WO2021212384A1 - 样本前处理系统 - Google Patents

样本前处理系统 Download PDF

Info

Publication number
WO2021212384A1
WO2021212384A1 PCT/CN2020/086215 CN2020086215W WO2021212384A1 WO 2021212384 A1 WO2021212384 A1 WO 2021212384A1 CN 2020086215 W CN2020086215 W CN 2020086215W WO 2021212384 A1 WO2021212384 A1 WO 2021212384A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
module
processing system
biological sample
biological
Prior art date
Application number
PCT/CN2020/086215
Other languages
English (en)
French (fr)
Inventor
吴镇生
赵学江
李景
肖华
高建东
Original Assignee
深圳华大智造科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大智造科技股份有限公司 filed Critical 深圳华大智造科技股份有限公司
Priority to CN202080099640.6A priority Critical patent/CN115380220A/zh
Priority to PCT/CN2020/086215 priority patent/WO2021212384A1/zh
Publication of WO2021212384A1 publication Critical patent/WO2021212384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • This application relates to sample pre-processing in the field of biochemical testing, and in particular to an automated sample pre-processing system.
  • in vitro testing also plays an extremely important role in the whole process of disease prevention, diagnosis, monitoring, and guidance of treatment. It is an indispensable equipment for doctors to diagnose and treat.
  • doctors usually need to use samples as a medium to interact with in vitro testing equipment.
  • the samples include saliva, blood, plasma, blood cells, and so on.
  • manual blood collection and sample pre-processing including centrifugation using a centrifuge, manual removal of caps on test tubes, manual extraction of plasma or blood cells
  • manual analysis is performed on the equipment, which is cumbersome. It is inefficient and requires multiple people to cooperate. If multiple samples are analyzed and tested, a series of operational risks such as biological contamination and information confusion are likely to occur.
  • the present application provides a sample pre-processing system, the sample pre-processing system includes:
  • the sample loading and unloading module is used to automatically transfer biological samples and biological sample carriers into and out of the sample pre-processing system;
  • the centrifugal module is used to centrifuge and layer biological samples;
  • the sample cupping module is used for cupping the sample after centrifugation and layering to obtain the cupped finished product
  • the finished product storage module is used to store the finished products obtained after the cups are divided;
  • the sample transfer module is used to transfer the centrifuged and layered sample to the sample dividing cup module;
  • the control module is used to control the coordinated work of the modules of the sample pre-processing system.
  • the sample loading and unloading module includes a loading module, the loading module includes a loading area and a preparation area, the loading area includes a feeding drive mechanism, the feeding drive mechanism is used to drive the loaded biological
  • the carrier of the sample enters the preparation area, and the preparation area includes an in-position detection device set at a preset position.
  • the notification controls the transfer of the biological sample to the centrifugation module.
  • the loading area further includes a track switching mechanism, the track switching mechanism is used to switch different feeding drive mechanisms to align the preparation area, so that different feeding mechanisms will be loaded with biological samples
  • the carrier is transported to the preparation area.
  • control module is further configured to control the feeding module to stop operating based on the notification.
  • the centrifugation module includes a centrifuge and a manipulator device, the centrifuge is used to centrifuge and layer the biological sample, and the manipulator device is used to move the biological sample into the centrifuge and perform the centrifugation.
  • the stratified biological sample is removed from the centrifuge.
  • the manipulator device is also used to transfer the biological sample after centrifugation and stratification to the sample transmission module, and/or the sample loading and unloading module further includes a discharging module, and the manipulator device is used to transfer The carrier from which the biological sample is unloaded is transferred to the unloading module, and the unloading module is used to transfer the carrier out of the sample pre-processing system.
  • the manipulator device includes a gripper provided at the lower end of the manipulator device, a movable mechanism provided with the gripper, and an anti-collision mechanism provided at the upper end of the movable mechanism.
  • the anti-collision mechanism is an elastic anti-collision mechanism.
  • the sample transmission module includes a transfer device and a fixing device, the transfer device is used to transfer the biological sample, and the fixing device is used to fix the biological sample.
  • the fixing devices there are a plurality of the fixing devices, and the plurality of fixing devices are arranged on the conveying device at intervals.
  • the sample transmission module further includes a positioning device, and the positioning device is used for positioning the fixing device at a fixed point.
  • the fixed-point position is a position where the sample pre-processing system performs a preset operation on the biological sample after centrifugation and stratification.
  • the preset operation may be an operation of putting the biological sample into or out of the fixing device, or separating a part of the biological sample from the biological sample.
  • the positioning device includes a positioning bracket, a pressing member, and an elastic member.
  • the pressing member and the elastic member are both arranged on the positioning bracket. Side close to the elastic member, when the fixing device enters the fixed point position, one end of the pressing member abuts the fixing device, and the other end abuts and compresses the elastic member, so as to realize the fixation of the fixing device position.
  • the pushing member is a roller, and the direction of the rotation axis of the roller is perpendicular to the moving direction of the conveying device.
  • the sample transmission module further includes a sensing device, which is set corresponding to the fixed point position, and is used to detect the presence of the biological sample at the fixed point position and when the biological sample is detected at the fixed point position Send a signal to the control module, and the control module is further configured to activate and control a related module to perform a preset operation corresponding to the fixed point position according to the received signal.
  • the sample transmission module further includes a reset sensor, which is used to detect whether the sample transmission module is located at a preset initial position when the sample pre-processing system is started, and is used when the sample transmission module It is not in the initial position to send a signal to the control module, and the control module is further configured to control the sample transmission module to return to the initial position after receiving the signal sent by the reset sensor.
  • a reset sensor which is used to detect whether the sample transmission module is located at a preset initial position when the sample pre-processing system is started, and is used when the sample transmission module It is not in the initial position to send a signal to the control module, and the control module is further configured to control the sample transmission module to return to the initial position after receiving the signal sent by the reset sensor.
  • the sample cupping module includes a plasma cupping module, and the plasma cupping module is used for cupping the plasma in the biological sample.
  • the sample cupping module includes a white blood cell separation module, and the white blood cell separation module is used to cup white blood cells in the biological sample.
  • sample pre-processing system further includes a consumable stacking module, and the consumable stacking module is used to provide consumables for the sample cupping module.
  • the consumable stack module includes a silo and a silo for storing consumables, and the silo for storing consumables is controlled by the control module to transfer the consumables in the silo to the Sample sub-cup module.
  • the silo includes a plurality of silo, and the plurality of silo can be moved to switch different silo to align with the silo, so that the silo can align the silo
  • the consumables are transferred to the sample cupping module.
  • the consumable stack module further includes a code scanning module for scanning the consumables in the silo to obtain the serial number of each consumable, and sending the serial number to the control module for The control module associates the divided cups with consumables.
  • the consumable stacking module is positioned and installed under the sample cupping module based on the base plate of the sample cupping module.
  • the sample cupping module includes a table, a mechanical gripper and a pipette movement assembly arranged above the table, the table is also provided with a secondary positioning position and a working position, and the consumable stack module is used to The consumables are transferred to the secondary positioning position, the mechanical gripper is used to transfer the consumables from the secondary positioning position to the working position, and the pipette movement assembly is used to transfer the biological Separate the sample into one of the consumables.
  • the mechanical gripper includes a driving device and a plurality of claws, and the driving device is used to drive the plurality of claws to move closer or away to complete the grasping and putting down of consumables.
  • the driving device is used to drive the plurality of claws to move closer or away to complete the grasping and putting down of consumables.
  • Each of the claws is opposite to each other.
  • An elastic material is provided on one side of the, and the elastic material is used to provide pressure when grasping the consumable, and/or, the opposite side of each claw is provided with a hook for holding the consumable.
  • the mechanical gripper and the pipette movement assembly are driven by the same driving module.
  • the pipette movement assembly includes a pipette, a power device, and an elasticity adjusting device
  • the power device is used to drive the pipette to move downward to pick up the suction head
  • the elasticity adjusting device is arranged at Between the power device and the pipette, the power device compresses the elastic adjustment device when the pipette is driven downward to pick up the tip, and adjusts the amount applied to the elastic adjustment device by controlling the amount of compression of the elastic adjustment device The pressure on the tip.
  • a secondary positioning component is provided on the secondary positioning position, and the secondary positioning component includes a guide member, and the guide member is arranged at an edge area of the secondary positioning position.
  • sample pre-processing system further includes a sample imaging module for imaging the biological sample to obtain the number and layer height of the biological sample before the sample dividing module executes the sample cupping.
  • the sample imaging module includes an upper jaw device and an imaging device, and the upper jaw device is used to obtain the biological sample from a fixing device located at the positioning position for the imaging device to image, and to perform imaging After completion, put the biological sample back into the fixing device, the imaging device is used to image the biological sample and transmit the imaging picture of the biological sample to the control device, and the control device is also used for analysis
  • the imaging picture of the biological sample obtains the serial number of the biological sample and the height of the material layer in the biological sample; or, the control device is also used to analyze the imaging picture of the biological sample to obtain the barcode of the biological sample
  • the position of the notch the number of the biological sample is identified according to the barcode, and the height of the material layer in the biological sample is analyzed according to the imaging picture obtained by the position of the notch toward the imaging device.
  • control device performs color gamut conversion on the imaging picture obtained by the position of the notch toward the imaging device, and obtains the total height of the substance in the biological sample and the height of the layered substance by the color gamut conversion.
  • the biological sample is a blood sample
  • the control device performs color gamut conversion to obtain the total height of the blood sample and the height of blood cells.
  • control device performing chromatic desire conversion includes: converting the position of the notch toward the white area on the imaging picture obtained by the imaging device into a first color, and converting a non-white area into a second color different from the first color. Color, obtain the total height of the blood sample according to the height of the converted second color area; convert the position of the notch toward the red area and/or black area on the imaging picture obtained by the imaging device to be different from For the same color of the white blood cell area, the height of the blood cell is obtained based on the height of the same color after conversion; and the height of the lower plasma layer is obtained based on the difference between the total height and the height of the blood cell.
  • sample pre-processing system further includes a cover removal module configured to remove the cap of the biological sample before the sample sorting module performs sample sorting.
  • the cover pulling module includes an upper jaw mechanism and a lower jaw mechanism, the upper jaw mechanism is used to fix the cap of the biological sample, and the lower jaw mechanism is used to grab the biological sample At the lower end of the, the upper jaw mechanism and the lower jaw mechanism are used to realize the removal of the biological sample by moving away from each other.
  • the upper clamping jaw mechanism and/or the lower clamping jaw mechanism are driven to rotate during the capping process, so as to realize the capping of the biological sample by using a combined movement of rotating motion and back movement; and/or, the upper The clamping jaw mechanism also includes a mechanical limit structure or a protrusion to limit the cap.
  • sample pre-processing system further includes a sample recovery module for recovering the remaining biological samples after the sample dividing module completes the cupping operation.
  • the sample recovery module includes a blanking jaw device and a sample recovery rack, the blanking jaw device is used to remove the remaining biological sample from the fixing device and place it in the sample recovery rack middle.
  • the finished product storage module includes a transportation mechanism, a material pushing mechanism, and a storage area.
  • the transportation mechanism is used to transport the finished product obtained by the sub-cup to a preset position.
  • the finished product at the preset position is pushed to the storage area for storage.
  • the pushing mechanism is arranged opposite to and separated from the storage area, and the preset position is located between the pushing structure and the storage area.
  • the mechanical gripper is also used to transfer the finished product obtained after dividing the cup from the working position to the transport mechanism.
  • the sample pre-processing system uses an automatic sample loading and unloading module for automatic loading and unloading of samples, a consumable stacking system for automatic loading of consumables, and a finished product storage module for automatic storage of finished products, reducing labor
  • the intervention time simplifies and standardizes cumbersome operations, liberates manpower, reduces misoperations and biological contamination, and reduces production costs; through automatic identification of sample height and stratification height, automated plasma cupping and white blood cells are realized
  • the cups are divided to make the sample cupping operation more accurate; the special structure of the cap pull-out module improves the success rate of cap pull-out, reduces the requirement for the reagent tube incoming materials, and reduces the production cost.
  • Fig. 1 is a schematic diagram of the entire sample pre-processing system provided by the embodiment of the present application.
  • Fig. 2 is a schematic diagram of a sample loading and unloading module provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a loading module provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a hanging basket provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a centrifugal module provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a manipulator device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of part of the sample transmission module provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of a plasma dividing module provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a working position of consumables provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a mechanical gripper provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a pipette movement component provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a tip holder provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a secondary positioning assembly provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a leukocyte separation module provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a first consumable stack module provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of a material rack of a silo for storing deep-well plates according to an embodiment of the present application.
  • Fig. 17 is a schematic diagram of a rack of a silo for storing cryopreservation tubes according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the material rack of the silo for storing the tip rack provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of the installation standard of the third consumable stack module provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of a sample recovery module provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of the upper jaw device of the sample imaging module provided by the embodiment of the present application.
  • FIG. 22 is a schematic diagram of a cover removal module provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a finished product storage module provided by an embodiment of the present application.
  • FIG. 24 is a partial schematic diagram of a sample pre-processing system provided by an embodiment of the present application.
  • FIG. 25 is a control schematic diagram of the sample pre-processing system provided by the embodiment of the present application.
  • Sample pre-processing system 1 Sample loading and unloading module 10
  • Sub-sample module 40 Sample recovery module 60
  • Control module 50 50 switching motors 1115
  • Manipulator device 23 sample area 221
  • Anti-collision mechanism 234 Flexible anti-collision mechanism 235
  • Alarm agency 236 236 triggers 2361
  • Test tube set 321 Maintain set 322
  • Sub-detection management module 411 Sub-backup management module 412
  • the first consumable stack module 71 The second consumable stack module 72
  • FIG. 1 is a schematic diagram of the entire sample pre-processing system 1 in an embodiment of this application.
  • the sample pre-processing system 1 includes a sample loading and unloading module 10, a centrifugation module 20, a sample transmission module 30 (as shown in FIG. 7), a sample dividing module 40, a sample recovery module 60, and a consumable stacking module 70 (as shown in FIG. 15). ) And the finished product storage module 80.
  • the sample dividing module 40 is used to divide the sample into cups.
  • the sample dividing module 40 includes a plasma dividing module 41 and a white blood cell dividing module 42 for separately cupping plasma and white blood cells in the sample.
  • the sample loading and unloading module 10, the centrifugation module 20, the sample recovery module 60, the white blood cell separation module 42, the plasma separation module 41, and the finished product storage module 80 are arranged in sequence, and the sample transmission module 30 passes through the centrifugation module 20 and the sample recovery module in sequence in the form of "return". 60.
  • the consumable stack module 70 is arranged under the plasma dividing module 41 and the white blood cell dividing module 42 to provide consumables for the plasma dividing module 41 and the white blood cell dividing module 42.
  • Biological samples such as blood samples enter the sample pre-processing system 1 through the sample loading and unloading module 10, and are centrifuged and layered at the centrifugation module 20, and then transferred through the sample transmission module 30 to be separated in the plasma separation module 41 and the white blood cell separation module 42 respectively. Cups, the remaining samples after the cups are divided are sent back to the sample recovery module 60 by the sample transmission module 30 for recovery, and the finished products obtained from the cups are sent to the finished product storage module 80 for storage.
  • FIG. 2 and FIG. 3 are schematic diagrams of the sample loading and unloading module 10 in this embodiment.
  • the sample loading and unloading module 10 includes a loading module 11 and an unloading module 13.
  • the loading module 11 is used to transport samples to the sample pre-processing system 1. Specifically, the loading module 11 is used to transport the samples to the centrifugation module 20, so that the manipulator at the centrifugation module 20 can send the samples into the centrifugation module. 20 Perform centrifugal layering of the sample.
  • the feeding module 11 includes a feeding area 111 and a preparation area 113 connected with the feeding area 111.
  • the feeding area 111 includes a feeding driving mechanism 1111 and a track switching mechanism 1112. .
  • the feeding drive mechanism 1111 includes a feeding motor 1113 and a feeding belt 1114.
  • the feeding belt 1114 is driven by the feeding motor 1113 to advance along the feeding track toward the preparation area 113, so as to place it in the feeding area.
  • the samples on the belt 1114 are transferred to the preparation area 113.
  • the feeding area 111 includes two feeding driving mechanisms 1111, and the two feeding driving mechanisms 1111 are arranged side by side in a direction parallel to the advancement of the feeding belt 1114.
  • the track switching mechanism 1112 is used to switch any one of them.
  • the feeding driving mechanism 1111 is on the feeding track, so that the feeding driving mechanism 1111 can transfer the samples placed thereon to the preparation area 113.
  • the feeding drive mechanism 1111 may be another number, such as one or more than two. In the case where there is one feeding drive mechanism 1111, the provision of the track switching mechanism 1112 may also be omitted. In the case that there are more than two feeding drive mechanisms 1111, all feeding drive mechanisms 1111 can be arranged side by side in a direction parallel to the forward direction of the feeding belt 1114, and then the track switching mechanism 1112 is used to switch any feeding drive mechanism 1111 to On the feed rail. Wherein, the track switching mechanism 1112 may be manually activated and switch the feeding driving mechanism 1111 under manual control, or may be controlled by the control module 50 (shown in FIG.
  • the control module 50 receives the signal sent by the sensor that detects the sample placement on the feeding belt 1114, and switches the feeding driving mechanism 1111 according to the sample condition on each feeding belt 1114 sensed by the sensor.
  • the track switching mechanism 1112 includes a switching motor 1115, a timing belt 1116, and a lead screw (not shown).
  • the switching motor 1115 drives the timing belt 1116, the timing belt drives the movement of the trapezoidal screw, and the movement of the trapezoid screw switches the sample feeding drive mechanism 1111 on the feeding track.
  • the sample is contained in the reagent tube 114, and the reagent tube 114 is inserted into the hanging basket 115.
  • the hanging basket 115 serves as a carrier for the sample to enter the sample pre-processing system 1 and is placed in Feed on the belt 1114.
  • the hanging basket 115 is provided with a plurality of insertion holes 1151, and the inner wall of each insertion hole 1151 is provided with an elastic member 1151a. After being set in the insertion hole 1151, the elastic member 1151a squeezes the reagent tube 114 to fix the reagent tube 114. Due to the arrangement of the elastic member 1151a, each socket 1151 can receive reagent tubes 114 of different shapes and sizes.
  • the inconsistent identification barcodes attached to the surface of each reagent tube 114 may cause the overall diameter of the reagent tubes 114 to be inconsistent.
  • the elastic member 1151a is provided , The requirement of the jack 1151 on the appearance of the reagent tube 114 is reduced.
  • the hanging basket 115 may also be equipped with a counterweight tube, which is used to balance the total weight of the hanging basket 115 after loading the sample to within a preset weight range.
  • the counterweight tube has at least one feature that is different from the reagent tube 114 and can be detected. For example, the counterweight tube has a different color from the reagent tube 114.
  • the counterweight tube is recognized by the sample pre-processing system 1 based on this feature, so as to avoid entering the subsequent plasma and white blood cell separation links.
  • the material preparation area 113 includes a material preparation motor 1131 and a material preparation belt 1132.
  • the material preparation motor drives the material preparation belt 1132 to run, and the height of the material preparation belt 1132 is lower than the feeding belt 1114.
  • a guide angle 1134 is provided at the entrance of the preparation area 113 that connects to the feeding area 111 to facilitate the gondola 115 to enter the preparation area 113 from the feeding area 111.
  • An in-position detection device 1133 is provided at a preset position of the preparation area 113.
  • the in-position detection device 1133 can be an in-position switch or a sensor.
  • the in-position detection device 1133 outputs a signal to the control module 50 when the hanging basket 115 reaches the position.
  • the control module 50 controls the preparation motor 1131 and the feeding motor 1113 to stop running, and at the same time, controls the manipulator device 23 (shown in FIG. 5) in the centrifugal module 20 to start to grab the hanging basket 115 at the preset position.
  • the discharging module 13 and the feeding module 11 have substantially the same structure, including a discharging area 131 and a discharging area 133 connected to the discharging area 131.
  • the discharging zone 131 corresponds to the feeding zone 111
  • the discharging zone 133 corresponds to the preparation zone 113.
  • the discharging zone 133 receives the recycled gondola 115 and transfers the gondola 115 to the discharging zone 131, and the gondola 115 reaches the discharging zone. After 131, it can be removed.
  • the height of the belt for transporting the hanging basket 115 in the discharging area 131 is lower than the belt height of the unloading area 133, and at the same time, A guide angle is provided at the entrance of the discharging area 131 connected to the discharging area 133.
  • FIG. 5 is a schematic diagram of the centrifugal module 20 in this embodiment.
  • the centrifugal module 20 includes a centrifuge 21, a centrifuge frame 22 and a manipulator device 23.
  • the centrifuge 21 is integrated in the centrifuge frame 22, and the manipulator device 23 is disposed on the centrifuge frame 22.
  • the manipulator device 23 can be controlled to move to move the hanging basket 115 from a preset position in the preparation area 113 into the centrifuge 21.
  • the centrifuge frame 22 is also provided with a sample placing area 221 and an abnormal sample loading area 222. After the sample is centrifuged in the centrifuge 21, the manipulator device 23 transfers the hanging basket 115 from the centrifuge 21 to the sample placing area 221. After that, the manipulator device 23 further transfers the reagent tube 114 in the hanging basket 115 to the sample transmission module 30, and the sample transmission module 30 sequentially transmits the reagent tube 114 to the plasma separation module 41 and the white blood cell separation module 42.
  • the abnormal sample loading area 222 is used to place samples that can be directly transferred to the sample transmission module 30 by the robot device 23 without centrifugation. For example, when some abnormal samples (such as improper barcode posting, failure to remove the cover, severe hemolysis, incorrect information verification, etc.) can be re-used after manual identification, these abnormal samples can be placed on the abnormal sample loading The area 222 is transferred to the sample transmission module 30 by the manipulator device 23.
  • a clamping jaw 231 is provided at the lower end of the manipulator device 23, and the clamping jaw 231 is used to clamp the reagent tube 114 or the hanging basket 115.
  • the clamping jaw 231 is arranged on a movable mechanism 232, the movable mechanism 232 can move up and down along the guide rail 233, and the upper end of the movable mechanism 232 opposite to the clamping jaw is provided with an anti-collision mechanism 234.
  • the anti-collision mechanism 234 includes an elastic anti-collision mechanism 235 and an alarm mechanism 236.
  • the elastic anti-collision mechanism 235 is a spring, and the alarm mechanism 236 includes a trigger 2361 and a sensor 2362.
  • the manipulator device 23 When the movable mechanism 232 moves upward and collides, the manipulator device 23 is prevented from being damaged by the compression spring. At the same time, the sensor 2362 follows the movable mechanism 232 to move upward and is triggered by the touch element 2361 fixed at a certain position. When 2362 is triggered, an alarm signal is issued to notify the external robot device 23 that there is a fault.
  • the operation of the centrifugal module 20 itself and the interaction process with other modules are as follows: after the in-position detection device 1133 of the feeding module 11 detects the hanging basket 115, the manipulator device 23 of the centrifugal module 20 moves to the preset position of the feeding module 11 Grab the hanging basket 115 and transfer the hanging basket to the centrifuge 21. After the robot device 23 transfers a predetermined number of the hanging baskets 115 into the centrifuge 21, the centrifuge 21 starts, and the samples in the hanging basket 115 are centrifuged and layered After the centrifugal layering is completed, the manipulator device 23 removes the hanging basket 115 from the centrifuge 21 and places it in the sample placing area 221. After that, the manipulator device 23 grabs the reagent tube 114 from the sample placing area 221 and places it on the sample transfer module 30 .
  • the sample transmission module 30 includes a transmission device 31, a fixing device 32, and a positioning device 33.
  • the conveying device 31 is used to convey samples at a fixed distance, and one embodiment of the conveying device 31 is belt conveying.
  • the fixing device 32 is used to fix the reagent tube 114 holding the sample when the sample is transferred.
  • the multiple fixing devices 32 are placed on the conveying device 31 at a fixed distance and are driven by the conveying device 31 to move.
  • the positioning device 33 is used for positioning the fixing device 32 at each certain point position, thereby positioning the sample position.
  • each certain point position is the position where each module performs a preset operation on the sample
  • the preset operation may be an operation of putting the sample into or out of the fixing device 32 located at the fixed point position, such as the manipulator device 23 putting the sample into
  • the fixing device 32 and the sample recovery module 60 move the sample out of the fixing device 32.
  • the preset operation may also be an operation of separating a part of the sample from the sample.
  • the blood plasma separating module 41 and the white blood cell separating module 42 perform the cupping operation of the sample.
  • each fixing device 32 includes a test tube sleeve 321 and a holding sleeve 322 arranged inside the test tube sleeve 321.
  • the test tube sleeve 321 is fixed on the transfer device 31, and the holding sleeve 322 is used to maintain a specific posture of the reagent tube 114 containing the sample, for example, to keep the reagent tube 114 in a vertical posture.
  • the retaining sleeve 322 is a plastic sleeve.
  • the upper end of the fixing device 32 is provided with an opening 323, and the reagent tube 114 is inserted into the fixing device 32 from the opening 323 by the manipulator device 23, and is held in a vertical posture by the holding sleeve 322.
  • each positioning device 33 is set corresponding to a certain point position.
  • Each positioning device 33 includes a positioning bracket 331, a pushing member 332 and an elastic member (not shown) provided on the positioning bracket 331.
  • the pushing member 332 protrudes toward a fixed point, so that a fixing device 32 is conveyed by the device.
  • the pressing member 332 resists and pushes the fixing device 32 to realize the positioning of the fixing device 32.
  • the elastic member is arranged on the rear side of the pressing member 332 and is used to provide thrust for the pressing member 332.
  • the pushing member 332 is a roller.
  • the fixing device 32 squeezes the roller protruding toward the fixed position.
  • the direction of the rotation axis of the roller is It is perpendicular to the direction in which the fixing device 32 moves.
  • the roller is forced to compress the elastic member, and the elastic member generates a reaction force to compress the test tube sleeve 321, thereby realizing the positioning of the fixing device 32 at the fixed point, thereby solving the possible fixing device caused by insufficient tension of the transmission device 32 or other reasons 32 The problem of inaccurate positioning.
  • a sensor device 334 is also provided at each certain point position, and the sensor device 334 is used to sense whether there is a sample at the fixed point position.
  • the sensor device 334 is installed on the positioning bracket 331 Above, the presence of the test agent tube 114 is sensed by sensing the end of the test agent tube 114 protruding from the fixing device 32, and the presence or absence of the test agent tube 114 is used to determine whether there is a sample at the fixed point.
  • the sample transmission module 30 is also provided with a reset sensor (not shown).
  • the sample pre-processing system 1 determines whether the sample transmission module 30 is in the initial position according to the signal sent by the reset sensor , And reset the sample transmission module 30 when it is not in the initial position, so that the sample transmission module 30 returns to the initial position.
  • the manipulator device 23 loads the sample transfer module 30 at a preset position.
  • the fixing device 32 is located at the preset position
  • the manipulator device 23 inserts a reagent tube 114 into the fixing device 32.
  • the sample The transmission module 30 is controlled to move a specified distance so that the other fixing device 32 is located at the preset position, so as to reciprocately realize the loading of all samples.
  • the sample pre-processing system 1 activates the mechanism at the fixed point position to perform the correction of the sample in the fixing device 32 according to the signal sent by the sensor device 334 at the fixed point position. Proceed accordingly. After the samples in the fixing device 32 complete the corresponding operations at all fixed positions, they are transferred by the sample transmission module 30 to the sample recovery module 60, and are recovered by the sample recovery module 60 to the sample recovery rack 62 (shown in FIG. 20).
  • the sample transmission module 30 starts and ends at the position where the centrifugation module 20 is located, forming a circular transportation channel.
  • a guide angle (not shown) is set along the advancing direction of the sample transport module 30.
  • FIG. 8 is a schematic diagram of the plasma dividing module 41 in this embodiment.
  • the plasma dividing module 41 is configured to use the consumables provided by the consumable stacking module 70 to divide the plasma of the sample in the reagent tube 114 into cups.
  • the plasma dividing module 41 includes a dividing detection tube module 411 and a dividing backup tube module 412.
  • the sub-test tube module 411 is used to dispense part of the plasma in the reagent tube 114 into the test tube, and the plasma dispense into the test tube is subsequently used for testing to obtain relevant test results; the sub-backup tube
  • the module 412 is used to dispense part of the plasma in the reagent tube 114 into the backup tube, and the plasma dispense into the backup tube is subsequently stored for backup.
  • the consumable stack module 70 includes a first consumable stack module 71 and a second consumable stack module 72.
  • the first consumable stack module 71 is disposed under the sub-detection tube module 411 and is used for the sub-detection tube.
  • module 411 provides consumables such as deep-well plates and tips; the second consumable stack module 72 is arranged under the backup tube module 412, and is used to provide cryo-storage tubes for the cupping operation of the backup tube of the backup tube module 412 And other consumables.
  • the sub-detection tube module 411 includes two front and rear motion components, where the front motion component is a mechanical gripper 4111 for grabbing consumables, and the rear motion component is a pipette 4112 (see Figure 11). Show) the pipette movement assembly 4113.
  • the forward and backward motion components can be driven by the same driving module 4110, and they are respectively located in opposite directions of the driving module 4110.
  • the front and rear motion components can be driven by different driving modules, and the orientation between the front and rear motion components is not limited to one in front of the other, and can be any orientation.
  • the front and rear motion components can also be called the first motion components, respectively.
  • the second movement component can also be called the first motion components, respectively.
  • the second movement component is also be called the first motion components, respectively.
  • the plasma separating module 41 is also provided with a secondary positioning position 413 and a working position 414.
  • the mechanical clamping jaw 4111, the pipette movement assembly 4113, the secondary positioning position 413, and the working position 414 are all set on the table 411a of the sub-detection tube module 411.
  • the secondary positioning bit 413 is used to temporarily store the consumables provided by the first consumable stacking module 71 and realize the secondary positioning of the consumables.
  • the working position 414 is used for placing the consumables when the plasma dividing module performs the cupping operation. Please refer to FIG. 9 at the same time.
  • a detector 415 is also provided corresponding to the working position 414.
  • the detector 415 is used for It is detected whether there are consumables in the working position 414, so as to avoid the misoperation of the sub-detection tube module 411 from contaminating the working position 414.
  • the working position 414 is divided into two places, one is for placing the deep-well plate, and the other is for placing the suction head.
  • the mechanical gripper 4111 is used to move the consumable from the secondary positioning position 413 to the working position 414, and the pipette movement assembly 4113 is used to move between the working position and the designated fixed-point position of the sample transfer module 30 and
  • the plasma is divided into a deep-well plate at a designated location.
  • the first consumable stack module 71 and the second consumable stack module 72 are activated to load the sub-detection tube module 411 and the sub-backup tube module 412 respectively.
  • the first consumable stacking module 71 first transfers the deep-well plate to the secondary positioning position 413.
  • the mechanical gripper 4111 is activated to transfer the deep-well plate from the secondary positioning position 413 to the working position.
  • Position 414 is where the deep-well plate is placed; after the first consumable stack module 71, the suction head is transferred to the secondary positioning position 413.
  • the mechanical gripper 4111 is activated again to remove the suction head from The secondary positioning position 413 is transferred to the working position 414 where the tips are placed; after the preset number of deep well plates and tips are transferred to the working position 414, the pipette movement assembly 4113 first moves to the work of placing the tips Position the pipette tip, and then move it to above the designated fixed point position of the sample transfer module 30, control the tip to extend into the reagent tube 114 at the designated fixed point position, the pipette sucks the plasma, and then the pipette movement assembly 4113 moves to the placement depth The working position of the orifice plate discharges the absorbed plasma into one of the wells of the deep-well plate.
  • a funnel 411b is provided on the table 411a, and a medical trash can (not shown) corresponding to the funnel 411b is provided under the table 411a.
  • the pipette movement assembly 4113 discards the suction tip into the medical trash can via the funnel 411b.
  • the mechanical gripper 4111 moves the deep-well plate from the working position 414 to the finished product storage module 80 for storage. In this way, it is completed Storage of finished products obtained by dividing cups.
  • the first consumable stacking module 71 may first load the suction heads and then the deep-well plate; for example, the first consumables stacking module 71 may first load a preset number of suction heads and then a preset number of deep-well plates, or, The first consumable stacking module 71 can also alternately add suction heads and deep-well plates.
  • the setting of the sub-backup tube module 412 can refer to the sub-detection tube module 411
  • the sub-backup tube module 412 and the second consumable stack module 72 cooperate and the process of completing the cupping can also refer to the sub-detection tube module 411 and the second consumable stack module 72.
  • a consumable stacking module 71 cooperates to complete the process of dividing the cups, which will not be repeated here.
  • FIG. 10 is a partial schematic diagram of the mechanical gripper 4111 in this embodiment.
  • the mechanical gripper 4111 includes a driving device 4111a and a claw 4111b.
  • Each claw 4111b is provided with an elastic material 4111c on the side facing the other side.
  • the elastic material 4111c is used to provide slight pressure when grasping the consumable, so as to prevent the consumable from falling off during the movement of the consumable.
  • Each claw portion 4111b is also provided with a hook portion 4111d on the side facing the other side, and the hook portion 4111d provides supporting force for the consumable during the process of moving the consumable.
  • the driving device 4111a is used to drive the two claws 4111b to approach or move away, so that the claws 4111b complete the actions of grabbing and putting down consumables.
  • the driving device 4111a uses a motor to drive a gear, and the gear drives two racks, so that the two racks drive the two claws 4111b to move.
  • FIG. 11 is a schematic diagram of the pipette movement assembly 4113 in this embodiment.
  • the pipette movement assembly 4113 is provided with a pipette 4112 and an elastic adjusting device 4114.
  • the pipette 4112 can be driven by a power device (such as a motor, not shown) to move up and down.
  • the elastic adjusting device 4114 Set between the power device and the pipette 4112, the power device compresses the elastic adjusting device 4114 during the process of driving the pipette 4112 to move up and down.
  • the moving The pressing force exerted by the pipette 4112 on the tip is within an appropriate range to ensure that the pipette 4112 can successfully pick up the tip and discard the tip 416 after use.
  • FIG. 12 is a schematic diagram of the tip holder 417 provided in this embodiment.
  • the tip holder 417 is used for accommodating the tip 416.
  • the tip rack 417 can be placed on the consumable stacking module 70, and provided by the consumable stacking module 70 to the sample dividing module 40, and be divided by the clamping jaws (such as mechanical clamping jaws 4111) in the sample dividing module 40. It is transferred to a corresponding working position (such as working position 414), where a pipette movement component (such as pipette movement component 4113) is provided with a tip 416.
  • a pipette movement component such as pipette movement component 4113
  • the tip holder 417 includes a seat body 4171 and a tip accommodating member 4172.
  • the tip accommodating member 4172 is disposed on the seat body 4171.
  • the middle position of the tip accommodating member 4172 is more
  • the two accommodating holes 4173 are used for accommodating the suction head 416.
  • the seat body 4171 is provided with an automatic locking device 4174 facing the suction head accommodating part 4172.
  • the automatic locking device 4174 locks the suction head accommodating part 4172 when the suction head accommodating part 4172 is placed on the seat 4171 to avoid When the pipette movement assembly 4113 pierces the tip 416, the tip accommodating member 4172 is brought out.
  • the automatic locking device 4174 is an automatic reset mechanism.
  • the automatic locking device 4174 is pushed open, and the suction head accommodating After the setting member 4172 is placed on the seat body 4171, the automatic locking device 4174 is automatically reset, and the suction head receiving member 4172 is clamped on the seat body 4171.
  • FIG. 13 is a schematic diagram of the secondary positioning component provided in the secondary positioning position (such as the secondary positioning position 413) in this embodiment.
  • the secondary positioning assembly 418 includes a guide 4181.
  • the guide 4181 is disposed at a diagonal position of the secondary positioning position to define the size of the secondary positioning position.
  • the guide 4181 may be disposed in other positions, for example, disposed in the edge regions such as the long side and/or the short side of the secondary positioning position.
  • FIG. 14 is a schematic diagram of the white blood cell separation module 42 in this embodiment.
  • the white blood cell sorting module 42 is used to use the consumables provided by the consumable stacking module 70 to perform a cupping operation on the white blood cells of the sample in the reagent tube 114.
  • the consumables stacking module 70 further includes a third consumables stacking module 73, the third consumables stacking module 73 is disposed under the white blood cell separation module 42, and is used for the white blood cell separation module 42 Consumables such as cryopreservation tubes and suction tips are provided for the sub-cup operation.
  • the leukocyte separation module 42 includes two front and rear motion components, wherein the front motion component is a mechanical gripper 421 for grabbing consumables, and the rear motion component is a pipette motion component 423 with a pipette 422.
  • the white blood cell separation module 42 is also provided with a secondary positioning position 424 and a working position 425, and a detector 426 corresponding to the working position 425 is also provided.
  • the detector 426 is used to detect whether there are consumables on the working position 425 to avoid separation of white blood cells. Misoperation of the module 42 contaminates the working position 425.
  • the consumable stack module 70 includes a first consumable stack module 71, a second consumable stack module 72 and a third consumable stack module 73.
  • the structures and working principles of the first consumable stack module 71, the second consumable stack module 72, and the third consumable stack module 73 are basically the same, and the difference lies in their setting positions and the objects for providing consumables. Therefore, the following Take the first consumable stack module 71 as an example for introduction.
  • FIG. 15 is a schematic diagram of the first consumable stack module 71 in this embodiment.
  • the first consumable stack module 71 includes a plurality of bins 711 and a bin-out device 712, and the bin-out device 712 is used to transport the consumables in the bin 711 to a designated secondary positioning position.
  • the discharging device 712 is set at a fixed position, and the plurality of bins 711 can be moved to switch positions, so that any bin 711 is aligned with the bin discharging device 712, so that the bin discharging device 712 The consumables in the silo 711 are transported to the designated secondary positioning position.
  • a plurality of silos 711 are arranged on a turntable 713, a support shaft 713a is installed at the center of the turntable 713, and the turntable 713 is driven to rotate by a rotating motor 714, thereby switching between different silos 711 to align out ⁇ 712.
  • Each bin 711 is provided with a multi-layer material rack 7111, and the multi-layer material rack 7111 is stacked from bottom to top.
  • a sensor (not shown in the figure) can be provided on each layer of the material rack 7111 to sense whether there are consumables on the material rack 7111.
  • at least one silo 711a is used to store the tip rack 416, and at least another silo 711b is used to store the deep-well plate.
  • the unloading device 712 includes a carrier 7121 for carrying consumables, a front and rear driving device 7122 for pushing the carrier 7121 to move back and forth, and an up-and-down driving device 7123 for pushing the carrier 7121 to move up and down.
  • the front and rear driving device 7122 first drives the carrier 7121 to move forward, so that the carrier 7121 can enter a rack 7111 of a silo 711, and is placed under the consumables on the rack 7111; the vertical driving device 7123 drives The carrier 7121 moves upwards so that the carrier 7121 holds the consumables; after that, the front and rear driving device 7122 is restarted to drive the carrier 7121 to move backward to a preset position, so that the carrier 7121 and the consumables are separated from the silo 711; finally , The up-and-down driving device 7123 restarts, and the driving carrier 7121 continues to move up to the designated secondary positioning position.
  • the front-rear driving device 7122 and the up-and-down driving device 7123 move together to place the consumables on the secondary positioning position.
  • the vertical driving device 7123 is placed on the front and rear driving device 7122, and the bearing 7121 is connected to the vertical driving device 7123.
  • the front and rear driving device 7122 may also be arranged on the up and down driving device 7123, the carrier 7121 is connected to the front and rear driving device 7122, and the front and rear driving device 7122 is driven by the up and down driving device 7123 to move up and down, thereby driving the carrier. 7121 Move up and down.
  • the first consumable stacking module 71 further includes a code scanning module 715, and the code scanning module 715 is configured to obtain the serial number of the consumables in the first stacking module 71.
  • the code scanning module 715 is installed on one side of the multiple bins 711, and the code scanning module 715 can be manually adjusted to move up and down, move forward and backward, and turn left and right, so that the installation The code scanning module 715 described later is at a better code scanning position. Wherein, moving back and forth can adjust the distance between the code scanning module 715 and the consumables, and turning left and right can adjust the inclination of the code scanning module 715 to ensure the identification of the numbers of the consumables at different positions.
  • the code scanning module 715 can move up and down under the drive of a driving device 7151, so as to obtain the serial number of the consumables on each rack 7111 of the silo 711.
  • the obtained serial number is transmitted to the control module 50, so that the control module 50 associates and binds the consumables with the samples in the subsequent sub-sampling process.
  • a foolproof structure 7111b is provided at a specific position of each material rack 7111 of the silo 711b for storing deep-well plates (referred to by A in the figure as deep-well plates).
  • the foolproof structure 7111b is used to ensure that the deep-well plate enters the silo 711b at a preset square position.
  • each material rack 7211 of the silo 721 storing the freezing tube (referred to as the freezing tube rack in the figure) is provided with a foolproof structure 7212 at a specific position, so The foolproof structure 7212 is used to ensure that the freezing pipe rack enters the silo 721 at a preset square position. Referring to FIG.
  • a foolproof structure 7111a is provided at a specific position of each material rack 7111 of the silo 711a storing the suction head rack 416, and the foolproof structure 7111a is used to ensure the suction head rack 416 enters the silo 711a at a preset square position.
  • the installation of the first consumable stack module 71, the second consumable stack module 72, and the third consumable stack module 73 are performed by using the sub-detection tube module 411, the sub-backup tube module 412, and the countertop of the white blood cell module 42 respectively. Positioning, so as to ensure the reliability of the overall positioning of the consumable stack module 70. In addition, it is also necessary to ensure that the support shaft located in the middle of each silo is vertical. Please refer to FIG. 14 and FIG. 19 in combination.
  • This article takes the installation of the third consumable stack module 73 as an example for description.
  • the third consumable stack module 73 is positioned and installed based on the table bottom 427 of the white blood cell module 42 as a reference.
  • the bottom plate 427 is provided with an opening 4271 through which the outgoing device 712 of the third consumable stack module 73 can pass through to push the consumables to the secondary positioning position 424 on the table.
  • the table bottom 427 is also provided with a support shaft mounting hole 4272, and the support shaft mounting hole 4272 is used for mounting one end of the support shaft.
  • the third consumables stacking module 73 is also provided with a plurality of support columns (not shown) parallel to the support shaft.
  • the table bottom 427 is also provided with support holes 4273 and positioning holes 4274, so The supporting hole 4273 and the positioning hole 4274 are respectively used to fix different supporting columns.
  • the support column is fixed through the support hole 4273 and the positioning hole 4274 to complete the positioning of the third consumable stack module 73, and then tighten the screws on the support hole to complete the assembly of the third consumable stack module 73.
  • the number of the positioning hole 4274 and the supporting hole 4273 are both two, and the line of the positioning hole 4274 intersects the line of the supporting hole 4273.
  • the distance between the aperture of the positioning hole 4274 and the two positioning holes 4274 is accurately set, so that each positioning hole 4274 is completely matched with the corresponding supporting column, and the supporting hole 4273 is set at the same time.
  • the hole diameter is slightly larger than the cross-sectional dimension of the corresponding support column, thereby leaving room for installation.
  • FIG. 20 is an overall schematic diagram of the sample recovery module 60 in this embodiment.
  • the sample recovery module 60 includes a blanking jaw device 61 and a sample recovery frame 62.
  • the sample pre-processing system 1 further includes a sample imaging module 91 and a cover removal module 92, and the sample imaging module 91 and the cover removal module 92 are also disposed at the sample recovery module 60.
  • the sample transmission module 30 moves through the sample imaging module 91, the cover removal module 92, the white blood cell separation module 42, the plasma separation module 41, and the white blood cell separation module. 42. Finally, return to the sample recovery module 60 for sample recovery.
  • the sample imaging module 91 is used to image the reagent tube 114 to identify the serial number of the reagent tube 114 and the layered height of the sample; the cap removal module 92 is used to remove the cap on the reagent tube 114 for subsequent plasma and Prepare for separation of white blood cells.
  • the sample imaging module 91 includes an upper jaw device 911 and an imaging device 912.
  • the upper jaw device 911 is used to grab a sample from the sample transmission module 30 for imaging by the imaging device 912, and put the sample back into the sample transmission module 30 after obtaining the imaging picture.
  • the imaging device 912 is a photographing device, and a photograph of the sample is obtained by taking a photograph.
  • the upper clamping jaw device 911 and the photographing device are controlled and coordinated by the control module 50.
  • the control module 50 controls the upper gripper device 911 to grab a sample from the sample transmission module 30. After the upper gripper device 911 completes the grabbing of the sample, the control module 50 then controls the upper gripper device 911 to move toward The predetermined direction rotates a predetermined angle each time and controls the photographing device to take pictures to find the barcode attached to the outer side of the reagent tube 114 and the position of the notch not covered by the barcode, respectively. Specifically, the control module 50 judges whether the barcode and the gap are found according to the content of the photo obtained by the photographing device each time.
  • control module 50 After finding the barcode, the control module 50 further recognizes the number of the sample; and after finding the position of the notch, the control module 50 further determines the total height and layer height of the sample based on the photo taken with the notch position facing the camera. In this embodiment, the control module 50 converts the color gamut of the photo, for example, converts a white area on the photo into a first color (such as black), and converts a non-white area into a second color that is different from the first color.
  • a first color such as black
  • Color (such as white), judge the total height of the sample from the height of the converted second color (such as white) area; after obtaining the total height, convert the red area and/or black area on the original photo to be different from the white blood cell area
  • the height of the blood cells of the sample is judged from the height of the converted region of the same color (such as black), and then the height of the lower plasma layer (that is, plasma and The sum of the height of white blood cells, and the height of white blood cells is small and the liquid level is usually uneven). In this way, the stratification height of the sample is obtained.
  • the control module 50 can have a more optimized control for the subsequent separation of plasma and white blood cells, for example, it can control the downward distance of the pipette according to the layering height of the sample. Specifically, the control module 50 can control the pipette to stop above the height of the lower plasma layer, and slowly move downward to suck white blood cells.
  • other applications of laboratory automation systems can also be expanded.
  • the control module 50 controls the upper gripper device 911 to rotate to obtain the barcode position and notch position of the sample
  • the control module 50 further controls the upper gripper device 911 to rotate back to the original position, thus avoiding
  • the gripper device 911 drives the sample to rotate, resulting in an angle difference between the center line of the sample and the corresponding fixing device 32, and putting the sample back into the fixing device 32 may cause the sample to be destroyed.
  • the opening 323 of the fixing device 32 is also provided with a guide angle to enlarge the size of the opening 323. In this way, the reliability of the upper jaw device 911 for picking and placing samples is ensured.
  • the upper jaw device 911 in order to implement the upper jaw device 911 to pick and place and rotate the sample, the upper jaw device 911 includes an up-and-down movement mechanism (not labeled), a first rotating device (not labeled), and a first rotating device (not labeled). 2. Rotating device (not marked) and clamping jaw mechanism 9111. Among them, the gripper mechanism 911 is used to grasp the sample, the up-and-down movement mechanism is used to drive the gripper mechanism 911 to move up and down, the first rotating device is used to drive the gripper mechanism 911 to move above the sample transmission module 30, and the second rotating device is used to The clamping jaw mechanism 911 is driven to drive the sample to rotate.
  • the first rotating device may be replaced by a translation device for driving the clamping jaw mechanism to translate above the sample transfer module 30, and the translation may be a translation along a straight line or a translation along a predetermined curve.
  • FIG. 22 is a schematic diagram of the cover removal module 92 in this embodiment.
  • the cover pulling module 92 includes an upper jaw mechanism 921 and a lower jaw mechanism 922.
  • the lower gripper mechanism 922 is used to grab the lower end of the reagent tube 114
  • the upper gripper mechanism 921 is used to fix the cap of the reagent tube 114
  • the lower gripper mechanism 922 and the upper gripper mechanism 921 move away from each other to realize the sample Take off the cap.
  • the lower jaw mechanism 922 is also driven to rotate by the rotation driving device 923, and the combined movement formed by the rotation and the back movement is used to realize the cap removal operation.
  • the lower end of the upper jaw mechanism 922 is also provided with a mechanical limit structure 924, which is used to limit the cap to eliminate the risk of not being able to complete the cap removal.
  • the mechanical limiting structure is a protrusion that resists and limits the cap.
  • the cap removal module 92 is controlled by the control module 50 to perform cap removal operations.
  • the upper jaw mechanism 921 can be controlled by the control module 50 to move to the upper part of the sample transmission module 30 to grab the sample, and return after grabbing the sample.
  • the upper jaw mechanism 921 can also be controlled by the control module 50 to open and Fold to achieve sample picking and placing.
  • the lower jaw module 922 can also be controlled by the control module 50 to open and close to grasp the lower end of the reagent tube 114.
  • the upper jaw mechanism 921 when the cap is removed, the upper jaw mechanism 921 may rotate or the upper jaw mechanism 921 and the lower jaw mechanism 922 rotate at the same time, and the rotation directions of the two are opposite.
  • the whole cover removal module 92 may be controlled and moved by the control module 50 to grab a sample from the sample transmission module 30.
  • the sample transmission module 30 continues to drive the fixing device 32 to move to the place where the sample recovery module 60 is located. .
  • the discharging jaw device 61 of the sample recovery module 60 is controlled by the control module 50 to remove the reagent tube 114 from the fixing device 32 and place the reagent tube 114 in the sample recovery rack 62 to recover the remaining samples.
  • the blanking jaw device 61 includes a translation drive device (not shown in the figure), an up and down drive device (not shown in the figure), and a jaw opening and closing drive device, so as to realize the up and down movement of the blanking jaw device 61.
  • the translation and the opening and closing of the clamping jaws finally realize the transfer of the reagent tube 114 to the sample recovery rack 62.
  • the sample recovery rack 62 is a test tube rack for placing test tubes.
  • the plasma dividing module 41 divides the plasma of the sample in the reagent tube 114 at a certain point into the deep well plate and the cryopreservation tube, and the cryopreservation tube at the working position or the well in the deep well plate
  • the corresponding mechanical gripper such as mechanical gripper 4111
  • the white blood cell separation module 42 dispenses the white blood cells of the sample in the reagent tube 114 at another fixed position into the cryotube.
  • the mechanical gripper 421 in the white blood cell separation module 42 grabs The frozen storage tube rack is placed on the finished product storage module 80 and stored by the finished product storage module 80.
  • FIGS. 23 and 24 are respectively a schematic diagram of a finished product storage module 80 and a partial schematic diagram of a sample pre-processing system in this embodiment.
  • the finished product storage module 80 includes a transportation mechanism 81 and a pushing mechanism 82.
  • the finished product storage module 80 is also provided with a storage area 83 for storing sample finished products.
  • the storage area 83 is opposite to and separated from the pushing mechanism 82.
  • the transportation mechanism 81 transports the frozen storage tube rack or deep-well plate with finished products along a preset track. One end of the preset track is located in the storage area 83 and the pushing mechanism. At the preset position between the mechanisms 82, the other end extends through the plasma dividing module 41 to the position where the white blood cell dividing module 42 is located.
  • the transport mechanism 81 After the sample dividing module 40 places the cryopreservation tube rack or deep-well plate with the finished product obtained by the cupping operation on the transport mechanism 81, the transport mechanism 81 starts and transports the cryopreservation tube rack or deep-well plate to the storage area 83 And the pushing mechanism 82 between. Afterwards, the pushing mechanism 82 is activated to push the freezing tube rack or the deep-well plate on the transportation mechanism 81 to the storage area 83 for storage.
  • the ejector mechanism 82 includes an ejector 821 and an ejector drive mechanism 822.
  • the ejector driving mechanism 822 is used to drive the ejector 821 to move toward the storage area 83, push the frozen storage tube rack or the deep-well plate on the transportation mechanism 81, and move the frozen storage tube rack or the deep-well plate to the storage area 83.
  • the ejector driving mechanism 822 is controlled by the control module 50, and starts and stops according to the control of the control module, so as to move the freezing tube rack or the deep-well plate to the designated position of the storage area 83.
  • the ejector drive mechanism 822 starts again to move the frozen storage tube racks or deep-well plates to the designated position, and the frozen storage tube racks or deep-well plates
  • the orifice plate pushes the cryopreservation tube rack or deep-well plate previously stored at this position during the movement, so that the previously stored cryopreservation tube rack or deep-well plate continues to move forward, and so on, until the storage area 83 is full of samples Finished product.
  • the sample-dividing module 40 places the cryopreservation tube rack or deep-well plate with the finished product obtained by the cup-dividing operation on the transport mechanism 81, it needs to determine whether the finished product has been placed, otherwise it may cause greater biological pollution. .
  • the ejector driving mechanism 822 includes a motor 8221, a timing belt assembly 8222, and a trapezoidal screw (not shown).
  • the trapezoidal screw is coupled with the ejector 821.
  • the motor 8221 drives the timing belt assembly 8222 to rotate
  • the timing belt assembly 8222 drives the trapezoidal screw to rotate
  • the trapezoidal screw pushes the ejector 821 to move toward the storage area 83.
  • the storage area 83 is further provided with a detection device (not shown) for detecting whether the storage area 83 is full, and a prompting device for prompting after the detection device detects that the storage area 83 is full. (Picture not shown).
  • the detection device and the prompting device are both connected to the control module 50.
  • the detection device sends a signal to the control module 50 after detecting that the storage area 83 is full, and the control module 50 activates the prompting device to prompt according to the signal To prompt the operator to take away the finished product.
  • FIG. 25 is a control schematic diagram of the sample pre-processing system 1 in this embodiment.
  • the sample pre-processing system 1 further includes a control module 50 for controlling the sample loading and unloading module 10, the centrifugation module 20, the sample transmission module 30, the sample dividing module 40, the sample recovery module 60, and the consumable stack module 70 ,
  • the finished product storage module 80, the sample imaging module 91 and the cover removal module 92 coordinate operations to complete the pre-processing of the sample.
  • the sample loading and unloading module 10 the centrifugation module 20, the sample transmission module 30, the sample dividing module 40, the sample recovery module 60, the consumable stack module 70, the finished product storage module 80, the sample imaging module 91, and the cover removal module 92
  • the drive device is a general term for the drive mechanism, drive module, drive device and other components used to drive the corresponding components in the corresponding modules to move or act to complete the corresponding functions.
  • the detection device is a general term for the sensors, detectors, sensors, code scanning devices, camera devices and other components installed in each module that are used to obtain information such as the status, position and/or number of the corresponding component or sample in each module .
  • the control module 50 obtains information from the detection device, monitors the location and status of each sample, and controls the corresponding driving device to start according to the location and status of the sample, thereby completing the pre-processing of the sample and the storage of the finished sample.
  • the control module 50 includes a processing device 51, a storage device 52, and a control program 53 for controlling the operation of the sample pre-processing system 1.
  • the control program 53 can be stored in the storage device 52 and run on the processing device 51 Above, in order to realize the control of the sample pre-processing system 1. In this embodiment, when the control program 53 is executed by the processing device 51, the following method is executed.
  • Step one is to initialize the specific module.
  • the control module 50 receives the detection signal sent by the specific detection device of the specific module, and determines whether the whole of the specific module or the specific component is in the initial position according to the detection signal sent by the specific module, and the whole of the specific module Or when the specific component is not in the initial position, a control signal is sent to the specific driving device of the specific module to start the specific driving device to make the specific module or the specific component return to the initial position.
  • the specific module may be all modules or some modules.
  • the specific module may only be the sample transmission module 30.
  • the control module 50 restores the sample transmission module 30 to the initial position according to the signal sent by the reset sensor of the sample transmission module 30. Initialization of the sample transmission module 30.
  • Step two start the loading module 11 to transport the hanging basket 115 loaded with the sample to the preset position of the preparation area 113.
  • Step 3 Receive a signal from the material preparation area 113 in-position detection device 1133, and stop the feeding module 11 and start the manipulator device 23 of the centrifugal module 20 according to the signal.
  • Step 4 Control the manipulator device 23 to grab the hanging basket 115 at the preset position of the preparation area 113 and move the hanging basket 115 to the centrifuge 21 of the centrifugal module 20.
  • step 2 Repeat step 2 to step 4 until the manipulator device 23 grabs a preset number of hanging baskets 115 into the centrifuge 21.
  • Step 5 Start the centrifuge 21 to centrifuge and layer the sample.
  • Step 6 after the centrifugation is completed, the manipulator device 23 is controlled to transfer the hanging basket 115 from the centrifuge 21 to the sample placing area 221 of the centrifugal module 20.
  • Step 7 Control the manipulator device 23 to grab the sample from the hanging basket 115 located in the sample placing area 221 and place it in the fixing device 32 of the sample transmission module 30.
  • Step 8 Control the sample transmission module 30 to start and move a fixed distance, so that the fixing device 32 where the sample is placed leaves the preset position for loading the sample, and the subsequent fixing device moves to the preset position.
  • Step 9 Control the manipulator device 23 to transfer the empty hanging basket 115 to the unloading module 13.
  • Step ten start the unloading module 13 to transport the hanging basket 115 out of the sample pre-processing system 1.
  • Step 11 Receive the signal sent by the sensing device 334 at the first fixed-point position on the sample recovery module 30, and activate the upper jaw device 911 of the sample imaging module 91 to grab a sample from the first fixed-point position.
  • Step 12 Start the photographing device 912 to take a photograph of the sample, and analyze the content of the photograph to obtain the barcode attached to the outside of the reagent tube 114 and the position of the notch not covered by the barcode, respectively.
  • the control module 50 coordinates the upper gripper device 911 and the photographing device 912, and controls the upper gripper device 911 to drive the sample to rotate a predetermined angle in a predetermined direction for the photographing device to take pictures, so that the photographing device 912 A preset number of photos are taken, and the photos are analyzed to obtain the barcode and the position of the notch attached to the outer side of the reagent tube 114, respectively.
  • Step 13 Identify the serial number of the sample and determine the total height and layered height of the sample based on the photos taken with the notch position facing the photographing device 912.
  • the total height and stratification height of the judgment sample further include:
  • Step fourteen control the upper jaw device 911 to put the sample back into the fixing device 32 at the first fixed point position. Specifically, in this embodiment, before returning the sample to the first fixed-point position, the control module 50 also controls the upper jaw device 911 to rotate in the reverse direction and return to the original position.
  • Step 15 Receive the signal again sent by the sensor device 334 at the first fixed position on the sample recovery module 30, and control the sample transmission device 30 to move forward by a fixed distance, so that the sample that has passed the photographic identification number and the layered height is moved to The second fixed-point location.
  • Step 16 receiving the signal sent by the second fixed-point position sensing device 334 on the sample transmission module 30, and control the lid removal module 92 to move to the second fixed-point position to grab a sample.
  • Step 17 control the upper clamping jaw mechanism 921 and the lower clamping jaw mechanism 922 of the cap pulling module 92 to grasp the cap of the reagent tube 114 and the lower end of the reagent tube 114 respectively, and control the upper clamping jaw mechanism 921 and the lower clamping jaw mechanism 922 moves back to remove the cap from the reagent tube 114.
  • the control module 50 when the cap is removed, the control module 50 also controls the rotation of the lower jaw mechanism 922, and uses a compound motion formed by linear motion and rotation to achieve cap removal.
  • Step 18 Control the cap removal module 92 to put the uncapped sample back into the fixing device 32 at the second fixed point position.
  • Step 19 According to the received signal from the sensor in the consumable stack module 70, the code scanning module is activated to scan the consumables in the consumable stack module 70 to obtain the serial number of each consumable.
  • Step 20 Start the unloading device to correspondingly transport the consumables to the secondary positioning positions of the plasma separation module 41 and the white blood cell separation module 42.
  • step 21 the mechanical grippers of the plasma separation module 41 and the white blood cell separation module 42 are activated to transfer the consumables from the secondary positioning position to their respective working positions.
  • steps 19 to 21 may be after step 18, or at any time between steps 1 to 18, or even at the same time as step 1.
  • Step 22 Receive the signal sent by the third fixed-point sensing device 334 on the sample transmission module 30, and control the movement of the pipette movement assembly 4113 of the test tube module 411 in the plasma separation module 41 to the work of placing the tip Position the pipette tip, and then control the pipette movement assembly 4113 to move to the third fixed-point position, draw quantitative plasma from the sample at the third fixed-point position and transfer the absorbed plasma to the working position In one of the holes of the deep-well plate.
  • the control module 50 controls the descending distance of the tip according to the stratification height of the sample obtained before.
  • step 22 can be repeated multiple times to perform multiple cup-dividing operations to obtain multiple cup-dividing finished products.
  • Step 23 Control the sample transmission device 30 to move forward by a fixed distance, so that the sample continues to move forward from the third fixed-point position to the fourth fixed-point position.
  • Step 24 Receive the signal sent by the fourth sensor device 334 at the fixed position, and control the pipette movement component (not labeled) of the sub-backup tube module 412 in the plasma sub-module 41 to move to the working position where the tip is placed. Take the pipette head, and then control the pipette movement component to move to the fourth fixed point position, draw a quantitative amount of plasma from the sample located at the fourth fixed point position and transfer the drawn plasma to the cryopreservation placed in the working position In the tube.
  • the number of the cryopreservation tubes is two, and the pipette motion component discharges the blood sample drawn each time into the two cryopreservation tubes.
  • control module 50 controls the descending distance of the tip according to the stratification height of the sample obtained previously. After finishing one cup splitting, the control module 50 controls the pipette movement component to discard the suction head in the medical trash can (not shown) via the funnel 411b. According to needs, step 24 can be repeated multiple times to perform multiple cup-dividing operations to obtain multiple cup-dividing finished products.
  • Step 25 Control the sample transmission device 30 to move forward by a fixed distance, so that the sample continues to move forward from the fourth fixed-point position to the fifth fixed-point position.
  • Step 26 Receive the signal sent by the fifth fixed-point position sensing device 334, and control the pipette movement component 423 in the leukocyte separation module 42 to move to the working position where the tip is placed to pierce the tip, and then control the The pipette movement component 423 moves to the fifth fixed-point position, sucks quantitative white blood cells from the sample located at the fifth fixed-point position and transfers the sucked white blood cells to the cryopreservation tube placed in the working position.
  • the control module 50 controls the descending distance of the tip according to the stratification height of the sample obtained before.
  • step 26 can be repeated multiple times to perform multiple cupping operations to obtain multiple cup-dividing finished products.
  • Step 27 Control the sample transfer device 30 to move forward to the sample recovery module 60, and control the feeding gripper device 61 of the sample recovery module 60 to remove the sample from the fixing device 32 and transfer the sample to the sample recovery rack 62, thereby Recover the remaining samples.
  • Step 28 Determine whether the consumables in the working positions of the plasma separating module 41 and the white blood cell separating module 42 are used up. After the consumables such as deep well plates and cryopreservation tubes are used up, control the plasma separating module 41 and the white blood cell separating module 42. The mechanical gripper transfers the finished product obtained after the cups are divided to the finished product storage module 80.
  • step 29 the transportation mechanism 81 of the finished product storage module 80 is activated to transport the finished product to a preset position between the pushing mechanism 82 and the storage area 83.
  • step 30 the pushing mechanism 82 is activated to push the finished product on the transportation mechanism 81 to the storage area 83 for storage.
  • the sample pre-processing system uses an automatic sample loading and unloading module for automatic loading and unloading of samples, a consumable stacking system for automatic loading of consumables, and a finished product storage module for automatic finished products.
  • Storage reduces manual intervention time, simplifies and standardizes tedious operations, liberates manpower, reduces misoperations and biological pollution, and reduces production costs; automatic identification of sample height and stratification height enables automation
  • the plasma cup and white blood cell cup make the sample cupping operation more accurate; the special structure of the cap pull module improves the success rate of cap pull, reduces the requirements for the reagent tube incoming materials, and reduces the production cost.
  • sample pre-processing system processing blood samples as an example
  • sample pre-processing system in this application is not limited to blood samples, and can also perform stratification and cupping processing of other samples.
  • the containers for holding biological samples may not be limited to reagent tubes, cryopreservation tubes, and deep well plates.
  • And can be any carrier of any shape suitable for holding the biological sample.
  • some modules can be omitted.
  • the cover removal module can be omitted.
  • the position of each module can be changed.
  • the consumable stack module may not be placed under the sample sub-module, for example, it can be placed beside the sample sub-module.
  • the sample imaging module and the cover removal module may not be integrated with the sample recovery module, but may be placed in appropriate positions.

Abstract

一种样本前处理系统(1),包括:样本上下料模块(10),用于自动化传送生物样本及生物样本载体进出样本前处理系统(1);离心模块(20),用于对生物样本进行离心分层;样本分杯模块(40),用于对离心分层后的样本进行分杯操作,以获得分杯后的成品;成品存储模块(80),用于对分杯后获得的成品进行存储;样本传输模块(30),用于将离心分层后的样本传送至样本分杯模块(40)处;及控制模块(50),用于控制样本前处理系统的各模块协调工作。该样本前处理系统(1)提高了样本前处理的自动化水平和效率。

Description

样本前处理系统 技术领域
本申请涉及生化检测领域的样本前处理,尤其涉及自动化的样本前处理系统。
背景技术
目前临床上很多疾病都依靠体外检测设备诊断,体外检测在疾病预防、诊断、监测以及指导治疗的全过程中,也发挥着极为重要的作用,是医生进行诊治不可或缺的重要设备。而医生在进行诊治时通常需要通过样本作为媒介与体外检测设备进行交互,样本包含有唾液、血液、血浆、血细胞等。在常规的生化免疫检测诊断中,需要人工进行采血并进行样本前处理(包括利用离心机进行离心、手工去试管盖帽、人工提取血浆或血细胞),最后人工上到设备上进行分析,操作繁琐,效率低下,且需要多人进行配合。如果进行多个样本的分析检测,还容易产生生物污染、信息混淆等一系列操作风险。
发明内容
有鉴于此,有必要提供一种样本前处理系统,以解决现有技术中至少一个存在的问题。
本申请提供一种样本前处理系统,所述样本前处理系统包括:
样本上下料模块,用于自动化传送生物样本及生物样本载体进出样本前处理系统;离心模块,用于对生物样本进行离心分层;
样本分杯模块,用于对离心分层后的样本进行分杯操作,以获得分杯后的成品;
成品存储模块,用于对分杯后获得的成品进行存储;
样本传输模块,用于将离心分层后的样本传送至所述样本分杯模块处;及
控制模块,用于控制所述样本前处理系统的各模块协调工作。
进一步地,所述样本上下料模块包括上料模块,所述上料模块包括上料区和备料区,所述上料区包括进料驱动机构,所述进料驱动机构用于驱动装载了生物样本的载体进入所述备料区,所述备料区包括设置于预设位置的到位检测装置,所述到位检测装置用于通知所述控制模块所述载体到位的情况,所述控制模块用于基于所述通知控制将所述生物样本转移至所述离心模块。
进一步地,所述上料区还包括轨道切换机构,所述轨道切换机构用于切换不同的所述进料驱动机构对齐所述备料区,以使不同的所述进料机构将装载了生物样本的载体传送至所述备料区。
进一步地,所述控制模块还用于基于所述通知控制所述上料模块停止运转。
进一步地,所述离心模块包括离心机与机械手装置,所述离心机用于对所述生物样本进行离心分层,所述机械手装置用于将所述生物样本移入所述离心机及将完成离心分层的生物样本移出所述离心机。
进一步地,所述机械手装置还用于将完成离心分层的生物样本转移至所述样本传输模块上,及/或,所述样本上下料模块还包括下料模块,所述机械手装置用于将卸载了生物样本的载体转移至所述下料模块上,所述下料模块用于将所述载体转移出所述样本前处理系统。
进一步地,所述机械手装置包括设置于所述机械手装置下端的夹爪、设置所述 夹爪的可移动机构、及设置于所述可移动机构上端的防撞机构。
进一步地,所述防撞机构为弹性防撞机构。
进一步地,所述样本传输模块包括传送装置与固定装置,所述传送装置用于传送所述生物样本,所述固定装置用于固定所述生物样本。
进一步地,所述固定装置为多个,所述多个固定装置定距离隔开设置于所述传送装置上。
进一步地,所述样本传输模块还包括定位装置,所述定位装置用于在定点位置定位固定装置。
进一步地,所述定点位置为所述样本前处理系统对离心分层后的生物样本进行预设操作的位置。
进一步地,所述预设操作可以是将所述生物样本置入或移出所述固定装置、或者从所述生物样本中分离部分生物样本的操作。
进一步地,所述定位装置包括定位支架、推压件与弹性件,所述推压件与弹性件均设置于所述定位支架上,所述推压件一侧朝向定点位置凸伸、另一侧靠近所述弹性件,当所述固定装置进入所述定点位置时,所述推压件一端抵持所述固定装置、另一端抵持并压缩所述弹性件,以实现所述固定装置的定位。
进一步地,所述推压件为滚轮,所述滚轮的转轴方向与所述传送装置移动的方向垂直。
进一步地,所述样本传输模块还包括传感装置,所述传感装置对应所述定点位置设置,用于检测所述定点位置所述存在生物样本并在检测到所述定点位置存在生物样本时发送信号给所述控制模块,所述控制模块还用于根据接收到的所述信号,启动和控制相关模块执行对应所述定点位置的预设操作。
进一步地,所述样本传输模块还包括复位传感器,所述复位传感器用于在所述样本前处理系统启动时检测所述样本传输模块是否位于预设的初始位置及用于当所述样本传输模块未处于所述初始位置发送信号给所述控制模块,所述控制模块还用于在接收到所述复位传感器发送的信号后,控制所述样本传输模块回到所述初始位置。
进一步地,所述样本分杯模块包括分血浆模块,所述分血浆模块用于对所述生物样本中的血浆进行分杯。
进一步地,所述样本分杯模块包括分白细胞模块,所述分白细胞模块用于对所述生物样本中的白细胞进行分杯。
进一步地,所述样本前处理系统还包括耗材堆栈模块,所述耗材堆栈模块用于为所述样本分杯模块提供耗材。
进一步地,所述耗材堆栈模块包括料仓及出仓装置,所述料仓用于存储耗材,所述出仓装置用于被所述控制模块控制将所述料仓中的耗材转移至所述样本分杯模块。
进一步地,所述料仓包括多个,所述多个料仓可以移动以切换不同的所述料仓对准所述出仓装置,以使所述出仓装置可将所述料仓中的耗材转移至所述样本分杯模块。
进一步地,所述耗材堆栈模块还包括扫码模块,所述扫码模块用于扫描所述料仓内的耗材以获得每一耗材的编号,并将所述编号发送给所述控制模块,以便控制模块将分杯后的成品与耗材进行关联。
进一步地,所述耗材堆栈模块以所述样本分杯模块的台面底板为基准进行定位安装于所述样本分杯模块的下方。
进一步地,所述样本分杯模块包括台面、设置于台面上方的机械夹爪与移液器运动组件,所述台面上还设置有二次定位位与工作位置,所述耗材堆栈模块用于将耗材转移至所述二次定位位,所述机械夹爪用于将耗材从所述二次定位位转移至所述工作位置,所述移液器运动组件用于将位于所述定点位置的生物样本分离部分至其中一所述耗材中。
进一步地,所述机械夹爪包括驱动装置与多个爪部,所述驱动装置用于驱动所述多个爪部靠拢或远离,以完成耗材的抓取与放下,每个所述爪部相对的一侧设有弹性物质,所述弹性物质用于在抓取耗材时提供压力,及/或,每个所述爪部相对的一侧设有勾部用于托起耗材。
进一步地,所述机械夹爪与所述移液器运动组件采用同一驱动模块驱动。
进一步地,所述移液器运动组件包括移液器、动力装置及弹性调节装置,所述动力装置用于驱动所述移液器向下运动以扎取吸头,所述弹性调节装置设置于所述动力装置与所述移液器之间,所述动力装置在向下驱动移液器扎取吸头时压缩所述弹性调节装置,通过控制压缩所述弹性调节装置的量来调节施加于吸头上的压紧力。
进一步地,所述二次定位位上设有二次定位组件,所述二次定位组件包括导向件,所述导向件设置于二次定位位的边缘区域。
进一步地,所述样本前处理系统还包括样本成像模块用于在所述分样本模块执行样本分杯之前对所述生物样本进行成像以获得所述生物样本的编号及分层高度。
进一步地,所述样本成像模块包括上夹爪装置与成像装置,所述上夹爪装置用于从位于所述定位位置的固定装置中获取所述生物样本供所述成像装置成像、并在成像完成后将所述生物样本放回所述固定装置,所述成像装置用于对所述生物样本成像并将所述生物样本的成像图片传送给所述控制装置,所述控制装置还用于分析所述生物样本的成像图片获得所述生物样本的编号及所述生物样本内物质分层的高度;或者,所述控制装置还用于分析所述生物样本的成像图片获得所述生物样本的条码与豁口位置,根据所述条码识别出所述生物样本的编号,及根据所述豁口位置朝向所述成像装置获得的成像图片分析所述生物样本内物质分层的高度。
进一步地,所述控制装置通过对所述豁口位置朝向所述成像装置获得的成像图片进行色域转换,通过色域转换获得所述生物样本内物质的总高度与分层物质的高度。
进一步地,所述生物样本为血液样本,所述控制装置执行色域转换获得所述血液样本的总高度和血细胞的高度。
进一步地,所述控制装置执行色欲转换包括:将所述豁口位置朝向所述成像装置获得的成像图片上的白色区域转换成第一色,把非白区域转换成不同于第一色的第二色,根据转换后的所述第二色区域的高度获得所述血液样本的总高度;将所述豁口位置朝向所述成像装置获得的成像图片上的红色区域和/或黑色区域转换成不同于白细胞区域的颜色的同一色,根据转化后的所述同一色的高度获得血细胞的高度;及根据总高度与血细胞的高度的差值获得血浆下层的高度。
进一步地,所述样本前处理系统还包括拔盖模块,所述拔盖模块用于在所述分样本模块执行样本分杯之前拔掉所述生物样本的盖帽。
进一步地,所述拔盖模块包括上夹爪机构与下夹爪机构,所述上夹爪机构用于固定所述生物样本的帽盖,所述下夹爪机构用于抓取所述生物样本的下端,所述上夹爪机构与所述下夹爪机构用于通过相背移动实现所述生物样本的脱帽。
进一步地,所述上夹爪机构及/或下夹爪机构在脱帽过程中被驱动旋转,以利用旋转运动结合相背移动的复合运动实现所述生物样本的脱帽;及/或,所述上夹爪机 构还包括机械限位结构或凸起限位所述帽盖。
进一步地,所述样本前处理系统还包括样本回收模块,所述样本回收模块用于在所述分样本模块完成分杯操作后对剩余的生物样本进行回收。
进一步地,所述样本回收模块包括下料夹爪装置与样本回收架,所述下料夹爪装置用于从所述固定装置中取下剩余的所述生物样本并放置于所述样本回收架中。
进一步地,所述成品存储模块包括运输机构、推料机构及存储区域,所述运输机构用于将所述分杯获得的成品运输至预设位置,所述推料机构用于将位于所述预设位置的所述成品推至所述存储区域进行存储。
进一步地,所述推料机构与所述存储区域相对且隔开设置,所述预设位置位于所述推料结构与所述存储区域之间。
进一步地,所述机械夹爪还用于将分杯后获得的所述成品从所述工作位置转移至所述运输机构上。
本申请实施方式提供的样本前处理系统,利用自动的样本上下料模块进行样本的自动上下料操作,利用耗材堆栈系统进行耗材的自动上料,利用成品存储模块进行成品的自动存储,减少了人工干预时间,使繁琐的操作简易化、标准化,解放了人力,同时减少了误操作及生物污染的产生,降低了生产成本;通过自动识别样本高度和分层高度,实现自动化的血浆分杯与白细胞分杯,使样本分杯操作更准确;通过设置拔盖模块的特殊结构,提高了拔盖成功率,减少了对试剂管来料的要求,降低了生产成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施方式提供的样本前处理系统的整机示意图。
图2是本申请实施方式提供的样本上下料模块的示意图。
图3是本申请实施例方式提供的上料模块的示意图。
图4是本申请实施方式提供的吊篮的示意图。
图5是本申请实施方式提供的离心模块的示意图。
图6是本申请实施方式提供的机械手装置的示意图。
图7是本申请实施方式提供的部分样本传输模块的示意图。
图8是本申请实施方式提供的分血浆模块的示意图。
图9是本申请实施方式提供的耗材工作位置的示意图。
图10是本申请实施方式提供的机械夹爪的示意图。
图11是本申请实施方式提供的移液器运动组件的示意图。
图12是本申请实施方式提供的吸头架的示意图。
图13是本申请实施方式提供的二次定位组件的示意图。
图14是本申请实施方式提供的分白细胞模块的示意图。
图15是本申请实施方式提供的第一耗材堆栈模块的示意图。
图16是本申请实施方式提供的存放深孔板的料仓的料架的示意图。
图17是本申请实施方式提供的存放冻存管的料仓的料架的示意图。
图18是本申请实施方式提供的存放吸头架的料仓的料架的示意图。
图19是本申请实施方式提供的第三耗材堆栈模块的安装基准的示意图。
图20是本申请实施方式提供的样本回收模块的示意图。
图21是本申请实施方式提供的样本成像模块的上夹爪装置的示意图。
图22是本申请实施方式提供的拔盖模块的示意图。
图23是本申请实施方式提供的成品存储模块的示意图。
图24是本申请实施方式提供的样本前处理系统的部分示意图。
图25是本申请实施方式提供的样本前处理系统的控制示意图。
如下具体实施方式将结合上述附图进一步说明本申请。
主要元件符号说明
样本前处理系统       1            样本上下料模块      10
离心模块             20           样本传输模块        30
分样本模块           40           样本回收模块        60
耗材堆栈模块         70           成品存储模块        80
分血浆模块           41           分白细胞模块        42
上料模块             11           下料模块            13
进料区               111          备料区              113
进料驱动机构         1111         轨道切换机构        1112
进料电机             1113         进料皮带            1114
控制模块             50           切换电机            1115
同步带               1116         试剂管              114
吊篮                 115          插孔                1151
弹性部件             1151a        备料电机            1131
备料皮带             1132         到位检测装置        1133
导向角               1134         控制模块            50
出料区               131          下料区              133
离心机               21           离心框体            22
机械手装置           23           放样本区域          221
异常样本上料区域     222          夹爪                231
可移动机构           232          导轨                233
防撞机构             234          弹性防撞机构        235
报警机构             236          触动件              2361
感测器               2362         传送装置            31
固定装置             32           定位装置            33
试管套               321          保持套              322
开口                 323          定位支架            331
推压件               332          传感装置            334
分检测管模块         411          分备份管模块        412
第一耗材堆栈模块     71           第二耗材堆栈模块    72
机械夹爪             4111、421    移液器               4112、422
移液器运动组件       4113、423    驱动模块            4110
二次定位位           413、424     工作位置            414、425
台面                 411a         检测器              415、426
漏斗                 411b         爪部                4111b
驱动装置             4111a        勾部                4111d
弹性物质            4111c       吸头                   416
弹性调节装置        4114        座体                   4171
吸头架              417         容置孔                 4173
吸头容置件          4172        二次定位组件           418
自动锁扣装置        4174        第三耗材堆栈模块       73
导向件              4181        出仓装置               712
料仓                711、711a、 旋转电机               714
                    711b、721
转盘                713         料架                   7111、7211
支撑轴              713a        前后驱动装置           7122
承载件              7121        扫码模块               715
上下驱动装置        7123        防呆结构               7111a、
                                                       7111b、
                                                       7212、
驱动装置            7151        开口                   4271
台面底板            427         支撑孔                 4273
支撑轴安装孔        4272        下料夹爪装置           61
定位孔              4274        样本成像模块           91
样本回收架          62          上夹爪装置             911
拔盖模块            92          夹爪机构               9111
拍照装置            912         下夹爪机构             922
上夹爪机构          921         机械限位结构           924
旋转驱动装置        923         推料机构               82
运输机构            81          推顶件                 821
存储区域            83          电机                   8221
推顶件驱动机构      822         处理装置               51
同步带组件          8222        控制程序               53
存储装置            52
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件;当一个组件被认为是“安装于”另一个组件,它可以是直接安装在另一个组件上或者可能同时存在居中组件。本文所使用的术语“及/或”包括一个或多个相关的所列项目的所有的和任意的组合。
请参阅图1所示,为本申请一实施方式中的样本前处理系统1的整机示意图。所述样本前处理系统1包括样本上下料模块10、离心模块20、样本传输模块30(见图7所示)、分样本模块40、样本回收模块60、耗材堆栈模块70(见图15所示)及成品存储模块80。其中,分样本模块40用于将样本进行分杯,在本实施方式中,分样本模块40包括分血浆模块41与分白细胞模块42,分别用于对样本中的血浆与白细胞进行分杯操作。样本上下料模块10、离心模块20、样本回收模块60、分 白细胞模块42、分血浆模块41及成品存储模块80依次排列,样本传输模块30呈“回”字依次经过离心模块20、样本回收模块60、分白细胞模块42、分血浆模块41和分白细胞模块42。耗材堆栈模块70设于分血浆模块41、分白细胞模块42下方,用于为分血浆模块41与分白细胞模块42提供耗材。
生物样本如血液样本经样本上下料模块10进入样本前处理系统1,在离心模块20处离心分层,之后,经由样本传输模块30的传送,分别在分血浆模块41与分白细胞模块42进行分杯,完成分杯后剩余的样本被样本传输模块30送回样本回收模块60进行回收,而分杯获得的成品被送到成品存储模块80进行存储。
请参阅图2和图3所示,为本实施方式中的样本上下料模块10的示意图。所述样本上下料模块10包括上料模块11与下料模块13。所述上料模块11用于运输样本至样本前处理系统1内,具体地,上料模块11用于将样本传送至离心模块20处,以便离心模块20处的机械手能将样本送入离心模块20进行样本离心分层。在本实施方式中,请同时参阅图3所示,上料模块11包括进料区111及与进料区111衔接的备料区113,进料区111包括进料驱动机构1111与轨道切换机构1112。在本实施方式中,进料驱动机构1111包括进料电机1113与进料皮带1114,进料皮带1114被进料电机1113驱动沿进料轨道朝向备料区113的方向前进,以将放置于进料皮带1114上的样本传送至备料区113。在本实施方式中,进料区111包括两个进料驱动机构1111,两个进料驱动机构1111沿平行于进料皮带1114前进的方向并排设置,所述轨道切换机构1112用于切换任一进料驱动机构1111于进料轨道上,以便该进料驱动机构1111能将放置于其上的样本传送至备料区113。在其他实施方式中,所述进料驱动机构1111可以是其他数量,例如一个或多于两个。在进料驱动机构1111为一个的情况下,也可以省略轨道切换机构1112的设置。在进料驱动机构1111多于两个的情况下,所有进料驱动机构1111可均沿平行于进料皮带1114前进的方向并排设置,再利用轨道切换机构1112切换任一进料驱动机构1111于进料轨道上。其中,所述轨道切换机构1112可以是人工启动并在人工控制下切换进料驱动机构1111,也可以是被控制模块50(见图25所示)控制切换进料驱动机构1111,例如,所述控制模块50接收侦测进料皮带1114上样本放置情况的感测器发送的信号,根据感测器感测的每条进料皮带1114上样本情况切换进料驱动机构1111。在本实施方式中,所述轨道切换机构1112包括切换电机1115、同步带1116与梯形丝杠(图未示)。切换电机1115驱动同步带1116,同步带带动梯形丝杠运动,梯形丝杠运动切换有样本的进料驱动机构1111于进料轨道上。
如图3所示,在本实施方式中,样本被容置于试剂管114内,试剂管114插设于吊篮115上,吊篮115作为样本进入样本前处理系统1的载体,被放置于进料皮带1114上。请参阅图4所示,吊篮115上设有多个插孔1151,每一插孔1151内壁上设有弹性部件1151a,所述弹性部件1151a朝向插孔1151中间凸设,在试剂管114插设于插孔1151内后,弹性部件1151a挤压试剂管114以固定试剂管114。由于弹性部件1151a的设置,每一插孔1151可以接收不同外形、大小的试剂管114,例如,由于每一试剂管114表面贴的识别条码不一致可能导致试剂管114整体直径不一致,设置弹性部件1151a,降低了插孔1151对试剂管114外观的要求。在本实施方式中,根据需要,吊篮115中还可配置配重管,所述配重管用于平衡搭载了样本之后的吊篮115的总重量至预设重量范围内。配重管至少具有一不同于试剂管114且可被检测到的特征,例如,配重管具有不同于试剂管114的颜色。配重管基于该特征被样本前处理系统1识别,从而避免进入后续的分血浆、分白细胞环节。
如图3所示,在本实施方式中,所述备料区113包括备料电机1131与备料皮 带1132,所述备料电机驱动备料皮带1132运转,备料皮带1132的高度低于进料皮带1114。备料区113衔接进料区111的入口处设置了导向角1134,以方便吊篮115从进料区111进入备料区113。备料区113的预设位置处设有到位检测装置1133,所述到位检测装置1133可以是到位开关或者传感器,所述到位检测装置1133在吊篮115到达该位置时输出信号至控制模块50,以使所述控制模块50控制备料电机1131与进料电机1113停止运转,同时,控制离心模块20内的机械手装置23(见图5所示)启动过来抓取预设位置处的吊篮115。
如图2所示,在本实施方式中,下料模块13与上料模块11结构大体相同,包括出料区131及与出料区131衔接的下料区133。其中,出料区131对应进料区111、下料区133对应备料区113,下料区133接收回收的吊篮115,将吊篮115传送至出料区131,吊篮115达到出料区131后,可被卸下。为便于吊篮115从下料区133顺利转移至出料区131,在本实施方式中,所述出料区131运输吊篮115的皮带高度低于下料区133的皮带高度,同时,所述出料区131衔接下料区133的入口处设置导向角。
请参阅图5所示,为本实施方式中离心模块20的示意图,所述离心模块20包括离心机21、离心框体22及机械手装置23。其中,在本实施方式中,离心机21整合于离心框体22内,机械手装置23设置于离心框体22上。机械手装置23可被控制移动以将吊篮115从位于备料区113的预设位置处移动至离心机21内。所述离心框体22上还设有放样本区域221与异常样本上料区域222。样本在离心机21内完成离心后,机械手装置23将吊篮115从离心机21内转移至放样本区域221。之后,机械手装置23进一步将吊篮115内的试剂管114转移至样本传输模块30上,由样本传输模块30依次传输至分血浆模块41与分白细胞模块42。
异常样本上料区域222用于放置无需经过离心可以直接被机械手装置23转移至样本传输模块30上的样本。例如,在一些异常样本(如条码张贴不规范、未拔盖、或者溶血严重、信息校验有误等)经人工识别,可以重新被利用时,该些异常样本可被放置于异常样本上料区域222,被机械手装置23转移至样本传输模块30上。
请同时参阅图6所示,机械手装置23下端设置夹爪231,所述夹爪231用于夹持试剂管114或吊篮115。所述夹爪231设置于可移动机构232上,所述可移动机构232可沿导轨233上下移动,可移动机构232与夹爪相背的上端设置防撞机构234。在本实施方式中,所述防撞机构234包括弹性防撞机构235与报警机构236。所述弹性防撞机构235为弹簧,所述报警机构236包括触动件2361与感测器2362。在可移动机构232向上移动发生碰撞时,通过压缩弹簧避免机械手装置23损坏,同时,感测器2362跟随可移动机构232向上移动而被固定于某位置的触动件2361触发,所述感测器2362被触发时发出警报信号,从而通知外界机械手装置23存在故障。
所述离心模块20本身作业及与其他模块的交互过程如下:在上料模块11的到位检测装置1133检测到吊篮115后,离心模块20的机械手装置23移动至上料模块11的预设位置处抓取吊篮115并将吊篮转移至离心机21内,在机械手装置23转移预设数量的吊篮115于离心机21内后,离心机21启动,吊篮115内的样本被离心分层,完成离心分层后,机械手装置23将吊篮115从离心机21中取出并放置于放样本区域221,之后,机械手装置23从放样本区域221抓取试剂管114放置于样本传输模块30上。
请参阅图7所示,为本实施方式中部分样本传输模块30的示意图。所述样本 传输模块30包括传送装置31、固定装置32及定位装置33。其中,传送装置31用于定距离传送样本,所述传送装置31的一种实施方式为皮带传送。固定装置32用于传送样本时固定盛放样本的试剂管114,所述固定装置32为多个,多个固定装置32定距离隔开设置于传送装置31上,被传送装置31带动移动。所述定位装置33用于在每一定点位置定位固定装置32,从而定位样本位置。其中,每一定点位置为各模块对样本进行预设操作的位置,所述预设操作可以是将样本置入或者移出位于该定点位置的固定装置32的操作,如机械手装置23将样本置入固定装置32,样本回收模块60将样本移出固定装置32,后续的扫码、拔盖时均需将样本先移出固定装置,在完成相应操作后再置入固定装置。所述预设操作也可以是从样本中分离部分样本的操作。如后续分血浆模块41与分白细胞模块42对样本进行的分杯操作。
在本实施方式中,每一固定装置32包括试管套321、设置于试管套321内部的保持套322。所述试管套321固定于传送装置31上,所述保持套322用于保持盛放样本的试剂管114的特定姿态,如保持试剂管114为竖直姿态。在本实施方式中,保持套322为塑胶套。所述固定装置32上端设有开口323,所述试剂管114被机械手装置23从所述开口323插设于所述固定装置32中,并被保持套322保持于竖直姿态。
在本实施方式中,每一定位装置33对应一定点位置设置。每一定位装置33包括定位支架331、设置于定位支架331上的推压件332与弹性件(图未示),推压件332朝向定点位置凸伸,从而在一固定装置32在被传送装置31带动移动到该定点位置时,推压件332抵持并推压该固定装置32,实现该固定装置32的定位。弹性件设置于推压件332后侧,用于为推压件332提供推力。具体地,在本实施方式中,推压件332为滚轮,当传送装置31带动一固定装置32移动到一定点位置时,固定装置32挤压朝向该定点位置凸伸的滚轮,滚轮的转轴方向与固定装置32移动的方向相垂直。滚轮受力压缩弹性件,弹性件产生反作用力压紧试管套321,从而实现固定装置32在该定点位置的定位,从而解决可能存在的由于传动装置32的拉紧不足或其他原因导致的固定装置32定位不准确的问题。当样本在该定点位置完成预定操作(如分血浆或分白细胞等)后,传送装置31继续向前移动,固定装置32脱离该定点位置,滚轮由于弹性件的弹力推动复位。在本实施方式中,每一定点位置还设置有传感装置334,所述传感装置334用于感测该定点位置是否有样本,在本实施方式中,传感装置334设置于定位支架331上,通过感测试剂管114从固定装置32伸出的一端来感测试剂管114的存在,通过感测试剂管114的存在与否判断该定点位置是否有样本。
样本传输模块30还设有复位感测器(图未示),在样本前处理系统1启动时,所述样本前处理系统1根据复位感测器发送的信号判断样本传输模块30是否位于初始位置,并在未处于初始位置时对样本传输模块30进行复位,使样本传输模块30回到初始位置。机械手装置23在一预设位置对所述样本传输模块30上料,当固定装置32位于该预设位置处时,机械手装置23将一试剂管114插设于该固定装置32中,之后,样本传输模块30被控制移动一个指定距离,使另一固定装置32位于该预设位置,以此往复实现所有样本的上料。当一固定装置32被样本传输模块30移动至一定点位置时,样本前处理系统1根据该定点位置处的传感装置334发送的信号,启动该定点位置处的机构对固定装置32中的样本进行相应操作。固定装置32内的样本在所有定点位置完成相应操作后,被样本传输模块30传送至样本回收模块60,被样本回收模块60回收至样本回收架62(见图20所示)中。
在本实施方式中,样本传输模块30起始和终止于离心模块20所在位置处,构成一条环状运输通道。在环状运输通道转弯之处,沿样本传输模块30前进的方向设置导向角(图未示)。
请参阅图8所示,为本实施方式中的分血浆模块41的示意图。所述分血浆模块41用于利用耗材堆栈模块70提供的耗材对试剂管114中的样本的血浆进行分杯操作。具体地,在本实施方式中,所述分血浆模块41包括分检测管模块411与分备份管模块412。其中,所述分检测管模块411用于将试剂管114中的部分血浆分装至检测管中,分装至检测管中的血浆后续被用于检测以获得相关检测结果;所述分备份管模块412用于将试剂管114中的部分血浆分装至备份管中,分装至备份管中的血浆后续被保存备份。所述耗材堆栈模块70包括第一耗材堆栈模块71与第二耗材堆栈模块72,其中,在本实施方式中,第一耗材堆栈模块71设置于分检测管模块411下方,用于为分检测管模块411的检测管分杯操作提供深孔板与吸头等耗材;第二耗材堆栈模块72设置于分备份管模块412下方,用于为分备份管模块412的备份管分杯操作提供冻存管与吸头等耗材。
在本实施方式中,分检测管模块411包括前后两个运动组件,其中,前运动组件为用于抓取耗材的机械夹爪4111,后运动组件为带有移液器4112(见图11所示)的移液器运动组件4113。在本实施方式中,前后运动组件可由同一驱动模块4110驱动,且分别位于驱动模块4110的相反方位。在其他实施方式中,前后运动组件可分别由不同驱动模块驱动,且前后运动组件之间的方位并不限于一前一后,可以是任意方位,前后运动组件也可分别称呼为第一运动组件与第二运动组件。
在本实施方式中,所述分血浆模块41上还设置了二次定位位413与工作位置414。所述机械夹爪4111、移液器运动组件4113、二次定位位413与工作位置414均设置于分检测管模块411的台面411a上。所述二次定位位413用于暂存第一耗材堆栈模块71提供的耗材,并实现耗材的二次定位。所述工作位置414用于所述分血浆模块执行分杯操作时放置所述耗材,请同时参阅图9所示,对应所述工作位置414还设有检测器415,所述检测器415用于检测所述工作位置414是否有耗材,避免分检测管模块411误操作污染工作位置414。在本实施方式中,工作位置414分为两处,一处用于放置深孔板,另一处用于放置吸头。所述机械夹爪4111用于从所述二次定位位413移动耗材至工作位置414,所述移液器运动组件4113用于在工作位置与样本传输模块30的指定定点位置之间移动并将指定定点位置的血浆分杯至深孔板。
具体地,本实施方式中,在样本前处理系统1启动后,第一耗材堆栈模块71与第二耗材堆栈模块72启动,分别对分检测管模块411和分备份管模块412进行上料。第一耗材堆栈模块71首先将深孔板传送至二次定位位413,在深孔板到达二次定位位413后,机械夹爪4111启动,将深孔板从二次定位位413转移至工作位置414放置深孔板的位置处;第一耗材堆栈模块71之后将吸头传送至二次定位位413,在吸头到达二次定位位413后,机械夹爪4111再次启动,将吸头从二次定位位413转移至工作位置414放置吸头的位置处;在将预设数量的深孔板与吸头转移至工作位置414后,移液器运动组件4113首先移动至放置吸头的工作位置扎取吸头,然后移动至样本传输模块30的指定定点位置上方,控制吸头伸入指定定点位置的试剂管114中,移液器吸取血浆,之后移液器运动组件4113移动至放置深孔板的工作位置,将吸取的血浆排出至深孔板的其中一个孔内。其中,所述台面411a上设有漏斗411b,所述台面411a下方设有对应所述漏斗411b的医疗垃圾桶(图未示)。在一次吸排液完成后,移液器运动组件4113将所述吸头经所述漏斗411b丢弃于所 述医疗垃圾桶中。在置于工作位置的耗材利用完毕后,例如,位于工作位置414的深孔板使用完毕后,机械夹爪4111将深孔板从工作位置414移动到成品存储模块80进行存储,如此,完成将分杯获得的成品的存储。
以上仅给出了第一耗材堆栈模块71上料与分检测管模块411进行血浆分杯的过程的一个示例,在其他实施方式中,根据需要,该过程中一些步骤的执行顺序可以改变。例如,第一耗材堆栈模块71可以先上吸头,再上深孔板;例如,第一耗材堆栈模块71可以先上预设数量的吸头,再上预设数量的深孔板,或者,第一耗材堆栈模块71也可以交替上吸头与深孔板。
在本实施方式中,分备份管模块412的设置可参考分检测管模块411,分备份管模块412与第二耗材堆栈模块72配合及完成分杯的过程亦可参考分检测管模块411与第一耗材堆栈模块71配合完成分杯的过程,在此均不做赘述。
请参阅图10所示,为本实施方式中机械夹爪4111的部分示意图。所述机械夹爪4111包括驱动装置4111a与爪部4111b,在本实施方式中,所述爪部4111b为两个且相对设置,每个爪部4111b朝向对方的一侧设有弹性物质4111c,所述弹性物质4111c用于在抓取耗材时提供轻微压力,以在移动耗材过程中避免耗材脱落。每个爪部4111b朝向对方的一侧还设有勾部4111d,所述勾部4111d在移动耗材的过程中为耗材提供托力。所述驱动装置4111a用于驱动所述两个爪部4111b靠近或远离,以使爪部4111b完成抓取和放下耗材的动作。在本实施方式中,所述驱动装置4111a采用电机带动齿轮,再由齿轮驱动两根齿条,使两根齿条带动两个爪部4111b运动。
请参阅图11所示,为本实施方式中移液器运动组件4113的示意图。所述移液器运动组件4113上设有移液器4112与弹性调节装置4114,所述移液器4112可被一动力装置(如电机,图未示)驱动上下移动,所述弹性调节装置4114设置于所述动力装置与移液器4112之间,所述动力装置在驱动移液器4112上下移动的过程中压缩弹性调节装置4114,通过调节压缩弹性调节装置4114被压缩的距离,可以调节移液器4112施加于吸头上的压紧力至一合适范围,以保证移液器4112既能成功扎取吸头,在使用完后还能顺利抛弃吸头416。
请参阅图12所示,为本实施方式提供的吸头架417的示意图。所述吸头架417用于容置吸头416。在本实施方式中,吸头架417可被置于耗材堆栈模块70上,并被耗材堆栈模块70提供至分样本模块40,并被分样本模块40内的夹爪(如机械夹爪4111)传送至对应的工作位置(如工作位置414),在该工作位置为移液器运动组件(如移液器运动组件4113)提供吸头416。
在本实施方式中,所述吸头架417包括座体4171与吸头容置件4172,所述吸头容置件4172设置于座体4171上,吸头容置件4172的中间位置设置多个容置孔4173用于容置吸头416。所述座体4171朝向吸头容置件4172设有自动锁扣装置4174,所述自动锁扣装置4174在吸头容置件4172置入座体4171上时锁定吸头容置件4172,避免在移液器运动组件4113扎取吸头416的过程中带出吸头容置件4172。具体地,在本实施方式中,自动锁扣装置4174为自动复位机构,在将吸头容置件4172置于座体4171上的过程中,自动锁扣装置4174被推开,在吸头容置件4172被置入座体4171上后,自动锁扣装置4174自动复位,将吸头容置件4172卡固于座体4171上。
请参阅图13所示,为本实施方式中设于二次定位位(如二次定位位413)的二次定位组件的示意图。所述二次定位组件418包括导向件4181,在本实施方式中,所述导向件4181设置于二次定位位的对角位置,用于界定二次定位位的大 小。在其他实施方式中,导向件4181可以设置于其他位置,例如,设置于二次定位位的长边及/或短边位置等边缘区域。
请参阅图14所示,为本实施方式中分白细胞模块42的示意图。所述分白细胞模块42用于利用耗材堆栈模块70提供的耗材对试剂管114中的样本的白细胞进行分杯操作。具体地,在本实施方式中,所述耗材堆栈模块70还包括第三耗材堆栈模块73,所述第三耗材堆栈模块73设置于分白细胞模块42的下方,用于为分白细胞模块42的白细胞分杯操作提供冻存管与吸头等耗材。所述分白细胞模块42包括前后两个运动组件,其中,前运动组件为用于抓取耗材的机械夹爪421,后运动组件为带有移液器422的移液器运动组件423。所述分白细胞模块42上还设置了二次定位位424与工作位置425,对应工作位置425还设置了检测器426,所述检测器426用于检测工作位置425上是否有耗材,避免分白细胞模块42误操作污染工作位置425。
所述分白细胞模块42中各部件的设置及各部件配合完成分白细胞的过程可以参考对分血浆模块41中的分检测管模块411的描述,在此不做赘述。
如上所述,耗材堆栈模块70包括第一耗材堆栈模块71、第二耗材堆栈模块72及第三耗材堆栈模块73。在本实施方式中,第一耗材堆栈模块71、第二耗材堆栈模块72及第三耗材堆栈模块73的结构与工作原理大体相同,不同仅在于其设置位置及提供耗材的对象不同,因此,以下以第一耗材堆栈模块71为例进行介绍。
请参阅图15所示,为本实施方式中的第一耗材堆栈模块71的示意图。第一耗材堆栈模块71包括多个料仓711与出仓装置712,出仓装置712用于将料仓711中的耗材运输至指定的二次定位位。在本实施方式中,所述出仓装置712设置于一固定位置,所述多个料仓711可被移动以切换位置,使任一料仓711对准出仓装置712,以便出仓装置712将该料仓711中的耗材运输至指定的二次定位位。在本实施方式中,多个料仓711设置于转盘713上,所述转盘713的中心安装一支撑轴713a,所述转盘713被旋转电机714带动旋转,从而切换不同的料仓711对准出仓装置712。每个料仓711设有多层料架7111,多层料架7111由下而上叠置。每层料架7111上可设置感测器(图未示)以感测该料架7111上是否放有耗材。在本实施方式中,至少一个料仓711a用于存放吸头架416,至少另一个料仓711b用于存放深孔板。
在本实施方式中,出仓装置712包括用于承载耗材的承载件7121、用于推动承载件7121前后移动的前后驱动装置7122及用于推动承载件7121上下移动的上下驱动装置7123。所述前后驱动装置7122首先驱动承载件7121向前移动,以使承载件7121能进入一料仓711的一料架7111,置于料架7111上的耗材的下方;所述上下驱动装置7123驱动承载件7121向上移动,以使承载件7121托起耗材;之后,前后驱动装置7122再启动,驱动承载件7121向后移动至一预设位置处,使承载件7121连同耗材脱离料仓711;最后,上下驱动装置7123再启动,驱动承载件7121继续向上移动至指定的二次定位位,前后驱动装置7122再结合上下驱动装置7123运动将耗材放置于二次定位位上。
本实施方式中,上下驱动装置7123置于前后驱动装置7122上,承载件7121与上下驱动装置7123相连接,上下驱动装置7123被前后驱动装置7122驱动前后移动,从而带动承载件7121前后移动。在其他实施方式中,也可以是将前后驱动装置7122设置于上下驱动装置7123上,承载件7121与前后驱动装置7122相连接,前后驱动装置7122被上下驱动装置7123驱动上下移动,从而带动承载件7121 上下移动。
本实施方式中,所述第一耗材堆栈模块71还包括扫码模块715,所述扫码模块715用于获得第一堆栈模块71内耗材的编号。在本实施方式中,所述扫码模块715被安装于多个所述料仓711一侧,且所述扫码模块715可被人工调节以实现上下移动、前后移动以及左右翻转,从而使安装后所述扫码模块715处于较佳的扫码位置。其中,前后移动可以调节扫码模块715距离耗材的距离,左右翻转可以调节所述扫码模块715的倾角,以保证识别不同位置处的耗材的编号。安装完成后,所述扫码模块715可在一驱动装置7151的驱动下上下移动,从而获得料仓711的每个料架7111上的耗材的编号。获得的编号被传送给控制模块50,以便控制模块50在后续的分样本环节中对耗材与样本进行关联绑定。
请参阅图16所示,在本实施方式中,存放深孔板(图中A所指为深孔板)的料仓711b的每一料架7111的特定位置设有防呆结构7111b,所述防呆结构7111b用于保证深孔板以预设方位置入料仓711b。请参阅图17所示,在本实施方式中,存放冻存管(图中B所指为冻存管架)的料仓721的每一料架7211的特定位置设有防呆结构7212,所述防呆结构7212用于保证冻存管架以预设方位置入料仓721。请参阅图18所示,在本实施方式中,存放吸头架416的料仓711a的每一料架7111的特定位置设置了防呆结构7111a,所述防呆结构7111a用于保证吸头架416以预设方位置入料仓711a。
在本实施方式中,第一耗材堆栈模块71、第二耗材堆栈模块72、第三耗材堆栈模块73的安装分别采用分检测管模块411、分备份管模块412及分白细胞模块42的台面底板进行定位,如此保证耗材堆栈模块70整体定位的可靠性。另外,还需要保证位于各料仓中间的支撑轴竖直。请结合参阅图14和图19所示,本文以第三耗材堆栈模块73的安装为例进行说明。所述第三耗材堆栈模块73以分白细胞模块42的台面底板427为基准进行定位安装。所述台面底板427上设有开口4271,所述开口4271供第三耗材堆栈模块73的出仓装置712穿过以将耗材推送至位于台面上的二次定位位424。所述台面底板427上还设有支撑轴安装孔4272,所述支撑轴安装孔4272用于安装支撑轴的一端。而且,所述第三耗材堆栈模块73中还设有多个与支撑轴平行的支撑柱(图未示),对应地,所述台面底板427上还设有支撑孔4273和定位孔4274,所述支撑孔4273和所述定位孔4274分别用于固定不同的支撑柱。在支撑轴安装完成后,通过支撑孔4273和定位孔4274固定支撑柱,完成第三耗材堆栈模块73的定位,之后拧紧支撑孔上的螺钉,完成第三耗材堆栈模块73的装配。其中,所述定位孔4274和所述支撑孔4273的数量均为两个,所述定位孔4274的连线与所述支撑孔4273的连线相交。为提高装配的准确性,精确设定所述定位孔4274的孔径与两个所述定位孔4274之间的距离,使每一定位孔4274与相应的支撑柱完全匹配,同时设置支撑孔4273的孔径稍大于相应的支撑柱的横截尺寸,从而预留安装余地。通过以上设置,可首先将定位孔4274与相应的支撑柱进行精确安装,然后再将支撑孔4273与相应的支撑柱进行安装,从而完成装配。
请参阅图20所示,为本实施方式中的样本回收模块60的整体示意图,在本实施方式中,样本回收模块60包括下料夹爪装置61和样本回收架62。此外,样本前处理系统1还包括样本成像模块91与拔盖模块92,所述样本成像模块91与拔盖模块92亦设置于样本回收模块60处。在样本前处理系统1运行过程中,从离心模块20处接收到样本后,样本传输模块30移动依次经过样本成像模块91、拔盖模块92、分白细胞模块42、分血浆模块41、分白细胞模块42,最后回到样本回收模块60进行样本回收。其中,样本成像模块91用于对试剂管114进行成像,以识别 试剂管114的编号及样本的分层高度;拔盖模块92用于拔掉试剂管114上的盖帽,为后续的分血浆与分白细胞做准备。所述样本成像模块91包括上夹爪装置911与成像装置912。所述上夹爪装置911用于从样本传输模块30处抓取样本供成像装置912成像,并在获得成像图片后将样本放回样本传输模块30。在本实施方式中,所述成像装置912为拍照装置,通过拍照的方式获得样本的照片。所述上夹爪装置911与拍照装置被控制模块50控制协调作业。例如,在本实施方式中,控制模块50控制上夹爪装置911从样本传输模块30抓取样本,在上夹爪装置911完成样本的抓取后,控制模块50再控制上夹爪装置911朝预定方向每次转动预定角度并控制拍照装置拍照,以分别找到贴附于试剂管114外侧的条码及未被条码覆盖的豁口位置。具体地,控制模块50根据拍照装置每次拍照获得的照片的内容判断是否找到条码与豁口。在找到条码后,控制模块50进一步识别出该样本的编号;而在找到豁口位置后,控制模块50进一步基于豁口位置朝向拍照装置拍摄的照片,判断样本总高度及分层高度。在本实施方式中,控制模块50通过对照片进行色域转化,例如,把照片上白色的区域转换成第一色(如黑色),把非白色的区域转换成不同于第一色的第二色(如白色),从转换后的第二色(如白色)区域的高度判断样本的总高度;在获得总高度后,再把原照片上红色区域和/或黑色区域转换成不同于白细胞区域颜色的同一色(如黑色),从转换后的同一色(如黑色)区域的高度判断样本的血细胞的高度,之后再根据总高度与血细胞的高度的差值获得血浆下层的高度(即血浆和白细胞的高度之和,而白细胞高度较小且通常液面不平整)。如此,获得样本的分层高度。而通过获得样本分层高度,控制模块50对后续的分血浆与分白细胞可以具有更优化的控制,如可根据样本分层高度控制移液器下行的距离。具体地,控制模块50可控制移液器停止于血浆下层的高度上方,并缓慢向下移动以吸取白细胞。另,通过获得样本分层高度,还可扩大实验室自动化系统的其他应用面。
在本实施方式中,在控制模块50控制上夹爪装置911转动获得样本的条码位置与豁口位置后,控制模块50进一步控制上夹爪装置911反向旋转回到原点位置,如此,避免由于上夹爪装置911带动样本旋转,导致样本中心线可能与对应的固定装置32存在角度差,将样本放回固定装置32导致样本毁坏的可能。此外,为避免样本毁坏,固定装置32的开口323还设置导向角,扩大开口323处的尺寸。如此,保证上夹爪装置911取放样本的可靠性。
请一并参照图21,在本实施方式中,为实现上夹爪装置911取放和旋转样本,上夹爪装置911包括上下移动机构(未标示)、第一旋转装置(未标示)、第二旋转装置(未标示)及夹爪机构9111。其中,夹爪机构911用于抓取样本,上下移动机构用于驱动夹爪机构911上下移动,第一旋转装置用于驱动夹爪机构911移动至样本传输模块30上方,第二旋转装置用于驱动夹爪机构911带动样本旋转。在其他实施方式中,所述第一旋转装置可以由平移装置代替,所述平移装置用于驱动夹爪机构平移至样本传输模块30上方,所述平移可以是沿直线平移或沿预定曲线平移。
请参阅图22所示,为本实施方式中的拔盖模块92的示意图。在本实施方式中,所述拔盖模块92包括上夹爪机构921与下夹爪机构922。所述下夹爪机构922用于抓取试剂管114下端、所述上夹爪机构921用于固定试剂管114的帽盖,下夹爪机构922与上夹爪机构921相背移动从而实现样本脱帽。在本实施方式中,脱帽时,所述下夹爪机构922还同时被旋转驱动装置923驱动旋转,利用旋转运动结合相背移动形成的复合运动实现脱帽操作。在本实施方式中,上夹爪机构922下端还设有 机械限位结构924,所述机械限位结构924用于限位帽盖,以消除无法完成脱帽的风险。在一种实施方式中,所述机械限位结构为一抵持以限位所述帽盖的凸起。
在本实施方式中,所述拔盖模块92被控制模块50控制实施脱帽操作。所述上夹爪机构921可以被控制模块50控制平移至样本传输模块30的上方抓取样本,在抓取到样本后返回,所述上夹爪机构921还可被控制模块50控制张开与收合以实现样本的取放。所述下夹爪模块922亦可被控制模块50控制张开与收合实现抓取试剂管114下端。
在其他实施方式中,脱帽时,可以是上夹爪机构921旋转或者上夹爪机构921与下夹爪机构922同时旋转,二者旋转方向相反。
在其他实施方式中,可以是拔盖模块92整体被控制模块50控制移动以去样本传输模块30上方抓取样本。
请返回参阅图20所示,在样本传输模块30的固定装置32内的样本在定点位置完成分血浆、分白细胞的操作后,样本传输模块30继续带动固定装置32移动到样本回收模块60所在处。所述样本回收模块60的下料夹爪装置61被控制模块50控制从固定装置32中取下试剂管114并将试剂管114放置至样本回收架62中,从而将剩余的样本进行回收。在本实施方式中,下料夹爪装置61包括平移驱动装置(图未标)、上下驱动装置(图未标)及夹爪开合驱动装置,从而实现下料夹爪装置61的上下移动、平移及夹爪开合,最终实现将试剂管114转移至样本回收架62中。在本实施方式中,样本回收架62为用于安置试管的试管架。
在本实施方式中,分血浆模块41将位于一定点位置的试剂管114中样本的血浆分装至深孔板与冻存管中,在工作位置的冻存管或者深孔板中的孔位用完后,分血浆模块41中相应的机械夹爪(如机械夹爪4111)抓取相应的冻存管架或深孔板放置于成品存储模块80上,由成品存储模块80进行存储。同样,分白细胞模块42将位于另一定点位置的试剂管114中样本的白细胞分装至冻存管中,在工作位置的冻存管用完后,分白细胞模块42中的机械夹爪421抓取冻存管架放置于成品存储模块80上,由成品存储模块80进行存储。
请参阅图23与图24所示,分别为本实施方式中的成品存储模块80的示意图及样本前处理系统的部分示意图,所述成品存储模块80包括运输机构81与推料机构82,此外,成品存储模块80还设有用于存储样本成品的存储区域83。所述存储区域83与推料机构82相对且隔开设置,运输机构81沿预设轨迹运输带有成品的冻存管架或深孔板,所述预设轨迹一端位于存储区域83与推料机构82之间的预设位置处,另一端经过分血浆模块41延伸至分白细胞模块42所在处。在分样本模块40将带有分杯操作获得的成品的冻存管架或深孔板放置于运输机构81上后,运输机构81启动并将冻存管架或深孔板运输至存储区域83与推料机构82之间。之后推料机构82启动,将运输机构81上的冻存管架或深孔板推至存储区域83进行存储。在本实施方式中,推料机构82包括推顶件821与推顶件驱动机构822。所述推顶件驱动机构822用于驱动推顶件821朝向存储区域83运动,推顶运输机构81上的冻存管架或深孔板,将冻存管架或深孔板移动至存储区域83。在本实施方式中,推顶件驱动机构822受控制模块50的控制,根据控制模块的控制启动与停止,从而将冻存管架或深孔板移动至存储区域83的指定位置。当后续再有带有成品的冻存管架或深孔板需存储时,推顶件驱动机构822再次启动将冻存管架或深孔板移动至该指定位置,而冻存管架或深孔板在移动的过程中推动之前存放于该位置的冻存管架或深孔板,使之前存放的冻存管架或深孔板继续往前移动,如此往复,直至存储区域83存满样本成品。其中,在分样本模块40将带有分杯操作获得的成品的冻 存管架或深孔板放置于运输机构81上时,需要判断成品是否已经放好,否则可能会产生较大的生物污染。
在本实施方式中,所述推顶件驱动机构822包括电机8221、同步带组件8222及梯形丝杠(图未示)。梯形丝杠与推顶件821耦合。电机8221驱动同步带组件8222转动时,同步带组件8222再带动梯形丝杠转动,梯形丝杠再推动推顶件821朝向存储区域83移动。进一步地,在本实施方式中,所述存储区域83还设有用于检测所述存储区域83是否存满的检测装置(图未示)及在所述检测装置检测存满后进行提示的提示装置(图未示)。所述检测装置与提示装置均与控制模块50连接,所述检测装置在检测到存储区域83存满后发送信号至控制模块50,所述控制模块50根据所述信号启动所述提示装置进行提示,以提示操作员取走成品。
请参阅图25所示,为本实施方式中样本前处理系统1的控制示意图。所述样本前处理系统1还包括控制模块50,所述控制模块50用于控制样本上下料模块10、离心模块20、样本传输模块30、分样本模块40、样本回收模块60、耗材堆栈模块70、成品存储模块80、样本成像模块91及拔盖模块92协调作业,以完成样本的前处理。具体地,所述样本上下料模块10、离心模块20、样本传输模块30、分样本模块40、样本回收模块60、耗材堆栈模块70、成品存储模块80、样本成像模块91及拔盖模块92内设置了驱动装置及/或检测装置。其中,驱动装置是对驱动机构、驱动模块、驱动装置等用于驱动相应模块内的相应部件运动或作动以完成相应功能的部件的统称。检测装置是对设置于各模块内的感测器、检测器、传感器、扫码装置、拍照装置等用于获得各模块内相应部件或样本的状态、位置及/或编号等信息的部件的统称。所述控制模块50通过从检测装置处获得信息,监测每一样本所在的位置及状态,并根据样本的位置与状态控制相应的驱动装置启动,从而完成样本的前处理及样本成品的存储。在本实施方式中,控制模块50包括处理装置51、存储装置52及用于控制样本前处理系统1运行的控制程序53,所述控制程序53可存储于存储装置52中并运行于处理装置51上,以实现对样本前处理系统1的控制。在本实施方式中,所述控制程序53被处理装置51运行时执行下述方法。
步骤一,对特定模块进行初始化。
在每次上电运行后,所述控制模块50接收特定模块的特定检测装置发送的检测信号,根据特定模块发送的检测信号确定特定模块的整体或特定部件是否处于初始位置,并在特定模块整体或特定部件未处于初始位置时,发送控制信号给特定模块的特定驱动装置,使特定驱动装置启动以使特定模块整体或特定部件回到初始位置。
其中,所述特定模块可以是所有模块,也可以是部分模块。例如,所述特定模块可以仅是样本传输模块30,在每次上电运行后,控制模块50根据样本传输模块30的复位传感器发送的信号,使样本传输模块30整体回复至初始位置,从而完成对样本传输模块30的初始化。
步骤二,启动上料模块11输送装载样本的吊篮115至备料区113的预设位置处。
步骤三,接收备料区113到位检测装置1133的信号,根据所述信号停止上料模块11及启动离心模块20的机械手装置23。
步骤四,控制机械手装置23至备料区113的预设位置处抓取吊篮115并移动吊篮115至离心模块20的离心机21内。
重复步骤二至步骤四至机械手装置23抓取了预设数量的吊篮115至离心机21内。
步骤五,启动离心机21对样本进行离心分层。
步骤六,在离心完成后控制机械手装置23从离心机21内转移吊篮115至离心模块20的放样本区域221。
步骤七,控制机械手装置23从位于放样本区域221的吊篮115内抓取样本放置于样本传输模块30的固定装置32内。
步骤八,控制样本传输模块30启动并移动一个固定距离,以使放置了样本的固定装置32离开该用于上样本的预设位置,后一固定装置移动至该预设位置。
重复步骤七与步骤八,直至放样本区域221与异常样本上料区域222的样本均已被放置于样本传输模块30上,或者,直至样本传输模块30上已无可用的固定装置32可用于加载样本。
步骤九,控制机械手装置23将空置的吊篮115转移至下料模块13上。
步骤十,启动下料模块13将吊篮115运出样本前处理系统1。
步骤十一,接收样本回收模块30上第一个定点位置的传感装置334发送的信号,启动样本成像模块91的上夹爪装置911从该第一个定点位置抓取样本。
步骤十二,启动拍照装置912对样本进行拍照,分析照片内容以分别获得贴附于试剂管114外侧的条码及未被条码覆盖的豁口位置。具体地,本实施方式中,所述控制模块50协调上夹爪装置911与拍照装置912,控制上夹爪装置911带动样本朝预定方向每次转动预定角度后供拍照装置拍照,使拍照装置912拍摄预设数量的照片,再分析所述照片以分别获得贴附于试剂管114外侧的条码及豁口位置。
步骤十三,识别所述样本的编号及基于豁口位置朝向拍照装置912的拍摄的照片,判断样本总高度及分层高度。所述判断样本总高度与分层高度进一步包括:
对豁口位置朝向拍照装置912拍摄的照片进行色域转化,将照片上的白色区域转换成黑色,把非白色的区域转换成白色,从转换后的白色区域的高度判断样本的总高度,之后再把原照片上的红色区域和/或黑色区域转换成黑色,从转换后的黑色区域的高度判断样本的血细胞的高度,根据总高度与血细胞的高度的差值获得血浆下层的高度。
步骤十四,控制上夹爪装置911将样本放回该第一个定点位置的固定装置32内。具体地,本实施方式中,在将样本放回第一个定点位置之前,所述控制模块50还控制上夹爪装置911反向旋转回到原点位置。
步骤十五,接收样本回收模块30上该第一个定点位置的传感装置334再次发送的信号,控制样本传输装置30往前移动固定距离,使经过拍照识别编号及分层高度的样本移动至第二个定点位置。
步骤十六,接收样本传输模块30上该第二个定点位置的传感装置334发送的信号,控制拔盖模块92移动至所述第二个定点位置抓取样本。
步骤十七,控制拔盖模块92的上夹爪机构921与下夹爪机构922分别抓取样本试剂管114的帽盖与试剂管114下端,控制所述上夹爪机构921与下夹爪机构922相背移动以将帽盖从试剂管114上脱下。具体地,本实施方式中,在脱帽时,所述控制模块50还控制下夹爪机构922旋转,利用直线运动与转动形成的复合运动实现脱帽。
步骤十八,控制拔盖模块92将脱帽后的样本放回该第二定点位置的固定装置32内。
步骤十九,依据接收的耗材堆栈模块70内感测器的信号,启动扫码模块对耗材堆栈模块70内耗材进行扫码,以获得每一耗材的编号。
步骤二十,启动出仓装置将耗材对应运输至分血浆模块41与分白细胞模块42 的二次定位位上。
步骤二十一,启动分血浆模块41与分白细胞模块42的机械夹爪将耗材从二次定位位上转移至各自的工作位置上。
上述步骤十九至步骤二十一的执行可以是位于步骤十八之后,也可以是在步骤一至步骤十八之间的任何时候,甚至可以与步骤一同时执行。
步骤二十二,接收样本传输模块30上第三个定点位置的传感装置334发送的信号,控制分血浆模块41内分检测管模块411的移液器运动组件4113移动至放置吸头的工作位置扎取吸头,之后控制所述移液器运动组件4113运动至该第三个定点位置,从位于该第三个定点位置的样本中吸取定量血浆并将吸取的血浆转移至放置于工作位置的深孔板的其中一个孔内。具体地,在本实施方式中,控制模块50根据之前获得的样本的分层高度控制吸头下降的距离。在完成一次分杯后,控制模块50控制移液器运动组件4113将所述吸头经漏斗411b丢弃于所述医疗垃圾桶(图未示)中。根据需要,步骤二十二可以重复多次进行,以进行多次分杯操作获得多次分杯成品。
步骤二十三,控制样本传输装置30往前移动固定距离,使样本从第三个定点位置继续前移至第四个定点位置。
步骤二十四,接收第四个定点位置的传感装置334发送的信号,控制分血浆模块41内分备份管模块412的移液器运动组件(未标示)移动至放置吸头的工作位置扎取吸头,之后控制所述移液器运动组件运动至该第四个定点位置,从位于该第四个定点位置的样本中吸取定量血浆并将吸取的血浆转移至放置于工作位置的冻存管中。具体地,所述冻存管的数量为两个,所述移液器运动组件将每次吸取的血样分别排至两个所述冻存管中。在本实施方式中,控制模块50根据之前获得的样本的分层高度控制吸头下降的距离。在完成一次分杯后,控制模块50控制移液器运动组件将所述吸头经漏斗411b丢弃于所述医疗垃圾桶(图未示)中。根据需要,步骤二十四可以重复多次进行,以进行多次分杯操作获得多次分杯成品。
步骤二十五,控制样本传输装置30往前移动固定距离,使样本从第四个定点位置继续前移至第五个定点位置。
步骤二十六,接收第五个定点位置的传感装置334发送的信号,控制分白细胞模块42内的移液器运动组件423移动至放置吸头的工作位置扎取吸头,之后控制所述移液器运动组件423运动至该第五个定点位置,从位于该第五个定点位置的样本中吸取定量白细胞并将吸取的白细胞转移至放置于工作位置的冻存管中。具体地,在本实施方式中,控制模块50根据之前获得的样本的分层高度控制吸头下降的距离。在完成一次分杯后,控制模块50控制移液器运动组件423将所述吸头经漏斗411b丢弃于所述医疗垃圾桶(图未示)中。根据需要,步骤二十六可以重复多次进行,以进行多次分杯操作获得多次分杯成品。
步骤二十七,控制样本传输装置30往前移动至样本回收模块60,控制样本回收模块60的下料夹爪装置61从固定装置32中取下样本并转移样本至样本回收架62中,从而将剩余的样本进行回收。
步骤二十八,判断分血浆模块41与分白细胞模块42中的工作位置的耗材是否使用完,在深孔板、冻存管等耗材使用完后,控制分血浆模块41与分白细胞模块42的机械夹爪将分杯后获得的成品转移至成品存储模块80。
步骤二十九,启动成品存储模块80的运输机构81将成品运输至推料机构82与存储区域83之间的预设位置。
步骤三十,启动推料机构82将运输机构81上的成品推至存储区域83进行存 储。
综上所述,本申请实施方式提供的样本前处理系统,利用自动的样本上下料模块进行样本的自动上下料操作,利用耗材堆栈系统进行耗材的自动上料,利用成品存储模块进行成品的自动存储,减少了人工干预时间,使繁琐的操作简易化、标准化,解放了人力,同时减少了误操作及生物污染的产生,降低了生产成本;通过自动识别样本高度和分层高度,实现自动化的血浆分杯与白细胞分杯,使样本分杯操作更准确;通过设置拔盖模块的特殊结构,提高了拔盖成功率,减少了对试剂管来料的要求,降低了生产成本。
可以理解,上述实施方式给出了以皮带进行传动的传动机构,然该些传动机构实际上也可以改成采用其他传动方式进行传动,如采用丝杆传动方式、齿轮齿条传动方式进行传动。
可以理解,虽然上述实施方式以样本前处理系统处理血液样本为例进行说明,然本申请中的样本前处理系统并不只限于处于血液样本,同样还可以执行其他样本的分层与分杯处理。
可以理解,虽然上述实施方式以将生物样本盛放于试剂管、冻存管、深孔板为例进行说明,然,盛放生物样本的容器可以不限于试剂管、冻存管、深孔板,而可以是任何适合盛放该生物样本的任何形状的载体。
可以理解,在有些实施方式中某些模块可以省略,如针对不需拔盖的情况,拔盖模块可以省略。
可以理解,在有些实施方式中各模块的位置可以改变,如,耗材堆栈模块可以不放置于分样本模块的下方,例如,可以放置于分样本模块的旁边。再如,样本成像模块与拔盖模块可以不与样本回收模块整合于一处,而可以各自安放于合适的位置。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (41)

  1. 一种样本前处理系统,其特征在于,包括:
    样本上下料模块,用于自动化传送生物样本及生物样本载体进出样本前处理系统;
    离心模块,用于对生物样本进行离心分层;
    样本分杯模块,用于对离心分层后的样本进行分杯操作,以获得分杯后的成品;
    成品存储模块,用于对分杯后获得的成品进行存储;
    样本传输模块,用于将离心分层后的样本传送至所述样本分杯模块处;及
    控制模块,用于控制所述样本前处理系统的各模块协调工作。
  2. 如权利要求1所述的样本前处理系统,其特征在于,所述样本上下料模块包括上料模块,所述上料模块包括上料区和备料区,所述上料区包括进料驱动机构,所述进料驱动机构用于驱动装载了生物样本的载体进入所述备料区,所述备料区包括设置于预设位置的到位检测装置,所述到位检测装置用于通知所述控制模块所述载体到位的情况,所述控制模块用于基于所述通知控制将所述生物样本转移至所述离心模块。
  3. 如权利要求2所述的样本前处理系统,其特征在于,所述上料区还包括轨道切换机构,所述轨道切换机构用于切换不同的所述进料驱动机构对齐所述备料区,以使不同的所述进料机构将装载了生物样本的载体传送至所述备料区。
  4. 如权利要求2所述的样本前处理系统,其特征在于,所述控制模块还用于基于所述通知控制所述上料模块停止运转。
  5. 如权利要求2所述的样本前处理系统,其特征在于,所述离心模块包括离心机与机械手装置,所述离心机用于对所述生物样本进行离心分层,所述机械手装置用于将所述生物样本移入所述离心机及将完成离心分层的生物样本移出所述离心机。
  6. 如权利要求5所述的样本前处理系统,其特征在于,所述机械手装置还用于将完成离心分层的生物样本转移至所述样本传输模块上,及/或,所述样本上下料模块还包括下料模块,所述机械手装置用于将卸载了生物样本的载体转移至所述下料模块上,所述下料模块用于将所述载体转移出所述样本前处理系统。
  7. 如权利要求5所述的样本前处理系统,其特征在于,所述机械手装置包括设置于所述机械手装置下端的夹爪、设置所述夹爪的可移动机构、及设置于所述可移动机构上端的防撞机构。
  8. 如权利要求7所述的样本前处理系统,其特征在于,所述防撞机构为弹性防撞机构。
  9. 如权利要求1所述的样本前处理系统,其特征在于,所述样本传输模块包括传送装置与固定装置,所述传送装置用于传 送所述生物样本,所述固定装置用于固定所述生物样本。
  10. 如权利要求9所述的样本前处理系统,其特征在于,所述固定装置为多个,所述多个固定装置定距离隔开设置于所述传送装置上。
  11. 如权利要求9所述的样本前处理系统,其特征在于,所述样本传输模块还包括定位装置,所述定位装置用于在定点位置定位固定装置。
  12. 如权利要求11所述的样本前处理系统,其特征在于,所述定点位置为所述样本前处理系统对离心分层后的生物样本进行预设操作的位置。
  13. 如权利要求12所述的样本前处理系统,其特征在于,所述预设操作可以是将所述生物样本置入或移出所述固定装置或者从所述生物样本中分离部分生物样本的操作。
  14. 如权利要求11所述的样本前处理系统,其特征在于,所述定位装置包括定位支架、推压件与弹性件,所述推压件与弹性件均设置于所述定位支架上,所述推压件一侧朝向定点位置凸伸、另一侧靠近所述弹性件,当所述固定装置进入所述定点位置时,所述推压件一端抵持所述固定装置、另一端抵持并压缩所述弹性件,以实现所述固定装置的定位。
  15. 如权利要求14所述的样本前处理系统,其特征在于,所述推压件为滚轮,所述滚轮的转轴方向与所述传送装置移动的方向垂直。
  16. 如权利要求11所述的样本前处理系统,其特征在于,所述样本传输模块还包括传感装置,所述传感装置对应所述定点位置设置,用于检测所述定点位置所述存在生物样本并在检测到所述定点位置存在生物样本时发送信号给所述控制模块,所述控制模块还用于根据接收到的所述信号,启动和控制相关模块执行对应所述定点位置的预设操作。
  17. 如权利要求9所述的样本前处理系统,其特征在于,所述样本传输模块还包括复位传感器,所述复位传感器用于在所述样本前处理系统启动时检测所述样本传输模块是否位于预设的初始位置及用于当所述样本传输模块未处于所述初始位置发送信号给所述控制模块,所述控制模块还用于在接收到所述复位传感器发送的信号后,控制所述样本传输模块回到所述初始位置。
  18. 如权利要求1所述的样本前处理系统,其特征在于,所述样本分杯模块包括分血浆模块,所述分血浆模块用于对所述生物样本中的血浆进行分杯,及/或,所述样本分杯模块包括分白细胞模块,所述分白细胞模块用于对所述生物样本中的白细胞进行分杯。
  19. 如权利要求1所述的样本前处理系统,其特征在于,还包括耗材堆栈模块,所述耗材堆栈模块用于为所述样本分杯模块提供耗材。
  20. 如权利要求19所述的样本前处理系统,其特征在于,所述耗 材堆栈模块包括料仓及出仓装置,所述料仓用于存储耗材,所述出仓装置用于被所述控制模块控制将所述料仓中的耗材转移至所述样本分杯模块。
  21. 如权利要求20所述的样本前处理系统,其特征在于,所述料仓包括多个,所述多个料仓可以移动以切换不同的所述料仓对准所述出仓装置,以使所述出仓装置可将所述料仓中的耗材转移至所述样本分杯模块。
  22. 如权利要求20所述的样本前处理系统,其特征在于,所述耗材堆栈模块还包括扫码模块,所述扫码模块用于扫描所述料仓内的耗材以获得每一耗材的编号,并将所述编号发送给所述控制模块,以便控制模块将分杯后的成品与耗材进行关联。
  23. 如权利要求19所述的样本前处理系统,其特征在于,所述耗材堆栈模块以所述样本分杯模块的台面底板为基准进行定位安装于所述样本分杯模块的下方。
  24. 如权利要求19所述的样本前处理系统,其特征在于,所述样本分杯模块包括台面、设置于台面上方的机械夹爪与移液器运动组件,所述台面上还设置有二次定位位与工作位置,所述耗材堆栈模块用于将耗材转移至所述二次定位位,所述机械夹爪用于将耗材从所述二次定位位转移至所述工作位置,所述移液器运动组件用于将位于所述定点位置的生物样本分离部分至其中一所述耗材中。
  25. 如权利要求24所述的样本前处理系统,其特征在于,所述机械夹爪包括驱动装置与多个爪部,所述驱动装置用于驱动所述多个爪部靠拢或远离,以完成耗材的抓取与放下,每个所述爪部相对的一侧设有弹性物质,所述弹性物质用于在抓取耗材时提供压力,及/或,每个所述爪部相对的一侧设有勾部用于托起耗材。
  26. 如权利要求24所述的样本前处理系统,其特征在于,所述机械夹爪与所述移液器运动组件采用同一驱动模块驱动。
  27. 如权利要求24所述的样本前处理系统,其特征在于,所述移液器运动组件包括移液器、动力装置及弹性调节装置,所述动力装置用于驱动所述移液器向下运动以扎取吸头,所述弹性调节装置设置于所述动力装置与所述移液器之间,所述动力装置在向下驱动移液器扎取吸头时压缩所述弹性调节装置,通过控制压缩所述弹性调节装置的量来调节施加于吸头上的压紧力。
  28. 如权利要求24所述的样本前处理系统,其特征在于,所述二次定位位上设有二次定位组件,所述二次定位组件包括导向件,所述导向件设置于二次定位位的边缘区域。
  29. 如权利要求11所述的样本前处理系统,其特征在于,还包括样本成像模块用于在所述分样本模块执行样本分杯之前对所述生物样本进行成像以获得所述生物样本的编号及分层高度。
  30. 如权利要求29所述的样本前处理系统,其特征在于,所述样本成像模块包括上夹爪装置与成像装置,所述上夹爪装置用 于从位于所述定位位置的固定装置中获取所述生物样本供所述成像装置成像、并在成像完成后将所述生物样本放回所述固定装置,所述成像装置用于对所述生物样本成像并将所述生物样本的成像图片传送给所述控制装置,所述控制装置还用于分析所述生物样本的成像图片获得所述生物样本的编号及所述生物样本内物质分层的高度;或者,所述控制装置还用于分析所述生物样本的成像图片获得所述生物样本的条码与豁口位置,根据所述条码识别出所述生物样本的编号,及根据所述豁口位置朝向所述成像装置获得的成像图片分析所述生物样本内物质分层的高度。
  31. 如权利要求30所述的样本前处理系统,其特征在于,所述控制装置通过对所述豁口位置朝向所述成像装置获得的成像图片进行色域转换,通过色域转换获得所述生物样本内物质的总高度与分层物质的高度。
  32. 如权利要求31所述的样本前处理系统,其特征在于,所述生物样本为血液样本,所述控制装置执行色域转换获得所述血液样本的总高度和血细胞的高度。
  33. 如权利要求32所述的样本前处理系统,其特征在于,所述控制装置执行色欲转换包括:将所述豁口位置朝向所述成像装置获得的成像图片上的白色区域转换成第一色,把非白区域转换成不同于第一色的第二色,根据转换后的所述第二色区域的高度获得所述血液样本的总高度;将所述豁口位置朝向所述成像装置获得的成像图片上的红色区域和/或黑色区域转换成不同于白细胞区域的颜色的同一色,根据转化后的所述同一色的高度获得血细胞的高度;及根据总高度与血细胞的高度的差值获得血浆下层的高度。
  34. 如权利要求11所述的样本前处理系统,其特征在于,还包括拔盖模块,所述拔盖模块用于在所述分样本模块执行样本分杯之前拔掉所述生物样本的盖帽。
  35. 如权利要求34所述的样本前处理系统,其特征在于,所述拔盖模块包括上夹爪机构与下夹爪机构,所述上夹爪机构用于固定所述生物样本的帽盖,所述下夹爪机构用于抓取所述生物样本的下端,所述上夹爪机构与所述下夹爪机构用于通过相背移动实现所述生物样本的脱帽。
  36. 如权利要求35所述的样本前处理系统,其特征在于,所述上夹爪机构及/或下夹爪机构在脱帽过程中被驱动旋转,以利用旋转运动结合相背移动的复合运动实现所述生物样本的脱帽;及/或,所述上夹爪机构还包括机械限位结构或凸起限位所述帽盖。
  37. 如权利要求11所述的样本前处理系统,其特征在于,还包括样本回收模块,所述样本回收模块用于在所述分样本模块完成分杯操作后对剩余的生物样本进行回收。
  38. 如权利要求37所述的样本前处理系统,其特征在于,所述样本回收模块包括下料夹爪装置与样本回收架,所述下料夹爪 装置用于从所述固定装置中取下剩余的所述生物样本并放置于所述样本回收架中。
  39. 如权利要求24所述的样本前处理系统,其特征在于,所述成品存储模块包括运输机构、推料机构及存储区域,所述运输机构用于将所述分杯获得的成品运输至预设位置,所述推料机构用于将位于所述预设位置的所述成品推至所述存储区域进行存储。
  40. 如权利要求39所述的样本前处理系统,其特征在于,所述推料机构与所述存储区域相对且隔开设置,所述预设位置位于所述推料结构与所述存储区域之间。
  41. 如权利要求39所述的样本前处理系统,其特征在于,所述机械夹爪还用于将分杯后获得的所述成品从所述工作位置转移至所述运输机构上。
PCT/CN2020/086215 2020-04-22 2020-04-22 样本前处理系统 WO2021212384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099640.6A CN115380220A (zh) 2020-04-22 2020-04-22 样本前处理系统
PCT/CN2020/086215 WO2021212384A1 (zh) 2020-04-22 2020-04-22 样本前处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086215 WO2021212384A1 (zh) 2020-04-22 2020-04-22 样本前处理系统

Publications (1)

Publication Number Publication Date
WO2021212384A1 true WO2021212384A1 (zh) 2021-10-28

Family

ID=78270964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086215 WO2021212384A1 (zh) 2020-04-22 2020-04-22 样本前处理系统

Country Status (2)

Country Link
CN (1) CN115380220A (zh)
WO (1) WO2021212384A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083352A (zh) * 2022-01-19 2022-02-25 浙江金火科技实业有限公司 基于数控机床制造的刹车推杆的检测设备及检测方法
RU2811536C1 (ru) * 2023-11-28 2024-01-15 Общество С Ограниченной Ответственностью "Эвотэк Инновации" (Ооо "Эвотек Инновации") Модуль загрузки и выгрузки контейнеров для камеры инкубации биологических образцов

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814276A (en) * 1996-04-25 1998-09-29 Riggs; Robert C. Automated blood sample processing system
EP0902290A2 (en) * 1997-09-11 1999-03-17 Hitachi, Ltd. Sample handling system for automatic analysers
WO2001096881A1 (fr) * 2000-06-16 2001-12-20 Diagyr Appareil pour l'analyse d'echantillons
US6531095B2 (en) * 1999-02-11 2003-03-11 Careside, Inc. Cartridge-based analytical instrument with optical detector
JP2009058408A (ja) * 2007-08-31 2009-03-19 Nsk Ltd 遠心力付与装置及び検体液分析装置
JP2012073138A (ja) * 2010-09-29 2012-04-12 Hitachi High-Technologies Corp 検体前処理装置および方法
CN102759630A (zh) * 2011-04-29 2012-10-31 霍夫曼-拉罗奇有限公司 用于操作自动化样本工作间的方法
CN104040353A (zh) * 2011-11-07 2014-09-10 贝克曼考尔特公司 样本容器检测
CN104040357A (zh) * 2011-11-07 2014-09-10 贝克曼考尔特公司 等分器系统以及工作流
CN104053997A (zh) * 2011-11-07 2014-09-17 贝克曼考尔特公司 用于处理样本的系统和方法
CN104105969A (zh) * 2011-11-07 2014-10-15 贝克曼考尔特公司 离心机系统和工作流程
CN104535777A (zh) * 2014-12-29 2015-04-22 赵敏 一种全自动医学检测系统
CN107290562A (zh) * 2017-08-22 2017-10-24 重庆博奥新景医学科技有限公司 一种用于样品管高通量检测的自动进样系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814276A (en) * 1996-04-25 1998-09-29 Riggs; Robert C. Automated blood sample processing system
EP0902290A2 (en) * 1997-09-11 1999-03-17 Hitachi, Ltd. Sample handling system for automatic analysers
US6531095B2 (en) * 1999-02-11 2003-03-11 Careside, Inc. Cartridge-based analytical instrument with optical detector
WO2001096881A1 (fr) * 2000-06-16 2001-12-20 Diagyr Appareil pour l'analyse d'echantillons
JP2009058408A (ja) * 2007-08-31 2009-03-19 Nsk Ltd 遠心力付与装置及び検体液分析装置
JP2012073138A (ja) * 2010-09-29 2012-04-12 Hitachi High-Technologies Corp 検体前処理装置および方法
CN102759630A (zh) * 2011-04-29 2012-10-31 霍夫曼-拉罗奇有限公司 用于操作自动化样本工作间的方法
CN104040353A (zh) * 2011-11-07 2014-09-10 贝克曼考尔特公司 样本容器检测
CN104040357A (zh) * 2011-11-07 2014-09-10 贝克曼考尔特公司 等分器系统以及工作流
CN104053997A (zh) * 2011-11-07 2014-09-17 贝克曼考尔特公司 用于处理样本的系统和方法
CN104105969A (zh) * 2011-11-07 2014-10-15 贝克曼考尔特公司 离心机系统和工作流程
CN104535777A (zh) * 2014-12-29 2015-04-22 赵敏 一种全自动医学检测系统
CN107290562A (zh) * 2017-08-22 2017-10-24 重庆博奥新景医学科技有限公司 一种用于样品管高通量检测的自动进样系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083352A (zh) * 2022-01-19 2022-02-25 浙江金火科技实业有限公司 基于数控机床制造的刹车推杆的检测设备及检测方法
RU2811721C1 (ru) * 2023-09-05 2024-01-16 Общество С Ограниченной Ответственностью "Эвотэк Инновации" (Ооо "Эвотэк Инновации") Система для инкубации и формирования цифровых изображений биологических образцов
RU2813445C1 (ru) * 2023-09-06 2024-02-12 Общество С Ограниченной Ответственностью "Эвотэк Инновации" (Ооо "Эвотэк Инновации") Камера для инкубации биологических образцов
RU2811536C1 (ru) * 2023-11-28 2024-01-15 Общество С Ограниченной Ответственностью "Эвотэк Инновации" (Ооо "Эвотек Инновации") Модуль загрузки и выгрузки контейнеров для камеры инкубации биологических образцов

Also Published As

Publication number Publication date
CN115380220A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US11754582B2 (en) Automated diagnostic analyzer and method for its operation
WO2018209906A1 (zh) 自动配药装置
EP1275966A1 (en) Automatic analyzer and part feeding device used for the analyzer
JP2002090374A (ja) 検体前処理装置および検体搬送方法
JP2007510898A (ja) 生体液の分析を行うための装置及び関連する方法
DK2516300T3 (en) DEVICE AND PROCEDURE FOR AUTOMATICALLY HANDLING OF ARTICLES IN A PNEUMATIC TRANSPORT SYSTEM
WO2021212384A1 (zh) 样本前处理系统
CN110892269A (zh) 样本分析系统及样本分析系统控制方法
CN217830818U (zh) 检测装置
CN110631877B (zh) 一种液基细胞制片的解扣分离机构
CN108885222B (zh) 运输装置
JP3203773B2 (ja) 自動開栓装置
JP2003014770A (ja) 開栓装置及び分注装置
WO2023088353A1 (zh) 包装套筒自动上料系统和包装套筒的自动上料方法
JP3273916B2 (ja) 分析前処理システム
JPH0894631A (ja) 容器移送装置
CN115780298A (zh) 矿用电子仪器装配调零检测系统
CN111186620B (zh) 一种采样处理装置及方法
CN114735458A (zh) 一种反应杯检测抓取装置、方法及化学发光分析仪
CN112549363A (zh) 一种泡沫箱自动化去除胶带回收工艺
JP2012154755A (ja) 反応容器閉栓装置,自動分析装置,反応容器閉栓方法
CN111069093A (zh) 一种电子功能件自动检查系统
CN111298855B (zh) 试管加盖装置
JPWO2020044688A1 (ja) 自動分析装置
CN217359929U (zh) 阅片仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932829

Country of ref document: EP

Kind code of ref document: A1