  • the cabin domain controller integrates multiple video streams from multiple cameras outside the cabin and inside the cabin for cabin control, and uses the same hardware platform to implement more visual-related functions and reduce costs Synergistic.
  • the embodiments of the present disclosure can realize the face-swiping to open the door. Compared with fingerprint unlocking, it has better anti-attack performance and higher security; compared with Bluetooth unlocking, it is more convenient and does not require the user to open the mobile phone to confirm the unlocking.
  • the action of the mobile phone can reduce the occurrence of the stolen vehicle unlocking the car door after the mobile phone is stolen. Therefore, the embodiments of the present disclosure can realize a safe, convenient and non-inductive keyless unlocking solution.
  • the video processing chip 310 includes: a neural network processing unit, which stores a plurality of neural network models, and is used to run at least one neural network model of the plurality of neural network models according to Perform face recognition on the video stream of the at least one first camera to obtain a face recognition result, and/or run at least one neural network model of the plurality of neural network models to be installed in the cabin according to the Perform video analysis on the video stream of at least one camera in the vehicle cabin to obtain the result of the video analysis in the cabin; the control instruction generation unit is connected to the neural network processing unit and the micro-control unit 320 respectively, and is used to perform video analysis according to the neural network processing unit
  • the output of the face recognition result generates the door control instruction, and/or the in-cabin control instruction is generated according to the in-vehicle video analysis result output by the neural network processing unit, and the door is controlled
  • the instructions and/or the in-cabin control instructions are sent to the micro control unit 320.
  • the accuracy of the video processing result can be improved, and the video processing speed can be increased.
  • the video processing chip 310 is also used to perform driver identification and identification based on a video stream from at least one second camera installed in the cabin and facing the driving area in the cabin. At least one video analysis of gesture recognition, fatigue state detection, dangerous action detection, attention recognition, gaze area recognition, and departure detection is used to generate cabin control instructions.
  • the cabin domain controller 300 can implement the function of the DMS and/or the interaction between the driver and the vehicle.
  • the video processing chip 310 is also used to perform occupant attribute recognition and identification based on a video stream from at least one third camera installed in the cabin and facing the non-driving area in the cabin. At least one video analysis of leftover object detection and rear-seat occupant alarm generates cabin control instructions.
  • the cabin domain controller 300 can implement in-vehicle monitoring.
  • the micro-control unit 320 includes: a controller area network bus interface and/or an Ethernet interface, which is used to send the door control instructions and/or all the vehicle door control instructions to the body control module in the vehicle body. State the control instructions in the cabin.
  • the micro control unit 320 can control the vehicle body based on at least one of CAN, CAN-FD and Ethernet.
  • the CAN bus interface and/or the Ethernet interface are also used to send the in-cabin control instruction to the multimedia control module in the vehicle body.
  • the micro control unit 320 can control the multimedia control module, for example, can control the multimedia control module to play music.
  • the cabin domain controller 300 further includes: a deserializer, connected to the video processing chip 310, for deserializing the video stream from the camera installed on the car , And send the deserialized video stream to the video processing chip 310; and/or, a serializer, connected to the video processing chip 310, for serializing the video output by the video processing chip 310 , And send the serialized video to the multimedia control module of the vehicle body.
  • a deserializer connected to the video processing chip 310, for deserializing the video stream from the camera installed on the car , And send the deserialized video stream to the video processing chip 310
  • a serializer connected to the video processing chip 310, for serializing the video output by the video processing chip 310 , And send the serialized video to the multimedia control module of the vehicle body.
  • the deserialization of the video stream input to the video processing chip 310 and/or the addition of the serialization of the video output from the video processing chip 310 can be realized.
  • the micro control unit 320 further includes a distance sensor interface and/or a micro switch interface, where the distance sensor interface is used for connecting with the distance sensor and/or the micro switch interface is used for Connected to the micro switch; the micro control unit 320 is also used to wake up the video in the dormant state according to the distance sensing signal sent by the distance sensor and/or according to the trigger action signal sent by the micro switch.
  • the processing chip 310 via the awakened video processing chip 310, controls the at least one first camera to collect a video stream and/or performs face recognition based on the video stream from the at least one first camera; the micro control unit 320 is also used to control the video processing chip 310 to be in a sleep state when a predetermined condition is met.
  • the micro-control unit 320 responds to the proximity sensor detecting that the person is approaching the car, and wakes up the video processing chip 310, so that the function of waking up the door without feeling can be realized; through the micro-control In response to the micro switch being touched, the unit 320 wakes up the video processing chip 310, which can also conveniently wake up the function of brushing the face and driving the door; the micro control unit 320 controls the video processing chip 310 to be in a dormant state when the predetermined conditions are met, thereby Can save power consumption.
  • the video processing chip 310 and the micro control unit 320 are respectively used to connect to the power circuit in the vehicle body;
  • the cabin domain controller 300 includes a capacitor circuit;
  • the power circuit of the vehicle body is in an abnormal power supply state, and the capacitor circuit is electrically connected to the video processing chip 310 for the video processing chip 310 to store at least part of the video stream obtained before the power circuit is in the abnormal power supply state.
  • the capacitor circuit when the power supply circuit is in an abnormal power supply state (for example, abnormal power failure), the capacitor circuit can provide short-term power supply, so that the video processing chip 310 can provide at least part of the video stream obtained before the power supply circuit is in the abnormal power supply state.
  • the video processing chip 310 can store the video stream acquired in the first few seconds when the power supply circuit is in an abnormal power supply state. The video during this period of time often plays an important role in the analysis of abnormal power supply (such as power failure).
  • the capacitor circuit includes: a super capacitor, electrically connected to the video processing chip 310, for charging when the power supply circuit is in a normal power supply state, and when the power supply circuit is abnormal In the power supply state, the battery is discharged to supply power to the video processing chip 310.
  • the supercapacitor when the power supply circuit is in an abnormal power supply state, can provide short-term power supply to the video processing chip 310, so that the video processing chip 310 can perform processing on at least part of the video stream obtained before the power supply circuit is in the abnormal power supply state. storage.
  • the cabin domain controller 300 further includes: a gravity sensor, which is connected to the micro-control unit 320, and is configured to send a gravity sensing signal to the micro-control unit;
  • the unit 320 is further configured to send abnormal acceleration information to the video processing chip 310 in response to determining that the acceleration of the vehicle is abnormal according to the gravity sensing signal;
  • the video processing chip 310 is also configured to respond to receiving the abnormal acceleration information Storing at least part of the video stream acquired during the abnormal acceleration period in the non-volatile memory of the vehicle body or the cabin domain controller 300.
  • the acceleration information from the gravity sensor is received through the micro-control unit 320, so that abnormal acceleration of the vehicle can be detected in time, for example, a collision of the vehicle can be detected in time.
  • abnormal acceleration of the vehicle can be detected in time, for example, a collision of the vehicle can be detected in time.
  • subsequent analysis can be performed based on the videos stored in the non-volatile memory; compared with other video data, these videos are useful for analyzing the causes of vehicle failures or accidents. Important value, these important video data can be saved in time through this realization method.
  • the video processing chip 310 is also used for video streaming from at least one front-view camera installed in or outside the cabin and/or a surround-view camera installed outside the cabin. Perform video analysis of at least one of lane departure warning, pedestrian collision warning, forward collision warning, vehicle departure warning, traffic sign recognition, and traffic light recognition to generate assisted driving instructions and/or automatic driving instructions, and combine the assisted driving
  • the instructions and/or the automatic driving instructions are sent to the micro-control unit 320; the micro-control unit 320 is also used to control the main body of the vehicle in communication with it according to the auxiliary driving instructions and/or the automatic driving instructions.
  • the ADAS function and/or the function of the DVR driving recorder can be realized.
  • the video processing chip 310 is also used to connect to the display screen in the main body of the car, to splice the video streams from multiple surround view cameras to obtain a panoramic video stream, and to combine the panoramic video stream.
  • the video stream is sent to the display screen.
  • the panoramic video stream is generated by splicing the video streams collected by multiple surround view cameras and displayed on the display screen, which can facilitate the driver to observe the surrounding environment of the vehicle, thereby making it convenient for the driver to park.
  • the cabin domain controller 300 further includes: an over-the-air download module connected to the video processing chip 310 and configured to update the processing logic of the video processing chip 310 online.
  • online update of the processing logic of the video processing chip 310 can be implemented.
  • the cabin domain controller 300 further includes: a wireless Internet access (Wi-Fi) module and/or a Bluetooth module, connected to the video processing chip 310, and configured to provide information to the display screen and/or a Bluetooth module. Or the vehicle owner terminal sends the video processed by the video processing chip 310.
  • Wi-Fi wireless Internet access
  • Bluetooth Bluetooth
  • the video processing chip 310 may send video to the display screen and/or the vehicle owner terminal through the Wi-Fi module and/or the Bluetooth module.
  • the cabin domain controller in the embodiment of the present disclosure may also perform function tailoring and expansion according to the requirements of the entire vehicle, which is not limited in the embodiment of the present disclosure.
  • Fig. 7 shows a schematic diagram of a system architecture of a cabin domain controller provided by an embodiment of the present disclosure.
  • the functions of the cabin domain controller can include fatigue state detection, occupant attribute recognition, departure detection, gesture recognition, forward collision warning, pedestrian collision warning, face recognition, driver identification, attention Power recognition, dangerous motion detection, traffic sign recognition, traffic signal recognition, lane departure warning, driving recorder, rear seat occupant warning, and online upgrades.
  • the cabin domain controller may include FAKRA input interfaces and FAKRA output interfaces, where the number of FAKRA input interfaces may be three.
  • MCU can be connected with gravity sensor and micro switch.
  • the MCU may also include a GPIO (General Purpose Input Output) interface.
  • GPIO General Purpose Input Output
  • the MCU may also include an I2C (Inter-Integrated Circuit) bus interface. SoC can obtain services provided by ISP (Internet Service Provider). The CVFlow algorithm module can be included in the SoC. The SoC can deserialize the video stream from the camera and add a string to the output video. SoC can communicate with the display through I2S.
  • the SoC may include a video codec and a CPU (Central Processing Unit, central processing unit) core.
  • the cabin domain controller may also include an RTC (Real Time Clock) chip. The cabin domain controller can communicate through SPI, UART, or RGMII.
  • the cabin domain controller can be driven by USB, Ethernet, LED, Wi-Fi/Bluetooth, CAN/CAN-FD, HDMI (High Definition Multimedia Interface), SD card interface, JTAG (Joint Test Action Group, Joint Test Working Group) interface and external communication.
  • the camera group connected to the cabin domain controller may include at least one first camera, at least one second camera, at least one third camera, at least one front-view camera, and a surround-view camera.

Abstract

一种车辆和车舱域控制器,其中车辆包括车主体(100),还包括:摄像头组(200),包括安装在车舱外的至少一个第一摄像头和/或安装在车舱内的至少一个摄像头;车舱域控制器(300),包括相互连接的视频处理芯片(310)和微控制单元(320);视频处理芯片(310)还与摄像头组(200)连接,用于根据来自于至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进行视频分析,生成舱内控制指令,并将车门控制指令和/或舱内控制指令发送给微控制单元(320);微控制单元(320)与车主体(100)控制连接,用于根据车门控制指令和/或舱内控制指令,对车主体(100)进行控制。

Description

车辆和车舱域控制器 技术领域
本公开涉及车辆技术领域,尤其涉及一种车辆和车舱域控制器。
背景技术
随着汽车逐渐成为人们生活的主要交通工具之一,消费者对汽车的性能等各方面的要求越来越高,智能汽车越来越受到消费者的关注。相关技术中,车舱域控制器的功能较为单一,难以满足用户对智能汽车的要求。
发明内容
本公开提供了一种车辆和车舱域控制器的技术方案。
根据本公开的一方面,提供了一种车辆,包括车主体,还包括:
摄像头组,包括安装在车舱外的至少一个第一摄像头和/或安装在车舱内的至少一个摄像头;
车舱域控制器,包括相互连接的视频处理芯片和微控制单元;所述视频处理芯片还与所述摄像头组连接,用于根据来自于所述至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进视频分析,生成舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元;所述微控制单元与所述车主体控制连接,用于根据所述车门控制指令和/或所述舱内控制指令,对所述车主体进行控制。
根据本公开的一方面,提供了一种车舱域控制器,包括相互连接的视频处理芯片和微控制单元;
所述视频处理芯片用于根据来自于安装车舱外的至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进视频分析,生成舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元;
所述微控制单元,用于根据所述车门控制指令和/或所述舱内控制指令,对与其通信连接的车主体进行控制。
在本公开实施例中,车舱域控制器融合来自于车舱外和车舱内的多个摄像头的多路视频流进行车舱控制,使用同一硬件平台实现更多的视觉相关功能,降本增效。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1示出本公开实施例提供的车辆的一示意图。
图2示出本公开实施例中第一摄像头的安装位置的示意图。
图3示出本公开实施例中第二摄像头、第三摄像头和前视摄像头的安装位置的示意图。
图4示出本公开实施例提供的车辆的另一示意图。
图5示出本公开实施例提供的车辆的另一示意图。
图6示出本公开实施例提供的车舱域控制器300的示意图。
图7示出本公开实施例提供的车舱域控制器的系统架构的示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出本公开实施例提供的车辆的一示意图。如图1所示,所述车辆包括车主体100,还包括:摄像头组200,包括安装在车舱外的至少一个第一摄像头和/或安装在车舱内的至少一个摄像头;车舱域控制器300,包括相互连接的视频处理芯片310和微控制单元(MicroController Unit,MCU)320;所述视频处理芯片310还与所述摄像头组200连接,用于根据来自于所述至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进视频分析,生成舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元320;所述微控制单元320与所述车主体100控制连接,用于根据所述车门控制指令和/或所述舱内控制指令,对所述车主体100进行控制。
在本公开实施例中,第一摄像头可以用于采集人脸识别所需的视频流。安装在车舱内的至少一个摄像头可以用于采集车舱内的视频流,也可以用于采集车舱外的视频流。即,安装在车舱内的摄像头可以包括朝向车舱内安装的摄像头和/或朝向车舱外安装的摄像头。视频处理芯片310可以与所述摄像头组200中的各个摄像头分别连接。微控制单元320可以用于负责与车舱域控制器300外部的通信。例如,微控制单元320可以用于负责与车主体100进行通信,以对车主体100进行控制。微控制单元320还可以用于对车舱域控制器300的I/O(Input/Output,输入/输出)管脚进行控制。
在一种可能的实现方式中,所述视频处理芯片310与所述微控制单元320可以通过SPI(Serial Peripheral Interface,串行外设接口)进行通信,视频处理芯片310生成的车门控制指令和/或舱内控制 指令可以通过SPI传输至微控制单元320,以通过微控制单元320向车主体发出车门控制指令和/或舱内控制指令。
在一种可能的实现方式中,所述车舱域控制器可以安装在车舱内非热源且不可见的位置。
在本公开实施例中,车舱域控制器融合来自于车舱外和车舱内的多个摄像头的多路视频流进行车舱控制,使用同一硬件平台实现更多的视觉相关功能,降本增效。本公开实施例能够实现刷脸开车门,相较于指纹解锁而言,在防攻击方面性能更好,安全性更高;相较于蓝牙解锁,便捷性更高,无需用户打开手机进行确认解锁的动作,且能够减少手机被盗后被盗车人员解锁车门的情况发生。因此,本公开实施例能够实现安全、便捷且无感的无钥匙解锁方案。
在一种可能的实现方式中,所述视频处理芯片310包括:神经网络处理单元(Neural-network Processing Unit,NPU),存储有多个神经网络模型,用于运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于所述至少一个第一摄像头的视频流进行人脸识别,得到人脸识别结果,和/或,运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于安装在车舱内的至少一个摄像头的视频流进行视频分析,得到车舱内视频分析结果;控制指令生成单元,分别与所述神经网络处理单元和所述微控制单元320连接,用于根据所述神经网络处理单元输出的所述人脸识别结果生成所述车门控制指令,和/或,根据所述神经网络处理单元输出的所述车舱内视频分析结果生成所述舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元320。
在该实现方式中,通过采用神经网络处理单元对来自于摄像头组的视频流进行处理,由此能够提高视频处理结果的准确性,并能提高视频处理速度。
在一种可能的实现方式中,所述至少一个第一摄像头安装在以下至少一个位置上:所述车辆的B柱、至少一个车门、至少一个后视镜。图2示出本公开实施例中第一摄像头的安装位置的示意图。如图2所示,所述第一摄像头可以安装在B柱上。
在一种可能的实现方式中,所述至少一个第一摄像头包括ToF(Time of Flight,飞行时间)摄像头。通过采用ToF摄像头,可以实现3D(3 Dimensions,三维)人脸识别,从而能够提高人脸识别的准确性。
在一种可能的实现方式中,安装在车舱内的至少一个摄像头包括:至少一个第二摄像头,朝向车舱内的驾驶区安装;所述视频处理芯片310用于根据来自于所述至少一个第二摄像头的视频流进行驾驶员身份识别、手势识别、疲劳状态检测、危险动作检测、注意力识别、注视区域识别和离岗检测中的至少一种视频分析,生成舱内控制指令。
在该实现方式中,第二摄像头可以用于采集车舱内驾驶区的视频流,即,第二摄像头可以用于采集驾驶员的视频流。根据来自于至少一个第二摄像头的视频流,可以实现DMS(Driver Monitor System,驾驶员监控系统)的功能和/或驾驶员与车辆之间的交互。在该实现方式中,通过进行驾驶员身份识别,可以识别驾驶员的身份信息,获取与所述驾驶员的身份信息对应的驾驶员的偏好信息,根据驾驶员的偏好信息,调整座椅位置和/或后视镜的位置。通过进行手势识别,驾驶员可以通过手势与车进行交互,例如调节音量、切换音乐等。通过进行疲劳状态检测,如果检测到驾驶员疲劳,则可以提示驾驶员请勿疲劳驾驶。通过进行危险动作检测,如果检测到驾驶员的喝水、抽烟或者打电话等危险动作,则可以提示驾驶员请勿进行危险动作。通过进行注意力识别,如果检测到驾驶员注意力不集中, 例如左顾右盼,则可以提示驾驶员集中注意力,请勿左顾右盼。通过进行注视区域识别,当检测到驾驶员注视在导航屏上时,可以自动调节导航屏的亮度。通过进行离岗检测,可以检测驾驶员是否在驾驶座上,如果不在,则可以发出警报信息。
在一种可能的实现方式中,所述至少一个第二摄像头安装在以下至少一个位置:A柱、仪表盘、中控台。在该实现方式中,第二摄像头可以安装在主驾驶座附近,以采集驾驶员的视频流。
在一种可能的实现方式中,安装在车舱内的至少一个摄像头包括:至少一个第三摄像头,朝向车舱内的非驾驶区安装;所述视频处理芯片310用于根据来自于所述至少一个第三摄像头的视频流进行乘员属性识别、遗留物体检测和后座乘员警报中的至少一种视频分析,生成舱内控制指令。
在该实现方式中,第三摄像头可以用于采集车舱内非驾驶区的视频流。根据来自于至少一个第三摄像头的视频流,可以进行车舱内监控,例如,可以对车舱内的人员、动物、物体等进行监控。在该实现方式中,通过进行乘员属性识别,可以获取乘员的偏好信息,根据乘员的偏好信息调整座椅位置。通过进行遗留物体检测,如果在驾驶员离开车时,检测到车内有贵重的遗留物体(例如笔记本电脑、手机等),则可以进行提示。通过进行后座乘员警报(Rear Occupant Alert,ROA),如果在驾驶员离开车时,检测到有小孩和/或宠物遗留在车内,则可以进行提示。
在一种可能的实现方式中,所述至少一个第三摄像头安装在内后视镜上。
在一种可能的实现方式中,视频处理芯片310可以根据来自于至少一个第二摄像头和/或至少一个第三摄像头的视频流,确定车舱内的乘员数量和/或乘员的状态,根据乘员数量和/或乘员的状态,调节整车氛围,例如播放音乐。其中,乘员的状态可以包括乘员的情绪状态、动作状态等。例如,若对车舱内的视频流进行分析,确定乘员表情沉重,则可以播放轻松的音乐;若确定乘员包括小孩,则可以播放儿童歌曲;若检测到有乘员在睡觉,则可以播放安静的音乐,或者不播放音乐。
在一种可能的实现方式中,在网约车等应用场景中,可以通过乘员属性识别,对乘客的性别和数量等进行统计。
在一种可能的实现方式中,所述车主体100包括:车身控制模块(BCM,Body Control Module);所述微控制单元320,通过控制器局域网络(Controller Area Network,CAN)总线接口和/或以太网接口与所述车身控制模块连接,用于向所述车身控制模块发送所述车门控制指令和/或所述舱内控制指令。
根据该实现方式,微控制单元320可以基于CAN、CAN-FD(Controller Area Network with Flexible Data-rate,灵活数据传输率的控制器局域网络)和以太网(Ethernet)中的至少之一对车主体100进行控制。
其中,车身控制模块可以根据所述车门控制指令控制车门解锁、打开、上锁、关闭等。
在一种可能的实现方式中,所述车主体包括:多媒体控制模块;所述微控制单元,通过所述控制器局域网络总线接口和/或所述以太网接口与所述多媒体控制模块连接,用于向所述多媒体控制模块发送所述舱内控制指令。
根据该实现方式,微控制单元320能够对多媒体控制模块进行控制,例如,可以控制多媒体控制模块进行音乐的播放。
在一种可能的实现方式中,所述车舱域控制器300还包括:解串器,分别与所述摄像头组200和所 述视频处理芯片310连接,用于对来自于所述摄像头组200的视频流进行解串,并将解串后的视频流发送至所述视频处理芯片310;和/或,串行器,分别与所述视频处理芯片310和所述车主体100中的多媒体控制模块连接,用于对所述视频处理芯片310输出的视频进行加串,并将加串后的视频发送至所述多媒体控制模块。
作为该实现方式的一个示例,摄像头组200中的不同摄像头可以连接不同的解串器,各个解串器分别与视频处理芯片310连接。作为该实现方式的另一个示例,摄像头组200中的不同摄像头可以连接同一解串器,该解串器与视频处理芯片310连接。
根据该实现方式,能够实现输入到视频处理芯片310的视频流的解串和/或从视频处理芯片310输出的视频的加串。
在一种可能的实现方式中,所述车辆还包括:距离传感器和/或微动开关,与所述微控制单元320连接,用于向所述微控制单元320发送距离传感信号和/或触发动作信号;所述微控制单元320还用于根据所述距离传感信号和/或所述触发动作信号,唤醒处于休眠状态的所述视频处理芯片310,经由唤醒的所述视频处理芯片310控制所述至少一个第一摄像头采集视频流和/或根据来自于所述至少一个第一摄像头的视频流进行人脸识别;所述微控制单元320还用于满足预定条件时控制所述视频处理芯片310处于休眠状态。
在该实现方式中,距离传感器可以向微控制单元320发送距离传感信号,微动开关可以向微控制单元320发送触发动作信号。例如,距离传感器可以将检测到的距离作为距离传感信号发送给微控制单元320,以由微控制单元320根据距离判断是否有人接近所述车辆。微动开关可以响应于检测到被触摸,生成触发动作信号,并将触发动作信号发送给微控制单元320。
作为该实现方式的一个示例,所述距离传感器可以包括红外测距传感器、超声波测距传感器和蓝牙传感器等中的至少之一。
在该实现方式中,微控制单元320可以响应于根据所述距离传感信号确定人接近所述车辆,唤醒所述视频处理芯片310,由此能够实现无感唤醒刷脸开车门的功能。
在该实现方式中,所述微动开关可以安装在门把手的位置。用户触摸微动开关之后,可以唤醒刷脸开车门的功能。通过微控制单元320响应于接收到所述触发动作信号,唤醒所述视频处理芯片310,也能方便唤醒刷脸开车门的功能。
在该实现方式中,在微控制单元320接收到所述距离传感信号和/或触发动作信号之前,视频处理芯片310可以处于休眠状态,即,在检测到人接近所述车辆或者检测到所述微动开关被触摸之前,视频处理芯片310可以处于休眠状态以保持低功耗运行。根据该实现方式,能够降低车舱域控制器300的运行功耗。
在该实现方式中,通过微控制单元320在满足预定条件时控制视频处理芯片310处于休眠状态,由此能够节省功耗。其中,预定条件可以是在预定时间内未通过人脸识别或者在预定时间内未采集到人脸图像等。
在一种可能的实现方式中,所述视频处理芯片310可以是SoC(System on Chip,系统级芯片)。作为该实现方式的一个示例,刷脸开车门的算法模块可以放置在SoC的Boot阶段运行。在SoC被唤醒之后,可以快速地进行人脸识别并得到人脸识别结果。
在一种可能的实现方式中,所述距离传感器安装在以下至少一个位置上:所述车辆的B柱、至少一个车门、至少一个后视镜、所述车辆的车舱内;和/或,所述微动开关安装在以下至少一个位置上:至少一个车门的门把手、所述车辆的B柱。
在该实现方式中,通过在上述位置安装距离传感器,由此能够方便获得车外想要上车的用户与所述车辆之间的距离;通过在上述位置安装微动开关,由此能够方便用户在上车前触发微动开关。
在一种可能的实现方式中,所述车主体100包括:电源电路,分别与所述车主体100、所述视频处理芯片310和所述微控制单元320连接;所述车舱域控制器300包括有电容电路;响应于所述电源电路处于异常供电状态,所述电容电路与所述视频处理芯片310电连接,以供所述视频处理芯片310将所述电源电路处于异常供电状态之前获取的至少部分视频流存储到所述车主体100或所述车舱域控制器300的非易失性存储器中。
相关技术中,当意外发生(例如发生紧急碰撞)导致车辆的供电中断时,由于车辆突然失去供电支持,导致无法将意外发生时的相关视频数据保存下来,而这段时间的视频数据往往是意外发生时最重要的记录数据。根据上述实现方式,在意外发生(例如发生紧急碰撞)导致车辆的电源电路处于异常供电状态(例如异常掉电)时,电容电路可以提供短时间的供电,以便视频处理芯片310对所述电源电路处于异常供电状态之前获取的至少部分视频流进行存储,例如,视频处理芯片310可以对所述电源电路处于异常供电状态之前的预设时长获取的视频流进行存储,这段时间的视频数据相对于其他视频数据而言,对于分析车辆故障或事故原因有着重要的价值,通过该实现方式可以及时保存这些重要视频数据。
在一种可能的实现方式中,微控制单元320还可以用于对所述电源电路进行管理。
在一种可能的实现方式中,所述电容电路包括:超级电容,与所述视频处理芯片310电连接,用于在所述电源电路处于正常供电状态时充电,并在所述电源电路处于异常供电状态时放电,以为所述视频处理芯片310供电。
其中,超级电容又名电化学电容,可以利用活性炭多孔电极和电解质组成的双电层结构获得较大的容量,容量范围可以是0.1F至1000F。根据该实现方式,在电源电路处于异常供电状态时,超级电容可以为视频处理芯片310提供短时间的供电,以便视频处理芯片310对所述电源电路处于异常供电状态之前获取的至少部分视频流进行存储。
在一种可能的实现方式中,所述车舱域控制器300还包括:重力传感器(G-sensor),与所述微控制单元320连接,用于向所述微控制单元发送重力传感信号;所述微控制单元320还用于响应于根据所述重力传感信号确定到所述车辆的加速度异常,向所述视频处理芯片310发送加速度异常信息;所述视频处理芯片310还用于响应于接收到所述加速度异常信息,将加速度异常期间获取的至少部分视频流存储在所述车主体100或所述车舱域控制器300的非易失性存储器中。
在该实现方式中,重力传感器可以用于检测所述车辆的加速度,并可以向微控制单元320发送重力传感信号。例如,重力传感器可以将检测到加速度作为重力传感信号发送给微控制单元320,微控制单元320可以根据接收的重力传感信号判断车辆是否加速度异常。微控制单元320可以响应于车辆的加速度异常,控制视频处理芯片310进行视频存储。例如,微控制单元320可以响应于车辆的加速度异常,控制视频处理芯片310将获取的至少部分视频流存储在所述车主体100或所述车舱域控制器300的 非易失性存储器中。通过微控制单元320接收来自于重力传感器的加速度信息,由此能够及时发现车辆的加速度异常的情况,例如能够及时发现车辆发生碰撞的情况。根据该实现方式,当车辆发生碰撞或者严重颠簸后,能够根据存储在非易失性存储器中的视频进行后续分析。
在一种可能的实现方式中,所述摄像头组200还包括至少一个前视摄像头和/或环视摄像头,所述至少一个前视摄像头安装在车舱内或车舱外,所述环视摄像头安装在车舱外;所述视频处理芯片310还用于接收来自于根据来自于所述至少一个前视摄像头和/或所述环视摄像头的视频流进行车道偏离预警(Lane Departure Warning,LDW)、行人碰撞预警(Pedestrian Collision Warning,PCW)、前方碰撞预警(Forward Collision Warning,FCW)、前车离开预警、交通标志识别(Traffic Sign Recognition,TSR)和交通信号灯识别(Traffic Light Recognition,TLR)中的至少一种视频分析,生成辅助驾驶指令和/或自动驾驶指令,并将所述辅助驾驶指令和/或自动驾驶指令发送给所述微控制单元320;所述微控制单元320还用于根据所述辅助驾驶指令和/或自动驾驶指令,对所述车主体100进行控制。
在该实现方式中,根据来自于至少一个前视摄像头和/或环视摄像头的视频流,可以实现ADAS(Advanced Driving Assistance System,高级驾驶辅助系统)功能。根据来自于至少一个前视摄像头和/或环视摄像头的视频流,还可以实现DVR(Digital Video Recorder,数字视频录像机)行车记录仪的功能,实现音视频信息的记录。在该实现方式中,通过进行车道偏离预警,在行驶过程中,如果检测到车偏离了行驶的车道,则可以进行提示。通过进行行人碰撞预警,当检测到车与行人距离较近时,可以进行预警。通过进行前方碰撞预警,如果检测到车距离前车较近,则可以进行预警。通过进行前方离开预警,如果在车静止的情况下(例如等红绿灯),检测到前方车辆远离,则可以对驾驶员进行提示。通过进行交通标志识别和/或交通信号灯识别,可以在行驶过程中智能识别红绿灯以及其他交通标志。
作为该实现方式的一个示例,视频处理芯片310可以根据来自于至少一个前视摄像头和/或环视摄像头的视频流,分析在车辆行驶过程中或者车辆静止时是否发生碰撞,若是,则可以对碰撞过程中的视频进行存储。例如,可以将碰撞过程中的视频存储在非易失性存储器中。
在一种可能的实现方式中,所述至少一个前视摄像头安装在以下至少一个位置上:内后视镜上、左后视镜、右后视镜、前车牌架、前挡风玻璃。其中,前视摄像头可以朝向车辆的前方安装。例如,若前视摄像头安装在内后视镜上,则前视摄像头可以朝向车辆的前方,即朝向车外。通过在上述位置安装前视摄像头,能够采集到车辆前方的视频流。
在一种可能的实现方式中,所述环视摄像头的数量为多个;所述车主体100包括:显示屏,与所述视频处理芯片310连接;所述视频处理芯片310还用于对来自于多个环视摄像头的视频流进行拼接,得到全景视频流,并将所述全景视频流发送至所述显示屏;所述显示屏用于显示所述全景视频流。
在该实现方式中,所述环视摄像头的数量可以根据实际需要部署,例如,环视摄像头的数量为4个,所述视频处理芯片310可以对来自4个环视摄像头的视频流进行拼接,得到全景视频流,该全景视频流可以呈现类似从车辆上空俯拍的效果。
在该实现方式中,通过利用多个环视摄像头采集的视频流拼接生成全景视频流并通过显示屏显示,可以方便驾驶员观察车辆的周边环境,从而可以方便驾驶员泊车。
在一种可能的实现方式中,在以下至少一个位置上安装有所述环视摄像头:所述车辆的前格栅、 后格栅、左后视镜、右后视镜、前车牌架、后车牌架。通过在上述位置安装环视摄像头,能够采集到车辆周围的视频流。
在一种可能的实现方式中,所述摄像头组200中的任一摄像头可以通过LVDS(Low-Voltage Differential Signaling,低电压差分信号)或者以太网与所述视频处理芯片进行通信。即,所述摄像头组200中的任一摄像头可以通过LVDS或者以太网将视频流传输至所述视频处理芯片。
图3示出本公开实施例中第二摄像头、第三摄像头和前视摄像头的安装位置的示意图。如图3所述,第二摄像头可以安装在A柱、仪表盘和中控台上,第三摄像头可以安装在内后视镜上且朝向车内,前视摄像头可以安装在内后视镜上且朝向车外。
在一种可能的实现方式中,所述车辆还可以包括毫米波雷达和/或激光雷达。根据所述毫米波雷达和/或所述激光雷达测量得到的距离,所述车舱域控制器可以生成辅助驾驶指令和/或自动驾驶指令。
图4示出本公开实施例提供的车辆的另一示意图。如图4所示,所述车辆包括车主体100、摄像头组200和车舱域控制器300,其中,摄像头组200包括至少一个第一摄像头210、至少一个第二摄像头220、至少一个第三摄像头230、至少一个前视摄像头240和环视摄像头250,车舱域控制器300包括相互连接的视频处理芯片310和微控制单元320,视频处理芯片310分别与至少一个第一摄像头210、至少一个第二摄像头220、至少一个第三摄像头230、至少一个前视摄像头240和环视摄像头250连接,微控制单元320与车主体100连接。
在一种可能的实现方式中,所述车舱域控制器300还包括:空中下载(Over The Air,OTA)模块,与所述视频处理芯片310连接,用于在线更新所述视频处理芯片310的处理逻辑。
在该实现方式中,空中下载模块可以通过以太网交换机与外部通信,以获取优化后的处理逻辑(例如软件和算法),从而能够在线更新视频处理芯片310的处理逻辑。作为该实现方式的一个示例,空中下载模块还可以微控制单元连接,用于在线更新微控制单元的处理逻辑。
在一种可能的实现方式中,所述车舱域控制器300还包括:无线上网(Wi-Fi)模块和/或蓝牙模块,与所述视频处理芯片310连接,用于向显示屏和/或车主终端发送所述视频处理芯片310处理得到的视频。根据该实现方式,所述视频处理芯片310可以通过所述Wi-Fi模块和/或所述蓝牙模块向显示屏和/或车主终端发送视频。
在一种可能的实现方式中,在检测到驾驶员进入驾驶舱后,可以自动启动车辆,而无需驾驶员通过手动启动。
图5示出本公开实施例提供的车辆的另一示意图。在图5所示的示例中,车舱域控制器中的视频处理芯片可以是SoC,SoC通过SPI与MCU连接。摄像头组可以包括第一摄像头、第二摄像头、第三摄像头、前视摄像头和环视摄像头。SoC与第一摄像头、第二摄像头、第三摄像头、前视摄像头和环视摄像头分别连接。车载域控制器可以包括解串器,解串器可以通过LVDS接口与摄像头组连接,通过MIPI(Mobile Industry Processor Interface,移动产业处理器接口)与SoC连接。在另一个例子中,车载域控制器可以包括以太网交换机,以太网交换机可以通过RGMII(Reduced Gigabit Media Independent Interface,精简比特介质独立接口)分别与SoC和摄像头组连接。所述车舱域控制器还可以包括与SoC连接的超级电容。与SoC连接的存储器可以包括LPDDR4(Low Power Double Date Rate 4,第四代低功耗双倍数据速率)存储器、EMMC(Embedded Multi Media Card,嵌入式多媒体卡)和SD(Secure  Digital,安全数码)卡。SoC可以包括SD卡接口。SoC可以包括USB(Universal Serial Bus,通用串行总线)接口,SoC可以基于USB2.0或者USB3.0等与外部通信。车舱域控制器可以包括与SoC连接的Wi-Fi模块和/或蓝牙模块,SoC可以通过Wi-Fi模块和/或蓝牙模块与外部通信。车舱域控制器还可以包括串行器,串行器通过MIPI与SoC连接。所述车主体可以包括显示屏,串行器可以通过LVDS接口与显示屏连接。串行器可以采用TI和/或Maxim芯片等来实现。在另一个例子中,车舱域控制器可以包括以太网交换机,以太网交换机通过RGMII分别与SoC和显示屏连接。SoC还可以通过I2S(Inter-IC Sound,集成电路内置音频)总线接口与显示屏连接。MCU也可以通过RGMII与以太网交换机连接,以通过以太网向外部输出视频,例如,可以向车主终端发送视频。车载域控制器可以包括与MCU连接的收发器(Transceiver),例如,收发器可以是UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)。收发器可以包括CAN总线接口,以通过CAN总线和/或CAN-FD总线对车主体进行控制。MCU还可以与LED(Light Emitting Diode,发光二极管)连接,例如,LED的数量可以为2个。MCU可以包括LED驱动器,以实现对LED的控制。车舱域控制器还可以包括重力传感器,重力传感器通过SPI与MCU连接。车舱域控制器还可以包括PMIC(Power Management Integrated Circuit,电源管理集成电路),PMIC可以分别与MCU和SoC连接。PMIC还可以与BAT(Battery,蓄电池)、ACC(Accessory,附件)/IGN(IGnition On,点火器)、GND(电线接地端)连接。所述车辆还可以包括与MCU连接的距离传感器和/或微动开关。
图6示出本公开实施例提供的车舱域控制器300的示意图。如图6所示,所述车舱域控制器300包括相互连接的视频处理芯片310和微控制单元320;所述视频处理芯片310用于根据来自于安装车舱外的至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进视频分析,生成舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元320;所述微控制单元320,用于根据所述车门控制指令和/或所述舱内控制指令,对与其通信连接的车主体进行控制。
在本公开实施例中,车舱域控制器融合来自于车舱外和车舱内的多个摄像头的多路视频流进行车舱控制,使用同一硬件平台实现更多的视觉相关功能,降本增效。本公开实施例能够实现刷脸开车门,相较于指纹解锁而言,在防攻击方面性能更好,安全性更高;相较于蓝牙解锁,便捷性更高,无需用户打开手机进行确认解锁的动作,且能够减少手机被盗后被盗车人员解锁车门的情况发生。因此,本公开实施例能够实现安全、便捷且无感的无钥匙解锁方案。
在一种可能的实现方式中,所述视频处理芯片310包括:神经网络处理单元,存储有多个神经网络模型,用于运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于所述至少一个第一摄像头的视频流进行人脸识别,得到人脸识别结果,和/或,运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于安装在车舱内的至少一个摄像头的视频流进行视频分析,得到车舱内视频分析结果;控制指令生成单元,分别与所述神经网络处理单元和所述微控制单元320连接,用于根据所述神经网络处理单元输出的所述人脸识别结果生成所述车门控制指令,和/或,根据所述神经网络处理单元输出的所述车舱内视频分析结果生成所述舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元320。
在该实现方式中,通过采用神经网络处理单元对来自于摄像头组的视频流进行处理,由此能够提 高视频处理结果的准确性,并能提高视频处理速度。
在一种可能的实现方式中,所述视频处理芯片310还用于根据来自于安装在车舱内且朝向车舱内的驾驶区的至少一个第二摄像头的视频流,进行驾驶员身份识别、手势识别、疲劳状态检测、危险动作检测、注意力识别、注视区域识别和离岗检测中的至少一种视频分析,生成舱内控制指令。
根据该实现方式,所述车舱域控制器300可以实现DMS的功能和/或驾驶员与车辆之间的交互。
在一种可能的实现方式中,所述视频处理芯片310还用于根据来自于安装在车舱内且朝向车舱内的非驾驶区的至少一个第三摄像头的视频流,进行乘员属性识别、遗留物体检测和后座乘员警报中的至少一种视频分析,生成舱内控制指令。
根据该实现方式,所述车舱域控制器300可以实现车舱内监控。
在一种可能的实现方式中,所述微控制单元320包括:控制器局域网络总线接口和/或以太网接口,用于向车主体中的车身控制模块发送所述车门控制指令和/或所述舱内控制指令。
根据该实现方式,微控制单元320可以基于CAN、CAN-FD和以太网中的至少之一对车主体进行控制。
在一种可能的实现方式中,所述CAN总线接口和/或所述以太网接口还用于向所述车主体中的多媒体控制模块发送所述舱内控制指令。
根据该实现方式,微控制单元320能够对多媒体控制模块进行控制,例如,可以控制多媒体控制模块进行音乐的播放。
在一种可能的实现方式中,所述车舱域控制器300还包括:解串器,与所述视频处理芯片310连接,用于对来自于安装在车上的摄像头的视频流进行解串,并将解串后的视频流发送至所述视频处理芯片310;和/或,串行器,与所述视频处理芯片310连接,用于对所述视频处理芯片310输出的视频进行加串,并将加串后的视频发送至所述车主体的多媒体控制模块。
根据该实现方式,能够实现输入到视频处理芯片310的视频流的解串和/或从视频处理芯片310输出的视频的加串。
在一种可能的实现方式中,所述微控制单元320还包括距离传感器接口和/或微动开关接口,所述距离传感器接口用于与距离传感器连接和/或所述微动开关接口用于与微动开关连接;所述微控制单元320还用于根据所述距离传感器发送的距离传感信号,和/或根据所述微动开关发送的触发动作信号,唤醒处于休眠状态的所述视频处理芯片310,经由唤醒的所述视频处理芯片310控制所述至少一个第一摄像头采集视频流和/或根据来自于所述至少一个第一摄像头的视频流进行人脸识别;所述微控制单元320还用于满足预定条件时控制所述视频处理芯片310处于休眠状态。
在该实现方式中,通过微控制单元320响应于所述距离传感器检测到人接近所述车,唤醒所述视频处理芯片310,由此能够实现无感唤醒刷脸开车门的功能;通过微控制单元320响应于微动开关被触摸,唤醒所述视频处理芯片310,也能方便唤醒刷脸开车门的功能;通过微控制单元320在满足预定条件时控制视频处理芯片310处于休眠状态,由此能够节省功耗。
在一种可能的实现方式中,所述视频处理芯片310和所述微控制单元320分别用于与车主体中的电源电路连接;所述车舱域控制器300包括有电容电路;响应于所述车主体的电源电路处于异常供电状态,所述电容电路与所述视频处理芯片310电连接,以供所述视频处理芯片310将所述电源电路处于异 常供电状态之前获取的至少部分视频流存储到车主体或所述车舱域控制器300的非易失性存储器中。
根据该实现方式,在电源电路处于异常供电状态(例如异常掉电)时,电容电路可以提供短时间的供电,以便视频处理芯片310对所述电源电路处于异常供电状态之前获取的至少部分视频流进行存储,例如,视频处理芯片310可以对所述电源电路处于异常供电状态的前几秒获取的视频流进行存储,这段时间的视频往往对异常供电(例如掉电)分析具有重要作用。
在一种可能的实现方式中,所述电容电路包括:超级电容,与所述视频处理芯片310电连接,用于在所述电源电路处于正常供电状态时充电,并在所述电源电路处于异常供电状态时放电,以为所述视频处理芯片310供电。
根据该实现方式,在电源电路处于异常供电状态时,超级电容可以为视频处理芯片310提供短时间的供电,以便视频处理芯片310对所述电源电路处于异常供电状态之前获取的至少部分视频流进行存储。
在一种可能的实现方式中,所述车舱域控制器300还包括:重力传感器,与所述微控制单元320连接,用于向所述微控制单元发送重力传感信号;所述微控制单元320还用于响应于根据所述重力传感信号确定车辆的加速度异常,向所述视频处理芯片310发送加速度异常信息;所述视频处理芯片310还用于响应于接收到所述加速度异常信息,将加速度异常期间获取的至少部分视频流存储在所述车主体或所述车舱域控制器300的非易失性存储器中。
在该实现方式中,通过微控制单元320接收来自于重力传感器的加速度信息,由此能够及时发现车辆的加速度异常的情况,例如能够及时发现车辆发生碰撞的情况。例如,根据该实现方式,当车辆发生碰撞或者严重颠簸后,能够根据存储在非易失性存储器中的视频进行后续分析;这些视频相对于其他视频数据而言,对于分析车辆故障或事故原因有着重要的价值,通过该实现方式可以及时保存这些重要视频数据。
在一种可能的实现方式中,所述视频处理芯片310还用于根据来自于安装在车舱内或车舱外的至少一个前视摄像头和/或安装在车舱外的环视摄像头的视频流进行车道偏离预警、行人碰撞预警、前方碰撞预警、前车离开预警、交通标志识别和交通信号灯识别中的至少一种视频分析,生成辅助驾驶指令和/或自动驾驶指令,并将所述辅助驾驶指令和/或自动驾驶指令发送给所述微控制单元320;所述微控制单元320还用于根据所述辅助驾驶指令和/或自动驾驶指令,对与其通信连接的车主体进行控制。
根据该实现方式,可以实现ADAS功能和/或DVR行车记录仪的功能。
在一种可能的实现方式中,所述视频处理芯片310还用于与车主体中的显示屏连接,对来自于多个环视摄像头的视频流进行拼接,得到全景视频流,并将所述全景视频流发送至所述显示屏。
在该实现方式中,通过利用多个环视摄像头采集的视频流拼接生成全景视频流并通过显示屏显示,可以方便驾驶员观察车辆的周边环境,从而可以方便驾驶员泊车。
在一种可能的实现方式中,所述车舱域控制器300还包括:空中下载模块,与所述视频处理芯片310连接,用于在线更新所述视频处理芯片310的处理逻辑。
根据该实现方式,可以实现视频处理芯片310的处理逻辑的在线更新。
在一种可能的实现方式中,所述车舱域控制器300还包括:无线上网(Wi-Fi)模块和/或蓝牙模块,与所述视频处理芯片310连接,用于向显示屏和/或车主终端发送所述视频处理芯片310处理得到的视 频。
根据该实现方式,所述视频处理芯片310可以通过所述Wi-Fi模块和/或所述蓝牙模块向显示屏和/或车主终端发送视频。
本公开实施例中的车舱域控制器还可以依据整车需求进行功能的裁剪与扩展,本公开实施例对此不作限定。
图7示出本公开实施例提供的车舱域控制器的系统架构的示意图。如图7所示,所述车舱域控制器的功能可以包括疲劳状态检测、乘员属性识别、离岗检测、手势识别、前方碰撞预警、行人碰撞预警、人脸识别、驾驶员身份识别、注意力识别、危险动作检测、交通标志识别、交通信号灯识别、车道偏离预警、行车记录仪、后座乘员警报和在线升级等中的多项。车舱域控制器可以包括FAKRA输入接口和FAKRA输出接口,其中,FAKRA输入接口的数量可以为3个。MCU可以与重力传感器、微动开关连接。MCU还可以包括GPIO(General Purpose Input Output,通用输入输出)接口。MCU还可以包括I2C(Inter-Integrated Circuit,集成电路内部)总线接口。SoC可以获取ISP(Internet Service Provider,互联网服务提供商)提供的服务。SoC中可以包括CVFlow算法模块。SoC可以对来自于摄像头的视频流进行解串,并对输出的视频进行加串。SoC可以通过I2S与显示屏通信。SoC中可以包括视频编译码器和CPU(Central Processing Unit,中央处理器)内核。车舱域控制器还可以包括RTC(Real Time Clock,实时时钟)芯片。车舱域控制器可以通过SPI、UART或者RGMII等实现通信。车舱域控制器可以通过USB、以太网、LED驱动、Wi-Fi/蓝牙、CAN/CAN-FD、HDMI(High Definition Multimedia Interface,高清多媒体接口)、SD卡接口、JTAG(Joint Test Action Group,联合测试工作组)接口与外部通信。与车舱域控制器相连的摄像头组可以包括至少一个第一摄像头、至少一个第二摄像头、至少一个第三摄像头、至少一个前视摄像头和环视摄像头。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (27)

  1. 一种车辆,包括车主体,其特征在于,还包括:
    摄像头组,包括安装在车舱外的至少一个第一摄像头和/或安装在车舱内的至少一个摄像头;
    车舱域控制器,包括相互连接的视频处理芯片和微控制单元;所述视频处理芯片还与所述摄像头组连接,用于根据来自于所述至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进视频分析,生成舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元;所述微控制单元与所述车主体控制连接,用于根据所述车门控制指令和/或所述舱内控制指令,对所述车主体进行控制。
  2. 根据权利要求1所述的车辆,其特征在于,所述视频处理芯片包括:
    神经网络处理单元,存储有多个神经网络模型,用于运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于所述至少一个第一摄像头的视频流进行人脸识别,得到人脸识别结果,和/或,运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于安装在车舱内的至少一个摄像头的视频流进行视频分析,得到车舱内视频分析结果;
    控制指令生成单元,分别与所述神经网络处理单元和所述微控制单元连接,用于根据所述神经网络处理单元输出的所述人脸识别结果生成所述车门控制指令,和/或,根据所述神经网络处理单元输出的所述车舱内视频分析结果生成所述舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元。
  3. 根据权利要求1或2所述的车辆,其特征在于,所述至少一个第一摄像头安装在以下至少一个位置上:所述车辆的B柱、至少一个车门、至少一个后视镜。
  4. 根据权利要求1至3中任意一项所述的车辆,其特征在于,
    安装在车舱内的至少一个摄像头包括:至少一个第二摄像头,朝向车舱内的驾驶区安装;所述视频处理芯片用于根据来自于所述至少一个第二摄像头的视频流进行驾驶员身份识别、手势识别、疲劳状态检测、危险动作检测、注意力识别、注视区域识别和离岗检测中的至少一种视频分析,生成舱内控制指令;
    和/或,
    安装在车舱内的至少一个摄像头包括:至少一个第三摄像头,朝向车舱内的非驾驶区安装;所述视频处理芯片用于根据来自于所述至少一个第三摄像头的视频流进行乘员属性识别、遗留物体检测和后座乘员警报中的至少一种视频分析,生成舱内控制指令。
  5. 根据权利要求1至4中任意一项所述的车辆,其特征在于,
    所述车主体包括:车身控制模块;所述微控制单元,通过控制器局域网络总线接口和/或以太网接口与所述车身控制模块连接,用于向所述车身控制模块发送所述车门控制指令和/或所述舱内控制指令;
    和/或,
    所述车主体包括:多媒体控制模块;所述微控制单元,通过所述控制器局域网络总线接口和/或所述以太网接口与所述多媒体控制模块连接,用于向所述多媒体控制模块发送所述舱内控制指令。
  6. 根据权利要求1至5中任意一项所述的车辆,其特征在于,所述车舱域控制器还包括:
    解串器,分别与所述摄像头组和所述视频处理芯片连接,用于对来自于所述摄像头组的视频流进行解串,并将解串后的视频流发送至所述视频处理芯片;
    和/或,
    串行器,分别与所述视频处理芯片和所述车主体中的多媒体控制模块连接,用于对所述视频处理芯片输出的视频进行加串,并将加串后的视频发送至所述多媒体控制模块。
  7. 根据权利要求1至6中任意一项所述的车辆,其特征在于,
    所述车辆还包括:距离传感器和/或微动开关,与所述微控制单元连接,用于向所述微控制单元发送距离传感信号和/或触发动作信号;
    所述微控制单元还用于根据所述距离传感信号和/或所述触发动作信号,唤醒处于休眠状态的所述视频处理芯片,经由唤醒的所述视频处理芯片控制所述至少一个第一摄像头采集视频流和/或根据来自于所述至少一个第一摄像头的视频流进行人脸识别;
    所述微控制单元还用于满足预定条件时控制所述视频处理芯片处于休眠状态。
  8. 根据权利要求7所述的车辆,其特征在于,
    所述距离传感器安装在以下至少一个位置上:所述车辆的B柱、至少一个车门、至少一个后视镜、所述车辆的车舱内;
    和/或,
    所述微动开关安装在以下至少一个位置上:至少一个车门的门把手、所述车辆的B柱。
  9. 根据权利要求1至8中任意一项所述的车辆,其特征在于,
    所述车主体包括:电源电路,分别与所述车主体、所述视频处理芯片和所述微控制单元连接;
    所述车舱域控制器包括有电容电路;响应于所述电源电路处于异常供电状态,所述电容电路与所述视频处理芯片电连接,以供所述视频处理芯片将所述电源电路处于异常供电状态之前获取的至少部分视频流存储到所述车主体或所述车舱域控制器的非易失性存储器中。
  10. 根据权利要求9所述的车辆,其特征在于,所述电容电路包括:
    超级电容,与所述视频处理芯片电连接,用于在所述电源电路处于正常供电状态时充电,并在所述电源电路处于异常供电状态时放电,以为所述视频处理芯片供电。
  11. 根据权利要求1至10中任意一项所述的车辆,其特征在于,
    所述车舱域控制器还包括:重力传感器,与所述微控制单元连接,用于向所述微控制单元发送重力传感信号;
    所述微控制单元还用于响应于根据所述重力传感信号确定所述车辆的加速度异常,向所述视频处理芯片发送加速度异常信息;
    所述视频处理芯片还用于响应于接收到所述加速度异常信息,将加速度异常期间获取的至少部分视频流存储在所述车主体或所述车舱域控制器的非易失性存储器中。
  12. 根据权利要求1至11中任意一项所述的车辆,其特征在于,
    所述摄像头组还包括至少一个前视摄像头和/或环视摄像头,所述至少一个前视摄像头安装在车舱内或车舱外,所述环视摄像头安装在车舱外;
    所述视频处理芯片还用于接收来自于根据来自于所述至少一个前视摄像头和/或所述环视摄像头 的视频流进行车道偏离预警、行人碰撞预警、前方碰撞预警、前车离开预警、交通标志识别和交通信号灯识别中的至少一种视频分析,生成辅助驾驶指令和/或自动驾驶指令,并将所述辅助驾驶指令和/或自动驾驶指令发送给所述微控制单元;
    所述微控制单元还用于根据所述辅助驾驶指令和/或自动驾驶指令,对所述车主体进行控制。
  13. 根据权利要求12所述的车辆,其特征在于,所述环视摄像头的数量为多个;
    所述车主体包括:显示屏,与所述视频处理芯片连接;
    所述视频处理芯片还用于对来自于多个环视摄像头的视频流进行拼接,得到全景视频流,并将所述全景视频流发送至所述显示屏;
    所述显示屏用于显示所述全景视频流。
  14. 根据权利要求1至13中任意一项所述的车辆,其特征在于,所述车舱域控制器还包括:
    空中下载模块,与所述视频处理芯片连接,用于在线更新所述视频处理芯片的处理逻辑。
  15. 一种车舱域控制器,其特征在于,包括相互连接的视频处理芯片和微控制单元;
    所述视频处理芯片用于根据来自于安装车舱外的至少一个第一摄像头的视频流进行人脸识别,生成与人脸识别结果对应的车门控制指令,和/或,根据来自于安装在车舱内的至少一个摄像头的视频流进视频分析,生成舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元;
    所述微控制单元,用于根据所述车门控制指令和/或所述舱内控制指令,对与其通信连接的车主体进行控制。
  16. 根据权利要求15所述的车舱域控制器,其特征在于,所述视频处理芯片包括:
    神经网络处理单元,存储有多个神经网络模型,用于运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于所述至少一个第一摄像头的视频流进行人脸识别,得到人脸识别结果,和/或,运行所述多个神经网络模型中的至少一个神经网络模型以根据来自于安装在车舱内的至少一个摄像头的视频流进行视频分析,得到车舱内视频分析结果;
    控制指令生成单元,分别与所述神经网络处理单元和所述微控制单元连接,用于根据所述神经网络处理单元输出的所述人脸识别结果生成所述车门控制指令,和/或,根据所述神经网络处理单元输出的所述车舱内视频分析结果生成所述舱内控制指令,并将所述车门控制指令和/或所述舱内控制指令发送给所述微控制单元。
  17. 根据权利要求15或16所述的车舱域控制器,其特征在于,
    所述视频处理芯片还用于根据来自于安装在车舱内且朝向车舱内的驾驶区的至少一个第二摄像头的视频流,进行驾驶员身份识别、手势识别、疲劳状态检测、危险动作检测、注意力识别、注视区域识别和离岗检测中的至少一种视频分析,生成舱内控制指令;
    和/或,
    所述视频处理芯片还用于根据来自于安装在车舱内且朝向车舱内的非驾驶区的至少一个第三摄像头的视频流,进行乘员属性识别、遗留物体检测和后座乘员警报中的至少一种视频分析,生成舱内控制指令。
  18. 根据权利要求15至17中任意一项所述的车舱域控制器,其特征在于,所述微控制单元包括:
    控制器局域网络总线接口和/或以太网接口,用于向车主体中的车身控制模块发送所述车门控制指令和/或所述舱内控制指令,和/或,用于向所述车主体中的多媒体控制模块发送所述舱内控制指令。
  19. 根据权利要求15至18中任意一项所述的车舱域控制器,其特征在于,所述车舱域控制器还包括:
    解串器,与所述视频处理芯片连接,用于对来自于安装在车上的摄像头的视频流进行解串,并将解串后的视频流发送至所述视频处理芯片;
    和/或,
    串行器,与所述视频处理芯片连接,用于对所述视频处理芯片输出的视频进行加串,并将加串后的视频发送至所述车主体的多媒体控制模块。
  20. 根据权利要求15至19中任意一项所述的车舱域控制器,其特征在于,
    所述微控制单元还包括距离传感器接口和/或微动开关接口,所述距离传感器接口用于与距离传感器连接和/或所述微动开关接口用于与微动开关连接;
    所述微控制单元还用于根据所述距离传感器发送的距离传感信号,和/或根据所述微动开关发送的触发动作信号,唤醒处于休眠状态的所述视频处理芯片,经由唤醒的所述视频处理芯片控制所述至少一个第一摄像头采集视频流和/或根据来自于所述至少一个第一摄像头的视频流进行人脸识别;
    所述微控制单元还用于满足预定条件时控制所述视频处理芯片处于休眠状态。
  21. 根据权利要求15至20中任意一项所述的车舱域控制器,其特征在于,
    所述视频处理芯片和所述微控制单元分别用于与车主体中的电源电路连接;
    所述车舱域控制器包括有电容电路;响应于所述车主体的电源电路处于异常供电状态,所述电容电路与所述视频处理芯片电连接,以供所述视频处理芯片将所述电源电路处于异常供电状态之前获取的至少部分视频流存储到车主体或所述车舱域控制器的非易失性存储器中。
  22. 根据权利要求21所述的车舱域控制器,其特征在于,所述电容电路包括:
    超级电容,与所述视频处理芯片电连接,用于在所述电源电路处于正常供电状态时充电,并在所述电源电路处于异常供电状态时放电,以为所述视频处理芯片供电。
  23. 根据权利要求15至22中任意一项所述的车舱域控制器,其特征在于,
    所述车舱域控制器还包括:重力传感器,与所述微控制单元连接,用于向所述微控制单元发送重力传感信号;
    所述微控制单元还用于响应于根据所述重力传感信号确定车辆的加速度异常,向所述视频处理芯片发送加速度异常信息;
    所述视频处理芯片还用于响应于接收到所述加速度异常信息,将加速度异常期间获取的至少部分视频流存储在所述车主体或所述车舱域控制器的非易失性存储器中。
  24. 根据权利要求15至23中任意一项所述的车舱域控制器,其特征在于,
    所述视频处理芯片还用于接收来自于根据来自于安装在车舱内或车舱外的至少一个前视摄像头和/或安装在车舱外的环视摄像头的视频流,进行车道偏离预警、行人碰撞预警、前方碰撞预警、前车离开预警、交通标志识别和交通信号灯识别中的至少一种视频分析,生成辅助驾驶指令和/或自动驾驶指令,并将所述辅助驾驶指令和/或自动驾驶指令发送给所述微控制单元;
    所述微控制单元还用于根据所述辅助驾驶指令和/或自动驾驶指令,对与其通信连接的车主体进行控制。
  25. 根据权利要求24所述的车舱域控制器,其特征在于,
    所述视频处理芯片还用于与车主体中的显示屏连接,对来自于多个环视摄像头的视频流进行拼接,得到全景视频流,并将所述全景视频流发送至所述显示屏。
  26. 根据权利要求15至25中任意一项所述的车舱域控制器,其特征在于,所述车舱域控制器还包括:
    空中下载模块,与所述视频处理芯片连接,用于在线更新所述视频处理芯片的处理逻辑。
  27. 根据权利要求15至26中任意一项所述的车舱域控制器,其特征在于,所述车舱域控制器还包括:
    无线上网模块和/或蓝牙模块,与所述视频处理芯片连接,用于向显示屏和/或车主终端发送所述视频处理芯片处理得到的视频。
PCT/CN2020/086801 2020-04-24 2020-04-24 车辆和车舱域控制器 WO2021212504A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/086801 WO2021212504A1 (zh) 2020-04-24 2020-04-24 车辆和车舱域控制器
CN202080003232.6A CN112351915A (zh) 2020-04-24 2020-04-24 车辆和车舱域控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086801 WO2021212504A1 (zh) 2020-04-24 2020-04-24 车辆和车舱域控制器

Publications (1)

Publication Number Publication Date
WO2021212504A1 true WO2021212504A1 (zh) 2021-10-28

Family

ID=74428091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086801 WO2021212504A1 (zh) 2020-04-24 2020-04-24 车辆和车舱域控制器

Country Status (2)

Country Link
CN (1) CN112351915A (zh)
WO (1) WO2021212504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132263A (zh) * 2021-12-08 2022-03-04 湖北英索尔电子有限公司 基于汽车智能电子控制的车身域控制器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516034B (zh) * 2021-05-06 2022-08-16 亿咖通(湖北)技术有限公司 一种车辆无钥匙进入系统及方法
CN114500796A (zh) * 2021-12-28 2022-05-13 苏州安智汽车零部件有限公司 一种智能前视车载摄像头控制器
CN114821868B (zh) * 2022-06-24 2022-09-23 宁波均联智行科技股份有限公司 一种车门解锁的控制系统及车辆
CN115447508A (zh) * 2022-09-19 2022-12-09 虹软科技股份有限公司 车载座舱感知设备及其控制方法
CN116743937B (zh) * 2023-08-14 2023-10-27 禾昆科技(北京)有限公司 域控制器和车辆行驶控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327680A (zh) * 2018-01-04 2018-07-27 惠州市德赛西威汽车电子股份有限公司 一种车辆控制方法、装置及系统
CN108819900A (zh) * 2018-06-04 2018-11-16 上海商汤智能科技有限公司 车辆控制方法和系统、车载智能系统、电子设备、介质
CN108846924A (zh) * 2018-05-31 2018-11-20 上海商汤智能科技有限公司 车辆及车门解锁控制方法、装置和车门解锁系统
CN208207948U (zh) * 2018-05-31 2018-12-07 上海商汤智能科技有限公司 具有人脸解锁功能的车辆
CN109002757A (zh) * 2018-06-04 2018-12-14 上海商汤智能科技有限公司 驾驶管理方法和系统、车载智能系统、电子设备、介质
US10275670B1 (en) * 2018-03-07 2019-04-30 State Farm Mutual Automobile Insurance Company Image analysis technologies for identifying abnormal vehicle conditions
CN110765936A (zh) * 2019-10-22 2020-02-07 上海商汤智能科技有限公司 车门控制方法及装置、系统、车、电子设备和存储介质
CN110816551A (zh) * 2019-11-28 2020-02-21 广东新时空科技股份有限公司 一种车辆运输安全主动防控系统
CN111516640A (zh) * 2020-04-24 2020-08-11 上海商汤临港智能科技有限公司 车门控制方法、车辆、系统、电子设备和存储介质
CN212073911U (zh) * 2020-04-24 2020-12-04 上海商汤临港智能科技有限公司 车辆和车舱域控制器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459974B1 (en) * 2001-05-30 2002-10-01 Eaton Corporation Rules-based occupant classification system for airbag deployment
TW201347536A (zh) * 2012-05-04 2013-11-16 Radiq Corp 無線傳輸影像記錄器
CN104723985A (zh) * 2013-12-20 2015-06-24 青岛盛嘉信息科技有限公司 一种驾驶平台自动调节系统
CN104875696A (zh) * 2015-06-05 2015-09-02 黄明俊 一种汽车驾驶认证方法
JP6453195B2 (ja) * 2015-09-29 2019-01-16 日立オートモティブシステムズ株式会社 車載制御装置
CN106183733B (zh) * 2016-08-18 2019-11-08 福建省汽车工业集团云度新能源汽车股份有限公司 一种集成行车记录仪的前挡风玻璃及汽车
CN106921852B (zh) * 2017-01-25 2019-11-12 深圳市邻友通科技发展有限公司 车载监控系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327680A (zh) * 2018-01-04 2018-07-27 惠州市德赛西威汽车电子股份有限公司 一种车辆控制方法、装置及系统
US10275670B1 (en) * 2018-03-07 2019-04-30 State Farm Mutual Automobile Insurance Company Image analysis technologies for identifying abnormal vehicle conditions
CN108846924A (zh) * 2018-05-31 2018-11-20 上海商汤智能科技有限公司 车辆及车门解锁控制方法、装置和车门解锁系统
CN208207948U (zh) * 2018-05-31 2018-12-07 上海商汤智能科技有限公司 具有人脸解锁功能的车辆
CN108819900A (zh) * 2018-06-04 2018-11-16 上海商汤智能科技有限公司 车辆控制方法和系统、车载智能系统、电子设备、介质
CN109002757A (zh) * 2018-06-04 2018-12-14 上海商汤智能科技有限公司 驾驶管理方法和系统、车载智能系统、电子设备、介质
CN110765936A (zh) * 2019-10-22 2020-02-07 上海商汤智能科技有限公司 车门控制方法及装置、系统、车、电子设备和存储介质
CN110816551A (zh) * 2019-11-28 2020-02-21 广东新时空科技股份有限公司 一种车辆运输安全主动防控系统
CN111516640A (zh) * 2020-04-24 2020-08-11 上海商汤临港智能科技有限公司 车门控制方法、车辆、系统、电子设备和存储介质
CN212073911U (zh) * 2020-04-24 2020-12-04 上海商汤临港智能科技有限公司 车辆和车舱域控制器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132263A (zh) * 2021-12-08 2022-03-04 湖北英索尔电子有限公司 基于汽车智能电子控制的车身域控制器
CN114132263B (zh) * 2021-12-08 2023-10-24 湖北英索尔电子有限公司 基于汽车智能电子控制的车身域控制器

Also Published As

Publication number Publication date
CN112351915A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2021212504A1 (zh) 车辆和车舱域控制器
CN111516640B (zh) 车门控制方法、车辆、系统、电子设备和存储介质
US9944228B2 (en) System and method for vehicle control integrating health priority alerts of vehicle occupants
CN212073911U (zh) 车辆和车舱域控制器
JP6100267B2 (ja) 車両を監視するシステム
US10446011B2 (en) System and method for providing rear seat monitoring within a vehicle
CN107310525A (zh) 基于后视摄像头的行李箱打开系统及方法
CN111532281A (zh) 驾驶行为的监测方法、装置、终端及存储介质
US11040700B2 (en) Apparatus for managing vehicle intrusion, system having the same and method thereof
US11210540B2 (en) System and method for providing rear seat monitoring within a vehicle
US11572039B2 (en) Confirmed automated access to portions of vehicles
CN103419746A (zh) 人脸和指纹识别的汽车防盗装置
CN107933461A (zh) 基于单摄像头的车内识别融合装置及方法
CN111754739A (zh) 一种基于声波探测的车载手机遗忘告警系统
WO2017193311A1 (zh) 汽车智能提醒方法及装置
US20210188214A1 (en) Wireless charging device and warning signal generating method thereof
KR102378939B1 (ko) 차량 내 전자 장치의 동작을 감시하거나 복원하기 위한 방법 및 장치
CN212890108U (zh) 一种车辆全景控制显示系统
CN113200027A (zh) 车载系统、控制方法以及车辆
CN114572141A (zh) 乘员监测系统、乘员遗留提醒方法及相关设备
CN207389148U (zh) 一种基于IntelRealSense的汽车启动与车锁控制系统
WO2024001984A1 (zh) 一种乘车服务卡片推荐方法及相关装置
WO2023276732A1 (ja) 車載装置、物体の報知方法、及びプログラム
CN220114544U (zh) 车用电子后视镜、防盗系统和汽车
US11914914B2 (en) Vehicle interface control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932747

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.04.2023)