WO2021212289A1 - 激光发射装置 - Google Patents

激光发射装置 Download PDF

Info

Publication number
WO2021212289A1
WO2021212289A1 PCT/CN2020/085725 CN2020085725W WO2021212289A1 WO 2021212289 A1 WO2021212289 A1 WO 2021212289A1 CN 2020085725 W CN2020085725 W CN 2020085725W WO 2021212289 A1 WO2021212289 A1 WO 2021212289A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
circuit board
laser transmitter
energy storage
storage module
Prior art date
Application number
PCT/CN2020/085725
Other languages
English (en)
French (fr)
Inventor
林玉波
杜灿鸿
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/085725 priority Critical patent/WO2021212289A1/zh
Priority to EP20932251.0A priority patent/EP4047760A4/en
Publication of WO2021212289A1 publication Critical patent/WO2021212289A1/zh
Priority to US17/747,061 priority patent/US20220278502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85455Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies

Definitions

  • the embodiments of the present application relate to the field of optoelectronic technology, and in particular to a laser emitting device.
  • the laser emitting device can emit a laser signal under the control of the driving signal.
  • a drive signal is used to control the circuit to generate an instantaneous current, so that the laser emitting device emits laser light.
  • the instantaneous current changes slowly, which affects the effect of the laser emitting device emitting laser light.
  • one of the technical problems solved by the embodiments of the present invention is to provide a laser emitting device to overcome the slow change of the instantaneous current due to the parasitic inductance in the circuit in the prior art, which affects the laser emitting effect of the laser emitting device. Defects.
  • the embodiment of the present application provides a laser emitting device, which includes: a driving component, a laser transmitter, an energy storage module, and a circuit board;
  • the laser transmitter is a bare chip laser transmitter.
  • the input end of the laser transmitter is electrically connected to the energy storage module, and the output end of the laser transmitter is electrically connected to the driving component; the energy storage module and an external power supply are used to generate the energy needed to drive the laser transmitter
  • the drive component is used to output drive signals to control the energy storage module and the external power supply to output electrical signals to the laser transmitter to make the laser transmitter emit light.
  • the drive component, laser transmitter and energy storage module are fixed on the top of the circuit board, A ground layer is provided in the circuit board.
  • the laser transmitter is fixed to the upper surface of the circuit board through at least one anode connecting wire, and the cathode of the laser transmitter is arranged on the lower surface of the laser transmitter.
  • a nickel-palladium-gold layer is provided between the laser transmitter and the circuit board, and at least one anode connecting wire is bound to the nickel-palladium-gold layer.
  • the cathode of the laser emitter is fixed to the upper surface of the circuit board by silver paste.
  • the distance between the lower surface of the laser transmitter and the upper surface of the circuit board is less than or equal to 30 microns.
  • the first end of the energy storage module is electrically connected to the input end of the laser transmitter, and the second end of the energy storage module is grounded;
  • the output end of the laser transmitter is electrically connected to the first input end of the driving assembly
  • the second input terminal of the driving component is connected to the pulse signal, and the output terminal of the driving component is grounded.
  • the driving component includes a waveform shaping circuit and a switch unit;
  • the input terminal of the waveform shaping circuit is the second input terminal of the drive component, and the output terminal of the waveform shaping circuit is connected to the control terminal of the switch unit; the input terminal of the switch unit is the first input terminal of the drive component, and the output terminal of the switch unit is the drive The output terminal of the component.
  • the switching unit is a field effect tube; the drain of the field effect tube is the input end of the switching unit, the gate of the field effect tube is the control end of the switching unit, and the source of the field effect tube is The output terminal of the switch unit.
  • the distance between the lower surface of the laser transmitter and the ground layer of the circuit board is less than or equal to 0.1 mm.
  • the circuit board includes a wiring layer, an intermediate dielectric layer, and a ground layer, the intermediate dielectric layer is located between the wiring layer and the ground layer, and the thickness of the intermediate dielectric layer is 12.5 microns to 50 microns. Between micrometers.
  • a first ground hole and a second ground hole are provided on the circuit board
  • the first grounding hole is arranged under the driving component, and the driving component is grounded through the first grounding hole;
  • the second ground hole is arranged under the energy storage module, and the energy storage module is grounded through the second ground hole.
  • the laser emitting device further includes a reinforcing plate, and the reinforcing plate is fixed on the lower surface of the circuit board.
  • the laser transmitter is a bare chip laser transmitter
  • the distance between the laser transmitter and the ground layer of the circuit board is reduced, the local mutual inductance is increased, and the laser transmitter is also reduced
  • the distance from other circuit elements in the laser emitting device reduces the local self-inductance, and reduces the parasitic inductance generated by the circuit in the laser emitting device as a whole, so that the instantaneous current change generated when the driving signal controls the laser emitting device is accelerated.
  • the anti-interference ability of laser emission is improved, and the effect of laser emission is increased.
  • FIG. 1 is a schematic diagram of a circuit principle of a laser emitting circuit in a laser emitting device provided by each embodiment of the application;
  • FIG. 3 is a cross-sectional view of the first laser emitting device provided in the second embodiment of the application.
  • FIG. 4 is a schematic diagram of a circuit structure of a laser emitting device provided by various embodiments of the application.
  • FIG. 5 is a schematic diagram of a circuit structure of a laser emitting device provided by various embodiments of the application.
  • FIG. 6a is a schematic diagram of a shape of a connecting line provided by various embodiments of the application.
  • 6b is a cross-sectional view of a circuit board provided by various embodiments of the application.
  • FIG. 6c is a top view of a circuit board provided by various embodiments of the application.
  • FIG. 7 is a cross-sectional view of the second laser emitting device provided in the second embodiment of the application.
  • FIG. 8 is a cross-sectional view of a third laser emitting device provided in the second embodiment of the application.
  • FIG. 1 is a schematic diagram of a circuit principle of a laser emitting circuit in a laser emitting device provided by each embodiment of the application;
  • FIG. 1 shows a laser emitting circuit 10, which includes a driving chip 101 and a laser emitting chip 102 And capacitor 103;
  • the driving chip 101 includes a Schmitt trigger 1011 and a MOS tube 1012, the input terminal of the Schmitt trigger 1011 is connected to a pulse signal, and the output terminal of the Schmitt trigger 1011 is connected to the gate of the MOS tube 1012;
  • the drain of the MOS tube 1012 is connected to the output terminal of the laser emitting chip 102, and the source of the MOS tube 1012 is grounded;
  • One end of the capacitor 103 is connected to the input end of the laser emitting chip 102 and the positive electrode of the external power supply 11, and the other end of the capacitor 103 is grounded.
  • the input terminal of the Schmitt trigger 1011 inputs a pulse signal, and the Schmitt trigger 1011 performs waveform shaping on the pulse signal and then outputs the pulse signal to the gate of the MOS tube 1012 to control the turn-on and turn-off of the MOS tube 1012 .
  • the external power supply 11 charges the capacitor 103.
  • the capacitor 103 discharges to the laser emitting chip 102, and the laser emitting chip 102 emits laser light under the action of instantaneous current.
  • the Schmitt trigger 1011 performs waveform shaping on the input pulse signal.
  • the waveform-shaped pulse signal is input to the gate of the MOS tube 1012, if the pulse signal is at a high level, the MOS tube 1012 is turned on.
  • the capacitor 103 discharges to the laser emitting chip 102.
  • the capacitor 103 generates an instantaneous current to flow to the laser emitting chip 102, so that the laser emitting chip 102 emits laser under the action of the instantaneous current.
  • the pulse signal is at a high level for only a period of time in a period
  • the current generated by the capacitor 103 is only an instantaneous current for a period of time.
  • the inductance has the property of hindering the change of high-frequency current
  • the current change in the circuit becomes slow, that is, the current input to the laser emitting chip
  • the rate of change of the input laser emission chip is reduced, and the rise time of the current input to the laser emission chip becomes longer.
  • the narrow pulse signal input to the gate of the MOS tube has changed from a high level to a high level. Low level, so that the MOS tube 1012 is turned off to turn off the laser emission, and the desired peak current cannot be reached, and the peak current is positively correlated with the peak optical power, which will cause the peak power of the laser emitted by the laser emitting chip 102 to decrease, which is vulnerable to The anti-interference ability is weakened due to the influence of ambient light.
  • the parasitic inductance 104 shown in FIG. 1 is because the circuit element itself has inductance properties, and the inductance properties of the entire circuit are equivalently produced.
  • the parasitic inductance 104 is not an actual element, but just to illustrate the circuit. Schematic representation of the principle. It should be noted that the parasitic inductance 104 is mainly caused by the inductance properties of the connecting wires between the various circuit elements and the grounding terminal in the circuit. Of course, the circuit elements will also exhibit inductance properties to a certain extent. This application There is no limitation on this. In the present application, the parasitic inductance 104 may include all or part of the inductance generated by circuit elements that exhibit inductance properties.
  • V represents the voltage across the parasitic inductance 104
  • L represents the inductance value of the parasitic inductance 104
  • V represents the voltage across the parasitic inductance 104
  • L represents the inductance value of the parasitic inductance 104
  • the first embodiment of the present application provides a structural diagram of a laser emitting device, as shown in FIG. 2, which is a cross-sectional view of the laser emitting device provided by the first embodiment of the application.
  • the emitting device 20 includes a laser emitting circuit 10, a printed circuit board (PCB) 201, and a substrate 202, wherein the laser emitting circuit 10 is fixed on the upper surface of the PCB 201.
  • PCB printed circuit board
  • the laser emitting circuit 10 includes a laser emitting chip 102, a driving chip 101 and a capacitor 103.
  • the laser emitting chip 102 is fixed on the substrate 202, and the substrate 202, the driving chip 101 and the capacitor 103 are all fixed on the upper surface of the PCB 201.
  • the laser emitting chip 102, the driving chip 101, and the capacitor 103 may be respectively equivalent to the circuit elements with the same number in FIG. 1.
  • the substrate 202 can be made of insulating materials such as ceramics. Of course, this is only an exemplary description, and does not mean that the application is limited to this.
  • the substrate 202 is used to encapsulate the laser emitting chip 102, and the laser The emitting chip 102 is fixed on the upper surface of the substrate 202.
  • the PCB 201 is provided with a grounding terminal. As shown in FIG. 2, two grounding holes are provided on the PCB 201, namely a first grounding hole 2031 and a second grounding hole 2032.
  • the first grounding hole 2031 is provided under the driving chip 101, The chip 101 is connected to the ground terminal through the first ground hole 2031.
  • the second ground hole 2032 is provided under the capacitor 103, and the capacitor 103 is connected to the ground terminal through the second ground hole 2032.
  • the driving chip 101 and the capacitor 103 are respectively connected to the laser emitting chip 102.
  • the driving chip 101 may be connected between the output terminal and the ground terminal of the laser emitting chip 102, and the capacitor 103 may be connected to the input terminal of the laser emitting chip 102 and Between ground terminals.
  • the laser emitting chip 102 When the laser emitting chip 102 is working, current flows in from the input end of the laser emitting chip 102 and flows out from the output end of the laser emitting chip 102.
  • the laser emitting chip 102 may include at least one laser diode, at least one laser diode may be connected in parallel or in series, the anode of the laser diode is the input end of the laser emitting chip 102, and the cathode of the laser diode is the laser emitting At the output end of the chip 102, current flows from the anode of the laser diode to the cathode of the laser diode.
  • the parasitic inductance of the entire circuit includes the local self-inductance of the power supply, the local self-inductance of the ground, and the local mutual inductance between the power supply and the ground, as shown in formula 2:
  • L loop represents the parasitic inductance of the entire circuit
  • L loop inductance can be equivalent to the inductor 104 of FIG. 1
  • L a represents a local supply inductance
  • L b represents a partial ground inductance
  • L ab denotes a power supply and ground
  • the local mutual inductance It should be noted that the local self-inductance of the power supply is formed by the inductance properties shown by the connecting lines between the various circuit elements, and the local self-inductance of the ground is formed by the inductance properties shown by the ground terminals of the various circuit elements.
  • the local mutual inductance is caused by the mutual influence of the leftward current in the connection line on the PCB 201 and the rightward current in the ground terminal of the PCB 201.
  • the phenomenon of mutual inductance can be understood as a phenomenon in which when the current in one wire changes, an induced electromotive force is generated in another wire nearby.
  • the parasitic inductance of the entire circuit can be reduced by reducing the local self-inductance of the power supply, reducing the local self-inductance of the ground, and increasing the local mutual inductance between the power supply and the ground.
  • increasing the width of the connection line can reduce the inductance of the connection line, that is, reducing the length of the connection line, and increasing the width of the connection line can reduce the local self-inductance of the power supply;
  • the length of the ground terminal, increasing the width of the ground terminal can reduce the local self-inductance of the ground.
  • reducing the distance between the two wires can increase the mutual inductance between the two wires, and increasing the distance between the two wires can reduce the mutual inductance between the two wires.
  • the second embodiment of the present application provides a laser emitting device, as shown in FIG. 3, which is a cross-sectional view of the laser emitting device provided in the third embodiment of the present application.
  • FIG. 3 The laser emitting device of is based on the principle of the laser emitting circuit shown in FIG. 1, and the principle is the same as that of the laser emitting device shown in FIG. 2. It is a further improvement of the laser emitting device shown in FIG. 2.
  • the laser emitting device 30 includes: Drive component 301, laser transmitter 302, energy storage module 303, and circuit board 304;
  • the laser transmitter 302 is a bare chip laser transmitter.
  • the input end of the laser transmitter 302 is electrically connected to the energy storage module 303, and the output end of the laser transmitter 302 is electrically connected to the drive assembly;
  • the energy storage module 303 is electrically connected to an external power source for storage
  • the energy module 303 and the external power supply are used to generate the electrical signals required to drive the laser transmitter 302;
  • the driving component 301 is used to output drive signals to control the energy storage module 303 and the external power supply to output electrical signals to the laser transmitter 302 to make laser emission
  • the device 302 emits light, the driving component 301, the laser transmitter 302, and the energy storage module 303 are fixed above the circuit board 304, and the circuit board 304 is provided with a grounding layer.
  • the driving component 301 may include the driving chip 101 in the circuit shown in FIG.
  • the power supply outputs electrical signals to the laser transmitter 302 to make the laser transmitter 302 emit light.
  • the circuit where the laser transmitter 302 is located is the circuit on the circuit board 304, which can also be said to be the circuit in the laser transmitter 30.
  • the specific principle can refer to the figure The circuit principle shown in 1 will not be repeated here;
  • the laser transmitter 302 may include the laser emitting chip 102 in the circuit shown in FIG. 1, and the internal structure of the laser transmitter 302 may refer to the internal structure of the laser emitting chip 102 described in the embodiment corresponding to FIG. 2;
  • the energy storage module 303 is used to store charges, and the energy storage module 303 may include at least one capacitor 103 in the circuit as shown in FIG. 1.
  • the foregoing is only an exemplary description of the functions of the driving component 301, the laser transmitter 302, and the energy storage module 303, and does not mean that the present application is limited thereto.
  • the laser transmitter 302 is a bare chip laser transmitter, it can also be said that the laser transmitter 302 is not packaged. There is no packaging material between the laser transmitter 302 and the circuit board 304, so that the laser transmitter 302 and the circuit board The distance between the ground layers of 304 is reduced, which increases the local mutual inductance, and also reduces the distance between the laser transmitter 302 and other circuit elements in the laser emitting device 30, reduces the local self-inductance, and reduces the overall
  • the parasitic inductance generated by the circuit in the laser emitting device accelerates the instantaneous current change of the electrical signal output from the drive signal control energy storage module 303 and the external power supply to the laser transmitter 302, improves the anti-interference ability of laser emission, and increases the emission of laser Effect.
  • the distance between the lower surface of the laser transmitter 302 and the upper surface of the circuit board 304 is less than or equal to 30 microns.
  • the distance between the lower surface of the laser transmitter 302 and the upper surface of the circuit board 304 is smaller than the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304.
  • the distance between the laser transmitter 302 and the circuit board 304 is less than or equal to 30 microns, the distance between the laser transmitter 302 and the ground layer of the circuit board 304 is reduced, which makes the laser transmitter 302 and the ground locally The mutual inductance increases, reducing the parasitic inductance of the entire circuit;
  • the distance between the laser transmitter 302 and the circuit board 304 is reduced, the distance between the laser transmitter 302 and other components on the circuit board 304 is reduced, reducing The length of the connection line between the laser transmitter 302 and other components is reduced, so that the parasitic inductance of the entire circuit of the laser transmitter 30 is reduced. Both reasons reduce the parasitic inductance of the entire circuit, thereby increasing the rate of change of the instantaneous current, increasing the peak power of the laser emission, and increasing the anti-interference ability of the emitted laser.
  • the distance between the laser transmitter 302 and the circuit board 304 can be defined as the distance between the lower surface of the laser transmitter 302 and the upper surface of the circuit board 304.
  • the distance between the laser transmitter 302 and the circuit board 304 is the distance between the two planes; when the lower surface of the laser transmitter 302 and the upper surface of the circuit board 304 are not parallel, the laser transmitter
  • the distance between 302 and the circuit board 304 is the distance between any point on the lower surface of the laser transmitter 302 and the closest point on the upper surface of the circuit board 304.
  • the circuit structure of the laser emitting device 30 is described as follows:
  • the first end of the energy storage module 303 is electrically connected to the input end of the laser transmitter 302, and the second end of the energy storage module 303 is grounded;
  • the output end of the laser transmitter 302 is electrically connected to the first input end of the driving assembly 301;
  • the second input terminal of the driving component 301 is connected to the pulse signal, and the output terminal of the driving component 301 is grounded.
  • FIG. 4 is a schematic diagram of the circuit structure of the laser emitting device provided by the embodiments of the application.
  • the driving component 301 may be the driving chip 101 in the first embodiment, and the laser transmitter 302 may be the embodiment.
  • the energy storage module 303 may include at least one capacitor, such as one capacitor or a combination of multiple capacitors, and the capacitor may be the same as the capacitor 103 in the first embodiment.
  • the driving component 301 may also be other structures for generating driving signals; the laser transmitter 302 may also be other structures for emitting laser under the control of driving signals.
  • the laser transmitter 302 may include a laser diode array. , Including at least one laser diode; the energy storage module 303 can also be other components for energy storage.
  • the driving component 301 includes a waveform shaping circuit 3011 and a switch unit 3012;
  • the input terminal of the waveform shaping circuit 3011 is the second input terminal of the driving component 301, the input terminal of the waveform shaping circuit 3011 is connected to a pulse signal, and the output terminal of the waveform shaping circuit 3011 is connected to the control terminal of the switch unit 3012;
  • the input end of the switch unit 3012 is the first input end of the drive assembly 301, the input end of the switch unit 3012 is electrically connected to the output end of the laser transmitter 302, the output end of the switch unit 3012 is the output end of the drive assembly 301, and the switch unit 3012 The output terminal is grounded.
  • the switch unit 3012 is a field effect transistor 3112
  • the drain of the field effect transistor 3112 is the input end of the switch unit 3012, the gate of the field effect transistor 3112 is the control end of the switch unit 3012, and the source of the field effect transistor 3112 is the output end of the switch unit 3012.
  • the drain of the field effect transistor 3112 is electrically connected to the output end of the laser transmitter 302, the gate of the field effect transistor 3112 is electrically connected to the output end of the waveform shaping circuit 3011, and the source of the field effect transistor 3112 is grounded.
  • the field effect transistor 3112 may be a MOS transistor.
  • FIG. 5 is a schematic diagram of the fixing effect of the laser transmitter provided by each embodiment of the application.
  • the laser transmitter 302 passes through at least one anode.
  • the connecting wire 306 is fixed on the upper surface of the circuit board 304, and the cathode of the laser emitter 302 is arranged on the lower surface of the laser emitter 302.
  • the laser transmitter 302 is fixed to the upper surface of the circuit board 304 through the anode connecting wire 306 without adding other fixing components.
  • the anode connecting wire 306 not only serves to fix the laser transmitter 302, but can also be connected to the anode of the laser transmitter 302. , Simplify the circuit structure.
  • the anode of the laser transmitter 302 is the current input terminal
  • the cathode of the laser transmitter 302 is the current output terminal
  • the laser transmitter 302 may include at least two laser diodes connected in parallel, or may include mutual At least two laser diodes connected in series
  • the anode of the laser transmitter 302 can also be said to be the anode (current input terminal) of the laser diode
  • the cathode of the laser transmitter 302 can also be said to be the cathode (current output terminal) of the laser diode.
  • a nickel-palladium-gold layer 307 is provided between the laser transmitter 302 and the circuit board 304, and at least one anode connecting wire 306 is bound to the nickel-palladium-gold layer 307.
  • the nickel-palladium-gold layer 307 can make the anode connection line 306 better connect because of its good electrical conductivity.
  • the cathode of the laser emitter is fixed to the upper surface of the circuit board by silver paste.
  • the cathode of the laser emitter 302 is arranged on the lower surface of the laser emitter 302, a silver paste is arranged between the lower surface of the laser emitter 302 and the upper surface of the circuit board 304, and the driving assembly 301 passes through the silver paste and the cathode of the laser emitter 302 connect.
  • the laser transmitter 302 may include at least two laser diodes connected in parallel with each other.
  • the nickel-palladium-gold layer 307 is bound.
  • the anode of each laser diode is electrically connected to the nickel-palladium-gold layer 307 through the anode connecting line 306, and the energy storage module 303 can be electrically connected to the nickel-palladium-gold layer 307.
  • the parasitic inductance of the circuit can also be reduced by reducing the distance between the laser transmitter and the ground terminal.
  • the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 is less than or equal to 0.1 mm.
  • the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 may be less than 100 microns.
  • the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 can be less than or equal to 90 microns, can also be less than or equal to 50 microns, or can be less than or equal to 20 microns.
  • the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 can be defined from multiple angles, and the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 can be It is the distance between the lower surface of the laser transmitter 302 and the upper surface of the ground layer of the circuit board 304, and may also be the distance between the lower surface of the laser transmitter 302 and the lower surface of the ground layer of the circuit board 304.
  • the laser transmitter 302 and the lower surface of the ground layer of the circuit board 304 are parallel to the lower surface of the ground layer of the circuit board 304, the laser emits
  • the distance between the lower surface of the laser transmitter 302 and the lower surface of the ground layer of the circuit board 304 is the distance between the two planes; for another example, if the lower surface of the laser transmitter 302 is different from the lower surface of the ground layer of the circuit board 304 Parallel, the distance between the lower surface of the laser transmitter 302 and the lower surface of the ground layer of the circuit board 304 can be any point on the lower surface of the laser transmitter 302, which is the closest to the lower surface of the ground layer of the circuit board 304 The distance between points.
  • this is only an exemplary description, which does not mean that the application is limited to this.
  • the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 is small, that is, the distance between the connection lines between the various circuit elements in the circuit and the ground layer of the circuit board 304 is reduced.
  • the explanation in the embodiment 2 shows that the distance between the two wires decreases, the mutual inductance increases, that is, the local mutual inductance between the power supply and the ground increases, thereby reducing the parasitic inductance of the entire circuit, and the pulse signal controls the laser emitting device 30 to produce
  • the rate of change of the instantaneous current increases, which increases the peak power of the laser emission, thereby increasing the anti-interference ability of the emitted laser.
  • the width of the connecting wire can be increased.
  • the connecting wire can be a copper sheet, and the connecting wire can be spread all over the wiring layer of the circuit board. It can be the grounding layer of the whole circuit board with copper sheets.
  • Fig. 6a is a schematic diagram of the shape of a connecting wire provided by each embodiment of the application.
  • the laser transmitter 302, another copper sheet connects the laser transmitter 302 and the energy storage module 303, because the width of the connection line is relatively large, while reducing the resistance, it can also reduce the inductance of the connection line itself, which reduces the overall Parasitic inductance of the circuit (short and thick traces can reduce inductance).
  • FIG. 6b is a cross-sectional view of a circuit board provided by various embodiments of the present application.
  • the circuit board 304 includes a wiring layer 314, an intermediate dielectric layer 324, and a ground.
  • Layer 334, the intermediate dielectric layer 324 is located between the wiring layer 314 and the ground layer 334, and the thickness of the intermediate dielectric layer 324 is between 12.5 micrometers and 50 micrometers.
  • the wiring layer 314 is used to connect various circuit elements in the circuit
  • the ground layer 334 is the power ground (English: Ground, GND).
  • the wiring layer 314 and the ground layer 334 can be both copper sheets, and the intermediate medium
  • the layer 324 may be a dielectric material such as polyimide resin.
  • the circuit board 304 may also include other layers.
  • an insulating dielectric layer 344 may be provided above the circuit board wiring layer 314, and an insulating dielectric layer 344 may also be provided below the circuit board ground layer 334.
  • the thickness of the wiring layer 314 and the ground layer 334 may be 12 microns.
  • the insulating dielectric layer 344 may also be a dielectric material such as polyimide resin, or a combination structure of a resin material layer and a thermosetting adhesive layer, and the thickness of the insulating dielectric layer 344 may be between 20-30 microns.
  • FIG. 6c is a top view of a circuit board provided by various embodiments of the application.
  • a connection hole 3441 is provided, and each circuit element (drive assembly 301, laser transmitter 302, and energy storage module 303) is connected to the wiring layer 314 through the connection hole 3441, and the circuit elements are connected to each other through the wiring layer 314.
  • each circuit element drive assembly 301, laser transmitter 302, and energy storage module 303
  • the circuit elements are connected to each other through the wiring layer 314.
  • the thickness of the intermediate dielectric layer 324 of the circuit board 304 is less than or equal to 25 microns, or in another implementation manner, the thickness of the intermediate dielectric layer 324 of the circuit board 304 may be 12.5 microns However, in yet another implementation manner, the thickness of the intermediate dielectric layer 324 of the circuit board 304 may also be 20 microns. This is only an exemplary description, and does not mean that the application is limited to this.
  • the wiring layer of the circuit board can be set to be consistent with the size and shape of the ground layer to further increase the effect of mutual inductance, thereby reducing the parasitic inductance of the entire circuit, thereby increasing the peak power of the laser emission, and increasing the anti-interference ability of the emitted laser.
  • FIG. 7 is a cross-sectional view of the second laser emitting device provided in Embodiment 2 of this application, and the laser emitting device 30 shown in FIG. 7 is A further improvement to the laser emitting device 30 shown in FIG. 3, as shown in FIG.
  • the laser emitting device 30 includes: a driving component 301, a laser transmitter 302, an energy storage module 303, and a circuit board 304; the driving component 301 and laser emitting
  • the laser transmitter 302 is electrically connected to the energy storage module 303, and the energy storage module 303 is electrically connected to an external power supply (or power supply module); the drive assembly 301, the laser transmitter 302 and the energy storage module 303 are fixed on the circuit board 304
  • the circuit board 304 is provided with a ground layer, and the distance between the lower surface of the laser transmitter and the ground layer of the circuit board is less than or equal to 0.1 mm;
  • the circuit board 304 is provided with a first ground hole 3041 and a second ground hole 3042;
  • the first ground hole 3041 is arranged under the driving component 301, and the driving component 301 is grounded through the first ground hole 3041;
  • the second ground hole 3042 is provided under the energy storage module 303, and the energy storage module 303 is grounded through the second ground hole 3042.
  • the grounding hole described in this embodiment has the same function as the first grounding hole 2031 and the second grounding hole 2032 described in the second embodiment, and both are used to allow the connecting wire connected to the ground terminal to pass through.
  • the number of the first ground hole 3041 may be at least one, and the number of the second ground hole 3042 may also be at least one.
  • the first ground hole 3041 and the second ground hole 3042 are provided with ground wires for connecting to GND. The larger the number of the first ground holes 3041 and the second ground holes 3042, the greater the number of ground wires, which is equivalent to adding ground wires.
  • the connecting wire connected to the ground terminal passes through the ground hole and passes through the circuit board 304, and the thickness of the circuit board 304 is less than or equal to the preset thickness, this reduces the length of the connecting wire to a certain extent, and further reduces The parasitic inductance of the entire circuit enhances the rate of change of the instantaneous current and improves the anti-interference ability of the emitted laser.
  • the preset thickness is 100 microns.
  • the circuit board 304 may be an FPC (English: Flexible Printed Circuit, flexible circuit board).
  • FIG. 8 is a cross-sectional view of the third laser emitting device provided in the second embodiment of the application.
  • the laser emitting device 30 shown in FIG. 8 is a comparison of the laser emitting device 30 shown in FIG.
  • the laser emitting device 30 includes: a driving component 301, a laser transmitter 302, an energy storage module 303, and a circuit board 304; the driving component 301 is electrically connected to the laser transmitter 302, and the laser transmitter 302 is electrically connected to The energy storage module 303 is electrically connected, and the energy storage module 303 is electrically connected to an external power supply (or power supply module); the driving assembly 301, the laser transmitter 302, and the energy storage module 303 are fixed on the circuit board 304, and the circuit board 304 is provided with a ground layer ; The distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 is less than or equal to 0.1 mm.
  • the laser emitting device 30 further includes a reinforcing plate 305, and the reinforcing plate 305 is fixed on the lower surface of the circuit board 304. Because the distance between the lower surface of the laser transmitter 302 and the ground layer of the circuit board 304 is small, adding the reinforcing plate 305 can increase the structural strength.
  • the material of the reinforcing plate 305 may be steel.
  • the structural strength of the laser transmitter can be guaranteed, but the printed circuit board is too thick, which makes the distance between the ground terminal and the circuit components (drive assembly 301, laser transmitter 302, and energy storage module 303) large Compared with the PCB, the use of FPC can reduce the distance between the ground terminal and the circuit components, so that the mutual inductance between the power supply and the ground is increased, and the parasitic inductance of the entire circuit is reduced. Moreover, the reinforcing plate 305 can increase the structure Compared with the PCB board, it not only guarantees the structural strength, but also reduces the parasitic inductance, increases the instantaneous current change rate, increases the peak power of the laser emission, and increases the anti-interference ability of the emitted laser.
  • the laser emitting chip and the laser emitter described in the embodiments of the present application may be a vertical-cavity surface-emitting laser (VCSEL).
  • VCSEL vertical-cavity surface-emitting laser
  • the laser transmitter is a bare chip laser transmitter
  • the distance between the laser transmitter and the ground layer of the circuit board is reduced, the local mutual inductance is increased, and the laser transmitter is also reduced
  • the distance from other circuit elements in the laser emitting device reduces the local self-inductance, and reduces the parasitic inductance generated by the circuit in the laser emitting device as a whole, so that the instantaneous current change generated when the driving signal controls the laser emitting device is accelerated.
  • the anti-interference ability of laser emission is improved, and the effect of laser emission is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光发射装置(20,30),激光发射装置(20,30)包括:驱动组件(301)、激光发射器(302)、储能模块(303)以及电路板(304);激光发射器(302)为裸晶片激光发射器,激光发射器(302)的输入端与储能模块(303)电连接,激光发射器(302)的输出端与驱动组件(301)电连接;驱动组件(301)用于控制激光发射器(302)所在的电路导通或者断开;储能模块(303)与外接电源(11)电连接,储能模块(303)和外接电源(11)用于产生驱动激光发射器(302)所需的电信号;驱动组件(301)用于输出驱动信号,以控制储能模块(303)和外接电源(11)向激光发射器(302)输出电信号以使得激光发射器(302)发光,驱动组件(301)、激光发射器(302)和储能模块(303)固定于电路板(304)上方,电路板(304)中设置有接地层(334)。激光发射装置(20,30)提高了电流的变化速率,进而提高了激光发射的峰值功率,增强了激光发射的抗干扰能力。

Description

激光发射装置 技术领域
本申请实施例涉及光电技术领域,尤其涉及一种激光发射装置。
背景技术
激光发射装置在驱动信号的控制下,可以发射出激光信号。例如,在一种应用场景中,利用驱动信号控制电路产生瞬时电流,使得激光发射装置发射出激光。但是,激光发射装置的电路结构中因为电路元件本身存在寄生电感,在驱动信号控制激光发射装置时,由于寄生电感的影响,使得瞬时电流的变化较为缓慢,从而影响了激光发射装置发射激光的效果。
发明内容
有鉴于此,本发明实施例所解决的技术问题之一在于提供一种激光发射装置,用以克服现有技术中因为电路中寄生电感使得瞬时电流的变化较为缓慢,影响激光发射装置发射激光效果的缺陷。
本申请实施例提供了一种激光发射装置,其包括:驱动组件、激光发射器、储能模块以及电路板;
激光发射器为裸晶片激光发射器,激光发射器的输入端与储能模块电连接,激光发射器的输出端与驱动组件电连接;储能模块和外接电源用于产生驱动激光发射器所需的电信号;驱动组件用于输出驱动信号,以控制储能模块和外接电源向激光发射器输出电信号以使得激光发射器发光,驱动组件、激光发射器和储能模块固定于电路板上方,电路板中设置有接地层。
可选地,在本申请的一个实施例中,激光发射器通过至少一个阳极连接线固定于电路板的上表面,激光发射器的阴极设置于激光发射器的下表面。
可选地,在本申请的一个实施例中,激光发射器与电路板之间设置有镍钯金层,至少一个阳极连接线与镍钯金层绑定。
可选地,在本申请的一个实施例中,激光发射器的阴极通过银浆固定于电路板的上表面。
可选地,在本申请的一个实施例中,激光发射器的下表面与电路板的上表面之间的距离小于或等于30微米。
可选地,在本申请的一个实施例中,储能模块的第一端与激光发射器的输入端电连接,储能模块的第二端接地;
激光发射器的输出端与驱动组件的第一输入端电连接;
驱动组件的第二输入端接入脉冲信号,驱动组件的输出端接地。
可选地,在本申请的一个实施例中,驱动组件包括波形整形电路和开关单元;
波形整形电路的输入端为驱动组件的第二输入端,波形整形电路的输出端与开关单元的控制端连接;开关单元的输入端为驱动组件的第一输入端,开关单元的输出端为驱动组件的输出端。
可选地,在本申请的一个实施例中,开关单元为场效应管;场效应管的漏极为开关单元的输入端,场效应管的栅极为开关单元的控制端,场效应管的源极为开关单元的输出端。
可选地,在本申请的一个实施例中,激光发射器的下表面与电路板的接地层之间的距离小于或等于0.1毫米。
可选地,在本申请的一个实施例中,电路板包括走线层、中间介质层和接地层,中间介质层位于走线层和接地层之间,中间介质层的厚度在12.5微米到50微米之间。
可选地,在本申请的一个实施例中,电路板上设置有第一接地孔和第二接地孔;
第一接地孔设置于驱动组件下方,驱动组件通过第一接地孔接地;
第二接地孔设置于储能模块下方,储能模块通过第二接地孔接地。
可选地,在本申请的一个实施例中,激光发射装置还包括补强板,补强板固定于电路板下表面。
本申请实施例提供的激光发射装置,因为激光发射器为裸晶片激光发射器,激光发射器与电路板的接地层之间的距离减小了,增加了局部互感,也减小了激光发射器与激光发射装置中其他电路元件的距离,减小了局部自感,从整体上减小了激光发射装置中电路产生的寄生电感,从而使得驱动信号控制激光发射装置时产生的瞬时电流变化加快,提高了激光发射的抗干扰能力,增加了发射激光的效果。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比值绘制的。附图中:
图1为本申请各实施例提供的激光发射装置中的激光发射电路的一种电路原理示意图;
图2为本申请实施例一提供的激光发射装置的截面图;
图3为本申请实施例二提供的第一种激光发射装置的截面图;
图4为本申请各实施例提供的激光发射装置的电路结构示意图;
图5为本申请各实施例提供的激光发射装置的电路结构示意图;
图6a为本申请各实施例提供的一种连接线形状示意图;
图6b为本申请各实施例提供的一种电路板的截面图;
图6c为本申请各实施例提供的一种电路板的俯视图;
图7为本申请实施例二提供的第二种激光发射装置的截面图;
图8为本申请实施例二提供的第三种激光发射装置的截面图。
具体实施方式
下面结合本发明实施例附图进一步说明本发明实施例具体实现。
在描述具体实施例之前,先就本申请各实施例所提供的的激光发射装置中所含有的激光发射电路的原理进行阐述。图1为本申请各实施例提供的激光发射装置中的激光发射电路的一种电路原理示意图;图1示出了一种激光发射电路10,该激光发射电路包括驱动芯片101、激光发射芯片102及电容103;
其中,驱动芯片101包括施密特触发器1011和MOS管1012,施密特触发器1011的输入端接入脉冲信号,施密特触发器1011的输出端与MOS管1012的栅极连接;
MOS管1012的漏极与激光发射芯片102的输出端连接,MOS管1012的源极接地;
电容103的一端与激光发射芯片102的输入端以及外接电源11的正极连接,电容103的另一端接地。
图1中,施密特触发器1011的输入端输入脉冲信号,施密特触发器1011将脉冲信号进行波形整形然后输出至MOS管1012的栅极,以控制MOS管1012的导通和关断。在MOS管1012关断时,外接电源11向电容103充电,在MOS 管导通时,电容103向激光发射芯片102放电,激光发射芯片102在瞬时电流的作用下发射激光。
示例性的,施密特触发器1011对输入的脉冲信号进行波形整形,经过波形整形的脉冲信号输入MOS管1012的栅极时,如果脉冲信号为高电平时,MOS管1012导通,此时,电容103向激光发射芯片102放电,具体的,电容103产生瞬时电流流向激光发射芯片102,使得激光发射芯片102在瞬时电流的作用下发射激光。
需要说明的是,因为脉冲信号在一个周期内只有一段时间是高电平,因此,电容103产生的电流也只是维持一段时间的瞬时电流。因为电感具有阻碍高频电流变化的属性,在瞬时电流流向激光发射芯片102时,因为激光发射电路内部的寄生电感104比较大,使得电路中的电流变化变得缓慢,即输入激光发射芯片的电流的变化速率降低,输入激光发射芯片的电流的上升时间变长,甚至没有等到输入激光发射芯片102的电流上升到最大值,输入到MOS管栅极的窄脉冲信号就已经从高电平变为低电平,从而关断MOS管1012以关闭激光发射了,无法达到期望的峰值电流,而峰值电流与峰值光功率正相关,这就会导致激光发射芯片102发射激光的峰值功率降低,容易受到环境光影响而抗干扰能力减弱。需要说明的是,图1中所示的寄生电感104是因为电路元件自身表现具有电感属性,将整个电路的电感属性进行等效产生的,寄生电感104并不是一个实际的元件,只是为了说明电路原理进行的示意。需要说明的是,寄生电感104主要是因为各个电路元件之间的连接线以及接地端在电路中所表现的电感属性产生的,当然,电路元件也会在一定程度上表现出电感属性,本申请对此不做限制,在本申请中,寄生电感104可以包含全部或者部分表现电感属性的电路元件所产生的电感。
为了更进一步说明寄生电感的特性,对寄生电感的电流和电压的关系进行说明,寄生电感的电压V根据公式一进行计算:
Figure PCTCN2020085725-appb-000001
其中,V表示寄生电感104两端的电压,L表示寄生电感104的电感值,
Figure PCTCN2020085725-appb-000002
表示瞬时电流的变化速率。结合图1所示的电路结构,在瞬时电流从电容103流经寄生电感104,然后经过激光发射芯片102,最后经过MOS管1012流向接地端。在这一电路结构中,将寄生电感104两端的电压V在瞬时电流流过的时候视为基本保持不变,因此,降低寄生电感的电感值L,即可提高瞬时电流 的变化速率
Figure PCTCN2020085725-appb-000003
实施例一、
基于上述激光发射电路的电路原理分析,本申请实施例一提供一种激光发射装置的结构图,如图2所示,图2为本申请实施例一提供的激光发射装置的截面图,该激光发射装置20包括激光发射电路10、印制电路板(Printed Circuit Board,PCB)201和基材202,其中,激光发射电路10固定于PCB201的上表面。
其中,激光发射电路10包括激光发射芯片102、驱动芯片101和电容103。激光发射芯片102固定于基材202上,所述基材202、驱动芯片101和电容103均固定在PCB 201上表面。所述激光发射芯片102、驱动芯片101、电容103可以分别等效于图1中的相同标号的电路元件。
需要说明的是,基材202可以是如陶瓷这样的绝缘材料制成的,当然,此处只是示例性说明,并不代表本申请局限于此,基材202用于封装激光发射芯片102,激光发射芯片102固定于基材202上表面。
PCB201中设置有接地端,如图2所示,PCB201上设置有两个接地孔,分别为第一接地孔2031和第二接地孔2032,第一接地孔2031设置于驱动芯片101的下方,驱动芯片101通过第一接地孔2031与接地端连接,同理,第二接地孔2032设置于电容103的下方,电容103通过第二接地孔2032与接地端连接。驱动芯片101和电容103分别与激光发射芯片102连接,可选地,驱动芯片101可以连接于激光发射芯片102的输出端与接地端之间,电容103可以连接于激光发射芯片102的输入端与接地端之间。在激光发射芯片102工作时,电流从激光发射芯片102的输入端流入,从激光发射芯片102的输出端流出。在一种可选的应用场景中,激光发射芯片102可以包含至少一个激光二极管,至少一个激光二极管可以并联或者串联,激光二极管的阳极为激光发射芯片102的输入端,激光二极管的阴极为激光发射芯片102的输出端,电流从激光二极管的阳极流向激光二极管的阴极。
在激光发射装置20中,整个电路的寄生电感包括电源的局部自感、地的局部自感以及电源和地的局部互感,如公式二所示:
L loop=L a+L b-2L ab,公式二;
其中,L loop表示整个电路的寄生电感,L loop可以等效于图1中电感104的电感量,L a表示电源的局部自感,L b表示地的局部自感,L ab表示电源和地的 局部互感。需要说明的是,电源的局部自感由各个电路元件之间的连接线所表现的电感属性形成的,地的局部自感由各个电路元件的接地端所表现的电感属性形成的,电源和地的局部互感是由PCB 201上的连接线中方向向左的电流以及PCB 201的接地端中方向向右的电流互相影响所产生的。在本申请中,互感现象可以理解为当一个导线中的电流发生变化时,在临近的另一导线中产生感应电动势的现象。
因此,通过减小电源的局部自感、减小地的局部自感、以及增大电源和地的局部互感都可以减小整个电路的寄生电感。具体的,通过减小连接线的长度,增加连接线的宽度可以减少连接线的电感,也就是说,减小连接线的长度,增加连接线的宽度可以减小电源的局部自感;减小接地端的长度,增加接地端的宽度可以减小地的局部自感。另外,减小两个导线之间的距离可以增加两个导线之间的互感,增加两个导线之间的距离可以减小两个导线之间的互感。
实施例二、
结合上述实施例一,本申请实施例二提供一种激光发射装置,如图3所示,图3为本申请实施例三提供的激光发射装置的截面图,需要说明的是,图3所示的激光发射装置是基于图1所示的激光发射电路的原理,与图2所示的激光发射装置原理相同,是对图2所示的激光发射装置的进一步改进,该激光发射装置30包括:驱动组件301、激光发射器302、储能模块303以及电路板304;
激光发射器302为裸晶片激光发射器,激光发射器302的输入端与储能模块303电连接,激光发射器302的输出端与驱动组件电连接;储能模块303与外接电源电连接,储能模块303和外接电源用于产生驱动激光发射器302所需的电信号;驱动组件301用于输出驱动信号,以控制储能模块303和外接电源向激光发射器302输出电信号以使得激光发射器302发光,驱动组件301、激光发射器302和储能模块303固定于电路板304上方,电路板304中设置有接地层。
其中,驱动组件301可以包括图1所示的电路中的驱动芯片101,驱动组件301用于输出驱动信号,控制激光发射器302所在的电路导通或者关断,从而控制储能模块303和外接电源向激光发射器302输出电信号以使得激光发射器302发光,激光发射器302所在的电路即为电路板304上的电路,也可以说是激光发射装置30中的电路,具体原理可以参考图1所示的电路原理,此处 不再赘述;
激光发射器302可以包括图1所示的电路中的激光发射芯片102,激光发射器302的内部结构可以参考图2对应的实施例中所描述的激光发射芯片102的内部结构;
储能模块303用于储存电荷,储能模块303可以包括至少一个如图1所示的电路中的电容103。当然,以上只是示例性说明驱动组件301、激光发射器302以及储能模块303的功能,并不代表本申请局限于此。
因为激光发射器302是裸晶片激光发射器,也可以说激光发射器302是未经过封装的,激光发射器302与电路板304之间没有封装所用的基材,使得激光发射器302与电路板304的接地层之间的距离减小了,增加了局部互感,也减小了激光发射器302与激光发射装置30中其他电路元件的距离,减小了局部自感,从整体上减小了激光发射装置中电路产生的寄生电感,从而使得驱动信号控制储能模块303和外接电源向激光发射器302输出的电信号的瞬时电流变化加快,提高了激光发射的抗干扰能力,增加了发射激光的效果。
可选地,在本申请的一个实施例中,激光发射器302的下表面与电路板304的上表面之间的距离小于或等于30微米。激光发射器302的下表面与电路板304的上表面之间的距离小于激光发射器302的下表面与电路板304的接地层之间的距离。当然,此处只是示例性说明,也可以是激光发射器302的下表面与电路板304的上表面之间的距离小于或等于其他数值,例如20微米,40微米等。首先,因为激光发射器302与电路板304之间的距离小于或等于30微米,使得激光发射器302与电路板304的接地层之间的距离减小,这使得激光发射器302与地的局部互感增大,减小了整个电路的寄生电感;其次,因为激光发射器302与电路板304之间的距离减小,使得激光发射器302与电路板304上其他元件的距离减小,减小了激光发射器302与其他元件之间连接线的长度,使得激光发射装置30整个电路的寄生电感减小。两方面原因都使得整个电路的寄生电感减小,从而提高了瞬时电流的变化速率,提高了激光发射的峰值功率,增加了发射激光的抗干扰能力。
需要说明的是,激光发射器302与电路板304之间的距离可以定义为激光发射器302的下表面与电路板304的上表面之间的距离,在激光发射器302的下表面与电路板304的上表面平行时,激光发射器302与电路板304之间的距离为两个平面之间的距离;在激光发射器302的下表面与电路板304的上表 面不平行时,激光发射器302与电路板304之间的距离为激光发射器302下表面任意一点与电路板304上表面距离最近的点之间的距离。当然,此处只是示例性说明,并不代表本申请局限于此。
对激光发射装置30的电路结构进行说明如下:
可选地,储能模块303的第一端与激光发射器302的输入端电连接,储能模块303的第二端接地;
激光发射器302的输出端与驱动组件301的第一输入端电连接;
驱动组件301的第二输入端接入脉冲信号,驱动组件301的输出端接地。
如图4所示,图4为本申请各实施例提供的激光发射装置的电路结构示意图,本实施例中驱动组件301可以是实施例一中的驱动芯片101,激光发射器302可以是实施例一中的激光发射芯片102,储能模块303可以包含至少一个电容,比如一个电容或者多个电容的组合,该电容可以与实施例一中的电容103相同。当然,此处只是示例性说明,并不代表本申请局限于此。驱动组件301也可以是其他用于产生驱动信号的结构;激光发射器302也可以是其他结构的用于在驱动信号的控制下发射激光的器件,例如,激光发射器302可以包括一个激光二极管阵列,包含至少一个激光二极管;储能模块303也可以是其他用于储能的元件。
可选地,如图4所示,该驱动组件301包括波形整形电路3011和开关单元3012;
波形整形电路3011的输入端为驱动组件301的第二输入端,波形整形电路3011的输入端接入脉冲信号,波形整形电路3011的输出端与开关单元3012的控制端连接;
开关单元3012的输入端为驱动组件301的第一输入端,开关单元3012的输入端与激光发射器302的输出端电连接,开关单元3012的输出端为驱动组件301的输出端,开关单元3012的输出端接地。
可选地,如图4所示,在本申请的一个实施例中,开关单元3012为场效应管3112;
场效应管3112的漏极为开关单元3012的输入端,场效应管3112的栅极为开关单元3012的控制端,场效应管3112的源极为开关单元3012的输出端。场效应管3112的漏极与激光发射器302的输出端电连接,场效应管3112的栅极与波形整形电路3011的输出端电连接,场效应管3112的源极接地。示例性 的,该场效应管3112可以是一个MOS管。
示例性的,对激光发射器的固定方式进行说明,如图5所示,图5为本申请各实施例提供的激光发射器的固定效果示意图,可选地,激光发射器302通过至少一个阳极连接线306固定于电路板304的上表面,激光发射器302的阴极设置于激光发射器302的下表面。
通过阳极连接线306将激光发射器302固定于电路板304的上表面,没有增加其他的固定组件,阳极连接线306不仅起到了固定激光发射器302的作用,还能够连接激光发射器302的阳极,简化了电路结构。
需要说明的是,激光发射器302的阳极为电流输入端,激光发射器302的阴极为电流输出端,可选地,激光发射器302可以包含相互并联的至少两个激光二极管,也可以包含相互串联的至少两个激光二极管,激光发射器302的阳极也可以说是激光二极管的阳极(电流输入端),激光发射器302的阴极也可以说是激光二极管的阴极(电流输出端)。
可选地,在本申请的一个实施例中,激光发射器302与电路板304之间设置有镍钯金层307,至少一个阳极连接线306与镍钯金层307绑定。镍钯金层307因为良好的导电性能,可以使阳极连接线306连接得更好。
可选地,在本申请的一个实施例中,激光发射器的阴极通过银浆固定于电路板的上表面。激光发射器302的阴极设置于激光发射器302的下表面,在激光发射器302的下表面与电路板304的上表面之间设置银浆,驱动组件301通过银浆与激光发射器302的阴极连接。
当然,此处只是示例性说明,可选地,此处列举一个具体的实现方式进行说明,激光发射器302可以包含相互并联的至少两个激光二极管,各激光二极管的阳极通过阳极连接线306与镍钯金层307绑定,当然,也实现了各激光二极管的阳极通过阳极连接线306与镍钯金层307电连接,储能模块303可以与镍钯金层307电连接。
结合上述图3对应的激光发射器,还可以通过减小激光发射器与接地端之间的距离减少电路的寄生电感。可选地,在一种实现方式中,激光发射器302的下表面与电路板304的接地层之间的距离小于或等于0.1毫米。进一步的,激光发射器302的下表面与电路板304的接地层之间的距离可以小于100微米。例如,激光发射器302的下表面与电路板304的接地层之间的距离可以小于或等于90微米,也可以小于或等于50微米,也可以小于或等于20微米。需要说 明的是,激光发射器302的下表面与电路板304的接地层之间的距离可以从多个角度进行定义,激光发射器302的下表面与电路板304的接地层之间的距离可以是激光发射器302的下表面与电路板304的接地层的上表面之间的距离,也可以是激光发射器302的下表面与电路板304的接地层的下表面之间的距离。示例性的,以激光发射器302的下表面与电路板304的接地层的下表面为例进行说明,如果激光发射器302的下表面与电路板304的接地层的下表面平行,则激光发射器302的下表面与电路板304的接地层的下表面之间的距离为两个平面之间的距离;又如,如果激光发射器302的下表面与电路板304的接地层的下表面不平行,激光发射器302的下表面与电路板304的接地层的下表面之间的距离可以是激光发射器302的下表面上任意一点,与电路板304的接地层的下表面上距离最近的点之间的距离。当然,此处只是示例性说明,并不代表本申请局限于此。
因为激光发射器302的下表面与电路板304的接地层之间的距离较小,也就是电路中各个电路元件之间的连接线与电路板304的接地层之间的距离减小,结合图2的实施例中的解释说明,两个导线距离减小,其互感增大,即电源和地的局部互感增大,从而减小了整个电路的寄生电感,在脉冲信号控制激光发射装置30产生瞬时电流时,瞬时电流的变化速率增大,提高了激光发射的峰值功率,从而增加了发射激光的抗干扰能力。
需要说明的是,为了减小连接线的电阻,可以增加连接线的宽度,例如,连接线可以是铜片,将连接线铺满整个电路板的走线层,而电路板中设置的地也可以是将铜片铺满整个电路板的接地层。具体的,如图6a所示,图6a为本申请各实施例提供的一种连接线形状示意图,图6a中设置有两个连接线,即两个铜片,一个铜片连接驱动组件301与激光发射器302,另一个铜片连接激光发射器302与储能模块303,因为连接线宽度比较大,在减小电阻的同时,也能减小连接线自身的电感,也就减小了整个电路的寄生电感(走线短而粗可以减小电感)。可选地,结合图6b,图6b为本申请各实施例提供的一种电路板的截面图,在本申请的一个实施例中,电路板304包括走线层314、中间介质层324和接地层334,中间介质层324位于走线层314和接地层334之间,中间介质层324的厚度介于12.5微米到50微米之间。需要说明的是,走线层314用于连接电路中各个电路元件,接地层334即为电源接地端(英文:Ground,GND),走线层314和接地层334可以都是铜片,中间介质层324可以是聚酰 亚胺树脂等介质材料。当然,电路板304还可以包含其他层,例如,电路板走线层314上方还可以设置绝缘介质层344,电路板接地层334下方也可以设置绝缘介质层344。在一个示例中,走线层314和接地层334的厚度可以是12微米。绝缘介质层344也可以是聚酰亚胺树脂等介质材料,或者是树脂材料层与热固胶层的组合结构,绝缘介质层344的厚度可以在20-30微米之间。
结合图6a和图6b,图6c为本申请各实施例提供的一种电路板的俯视图,图6c中,电路板304的走线层314的上方设置有绝缘介质层344,绝缘介质层344上设置有连接孔3441,各电路元件(驱动组件301、激光发射器302及储能模块303)通过连接孔3441与走线层314连接,通过走线层314实现各电路元件相互连接。当然,此处只是示例性说明,并不代表本申请局限于此。
可选地,在一种实现方式中,电路板304的中间介质层324的厚度小于或等于25微米,或者在另外一种实现方式中,电路板304的中间介质层324的厚度可以是12.5微米,而在又一种实现方式中,电路板304的中间介质层324的厚度也可以是20微米,此处只是示例性说明,并不代表本申请局限于此。
可以将电路板的走线层设置为与接地层大小和形状一致,进一步增加互感的效果,从而降低整个电路的寄生电感,进而提高激光发射的峰值功率,增加了发射激光的抗干扰能力。
可选地,在本申请的一个实施例中,如图7所示,图7为本申请实施例二提供的第二种激光发射装置的截面图,图7中所示的激光发射装置30是对图3所示的激光发射装置30的进一步改进,如图7所示,激光发射装置30包括:驱动组件301、激光发射器302、储能模块303以及电路板304;驱动组件301与激光发射器302电连接,激光发射器302与储能模块303电连接,储能模块303与外接电源(或供电模块)电连接;驱动组件301、激光发射器302和储能模块303固定于电路板304上方,电路板304中设置有接地层,激光发射器的下表面与电路板的接地层之间的距离小于或等于0.1毫米;
电路板304上设置有第一接地孔3041和第二接地孔3042;
第一接地孔3041设置于驱动组件301下方,驱动组件301通过第一接地孔3041接地;
第二接地孔3042设置于储能模块303下方,储能模块303通过第二接地孔3042接地。
[0075]需要说明的是,本实施例中所描述的接地孔与实施例二中所描述 的第一接地孔2031、第二接地孔2032作用相同,都是用于使得连接接地端的连接线通过。本实施例中,第一接地孔3041的数量可以是至少一个,第二接地孔3042的数量也可以是至少一个。第一接地孔3041和第二接地孔3042中设置有用于连接GND的接地线,第一接地孔3041和第二接地孔3042的数量越多,接地线的数量越多,相当于增加了接地线的横截面,这进一步减小了接地线的电阻和电感,提高了瞬时电流的变化速率,提高了激光发射的峰值功率,增加了发射激光的抗干扰能力。图7中,示例性得示出了两个第一接地孔3041和两个第二接地孔3042,这只是示例性说明,并不代表本申请局限于此。
因为连接接地端的连接线要从接地孔穿过,穿过了电路板304,而电路板304的厚度小于或等于预设厚度,这在一定程度上减小了连接线的长度,也进一步减少了整个电路的寄生电感,增强了瞬时电流的变化速率,提高发射激光的抗干扰能力。
可选地,在本申请的一个实施例中,预设厚度为100微米。例如,电路板304可以是FPC(英文:Flexible Printed Circuit,柔性电路板)。
示例性的,如图8所示,图8为本申请实施例二提供的第三种激光发射装置的截面图,图8所示的激光发射装置30是对图3所示的激光发射装置30的进一步改进,如图8所示,激光发射装置30包括:驱动组件301、激光发射器302、储能模块303以及电路板304;驱动组件301与激光发射器302电连接,激光发射器302与储能模块303电连接,储能模块303与外接电源(或供电模块)电连接;驱动组件301、激光发射器302和储能模块303固定于电路板304上方,电路板304中设置有接地层;激光发射器302的下表面与电路板304的接地层之间的距离小于或等于0.1毫米。激光发射装置30还包括补强板305,补强板305固定于电路板304下表面。因为激光发射器302的下表面与电路板304的接地层之间的距离较小,增加补强板305可以增加结构强度。示例性的,该补强板305的材质可以是钢。如果直接使用PCB,激光发射器的结构强度可以保证,但印制电路板太厚,使得接地端和电路元件件(驱动组件301、激光发射器302和储能模块303)之间的距离较大,相比于PCB,利用FPC可以减小接地端和电路元件之间的距离,使得电源与地之间的互感增大,减小整个电路的寄生电感,而且,补强板305又可以增加结构强度,与PCB板相比,不仅保证了结构强度,而且还减小了寄生电感,提高了瞬时电流的变化速率,提高了激光发射的峰值功率,增加了发射激光的抗干扰能力。
需要说明的是,本申请实施例一中的解释说明同样适用于本申请实施例二。本申请实施例中所描述的激光发射芯片、激光发射器可以是垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)。
本申请实施例提供的激光发射装置,因为激光发射器为裸晶片激光发射器,激光发射器与电路板的接地层之间的距离减小了,增加了局部互感,也减小了激光发射器与激光发射装置中其他电路元件的距离,减小了局部自感,从整体上减小了激光发射装置中电路产生的寄生电感,从而使得驱动信号控制激光发射装置时产生的瞬时电流变化加快,提高了激光发射的抗干扰能力,增加了发射激光的效果。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种激光发射装置,其特征在于,包括:驱动组件、激光发射器、储能模块以及电路板;
    所述激光发射器为裸晶片激光发射器,所述激光发射器的输入端与所述储能模块电连接,所述激光发射器的输出端与所述驱动组件电连接;
    所述储能模块与外接电源电连接,所述储能模块和所述外接电源用于产生驱动所述激光发射器所需的电信号;
    所述驱动组件用于输出驱动信号,以控制所述储能模块和所述外接电源向所述激光发射器输出所述电信号以使得所述激光发射器发光;
    所述驱动组件、所述激光发射器和所述储能模块固定于所述电路板上方,所述电路板中设置有接地层。
  2. 根据权利要求1所述的激光发射装置,其特征在于,所述激光发射器通过至少一个阳极连接线固定于所述电路板的上表面,所述激光发射器的阴极设置于所述激光发射器的下表面。
  3. 根据权利要求2所述的激光发射装置,其特征在于,所述激光发射器与所述电路板之间设置有镍钯金层,所述至少一个阳极连接线与所述镍钯金层绑定。
  4. 根据权利要求2所述的激光发射装置,其特征在于,所述激光发射器的阴极通过银浆固定于所述电路板的上表面。
  5. 根据权利要求1所述的激光发射装置,其特征在于,所述激光发射器的下表面与所述电路板的上表面之间的距离小于或等于30微米。
  6. 根据权利要求1所述的激光发射装置,其特征在于,
    所述储能模块的第一端与所述激光发射器的输入端电连接,所述储能模块的第二端接地;
    所述激光发射器的输出端与所述驱动组件的第一输入端电连接;
    所述驱动组件的第二输入端接入脉冲信号,所述驱动组件的输出端接地。
  7. 根据权利要求6所述的激光发射装置,其特征在于,所述驱动组件包括波形整形电路和开关单元;
    所述波形整形电路的输入端为所述驱动组件的第二输入端,所述波形整形电路的输出端与所述开关单元的控制端连接;
    所述开关单元的输入端为所述驱动组件的第一输入端,所述开关单元的输出端为所述驱动组件的输出端。
  8. 根据权利要求7所述的激光发射装置,其特征在于,所述开关单元为场效应管;
    所述场效应管的漏极为所述开关单元的输入端,所述场效应管的栅极为所述开关单元的控制端,所述场效应管的源极为所述开关单元的输出端。
  9. 根据权利要求1所述的激光发射装置,其特征在于,所述激光发射器的下表面与所述电路板的接地层之间的距离小于或等于0.1毫米。
  10. 根据权利要求1所述的激光发射装置,其特征在于,所述电路板包括走线层、中间介质层和所述接地层,所述中间介质层位于所述走线层和所述接地层之间,所述中间介质层的厚度在12.5微米到50微米之间。
  11. 根据权利要求1所述的激光发射装置,其特征在于,所述电路板上设置有第一接地孔和第二接地孔;
    所述第一接地孔设置于所述驱动组件下方,所述驱动组件通过所述第一接地孔接地;
    所述第二接地孔设置于所述储能模块下方,所述储能模块通过所述第二接地孔接地。
  12. 根据权利要求1-11任一项所述的激光发射装置,其特征在于,所述激光发射装置还包括补强板,所述补强板固定于所述电路板下表面。
PCT/CN2020/085725 2020-04-20 2020-04-20 激光发射装置 WO2021212289A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/085725 WO2021212289A1 (zh) 2020-04-20 2020-04-20 激光发射装置
EP20932251.0A EP4047760A4 (en) 2020-04-20 2020-04-20 LASER EMITTER
US17/747,061 US20220278502A1 (en) 2020-04-20 2022-05-18 Laser emitting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085725 WO2021212289A1 (zh) 2020-04-20 2020-04-20 激光发射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,061 Continuation US20220278502A1 (en) 2020-04-20 2022-05-18 Laser emitting apparatus

Publications (1)

Publication Number Publication Date
WO2021212289A1 true WO2021212289A1 (zh) 2021-10-28

Family

ID=78270984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085725 WO2021212289A1 (zh) 2020-04-20 2020-04-20 激光发射装置

Country Status (3)

Country Link
US (1) US20220278502A1 (zh)
EP (1) EP4047760A4 (zh)
WO (1) WO2021212289A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1662130A (zh) * 2004-02-26 2005-08-31 阿尔卑斯电气株式会社 挠性印刷布线板
CN1720617A (zh) * 2002-12-05 2006-01-11 英特尔公司 金属芯衬底封装
CN101378177A (zh) * 2007-08-31 2009-03-04 精工爱普生株式会社 半导体发光元件用的驱动电路和采用它的光源装置、照明装置、监视装置、图像显示装置
CN105122443A (zh) * 2013-04-16 2015-12-02 株式会社村田制作所 高频元件及具备其的高频模块
CN106486887A (zh) * 2015-08-29 2017-03-08 南京理工大学 一种基于激光二极管的脉冲激光发射电路
US20170086300A1 (en) * 2015-09-17 2017-03-23 Electronics And Telecommunications Research Institute Flexible printed circuit board for optical module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281682A (ja) * 2003-03-14 2004-10-07 Sumitomo Electric Ind Ltd 光送信装置
DE202006005148U1 (de) * 2006-03-29 2007-08-09 Ic-Haus Gmbh Schaltungsanordnung zum Erzeugen schneller Laserimpulse
DE102016208431A1 (de) * 2016-05-17 2017-11-23 Osram Opto Semiconductors Gmbh Anordnung mit einem elektrischen Bauteil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1720617A (zh) * 2002-12-05 2006-01-11 英特尔公司 金属芯衬底封装
CN1662130A (zh) * 2004-02-26 2005-08-31 阿尔卑斯电气株式会社 挠性印刷布线板
CN101378177A (zh) * 2007-08-31 2009-03-04 精工爱普生株式会社 半导体发光元件用的驱动电路和采用它的光源装置、照明装置、监视装置、图像显示装置
CN105122443A (zh) * 2013-04-16 2015-12-02 株式会社村田制作所 高频元件及具备其的高频模块
CN106486887A (zh) * 2015-08-29 2017-03-08 南京理工大学 一种基于激光二极管的脉冲激光发射电路
US20170086300A1 (en) * 2015-09-17 2017-03-23 Electronics And Telecommunications Research Institute Flexible printed circuit board for optical module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4047760A4 *

Also Published As

Publication number Publication date
US20220278502A1 (en) 2022-09-01
EP4047760A1 (en) 2022-08-24
EP4047760A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
CN111224317B (zh) 激光发射装置
US8786074B2 (en) Packaging device for matrix-arrayed semiconductor light-emitting elements of high power and high directivity
DE102017118349B4 (de) Optische emitterbaugruppen
JP7119842B2 (ja) Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置
JP6895987B2 (ja) 電気デバイスを備えるアセンブリ
TWI516028B (zh) 高低壓隔離內埋功率模組
US9443818B2 (en) Power semiconductor module
US10789879B1 (en) Light emitting device
US11646547B2 (en) Light emitting device
WO2021212289A1 (zh) 激光发射装置
JP2001185751A (ja) 表面実装型赤外線通信モジュールの構造および駆動回路
KR20220012816A (ko) 광원 시스템
JP2022093070A (ja) 発光装置
US20210389428A1 (en) Light emitting device for lidar
CN115236635A (zh) 激光雷达及其驱动芯片、光发射装置
JP2022076829A (ja) 発光装置
US20200281070A1 (en) High speed high power laser assembly with cavity
US20240047443A1 (en) Semiconductor device
JP2005310957A (ja) 表示装置
TW202147653A (zh) 用於光學雷達的光發射裝置
JP2001044579A (ja) 混成集積回路装置
EP3912284A1 (en) Lighting device for frequency-modulated emission
JP2022038722A (ja) 発光モジュール及び照明器具
CN113933812A (zh) 激光雷达的光源模组、激光雷达及制造光源模组的方法
JP4856135B2 (ja) リレー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020932251

Country of ref document: EP

Effective date: 20220512

NENP Non-entry into the national phase

Ref country code: DE