WO2021208775A1 - 双折周向传动器 - Google Patents

双折周向传动器 Download PDF

Info

Publication number
WO2021208775A1
WO2021208775A1 PCT/CN2021/085632 CN2021085632W WO2021208775A1 WO 2021208775 A1 WO2021208775 A1 WO 2021208775A1 CN 2021085632 W CN2021085632 W CN 2021085632W WO 2021208775 A1 WO2021208775 A1 WO 2021208775A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
bevel gear
gear
teeth
reversing
Prior art date
Application number
PCT/CN2021/085632
Other languages
English (en)
French (fr)
Inventor
罗灿
Original Assignee
罗灿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗灿 filed Critical 罗灿
Publication of WO2021208775A1 publication Critical patent/WO2021208775A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2854Toothed gearings for conveying rotary motion with gears having orbital motion involving conical gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H2023/0283Transmitting power from propulsion power plant to propulsive elements with mechanical gearing using gears having orbital motion

Definitions

  • the invention relates to a transmission structure of a circumferential transmission, which is composed of an input shaft, a single-path commutator, a double-path deflector, a hybrid planetary row, a steering support and an output shaft. It is characterized by a large transmission torque and an output shaft. The rotation and revolution do not interfere with each other, the control torque for controlling revolution is very small, and the control device is very small. It is called a double-folded circumferential transmission.
  • the propeller can output rotation but the output shaft is fixed and cannot revolve.
  • the traditional moving shaft propeller uses a bevel gear pair as a transmission, the output shaft rotates, and the control device forcibly drives the output shaft bearing to make the output shaft revolve around the input shaft axis. Because driving the output shaft bearing to revolve to overcome the unidirectional deflection moment, the control moment required for forward and reverse rotation is different when controlling the revolution, so the rated control moment must be large and the control device is large.
  • the transmission bevel gear pair of traditional propeller propeller the rotation and revolution of the output shaft cannot be decoupled due to interference between the rotation and revolution of the output shaft. The rotation phase of the output shaft will inevitably change when the output shaft revolves.
  • the independent phase of the output shaft rotation is a major defect, so the performance is not as good as Circumferential actuator.
  • the circumferential transmission is a transmission in which the output shaft can be controlled to revolve, and the rotation phase of the output shaft is not interfered by the revolution.
  • the one-way deflection moment is a moment that is automatically generated when the bevel gear pair transmits power to cause the output shaft to revolve in one direction around the input shaft axis, and is positively related to the input moment.
  • the rotation of the output shaft around the axis of the output shaft is self-rotation, and the rotation of the output shaft around the axis of the input shaft (or the axis of the reversing sleeve shaft) is revolution.
  • the rotation and revolution of the output shaft do not interfere with each other, and the revolution does not affect the phase of the output shaft rotation.
  • One planetary gear of the hybrid is used in the omnidirectional transmission to transmit power to the output shaft alone, and the transmission torque is small; the invention uses multiple planetary gears of the hybrid planetary row to transmit power to the output shaft in parallel, and the transmission torque is large.
  • Large transmission torque means that under the condition of the same material and other parameters, a transmission mechanism with the same volume can transmit a greater torque, or a transmission mechanism with a smaller volume can transmit the same torque.
  • the aviation industry and the navigation industry need a new circumferential drive that does not interfere with the rotation and revolution of the output shaft, has a small control device, and has a large transmission torque.
  • the present invention proposes such a double-folding circumferential transmission.
  • the double-folding circumferential actuator can also be used for the cross-joint rotating part of the robot and the rotating part of the machine tool.
  • the double-folding circumferential transmission of the present invention is composed of an input shaft, a single-path commutator, a double-path deflector, a hybrid planetary row, a steering support and an output shaft.
  • the input shaft is connected to the power unit to input power.
  • the function of the single-way commutator is to convert one rotation into two rotations with equal rotation speed and opposite rotation directions, and respectively transmit these two rotations in the inner shaft of the reversing sleeve shaft and the outer shaft of the reversing sleeve shaft.
  • the present invention can choose one of the four types as a single-path commutator.
  • the single-path commutator there are two types: the inner shaft of the reversing sleeve shaft and the outer shaft of the reversing sleeve shaft.
  • the rotation speed of the components is equal and the direction of rotation is opposite.
  • the reversing sleeve shaft is two shafts nested with each other on the same axis, which are the inner shaft of the reversing sleeve shaft and the outer shaft of the reversing sleeve shaft.
  • the input shaft bearing is fixed, and the front bevel gear is set on the input shaft; the reversing bevel gear is set to mesh with the front bevel gear, the axis of the reversing bevel gear is perpendicular to the axis of the input shaft, and the support of the reversing bevel gear is fixed.
  • the reversing sleeve shaft and the input shaft are located on the same axis, the bearing of the reversing sleeve shaft is fixed, and the bevel gear is meshed with the reversing bevel gear after the outer shaft of the reversing sleeve shaft is set. Directly connect the input shaft and the inner shaft of the reversing sleeve shaft.
  • the front bevel gear and the rear bevel gear are indirectly connected through the reversing bevel gear.
  • the transmission ratio of this indirect connection is equal to -1.0.
  • Form two single-way commutator including internal driving bevel gear, external driving bevel gear, internal driven bevel gear, external driven bevel gear and counter-sleeve shaft, see 2, 3, 4, 5 and 6 in Figure 2.
  • the input shaft bearing is fixed, the inner driving bevel gear and the outer driving bevel gear are arranged on the input shaft, which are respectively arranged on both sides of the reversing sleeve shaft axis.
  • the inner driving bevel gear is installed after passing through the reversing sleeve shaft axis, and the outer driving bevel The gear is set without passing through the axis of the reversing sleeve shaft.
  • the transmission ratio of the input shaft to the reversing sleeve shaft inner shaft is equal to the input shaft to the reversing sleeve shaft outer shaft
  • Form three single-way commutator including front gear, inner rangefinder gear, outer rangefinder front gear, outer rangefinder rear gear, rear gear and counter-sleeve, see 2, 25, 3, 4 in Figure 3 , 5, and 6.
  • the input shaft bearing is fixed, and the front gear is set on the input shaft; the inner range shaft and the outer range shaft whose axes are parallel to the axis of the input shaft and whose bearings are fixed.
  • the front gear is set to mesh with the front gear of the outer sideshaft, the rear gear of the outer sideshaft meshes with the inner sideshaft gear, and the inner sideshaft gear meshes with the rear gear.
  • the reversing sleeve shaft and the input shaft are arranged on the same axis, the bearing of the reversing sleeve shaft is fixed, and the input shaft and the inner shaft of the reversing sleeve shaft are directly connected.
  • the front gear and the rear gear are indirectly connected through the external rangefinder front gear, the external rangefinder rear gear and the internal rangefinder gear.
  • Form four single-way commutator including internal driving bevel gear, external driving bevel gear, internal driven bevel gear, external driven bevel gear and counter-sleeve shaft, see 2, 3, 4, 5 and 6 in Figure 4.
  • the input shaft bearing is fixed, the inner driving bevel gear and the outer driving bevel gear are arranged on the input shaft, which are respectively arranged on both sides of the reversing sleeve shaft axis.
  • the inner driving bevel gear is set without passing through the reversing sleeve shaft axis, and the outer driving bevel gear
  • the bevel gear is arranged after passing through the axis of the reversing sleeve shaft.
  • Fix the reversing sleeve shaft bearing set the reversing sleeve shaft axis and the input shaft axis to intersect to form an included angle, that is, the transmission angle, and determine the transmission angle value according to actual needs.
  • the transmission ratio of the input shaft to the reversing sleeve shaft inner shaft is equal to the input shaft to the reversing sleeve shaft outer shaft
  • the two-way deflector is provided with two pairs of bevel gears.
  • the shaft where the first driving bevel gear is located and the shaft where the second driving bevel gear is located form a reversing sleeve shaft
  • the shaft where the second driven bevel gear is located and the shaft where the second driven bevel gear is located form a co-rotating sleeve shaft.
  • the unidirectional deflection moment automatically generated by the first driving bevel gear to the first passive bevel gear is opposite to the unidirectional deflection moment automatically generated by the second driving bevel gear to the second passive bevel gear.
  • the two unidirectional deflection moments cancel each other through the transmission between the inner shaft and the outer shaft of the same rotating sleeve shaft.
  • the bevel gear pair is a mature technology.
  • the bevel gear pair is a pair of bevel gears meshed with each other for transmission.
  • the input shaft axis and the output shaft axis intersect, and the angle of the intersection is the bending angle.
  • the two bevel gear pairs include a bevel gear pair composed of a first driving bevel gear and a first driven bevel gear, and a bevel gear pair composed of a second driving bevel gear and a second driven bevel gear.
  • the co-rotating sleeve shafts are two shafts nested with each other on the same axis, that is, the co-rotating sleeve shaft inner shaft and the co-rotating sleeve shaft outer shaft.
  • the two-way deflector includes a first driving bevel gear, a first driven bevel gear, a second driving bevel gear, a second driven bevel gear, and a co-rotating sleeve shaft.
  • the two-way deflector has two forms, among which the parts are different in meshing. The present invention can choose one of the two forms as the two-way deflector.
  • the first driving bevel gear is set on the inner shaft of the reversing sleeve shaft, and the setting position is after the inner shaft of the reversing sleeve shaft passes through the axis of the same rotation sleeve shaft, and the outer shaft of the reversing sleeve shaft
  • the second driving bevel gear the outer shaft of the counter-rotating sleeve shaft does not pass through the axis of the same-rotating sleeve shaft
  • the first driven bevel gear is provided on the inner shaft of the same-rotating sleeve shaft
  • the second driven bevel gear is provided on the outer shaft of the same-rotating sleeve shaft.
  • Passive bevel gear keep the first driving bevel gear in mesh with the first driven bevel gear, and keep the second driving bevel gear in mesh with the second driven bevel gear. See 7, 8, 9, 10, and 11 in Figure 1.
  • the second form of the double-path deflector, the first driving bevel gear is arranged on the inner shaft of the reversing sleeve shaft, and the setting position is after the inner shaft of the reversing sleeve shaft passes through the axis of the same rotation sleeve shaft, and outside the reversing sleeve shaft
  • the shaft is provided with a second driving bevel gear, and the outer shaft of the counter-rotating sleeve shaft does not pass through the axis of the co-rotating sleeve shaft;
  • Two driven bevel gears keep the first driving bevel gear in mesh with the first driven bevel gear, and keep the second driving bevel gear in mesh with the second driven bevel gear.
  • Both types of double-path deflectors set the number of teeth of the first driving bevel gear, the number of teeth of the second driving bevel gear, the number of teeth of the first driven bevel gear, and the number of teeth of the second driven bevel gear, so that the first driving bevel gear can be moved to the first passive bevel gear.
  • the function of the hybrid planetary row is to synthesize the output shaft speed by using the two rotational speed components of the same rotational direction and the same rotational speed of the two rotational speeds of the inner shaft of the same-rotating quill shaft and the outer shaft of the same-rotating quill shaft.
  • the two rotational speed components of the inner shaft and the outer shaft of the same rotating sleeve shaft in opposite directions do not interfere with the output shaft rotation; in this way, the output shaft rotation and revolution do not interfere with each other, and the output shaft revolution does not affect the output shaft rotation.
  • Phase There are five forms of the hybrid planetary row, and the present invention can choose one of the five forms as the hybrid planetary row.
  • Form one hybrid planetary row adopts bevel gear planetary row, including left bevel gear, planet carrier with bevel gears and right bevel gear, see 12, 21, 14 and 13 in Figure 1.
  • the left bevel gear meshes with the bevel gear planetary gear
  • the bevel gear planet gear meshes with the right bevel gear.
  • the right bevel gear is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the left bevel gear is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the planet carrier is directly connected to the output shaft.
  • the form two hybrid planetary row adopts double sun gear variable linear speed planetary row, including a small sun gear, a planet carrier with a left planet gear and a right planet gear, and a large sun gear.
  • the small sun gear meshes with the left planetary gear
  • the right planetary gear meshes with the large sun gear
  • the left planetary gear and the right planetary gear are in one-to-one correspondence and coaxially and at the same speed.
  • the planetary row characteristic parameter a 2.0, it is regarded as a hybrid planetary row.
  • the small sun gear is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the planet carrier is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the large sun gear is directly connected to the output shaft.
  • the planetary row characteristic parameter a 2.0.
  • the form three hybrid planetary row adopts double inner gear ring variable linear speed planetary row, including a large inner gear ring, a planet carrier with a left planet wheel and a right planet wheel, and a small inner gear ring. See 12, 23, 24, 14 and 13.
  • the large internal gear meshes with the left planetary gear, the right planetary gear meshes with the small internal gear, and the left planetary gear and the right planetary gear are coaxially and at the same speed in a one-to-one correspondence.
  • the large inner gear ring is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the planet carrier is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the small inner gear ring is directly connected to the output shaft.
  • the form four hybrid planetary row adopts double sun gear inner and outer planetary variable linear speed planetary row, including small sun gear, planet carrier with inner planet wheel, left planet wheel and right planet wheel, and large sun gear, see 12, 25 in Figure 4 , 23, 24, 14, and 13.
  • the small sun gear meshes with the inner planet gear
  • the inner planet gear meshes with the left planet gear
  • the right planet gear meshes with the large sun gear
  • the left planet gear and the right planet gear are coaxially and at the same speed in a one-to-one correspondence.
  • the planetary row characteristic parameter a 1.0, it is regarded as a hybrid planetary row.
  • the small sun gear is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the large sun gear is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the planet carrier is directly connected to the output shaft.
  • the fifth hybrid planetary row adopts an ordinary double-layer star planetary row, including a sun gear, a planet carrier with an inner planetary gear and an outer planetary gear, and an inner ring gear. See 12, 21, 22, 14 and 13 in Figure 5.
  • the sun gear meshes with the inner planetary gear
  • the inner planetary gear meshes with the outer planetary gear
  • the outer planetary gear meshes with the inner ring gear.
  • the sun gear is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the planet carrier is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the inner gear ring is directly connected to the output shaft.
  • the double sun gear variable linear speed planetary row, the double inner ring gear variable linear speed planetary row, and the double sun gear inner and outer planetary variable linear speed planetary rows are all variable linear speed planetary rows, all of which are mature technologies.
  • Speed planetary row is called "double row outer meshing planetary gear train" in some textbooks.
  • variable linear speed planetary row a certain layer of planetary gears is used as a variable linear speed planetary wheel, and a left planetary wheel and a right planetary wheel are arranged on the axle of each variable linear speed planetary wheel in a one-to-one correspondence, and the left planetary wheel and the right planetary wheel Coaxially with the same rotation speed but their indexing circle speeds are not equal, that is, "variable linear speed", the left planetary gear and the right planetary gear do not mesh with the same sun gear (or the same inner ring gear) at the same time, and the left planetary gear and The parameters such as the number of teeth and gear modulus of the right planetary gear are not completely equal.
  • the bevel gear planetary gear, the left planetary gear, the right planetary gear, the inner planetary gear, the outer planetary gear, etc. of the present invention adopt mature technology for the selection of the number of planetary gears.
  • the number of planetary gears is two, One of three, four, five or six is selected according to actual needs and the assembly conditions of the planetary row.
  • the number of planetary wheels in the same planetary row is the same.
  • the function of the steering support is controlled by the control device to drive the co-rotating sleeve shaft and the output shaft to revolve around the axis of the counter-rotating sleeve shaft.
  • the steering support includes fixed shaft components, brackets, moving shaft bearings and output bearings.
  • the fixed shaft part is a machine that rotates around the axis of the reversing sleeve shaft.
  • the fixed shaft part has two forms. The present invention can choose one of the two forms as the fixed shaft part.
  • the first form is a bearing-type fixed shaft component.
  • a shaft is selected to maintain the axis of the reversing sleeve shaft, and a bearing is arranged on the periphery of the shaft.
  • the bearing is the fixed shaft component.
  • the fixed shaft component is 16, the one holding the axis of the reversing sleeve shaft is the fixed shaft 17, and the fixed shaft component is a bearing arranged outside the fixed shaft; see also Figure 4, the fixed shaft component is 16
  • the said one shaft that is kept at the axis of the reversing sleeve shaft is the reversing sleeve shaft 6, and the fixed shaft component is a bearing located on the right side and arranged outside the reversing sleeve shaft.
  • the fixed shaft component is a shaft-type fixed shaft component, which is a shaft arranged on the axis of the reversing sleeve shaft, and its bearing is a fixed bearing, and the shaft is the fixed shaft component. Referring to FIG.
  • the fixed shaft component is 16, which is a shaft arranged on the axis of the reversing sleeve shaft, and its bearing is a fixed bearing 17.
  • a moving shaft bearing is provided outside the same-rotating sleeve shaft to support the same-rotating sleeve shaft, and an output bearing is provided outside the output shaft to support the output shaft.
  • the bracket is a machine that directly connects the fixed shaft components, the moving shaft bearing and the output bearing, and adopts mature technology.
  • the entire steering support can be driven by the control device to revolve around the axis of the reversing sleeve shaft.
  • the revolution means that the power use equipment or the like revolves in the forward and reverse directions around the axis of the reversing quill while rotating around the axis of the output shaft, and the range of the revolution angle is unlimited when there are no other restrictions.
  • the output shaft is connected with the power use equipment to output power.
  • the control device drives the steering support to revolve, and the output shaft revolves. When the control device is not driven, the output shaft does not revolve.
  • the control torque required for forward rotation and reverse rotation during revolution is the same, the control torque is small, the control device is small, the output shaft rotation and revolution do not interfere with each other, and the output shaft revolution does not affect the phase of the output shaft rotation.
  • the power plant adopts mature technologies, such as electric power plant, steam power plant, and fuel power plant.
  • the power-using equipment adopts mature technologies, such as propellers, rotors, tail rotors, cross-joint parts of robots, or machine tool parts.
  • the control device adopts mature technology, such as an electric mechanism, a mechanical mechanism or a hydraulic mechanism, and the base of the control device is fixed.
  • the fixing of the certain part is a mature technology, that is, a certain part is directly connected to the hull or fuselage through a connecting machine, and the speed of the certain part is zero when the certain part is fixed.
  • the quill shaft is a mature technology, and each bearing of the quill shaft supports each layer of the shaft, and the bearing and the shaft and between the shafts can rotate relative to each other, but do not slide relative to each other in the axial direction.
  • the bearing is a mature technology, the bearing supports the shaft, and the bearing and the shaft can rotate relative to each other, but there is no relative slippage in the axial direction.
  • the connection includes direct connection and indirect connection, both of which are mature technologies; direct connection means that the speed of the connected object is the same through mechanical connection, for example, the connected object is made by casting, bonding, welding, or rivet through the connecting piece.
  • Rotation speed is the same; indirect connection means that the rotational speeds of two transmitted objects are deterministically related through mechanical transmission, such as indirect connection through gear pair, bevel gear pair, worm gear, rack and pinion, connecting rod or chain belt.
  • the maintaining synchronization is a direct connection.
  • the worm gear is a mature technology.
  • the gear, bevel gear or worm gear is arranged on a certain component, and the gear, bevel gear or worm gear provided is kept synchronized with the component.
  • the transmission ratio is equal to the speed of the input component divided by the speed of the output component.
  • a transmission structure of the circumferential transmission which can control the output shaft to revolve around the axis of the reversing sleeve shaft, the control torque is small, the control device is small, and the output The shaft rotation and revolution do not interfere with each other, and the output shaft revolution does not affect the phase of the output shaft rotation. Its function far exceeds the traditional bevel gear pair.
  • Its transmission structure is different from a hundred-direction transmission, and its transmission torque is larger than that of a hundred-direction transmission. It can improve the rotation transmission and revolution control of power equipment such as propellers or rotors, and can also be used for cross-joint transmission of robots and transmission of machine tools.
  • Fig. 1 is an example of a schematic diagram of a double-folded circumferential transmission, which is also a schematic diagram of Embodiment 1 of the present invention.
  • 1 is the input shaft
  • 2 is the front bevel gear
  • 3 is the reversing bevel gear
  • 4 is the reversing bevel gear support
  • 5 is the rear bevel gear
  • 6 is the reversing sleeve shaft
  • 7 is the first driving bevel gear
  • 8 is the second driving bevel gear
  • 9 is the first driven bevel gear
  • 10 is the second driven bevel gear
  • 11 is the same rotating sleeve shaft
  • 12 is the left bevel gear
  • 13 is the right bevel gear
  • 14 is the planet carrier
  • 15 is the output shaft
  • 16 is the fixed shaft component
  • 17 is the fixed bearing
  • 18 is the bracket
  • 19 is the moving shaft bearing
  • 20 is the output bearing
  • 21 is the bevel gear planetary gear.
  • Fig. 2 is a schematic diagram of two examples of a double-folded circumferential transmission, which is also a schematic diagram of Embodiment 2 of the present invention.
  • 1 is the input shaft
  • 2 is the inner driving bevel gear
  • 3 is the outer driving bevel gear
  • 4 is the inner driven bevel gear
  • 5 is the outer driven bevel gear
  • 6 is the counter-rotating sleeve shaft
  • 7 is the first driving bevel gear
  • 8 is the second driving bevel gear
  • 9 is the first driven bevel gear
  • 10 is the second driven bevel gear
  • 11 is the same-rotating quill shaft
  • 12 is the small sun gear
  • 13 is the large sun gear
  • 14 is the planet carrier
  • 15 is the output shaft
  • 16 is the fixed shaft component
  • 17 is the fixed shaft
  • 18 is the bracket
  • 19 is the moving shaft bearing
  • 20 is the output bearing
  • 21 is the worm gear
  • 22 is the worm
  • 23 is the left planetary gear
  • 24 is the right
  • Fig. 3 is a schematic diagram of three examples of a double-folded circumferential transmission, which is also a schematic diagram of Embodiment 3 of the present invention.
  • 1 is the input shaft
  • 2 is the front gear
  • 3 is the outer sideshaft front gear
  • 4 is the outer sideshaft rear gear
  • 5 is the rear gear
  • 6 is the reversing sleeve shaft
  • 7 is the first driving bevel gear
  • 8 Is the second driving bevel gear
  • 9 is the first driven bevel gear
  • 10 is the second driven bevel gear
  • 11 is the same-rotating quill
  • 12 is the large internal gear
  • 13 is the small internal gear
  • 14 is the planet carrier
  • 15 is the output shaft
  • 16 is the fixed shaft component
  • 17 is the fixed bearing
  • 18 is the bracket
  • 19 is the moving shaft bearing
  • 20 is the output bearing
  • 21 is the worm gear
  • 22 is the worm
  • 23 is the left planetary gear
  • 24 is the right planetary gear
  • 25 is
  • Fig. 4 is a schematic diagram of four examples of a double-folded circumferential transmission, which is also a schematic diagram of Embodiment 4 of the present invention.
  • 1 is the input shaft
  • 2 is the inner driving bevel gear
  • 3 is the outer driving bevel gear
  • 4 is the inner driven bevel gear
  • 5 is the outer driven bevel gear
  • 6 is the counter-rotating sleeve shaft
  • 7 is the first driving bevel gear
  • 8 is the second driving bevel gear
  • 9 is the first driven bevel gear
  • 10 is the second driven bevel gear
  • 11 is the same-rotating quill shaft
  • 12 is the small sun gear
  • 13 is the large sun gear
  • 14 is the planet carrier
  • 15 is the output shaft
  • 16 is the fixed shaft component
  • 17 is the fixed reversing sleeve shaft bearing
  • 18 is the bracket
  • 19 is the moving shaft bearing
  • 20 is the output bearing
  • 21 is the worm gear
  • 22 is the worm
  • 23 is the left
  • Fig. 5 is a schematic diagram of five examples of a double-folded circumferential transmission, which is also a schematic diagram of Embodiment 5 of the present invention.
  • 1 is the input shaft
  • 2 is the front bevel gear
  • 3 is the two reversing bevel gears
  • 4 is the two reversing bevel gear supports
  • 5 is the rear bevel gear
  • 6 is the reversing sleeve shaft
  • 7 is the first bevel gear.
  • One driving bevel gear, 8 is the second driving bevel gear
  • 9 is the two first driven bevel gears
  • 10 is the two second driven bevel gears
  • 11 is the two co-rotating quill shafts
  • 12 is the two sun gears
  • 13 are two inner gear rings
  • 14 are two planet carriers
  • 15 are two output shafts
  • 16 are fixed shaft components
  • 17 are fixed bearings
  • 18 are brackets
  • 19 are two moving shaft bearings
  • 20 are two outputs Bearing
  • 21 is the inner planetary gear
  • 22 is the outer planetary gear.
  • Embodiment 1 of the double-folded circumferential transmission of the present invention is used for ship propeller transmission, consisting of input shaft 1, single-path commutator, double-path deflector, hybrid planetary row, steering support and output Axis 15 is composed. See Figure 1.
  • the input shaft 1 is connected to the power unit to input power.
  • the single-path commutator adopts the form of a single-path commutator, which includes a front bevel gear 2, a reversing bevel gear 3, a reversing bevel gear support 4, a rear bevel gear 5, and a reversing sleeve shaft 6.
  • the input shaft bearing is fixed, and the front bevel gear 2 is arranged on the input shaft 1; the reversing bevel gear 3 with its support fixed is meshed with the front bevel gear 2, and the reversing bevel gear axis is perpendicular to the axis of the input shaft.
  • the reversing bevel gear is connected with the shaft, and its bearing is used as a fixed support.
  • the reversing sleeve shaft 6 and the input shaft 1 are located on the same axis, and the bearing of the reversing sleeve shaft is fixed.
  • the bevel gear 5 meshes with the reversing bevel gear 3 after the outer shaft of the reversing sleeve shaft is set. Directly connect the input shaft 1 and the inner shaft of the reversing sleeve shaft.
  • the front bevel gear 2 and the rear bevel gear 5 are indirectly connected through the reversing bevel gear 3.
  • the two-way deflector includes a first driving bevel gear 7, a first driven bevel gear 9, a second driving bevel gear 8, a second driven bevel gear 10 and a co-rotating sleeve shaft 11.
  • the form of a two-way deflector is adopted, and the axis of the co-rotating sleeve shaft and the axis of the reversing sleeve shaft are arranged to intersect, and the angle of intersection is the folding angle, and the folding angle in this embodiment is 90 degrees.
  • the first driving bevel gear 7 is arranged on the inner shaft of the counter quill, and the setting position is after the inner shaft of the counter quill passes through the axis of the same rotation quill, and the second driving bevel gear is disposed on the outer shaft of the counter quill.
  • the outer shaft of the counter-rotating sleeve shaft does not pass through the axis of the same-rotating sleeve shaft; the first driven bevel gear 9 is provided on the inner shaft of the same-rotating sleeve shaft, and the second driven bevel gear 10 is provided on the outer shaft of the same-rotating sleeve shaft.
  • the transmission ratio of the first driving bevel gear to the first driven bevel gear is equal to the second driving bevel gear To the negative value of the second driven bevel gear transmission ratio.
  • the hybrid planetary row adopts the form of a hybrid planetary row, which is a bevel gear planetary row, including a left bevel gear 12, a planet carrier 14 with four bevel gears 21, and a right bevel gear 13.
  • the left bevel gear 12 meshes with the bevel gear planetary gear 21, and the bevel gear planet gear 21 meshes with the right bevel gear 13.
  • the right bevel gear 13 is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the left bevel gear 12 is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the planet carrier 14 is directly connected to the output shaft 15.
  • the steering support includes a fixed shaft component 16, a bracket 18, a moving shaft bearing 19 and an output bearing 20.
  • the fixed shaft component adopts the form of two fixed shaft components.
  • the fixed shaft component 16 is a shaft-type fixed shaft component, which is a shaft arranged on the axis of the reversing sleeve shaft, and its bearing is a fixed bearing 17.
  • a moving shaft bearing 19 is provided outside the co-rotating sleeve shaft to support the co-rotating sleeve shaft 11, and an output bearing 20 is provided outside the output shaft to support the output shaft 15.
  • the bracket 18 is directly connected to the fixed shaft component 16, the moving shaft bearing 19 and the output bearing 20, and the fixed shaft component 16 is connected to the control device.
  • the entire steering support can be driven by the control device to revolve around the axis of the reversing sleeve shaft.
  • the control device adopts an electric mechanism.
  • the output shaft 15 is connected with the propeller to output power.
  • a reversing sleeve shaft is arranged in the vertical direction of the ship, and the control device drives the steering support to revolve, the output shaft revolves, and the propeller revolves, so that the ship realizes circumferential propulsion.
  • the control device drives the steering support to revolve, the output shaft revolves, and the propeller revolves, so that the ship realizes circumferential propulsion.
  • the control device is not driven, the output shaft does not revolve.
  • the control torque required for forward rotation and reverse rotation during revolution is the same, the control torque is very small, the control device is small, and the output shaft rotation and revolution do not interfere with each other.
  • Embodiment 2 of the double-folded circumferential transmission of the present invention is used for helicopter tail rotor transmission. It consists of input shaft 1, single-path commutator, double-path deflector, hybrid planetary row, steering support and The output shaft is composed of 15. See Figure 2.
  • the input shaft 1 is connected to the power unit to input power.
  • the single-path commutator adopts the form two single-path commutator, including the inner driving bevel gear 2, the outer driving bevel gear 3, the inner driven bevel gear 4, the outer driven bevel gear 5, and the counter sleeve shaft 6.
  • the input shaft bearing is fixed, and the inner driving bevel gear 2 and the outer driving bevel gear 3 are arranged on the input shaft 1, respectively, which are arranged on both sides of the axis of the reversing sleeve shaft, and the inner driving bevel gear 2 is installed after passing through the axis of the reversing sleeve shaft ,
  • the external driving bevel gear 3 is set without passing through the axis of the reversing sleeve shaft.
  • the reversing sleeve shaft bearing is fixed, and the axis of the reversing sleeve shaft intersects with the axis of the same rotating shaft to form an included angle, that is, the transmission angle.
  • the transmission angle in this embodiment is 90 degrees.
  • the transmission ratio of the input shaft 1 to the reversing sleeve shaft and the inner shaft is equal to the input shaft 1 to the reversing sleeve shaft
  • the two-way deflector includes a first driving bevel gear 7, a first driven bevel gear 9, a second driving bevel gear 8, a second driven bevel gear 10 and a co-rotating sleeve shaft 11.
  • the form two double-path deflector is adopted, and the axis of the co-rotating quill shaft and the axis of the reversing quill shaft are arranged to intersect, and the angle of intersection is the folding angle.
  • the folding angle in this embodiment is 90 degrees.
  • the first driving bevel gear 7 is arranged on the inner shaft of the reversing sleeve shaft, and the second driving bevel gear 7 is arranged on the outer shaft of the reversing sleeve shaft after the inner shaft of the reversing sleeve shaft passes through the axis of the same rotation sleeve shaft.
  • the outer shaft of the counter-rotating sleeve shaft does not pass through the axis of the same-rotating sleeve shaft; the first driven bevel gear 9 is provided on the outer shaft of the same-rotating sleeve shaft, and the second driven bevel gear 10 is provided on the inner shaft of the same-rotating sleeve shaft.
  • the transmission ratio of the first driving bevel gear 7 to the first driven bevel gear 9 is equal to that of the second driving bevel gear.
  • the hybrid planetary row adopts the form two hybrid planetary row, which is a double sun gear variable linear speed planetary row, including a small sun gear 12, a planet carrier 14 with four left planet wheels 23 and four right planet wheels 24, and a large sun gear 13 .
  • the small sun gear 12 meshes with the left planetary gear 23, the right planetary gear 24 meshes with the large sun gear 13, and the left planetary gear and the right planetary gear are coaxially and at the same speed in a one-to-one correspondence.
  • the small sun gear 12 is directly connected to the outer shaft of the co-rotating quill
  • the planet carrier 14 is directly connected to the inner shaft of the co-rotating quill
  • the large sun gear 13 is directly connected to the output shaft 15.
  • the steering support includes a fixed shaft component 16, a bracket 18, a moving shaft bearing 19 and an output bearing 20.
  • the fixed shaft component adopts a certain type of shaft component
  • the fixed shaft component 16 is a bearing-type fixed shaft component
  • the shaft held on the axis of the reversing sleeve shaft is the fixed shaft 17
  • the fixed shaft component 16 is a bearing arranged outside the fixed shaft.
  • a moving shaft bearing 19 is provided outside the co-rotating sleeve shaft to support the co-rotating sleeve shaft 11
  • an output bearing 20 is provided outside the output shaft to support the output shaft 15.
  • the bracket 18 directly connects the fixed shaft component 16, the moving shaft bearing 19 and the output bearing 20.
  • a worm wheel 21 is provided on the fixed shaft member 16 and the number of teeth of the worm wheel is 30.
  • a worm 22 connected to the control device is set, the number of worm heads is 2, and the worm shaft is fixed.
  • the worm wheel 21 meshes with the worm 22.
  • the steering support and the control device are indirectly connected through a worm gear. The entire steering support can be driven by the control device to revolve around the axis of the reversing sleeve shaft.
  • the control device adopts an electric mechanism.
  • the output shaft 15 is connected with the tail rotor to output power.
  • the input shaft is arranged in the horizontal direction of the helicopter tail beam
  • the reversing sleeve shaft is arranged in the vertical direction
  • the output shaft is connected to the helicopter tail rotor.
  • the control device drives the steering support to revolve through the worm gear, the output shaft revolves, the tail rotor revolves, and the tail rotor realizes circumferential propulsion.
  • the control device is not driven, the output shaft does not revolve.
  • the control torque required for forward rotation and reverse rotation during revolution is the same, the control torque is very small, the control device is small, and the output shaft rotation and revolution do not interfere with each other.
  • Embodiment 3 of the double-folded circumferential transmission of the present invention is used for helicopter tail rotor transmission. It consists of input shaft 1, single-path commutator, double-path deflector, hybrid planetary row, steering support and The output shaft is composed of 15. See Figure 3.
  • the input shaft 1 is connected to the power unit to input power.
  • the single-path commutator adopts the form of three single-path commutators, including the front gear 2, the inner sideshaft gear 25, the outer sideshaft front gear 3, the outer sideshaft rear gear 4, the rear gear 5 and the counter-sleeve 6.
  • the front gear 2 on the input shaft 1; set the inner range shaft and the outer range shaft whose axes are parallel to the axis of the same shaft and the bearings are fixed, and set the inner range shaft gear 25 on the inner range shaft.
  • the outer rangefinder front gear 3 and the outer rangefinder rear gear 4 are arranged in sequence on the outer rangefinder; the rear gear 5 is arranged on the outer shaft of the reversing sleeve shaft.
  • the front gear 2 is arranged to mesh with the outer range shaft front gear 3, the outer range rear gear 4 meshes with the inner range shaft gear 25, and the inner range shaft gear 25 meshes with the rear gear 5.
  • the reversing sleeve shaft 6 and the input shaft 1 are arranged on the same axis, the bearing of the reversing sleeve shaft is fixed, and the input shaft 1 and the inner shaft of the reversing sleeve shaft are directly connected.
  • the front gear 2 and the rear gear 5 are indirectly connected through the outer sideshaft front gear 3, the outer sideshaft rear gear 4, and the inner sideshaft gear 25.
  • the two-way deflector includes a first driving bevel gear 7, a first driven bevel gear 9, a second driving bevel gear 8, a second driven bevel gear 10 and a co-rotating sleeve shaft 11.
  • the form two double-path deflector is adopted, and the axis of the co-rotating quill shaft and the axis of the reversing quill shaft are arranged to intersect, and the angle of intersection is the folding angle, and the folding angle in this embodiment is 90 degrees.
  • the first driving bevel gear 7 is arranged on the inner shaft of the reversing sleeve shaft, and the second driving bevel gear 7 is arranged on the outer shaft of the reversing sleeve shaft after the inner shaft of the reversing sleeve shaft passes through the axis of the same rotation sleeve shaft.
  • the outer shaft of the counter-rotating sleeve shaft does not pass through the axis of the same-rotating sleeve shaft; the first driven bevel gear 9 is provided on the outer shaft of the same-rotating sleeve shaft, and the second driven bevel gear 10 is provided on the inner shaft of the same-rotating sleeve shaft.
  • the transmission ratio of the first driving bevel gear 7 to the first driven bevel gear 9 is equal to that of the second driving bevel gear.
  • the hybrid planetary row adopts the form of three hybrid planetary row, which is a double-ring gear variable linear speed planetary row, including a large inner gear 12, a planet carrier 14 with four left planet wheels 23 and four right planet wheels 24, and a small inner gear ring.
  • Gear ring 13 The large inner gear 12 meshes with the left planetary gear 23, the right planetary gear 24 meshes with the small inner gear 13, and the left planetary gear and the right planetary gear are coaxially and at the same speed in a one-to-one correspondence.
  • the large inner gear 12 is directly connected to the outer shaft of the co-rotating sleeve shaft
  • the planet carrier 14 is directly connected to the inner shaft of the co-rotating sleeve shaft
  • the small inner gear 13 is directly connected to the output shaft 15.
  • the steering support includes a fixed shaft component 16, a bracket 18, a moving shaft bearing 19 and an output bearing 20.
  • the fixed shaft component adopts the form two fixed shaft component.
  • the fixed shaft component 16 is a shaft-type fixed shaft component, which is a shaft arranged on the axis of the reversing sleeve shaft, and its bearing is a fixed bearing 17.
  • a moving shaft bearing 19 is provided outside the co-rotating sleeve shaft to support the co-rotating sleeve shaft 11, and an output bearing 20 is provided outside the output shaft to support the output shaft 15.
  • the bracket 18 directly connects the fixed shaft component 16, the moving shaft bearing 19 and the output bearing 20.
  • a worm wheel 21 is provided on the fixed shaft member 16 and the number of teeth of the worm wheel is 30.
  • a worm 22 connected to the control device is provided, the number of worm heads is 2, and the worm support is fixed.
  • the worm wheel 21 meshes with the worm 22.
  • the steering support and the control device are indirectly connected through a worm gear, and the entire steering support can be driven by the control device to revolve around the axis of the reversing sleeve shaft.
  • the control device adopts an electric mechanism.
  • the output shaft 15 is connected with the tail rotor to output power.
  • a reversing sleeve shaft is arranged in the vertical direction of the helicopter, the control device drives the steering support to revolve through the worm gear, the output shaft revolves, the tail rotor revolves, and the helicopter tail rotor realizes circumferential propulsion.
  • the control device drives the steering support to revolve through the worm gear, the output shaft revolves, the tail rotor revolves, and the helicopter tail rotor realizes circumferential propulsion.
  • the control device is not driven, the output shaft does not revolve.
  • the control torque required for forward rotation and reverse rotation during revolution is the same, the control torque is very small, the control device is small, and the output shaft rotation and revolution do not interfere with each other.
  • Embodiment 4 of the double-folded circumferential transmission of the present invention is used for ship propeller transmission, consisting of an input shaft 1, a single-way commutator, a two-way deflector, a hybrid planetary row, a steering support and an output Axis 15 is composed. See Figure 4.
  • the input shaft 1 is connected to the power unit to input power.
  • the single-path commutator adopts the form of four single-path commutators, including the inner driving bevel gear 2, the outer driving bevel gear 3, the inner driven bevel gear 4, the outer driven bevel gear 5 and the counter-sleeve 6.
  • the input shaft bearing is fixed, and the inner driving bevel gear 2 and the outer driving bevel gear 3 are arranged on the input shaft 1, symmetrically distributed on both sides of the reversing sleeve shaft axis, and the inner driving bevel gear 2 does not pass through the reversing sleeve shaft axis Just set, the external driving bevel gear 3 is set after passing through the axis of the reversing sleeve shaft.
  • the reversing sleeve shaft bearing is fixed, and the axis of the reversing sleeve shaft intersects with the axis of the input shaft to form an included angle, that is, the transmission angle.
  • the transmission angle in this embodiment is 90 degrees.
  • the two-way deflector includes a first driving bevel gear 7, a first driven bevel gear 9, a second driving bevel gear 8, a second driven bevel gear 10 and a co-rotating sleeve shaft 11.
  • the form two double-path deflector is adopted, and the axis of the co-rotating quill shaft and the axis of the reversing quill shaft are arranged to intersect, and the angle of intersection is the folding angle.
  • the folding angle in this embodiment is 90 degrees.
  • the first driving bevel gear 7 is arranged on the inner shaft of the reversing sleeve shaft, and the second driving bevel gear 7 is arranged on the outer shaft of the reversing sleeve shaft after the inner shaft of the reversing sleeve shaft passes through the axis of the same rotation sleeve shaft.
  • the outer shaft of the counter-rotating sleeve shaft does not pass through the axis of the same-rotating sleeve shaft; the first driven bevel gear 9 is provided on the outer shaft of the same-rotating sleeve shaft, and the second driven bevel gear 10 is provided on the inner shaft of the same-rotating sleeve shaft.
  • the hybrid planetary row adopts the form of four hybrid planetary row, which is a double sun gear inner and outer planetary variable linear speed planetary row, including a small sun gear 12, with four inner planet wheels 25, four left planet wheels 23, four right planet wheels 24 The planet carrier 14 and the large sun gear 13.
  • the small sun gear 12 meshes with the inner planetary gear 25, the inner planetary gear 25 meshes with the left planetary gear 23, the right planetary gear 24 meshes with the large sun gear 13, and the left planetary gear and the right planetary gear correspond to each other coaxially and at the same speed.
  • the steering support includes a fixed shaft component 16, a bracket 18, a moving shaft bearing 19 and an output bearing 20.
  • the fixed shaft component adopts a certain form of shaft component.
  • the fixed shaft component 16 is a bearing-type fixed shaft component.
  • the shaft held on the axis of the reversing sleeve shaft is the reversing sleeve shaft.
  • the bearing is the fixed bearing 17, and the fixed shaft component 16 It is a bearing that can rotate outside the reversing sleeve shaft on the right side of the picture.
  • a moving shaft bearing 19 is provided outside the co-rotating sleeve shaft to support the co-rotating sleeve shaft 11, and an output bearing 20 is provided outside the output shaft to support the output shaft 15.
  • the bracket 18 directly connects the fixed shaft component 16, the moving shaft bearing 19 and the output bearing 20.
  • a worm wheel 21 is provided on the fixed shaft member 16 and the number of teeth of the worm wheel is 30.
  • a worm 22 connected to the control device is set, the number of worm heads is 2, and the worm shaft is fixed.
  • the worm wheel 21 meshes with the worm 22.
  • the steering support and the control device are indirectly connected through a worm gear. The entire steering support can be driven by the control device to revolve around the axis of the reversing sleeve shaft.
  • the control device adopts an electric mechanism.
  • the output shaft 15 is connected with the propeller to output power.
  • a reversing sleeve shaft is arranged in the vertical direction of the ship, the control device drives the steering support to revolve through the worm gear, the output shaft revolves, and the propeller revolves, and the ship realizes circumferential propulsion.
  • the control device drives the steering support to revolve through the worm gear, the output shaft revolves, and the propeller revolves, and the ship realizes circumferential propulsion.
  • the control device is not driven, the output shaft does not revolve.
  • the control torque required for forward rotation and reverse rotation during revolution is the same, the control torque is very small, the control device is small, and the output shaft rotation and revolution do not interfere with each other.
  • Embodiment 5 of the double-folded circumferential transmission of the present invention is used for the transmission of double propellers of ships, consisting of input shaft 1, single-path commutator, double-path deflector, hybrid planetary row, steering support and
  • the output shaft is composed of 15. See Figure 5.
  • two sets of double-folded circumferential transmissions share one input shaft; share a single-circuit commutator; two pairs of double-circuit deflectors share a first driving bevel gear and a second driving bevel gear; hybrid planetary gear ,
  • Two sets of output shafts are provided; the two sets of steering bearings share a fixed shaft component and the two brackets are connected to be integrated.
  • the input shaft 1 is connected to the power unit to input power.
  • the single-path commutator adopts the form of a single-path commutator, which includes a front bevel gear 2, two reversing bevel gears 3, two reversing bevel gear supports 4, a rear bevel gear 5, and a reversing sleeve shaft 6.
  • Two reversing bevel gears and two reversing bevel gear supports are used to strengthen the rated torque of the single-way commutator.
  • Fix the input shaft bearing set the front bevel gear 2 on the input shaft 1; set two reversing bevel gears 3 to mesh with the front bevel gear 2, the reversing bevel gear axis is perpendicular to the input shaft axis, two reversing bevel gear supports 4Fixed.
  • the reversing sleeve shaft 6 and the input shaft 1 are located on the same axis, the bearing of the reversing sleeve shaft is fixed, and the bevel gear 5 meshes with the two reversing bevel gears 3 after the outer shaft of the reversing sleeve shaft is set.
  • the front bevel gear 2 and the rear bevel gear 5 are indirectly connected through two reversing bevel gears 3.
  • the two dual-path deflectors include a first driving bevel gear 7, a first driven bevel gear 9, two second driving bevel gears 8, two second driven bevel gears 10, and two co-rotating quill shafts 11.
  • the two-way deflector adopts the form of a two-way deflector, which is set to intersect the axis of the co-rotating quill shaft and the axis of the counter-rotating quill shaft. On both sides of the axis of the cylindrical shaft, the folding angles in this embodiment are both 90 degrees.
  • the first driving bevel gear 7 is arranged on the inner shaft of the reversing sleeve shaft, and the second driving bevel gear 7 is arranged on the outer shaft of the reversing sleeve shaft after the inner shaft of the reversing sleeve shaft passes through the axis of the same rotation sleeve shaft.
  • the outer shaft of the counter-rotating quill shaft does not pass through the axis of the same-rotating quill shaft; the first driven bevel gear 9 is set on each of the two inner shafts of the same-rotating quill shaft, and the outer shafts of the two same-rotating quill shafts are set on each The second driven bevel gear 10; keep the first driving bevel gear and the two first driven bevel gears respectively engaged, and keep the second driving bevel gear and the two second driven bevel gears respectively engaged.
  • the transmission ratio of the first driving bevel gear to the first driven bevel gear is equal to the second driving bevel gear To the negative value of the second driven bevel gear transmission ratio.
  • the two hybrid planetary rows are in the form of five hybrid planetary rows, both of which are ordinary double-layer star planetary rows.
  • Each includes a sun gear 12, a planet carrier 14 with four inner planet wheels 21, and four outer planet wheels 22.
  • Internal gear ring 13 The sun gear 12 meshes with the inner planetary gear 21, the inner planetary gear 21 meshes with the outer planetary gear 22, and the outer planetary gear 22 meshes with the inner ring gear 13.
  • Each of the sun gear 12 is directly connected to the inner shaft of the co-rotating sleeve shaft, each of the planet carriers 14 is directly connected to the outer shaft of the co-rotating sleeve shaft, and each of the planet carriers 14 is directly connected to the output shaft 15.
  • the steering bearings each include a fixed shaft component 16, a bracket 18, a moving shaft bearing 19 and an output bearing 20.
  • the two auxiliary steering bearings share a fixed shaft component, which adopts the form of two fixed shaft components.
  • the fixed shaft component 16 is a shaft-type fixed shaft component, which is a shaft arranged on the axis of the reversing sleeve shaft, and its bearing is a fixed bearing 17.
  • a moving shaft bearing 19 is provided outside the two co-rotating sleeve shafts, each supporting the same-rotating sleeve shaft 11, and an output bearing 20 is provided outside the two output shafts, and each supporting the output shaft 15 is provided.
  • the bracket 18 directly connects the fixed shaft component 16, the two moving shaft bearings 19 and the two output bearings 20.
  • the fixed shaft component 16 is connected with the control device, and the two steering bearings are combined to form a whole, which can be driven by the control device to revolve around the axis of the reversing sleeve shaft.
  • the two output shafts 15 are each connected to one of the double propellers to output power.
  • the rotation direction of the twin propellers is opposite.
  • This embodiment is essentially two sets of double-folded circumferential transmissions, sharing an input shaft, a single-way commutator, a first driving bevel gear, a second driving bevel gear and a fixed shaft component, and the two brackets are connected to form a whole;
  • the steering support and the two output shafts are driven by the same control device to revolve.
  • the reversing sleeve shaft is arranged in the vertical direction of the ship, the control device drives the steering support to revolve, the output shaft revolves, and the double propeller revolves, and the ship realizes circumferential propulsion.
  • the control device When the control device is not driven, the output shaft does not revolve.
  • the control torque required for forward rotation and reverse rotation is the same, the control torque is very small, the control device is small, and the output shaft rotation and revolution do not interfere with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Retarders (AREA)
  • Gear Transmission (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种双折周向传动器,包括输入轴(1)、单路换向器、双路折向器、混动行星排、转向支座和输出轴(15)。输入轴(1)连接动力装置;单路换向器把一个转动转化为转速相等方向相反的两个转动;双路折向器设置两副锥齿轮副,第一主动锥齿轮(7)对第一被动锥齿轮(9)产生的单向偏转力矩与第二主动锥齿轮(8)对第二被动锥齿轮(10)产生的单向偏转力矩大小相同方向相反;混动行星排使同转套筒轴内轴和外轴两个同向转速合成输出轴转速;转向支座受控公转;输出轴(15)连接动力使用设备。控制装置带动转向支座公转,控制力矩小,控制装置小,输出轴自转与公转相互不干涉,传动力矩大。

Description

双折周向传动器 技术领域
本发明涉及一种周向传动器的传动结构,由输入轴、单路换向器、双路折向器、混动行星排、转向支座和输出轴组成,特点是传动力矩大,输出轴自转与公转相互不干涉,控制公转的控制力矩很小,控制装置很小。称为双折周向传动器。
背景技术
传统定轴螺旋桨推进器,螺旋桨可以输出自转但输出轴固定不能公转。传统动轴螺旋桨推进器,采用锥齿轮副作为传动器,输出轴输出自转,控制装置强行带动输出轴轴承使输出轴围绕输入轴轴线公转。因为带动输出轴轴承公转要克服单向偏转力矩,控制公转时正转与反转需要的控制力矩大小不同,所以额定控制力矩要很大,控制装置很大。传统动轴螺旋桨推进器的传动器锥齿轮副,输出轴自转与公转相互干涉不能解耦,输出轴公转时必然导致输出轴自转相位改变,其输出轴自转相位不独立是大缺陷,所以性能不如周向传动器。所述周向传动器是输出轴可以被控制公转、输出轴自转相位不受公转干涉的传动器。所述单向偏转力矩是锥齿轮副传递动力时自动产生的使输出轴围绕输入轴轴线单向公转的力矩,与输入力矩正相关。输出轴围绕输出轴轴线转动是自转,输出轴围绕输入轴轴线(或反转套筒轴轴线)转动是公转。本人此前发明并申报了百向传动器,在传递动力时不产生单向偏转力矩,控制力矩很小,控制装置很小,其输出轴自转与公转相互不干涉,公转不影响输出轴自转的相位,是周向传动器。百向传动器中采用混动器的一个行星轮单独向输出轴传递动力,传动力矩小;本发明采用混动行星排的多个行星轮并联向输出轴传递动力,传动力矩大。传动力矩大是指:材质等参数相同的条件下,相同体积的传动机构可传递更大力矩,或更小体积的传动机构可传递相同力矩。航空业、航海业需要输出轴自转与公转相互不干涉、控制装置很小、传动力矩大的新周向传动器。本发明就提出这种双折周向传动器。双折周向传动器还可用于机器人的跨关节转动部件,用于机床转动部件。
发明内容
本发明双折周向传动器,由输入轴、单路换向器、双路折向器、混动行星排、转向支座和输出轴组成。
输入轴连接动力装置,输入动力。
单路换向器的作用是把一个转动转化为转速相等转动方向相反的两个转动,并在反转套筒轴内轴和反转套筒轴外轴中分别传递这两个转动。单路换向器有四种形式,本发明任选四 种形式之一作为单路换向器,单路换向器中反转套筒轴内轴和反转套筒轴外轴这两个部件转速相等转动方向相反。形式一单路换向器,包括前锥齿轮、换向锥齿轮、换向锥齿轮支座、后锥齿轮和反转套筒轴,参见图1中的2、3、4、5和6。所述反转套筒轴是同一轴线上相互嵌套的两个轴,分别是反转套筒轴内轴、反转套筒轴外轴。固定输入轴轴承,在输入轴设置前锥齿轮;设置换向锥齿轮与前锥齿轮啮合,换向锥齿轮轴线与输入轴轴线垂直,换向锥齿轮的支座固定。设置反转套筒轴与输入轴位于同一轴线,固定反转套筒轴的轴承,在反转套筒轴外轴设置后锥齿轮与换向锥齿轮啮合。直接连接输入轴与反转套筒轴内轴。前锥齿轮与后锥齿轮通过换向锥齿轮形成间接连接。通过设置前锥齿轮齿数等于后锥齿轮齿数,使这个间接连接传动比等于-1.0。形式二单路换向器,包括内主动锥齿轮、外主动锥齿轮、内被动锥齿轮、外被动锥齿轮和反转套筒轴,参见图2中的2、3、4、5和6。固定输入轴轴承,在输入轴设置内主动锥齿轮和外主动锥齿轮,分别设置于反转套筒轴轴线的两侧,内主动锥齿轮穿过反转套筒轴轴线后设置,外主动锥齿轮不穿过反转套筒轴轴线就设置。固定反转套筒轴轴承,设置反转套筒轴轴线与同向轴轴线相交形成夹角即传动角,按实际需要确定传动角值。在反转套筒轴内轴设置内被动锥齿轮,保持内被动锥齿轮与内主动锥齿轮啮合;在反转套筒轴外轴设置外被动锥齿轮,保持外被动锥齿轮与外主动锥齿轮啮合。通过设置内主动锥齿轮齿数、外主动锥齿轮齿数、内被动锥齿轮齿数和外被动锥齿轮齿数,使输入轴到反转套筒轴内轴传动比等于输入轴到反转套筒轴外轴传动比的负值;例如:设置内主动锥齿轮齿数=内被动锥齿轮齿数,且外主动锥齿轮齿数=外被动锥齿轮齿数。形式三单路换向器,包括前齿轮、内旁轴齿轮、外旁轴前齿轮、外旁轴后齿轮、后齿轮和反转套筒轴,参见图3中的2、25、3、4、5和6。固定输入轴轴承,在输入轴设置前齿轮;设置其轴线分别与输入轴轴线平行的、其轴承都固定的内旁轴和外旁轴,在内旁轴设置内旁轴齿轮,在外旁轴依次设置外旁轴前齿轮和外旁轴后齿轮;在反转套筒轴外轴设置后齿轮。设置前齿轮与外旁轴前齿轮啮合、外旁轴后齿轮与内旁轴齿轮啮合、内旁轴齿轮与后齿轮啮合。设置反转套筒轴与输入轴位于同一轴线,固定反转套筒轴的轴承,直接连接输入轴与反转套筒轴内轴。前齿轮与后齿轮通过外旁轴前齿轮、外旁轴后齿轮和内旁轴齿轮形成间接连接。通过设置内旁轴齿轮齿数、外旁轴前齿轮齿数、外旁轴后齿轮齿数、前齿轮齿数和后齿轮齿数,使这个间接连接传动比等于-1.0,例如:设置外旁轴后齿轮齿数=内旁轴齿轮齿数=后齿轮齿数=N,且前齿轮齿数=外旁轴前齿轮齿数=2*N,N为大于等于8的自然数。形式四单路换向器,包括内主动锥齿轮、外主动锥齿轮、内被动锥齿轮、外被动锥齿轮和反转套筒轴,参见图4中的2、3、4、5和6。固定输入轴轴承,在输入轴设置内主动锥齿轮和外主动锥齿轮,分别设置于反转套筒轴轴线的两侧,内主动锥齿轮不穿过反转套筒轴轴线就设置,外主动锥齿轮穿过反转套筒轴轴线后 设置。固定反转套筒轴轴承,设置反转套筒轴轴线与输入轴轴线相交形成夹角即传动角,按实际需要确定传动角值。在反转套筒轴内轴设置内被动锥齿轮,保持内被动锥齿轮与内主动锥齿轮啮合;在反转套筒轴外轴设置外被动锥齿轮,保持外被动锥齿轮与外主动锥齿轮啮合。通过设置内主动锥齿轮齿数、外主动锥齿轮齿数、内被动锥齿轮齿数和外被动锥齿轮齿数,使输入轴到反转套筒轴内轴传动比等于输入轴到反转套筒轴外轴传动比的负值;例如:设置内主动锥齿轮齿数=内被动锥齿轮齿数,且外主动锥齿轮齿数=外被动锥齿轮齿数。
双路折向器设置两副锥齿轮副。第一主动锥齿轮所在的轴与第二主动锥齿轮所在的轴形成反转套筒轴,第二被动锥齿轮所在的轴与第二被动锥齿轮所在的轴形成同转套筒轴。第一主动锥齿轮对第一被动锥齿轮自动产生的单向偏转力矩,与第二主动锥齿轮对第二被动锥齿轮自动产生的单向偏转力矩大小相同方向相反。通过同转套筒轴的内轴和外轴相互传递,这两个单向偏转力矩相互抵消。所述锥齿轮副是成熟技术,锥齿轮副是相互啮合的用于传动的一对锥齿轮,其输入轴轴线与输出轴轴线相交,相交的夹角即折向角。所述两副锥齿轮副有第一主动锥齿轮与第一被动锥齿轮组成的锥齿轮副,还有第二主动锥齿轮与第二被动锥齿轮组成的锥齿轮副。所述同转套筒轴是同一轴线上相互嵌套的两个轴,即同转套筒轴内轴和同转套筒轴外轴。设置同转套筒轴轴线与反转套筒轴轴线相交,交角即折向角。双路折向器包括第一主动锥齿轮、第一被动锥齿轮、第二主动锥齿轮、第二被动锥齿轮和同转套筒轴。双路折向器有两种形式,其中零件啮合不同,本发明任选两种形式之一作为双路折向器。形式一双路折向器,在反转套筒轴内轴设置第一主动锥齿轮,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮,反转套筒轴外轴不穿过同转套筒轴轴线;在同转套筒轴内轴设置第一被动锥齿轮,在同转套筒轴外轴设置第二被动锥齿轮;保持第一主动锥齿轮与第一被动锥齿轮啮合,保持第二主动锥齿轮与第二被动锥齿轮啮合。参见图1中的7、8、9、10和11。形式二双路折向器,在反转套筒轴内轴设置第一主动锥齿轮,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮,反转套筒轴外轴不穿过同转套筒轴轴线;在同转套筒轴外轴设置第一被动锥齿轮,在同转套筒轴内轴设置第二被动锥齿轮;保持第一主动锥齿轮与第一被动锥齿轮啮合,保持第二主动锥齿轮与第二被动锥齿轮啮合。参见图2中的7、8、9、10和11。两种形式的双路折向器均通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮到第一被动锥齿轮传动比等于第二主动锥齿轮到第二被动锥齿轮传动比的负值;例如:设置第一主动锥齿轮齿数=第二被动锥齿轮齿数,且第二主动锥齿轮齿数=第二被动锥齿轮齿数。
混动行星排的作用是利用同转套筒轴内轴与同转套筒轴外轴的两个转速中转动方向相同 转速相等的两个转速分量合成输出轴转速,这时同转套筒轴内轴与同转套筒轴外轴的两个转速中转动方向相反转速相等的两个转速分量不干涉输出轴自转;这样输出轴自转与公转相互不干涉,输出轴公转不影响输出轴自转的相位。混动行星排有五种形式,本发明任选五种形式之一作为混动行星排。形式一混动行星排采用锥齿轮行星排,包括左锥齿轮、带锥齿行星轮的行星架和右锥齿轮,参见图1中的12、21、14和13。左锥齿轮与锥齿行星轮啮合、锥齿行星轮与右锥齿轮啮合。设置左锥齿轮齿数=右锥齿轮齿数时,作为混动行星排。以右锥齿轮直接连接同转套筒轴内轴,左锥齿轮直接连接同转套筒轴外轴,行星架直接连接输出轴。形式二混动行星排采用双太阳轮变线速行星排,包括小太阳轮、带左行星轮右行星轮的行星架和大太阳轮,参见图2中的12、23、24、14和13。小太阳轮与左行星轮啮合、右行星轮与大太阳轮啮合,左行星轮与右行星轮一一对应同轴同转速。通过设置小太阳轮齿数、大太阳轮齿数、左行星轮齿数和右行星轮齿数,使其行星排特性参数a=2.0时,作为混动行星排。以小太阳轮直接连接同转套筒轴外轴,行星架直接连接同转套筒轴内轴,大太阳轮直接连接输出轴。例如小太阳轮齿数=20、右行星轮齿数=18、大太阳轮齿数=24、左行星轮齿数=30时,其行星排特性参数a=2.0。形式三混动行星排采用双内齿圈变线速行星排,包括大内齿圈、带左行星轮右行星轮的行星架和小内齿圈,参见图3中的12、23、24、14和13。大内齿圈与左行星轮啮合、右行星轮与小内齿圈啮合,左行星轮与右行星轮一一对应同轴同转速。通过设置大内齿圈齿数、小内齿圈齿数、左行星轮齿数和右行星轮齿数,使其行星排特性参数a=2.0时,作为混动行星排。以大内齿圈直接连接同转套筒轴外轴,行星架直接连接同转套筒轴内轴,小内齿圈直接连接输出轴。例如大内齿圈齿数=60、左行星轮齿数=20、右行星轮齿数=16、小内齿圈齿数=96时,其行星排特性参数a=2.0。形式四混动行星排采用双太阳轮内外星变线速行星排,包括小太阳轮、带内层行星轮左行星轮右行星轮的行星架和大太阳轮,参见图4中的12、25、23、24、14和13。小太阳轮与内层行星轮啮合、内层行星轮与左行星轮啮合、右行星轮与大太阳轮啮合,左行星轮与右行星轮一一对应同轴同转速。通过设置小太阳轮齿数、大太阳轮齿数、左行星轮齿数、右行星轮齿数和内层行星轮齿数,使其行星排特性参数a=1.0时,作为混动行星排。以小太阳轮直接连接同转套筒轴外轴,大太阳轮直接连接同转套筒轴内轴,行星架直接连接输出轴。例如小太阳轮齿数=内层行星轮齿数=左行星轮齿数=18、大太阳轮齿数=右行星轮齿数=22时,其行星排特性参数a=1.0。形式五混动行星排采用普通双层星行星排,包括太阳轮、带内层行星轮外层行星轮的行星架和内齿圈,参见图5中的12、21、22、14和13。太阳轮与内层行星轮啮合、内层行星轮与外层行星轮啮合、外层行星轮与内齿圈啮合。设置内齿圈齿数=太阳轮齿数*2时,作为混动行星排。以太阳轮直接连接同转套筒轴内轴,行星架直接连接同转套筒轴外轴,内齿圈直接连接输出轴。 所述双太阳轮变线速行星排、双内齿圈变线速行星排和双太阳轮内外星变线速行星排,都是变线速行星排,均为成熟技术,双太阳轮变线速行星排在某些教科书中称为“双排外啮合行星轮系”。所述变线速行星排中,其某层行星轮作为变线速行星轮,在每一个变线速行星轮轮轴上设置左行星轮和右行星轮一一对应,左行星轮与右行星轮同轴同转速但它们的分度圆线速度不相等,即“变线速”,左行星轮、右行星轮不同时与同一个太阳轮(或同一个内齿圈)啮合,左行星轮与右行星轮的齿数、齿轮模数等参数不完全相等。本发明所述锥齿行星轮、左行星轮、右行星轮、内层行星轮、外层行星轮等这几种行星轮个数的选定采用成熟技术,行星轮个数选定二个、三个、四个、五个或六个之中的一种,根据实际需要结合行星排装配条件来选定,在同一行星排中行星轮个数相同。
转向支座的作用是受控制装置控制,带动同转套筒轴和输出轴围绕反转套筒轴轴线公转。转向支座包括定轴部件、支架、动轴轴承和输出轴承。定轴部件是围绕反转套筒轴轴线转动的机械,定轴部件有两种形式,本发明任选两种形式之一作为定轴部件。形式一是轴承式定轴部件,选定一个保持位于反转套筒轴轴线的轴,在该轴外围设置轴承,该轴承就是定轴部件。参见图2,定轴部件为16,所述一个保持位于反转套筒轴轴线的轴为固定轴17,定轴部件是设置在固定轴外的轴承;又参见图4,定轴部件为16,所述一个保持位于反转套筒轴轴线的轴就是反转套筒轴6,定轴部件是位于右侧设置在反转套筒轴外的轴承。形式二定轴部件是轴式定轴部件,是设置于反转套筒轴轴线上的轴,其轴承是固定轴承,该轴就是定轴部件。参见图1,定轴部件为16,是设置于反转套筒轴轴线上的轴,其轴承是固定轴承17。在同转套筒轴外设置动轴轴承承托同转套筒轴,在输出轴外设置输出轴承承托输出轴。支架是连接直接连接定轴部件、动轴轴承和输出轴承的机械,采用成熟技术。整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转。所述公转指动力使用设备等在围绕输出轴轴线自转的同时,围绕反转套筒轴轴线正向、反向公转,在没有其他限制条件时公转角度范围无限。
输出轴与动力使用设备连接,输出动力。
控制装置带动转向支座公转,输出轴公转。控制装置不带动时,输出轴不公转。公转时正转与反转所需的控制力矩相同,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉,输出轴公转不影响输出轴自转的相位。
所述动力装置采用成熟技术,比如电动力装置、汽动力装置、燃油动力装置。所述动力使用设备采用成熟技术,比如螺旋桨、旋翼、尾桨、机器人跨关节部件或机床部件等。所述控制装置采用成熟技术,比如电动机构、机械机构或液压机构,控制装置的基座固定。所述某部件固定是成熟技术,即通过连接机械把某部件与船体或机身直接连接,所述固定某部件就使其转速为零。所述套筒轴为成熟技术,套筒轴的各轴承承托着各层轴,其轴承与轴之间、 各轴之间可以相对转动,但沿轴向不相对滑移。所述轴承为成熟技术,轴承承托着轴,轴承与轴之间可以相对转动,但沿轴向不相对滑移。所述连接包括直接连接和间接连接,均为成熟技术;直接连接即通过机械相连使被连接的对象转速相同,例如通过连接件采用铸造、粘接、焊接或栓铆等方式使被连接的对象转速相同;间接连接即通过机械传动使两个被传动对象的转速确定性相关,例如通过齿轮副、锥齿轮副、蜗轮蜗杆、齿轮齿条、连杆或链带形成间接连接。所述保持同步是直接连接。所述蜗轮蜗杆为成熟技术。所述在某部件设置齿轮、锥齿轮或蜗轮,设置的齿轮、锥齿轮或蜗轮与该部件保持同步。所述传动比等于输入部件转速除以输出部件转速。所述*为乘号,/为除号,=为等号。
本发明双折周向传动器,有益之处在于:提出了一种周向传动器的传动结构,可以控制输出轴围绕反转套筒轴轴线公转,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉,输出轴公转不影响输出轴自转的相位。其功能远超传统锥齿轮副。其传动结构不同于百向传动器,其传动力矩比百向传动器的传动力矩大。可改善螺旋桨或旋翼等动力使用设备的自转传动与公转控制,还可用于机器人的跨关节传动、用于机床传动。
附图说明
图1为双折周向传动器示意图一例,也是本发明实施例1示意图。图中1为输入轴,2为前锥齿轮,3为换向锥齿轮,4为换向锥齿轮支座,5为后锥齿轮,6为反转套筒轴,7为第一主动锥齿轮,8为第二主动锥齿轮,9为第一被动锥齿轮,10为第二被动锥齿轮,11为同转套筒轴,12为左锥齿轮,13为右锥齿轮,14为行星架,15为输出轴,16为定轴部件,17为固定轴承,18为支架,19为动轴轴承,20为输出轴承,21为锥齿行星轮。
图2为双折周向传动器示意图二例,也是本发明实施例2示意图。图中1为输入轴,2为内主动锥齿轮,3为外主动锥齿轮,4为内被动锥齿轮,5为外被动锥齿轮,6为反转套筒轴,7为第一主动锥齿轮,8为第二主动锥齿轮,9为第一被动锥齿轮,10为第二被动锥齿轮,11为同转套筒轴,12为小太阳轮,13为大太阳轮,14为行星架,15为输出轴,16为定轴部件,17为固定轴,18为支架,19为动轴轴承,20为输出轴承,21为蜗轮,22为蜗杆,23为左行星轮,24为右行星轮。
图3为双折周向传动器示意图三例,也是本发明实施例3示意图。图中1为输入轴,2为前齿轮,3为外旁轴前齿轮,4为外旁轴后齿轮,5为后齿轮,6为反转套筒轴,7为第一主动锥齿轮,8为第二主动锥齿轮,9为第一被动锥齿轮,10为第二被动锥齿轮,11为同转套筒轴,12为大内齿圈,13为小内齿圈,14为行星架,15为输出轴,16为定轴部件,17为固定轴承,18为支架,19为动轴轴承,20为输出轴承,21为蜗轮,22为蜗杆,23为左行 星轮,24为右行星轮,25为内旁轴齿轮。
图4为双折周向传动器示意图四例,也是本发明实施例4示意图。图中1为输入轴,2为内主动锥齿轮,3为外主动锥齿轮,4为内被动锥齿轮,5为外被动锥齿轮,6为反转套筒轴,7为第一主动锥齿轮,8为第二主动锥齿轮,9为第一被动锥齿轮,10为第二被动锥齿轮,11为同转套筒轴,12为小太阳轮,13为大太阳轮,14为行星架,15为输出轴,16为定轴部件,17为固定的反转套筒轴轴承,18为支架,19为动轴轴承,20为输出轴承,21为蜗轮,22为蜗杆,23为左行星轮,24为右行星轮,25为内层行星轮。
图5为双折周向传动器示意图五例,也是本发明实施例5示意图。图中1为输入轴,2为前锥齿轮,3为两个换向锥齿轮,4为两个换向锥齿轮支座,5为后锥齿轮,6为反转套筒轴,7为第一主动锥齿轮,8为第二主动锥齿轮,9为两个第一被动锥齿轮,10为两个第二被动锥齿轮,11为两个同转套筒轴,12为两个太阳轮,13为两个内齿圈,14为两个行星架,15为两个输出轴,16为定轴部件,17为固定轴承,18为支架,19为两个动轴轴承,20为两个输出轴承,21为内层行星轮,22为外层行星轮。
各图中,部分轴承未画出。接地符号表示轴、轴承、支座或基座等部件固定。各部件只示意相互关系,未反映实际尺寸。
具体实施方式
实施例1:本发明双折周向传动器的实施例1,用于船舶螺旋桨传动,由输入轴1、单路换向器、双路折向器、混动行星排、转向支座和输出轴15组成。参见图1。
输入轴1连接动力装置,输入动力。
单路换向器采用形式一单路换向器,包括前锥齿轮2、换向锥齿轮3、换向锥齿轮支座4、后锥齿轮5和反转套筒轴6。固定输入轴轴承,在输入轴1设置前锥齿轮2;设置其支座固定的换向锥齿轮3与前锥齿轮2啮合,换向锥齿轮轴线与输入轴轴线垂直。该换向锥齿轮与轴连接,其轴承作为固定支座。设置反转套筒轴6与输入轴1位于同一轴线,固定反转套筒轴的轴承,在反转套筒轴外轴设置后锥齿轮5与换向锥齿轮3啮合。直接连接输入轴1与反转套筒轴内轴。前锥齿轮2与后锥齿轮5通过换向锥齿轮3形成间接连接。通过设置前锥齿轮齿数等于后锥齿轮齿数,使这个间接连接传动比等于-1.0,实取:前锥齿轮齿数=换向锥齿轮齿数=后锥齿轮齿数=17。
双路折向器包括第一主动锥齿轮7、第一被动锥齿轮9、第二主动锥齿轮8、第二被动锥齿轮10和同转套筒轴11。采用形式一双路折向器,设置同转套筒轴轴线与反转套筒轴轴线相交,交角即为折向角,本实施例折向角为90度。在反转套筒轴内轴设置第一主动锥齿轮7, 设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮8,反转套筒轴外轴不穿过同转套筒轴轴线;在同转套筒轴内轴设置第一被动锥齿轮9,在同转套筒轴外轴设置第二被动锥齿轮10;保持第一主动锥齿轮与第一被动锥齿轮啮合,保持第二主动锥齿轮与第二被动锥齿轮啮合。通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮到第一被动锥齿轮传动比等于第二主动锥齿轮到第二被动锥齿轮传动比的负值。实取:第一主动锥齿轮齿数=第一被动锥齿轮齿数=17,第二主动锥齿轮齿数=第二被动锥齿轮齿数=19。
混动行星排采用形式一混动行星排,是锥齿轮行星排,包括左锥齿轮12、带四个锥齿行星轮21的行星架14和右锥齿轮13。左锥齿轮12与锥齿行星轮21啮合、锥齿行星轮21与右锥齿轮13啮合。实取:左锥齿轮齿数=右锥齿轮齿数=17。以右锥齿轮13直接连接同转套筒轴内轴,左锥齿轮12直接连接同转套筒轴外轴,行星架14直接连接输出轴15。
转向支座包括定轴部件16、支架18、动轴轴承19和输出轴承20。定轴部件采用形式二定轴部件,定轴部件16是轴式定轴部件,是在反转套筒轴轴线上设置的轴,其轴承是固定轴承17。在同转套筒轴外设置动轴轴承19承托同转套筒轴11,在输出轴外设置输出轴承20承托输出轴15。支架18直接连接定轴部件16、动轴轴承19和输出轴承20,定轴部件16与控制装置连接,整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转。控制装置采用电动机构。
输出轴15与螺旋桨连接,输出动力。
本实施例在船舶的竖直方向布置反转套筒轴,控制装置带动转向支座公转,输出轴公转,螺旋桨公转,船舶实现周向推进。控制装置不带动时,输出轴不公转。公转时正转与反转所需的控制力矩相同,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉。
实施例2:本发明双折周向传动器的实施例2,用于直升机尾桨传动,由输入轴1、单路换向器、双路折向器、混动行星排、转向支座和输出轴15组成。参见图2。
输入轴1连接动力装置,输入动力。
单路换向器采用形式二单路换向器,包括内主动锥齿轮2、外主动锥齿轮3、内被动锥齿轮4、外被动锥齿轮5和反转套筒轴6。固定输入轴轴承,在输入轴1设置内主动锥齿轮2和外主动锥齿轮3,分别设置于反转套筒轴轴线的两侧,内主动锥齿轮2穿过反转套筒轴轴线后设置,外主动锥齿轮3不穿过反转套筒轴轴线就设置。固定反转套筒轴轴承,设置反转套筒轴轴线与同向轴轴线相交形成夹角即传动角,本实施例传动角为90度。在反转套筒轴内轴设置内被动锥齿轮4,保持内被动锥齿轮4与内主动锥齿轮2啮合;在反转套筒轴外轴设置外被动锥齿轮5,保持外被动锥齿轮5与外主动锥齿轮3啮合。通过设置内主动锥齿轮齿数、 外主动锥齿轮齿数、内被动锥齿轮齿数和外被动锥齿轮齿数,使输入轴1到反转套筒轴内轴传动比等于输入轴1到反转套筒轴外轴传动比的负值。实取:内主动锥齿轮齿数=内被动锥齿轮齿数=17,外主动锥齿轮齿数=外被动锥齿轮齿数=19。
双路折向器包括第一主动锥齿轮7、第一被动锥齿轮9、第二主动锥齿轮8、第二被动锥齿轮10和同转套筒轴11。采用形式二双路折向器,设置同转套筒轴轴线与反转套筒轴轴线相交,交角即折向角,本实施例折向角为90度。在反转套筒轴内轴设置第一主动锥齿轮7,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮8,反转套筒轴外轴不穿过同转套筒轴轴线;在同转套筒轴外轴设置第一被动锥齿轮9,在同转套筒轴内轴设置第二被动锥齿轮10;保持第一主动锥齿轮7与第一被动锥齿轮9啮合,保持第二主动锥齿轮8与第二被动锥齿轮10啮合。通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮7到第一被动锥齿轮9传动比等于第二主动锥齿轮8到第二被动锥齿轮10传动比的负值。实取:第一主动锥齿轮齿数=第一被动锥齿轮齿数=19,第二主动锥齿轮齿数=第二被动锥齿轮齿数=17。
混动行星排采用形式二混动行星排,是双太阳轮变线速行星排,包括小太阳轮12、带四个左行星轮23四个右行星轮24的行星架14和大太阳轮13。小太阳轮12与左行星轮23啮合、右行星轮24与大太阳轮13啮合,左行星轮与右行星轮一一对应同轴同转速。实取:小太阳轮齿数=20、右行星轮齿数=18、大太阳轮齿数=24、左行星轮齿数=30,其行星排特性参数a=2.0。以小太阳轮12直接连接同转套筒轴外轴,行星架14直接连接同转套筒轴内轴,大太阳轮13直接连接输出轴15。
转向支座包括定轴部件16、支架18、动轴轴承19和输出轴承20。定轴部件采用形式一定轴部件,定轴部件16是轴承式定轴部件,所述保持位于反转套筒轴轴线的轴为固定轴17,定轴部件16是设置在固定轴外的轴承。在同转套筒轴外设置动轴轴承19承托同转套筒轴11,在输出轴外设置输出轴承20承托输出轴15。支架18直接连接定轴部件16、动轴轴承19和输出轴承20。在定轴部件16上设置蜗轮21,蜗轮齿数为30。设置与控制装置连接的蜗杆22,蜗杆头数为2,蜗杆的支座固定。蜗轮21与蜗杆22啮合。转向支座与控制装置通过蜗轮蜗杆形成间接连接,整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转,控制装置采用电动机构。
输出轴15与尾桨连接,输出动力。
本实施例在直升机尾梁水平方向布置输入轴,在竖直方向布置反转套筒轴,输出轴连接直升机尾桨。控制装置通过蜗轮蜗杆带动转向支座公转,输出轴公转,尾桨公转,尾桨实现周向推进。控制装置不带动时,输出轴不公转。公转时正转与反转所需的控制力矩相同,控 制力矩很小,控制装置很小,输出轴自转与公转相互不干涉。
实施例3:本发明双折周向传动器的实施例3,用于直升机尾桨传动,由输入轴1、单路换向器、双路折向器、混动行星排、转向支座和输出轴15组成。参见图3。
输入轴1连接动力装置,输入动力。
单路换向器采用形式三单路换向器,包括前齿轮2、内旁轴齿轮25、外旁轴前齿轮3、外旁轴后齿轮4、后齿轮5和反转套筒轴6。固定输入轴轴承,在输入轴1设置前齿轮2;设置其轴线分别与同向轴轴线平行的、其轴承都固定的内旁轴和外旁轴,在内旁轴设置内旁轴齿轮25,在外旁轴依次设置外旁轴前齿轮3和外旁轴后齿轮4;在反转套筒轴外轴设置后齿轮5。设置前齿轮2与外旁轴前齿轮3啮合,外旁轴后齿轮4与内旁轴齿轮25啮合,内旁轴齿轮25与后齿轮5啮合。设置反转套筒轴6与输入轴1位于同一轴线,固定反转套筒轴的轴承,直接连接输入轴1与反转套筒轴内轴。前齿轮2与后齿轮5通过外旁轴前齿轮3、外旁轴后齿轮4、内旁轴齿轮25形成间接连接。使这个间接连接传动比等于-1.0,实取:外旁轴后齿轮齿数=内旁轴齿轮齿数=后齿轮齿数=18,且前齿轮齿数=外旁轴前齿轮齿数=36。
双路折向器包括第一主动锥齿轮7、第一被动锥齿轮9、第二主动锥齿轮8、第二被动锥齿轮10和同转套筒轴11。采用形式二双路折向器,设置同转套筒轴轴线与反转套筒轴轴线相交,交角即为折向角,本实施例折向角为90度。在反转套筒轴内轴设置第一主动锥齿轮7,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮8,反转套筒轴外轴不穿过同转套筒轴轴线;在同转套筒轴外轴设置第一被动锥齿轮9,在同转套筒轴内轴设置第二被动锥齿轮10;保持第一主动锥齿轮7与第一被动锥齿轮9啮合,保持第二主动锥齿轮8与第二被动锥齿轮10啮合。通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮7到第一被动锥齿轮9传动比等于第二主动锥齿轮8到第二被动锥齿轮10传动比的负值。实取:第一主动锥齿轮齿数=第一被动锥齿轮齿数=19,第二主动锥齿轮齿数=第二被动锥齿轮齿数=17。
混动行星排采用形式三混动行星排,是双内齿圈变线速行星排,包括大内齿圈12、带四个左行星轮23四个右行星轮24的行星架14和小内齿圈13。大内齿圈12与左行星轮23啮合、右行星轮24与小内齿圈13啮合,左行星轮与右行星轮一一对应同轴同转速。实取:大内齿圈齿数=60、左行星轮齿数=20、右行星轮齿数=16、小内齿圈齿数=96,其行星排特性参数a=2.0。以大内齿圈12直接连接同转套筒轴外轴,行星架14直接连接同转套筒轴内轴,小内齿圈13直接连接输出轴15。
转向支座包括定轴部件16、支架18、动轴轴承19和输出轴承20。定轴部件采用形式二定轴部件,定轴部件16是轴式定轴部件,是在反转套筒轴轴线上设置的轴,其轴承是固定轴 承17。在同转套筒轴外设置动轴轴承19承托同转套筒轴11,在输出轴外设置输出轴承20承托输出轴15。支架18直接连接定轴部件16、动轴轴承19和输出轴承20。在定轴部件16上设置蜗轮21,蜗轮齿数为30。设置与控制装置连接的蜗杆22,蜗杆头数为2,蜗杆支座固定。蜗轮21与蜗杆22啮合。转向支座与控制装置通过蜗轮蜗杆形成间接连接,整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转。控制装置采用电动机构。
输出轴15与尾桨连接,输出动力。
本实施例在直升机的竖直方向布置反转套筒轴,控制装置通过蜗轮蜗杆带动转向支座公转,输出轴公转,尾桨公转,直升机尾桨实现周向推进。控制装置不带动时,输出轴不公转。公转时正转与反转所需的控制力矩相同,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉。
实施例4:本发明双折周向传动器的实施例4,用于船舶螺旋桨传动,由输入轴1、单路换向器、双路折向器、混动行星排、转向支座和输出轴15组成。参见图4。
输入轴1连接动力装置,输入动力。
单路换向器采用形式四单路换向器,包括内主动锥齿轮2、外主动锥齿轮3、内被动锥齿轮4、外被动锥齿轮5和反转套筒轴6。固定输入轴轴承,在输入轴1设置内主动锥齿轮2和外主动锥齿轮3,分别对称分布于反转套筒轴轴线的两侧,内主动锥齿轮2不穿过反转套筒轴轴线就设置,外主动锥齿轮3穿过反转套筒轴轴线后设置。固定反转套筒轴轴承,设置反转套筒轴轴线与输入轴轴线相交形成夹角即传动角,本实施例传动角为90度。在反转套筒轴内轴设置内被动锥齿轮4,保持内被动锥齿轮4与内主动锥齿轮2啮合;在反转套筒轴外轴设置外被动锥齿轮5,保持外被动锥齿轮5与外主动锥齿轮3啮合。实取:内主动锥齿轮齿数=内被动锥齿轮齿数=17,外主动锥齿轮齿数=外被动锥齿轮齿数=19,使输入轴1到反转套筒轴内轴传动比等于输入轴1到反转套筒轴外轴传动比的负值。
双路折向器包括第一主动锥齿轮7、第一被动锥齿轮9、第二主动锥齿轮8、第二被动锥齿轮10和同转套筒轴11。采用形式二双路折向器,设置同转套筒轴轴线与反转套筒轴轴线相交,交角即折向角,本实施例折向角为90度。在反转套筒轴内轴设置第一主动锥齿轮7,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮8,反转套筒轴外轴不穿过同转套筒轴轴线;在同转套筒轴外轴设置第一被动锥齿轮9,在同转套筒轴内轴设置第二被动锥齿轮10;保持第一主动锥齿轮7与第一被动锥齿轮9啮合,保持第二主动锥齿轮8与第二被动锥齿轮10啮合。实取:第一主动锥齿轮齿数=第一被动锥齿轮齿数=19,第二主动锥齿轮齿数=第二被动锥齿轮齿数=17,使第一主动锥齿轮7到第一被动锥齿轮9传动比等于第二主动锥齿轮8到第二被动锥齿轮10传动比的负值。
混动行星排采用形式四混动行星排,是双太阳轮内外星变线速行星排,包括小太阳轮12、带四个内层行星轮25四个左行星轮23四个右行星轮24的行星架14和大太阳轮13。小太阳轮12与内层行星轮25啮合、内层行星轮25与左行星轮23啮合、右行星轮24与大太阳轮13啮合,左行星轮与右行星轮一一对应同轴同转速。实取:小太阳轮齿数=内层行星轮齿数=左行星轮齿数=18、大太阳轮齿数=右行星轮齿数=22时,其行星排特性参数a=1.0。以小太阳轮12直接连接同转套筒轴外轴,大太阳轮13直接连接同转套筒轴内轴,行星架14直接连接输出轴15。
转向支座包括定轴部件16、支架18、动轴轴承19和输出轴承20。定轴部件采用形式一定轴部件,定轴部件16是轴承式定轴部件,所述保持位于反转套筒轴轴线的轴就是反转套筒轴,其轴承为固定轴承17,定轴部件16是图中右侧设置在反转套筒轴外可以转动的轴承。在同转套筒轴外设置动轴轴承19承托同转套筒轴11,在输出轴外设置输出轴承20承托输出轴15。支架18直接连接定轴部件16、动轴轴承19和输出轴承20。在定轴部件16上设置蜗轮21,蜗轮齿数为30。设置与控制装置连接的蜗杆22,蜗杆头数为2,蜗杆的支座固定。蜗轮21与蜗杆22啮合。转向支座与控制装置通过蜗轮蜗杆形成间接连接,整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转,控制装置采用电动机构。
输出轴15与螺旋桨连接,输出动力。
本实施例在船舶的竖直方向布置反转套筒轴,控制装置通过蜗轮蜗杆带动转向支座公转,输出轴公转,螺旋桨公转,船舶实现周向推进。控制装置不带动时,输出轴不公转。公转时正转与反转所需的控制力矩相同,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉。
实施例5:本发明双折周向传动器的实施例5,用于船舶双螺旋桨传动,由输入轴1、单路换向器、双路折向器、混动行星排、转向支座和输出轴15组成。参见图5。图中两套双折周向传动器,共用一个输入轴;共用一个单路换向器;两副双路折向器共用一个第一主动锥齿轮和一个第二主动锥齿轮;混动行星排、输出轴各设置两副;两副转向支座共用一个定轴部件并且两个支架相连接从而合并为一体。
输入轴1连接动力装置,输入动力。
单路换向器采用形式一单路换向器,包括前锥齿轮2、两个换向锥齿轮3、两个换向锥齿轮支座4、后锥齿轮5和反转套筒轴6。采用两个换向锥齿轮和两个换向锥齿轮支座是为了加强单路换向器的额定力矩。固定输入轴轴承,在输入轴1设置前锥齿轮2;设置两个换向锥齿轮3与前锥齿轮2啮合,换向锥齿轮轴线均与输入轴轴线垂直,两个换向锥齿轮支座4固定。设置反转套筒轴6与输入轴1位于同一轴线,反转套筒轴的轴承固定,在反转套筒轴外 轴设置后锥齿轮5与两个换向锥齿轮3啮合。直接连接输入轴1与反转套筒轴内轴。前锥齿轮2与后锥齿轮5通过两个换向锥齿轮3形成间接连接。实取:前锥齿轮齿数=换向锥齿轮齿数=后锥齿轮齿数=17,这个间接连接传动比等于-1.0。
两副双路折向器共包括一个第一主动锥齿轮7、一个第一被动锥齿轮9、两个第二主动锥齿轮8、两个第二被动锥齿轮10和两个同转套筒轴11。双路折向器均采用形式一双路折向器,设置同转套筒轴轴线与反转套筒轴轴线相交,交角即折向角,两个同转套筒轴分别对称分布于反转套筒轴轴线的两侧,本实施例折向角均为90度。在反转套筒轴内轴设置第一主动锥齿轮7,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮8,反转套筒轴外轴不穿过同转套筒轴轴线;在两个同转套筒轴内轴各设置第一被动锥齿轮9,在两个同转套筒轴外轴各设置第二被动锥齿轮10;保持第一主动锥齿轮与两个第一被动锥齿轮分别啮合,保持第二主动锥齿轮与两个第二被动锥齿轮分别啮合。通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮到第一被动锥齿轮传动比等于第二主动锥齿轮到第二被动锥齿轮传动比的负值。实取:第一主动锥齿轮齿数=第一被动锥齿轮齿数=17,第二主动锥齿轮齿数=第二被动锥齿轮齿数=19。
两副混动行星排均采用形式五混动行星排,均是普通双层星行星排,各包括太阳轮12、带四个内层行星轮21四个外层行星轮22的行星架14和内齿圈13。太阳轮12与内层行星轮21啮合、内层行星轮21与外层行星轮22啮合、外层行星轮22与内齿圈13啮合。实取:内齿圈齿数=68、太阳轮齿数=34。各以太阳轮12直接连接同转套筒轴内轴,各以行星架14直接连接同转套筒轴外轴,各以行星架14直接连接输出轴15。
转向支座均包括定轴部件16、支架18、动轴轴承19和输出轴承20。两副转向支座共用一个定轴部件,采用形式二定轴部件,定轴部件16是轴式定轴部件,是在反转套筒轴轴线上设置的轴,其轴承是固定轴承17。在两个同转套筒轴外各设置动轴轴承19各承托同转套筒轴11,在两个输出轴外各设置输出轴承20各承托输出轴15。支架18直接连接定轴部件16、两个动轴轴承19和两个输出轴承20。定轴部件16与控制装置连接,两副转向支座合并形成一个整体,可以被控制装置带动围绕反转套筒轴轴线公转。控制装置采用电动机构。
两个输出轴15各与双螺旋桨之一连接,输出动力。双螺旋桨的自转转动方向相反。
本实施例实质是两套双折周向传动器,共用了输入轴、单路换向器、第一主动锥齿轮、第二主动锥齿轮和定轴部件,两个支架相连接成为一个整体;转向支座及两个输出轴被同一个控制装置带动公转。在船舶的竖直方向布置反转套筒轴,控制装置带动转向支座公转,输出轴公转,双螺旋桨公转,船舶实现周向推进。控制装置不带动时,输出轴不公转。公转时 正转与反转所需的控制力矩相同,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉。
以上描述了本发明基本原理、主要特征和优点。本行业技术人员应该了解,本发明不限于上述实施例,在不脱离本发明精神和范围的前提下,本发明的各种变化与改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求及同等物界定。

Claims (10)

  1. 双折周向传动器,由输入轴、单路换向器、双路折向器、转向支座和输出轴组成,其特征在于:
    输入轴连接动力装置,输入动力;
    单路换向器中反转套筒轴内轴和反转套筒轴外轴这两个部件转速相等转动方向相反,单路换向器采用形式一单路换向器,包括前锥齿轮、换向锥齿轮、换向锥齿轮支座、后锥齿轮和反转套筒轴,固定输入轴轴承,在输入轴设置前锥齿轮,设置换向锥齿轮与前锥齿轮啮合,换向锥齿轮轴线与输入轴轴线垂直,换向锥齿轮的支座固定,设置反转套筒轴与输入轴位于同一轴线,固定反转套筒轴的轴承,在反转套筒轴外轴设置后锥齿轮与换向锥齿轮啮合,直接连接输入轴与反转套筒轴内轴,前锥齿轮与后锥齿轮通过换向锥齿轮形成间接连接,通过设置前锥齿轮齿数等于后锥齿轮齿数,使这个间接连接传动比等于-1.0;
    双路折向器包括第一主动锥齿轮、第一被动锥齿轮、第二主动锥齿轮、第二被动锥齿轮和同转套筒轴,双路折向器采用形式一双路折向器,在反转套筒轴内轴设置第一主动锥齿轮,设置位置在反转套筒轴内轴穿过同转套筒轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮,反转套筒轴外轴不穿过同转套筒轴轴线,在同转套筒轴内轴设置第一被动锥齿轮,在同转套筒轴外轴设置第二被动锥齿轮,保持第一主动锥齿轮与第一被动锥齿轮啮合,保持第二主动锥齿轮与第二被动锥齿轮啮合,通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮到第一被动锥齿轮传动比等于第二主动锥齿轮到第二被动锥齿轮传动比的负值;
    混动行星排采用形式一混动行星排,是锥齿轮行星排,包括左锥齿轮、带锥齿行星轮的行星架和右锥齿轮,左锥齿轮与锥齿行星轮啮合、锥齿行星轮与右锥齿轮啮合,设置左锥齿轮齿数=右锥齿轮齿数时,作为混动行星排,以右锥齿轮直接连接同转套筒轴内轴,左锥齿轮直接连接同转套筒轴外轴,行星架直接连接输出轴;
    转向支座包括定轴部件、支架、动轴轴承和输出轴承,定轴部件是围绕反转套筒轴轴线转动的机械,定轴部件采用形式一定轴部件,形式一定轴部件是轴承式定轴部件,选定一个保持位于反转套筒轴轴线的轴,在其外围设置轴承,该轴承就是定轴部件,在同转套筒轴外设置动轴轴承承托同转套筒轴,在输出轴外设置输出轴承承托输出轴,支架直接连接定轴部件、动轴轴承和输出轴承,整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转;
    输出轴与动力使用设备连接,输出动力;
    双折周向传动器,控制装置带动转向支座公转,输出轴公转,控制装置不带动时,输出 轴不公转,公转时正转与反转所需的控制力矩相同,控制力矩很小,控制装置很小,输出轴自转与公转相互不干涉。
  2. 如权利要求1所述的双折周向传动器,其特征还在于:其中单路换向器换用形式二单路换向器,包括内主动锥齿轮、外主动锥齿轮、内被动锥齿轮、外被动锥齿轮和反转套筒轴,固定输入轴轴承,在输入轴设置内主动锥齿轮和外主动锥齿轮,分别设置于反转套筒轴轴线的两侧,内主动锥齿轮穿过反转套筒轴轴线后设置,外主动锥齿轮不穿过反转套筒轴轴线就设置,固定反转套筒轴轴承,设置反转套筒轴轴线与同向轴轴线相交形成夹角即传动角,在反转套筒轴内轴设置内被动锥齿轮,保持内被动锥齿轮与内主动锥齿轮啮合,在反转套筒轴外轴设置外被动锥齿轮,保持外被动锥齿轮与外主动锥齿轮啮合,通过设置内主动锥齿轮齿数、外主动锥齿轮齿数、内被动锥齿轮齿数和外被动锥齿轮齿数,使输入轴到反转套筒轴内轴传动比等于输入轴到反转套筒轴外轴传动比的负值。
  3. 如权利要求1所述的双折周向传动器,其特征还在于:其中单路换向器换用形式三单路换向器,包括前齿轮、内旁轴齿轮、外旁轴前齿轮、外旁轴后齿轮、后齿轮和反转套筒轴,固定输入轴轴承,在输入轴设置前齿轮,设置其轴线分别与同向轴轴线平行的、其轴承都固定的内旁轴和外旁轴,在内旁轴设置内旁轴齿轮,在外旁轴依次设置外旁轴前齿轮和外旁轴后齿轮,在反转套筒轴外轴设置后齿轮,设置前齿轮与外旁轴前齿轮啮合、外旁轴后齿轮与内旁轴齿轮啮合、内旁轴齿轮与后齿轮啮合,设置反转套筒轴与输入轴位于同一轴线,固定反转套筒轴的轴承,直接连接输入轴与反转套筒轴内轴,前齿轮与后齿轮通过外旁轴前齿轮、外旁轴后齿轮和内旁轴齿轮形成间接连接,通过设置内旁轴齿轮齿数、外旁轴前齿轮齿数、外旁轴后齿轮齿数、前齿轮齿数和后齿轮齿数,使这个间接连接传动比等于-1.0。
  4. 如权利要求1所述的双折周向传动器,其特征还在于:其中单路换向器换用形式四单路换向器,包括内主动锥齿轮、外主动锥齿轮、内被动锥齿轮、外被动锥齿轮和反转套筒轴,固定输入轴轴承,在输入轴设置内主动锥齿轮和外主动锥齿轮,分别设置于反转套筒轴轴线的两侧,内主动锥齿轮不穿过反转套筒轴轴线就设置,外主动锥齿轮穿过反转套筒轴轴线后设置,固定反转套筒轴轴承,设置反转套筒轴轴线与输入轴轴线相交形成夹角即传动角,在反转套筒轴内轴设置内被动锥齿轮,保持内被动锥齿轮与内主动锥齿轮啮合,在反转套筒轴外轴设置外被动锥齿轮,保持外被动锥齿轮与外主动锥齿轮啮合,通过设置内主动锥齿轮齿数、外主动锥齿轮齿数、内被动锥齿轮齿数和外被动锥齿轮齿数,使输入轴到反转套筒轴内轴传动比等于输入轴到反转套筒轴外轴传动比的负值。
  5. 如权利要求1所述的双折周向传动器,其特征还在于:其中双路折向器换用形式二双路折向器,在反转套筒轴内轴设置第一主动锥齿轮,设置位置在反转套筒轴内轴穿过同转套筒 轴轴线之后,在反转套筒轴外轴设置第二主动锥齿轮,反转套筒轴外轴不穿过同转套筒轴轴线,在同转套筒轴外轴设置第一被动锥齿轮,在同转套筒轴内轴设置第二被动锥齿轮,保持第一主动锥齿轮与第一被动锥齿轮啮合,保持第二主动锥齿轮与第二被动锥齿轮啮合,通过设置第一主动锥齿轮齿数、第二主动锥齿轮齿数、第一被动锥齿轮齿数和第二被动锥齿轮齿数,使第一主动锥齿轮到第一被动锥齿轮传动比等于第二主动锥齿轮到第二被动锥齿轮传动比的负值。
  6. 如权利要求1所述的双折周向传动器,其特征还在于:其中混动行星排换用形式二混动行星排,是双太阳轮变线速行星排,包括小太阳轮、带左行星轮右行星轮的行星架和大太阳轮,小太阳轮与左行星轮啮合、右行星轮与大太阳轮啮合,左行星轮与右行星轮一一对应同轴同转速,通过设置小太阳轮齿数、大太阳轮齿数、左行星轮齿数和右行星轮齿数,使其行星排特性参数a=2.0时,作为混动行星排,以小太阳轮直接连接同转套筒轴外轴,行星架直接连接同转套筒轴内轴,大太阳轮直接连接输出轴。
  7. 如权利要求1所述的双折周向传动器,其特征还在于:其中混动行星排换用形式三混动行星排,是双内齿圈变线速行星排,包括大内齿圈、带左行星轮右行星轮的行星架和小内齿圈,大内齿圈与左行星轮啮合、右行星轮与小内齿圈啮合,左行星轮与右行星轮一一对应同轴同转速,通过设置大内齿圈齿数、小内齿圈齿数、左行星轮齿数和右行星轮齿数,使其行星排特性参数a=2.0时,作为混动行星排,以大内齿圈直接连接同转套筒轴外轴,行星架直接连接同转套筒轴内轴,小内齿圈直接连接输出轴。
  8. 如权利要求1所述的双折周向传动器,其特征还在于:其中混动行星排换用形式四混动行星排,是双太阳轮内外星变线速行星排,包括小太阳轮、带内层行星轮左行星轮右行星轮的行星架和大太阳轮,小太阳轮与内层行星轮啮合、内层行星轮与左行星轮啮合、右行星轮与大太阳轮啮合,左行星轮与右行星轮一一对应同轴同转速,通过设置小太阳轮齿数、大太阳轮齿数、左行星轮齿数、右行星轮齿数和内层行星轮齿数,使其行星排特性参数a=1.0时,作为混动行星排,以小太阳轮直接连接同转套筒轴外轴,大太阳轮直接连接同转套筒轴内轴,行星架直接连接输出轴。
  9. 如权利要求1所述的双折周向传动器,其特征还在于:其中混动行星排换用形式五混动行星排,是普通双层星行星排,包括太阳轮、带内层行星轮外层行星轮的行星架和内齿圈,太阳轮与内层行星轮啮合、内层行星轮与外层行星轮啮合、外层行星轮与内齿圈啮合,设置内齿圈齿数=太阳轮齿数*2时,作为混动行星排,以太阳轮直接连接同转套筒轴内轴,行星架直接连接同转套筒轴外轴,内齿圈直接连接输出轴。
  10. 如权利要求1所述的双折周向传动器,其特征还在于:转向支座中的定轴部件换用形 式二定轴部件,形式二定轴部件是轴式定轴部件,该轴是设置于反转套筒轴轴线上的轴,其轴承是固定轴承,该轴就是定轴部件,在同转套筒轴外设置动轴轴承承托同转套筒轴,在输出轴外设置输出轴承承托输出轴,支架直接连接定轴部件、动轴轴承和输出轴承,整个转向支座可以被控制装置带动围绕反转套筒轴轴线公转。
PCT/CN2021/085632 2020-04-17 2021-04-06 双折周向传动器 WO2021208775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010303960.0A CN111392021A (zh) 2020-04-17 2020-04-17 双折周向传动器
CN202010303960.0 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208775A1 true WO2021208775A1 (zh) 2021-10-21

Family

ID=71425198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085632 WO2021208775A1 (zh) 2020-04-17 2021-04-06 双折周向传动器

Country Status (2)

Country Link
CN (1) CN111392021A (zh)
WO (1) WO2021208775A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111392021A (zh) * 2020-04-17 2020-07-10 罗灿 双折周向传动器
WO2023164862A1 (zh) * 2022-03-03 2023-09-07 罗灿 双桨千向传动器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124858A1 (en) * 2008-11-17 2010-05-20 Yamaha Hatsudoki Kabushiki Kaisha Marine vessel propulsion unit
US20100197180A1 (en) * 2009-02-02 2010-08-05 Yamaha Hatsudoki Kabushiki Kaisha Marine vessel propulsion unit
CN110015436A (zh) * 2019-04-07 2019-07-16 罗灿 共轴反转周向推进器
CN110541921A (zh) * 2018-05-28 2019-12-06 罗灿 双流百向传动器
CN111392021A (zh) * 2020-04-17 2020-07-10 罗灿 双折周向传动器
CN213008688U (zh) * 2020-04-17 2021-04-20 罗灿 双折周向传动器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124858A1 (en) * 2008-11-17 2010-05-20 Yamaha Hatsudoki Kabushiki Kaisha Marine vessel propulsion unit
US20100197180A1 (en) * 2009-02-02 2010-08-05 Yamaha Hatsudoki Kabushiki Kaisha Marine vessel propulsion unit
CN110541921A (zh) * 2018-05-28 2019-12-06 罗灿 双流百向传动器
CN110015436A (zh) * 2019-04-07 2019-07-16 罗灿 共轴反转周向推进器
CN111392021A (zh) * 2020-04-17 2020-07-10 罗灿 双折周向传动器
CN213008688U (zh) * 2020-04-17 2021-04-20 罗灿 双折周向传动器

Also Published As

Publication number Publication date
CN111392021A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021208775A1 (zh) 双折周向传动器
WO2020207337A1 (zh) 共轴反转周向推进器
CN103786854B (zh) 船舶动力装置
JP2011237019A (ja) 左右輪駆動装置
CN111630302B (zh) 双流百向传动器
CN107013649B (zh) 推进装置、包括这种推进装置的运输设备和平板搬运器
JP6061022B2 (ja) 複合駆動装置およびロボット
CN213008688U (zh) 双折周向传动器
CN111532337A (zh) 一种用于综合双流电传动的控制方法
US11131372B2 (en) Equidirectional transfer universal transmission
WO2019228262A1 (zh) 同向分动差速传动器
WO2019016907A1 (ja) トルクベクタリング駆動装置
CN111566387B (zh) 同向分动双控百向传动器
WO2004083680A1 (ja) 回動伝達装置
WO2023164862A1 (zh) 双桨千向传动器
US6324929B1 (en) Toothed gearing group for coupling two concentric shafts to a solitary driving shaft
US20230167805A1 (en) Transmission of endless rotation to a shaft on an endlessly rotating carrier independently of the rotation of the carrier
CN110541922A (zh) 反向分动百向传动器
CN118066262A (zh) 一种多输入同轴可控输出的传动机构及其传动方法
US10184545B2 (en) Power drive unit with dual gear ratio mechanism
CN116161211A (zh) 一种适用于船舶的动力传动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788474

Country of ref document: EP

Kind code of ref document: A1