WO2019228262A1 - 同向分动差速传动器 - Google Patents

同向分动差速传动器 Download PDF

Info

Publication number
WO2019228262A1
WO2019228262A1 PCT/CN2019/088337 CN2019088337W WO2019228262A1 WO 2019228262 A1 WO2019228262 A1 WO 2019228262A1 CN 2019088337 W CN2019088337 W CN 2019088337W WO 2019228262 A1 WO2019228262 A1 WO 2019228262A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
shaft
same
dual
sleeve shaft
Prior art date
Application number
PCT/CN2019/088337
Other languages
English (en)
French (fr)
Inventor
罗灿
Original Assignee
Luo Can
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Can filed Critical Luo Can
Priority to CN201980006263.4A priority Critical patent/CN111556937B/zh
Publication of WO2019228262A1 publication Critical patent/WO2019228262A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/042Combinations of toothed gearings only change gear transmissions in group arrangement
    • F16H37/046Combinations of toothed gearings only change gear transmissions in group arrangement with an additional planetary gear train, e.g. creep gear, overdrive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft

Definitions

  • the invention relates to a planetary gear structure transmission machine, which is specifically composed of a co-directional transfer case, a sleeve shaft commutator, a dual controller, and an output sleeve shaft, which passively or actively control two speeds.
  • Differential Differential Transmission is specifically composed of a co-directional transfer case, a sleeve shaft commutator, a dual controller, and an output sleeve shaft, which passively or actively control two speeds.
  • the planetary platoon consists of two central wheels and three parts of the planet carrier with planetary wheels. The arrangement and meshing relationship of the three components determines the equation of motion of the planetary platoon and determines the type of planetary platoon.
  • the existing planetary rows are divided into cylindrical gear planetary rows and bevel gear planetary rows.
  • the spur gear planetary row includes a sun gear, an inner ring gear and a planet carrier with a planet gear, wherein the sun gear, the inner ring gear and the planet gear are all spur gears.
  • Cylindrical gear planetary rows are divided into single-layer star planetary rows or double-layer star planetary rows according to the number of layers of the planetary gears; in a single-layer star planetary row, the sun gear and the planet gear mesh, and the planet gear and the ring gear Engagement; in the double star planetary row, the sun gear meshes with the inner planet gear, the inner planet gear meshes with the outer planet gear, and the outer planet gear meshes with the inner ring gear.
  • the bevel gear planetary row includes two center wheels and a planet carrier with a planetary wheel. Generally, it is a single-layer star planetary row. The planetary wheel is one layer. The two center wheels and the planetary wheels are bevel gears.
  • the wheels mesh, and the planet gear meshes with the right center wheel.
  • the sun gear and the ring gear both belong to the center wheel.
  • the sun gear is the left center wheel, which is the center wheel with a small pitch circle diameter
  • the inner ring gear, the right center wheel which is the center wheel with a large pitch circle diameter.
  • the invention proposes that all transmission machinery consisting of two center wheels and a planet carrier with planet wheels are planetary rows.
  • One center wheel meshes with the planet wheels, the multi-layer planet wheels mesh with each other or are directly connected, and the planet wheels are connected with the other center.
  • the wheels mesh with each other.
  • the planet carrier rotates around the axis of the center wheel with the planet wheel, and the planet wheel is both orbiting and rotating.
  • the number of layers of the planet wheel can be one, two, and three.
  • the double sun planetary planetary row is a double star planetary row, which includes two center wheels (sun wheels) and a planet carrier with planet wheels.
  • the two center wheels and planet wheels are cylindrical gears; each planet wheel These are two coaxial gears, called the left planetary gear and the right planetary gear; the left planetary gear meshes with the left center gear, the left planetary gear is directly connected to the right planetary gear, and the right planetary gear is connected to the right
  • the center wheel meshes; the pitch circle diameter of the left center wheel is not equal to the pitch circle diameter of the right center wheel, and the left center wheel gear module must not be equal to the right center wheel gear module.
  • the double ring gear planetary row is a double star planetary row, which includes two central wheels (internal ring gears) and a planet carrier with a planetary wheel.
  • the two central wheels and the planetary wheels are cylindrical gears;
  • Planetary gears are two coaxial gears, called the left planetary gear and the right planetary gear;
  • the left planetary gear meshes with the left center gear, the left planetary gear is directly connected with the right planetary gear, and the right planetary gear Engage with the right center wheel;
  • the pitch circle diameter of the left center wheel is not equal to the pitch circle diameter of the right center wheel, and the left center wheel gear module must not be equal to the right center wheel gear module.
  • a dual sun gear, dual planet wheel and axle planetary row is a single-layer star planetary row, and includes two center wheels (sun wheels) and a planet carrier with two planet wheels and two layers of planet wheels.
  • the two center wheels and planet wheels Both are cylindrical gears;
  • the planet carrier has an inner planet gear shaft and an outer planet gear shaft.
  • the inner planet gear shaft is provided with an inner planet gear.
  • Each planet gear on the outer planet gear shaft is two coaxial gears, called the left outer planet gear, Right outer planet gear; left center gear meshes with inner planet gear, inner planet gear meshes with left outer planet gear, left outer planet gear and right outer planet gear are directly connected coaxially, right outer planet gear with right
  • the side sun gear meshes; the left sun gear gear module does not have to be equal to the right sun gear gear module.
  • the planetary rows that obey this equation of motion characteristics are all single-layer star planetary rows.
  • the coefficient The maximum absolute term is Nj
  • the component corresponding to this term is the planet carrier.
  • the planetary rows that obey this equation of motion characteristics are all double-star planetary rows; when a ⁇ 1.0, The maximum term of the absolute value of the coefficient in the kinematics equation is Nz.
  • the component corresponding to this term is the side wheel labeled z.
  • the maximum term of the absolute value of the coefficient in this kinematics equation is Ny, which corresponds to this term.
  • the component is the side wheel labeled y.
  • the invention proposes a new type of differential transmission, which has a simple structure and passively or actively controls the differential speed between two absolute speeds. It is applied to the transmission of left and right driving wheels of motor vehicles. It controls the adjustable brake to change the passive damping of the differential transmission to become a variable damping differential. When a dual-control speed is input to actively control the differential, it becomes an active differential, which can be used as a dual flow wave.
  • the box can be used for the transmission of double rotors as a double rotor active differential.
  • the co-directional transfer differential transmission of the present invention is composed of a co-directional transfer case, a sleeve shaft commutator, a dual controller and an output sleeve shaft.
  • a non-reciprocating transfer case has a non-reciprocating transfer case input end, a non-reciprocating transfer case inner output end, and a non-reciprocating transfer case outer output end.
  • the two rotation speeds of the output terminal and the outer output terminal are the same.
  • the same-direction transfer case uses a planetary row.
  • the number of wheels of the planetary gear is from one to six.
  • One of the three parts of the planetary row is set as the input of the same-direction transfer case, and the other two parts are used as the same-direction splitter.
  • the output end of the internal transfer unit and the external output end of the same-way transfer unit are set under the condition that when the rotational speed of the input end of the same-way transfer unit is inputted, the internal output end of the same-way transfer unit and the external output end of the same-way transfer unit are output.
  • the directions of rotation of the two speeds are the same. It can also be expressed as: a non-reciprocating transfer planetary row, setting the component corresponding to the largest absolute value of the coefficient in the kinematics characteristic equation as the input of the non-reversing transfer, and the other two components respectively output as the same transfer End, external output end of the same transfer case.
  • the same-direction transfer planetary row uses one of the five planetary rows.
  • the component corresponding to the maximum absolute value of the coefficient in the motion characteristic equation is the planet carrier.
  • the planet carrier is used as the same To the transfer input, the left center wheel and the right center wheel are used as the inner output of the same transfer and the output of the same transfer respectively.
  • the planetary carrier of the bevel gear single-layer star planetary row is used as the input end (1), the left center wheel is used as the internal output end (2) of the same-direction transfer case, and the right center wheel is used as the same-direction branch.
  • Actuator external output (3) is used as the input end (1), the left center wheel is used as the internal output end (2) of the same-direction transfer case, and the right center wheel is used as the same-direction branch.
  • the component corresponding to the largest absolute value of the coefficient in the kinematics characteristic equation is the planet carrier.
  • the planet carrier is used as the input of the same transfer case.
  • the left center wheel and right center wheel As the inner output end of the same-way transfer case and the outer output end of the same-way transfer case respectively.
  • the planetary carrier of the double sun gear, double planet wheel shaft and planetary row is used as the input end (1)
  • the left center wheel (4) is used as the inner output end (2) of the same-way transfer case
  • the right center wheel (5) As the outer output end (3) of the same-way transfer case, (6) in FIG.
  • the component corresponding to the largest absolute value of the coefficient in the kinematics characteristic equation is the center wheel (internal gear) with a large pitch circle diameter, and the center wheel (internal gear) with a large pitch circle diameter
  • the planet carrier and the center wheel (sun gear) with a small pitch circle diameter are used as the inner output end of the same-direction transfer case and the outer output end of the same-direction transfer case, respectively.
  • the inner ring gear of the double-layer planetary planetary gear of the spur gear is used as the input end (1)
  • the planet carrier is used as the inner output end (2) of the same-direction transfer case
  • the sun gear is used as the outside of the same-direction transfer case.
  • the component corresponding to the largest absolute value of the coefficient in the equation of motion characteristics is the one with the larger pitch circle diameter of the two center wheels.
  • the center wheel with the larger pitch circle diameter is used as the same direction transfer case.
  • the input end, the planet carrier and the other center wheel are respectively used as the inner output end of the same-direction transfer case and the outer output end of the same-direction transfer case. Referring to FIG.
  • the center wheel with a larger pitch circle diameter of the double sun gear planetary row is used as the input end (1)
  • the planet carrier is used as the internal output end (2) of the same-direction transfer case
  • the other center wheel is used as the same Output to the transfer case (3).
  • the component corresponding to the largest absolute value of the coefficient in the equation of kinematics corresponds to the smaller diameter of the pitch circle in the two center wheels.
  • the input end of the splitter, the planet carrier, and the other center wheel are used as the inner output end of the same-way transfer case and the outer output end of the same-way transfer case, respectively.
  • a center wheel with a smaller pitch circle diameter of a double ring gear planetary row is used as the input end (1)
  • the planet carrier is used as the internal output end (2) of the same transfer case
  • the other center wheel is used Non-inverting output terminal (3).
  • the sleeve shaft commutator includes an inner shaft and an outer shaft of the sleeve shaft.
  • the inner shaft has an inner input end and an inner output end
  • the outer shaft has an outer input end and an outer output end.
  • the sleeve shaft commutator converts the two rotation speeds with the same rotation direction on its inner input end and its outer input end into its two rotation speeds with opposite rotation directions on its inner output end and its outer output end; it also makes its inner output end, its The two rotation speeds with the same rotation direction of the outer output end are converted into two rotation speeds with the opposite rotation directions of the inner input end and the outer input end.
  • the first type is a bevel gear planetary row commutator
  • the outer shaft uses a bevel gear single-layer planetary row, see Figure 12.
  • the inner input end (1) and the inner output end (2) are provided on the inner shaft of the sleeve shaft in FIG.
  • the left central wheel of the bevel gear single-layer planetary row on the outer shaft of the sleeve shaft serves as the outer input end of the commutator (2 )
  • the right center wheel is used as the outer output end of the commutator (4)
  • the bevel gear planet wheel (5) meshes with the left center wheel and meshes with the right center wheel to fix the planet carrier
  • the planetary bevel gear planet wheel (5) The number of wheels may be one to six.
  • the direction of rotation of the input terminal (2) outside the commutator is opposite to that of the output terminal (4) of the commutator.
  • the second type is a dual sun gear dual planetary planetary planetary commutator, and the outer shaft uses a dual sun gear dual planetary planetary planetary row, see FIG. 13.
  • the inner input end (1) and the inner output end (3) are provided on the inner shaft of the sleeve shaft in FIG. 13, and the left central wheel of the double sun gear, double planetary shaft planetary row on the outer shaft of the sleeve shaft is used as the outer input end of the commutator ( 2), the right center wheel is used as the outer output end (4) of the commutator to fix the planet carrier, the planetary planetary wheel (5), the left outer planetary wheel (6), and the right outer planetary wheel (7)
  • the number of wheel sets can be from one to six.
  • the direction of rotation of the input terminal (1) outside the commutator is opposite to that of the output terminal (3) of the commutator.
  • the third type is a retaining two-way commutator.
  • the inner and outer shafts are driven by bevel gear pairs, see Figure 14.
  • the inner input end and the outer input end of the retaining two-way commutator form an input sleeve shaft
  • the inner output end and the outer output end form an output sleeve shaft.
  • the input sleeve shaft bearing and the output sleeve shaft bearing are respectively fixed.
  • the input sleeve shaft and the output sleeve shaft are at an angle of 90 degrees; an internal driving bevel gear is provided on the internal input end (1), an external driving bevel gear is provided on the external input end (2), and an internal output end (3) is provided.
  • An internal passive bevel gear (5) is provided, and an external passive bevel gear (6) is provided on the external output end (4), so that the internal active bevel gear and the internal passive bevel gear (5) mesh, and the external active bevel gear and the external passive bevel gear ( 6)
  • the gear module of the internal driving bevel gear does not have to be equal to the module of the external driving bevel gear.
  • Two speeds with the same rotation direction are input on the inner input terminal and the outer input terminal, and two speeds with opposite rotation directions are output on the inner output terminal and the outer output terminal.
  • the fourth type is an indexing double-way commutator.
  • the inner and outer shafts are driven by bevel gear pairs, see Figure 15. In Fig.
  • the inner input end and the outer input end of the indexing double-way commutator form an input sleeve shaft
  • the inner output end and the outer output end form an output sleeve shaft
  • the input sleeve shaft and the output sleeve shaft are at a 90 degree clamp.
  • Angle; an internal active bevel gear is provided on the internal input end (1)
  • an external active bevel gear is provided on the external input end (2)
  • an internal passive bevel gear (5) is provided on the internal output end (3)
  • an external output end (4) Is provided with an external passive bevel gear (6) to mesh the internal active bevel gear with the external passive bevel gear (6) and the external active bevel gear with the internal passive bevel gear (5).
  • the modulus of the internal active bevel gear must not be equal to External drive bevel gear gear module. Two rotational speeds with the same rotation direction are input on the internal input end and the external input end, and two rotational speeds with opposite rotation directions are output on the external output end and the internal output end.
  • the internal gear ratio of the bevel gear planetary commutator and the double sun gear double planetary shaft planetary gear commutator is set to 1.0, and the external shaft gear ratio is set to -1.0, and the setting method is a method known in the industry; for example :
  • the retention ratio of the two-way commutator from the internal input to the internal output is set to -1.0, and the transmission ratio from the external input to the external output is set to 1.0.
  • the gear ratio of the double-way commutator from the internal input to the external output is set to -1.0, and the gear ratio from the external input to the internal output is set to 1.0.
  • the dual controller has a dual controller input, a left inner output and a right inner output, a left outer output, and a right outer output.
  • the dual controller converts a speed input from its input to its left inner
  • the two rotation speeds in the same rotation direction of the output end and its left outer output end are also converted into two rotation speeds in the same rotation direction of its right inner output end and its right outer output end.
  • the dual-controller uses a double star planetary row.
  • the number of wheel sets of the planetary wheel is from one to six.
  • the left center wheel is used as the dual-controller input, and the other center wheel is used as the left inner output and the right inner output.
  • the planet carrier serves as the left outer output and the right outer output, and the left center wheel is also the component corresponding to the maximum term of the absolute value of the coefficient in the dual-controller planetary row motion characteristic equation.
  • the dual controller uses one of three double star planetary rows. The first uses a cylindrical gear double star planetary row. The component with the largest absolute value of the coefficient in the kinematic characteristic equation corresponds to the central wheel with a large pitch circle diameter (internal gear). Ring), see FIG. 16, in which the center wheel (inner ring gear) with a large pitch circle diameter is used as the dual controller input terminal (1), and the center wheel (sun gear) with a small pitch circle diameter is used as the left inner output terminal.
  • the right inner output end (2), the planet carrier serves as the left outer output end (3) and serves as the right outer output end (4).
  • External connection of the input of the dual controller for example, the dual control gear (5) is directly connected to the center wheel (internal ring gear) with a large pitch circle diameter, and the side gear (6) is meshed with the dual control gear. (6)
  • the dual-control gear (5) inputs the dual-control speed to the dual-controller input terminal (1).
  • the second type uses a double sun gear planetary row.
  • the component corresponding to the largest absolute value of the coefficient in the kinematics characteristic equation is the center wheel (sun gear) with a larger pitch circle diameter. See FIG. 17, and the pitch circle diameter is larger in FIG. 17.
  • the center wheel (sun gear) serves as the dual controller input (1)
  • the other center wheel (sun gear) serves as the left inner output and the right inner output (2)
  • the planet carrier serves as the left outer output (3) and As the right outer output (4).
  • External connection of the input of the dual controller for example, a worm gear (5) is directly connected to the center wheel (sun gear) with a larger pitch circle, a matching worm (6) is provided, and the dual controller input terminal (1 ) Input dual control speed.
  • the third type uses a double ring gear planetary row.
  • the component corresponding to the largest absolute value of the coefficient in the kinematics characteristic equation is the center wheel with a smaller pitch circle diameter (internal ring gear). See FIG. 18, and the pitch circle diameter is shown in FIG.
  • the smaller sun gear (internal gear) is used as the dual controller input (1)
  • the other sun gear (internal gear) is used as the left inner output and the right inner output (2)
  • the planet carrier is used as the left outer output (3) and as the right outer output terminal (4).
  • the external connection of the input of the dual controller is for example: a worm gear (5) is directly connected to the central gear (inner ring gear) with a small pitch circle diameter, a matching worm (6) is provided, and the dual controller input terminal ( 1) Input dual control speed.
  • the output sleeve shaft includes an output sleeve shaft inner shaft and an output sleeve shaft outer shaft.
  • the two rotation speeds of the output sleeve shaft inner shaft and the output sleeve shaft outer shaft in the output sleeve shaft are transmitted to the two through connection. Transmission of the power unit.
  • there are two types of output sleeve shafts the first type is a co-rotating output sleeve shaft, and the rotation directions of the inner shaft and the outer shaft of the sleeve shaft are the same.
  • the second type is a reverse output sleeve shaft, in which the inner shaft and the outer shaft of the sleeve shaft rotate in opposite directions.
  • the setting method for the components of the same-direction transfer case and dual-controller in the same-direction transfer differential transmission is: when the same-direction transfer case uses a single-layer star planetary row, set its characteristic parameter equal to 1.0, and the same-direction transfer case uses double Set the characteristic parameter of the planetary planetary row to be equal to 2.0; set the characteristic parameter of the double-controller double planetary planetary row to be 2.0.
  • the inner and outer shafts of the output sleeve shaft form an internal transfer speed and an external transfer speed with the same rotation speeds and opposite rotation directions.
  • the internal and external shafts of the output sleeve shaft have the same rotational speed.
  • the internal dual control speed and the external dual control speed in the same rotation direction are formed.
  • the two rotation speeds of the same rotation speed and the opposite rotation direction do not interfere with the rotation speed of the input terminal of the same transfer case.
  • Internal transfer speed and internal dual control speed can be superimposed, external transfer speed and external dual control speed can be superimposed.
  • the above-mentioned setting methods have adopted the digital planetary row characteristic parameter expression, and the planetary row characteristic parameter is essentially an expression of the number of teeth and the structural setting of each component of the same direction differential transmission.
  • setting its characteristic parameter equal to 1.0 is to set the number of teeth on its left center wheel equal to the number of teeth on its right center wheel.
  • setting the characteristic parameters of each planetary row corresponds to setting the number and structure of the teeth of each planetary row, and finally corresponding to the structure of the same-direction differential transmission.
  • the internal connection method of the same-direction transfer differential transmission is: directly connecting the inner output end of the same-direction transfer case with the inner input end of the commutator, and directly connecting the outer output end of the same-direction transfer case with the outer input end of the commutator.
  • the internal output of the commutator is directly connected to the left internal output of the dual controller
  • the external output of the commutator is directly connected to the left external output of the dual controller
  • the right internal output of the dual controller is directly connected to the inner shaft of the output sleeve shaft. Connection, the right outer output end of the dual controller is directly connected to the outer shaft of the output sleeve shaft.
  • the external connection method in the application of the present invention includes the connection of the present invention with a power source, the connection of the present invention with a dual control controller, the connection of the present invention with an adjustable brake, and the connection of the output sleeve shaft of the present invention with a power using device.
  • Use existing mature technology one of the same-direction transfer input and the dual-controller input is responsible for connecting with the power source.
  • one of the two-controller input terminal and the same-direction transfer input terminal is responsible for connecting with the dual-control control device.
  • one of the two-controller input and the same-direction transfer input is responsible for connecting with the adjustable brake.
  • connection between the output sleeve shaft and the power device including one type of direct connection and four types of indirect connection. See Figure 25 for the direct connection form.
  • the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) of the reverse output sleeve shaft are directly connected to the coaxial reversing twin rotor output power.
  • the first type of indirect connection is the indirect connection of the same rotation sub-side, starting from the same rotation output sleeve shaft, after the indirect connection, the two speeds are output to the left and right driving wheels. Referring to FIG. 19, a co-rotating output sleeve shaft is used in FIG.
  • a left bevel gear (5) and a right bevel gear (6) are respectively provided on the left driving wheel shaft (3) and the right driving wheel shaft (4), and are respectively meshed with the internally variable bevel gear and the externally variable bevel gear.
  • the output is transmitted to both sides of the left driving wheel axle (3) and the right driving wheel axle (4), among which the output sleeve shaft bearing, the left driving wheel bearing, and the right driving wheel bearing are respectively fixed, and the left bevel gear gear module does not have to be equal to the right cone Gear gear modulus.
  • the indirect connection in the figure includes two sets of gear pairs.
  • a co-rotating output sleeve shaft is used.
  • An internal driving gear (11) is provided on the internal shaft (9) of the output sleeve shaft, and an external driving gear (12) is provided on the external shaft (10) of the output sleeve shaft.
  • a side shaft parallel to the shaft of the same-direction differential differential transmission is used as the driving wheel shaft.
  • a right gear (13) is engaged with the internal driving gear (11), and a left gear (14) and an external driving gear (12) are arranged on the driving wheel shaft. Engaged, the two speeds transmit power to the left driving wheel axle (16) and the right driving wheel axle (15).
  • the second type of indirect connection is the inverse split-side indirect connection.
  • a reverse output sleeve shaft is used in FIG. 20, and an inner redirecting bevel gear and an outer redirecting bevel gear are respectively provided on an output sleeve shaft inner shaft (1) and an output sleeve shaft outer shaft (2).
  • a left bevel gear (5) and a right bevel gear (6) are respectively provided on the left driving wheel shaft (3) and the right driving wheel shaft (4), and are respectively meshed with the internally variable bevel gear and the externally variable bevel gear.
  • the transmission is output to both the left driving wheel shaft (3) and the right driving wheel shaft (4).
  • the output sleeve shaft bearing, the left driving wheel shaft bearing, and the right driving wheel shaft bearing are respectively fixed, and the left bevel gear gear module does not have to be equal to the right bevel gear gear module.
  • the first type of indirect connection form and the second type of indirect connection form are adopted.
  • the third type of indirect connection is the same-direction indirect connection on the same side. Starting from the same-rotation output sleeve shaft, the two rotation speeds after the indirect connection are output to the same side of the reversed double rotor. Referring to FIG. 21, a co-rotating output sleeve shaft is used in FIG.
  • an inner redirecting bevel gear and an outer redirecting bevel gear are respectively provided on an output sleeve shaft inner shaft (1) and an output sleeve shaft outer shaft (2).
  • An inner passive bevel gear (5) and an outer passive bevel gear (6) are respectively arranged on the inner shaft (3) of the coaxial reversing sleeve shaft and the outer shaft (4) of the coaxial reversing sleeve shaft.
  • the gear and the externally changing bevel gear mesh, and the two speeds are respectively transmitted to the same side of the axis of the coaxial reversing sleeve and output.
  • the output sleeve shaft bearing and the coaxial reverse sleeve shaft bearing are respectively fixed, and the modulus of the internally beveled gear must not be equal to the modulus of the externally beveled gear.
  • a co-rotating output sleeve shaft is used in FIG. 23, and the inner sleeve (9) and the outer sleeve (10) of the output sleeve shaft are respectively provided with an internally redirecting bevel gear and an externally redirecting bevel gear.
  • a reverse axis right axis bevel gear (13) and a reverse axis left axis bevel gear (14) are respectively set, and
  • the internal reversing bevel gear and the external reversing bevel gear mesh, and the two rotation speeds are respectively transmitted to the non-coaxial reverse axis right axis (11) and the reverse axis left axis (12) and output to the same side.
  • the output sleeve shaft bearing, the reverse shaft left shaft bearing, and the reverse shaft right shaft bearing are respectively fixed, and the modulus of the internally redirected bevel gear does not have to be equal to the modulus of the externally redirected bevel gear.
  • the fourth type of indirect connection reverse indirect connection on the same side. Starting from the reverse output sleeve shaft, the two speeds after indirect connection are transmitted to the same side of the reversed double rotor. Referring to FIG. 22, an inverted output sleeve shaft is used in FIG. 22, and an internal redirecting bevel gear and an external redirecting bevel gear are respectively provided on an output sleeve shaft inner shaft (1) and an output sleeve shaft outer shaft (2).
  • An inner passive bevel gear (5) and an outer passive bevel gear (6) are respectively provided on the inner shaft (3) of the coaxial reverse sleeve shaft and the outer shaft (4) of the coaxial reverse sleeve shaft.
  • the bevel gear and the externally variable bevel gear mesh, and the two speeds are respectively transmitted to the same side of the axis of the coaxial reversing sleeve and output.
  • the output sleeve shaft bearing and the coaxial reverse sleeve shaft bearing are respectively fixed, and the modulus of the internally redirected bevel gear does not have to be equal to the modulus of the externally redirected bevel gear.
  • an inverted output sleeve shaft is used in FIG. 24.
  • An internal redirecting bevel gear and an external redirecting bevel gear are respectively provided on the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10).
  • a reverse axis right axis bevel gear (13) and a reverse axis left axis bevel gear (14) are respectively set, and
  • the internal reversing bevel gear and the external reversing bevel gear mesh, and the two rotation speeds are respectively transmitted to the non-coaxial reverse axis right axis (11) and the reverse axis left axis (12) and output to the same side.
  • the output sleeve shaft bearing, the reverse shaft left shaft bearing, and the reverse shaft right shaft bearing are respectively fixed, and the modulus of the internally redirected bevel gear does not have to be equal to the modulus of the externally redirected bevel gear.
  • a third type of indirect connection form and a fourth type of indirect connection form are adopted.
  • the absolute value of the transmission ratio from the inner shaft of the output sleeve shaft to the left drive wheel shaft is set equal to the absolute value of the transmission ratio from the outer shaft of the output sleeve shaft to the right drive wheel shaft.
  • the absolute value of the transmission ratio from the output sleeve shaft inner shaft to the coaxial reverse sleeve shaft inner shaft is set to be equal to the ratio from the output sleeve shaft outer shaft to the coaxial reverse sleeve shaft outer shaft.
  • Absolute gear ratio is set in FIGS. 23 and 24, the absolute value of the transmission ratio from the inner shaft of the output sleeve shaft to the right shaft of the reverse shaft is set equal to the absolute value of the transmission ratio from the outer shaft of the output sleeve shaft to the left shaft of the reverse shaft.
  • the present invention can be used as a variable damping differential, a left and right active differential, and a dual-rotor active differential.
  • the external connection method is: the power source is directly connected to the input terminal (1) of the same direction, and the dual-controller input (5) is indirectly connected to the dual-control control device through the dual-control gear (11) and the side gear (12).
  • the inner sleeve (9) of the output sleeve shaft and the outer shaft (10) of the output sleeve shaft are respectively connected to the double rotors, and a direct connection is adopted between the output sleeve shaft and the power using device.
  • the present invention is a dual-rotor active differential.
  • the external connection method is: directly connecting the power source with the input of the transfer case in the same direction, directly connecting the adjustable brake with the input of the dual controller, and connecting the power using device with the output sleeve shaft inner shaft and the output sleeve shaft outer shaft, respectively.
  • the second type of indirect connection is adopted between the output sleeve shaft and the power using device.
  • the present invention functions as a variable damping differential.
  • the external connection method is: indirect connection of a power source with a dual controller input terminal and direct connection of an adjustable brake with the same transfer case
  • the output sleeve shaft inner shaft and the output sleeve shaft outer shaft are respectively connected with a power usage device and an output sleeve
  • the first type of indirect connection is used between the barrel shaft and the power device.
  • the present invention functions as a variable damping differential.
  • the external connection method is: directly connecting the power source with the input terminal of the same direction, and indirectly connecting the dual-control control device with the dual-controller input end, the output sleeve shaft inner shaft and the output sleeve shaft outer shaft are respectively connected with the power using device
  • the second type of indirect connection is adopted between the output sleeve shaft and the power using device.
  • the present invention is a dual-flow gearbox.
  • the external connection method is: Directly connect the dual-control control device with the same direction transfer box, and indirectly connect the power source with the dual-controller input; use the output sleeve shaft inner shaft and the output sleeve shaft outer shaft to connect the power usage device and output
  • the first type of indirect connection is used between the sleeve shaft and the power device.
  • the present invention is a dual-flow gearbox.
  • the present invention functions as a dual-rotor active differential.
  • the external connection method is: Directly connecting the dual-control control device with the same direction transfer box, indirectly connecting the power source with the dual-controller input end, and connecting the output shaft with the inner shaft of the sleeve shaft and the output shaft with the outer shaft, respectively, to the power-using device.
  • a third type of indirect connection is used between the sleeve shaft and the power usage device. Referring to FIG. 5, the present invention is a dual-rotor active differential.
  • connection in the present invention is divided into a direct connection and an indirect connection.
  • the direct connection makes the speeds of the components participating in the connection the same, and the indirect connection makes a fixed speed proportional relationship between the components participating in the connection.
  • the connection in the present invention means direct connection or indirect connection.
  • the sleeve shaft is an existing mature technology device, and the inner shaft and the outer shaft of the sleeve shaft can rotate relative to each other and cannot slide relative to each other in the axial direction.
  • the inner output end and the outer output end refer to that these two components form a sleeve shaft, the inner output end serves as the inner shaft of the sleeve shaft, and the outer output end serves as the outer shaft of the sleeve shaft; the inner input end and the outer input end It means that these two parts form a sleeve shaft, with the inner input end as the inner shaft of the sleeve shaft and the outer input end as the outer shaft of the sleeve shaft; if there is an exception, it will be specifically pointed out.
  • the power source is an engine such as a fuel engine or an electric engine, or a transmission reducer transmission device behind the engine.
  • a power rotation speed can be input to a non-inverting transfer input or a dual controller input.
  • the adjustable brake is a brake with adjustable braking force, such as a booster brake, an electric control actuator, and a hydraulic control brake.
  • the dual-control control device is an electric control device, a hydraulic control device, and the like. Through the connection, the dual-control speed can be input to the input of the non-inverting transfer case or the input of the dual-controller.
  • the power using device is a device connected to the inner shaft of the output sleeve shaft and the outer shaft of the output sleeve shaft, such as a double rotor, a double propeller, left and right driving wheels, a double drive shaft, and the like.
  • the co-directional differential transmission of the present invention is beneficial in that the present invention is proposed to consist of a co-directional transfer case, a sleeve shaft commutator, a dual controller, and an output sleeve shaft; the structure is simple and passive. Or the purpose of actively controlling the differential speed between two absolute speeds.
  • the setting method of each component of the same-direction transfer case, sleeve shaft commutator, dual controller, output sleeve shaft and the internal connection method of the present invention are the core of the present invention.
  • the present invention has three types of applications using different external connection methods. The invention is applied to the transmission of the left and right active wheels of a motor vehicle.
  • the differential transmission passive damping can be changed as required to become a variable damping differential.
  • the dual-control speed is input to actively control the differential, it becomes
  • the left and right active differentials are dual flow gearboxes. It is applied to the transmission of double rotors, and the dual-rotation speed is input to actively control the differential speed of the two rotors of the coaxial reverse double rotor or non-coaxial reverse double rotor to become a dual rotor active differential.
  • FIG. 1 is a schematic diagram of an application example 1 of the same-direction differential transmission of the present invention, and also a schematic diagram of Embodiment 1 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the bevel gear planetary commutator
  • 5 is the input of the dual controller.
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is the output sleeve shaft Outer shaft
  • 11 is the left driving wheel shaft
  • 12 is the right driving wheel shaft
  • 13 is the left bevel gear
  • 14 is the right bevel gear
  • 15 is the adjustable brake
  • 16 is the dual control gear
  • 17 is the side gear.
  • the same-direction transfer case uses a double sun gear planetary row
  • the dual controller uses a double sun gear planetary row
  • the output sleeve shaft and the power using device adopt the first type of indirect connection form to be indirectly connected to the rotating sub-side; each planet The row is a half diagram
  • the side gear is the whole diagram
  • the whole diagram is after the output sleeve shaft inner shaft and the output sleeve shaft outer shaft.
  • FIG. 2 is a schematic diagram of the second application example of the same-direction differential transmission of the present invention, and also a schematic diagram of Embodiment 2 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the bevel gear planetary commutator
  • 5 is the input of the dual controller.
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is the output sleeve shaft Outer shaft
  • 11 is the left driving wheel shaft
  • 12 is the right driving wheel shaft
  • 13 is the left bevel gear
  • 14 is the right bevel gear
  • 15 is the adjustable brake.
  • the same-direction transfer case uses a double sun gear planetary row
  • the dual controller uses a double sun gear planetary row
  • FIG. 3 is a schematic diagram of the third application example of the same-direction differential transmission of the present invention, and also a schematic diagram of Embodiment 2 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the bevel gear planetary commutator
  • 5 is the input of the dual controller.
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is the output sleeve shaft Outer shaft
  • 11 is the left driving wheel shaft
  • 12 is the right driving wheel shaft
  • 13 is the left bevel gear
  • 14 is the right bevel gear
  • 15 is the dual control gear
  • 16 is the side gear.
  • the same-direction transfer case uses a double sun gear planetary row
  • the dual controller uses a double sun gear planetary row
  • the output sleeve shaft and the power using device adopt the first type of indirect connection form to be indirectly connected to the rotating sub-side; each planet The row is a half diagram
  • the side gear is the whole diagram
  • the whole diagram is after the output sleeve shaft inner shaft and the output sleeve shaft outer shaft.
  • FIG. 4 is a schematic diagram of application example 4 of the same-direction differential transmission of the present invention, and also a schematic diagram of embodiment 2 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the bevel gear planetary commutator
  • 5 is the input of the dual controller.
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is the output sleeve shaft Outer shaft
  • 11 is the left driving wheel shaft
  • 12 is the right driving wheel shaft
  • 13 is the left bevel gear
  • 14 is the right bevel gear
  • 15 is the dual control gear
  • 16 is the side gear.
  • the same-direction transfer case uses a double sun gear planetary row
  • the dual controller uses a double sun gear planetary row
  • the side gear is the whole diagram
  • the whole diagram is after the output sleeve shaft inner shaft and the output sleeve shaft outer shaft.
  • FIG. 5 is a schematic diagram of application example 5 of the same-direction differential transmission of the present invention, and also a schematic diagram of embodiment 5 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the dual sun gear, double planetary shaft, planetary commutator
  • 5 is dual control Input of the controller
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is Output sleeve shaft outer shaft
  • 11 is the coaxial reversing sleeve shaft inner shaft
  • 12 is the coaxial reversing sleeve shaft outer shaft
  • 13 is the internal passive bevel gear
  • 14 is the external passive bevel gear
  • 15 is the dual control gear
  • 16 is the side
  • the same-direction transfer case uses a bevel gear single-layer star planetary row
  • the dual-controller uses a cylindrical gear double-layer star planetary row.
  • a third type of indirect connection is used between the output sleeve shaft and the power-using device. Connection; each planetary row is a half diagram, the range gear is the whole diagram, and the whole diagram is output after the inner shaft of the output sleeve shaft and the outer shaft of the output sleeve shaft.
  • FIG. 6 is a schematic diagram of application example 6 of the same-direction differential differential transmission of the present invention, and also a schematic diagram of embodiment 6 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the dual sun gear, double planetary shaft, planetary commutator
  • 5 is dual control Input of the controller
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is Output sleeve shaft outer shaft
  • 11 is the coaxial reversing sleeve shaft inner shaft
  • 12 is the coaxial reversing sleeve shaft outer shaft
  • 13 is the internal passive bevel gear
  • 14 is the external passive bevel gear
  • 15 is the dual control gear
  • 16 is the
  • the same-direction transfer case uses a bevel gear single-layer star planetary row
  • the dual-controller uses a cylindrical gear double-layer star planetary row.
  • the fourth type of indirect connection between the output sleeve shaft and the power device is used to reverse the same-side indirect Connection; each planetary row is a half diagram, the range gear is the whole diagram, and the whole diagram is output after the inner shaft of the output sleeve shaft and the outer shaft of the output sleeve shaft.
  • FIG. 7 is a schematic diagram of a co-directional transfer case using a bevel gear single-layer star planetary row, which is a half diagram. 1 is the input, 2 is the internal output, and 3 is the external output.
  • FIG. 8 is a schematic diagram of a co-directional transfer case using a double sun gear and a double planetary shaft planetary row, which is a half diagram. 1 is input, 2 is inner output, 3 is outer output, 4 is left center wheel, 5 is right center wheel, 6 is inner planet wheel, 7 is left outer planet wheel, 8 is right outer Planet wheel.
  • FIG. 9 is a schematic diagram of a co-directional transfer case using a double-layer planetary planetary gear of a cylindrical gear, which is a half diagram. 1 is the input, 2 is the internal output, and 3 is the external output.
  • FIG. 10 is a schematic diagram of a co-directional transfer case using a double sun gear planetary row, which is a half diagram. 1 is the input, 2 is the internal output, and 3 is the external output.
  • FIG. 11 is a schematic diagram of a co-directional transfer case using a planetary row with double ring gears, which is a half diagram. 1 is the input, 2 is the internal output, and 3 is the external output.
  • FIG. 12 is a schematic diagram of a bevel gear planetary commutator, which is a half diagram. 1 is an internal input, 2 is an external input, 3 is an internal output, 4 is an external output, and 5 is a bevel planetary gear.
  • FIG. 13 is a schematic diagram of a planetary commutator with dual sun gears, dual planetary shafts, and a half diagram.
  • 1 is the inner input
  • 2 is the outer input
  • 3 is the inner output
  • 4 is the outer output
  • 5 is the inner planetary gear
  • 6 is the left outer planetary gear
  • 7 is the right outer planetary gear.
  • FIG. 14 is a schematic diagram of a retaining two-way commutator, which is a whole diagram. 1 is an internal input, 2 is an external input, 3 is an internal output, 4 is an external output, 5 is an internal passive bevel gear, and 6 is an external passive bevel gear.
  • FIG. 15 is a schematic diagram of a double-position commutator, which is a simplified diagram of the whole. 1 is an internal input, 2 is an external input, 3 is an internal output, 4 is an external output, 5 is an internal passive bevel gear, and 6 is an external passive bevel gear.
  • FIG. 16 is a schematic diagram of a dual-controller using a spur gear double star planetary row. 1 is the input, 2 is the left inner output and right inner output, 3 is the left outer output, 4 is the right outer output, 5 is the dual-control gear, and 6 is the side gear.
  • the range gear is the whole sketch, and the rest are half sketches.
  • FIG. 17 is a schematic diagram of a dual controller using a dual sun gear planetary row.
  • 1 is an input
  • 2 is a left inner output and a right inner output
  • 3 is a left outer output
  • 4 is a right outer output
  • 5 is a worm gear
  • 6 is a worm.
  • the worm is a whole sketch, and the rest are half sketches.
  • FIG. 18 is a schematic diagram of a dual controller using a planetary row with double ring gears.
  • 1 is an input
  • 2 is a left inner output and a right inner output
  • 3 is a left outer output
  • 4 is a right outer output
  • 5 is a worm gear
  • 6 is a worm.
  • the worm is a whole sketch, and the rest are half sketches.
  • FIG. 19 is a schematic diagram of an output sleeve shaft of a co-rotating sub-side bevel gear, which is a whole diagram.
  • 1 is the inner shaft of the output sleeve shaft
  • 2 is the outer shaft of the output sleeve shaft
  • 3 is the left driving wheel shaft
  • 4 is the right driving wheel shaft
  • 5 is the left bevel gear
  • 6 is the right bevel gear.
  • FIG. 20 is a schematic diagram of the output sleeve shaft of the reverse split side bevel gear, which is a simplified diagram of the whole.
  • 1 is the inner shaft of the output sleeve shaft
  • 2 is the outer shaft of the output sleeve shaft
  • 3 is the left driving wheel shaft
  • 4 is the right driving wheel shaft
  • 5 is the left bevel gear
  • 6 is the right bevel gear.
  • FIG. 21 is another schematic diagram of the output sleeve shaft of the bevel gear with the same rotation and the same side, which is a simplified diagram of the whole.
  • 1 is inner shaft of output sleeve shaft
  • 2 is outer shaft of output sleeve shaft
  • 3 is inner shaft of coaxial reverse sleeve shaft
  • 4 is outer shaft of coaxial reverse sleeve shaft
  • 5 is inner bevel gear
  • 6 For external passive bevel gear.
  • FIG. 22 is a schematic diagram of an output sleeve shaft of a reverse bevel gear on the same side, which is a simplified diagram.
  • 1 is inner shaft of output sleeve shaft
  • 2 is outer shaft of output sleeve shaft
  • 3 is inner shaft of coaxial reverse sleeve shaft
  • 4 is outer shaft of coaxial reverse sleeve shaft
  • 5 is inner bevel gear
  • 6 For external passive bevel gear.
  • FIG. 23 is another schematic diagram of application example 5 of the same-direction differential differential transmission of the present invention, and is also a schematic diagram of embodiment 5 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the dual sun gear, double planetary shaft, planetary commutator
  • 5 is dual control Input of the controller
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is Output sleeve shaft outer shaft
  • 11 is non-coaxial reverse axis left axis
  • 12 is non-coaxial reverse axis right axis
  • 13 is reverse axis right axis bevel gear
  • 14 is reverse axis left axis bevel gear
  • 15 is a dual-control
  • the same-direction transfer case uses a bevel gear single-layer star planetary row
  • the dual-controller uses a cylindrical gear double-layer star planetary row.
  • a third type of indirect connection is used between the output sleeve shaft and the power-using device. Connection; each planetary row is a half diagram, the range gear is the whole diagram, and the whole diagram is output after the inner shaft of the output sleeve shaft and the outer shaft of the output sleeve shaft.
  • FIG. 24 is another schematic diagram of the sixth application mode of the same-direction differential differential transmission of the present invention, and is also a schematic diagram of Embodiment 6 of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the dual sun gear, double planetary shaft, planetary commutator
  • 5 is dual control Input of the controller
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is Output sleeve shaft outer shaft
  • 11 is non-coaxial reverse axis left axis
  • 12 is non-coaxial reverse axis right axis
  • 13 is reverse axis right axis bevel gear
  • 14 is reverse axis left axis bevel gear
  • 15 is
  • the same-direction transfer case uses a bevel gear single-layer star planetary row
  • the dual-controller uses a cylindrical gear double-layer star planetary row.
  • the fourth type of indirect connection between the output sleeve shaft and the power device is used to reverse the same-side indirect Connection; each planetary row is a half diagram, the range gear is the whole diagram, and the whole diagram is output after the inner shaft of the output sleeve shaft and the outer shaft of the output sleeve shaft.
  • FIG. 25 is a schematic diagram of a direct connection output of an output sleeve shaft of the same-direction differential transmission of the present invention.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the bevel gear planetary commutator
  • 5 is the input of the dual controller.
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is the output sleeve shaft Outer shaft
  • 11 is a dual-control gear
  • 12 is a side gear.
  • the same-direction transfer case uses a double sun gear planetary row
  • the dual controller uses a double sun gear planetary row, and a direct connection is used between the output sleeve shaft and the power use device; each planetary row is a half-sized diagram, and the side gears For the entire sketch.
  • FIG. 26 is another schematic diagram of the indirect connection of the output sleeve shaft of the same-direction differential differential transmission according to the present invention using the same-rotation sub-side.
  • 1 is the input of the same-direction transfer case
  • 2 is the output of the same-direction transfer case
  • 3 is the output of the same-direction transfer case
  • 4 is the bevel gear planetary commutator
  • 5 is the input of the dual controller.
  • 6 is the left inner output and right inner output of the dual controller
  • 7 is the left outer output of the dual controller
  • 8 is the right outer output of the dual controller
  • 9 is the inner shaft of the output sleeve shaft
  • 10 is the output sleeve shaft Outer shaft
  • 11 is the internal driving gear
  • 12 is the external driving gear
  • 13 is the right gear
  • 14 is the left gear
  • 15 is the right driving axle
  • 16 is the left driving axle
  • 17 is the adjustable brake
  • 18 is the dual control gear
  • 19 For the side gear.
  • the same-direction transfer case uses a double sun gear planetary row
  • the dual controller uses a double sun gear planetary row
  • the output sleeve shaft and the power use device adopt two sets of gear pairs with the same rotation and sub-side indirect connection; each planetary row It is a half-size diagram, and the side gears, right gears, left gears, right drive axle, and left drive axle are the whole diagram.
  • Each planetary row in each figure is shown as half a diagram as possible according to industry practice, and the brake is indicated by a clutch symbol that is grounded at one end.
  • Each component in each figure only shows the structural relationship and does not reflect the true size.
  • Embodiment 1 The same-direction differential transmission of the present invention is used as a variable damping differential.
  • Application example 1 is connected by a same-direction transfer case, a sleeve shaft commutator, a dual controller, and an output sleeve shaft.
  • Structure, co-directional transfer case adopts double sun gear planetary row, bevel gear planetary row commutator, dual controller adopts double sun gear planetary row, the first type of indirect connection is adopted between output sleeve shaft and power use device Indirect connection with sub-rotation, see Figure 1.
  • a non-reciprocating transfer case has a non-reciprocating transfer case input end, a non-reciprocating transfer case inner output end, and a non-reciprocating transfer case outer output end.
  • the two rotation speeds of the output terminal and the outer output terminal are the same.
  • Non-reciprocating transfer planetary row Set the component corresponding to the largest absolute value of the coefficient in the kinematics characteristic equation as the input of the non-reciprocating transfer.
  • the other two components are the output of the non-reciprocating transfer.
  • the same-direction transfer case uses a double sun gear planetary row.
  • the component corresponding to the maximum absolute value of the coefficient in the motion characteristic equation is the center wheel with a larger pitch circle diameter.
  • the center wheel with a larger pitch circle diameter is used as the same.
  • the planetary carrier serves as the inner output end (2) of the co-transfer case, and the right center wheel serves as the outer output end (3) of the co-transfer case.
  • the sleeve shaft commutator includes an inner shaft and an outer shaft of the sleeve shaft.
  • the inner shaft has an inner input end and an inner output end.
  • the outer shaft has an outer input end and an outer output end.
  • the sleeve shaft commutator has its inner input end. 2.
  • the two rotation speeds with the same rotation direction of the outer input end are converted into two rotation speeds with the opposite rotation direction of the inner output end and the outer output end; and the two rotation speeds with the same rotation direction of the inner output end and the outer output end are also converted. Its two input speeds are the opposite rotation direction of its inner input and its outer input.
  • a bevel gear planetary row commutator (4) is used.
  • the inner shaft of the sleeve shaft is provided with an inner input end and an inner output end.
  • the left center wheel of the single-layer star planetary row of the bevel gear on the outer shaft of the sleeve shaft is used as a commutator.
  • the bevel gear planetary gear meshes with the left center gear and meshes with the right center wheel to fix the planet carrier.
  • the planetary bevel gear planetary wheel set The number is two groups. The direction of rotation of the input end of the commutator and the output end of the commutator are opposite.
  • the dual-controller has a dual-controller input, a left inner output and a right inner output, a left outer output, and a right outer output.
  • the dual controller converts a speed input from its input to the left.
  • the two output speeds with the same rotation direction of the inner output end and its left outer output end are also converted into two speeds with the same output direction of the right inner output end and its right outer output end.
  • the dual controller uses a double star planetary row, with the left center wheel as the dual controller input, the other center wheel as the left inner output and the right inner output, and the planet carrier as the left outer output and as the right outer
  • the left center wheel is also the component corresponding to the maximum term of the absolute value of the coefficient in the dual star planetary row motion characteristic equation.
  • the dual controller uses a dual sun-wheel planetary row.
  • the component corresponding to the largest absolute value of the coefficient in the equation of motion of the double-star planetary row is the center wheel with a larger pitch circle diameter.
  • the wheel serves as the dual-controller input (5)
  • the other sun wheel serves as the dual-controller left inner output and right inner output (6)
  • the planet carrier serves as the left outer output (7) and as the right outer output (8 )
  • the number of wheel sets adjacent to the planetary row is two.
  • the output sleeve shaft is a transmission that connects the two rotation speeds of the output sleeve shaft inner shaft and the output sleeve shaft outer shaft in the output sleeve shaft to the power using device through connection.
  • the same-rotation output sleeve shaft and the power use device adopt the first type of indirect connection to indirectly connect to the sub-rotation side.
  • the two rotation-speed left driving wheels are indirectly connected after transmission.
  • the right driving wheel is output in both directions.
  • the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are respectively provided with an internal redirecting bevel gear and an external redirecting bevel gear.
  • the left driving wheel shaft (11) and the right driving wheel shaft (12) are respectively provided.
  • the left bevel gear (13) and the right bevel gear (14) are provided to mesh with the inner bevel gear and the outer bevel gear, respectively.
  • the output shaft of the output shaft inner shaft (9) and the output shaft outer shaft (10) The rotation is transmitted to the left driving wheel shaft (11) and the right driving wheel shaft (12) respectively.
  • the method for setting each component of the same-direction transfer case and dual-controller is as follows: the dual-sun gear planetary row used by the same-direction transfer case is set to have a characteristic parameter equal to 2.0; The characteristic parameter is equal to 2.0.
  • the specific method for setting each component is: take the same direction transfer case dual sun gear planetary row, the number of left sun gear teeth is 36, the number of left planet gear teeth is 18, the number of right planet gear teeth is 18, and the number of right sun gear teeth is 18 ;
  • the dual-controller dual sun gear planetary row has 36 left sun gear teeth, 18 left planet gear teeth, 18 right planet gear teeth, and 18 right sun gear teeth.
  • the left sun gear gear modulus is not equal to the right sun gear gear modulus.
  • the internal connection method of this embodiment is: directly connecting the internal output terminal (2) of the same-direction transfer case with the internal input terminal of the commutator, and the external output end (3) of the same-way transfer case directly connecting with the external input end of the commutator Connected, the internal output of the commutator is directly connected to the left internal output (6) of the dual controller, the external output of the commutator is directly connected to the left external output (7) of the dual controller, and the right internal output of the dual controller ( 6) It is directly connected to the inner shaft (9) of the output sleeve shaft, and the right outer output end (8) of the dual controller is directly connected to the outer shaft (10) of the output sleeve shaft.
  • an external connection method is: setting a dual control gear (14) on a dual controller input end (5), setting a side gear (15) to mesh with the dual control gear (14),
  • the side gear (15) is used to connect the power source, and the dual-controller input (5) is indirectly connected to the power source to input the power speed through the side gear (15) and the dual-control gear (14);
  • the form is indirectly connected with the transfer sub-side.
  • Embodiment 2 The same-direction differential transmission of the present invention is used as a variable damping differential.
  • the second application example is connected by a same-direction transfer case, a sleeve shaft commutator, a dual controller, and an output sleeve shaft.
  • Structure, co-directional transfer case adopts double sun gear planetary row, bevel gear planetary row commutator, dual controller adopts double sun gear planetary row, the second type of indirect connection form is adopted between output sleeve shaft and power use device Reverse the indirect side-to-side connection, see Figure 2.
  • the second type of indirect connection is adopted between the reverse output sleeve shaft and the power usage device to reverse the sub-side indirect connection.
  • the reverse output sleeve shaft Starting from the reverse output sleeve shaft, the two rotation speeds of the left drive wheel and the left after the indirect transmission, The right driving wheel is output in both directions.
  • the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are respectively provided with an internal redirecting bevel gear and an external redirecting bevel gear.
  • the left driving wheel shaft (11) and the right driving wheel shaft (12) are respectively provided.
  • the left bevel gear (13) and the right bevel gear (14) are provided to mesh with the inner bevel gear and the outer bevel gear, respectively.
  • the output shaft of the output shaft inner shaft (9) and the output shaft outer shaft (10) The rotation is transmitted to the left driving wheel shaft (11) and the right driving wheel shaft (12) respectively.
  • the method for setting each component in the same-direction transfer case and the dual-controller of the second embodiment is the same as that of the first embodiment.
  • the internal connection method of the second embodiment is the same as that of the first embodiment.
  • the second embodiment is a variable damping differential
  • the external connection method is: using the same-direction transfer input (1) to connect the power source to input power speed, and the dual-controller input (5) to directly connect the adjustable brake (13) ),
  • the left driving wheel axle (11) is connected to the left driving wheel
  • the right driving wheel axle (12) is connected to the right driving wheel
  • the second type of indirect connection is used to reverse the indirect side-to-side connection between the output sleeve shaft and the power usage device.
  • Embodiment 3 The same-direction differential transmission of the present invention is used as a left-right active differential.
  • the third application mode is connected by the same-direction transfer case, sleeve shaft commutator, dual controller, and output sleeve shaft.
  • Structure, co-directional transfer case adopts double sun gear planetary row, bevel gear planetary row commutator, dual controller adopts double sun gear planetary row, the first type of indirect connection is adopted between output sleeve shaft and power use device It is indirectly connected with the sub-rotation, see Figure 3.
  • the same-rotation output sleeve shaft and the power use device adopt the first type of indirect connection to be indirectly connected to the sub-rotation side.
  • the two rotation-speed driving wheels to the left are indirectly connected.
  • the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are respectively provided with an internal redirecting bevel gear and an external redirecting bevel gear.
  • the left driving wheel shaft (11) and the right driving wheel shaft (12) are respectively provided.
  • the left bevel gear (13) and the right bevel gear (14) are provided to mesh with the inner bevel gear and the outer bevel gear, respectively.
  • the output shaft of the output shaft inner shaft (9) and the output shaft outer shaft (10) The rotation is transmitted to the left driving wheel shaft (11) and the right driving wheel shaft (12) respectively.
  • the method for setting each component of the same-direction transfer case and dual-controller of the third embodiment is the same as that of the first embodiment.
  • the internal connection method of the third embodiment is the same as that of the first embodiment.
  • the third embodiment is a left-right active differential.
  • the external connection method is: the dual-control gear (13) and the side gear (14) are used to indirectly connect the dual-controller input terminal (5) to the power source to input power speed;
  • the input end (1) of the actuator is directly connected to the dual-control control device;
  • the left driving wheel axle (11) is connected to the left driving wheel, and the right driving wheel axle (12) is connected to the right driving wheel.
  • a type of indirect connection is indirectly connected to the transfer sub-side. While transmitting power or stopping transmitting power from the dual-controller input terminal (5) to the left and right drive wheels, input the dual-control speed to the transfer input (1) of the same direction to actively form the left.
  • the differential speed between the side driving wheels and the right driving wheels enables the motor vehicle to steer in place or turn in place.
  • Embodiment 4 The same direction differential transmission of the present invention is used as a left and right active differential.
  • the fourth application mode is connected by the same direction transfer case, sleeve shaft commutator, dual controller and output sleeve shaft.
  • Structure, co-directional transfer case adopts double sun gear planetary row, bevel gear planetary row commutator, dual controller adopts double sun gear planetary row, the second type of indirect connection form is adopted between output sleeve shaft and power use device Reverse the indirect side-to-side connection, see Figure 4.
  • a second type of indirect connection is adopted between the reverse output sleeve shaft and the power usage device.
  • the reverse indirect side-to-side indirect connection is started from the reverse output sleeve shaft, and the two speed-rotating left driving wheels are indirectly connected after transmission.
  • the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are respectively provided with an internal redirecting bevel gear and an external redirecting bevel gear.
  • the left driving wheel shaft (11) and the right driving wheel shaft (12) are respectively provided.
  • the left bevel gear (13) and the right bevel gear (14) are provided to mesh with the inner bevel gear and the outer bevel gear, respectively.
  • the output shaft of the output shaft inner shaft (9) and the output shaft outer shaft (10) The rotation is transmitted to the left driving wheel shaft (11) and the right driving wheel shaft (12) respectively.
  • the method for setting each component in the same-direction transfer case and the dual controller of the fourth embodiment is the same as that of the first embodiment.
  • the internal connection method of the fourth embodiment is the same as that of the first embodiment.
  • the external connection method of this embodiment 4 is as follows: the power input speed is connected to the power source input terminal (1) in the same direction; the dual controller input terminal (5) passes through the dual control gear (13), The side gear (14) is indirectly connected to the dual-control control device to input the dual-control speed; the left driving wheel shaft (11) is connected to the left driving wheel, the right driving wheel shaft (12) is connected to the right driving wheel, and the output sleeve shaft is connected with the power using device.
  • the second type of indirect connection is used to reverse the indirect side-to-side connection.
  • the dual-control speed is input to the dual-controller input (5) to actively form the left.
  • the differential speed between the side driving wheels and the right driving wheels enables the motor vehicle to steer in place or turn in place.
  • Embodiment 5 The same-direction differential transmission of the present invention is used as a dual-rotor active differential.
  • the fifth application mode is composed of the same-direction transfer case, sleeve shaft commutator, dual controller, output sleeve shaft, etc.
  • Connection structure, co-directional transfer case adopts bevel gear single-layer star planetary row, dual sun gear dual planetary wheel planetary planetary commutator, dual-controller adopts cylindrical gear double-layer star planetary row, output sleeve shaft and power use device
  • the third type of indirect connection is used for the same-to-the-side indirect connection. See Figure 5.
  • the same-direction transfer case adopts a bevel gear single-layer planetary planetary row.
  • the planet carrier serves as the input end of the same-direction transfer case (1), and the left center wheel serves as the inner output end (2) of the same-direction transfer case.
  • the side center wheel is used as the external output end (3) of the non-inverting transfer case.
  • the number of wheel sets of the bevel gear planetary wheels in the planetary row is two.
  • This embodiment 5 uses a dual sun gear, dual planetary shaft, planetary row commutator (4).
  • the inner shaft of the sleeve shaft is provided with an internal input end and an internal output end.
  • the side center wheel is used as the outer input end of the commutator, and the right center wheel is used as the outer output end of the commutator to fix the planet carrier.
  • the number of wheel sets of the planetary planetary inner planetary wheel, the left outer planetary wheel, and the right outer planetary wheel is two. group.
  • the direction of rotation of the input end of the commutator and the output end of the commutator are opposite.
  • the dual-controller uses a double-wheeled planetary planetary gear with cylindrical gears.
  • the component corresponding to the largest absolute value of the coefficient in the motion characteristic equation is the center wheel with a large pitch circle diameter.
  • the number of wheels of the double-layer planetary wheel is two
  • a third-type indirect connection is adopted between the co-rotating output sleeve shaft and the power-using device.
  • the co-rotating indirect connection is made on the same side of the same rotation.
  • the twin rotors output in the same direction.
  • a coaxial reversing double-rotor transmission is provided with an inner redirecting bevel gear and an outer redirecting bevel gear on the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10), respectively.
  • the inner shaft (11) of the shaft reversing sleeve shaft and the outer shaft (12) of the coaxial reversing sleeve shaft are respectively provided with an internal passive bevel gear (13) and an external passive bevel gear (14).
  • the external bevel gear meshes, and the rotation of the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are respectively transmitted to the same side of the coaxial reverse sleeve shaft output;
  • an inner redirecting bevel gear and an outer redirecting bevel gear are respectively provided on the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10).
  • the non-coaxial reverse axis right axis (11) and reverse axis left axis (12) are respectively set with reverse axis right axis bevel gears (13) and reverse axis left axis bevel gears (14), which are respectively changed from the internal direction.
  • the bevel gear and the external change bevel gear mesh, and the rotation of the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are transmitted to the reverse shaft right shaft (11) and the reverse shaft left shaft (12), respectively.
  • the setting method of the components in the same-direction transfer case and the dual-controller of the fifth embodiment is as follows: the bevel gear single-layer star planetary row used by the same-direction transfer case is set to have a characteristic parameter equal to 1.0, and the cylindrical gear used by the dual-controller is double.
  • the layer planetary platoon sets its characteristic parameter equal to 2.0.
  • the internal connection method of the fifth embodiment is: directly connecting the internal output terminal (2) of the same-way transfer case with the internal input terminal of the commutator, and the external output end (3) of the same-way transfer case and the external input end of the commutator Directly connected, the internal output of the commutator is directly connected to the left internal output (6) of the dual controller, the external output of the commutator is directly connected to the left external output (7) of the dual controller, and the right internal output of the dual controller (6) It is directly connected with the inner shaft (9) of the output sleeve shaft, and the right outer output end (8) of the dual controller is directly connected with the outer shaft (10) of the output sleeve shaft.
  • This embodiment 5 is a dual-rotor active differential.
  • the external connection method is: the dual-controller input end (5) is indirectly connected to the power source to input the power speed through the dual-control gear (13) and the side gear (14).
  • the actuator input end (1) is directly connected to the dual-control control device to input the dual-control speed; this embodiment 5 is connected to the coaxial reversing double rotor. See FIG. 5 to make the coaxial reversal of the output sleeve shaft.
  • the outer shaft of the shaft reversing sleeve is respectively connected to the two rotors of the coaxial reversing double rotor.
  • the output sleeve shaft and the power using device adopt a third type of co-rotating bevel gear output sleeve shaft.
  • Embodiment 6 The same-direction transfer differential transmission of the present invention is a dual-rotor active differential, and is composed of a connection of the same-direction transfer case, a sleeve shaft commutator, a dual controller, and an output sleeve shaft.
  • the transfer case uses a single-layer planetary planetary gear with bevel gears, a planetary commutator with double sun gears and double planetary shafts, a dual-controller with a double-layered planetary gear with cylindrical gears, and a fourth between the output sleeve shaft and the power device
  • the type of indirect connection reverses the indirect connection on the same side, see Figure 6.
  • a fourth type of indirect connection is used to reverse the indirect connection on the same side between the reversing output sleeve shaft and the power device.
  • the two rotation speeds are reversed after indirect torque transmission.
  • the twin rotors output in the same direction.
  • the co-rotating reversing double-rotor transmission is provided with an inner redirecting bevel gear and an outer redirecting bevel gear on the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10), respectively.
  • the inner shaft (11) of the shaft reversing sleeve shaft and the outer shaft (12) of the coaxial reversing sleeve shaft are respectively provided with an internal passive bevel gear (13) and an external passive bevel gear (14).
  • the external bevel gear meshes, and the rotation of the output sleeve shaft inner shaft (9) and the output sleeve shaft outer shaft (10) are respectively transmitted to the same side of the coaxial reverse sleeve shaft output;
  • the setting method of each component in the same-direction transfer case and the dual controller of the sixth embodiment is the same as that of the fifth embodiment.
  • the internal connection method of the sixth embodiment is the same as that of the fifth embodiment.
  • This embodiment 6 is a dual-rotor active differential.
  • the external connection method is: the same-direction transfer case input (1) is connected to the power source to input the power speed, and the dual-controller input (5) passes through the dual-control gear (13), The range gear (14) is indirectly connected to the dual-control control device to input the dual-control speed; this embodiment 6 is connected to the coaxial reversing double rotor.
  • the outer shaft of the reversing sleeve shaft is respectively connected to the two rotors of the coaxial reversing double-rotor.
  • the output sleeve shaft and the power using device adopt a fourth type to reverse the same-side bevel gear output sleeve shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

一种同向分动差速传动器,由同向分动器、套筒轴换向器、双控器与输出套筒轴连接构成,同向分动器采用五种行星排之一,其运动特性方程中系数绝对值最大项所对应的部件作输入端(1)、其他两个部件分别作内输出端(2)、外输出端(3)。四类套筒轴换向器各有设置方法。双控器采用三种行星排之一。所述的同向分动差速传动器有同向分动器、双控器各部件设置方法、有内部连接方法。输出套筒轴与动力使用装置有七种连接形式,各有设置方法。应用时采用不同外部连接方法,可作为可变阻尼差速器、左右主动差速器、双旋翼主动差速器。

Description

同向分动差速传动器 技术领域
本发明涉及一种行星排结构传动机械,具体为由一个同向分动器、一个套筒轴换向器、一个双控器和一个输出套筒轴连接构成的,被动或主动控制两个转速的差速的差速传动器。
背景技术
行星排背景知识:行星排由两个中心轮与带行星轮的行星架三个部件组成,三个部件的排列啮合结构关系决定行星排运动特性方程,决定行星排种类。现有行星排分为圆柱齿轮行星排、锥齿轮行星排。圆柱齿轮行星排包括一个太阳轮、一个内齿圈与带行星轮的行星架,其中太阳轮、内齿圈、行星轮都是圆柱齿轮。圆柱齿轮行星排按行星轮的层数是一层或双层而分为单层星行星排或双层星行星排;单层星行星排中太阳轮与行星轮啮合,行星轮与内齿圈啮合;双层星行星排中太阳轮与内层行星轮啮合,内层行星轮与外层行星轮啮合,外层行星轮与内齿圈啮合。锥齿轮行星排包括两个中心轮与带行星轮的行星架,一般是单层星行星排,行星轮是一层,其两个中心轮与行星轮都是锥齿轮;左侧中心轮与行星轮啮合,行星轮与右侧中心轮啮合。太阳轮与内齿圈都属于中心轮,太阳轮是左侧中心轮是节圆直径小的中心轮,内齿圈是右侧中心轮是节圆直径大的中心轮。本发明提出,所有由两个中心轮与带行星轮的行星架组成的传动机械都是行星排,一个中心轮与行星轮啮合,多层行星轮相互啮合或直接连接,行星轮与另一个中心轮啮合,行星架带着行星轮围绕中心轮轴线转动,行星轮既公转又自转;行星轮的层数可以是一层、二层、三层。例如双太阳轮行星排是一种双层星行星排,包括两个中心轮(太阳轮)与带行星轮的行星架,其两个中心轮与行星轮都是圆柱齿轮;其每个行星轮是共轴的两个齿轮,称为左侧行星轮、右侧行星轮;左侧行星轮与左侧 中心轮啮合,左侧行星轮与右侧行星轮直接连接,右侧行星轮与右侧中心轮啮合;左侧中心轮的节圆直径不等于右侧中心轮的节圆直径,左侧中心轮齿轮模数不必须等于右侧中心轮齿轮模数。再例如双内齿圈行星排是一种双层星行星排,包括两个中心轮(内齿圈)与带行星轮的行星架,其两个中心轮与行星轮都是圆柱齿轮;其每个行星轮是共轴的两个齿轮,称为左侧行星轮、右侧行星轮;左侧行星轮与左侧中心轮啮合,左侧行星轮与右侧行星轮直接连接,右侧行星轮与右侧中心轮啮合;左侧中心轮的节圆直径不等于右侧中心轮的节圆直径,左侧中心轮齿轮模数不必须等于右侧中心轮齿轮模数。又例如双太阳轮双行星轮轴行星排是一种单层星行星排,包括两个中心轮(太阳轮)与带两个行星轮轴两层行星轮的行星架,其两个中心轮与行星轮都是圆柱齿轮;行星架具有内行星轮轴和外行星轮轴,内行星轮轴上设置内行星轮,外行星轮轴上的每个行星轮是共轴的两个齿轮,称为左侧外行星轮、右侧外行星轮;左侧中心轮与内行星轮啮合,内行星轮与左侧外行星轮啮合,左侧外行星轮与右侧外行星轮直接连接共轴,右侧外行星轮与右侧中心轮啮合;左侧中心轮齿轮模数不必须等于右侧中心轮齿轮模数。设行星排的三个部件中左侧中心轮为z、行星架为j、右侧中心轮为y,左侧行星轮或左侧外行星轮为xz,右侧行星轮或右侧外行星轮为xy,设Zz为左侧中心轮齿数,Zy为右侧中心轮齿数,Zxz为左侧行星轮或左侧外行星轮齿数,Zxy为右侧行星轮或右侧外行星轮齿数,Nz为左侧中心轮转速,Ny为右侧中心轮转速,Nj为行星架转速;圆柱齿轮行星排与锥齿轮行星排的特性参数a=Zy/Zz,双太阳轮行星排的特性参数、双内齿圈行星排的特性参数、双太阳轮双行星轮轴行星排的特性参数均为a=(Zy*Zxz)/(Zz*Zxy)。所有单层星行星排的运动特性方程为:Nz+a*Ny=(1+a)*Nj,服从该运动特性方程的行星排都是单层星行星排;在该运动特性方程中,系数绝对值最大项是Nj,该项对应的部件是行星架。所有双层星行星排的运动特性方程为:Nz-a*Ny=(1-a)*Nj,服从该运动特性方程的行星排都是双层星行星排;当a<1.0时,在该运动特性方程中系数绝对值最大项是Nz,该项对应的部件是标注 为z的一侧中心轮,当a>1.0时,在该运动特性方程中系数绝对值最大项是Ny,该项对应的部件是标注为y的一侧中心轮。
传统的冠状差速器、行星排差速器,在差速传动中易出现总转矩不足。传统限滑差速器,性能较好,但结构复杂。这些传统差速器的差速传动被动阻尼都是预先设置,不可调节,不易做到按需要的差速传动被动阻尼进行差速传动。传统的可调阻尼差速器例如托森差速器,可以自动调节差速传动被动阻尼,但结构非常复杂。
本发明提出新一类差速传动器,结构简单,被动或主动控制两个转速绝对值之间的差速。应用于机动车辆左右主动轮的传动,控制可调制动器改变差速传动被动阻尼,成为可变阻尼差速器;在输入双控转速主动控制差速时,成为主动差速器,可以作为双流波箱,可以应用于双旋翼的传动,作为双旋翼主动差速器。
发明内容
本发明同向分动差速传动器由一个同向分动器、一个套筒轴换向器、一个双控器和一个输出套筒轴连接构成。
同向分动器有一个同向分动器输入端、一个同向分动器内输出端、一个同向分动器外输出端,同向分动器使其输入端的一个转速转化为其内输出端、其外输出端的转动方向相同的两个转速。同向分动器采用一个行星排,行星轮的轮组数目为一组至六组,设置行星排的三个部件之一作为同向分动器输入端,另两个部件分别作为同向分动器内输出端、同向分动器外输出端,设置的条件是同向分动器输入端输入转速时使同向分动器内输出端、同向分动器外输出端输出的两个转速的转动方向相同。也可以表述为:同向分动器行星排,设置其运动特性方程中系数绝对值最大项所对应的部件作为同向分动器输入端、其他两个部件分别作为同向分动器内输出端、同向分动器外输出端。同向分动器行星排采用五种行星排之一,其中: 采用锥齿轮单层星行星排时,其运动特性方程中系数绝对值最大项所对应的部件是行星架,以行星架作为同向分动器输入端,左侧中心轮、右侧中心轮分别作为同向分动器内输出端、同向分动器外输出端。参见图7,图7中以锥齿轮单层星行星排的行星架作为输入端(1),左侧中心轮作为同向分动器内输出端(2),右侧中心轮作为同向分动器外输出端(3)。采用双太阳轮双行星轮轴行星排时,其运动特性方程中系数绝对值最大项所对应的部件是行星架,以行星架作为同向分动器输入端,左侧中心轮、右侧中心轮分别作为同向分动器内输出端、同向分动器外输出端。参见图8,图8中以双太阳轮双行星轮轴行星排的行星架作为输入端(1),左侧中心轮(4)作为同向分动器内输出端(2),右侧中心轮(5)作为同向分动器外输出端(3),图8中(6)是内行星轮、(7)是左侧外行星轮、(8)是右侧外行星轮。采用圆柱齿轮双层星行星排时,其运动特性方程中系数绝对值最大项所对应的部件是节圆直径大的中心轮(内齿圈),以节圆直径大的中心轮(内齿圈)作为同向分动器输入端,行星架、节圆直径小的中心轮(太阳轮)分别作为同向分动器内输出端、同向分动器外输出端。参见图9,图9中以圆柱齿轮双层星行星排的内齿圈作为输入端(1),行星架作为同向分动器内输出端(2),太阳轮作为同向分动器外输出端(3)。采用双太阳轮行星排时,其运动特性方程中系数绝对值最大项所对应的部件是两个中心轮中节圆直径较大者,以节圆直径较大的中心轮作为同向分动器输入端,行星架、另一中心轮分别作为同向分动器内输出端、同向分动器外输出端。参见图10,图10中以双太阳轮行星排的节圆直径较大的中心轮作为输入端(1),行星架作为同向分动器内输出端(2),另一中心轮作为同向分动器外输出端(3)。采用双内齿圈行星排时,其运动特性方程中系数绝对值最大项所对应的部件是两个中心轮中节圆直径较小者,以节圆直径较小的中心轮作为同向分动器输入端,行星架、另一中心轮分别作为同向分动器内输出端、同向分动器外输出端。参见图11,图11中以双内齿圈行星排的节圆直径较小的中心轮作为输入端(1),行星架作为同向分动器内输出端(2),另一中心轮作为同 向分动器外输出端(3)。
套筒轴换向器包括套筒轴的内轴与外轴,内轴有内输入端、内输出端,外轴有外输入端、外输出端。套筒轴换向器使其内输入端、其外输入端的转动方向相同的两个转速转化为其内输出端、其外输出端的转动方向相反的两个转速;也使其内输出端、其外输出端的转动方向相同的两个转速转化为其内输入端、其外输入端的转动方向相反的两个转速。套筒轴换向器有四类:第一类为锥齿轮行星排换向器,外轴采用锥齿轮单层星行星排,参见图12。图12中套筒轴内轴设置内输入端(1)、内输出端(2),套筒轴外轴上锥齿轮单层星行星排的左侧中心轮作为换向器外输入端(2),右侧中心轮作为换向器外输出端(4),锥齿轮行星轮(5)与左侧中心轮啮合且与右侧中心轮啮合,使行星架固定,该行星排锥齿轮行星轮(5)的轮组数目可以是一组至六组。换向器外输入端(2)与换向器外输出端(4)的转动方向相反。第二类为双太阳轮双行星轮轴行星排换向器,外轴采用双太阳轮双行星轮轴行星排,参见图13。图13中套筒轴内轴设置内输入端(1)、内输出端(3),套筒轴外轴上双太阳轮双行星轮轴行星排的左侧中心轮作为换向器外输入端(2),右侧中心轮作为换向器外输出端(4),使行星架固定,该行星排内行星轮(5)、左侧外行星轮(6)、右侧外行星轮(7)的轮组数目可以为一组至六组。换向器外输入端(1)与换向器外输出端(3)的转动方向相反。第三类为保位双路换向器,内轴、外轴分别采用锥齿轮副传动,参见图14。图14中保位双路换向器的内输入端、外输入端形成输入套筒轴,内输出端、外输出端形成输出套筒轴,输入套筒轴轴承与输出套筒轴轴承各自固定,输入套筒轴与输出套筒轴呈90度夹角;在内输入端(1)上设置内主动锥齿轮,外输入端(2)上设置外主动锥齿轮,内输出端(3)上设置内被动锥齿轮(5),外输出端(4)上设置外被动锥齿轮(6),使内主动锥齿轮与内被动锥齿轮(5)啮合、外主动锥齿轮与外被动锥齿轮(6)啮合,内主动锥齿轮齿轮模数不必须等于外主动锥齿轮齿轮模数。内输入端、外输入端上输入转动方向相同的两个转速,在内输出端、外输出 端上就输出转动方向相反的两个转速。第四类为换位双路换向器,内轴、外轴分别采用锥齿轮副传动,参见图15。图15中换位双路换向器的内输入端、外输入端形成输入套筒轴,内输出端、外输出端形成输出套筒轴,输入套筒轴与输出套筒轴呈90度夹角;在内输入端(1)上设置内主动锥齿轮,外输入端(2)上设置外主动锥齿轮,内输出端(3)上设置内被动锥齿轮(5),外输出端(4)上设置外被动锥齿轮(6),使内主动锥齿轮与外被动锥齿轮(6)啮合、外主动锥齿轮与内被动锥齿轮(5)啮合,内主动锥齿轮齿轮模数不必须等于外主动锥齿轮齿轮模数。内输入端、外输入端上输入转动方向相同的两个转速,在外输出端、内输出端上就输出转动方向相反的两个转速。本发明中,锥齿轮行星排换向器和双太阳轮双行星轮轴行星排换向器的内轴传动比设置为1.0,外轴传动比设置为-1.0,设置方法为业内已知方法;例如:锥齿轮行星排换向器中的左侧中心轮齿数=右侧中心轮齿数=锥齿轮行星轮齿数。保位双路换向器从内输入端到内输出端的传动比设置为-1.0、从外输入端到外输出端的传动比设置为1.0,设置方法例如:内主动锥齿轮齿数=内被动锥齿轮齿数,且,外主动锥齿轮齿数=外被动锥齿轮齿数。换位双路换向器从内输入端到外输出端的传动比设置为-1.0、从外输入端到内输出端的传动比设置为1.0。
双控器有一个双控器输入端、一个左内输出端兼右内输出端、一个左外输出端、一个右外输出端,双控器使其输入端输入的一个转速转化为其左内输出端、其左外输出端的转动方向相同的两个转速,同时也转化为其右内输出端、其右外输出端的转动方向相同的两个转速。双控器采用一个双层星行星排,行星轮的轮组数目为一组至六组,以左侧中心轮作为双控器输入端,另一中心轮作为左内输出端兼右内输出端,行星架作为左外输出端且作为右外输出端,左侧中心轮也是双控器行星排运动特性方程中系数绝对值最大项所对应的部件。双控器采用三种双层星行星排之一,第一种采用圆柱齿轮双层星行星排,其运动特性方程中系数绝对值最大项对应的部件是节圆直径大的中心轮(内齿圈),参见图16,图16中以节圆直径大 的中心轮(内齿圈)作为双控器输入端(1),节圆直径小的中心轮(太阳轮)作为左内输出端兼右内输出端(2),行星架作为左外输出端(3)且作为右外输出端(4)。双控器输入端的外部连接例如:设置双控齿轮(5)与节圆直径大的中心轮(内齿圈)直接连接,设置与双控齿轮啮合的旁轴齿轮(6),通过旁轴齿轮(6)、双控齿轮(5)向双控器输入端(1)输入双控转速。第二种采用双太阳轮行星排,其运动特性方程中系数绝对值最大项对应的部件是节圆直径较大的中心轮(太阳轮),参见图17,图17中以节圆直径较大的中心轮(太阳轮)作为双控器输入端(1),另一中心轮(太阳轮)作为左内输出端兼右内输出端(2),行星架作为左外输出端(3)且作为右外输出端(4)。双控器输入端的外部连接例如:设置蜗轮(5)与节圆直径较大的中心轮(太阳轮)直接连接,设置配套的蜗杆(6),通过蜗轮蜗杆装置向双控器输入端(1)输入双控转速。第三种采用双内齿圈行星排,其运动特性方程中系数绝对值最大项对应的部件是节圆直径较小的中心轮(内齿圈),参见图18,图18中以节圆直径较小的中心轮(内齿圈)作为双控器输入端(1),另一中心轮(内齿圈)作为左内输出端兼右内输出端(2),行星架作为左外输出端(3)且作为右外输出端(4)。双控器输入端的外部连接例如:设置蜗轮(5)与节圆直径较小的中心轮(内齿圈)直接连接,设置配套的蜗杆(6),通过蜗轮蜗杆装置向双控器输入端(1)输入双控转速。
输出套筒轴包括输出套筒轴内轴与输出套筒轴外轴,是使输出套筒轴中的输出套筒轴内轴、输出套筒轴外轴的两个转速经连接传递到两个动力使用装置的传动器。在本发明中,输出套筒轴有两种:第一种是同转输出套筒轴,其套筒轴中的内轴、外轴的转动方向相同。第二种是反转输出套筒轴,其套筒轴中的内轴、外轴的转动方向相反。
同向分动差速传动器中同向分动器、双控器各部件设置方法为:同向分动器采用单层星行星排时设置其特性参数等于1.0,同向分动器采用双层星行星排时设置其特性参数等于2.0;设置双控器双层星行星排特性参数等于2.0。这样,当同向分动器输入端输入转速时,在输出 套筒轴内轴、外轴形成转速相等转动方向相反的内分动转速、外分动转速。当双控器输入端输入转速时,在输出套筒轴内轴、外轴形成转速相等转动方向相同的内双控转速、外双控转速;同时在同向分动器内输出端、外输出端形成转速相同转动方向相反的两个转速,与同向分动器分动器输入端的转速互不干涉。内分动转速与内双控转速可以叠加,外分动转速与外双控转速可以叠加。上述这些设置方法采用了数字化的行星排特性参数表述,行星排特性参数实质上是对同向分动差速传动器各部件齿数和结构设置的表述。例如当同向分动器采用锥齿轮单层星行星排时,“设置其特性参数等于1.0”就是设置其左侧中心轮齿数等于右侧中心轮齿数。业内人士均可理解,设置各行星排特性参数,对应着设置各行星排齿数与结构,最终对应着设置同向分动差速传动器结构。
同向分动差速传动器的内部连接方法为:使同向分动器内输出端与换向器内输入端直接连接,同向分动器外输出端与换向器外输入端直接连接,换向器内输出端与双控器左内输出端直接连接,换向器外输出端与双控器左外输出端直接连接,双控器右内输出端与输出套筒轴内轴直接连接,双控器右外输出端与输出套筒轴外轴直接连接。
本发明应用时的外部连接方法包括本发明与动力源的连接,本发明与双控控制器的连接,本发明与可调制动器的连接,本发明输出套筒轴与动力使用装置的连接,均采用现有成熟技术。本发明中负责与动力源连接的是同向分动器输入端、双控器输入端这两者之一。本发明中负责与双控控制装置连接的是双控器输入端、同向分动器输入端这两者之一。本发明中负责与可调制动器连接的是双控器输入端、同向分动器输入端这两者之一。输出套筒轴与动力使用装置的连接有五类连接形式,包括一类直接连接形式、四类间接连接形式。直接连接形式参见图25,图中反转输出套筒轴的输出套筒轴内轴(9)、输出套筒轴外轴(10)直接连接共轴反转双旋翼输出动力。间接连接形式有四类:第一类间接连接形式是同转分侧间接连接,从同转输出套筒轴开始,间接连接传动后两个转速向左主动轮、右主动轮两侧方向输出。参 见图19,图19中采用同转输出套筒轴,在输出套筒轴内轴(1)、输出套筒轴外轴(2)上分别设置内变向锥齿轮、外变向锥齿轮,在左主动轮轴(3)、右主动轮轴(4)上分别设置左锥齿轮(5)、右锥齿轮(6),分别与内变向锥齿轮、外变向锥齿轮啮合,两个转速分别传递向左主动轮轴(3)、右主动轮轴(4)两侧方向输出,其中输出套筒轴轴承、左主动轮轴轴承、右主动轮轴轴承各自固定,左锥齿轮齿轮模数不必须等于右锥齿轮齿轮模数。再例如图26,图中的间接连接包括两组齿轮副。图26中采用同转输出套筒轴,在输出套筒轴内轴(9)上设置内主动齿轮(11),在输出套筒轴外轴(10)上设置外主动齿轮(12),设置平行于同向分动差速传动器轴的旁轴作为主动轮轴,在主动轮轴上设置右齿轮(13)与内主动齿轮(11)啮合、设置左齿轮(14)与外主动齿轮(12)啮合,两个转速传递向左主动轮轴(16)、右主动轮轴(15)输出动力。第二类间接连接形式是反转分侧间接连接,从反转输出套筒轴开始,间接连接传动后两个转速向左主动轮、右主动轮两侧方向输出。参见图20,图20中采用反转输出套筒轴,在输出套筒轴内轴(1)、输出套筒轴外轴(2)上分别设置内变向锥齿轮、外变向锥齿轮,在左主动轮轴(3)、右主动轮轴(4)上分别设置左锥齿轮(5)、右锥齿轮(6),分别与内变向锥齿轮、外变向锥齿轮啮合,两个转速分别传递向左主动轮轴(3)、右主动轮轴(4)两侧方向输出。其中输出套筒轴轴承、左主动轮轴轴承、右主动轮轴轴承各自固定,左锥齿轮齿轮模数不必须等于右锥齿轮齿轮模数。本发明作为机动车辆的可变阻尼差速器或双流波箱时,采用第一类间接连接形式、第二类间接连接形式。第三类间接连接形式是同转同侧间接连接,从同转输出套筒轴开始,间接连接传动后两个转速向反转的双旋翼同一侧方向输出。参见图21,图21采用同转输出套筒轴,在输出套筒轴内轴(1)、输出套筒轴外轴(2)上分别设置内变向锥齿轮、外变向锥齿轮,在共轴反转套筒轴内轴(3)、共轴反转套筒轴外轴(4)上分别设置内被动锥齿轮(5)、外被动锥齿轮(6),分别与内变向锥齿轮、外变向锥齿轮啮合,两个转速分别传递向共轴反转套筒轴向同一侧方向输出。其中输出 套筒轴轴承、共轴反转套筒轴轴承各自固定,内变向锥齿轮齿轮模数不必须等于外变向锥齿轮齿轮模数。再参见图23,图23中采用同转输出套筒轴,在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在非共轴的反转轴右轴(11)、反转轴左轴(12)上分别设置反转轴右轴锥齿轮(13)、反转轴左轴锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,两个转速分别传递向非共轴的反转轴右轴(11)、反转轴左轴(12)向同一侧方向输出。其中输出套筒轴轴承、反转轴左轴轴承、反转轴右轴轴承各自固定,内变向锥齿轮齿轮模数不必须等于外变向锥齿轮齿轮模数。第四类间接连接形式:反转同侧间接连接,从反转输出套筒轴开始,间接连接传动后两个转速向反转的双旋翼同一侧方向输出。参见图22,图22中采用反转输出套筒轴,在输出套筒轴内轴(1)、输出套筒轴外轴(2)上分别设置内变向锥齿轮、外变向锥齿轮,在共轴反转套筒轴内轴(3)、共轴反转套筒轴外轴(4)上分别设置内被动锥齿轮(5)、外被动锥齿轮(6),分别与内变向锥齿轮、外变向锥齿轮啮合,两个转速分别传递向共轴反转套筒轴向同一侧方向输出。其中输出套筒轴轴承、共轴反转套筒轴轴承各自固定,内变向锥齿轮齿轮模数不必须等于外变向锥齿轮齿轮模数。再参见图24,图24中采用反转输出套筒轴,在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在非共轴的反转轴右轴(11)、反转轴左轴(12)上分别设置反转轴右轴锥齿轮(13)、反转轴左轴锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,两个转速分别传递向非共轴的反转轴右轴(11)、反转轴左轴(12)向同一侧方向输出。其中输出套筒轴轴承、反转轴左轴轴承、反转轴右轴轴承各自固定,内变向锥齿轮齿轮模数不必须等于外变向锥齿轮齿轮模数。本发明作为双旋翼主动差速器时,采用第三类间接连接形式、第四类间接连接形式。在图19、图20中,设置从输出套筒轴内轴到左主动轮轴的传动比绝对值等于从输出套筒轴外轴到右主动轮轴的传动比绝对值。在图21、图22中,设置从输出套筒轴内轴到共轴反转套筒轴内轴的传动比绝对值等于从输出套 筒轴外轴到共轴反转套筒轴外轴的传动比绝对值。同理,在图23、图24中,设置从输出套筒轴内轴到反转轴右轴的传动比绝对值等于从输出套筒轴外轴到反转轴左轴的传动比绝对值。
根据不同的外部连接方法,本发明可作为可变阻尼差速器、左右主动差速器、双旋翼主动差速器。当外部连接方法为:以同向分动器输入端(1)直接连接动力源,双控器输入端(5)通过双控齿轮(11)、旁轴齿轮(12)间接连接双控控制装置,输出套筒轴内轴(9)、输出套筒轴外轴(10)分别连接双旋翼,输出套筒轴与动力使用装置之间采用直接连接形式。参见图25,本发明作为双旋翼主动差速器。当外部连接方法为:以同向分动器输入端直接连接动力源、双控器输入端直接连接可调制动器,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第二类间接连接形式。参见图2,本发明作为可变阻尼差速器。当外部连接方法为:以双控器输入端间接连接动力源、同向分动器直接连接可调制动器,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第一类间接连接形式。参见图1,本发明作为可变阻尼差速器。当外部连接方法为:以同向分动器输入端直接连接动力源、双控器输入端间接连接双控控制装置,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第二类间接连接形式。参见图4,本发明作为双流波箱。当外部连接方法为:以同向分动器直接连接双控控制装置、双控器输入端间接连接动力源;以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第一类间接连接形式。参见图3,本发明作为双流波箱。当外部连接方法为:以同向分动器输入端直接连接动力源、双控器输入端间接连接双控控制装置,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第四类间接连接形式。参见图6,本发明作为双旋翼主动差速器。当外部连接方法为:以同向分动器直接连接双控控制装置、 双控器输入端间接连接动力源,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第三类间接连接形式。参见图5,本发明作为双旋翼主动差速器。
本发明所述连接分为直接连接与间接连接,直接连接使参与连接的各部件转速相同,间接连接使参与连接的各部件之间形成固定的转速比例关系。本发明所述连接,表示采用直接连接或间接连接。所述套筒轴是现有成熟技术设备,套筒轴的内轴与外轴之间可以相对转动、不可以沿轴向相对滑移。所述内输出端、外输出端指这两个部件形成套筒轴,内输出端作为套筒轴的内轴,外输出端作为套筒轴的外轴;所述内输入端、外输入端指这两个部件形成套筒轴,内输入端作为套筒轴的内轴,外输入端作为套筒轴的外轴;如有例外,会专门指出。所述动力源,是燃油发动机、电力发动机等发动机,或发动机后的变速器减速器传动装置等,通过连接,可以向同向分动器输入端或双控器输入端输入动力转速。所述可调制动器,是助力制动器、电控制动器、液压控制制动器等制动力可调节的制动器。所述双控控制装置,是电动控制装置、液压控制装置等,通过连接,可以向同向分动器输入端或双控器输入端输入双控转速。所述动力使用装置是与输出套筒轴内轴、输出套筒轴外轴连接的装置,如双旋翼、双螺旋桨、左右主动轮、双驱动轴等。
本发明同向分动差速传动器的有益之处在于,提出了由同向分动器、套筒轴换向器、双控器和输出套筒轴连接构成本发明;实现结构简单,被动或主动控制两个转速绝对值之间的差速的目的。同向分动器、套筒轴换向器、双控器、输出套筒轴的各部件设置方法以及本发明的内部连接方法是本发明的核心。应用方面,采用不同的外部连接方法本发明有三类应用。本发明应用于机动车辆左右主动轮的传动,在控制可调制动器制动力时可以按需要改变差速传动被动阻尼,成为可变阻尼差速器;在输入双控转速主动控制差速时,成为左右主动差速器即双流波箱。应用于双旋翼的传动,输入双控转速主动控制住共轴反转双旋翼或非共轴的 反转双旋翼的两个旋翼的差速,成为双旋翼主动差速器。
附图说明
图1为本发明同向分动差速传动器的应用例一示意图,也是本发明实施例1示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为锥齿轮行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为左主动轮轴,12为右主动轮轴,13为左锥齿轮,14为右锥齿轮,15为可调制动器,16为双控齿轮,17为旁轴齿轮。图中同向分动器采用双太阳轮行星排,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图2为本发明同向分动差速传动器的应用例二示意图,也是本发明实施例2示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为锥齿轮行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为左主动轮轴,12为右主动轮轴,13为左锥齿轮,14为右锥齿轮,15为可调制动器。图中同向分动器采用双太阳轮行星排,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接;各行星排为半幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图3为本发明同向分动差速传动器的应用例三示意图,也是本发明实施例2示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为锥齿轮行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端, 8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为左主动轮轴,12为右主动轮轴,13为左锥齿轮,14为右锥齿轮,15为双控齿轮,16为旁轴齿轮。图中同向分动器采用双太阳轮行星排,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图4为本发明同向分动差速传动器的应用例四示意图,也是本发明实施例2示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为锥齿轮行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为左主动轮轴,12为右主动轮轴,13为左锥齿轮,14为右锥齿轮,15为双控齿轮,16为旁轴齿轮。图中同向分动器采用双太阳轮行星排,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图5为本发明同向分动差速传动器的应用例五的一种示意图,也是本发明实施例5示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为双太阳轮双行星轮轴行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为共轴反转套筒轴内轴,12为共轴反转套筒轴外轴,13为内被动锥齿轮,14为外被动锥齿轮,15为双控齿轮,16为旁轴齿轮。图中同向分动器采用锥齿轮单层星行星排,双控器采用圆柱齿轮双层星行星排,输出套筒轴与动力使用装置之间采用第三类间接连接形式同转同侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图6为本发明同向分动差速传动器的应用例六的一种示意图,也是本发明实施例6示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为双太阳轮双行星轮轴行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为共轴反转套筒轴内轴,12为共轴反转套筒轴外轴,13为内被动锥齿轮,14为外被动锥齿轮,15为双控齿轮,16为旁轴齿轮。图中同向分动器采用锥齿轮单层星行星排,双控器采用圆柱齿轮双层星行星排,输出套筒轴与动力使用装置之间采用第四类间接连接形式反转同侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图7为采用锥齿轮单层星行星排的同向分动器示意图,为半幅简图。1为输入端,2为内输出端,3为外输出端。
图8为采用双太阳轮双行星轮轴行星排的同向分动器示意图,为半幅简图。1为输入端,2为内输出端,3为外输出端,4为左侧中心轮,5为右侧中心轮,6为内行星轮,7为左侧外行星轮,8为右侧外行星轮。
图9为采用圆柱齿轮双层星行星排的同向分动器示意图,为半幅简图。1为输入端,2为内输出端,3为外输出端。
图10为采用双太阳轮行星排的同向分动器示意图,为半幅简图。1为输入端,2为内输出端,3为外输出端。
图11为采用双内齿圈行星排的同向分动器示意图,为半幅简图。1为输入端,2为内输出端,3为外输出端。
图12为锥齿轮行星排换向器的示意图,为半幅简图。1为内输入端,2为外输入端,3为内输出端,4为外输出端,5为锥齿轮行星轮。
图13为双太阳轮双行星轮轴行星排换向器的示意图,为半幅简图。1为内输入端,2为外输入端,3为内输出端,4为外输出端,5为内行星轮,6为左侧外行星轮,7为右侧外行星轮。
图14为保位双路换向器的示意图,为整幅简图。1为内输入端,2为外输入端,3为内输出端,4为外输出端,5为内被动锥齿轮,6为外被动锥齿轮。
图15为换位双路换向器的示意图,为整幅简图。1为内输入端,2为外输入端,3为内输出端,4为外输出端,5为内被动锥齿轮,6为外被动锥齿轮。
图16为采用圆柱齿轮双层星行星排的双控器示意图。1为输入端,2为左内输出端兼右内输出端,3为左外输出端,4为右外输出端,5为双控齿轮,6为旁轴齿轮。旁轴齿轮为整幅简图,其余为半幅简图。
图17为采用双太阳轮行星排的双控器示意图。1为输入端,2为左内输出端兼右内输出端,3为左外输出端,4为右外输出端,5为蜗轮,6为蜗杆。蜗杆为整幅简图,其余为半幅简图。
图18为采用双内齿圈行星排的双控器示意图。1为输入端,2为左内输出端兼右内输出端,3为左外输出端,4为右外输出端,5为蜗轮,6为蜗杆。蜗杆为整幅简图,其余为半幅简图。
图19为同转分侧锥齿轮输出套筒轴的一种示意图,为整幅简图。1为输出套筒轴内轴,2为输出套筒轴外轴,3为左主动轮轴,4为右主动轮轴,5为左锥齿轮,6为右锥齿轮。
图20为反转分侧锥齿轮输出套筒轴示意图,为整幅简图。1为输出套筒轴内轴,2为输出套筒轴外轴,3为左主动轮轴,4为右主动轮轴,5为左锥齿轮,6为右锥齿轮。
图21为同转同侧锥齿轮输出套筒轴的另一种示意图,为整幅简图。1为输出套筒轴内轴,2为输出套筒轴外轴,3为共轴反转套筒轴内轴,4为共轴反转套筒轴外轴,5为内被动锥齿 轮,6为外被动锥齿轮。
图22为反转同侧锥齿轮输出套筒轴示意图,为整幅简图。1为输出套筒轴内轴,2为输出套筒轴外轴,3为共轴反转套筒轴内轴,4为共轴反转套筒轴外轴,5为内被动锥齿轮,6为外被动锥齿轮。
图23为本发明同向分动差速传动器的应用方式例五的再一种示意图,也是本发明实施例5示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为双太阳轮双行星轮轴行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为非共轴的反转轴左轴,12为非共轴的反转轴右轴,13为反转轴右轴锥齿轮,14为反转轴左轴锥齿轮,15为双控齿轮,16为旁轴齿轮。图中同向分动器采用锥齿轮单层星行星排,双控器采用圆柱齿轮双层星行星排,输出套筒轴与动力使用装置之间采用第三类间接连接形式同转同侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图24为本发明同向分动差速传动器的应用方式例六的再一种示意图,也是本发明实施例6示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为双太阳轮双行星轮轴行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为非共轴的反转轴左轴,12为非共轴的反转轴右轴,13为反转轴右轴锥齿轮,14为反转轴左轴锥齿轮,15为双控齿轮,16为旁轴齿轮。图中同向分动器采用锥齿轮单层星行星排,双控器采用圆柱齿轮双层星行星排,输出套筒轴与动力使用装置之间采用第四类间接连接形式反转同侧间接连接;各行星排为半幅简图,旁轴齿轮为整幅简图,输出套筒轴内轴、输出套筒轴外轴之后为整幅简图。
图25为本发明同向分动差速传动器输出套筒轴采用直接连接输出的示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为锥齿轮行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为双控齿轮,12为旁轴齿轮。图中同向分动器采用双太阳轮行星排,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用直接连接形式;各行星排为半幅简图,旁轴齿轮为整幅简图。
图26为本发明同向分动差速传动器输出套筒轴采用同转分侧间接连接形式的另一种示意图。1为同向分动器输入端,2为同向分动器内输出端,3为同向分动器外输出端,4为锥齿轮行星排换向器,5为双控器输入端,6为双控器左内输出端兼右内输出端,7为双控器左外输出端,8为双控器右外输出端,9为输出套筒轴内轴,10为输出套筒轴外轴,11为内主动齿轮,12为外主动齿轮,13为右齿轮,14为左齿轮,15为右主动轮轴,16为左主动轮轴,17为可调制动器,18为双控齿轮,19为旁轴齿轮。图中同向分动器采用双太阳轮行星排,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用两组齿轮副同转分侧间接连接形式;各行星排为半幅简图,旁轴齿轮、右齿轮、左齿轮、右主动轮轴、左主动轮轴为整幅简图。
各图中各行星排按行业惯例尽量以半幅简图示意,制动器以一端接地的离合器符号示意。各图中各部件只示意结构关系,未反映真实尺寸。
具体实施方式
实施例1:本发明同向分动差速传动器作为可变阻尼差速器,应用例一,由同向分动器、套筒轴换向器、双控器和输出套筒轴等连接构成,同向分动器采用双太阳轮行星排,采用锥齿轮行星排换向器,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第一 类间接连接形式同转分侧间接连接,参见图1。
同向分动器有一个同向分动器输入端、一个同向分动器内输出端、一个同向分动器外输出端,同向分动器使其输入端的一个转速转化为其内输出端、其外输出端的转动方向相同的两个转速。同向分动器行星排,设置其运动特性方程中系数绝对值最大项所对应的部件作为同向分动器输入端、其他两个部件分别作为同向分动器内输出端、同向分动器外输出端。本实施例同向分动器采用双太阳轮行星排,其运动特性方程中系数绝对值最大项所对应的部件是节圆直径较大的中心轮,以节圆直径较大的中心轮作为同向分动器输入端(1),行星架作为同向分动器内输出端(2),右侧中心轮作为同向分动器外输出端(3)。行星排中行星轮的轮组数目为二组。
套筒轴换向器包括套筒轴的内轴与外轴,内轴有内输入端、内输出端,外轴有外输入端、外输出端,套筒轴换向器使其内输入端、其外输入端的转动方向相同的两个转速转化为其内输出端、其外输出端的转动方向相反的两个转速;也使其内输出端、其外输出端的转动方向相同的两个转速转化为其内输入端、其外输入端的转动方向相反的两个转速。本实施例采用锥齿轮行星排换向器(4),套筒轴内轴设置内输入端、内输出端,套筒轴外轴上锥齿轮单层星行星排的左侧中心轮作为换向器外输入端,右侧中心轮作为换向器外输出端,锥齿轮行星轮与左侧中心轮啮合且与右侧中心轮啮合,使行星架固定,该行星排锥齿轮行星轮的轮组数目是二组。换向器外输入端与换向器外输出端的转动方向相反。左侧中心轮齿数=右侧中心轮齿数=锥齿轮行星轮齿数=18,左侧中心轮齿轮模数不等于右侧中心轮齿轮模数。
双控器有一个双控器输入端、一个左内输出端兼右内输出端、一个左外输出端、一个右外输出端,双控器使其输入端输入的一个转速转化输出为其左内输出端、其左外输出端的转动方向相同的两个转速,同时也转化输出为其右内输出端、其右外输出端的转动方向相同的两个转速。双控器采用一个双层星行星排,以左侧中心轮作为双控器输入端,另一中心轮作 为左内输出端且作为右内输出端,行星架作为左外输出端且作为右外输出端,左侧中心轮也是该双层星行星排运动特性方程中系数绝对值最大项所对应的部件。本实施例双控器采用双太阳轮行星排,该双层星行星排运动特性方程中系数绝对值最大项所对应的部件是节圆直径较大的中心轮,以节圆直径较大的太阳轮作为双控器输入端(5),另一太阳轮作为双控器左内输出端兼右内输出端(6),行星架作为左外输出端(7)且作为右外输出端(8),该行星排相邻的轮组数目为二组。
输出套筒轴是使输出套筒轴中的输出套筒轴内轴、输出套筒轴外轴的两个转速经连接传递到动力使用装置的传动器。本实施例同转输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接,从同转输出套筒轴开始,间接连接传动后两个转速向左主动轮、右主动轮两侧方向输出。在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在左主动轮轴(11)、右主动轮轴(12)分别设置左锥齿轮(13)、右锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向左主动轮轴(11)、右主动轮轴(12)两侧方向输出。设置从输出套筒轴内轴到左主动轮轴的传动比绝对值等于从输出套筒轴外轴到右主动轮轴的传动比绝对值,具体为内变向锥齿轮齿数=左锥齿轮齿数=18,外变向锥齿轮齿数=右锥齿轮齿数=18,左锥齿轮齿轮模数不等于右锥齿轮齿轮模数。
本实施例同向分动器、双控器中各部件设置方法为:同向分动器采用的双太阳轮行星排设置其特性参数等于2.0,双控器采用的双太阳轮行星排设置其特性参数等于2.0。具体各部件设置方法为:取同向分动器双太阳轮行星排的左侧太阳轮齿数为36、左侧行星轮齿数为18、右侧行星轮齿数为18、右侧太阳轮齿数为18;双控器双太阳轮行星排的左侧太阳轮齿数为36、左侧行星轮齿数为18、右侧行星轮齿数为18、右侧太阳轮齿数为18。所述左侧太阳轮齿轮模数不等于右侧太阳轮齿轮模数。
本实施例的内部连接方法为:使同向分动器内输出端(2)与换向器内输入端直接连接,同向分动器外输出端(3)与换向器外输入端直接连接,换向器内输出端与双控器左内输出端(6)直接连接,换向器外输出端与双控器左外输出端(7)直接连接,双控器右内输出端(6)与输出套筒轴内轴(9)直接连接,双控器右外输出端(8)与输出套筒轴外轴(10)直接连接。
本实施例作为可变阻尼差速器,外部连接方法为:在双控器输入端(5)上设置双控齿轮(14),设置旁轴齿轮(15)与双控齿轮(14)啮合,以旁轴齿轮(15)连接动力源,双控器输入端(5)通过旁轴齿轮(15)、双控齿轮(14)间接连接动力源输入动力转速;同向分动器输入端(1)直接连接可调制动器(13);左主动轮轴(11)连接左侧主动轮,右主动轮轴(12)连接右侧主动轮,输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接。当外力作用于左侧主动轮、右侧主动轮产生差速转动时,同向分动器输入端(1)会转动,调节可调制动器(13)的制动力就调节了差速传动被动阻尼,实现了可变阻尼差速器的功能。
实施例2:本发明同向分动差速传动器作为可变阻尼差速器,应用例二,由同向分动器、套筒轴换向器、双控器和输出套筒轴等连接构成,同向分动器采用双太阳轮行星排,采用锥齿轮行星排换向器,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接,参见图2。
本实施例2的同向分动器、套筒轴换向器、双控器与实施例1完全相同。
本实施例2反转输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接,从反转输出套筒轴开始,间接传动后两个转速向左主动轮、右主动轮两侧方向输出。在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在左主动轮轴(11)、右主动轮轴(12)分别设置左锥齿轮(13)、右锥齿轮(14),分别与 内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向左主动轮轴(11)、右主动轮轴(12)两侧方向输出。设置从输出套筒轴内轴到左主动轮轴的传动比绝对值等于从输出套筒轴外轴到右主动轮轴的传动比绝对值,具体为内变向锥齿轮齿数=左锥齿轮齿数=18,外变向锥齿轮齿数=右锥齿轮齿数=18,左锥齿轮齿轮模数不等于右锥齿轮齿轮模数。
本实施例2的同向分动器、双控器中各部件设置方法与实施例1相同。本实施例2的内部连接方法与实施例1相同。
本实施例2作为可变阻尼差速器,外部连接方法为:以同向分动器输入端(1)连接动力源输入动力转速,双控器输入端(5)直接连接可调制动器(13),左主动轮轴(11)连接左侧主动轮,右主动轮轴(12)连接右侧主动轮,输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接。当外力作用于左侧主动轮、右侧主动轮产生差速转动时,双控器输入端(5)会转动,调节可调制动器(13)的制动力就调节了差速传动被动阻尼,实现了可变阻尼差速器的功能。
实施例3:本发明同向分动差速传动器作为左右主动差速器,应用方式例三,由同向分动器、套筒轴换向器、双控器和输出套筒轴等连接构成,同向分动器采用双太阳轮行星排,采用锥齿轮行星排换向器,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接,参见图3。
本实施例3的同向分动器、套筒轴换向器、双控器与实施例1完全相同。
本实施例3同转输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接,从同转输出套筒轴开始,间接连接传动后两个转速向左主动轮、右主动轮两侧方向输出。在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在左主动轮轴(11)、右主动轮轴(12)分别设置左锥齿轮(13)、右锥齿轮(14),分 别与内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向左主动轮轴(11)、右主动轮轴(12)两侧方向输出。设置从输出套筒轴内轴到左主动轮轴的传动比绝对值等于从输出套筒轴外轴到右主动轮轴的传动比绝对值,具体为内变向锥齿轮齿数=左锥齿轮齿数=18,外变向锥齿轮齿数=右锥齿轮齿数=18,左锥齿轮齿轮模数不等于右锥齿轮齿轮模数。
本实施例3的同向分动器、双控器中各部件设置方法与实施例1相同。本实施例3的内部连接方法与实施例1相同。
本实施例3作为左右主动差速器,外部连接方法为:通过双控齿轮(13)、旁轴齿轮(14)使双控器输入端(5)间接连接动力源输入动力转速;同向分动器输入端(1)直接连接双控控制装置;左主动轮轴(11)连接左侧主动轮,右主动轮轴(12)连接右侧主动轮,输出套筒轴与动力使用装置之间采用第一类间接连接形式同转分侧间接连接。在从双控器输入端(5)到左侧主动轮、右侧主动轮传输动力或停止传输动力的同时,向同向分动器输入端(1)输入双控转速,就可以主动形成左侧主动轮与右侧主动轮的差速,实现机动车辆行进中转向或原地转向。
实施例4:本发明同向分动差速传动器作为左右主动差速器,应用方式例四,由同向分动器、套筒轴换向器、双控器和输出套筒轴等连接构成,同向分动器采用双太阳轮行星排,采用锥齿轮行星排换向器,双控器采用双太阳轮行星排,输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接,参见图4。
本实施例4的同向分动器、套筒轴换向器、双控器与实施例1完全相同。
本实施例4反转输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接,从反转输出套筒轴开始,间接连接传动后两个转速向左主动轮、右主动轮两侧方向输出。在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿 轮,在左主动轮轴(11)、右主动轮轴(12)分别设置左锥齿轮(13)、右锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向左主动轮轴(11)、右主动轮轴(12)两侧方向输出。设置从输出套筒轴内轴到左主动轮轴的传动比绝对值等于从输出套筒轴外轴到右主动轮轴的传动比绝对值,具体为内变向锥齿轮齿数=左锥齿轮齿数=18,外变向锥齿轮齿数=右锥齿轮齿数=18,左锥齿轮齿轮模数不等于右锥齿轮齿轮模数。
本实施例4的同向分动器、双控器中各部件设置方法与实施例1相同。本实施例4的内部连接方法与实施例1相同。
本实施例4作为左右主动差速器,外部连接方法为:以同向分动器输入端(1)连接动力源输入动力转速;双控器输入端(5)通过双控齿轮(13)、旁轴齿轮(14)间接连接双控控制装置输入双控转速;左主动轮轴(11)连接左侧主动轮,右主动轮轴(12)连接右侧主动轮,输出套筒轴与动力使用装置之间采用第二类间接连接形式反转分侧间接连接。在从同向分动器输入端(1)到左侧主动轮、右侧主动轮传输动力或停止传输动力的同时,向双控器输入端(5)输入双控转速,就可以主动形成左侧主动轮与右侧主动轮的差速,实现机动车辆行进中转向或原地转向。
实施例5:本发明同向分动差速传动器作为双旋翼主动差速器,应用方式例五,由同向分动器、套筒轴换向器、双控器和输出套筒轴等连接构成,同向分动器采用锥齿轮单层星行星排,采用双太阳轮双行星轮轴行星排换向器,双控器采用圆柱齿轮双层星行星排,输出套筒轴与动力使用装置之间采用第三类间接连接形式同转同侧间接连接,参见图5。
本实施例5同向分动器采用锥齿轮单层星行星排,行星架作为同向分动器输入端(1),左侧中心轮作为同向分动器内输出端(2),右侧中心轮作为同向分动器外输出端(3)。行星排中锥齿轮行星轮的轮组数目为二组。
本实施例5采用双太阳轮双行星轮轴行星排换向器(4),套筒轴内轴设置内输入端、内输出端,套筒轴外轴上双太阳轮双行星轮轴行星排的左侧中心轮作为换向器外输入端,右侧中心轮作为换向器外输出端,使行星架固定,该行星排内行星轮、左外行星轮、右外行星轮的轮组数目是二组。换向器外输入端与换向器外输出端的转动方向相反。设置左侧中心轮齿数=右侧中心轮齿数=内行星轮齿数=左外行星轮齿数=右外行星轮齿数=18,左侧中心轮齿轮模数不等于右侧中心轮齿轮模数。
本实施例5双控器采用圆柱齿轮双层星行星排,其运动特性方程中系数绝对值最大项所对应的部件是节圆直径大的中心轮,以节圆直径大的中心轮(内齿圈)作为双控器输入端(5),节圆直径小的中心轮(太阳轮)作为双控器左内输出端兼右内输出端(6),行星架作为左外输出端(7)且作为右外输出端(8),其中双层行星轮的轮组数目为二组
本实施例5同转输出套筒轴与动力使用装置之间采用第三类间接连接形式同转同侧间接连接,从同转输出套筒轴开始,间接连接传动后两个转速向反转的双旋翼同一侧方向输出。本实施例5向共轴反转双旋翼传动,在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在共轴反转套筒轴内轴(11)、共轴反转套筒轴外轴(12)分别设置内被动锥齿轮(13)、外被动锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向共轴反转套筒轴向同一侧方向输出;设置从输出套筒轴内轴到共轴反转套筒轴内轴的传动比绝对值等于从输出套筒轴外轴到共轴反转套筒轴外轴的传动比绝对值,具体为内变向锥齿轮齿数=内被动锥齿轮齿数=18,外变向锥齿轮齿数=外被动锥齿轮齿数=18,内变向锥齿轮齿轮模数不等于外变向锥齿轮齿轮模数,参见图5。当需要向非共轴的反转双旋翼传动时,在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在非共轴的反转轴右轴(11)、反转轴左轴(12)分别设置反转轴右轴锥齿轮(13)、反转轴左轴锥齿轮(14),分别与内变 向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向反转轴右轴(11)、反转轴左轴(12)向同一侧方向输出;设置从输出套筒轴内轴到反转轴右轴的传动比绝对值等于从输出套筒轴外轴到反转轴左轴的传动比绝对值,具体为内变向锥齿轮齿数=反转轴右轴锥齿轮齿数=18,外变向锥齿轮齿数=反转轴左轴锥齿轮齿数=18,内变向锥齿轮齿轮模数不等于外变向锥齿轮齿轮模数,参见图23。
本实施例5的同向分动器、双控器中各部件设置方法为:同向分动器采用的锥齿轮单层星行星排设置其特性参数等于1.0,双控器采用的圆柱齿轮双层星行星排设置其特性参数等于2.0。具体各部件设置方法为:同向分动器锥齿轮单层星行星排的左侧中心轮齿数=左侧中心轮齿数=锥齿轮行星轮齿数=18;双控器行星排的内齿圈齿数为48、内层行星轮齿数=外层行星轮齿数=18、太阳轮齿数为24。
本实施例5的内部连接方法为:使同向分动器内输出端(2)与换向器内输入端直接连接,同向分动器外输出端(3)与换向器外输入端直接连接,换向器内输出端与双控器左内输出端(6)直接连接,换向器外输出端与双控器左外输出端(7)直接连接,双控器右内输出端(6)与输出套筒轴内轴(9)直接连接,双控器右外输出端(8)与输出套筒轴外轴(10)直接连接。
本实施例5作为双旋翼主动差速器,外部连接方法为:双控器输入端(5)通过双控齿轮(13)、旁轴齿轮(14)间接连接动力源输入动力转速,同向分动器输入端(1)直接连接双控控制装置输入双控转速;本实施例5与共轴反转双旋翼连接,参见图5使输出套筒轴的共轴反转套筒轴内轴、共轴反转套筒轴外轴分别连接共轴反转双旋翼的两个旋翼,输出套筒轴与动力使用装置之间采用第三类形式同转同侧锥齿轮输出套筒轴。当需要与非共轴的反转双旋翼连接时,参见图23使输出套筒轴的反转轴左轴、反转轴右轴分别连接非共轴的反转双旋翼的两个旋翼,输出套筒轴与动力使用装置之间采用第三类形式同转同侧锥齿轮输出套筒轴。 在从双控器输入端到双旋翼传输动力或停止传输动力的同时,向同向分动器输入端输入双控转速,就可以主动形成双旋翼的两个旋翼之间的差速,实现对双旋翼转速差速的控制。
实施例6:本发明同向分动差速传动器作为双旋翼主动差速器,由同向分动器、套筒轴换向器、双控器和输出套筒轴等连接构成,同向分动器采用锥齿轮单层星行星排,采用双太阳轮双行星轮轴行星排换向器,双控器采用圆柱齿轮双层星行星排,输出套筒轴与动力使用装置之间采用第四类间接连接形式反转同侧间接连接,参见图6。
本实施例6的同向分动器、套筒轴换向器、双控器与实施例5完全相同。
本实施例6反转输出套筒轴与动力使用装置之间采用第四类间接连接形式反转同侧间接连接,从反转输出套筒轴开始,间接力矩传动后两个转速向反转的双旋翼同一侧方向输出。本实施例6向共轴反转双旋翼传动,在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在共轴反转套筒轴内轴(11)、共轴反转套筒轴外轴(12)分别设置内被动锥齿轮(13)、外被动锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向共轴反转套筒轴向同一侧方向输出;设置从输出套筒轴内轴到共轴反转套筒轴内轴的传动比绝对值等于从输出套筒轴外轴到共轴反转套筒轴外轴的传动比绝对值,具体为内变向锥齿轮齿数=内被动锥齿轮齿数=18,外变向锥齿轮齿数=外被动锥齿轮齿数=18,内变向锥齿轮齿轮模数不等于外变向锥齿轮齿轮模数,参见图6。当需要向非共轴的反转双旋翼传动时,通过在输出套筒轴内轴(9)、输出套筒轴外轴(10)上分别设置内变向锥齿轮、外变向锥齿轮,在非共轴的反转轴右轴(11)、反转轴左轴(12)分别设置反转轴右轴锥齿轮(13)、反转轴左轴锥齿轮(14),分别与内变向锥齿轮、外变向锥齿轮啮合,输出套筒轴内轴(9)、输出套筒轴外轴(10)的转动分别传递向反转轴右轴(11)、反转轴左轴(12)向同一侧方向输出;设置从输出套筒轴内轴到反转轴右轴的传动比绝对值等于从输出套筒轴外轴到反转轴左轴的传动比绝对值,具体为内变 向锥齿轮齿数=反转轴右轴锥齿轮齿数=18,外变向锥齿轮齿数=反转轴左轴锥齿轮齿数=18,内变向锥齿轮齿轮模数不等于外变向锥齿轮齿轮模数,参见图24。
本实施例6的同向分动器、双控器中各部件设置方法与实施例5相同。
本实施例6的内部连接方法与实施例5相同。
本实施例6作为双旋翼主动差速器,外部连接方法为:同向分动器输入端(1)连接动力源输入动力转速,双控器输入端(5)通过双控齿轮(13)、旁轴齿轮(14)间接连接双控控制装置输入双控转速;本实施例6与共轴反转双旋翼连接,参见图6使输出套筒轴的共轴反转套筒轴内轴、共轴反转套筒轴外轴分别连接共轴反转双旋翼的两个旋翼,输出套筒轴与动力使用装置之间采用第四类形式反转同侧锥齿轮输出套筒轴。当需要与非共轴的反转双旋翼连接时,参见图24使输出套筒轴的反转轴左轴、反转轴右轴分别连接非共轴的反转双旋翼的两个旋翼,输出套筒轴与动力使用装置之间采用第四类形式反转同侧锥齿轮输出套筒轴。在从同向分动器输入端到双旋翼传输动力或停止传输动力的同时,向双控器输入端输入双控转速,就可以主动形成双旋翼的两个旋翼之间的差速,实现对双旋翼转速差速的控制。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下本发明还会有各种变化与改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求及同等物界定。

Claims (14)

  1. 同向分动差速传动器,由一个同向分动器、一个套筒轴换向器、一个双控器与一个输出套筒轴连接构成,同向分动器有一个同向分动器输入端、一个同向分动器内输出端、一个同向分动器外输出端,同向分动器使其输入端的一个转速转化为其内输出端、其外输出端的转动方向相同的两个转速,同向分动器采用一个行星排,设置其运动特性方程中系数绝对值最大项所对应的部件作为同向分动器输入端、其他两个部件分别作为同向分动器内输出端、同向分动器外输出端,同向分动器行星排采用五种行星排之一;套筒轴换向器包括套筒轴的内轴与外轴,内轴有内输入端、内输出端,外轴有外输入端、外输出端,套筒轴换向器使其内输入端、其外输入端的转动方向相同的两个转速转化为其内输出端、其外输出端的转动方向相反的两个转速,也使其内输出端、其外输出端的转动方向相同的两个转速转化为其内输入端、其外输入端的转动方向相反的两个转速,套筒轴换向器有四类,本发明中,锥齿轮行星排换向器和双太阳轮双行星轮轴行星排换向器的传动比设置为-1.0,保位双路换向器从内输入端到内输出端的传动比设置为-1.0、从外输入端到外输出端的传动比设置为1.0,换位双路换向器从内输入端到外输出端的传动比设置为-1.0、从外输入端到内输出端的传动比设置为1.0;双控器有一个双控器输入端、一个左内输出端兼右内输出端、一个左外输出端、一个右外输出端,双控器使其输入端输入的一个转速转化为其左内输出端、其左外输出端的转动方向相同的两个转速,同时也转化为其右内输出端、其右外输出端的转动方向相同的两个转速,双控器采用一个双层星行星排,以左侧中心轮作为双控器输入端,另一中心轮作为左内输出端兼右内输出端,行星架作为左外输出端且作为右外输出端,左侧中心轮也是双控器行星排运动特性方程中系数绝对值最大项所对应的部件,双控器采用三种双层星行星排之一;输出套筒轴是使输出套筒轴中的输出套筒轴内轴、输出套筒轴外轴的两个转速经连接传递到两个动力使用装置的传动器,输出套筒轴有两 种:第一种是同转输出套筒轴,其套筒轴中的内轴、外轴的转动方向相同,第二种是反转输出套筒轴,其套筒轴中的内轴、外轴的转动方向相反;本发明中同向分动器、双控器各部件设置方法为:同向分动器采用单层星行星排时设置其特性参数等于1.0,同向分动器采用双层星行星排时设置其特性参数等于2.0,设置双控器双层星行星排特性参数等于2.0;本发明的内部连接方法为:使同向分动器内输出端与换向器内输入端直接连接,同向分动器外输出端与换向器外输入端直接连接,换向器内输出端与双控器左内输出端直接连接,换向器外输出端与双控器左外输出端直接连接,双控器右内输出端与输出套筒轴内轴直接连接,双控器右外输出端与输出套筒轴外轴直接连接。
  2. 如权利要求1所述的同向分动差速传动器,采用不同的外部连接方法,本发明可作为可变阻尼差速器、左右主动差速器即双流波箱、双旋翼主动差速器;本发明应用时的外部连接方法包括本发明与动力源的连接,本发明与双控控制器的连接,本发明与可调制动器的连接,本发明输出套筒轴与动力使用装置的连接;当外部连接方法为:以同向分动器输入端直接连接动力源,双控器输入端间接连接双控控制装置,输出套筒轴内轴、输出套筒轴外轴分别连接双旋翼,输出套筒轴与动力使用装置之间采用直接连接形式时,,本发明作为双旋翼主动差速器;当外部连接方法为:以同向分动器输入端直接连接动力源、双控器输入端直接连接可调制动器,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第二类间接连接形式时,本发明作为可变阻尼差速器;当外部连接方法为:以双控器输入端间接连接动力源、同向分动器直接连接可调制动器,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第一类间接连接形式时,本发明作为可变阻尼差速器;当外部连接方法为:以同向分动器输入端直接连接动力源、双控器输入端间接连接双控控制装置,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第 二类间接连接形式时,本发明作为双流波箱;当外部连接方法为:以同向分动器直接连接双控控制装置、双控器输入端间接连接动力源,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第一类间接连接形式时,本发明作为双流波箱;当外部连接方法为:以同向分动器输入端直接连接动力源、双控器输入端间接连接双控控制装置,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第四类间接连接形式时,本发明作为双旋翼主动差速器;当外部连接方法为:以同向分动器直接连接双控控制装置、双控器输入端间接连接动力源,以输出套筒轴内轴、输出套筒轴外轴分别连接动力使用装置,输出套筒轴与动力使用装置之间采用第三类间接连接形式时,本发明作为双旋翼主动差速器。
  3. 如权利要求1所述的同向分动差速传动器,同向分动器采用锥齿轮单层星行星排时,以行星架作为同向分动器输入端,左侧中心轮、右侧中心轮分别作为同向分动器内输出端、同向分动器外输出端。
  4. 如权利要求1所述的同向分动差速传动器,同向分动器采用双太阳轮双行星轮轴行星排时,以行星架作为同向分动器输入端,左侧中心轮、右侧中心轮分别作为同向分动器内输出端、同向分动器外输出端。
  5. 如权利要求1所述的同向分动差速传动器,同向分动器采用圆柱齿轮双层星行星排时,以节圆直径大的中心轮作为同向分动器输入端,行星架、节圆直径小的中心轮分别作为同向分动器内输出端、同向分动器外输出端。
  6. 如权利要求1所述的同向分动差速传动器,同向分动器采用双太阳轮行星排时,以节圆直径较大的中心轮作为同向分动器输入端,行星架、另一中心轮分别作为同向分动器内输出端、同向分动器外输出端。
  7. 如权利要求1所述的同向分动差速传动器,同向分动器采用双内齿圈行星排时,以节圆直 径较小的中心轮作为同向分动器输入端,行星架、另一中心轮分别作为同向分动器内输出端、同向分动器外输出端。
  8. 如权利要求1所述的同向分动差速传动器,套筒轴换向器采用锥齿轮行星排换向器,外轴采用锥齿轮单层星行星排,套筒轴内轴设置内输入端、内输出端,套筒轴外轴上锥齿轮单层星行星排的左侧中心轮作为换向器外输入端,右侧中心轮作为换向器外输出端,锥齿轮行星轮与左侧中心轮啮合且与右侧中心轮啮合,使行星架固定,换向器外输入端与换向器外输出端的转动方向相反。
  9. 如权利要求1所述的同向分动差速传动器,套筒轴换向器采用双太阳轮双行星轮轴行星排换向器,外轴采用双太阳轮双行星轮轴行星排,套筒轴内轴设置内输入端、外输出端,套筒轴外轴上双太阳轮双行星轮轴行星排的左侧中心轮作为换向器外输入端,右侧中心轮作为换向器外输出端,使行星架固定,换向器外输入端与换向器外输出端的转动方向相反。
  10. 如权利要求1所述的同向分动差速传动器,套筒轴换向器采用保位双路换向器,内轴、外轴分别采用锥齿轮副传动,保位双路换向器的内输入端、外输入端形成输入套筒轴,内输出端、外输出端形成输出套筒轴,输入套筒轴轴承与输出套筒轴轴承各自固定,输入套筒轴与输出套筒轴呈90度夹角,在内输入端上设置内主动锥齿轮,外输入端上设置外主动锥齿轮,内输出端上设置内被动锥齿轮,外输出端上设置外被动锥齿轮,使内主动锥齿轮与内被动锥齿轮啮合、外主动锥齿轮与外被动锥齿轮啮合,内输入端、外输入端上输入转动方向相同的两个转速,在内输出端、外输出端上就输出转动方向相反的两个转速。
  11. 如权利要求1所述的同向分动差速传动器,套筒轴换向器采用换位双路换向器,内轴、外轴分别采用锥齿轮副传动,换位双路换向器的内输入端、外输入端形成输入套筒轴,内输出端、外输出端形成输出套筒轴,输入套筒轴与输出套筒轴呈90度夹角,在内输入端上设置内主动锥齿轮,外输入端上设置外主动锥齿轮,内输出端上设置内被动锥齿轮,外输 出端上设置外被动锥齿轮,使内主动锥齿轮与外被动锥齿轮啮合、外主动锥齿轮与内被动锥齿轮啮合,内输入端、外输入端上输入转动方向相同的两个转速,在外输出端、内输出端上就输出转动方向相反的两个转速。
  12. 如权利要求1所述的同向分动差速传动器,双控器采用圆柱齿轮双层星行星排,以节圆直径大的中心轮作为双控器输入端,节圆直径小的中心轮作为左内输出端兼右内输出端,行星架作为左外输出端且作为右外输出端。
  13. 如权利要求1所述的同向分动差速传动器,双控器采用双太阳轮行星排,以节圆直径较大的中心轮作为双控器输入端,另一中心轮作为左内输出端兼右内输出端,行星架作为左外输出端且作为右外输出端。
  14. 如权利要求1所述的同向分动差速传动器,双控器采用双内齿圈行星排,以节圆直径较小的中心轮作为双控器输入端,另一中心轮作为左内输出端兼右内输出端,行星架作为左外输出端且作为右外输出端。
PCT/CN2019/088337 2018-05-28 2019-05-24 同向分动差速传动器 WO2019228262A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006263.4A CN111556937B (zh) 2018-05-28 2019-05-24 同向分动差速传动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810520478.5 2018-05-28
CN201810520478.5A CN110541923A (zh) 2018-05-28 2018-05-28 同向分动差速传动器

Publications (1)

Publication Number Publication Date
WO2019228262A1 true WO2019228262A1 (zh) 2019-12-05

Family

ID=68696823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088337 WO2019228262A1 (zh) 2018-05-28 2019-05-24 同向分动差速传动器

Country Status (2)

Country Link
CN (2) CN110541923A (zh)
WO (1) WO2019228262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301670A (zh) * 2020-03-19 2020-06-19 常州华创航空科技有限公司 一种共轴双旋翼直升机主减速器及一种直升机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109151A (zh) * 1994-03-25 1995-09-27 吴秋明 机械式无级自动变速变矩器
US20020010049A1 (en) * 2000-06-26 2002-01-24 Forsyth John R. Compact front wheel drive six-speed transaxle
DE102014206667A1 (de) * 2014-04-07 2015-10-08 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung, umfassend einer Getriebeanordnung mit zwei Teilgetrieben
CN205064744U (zh) * 2015-10-27 2016-03-02 东风汽车公司 一种新型车辆分动箱
CN106195191A (zh) * 2015-05-29 2016-12-07 通用汽车环球科技运作有限责任公司 具有无级变速最终驱动组件的双离合变速器
CN106884950A (zh) * 2017-03-23 2017-06-23 山东卫禾传动科技有限公司 一种农业装备用四驱变速箱
CN107387671A (zh) * 2017-07-25 2017-11-24 罗灿 双输入行星排减速器
CN107387675A (zh) * 2017-07-25 2017-11-24 罗灿 行星排非等比相减性减速器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614649A (en) * 1979-07-13 1981-02-12 Aisin Warner Ltd Transfer device for four wheel-driven vehicle
GB2200606B (en) * 1987-01-30 1991-01-30 Esarco Ltd Improved all-terrain vehicle
US6527661B2 (en) * 2000-05-12 2003-03-04 Auburn Gear, Inc. Limited slip differential having magnetorheological fluid brake
US6605017B1 (en) * 2002-03-21 2003-08-12 Elmir Comic Continuously variable transmission apparatus
US6959778B2 (en) * 2003-08-26 2005-11-01 Borgwarner, Inc. Transfer case having electromagnetic synchronizer and brake
DE10348959A1 (de) * 2003-10-22 2005-05-25 Zf Friedrichshafen Ag Getriebevorrichtung und Verfahren zum Steuern und Regeln einer Getriebevorrichtung
US20060025267A1 (en) * 2004-07-29 2006-02-02 Mircea Gradu Differential with torque vectoring capabilities
CN1959147A (zh) * 2006-07-05 2007-05-09 徐强国 行星齿轮无级变速器
CN202152066U (zh) * 2011-07-19 2012-02-29 山推工程机械股份有限公司 一种差速转向结构
CN102661379A (zh) * 2012-05-09 2012-09-12 北京理工大学 液压无级速差转向装置
US9556941B2 (en) * 2012-09-06 2017-01-31 Dana Limited Transmission having a continuously or infinitely variable variator drive
CN103291864A (zh) * 2012-10-12 2013-09-11 张力 多动力控制自动无级变速箱
CN202914663U (zh) * 2012-10-22 2013-05-01 张齐山 刹车鼓差速分动器
US9353811B2 (en) * 2013-11-13 2016-05-31 Akebono Brake Industry Co., Ltd Electric park brake for a multiple piston caliper
CN103979108B (zh) * 2014-05-29 2015-12-30 合肥工业大学 一种带拉力桨的共轴双旋翼高速直升机用主减速器
CN204553754U (zh) * 2015-02-11 2015-08-12 吉林大学 带有双排行星齿轮转矩定向分配机构的电动差速器
CN104675951B (zh) * 2015-02-11 2017-02-01 吉林大学 带有双排行星齿轮转矩定向分配机构的电动差速器
RU2716718C2 (ru) * 2015-05-26 2020-03-16 Зе Боинг Компани Воздушный летательный аппарат и системы планетарных передач
CN105151300B (zh) * 2015-09-28 2017-06-20 哈尔滨工业大学深圳研究生院 一种可实现差幅扑动的扑翼机构与扑翼机
CN107061682B (zh) * 2017-04-21 2023-04-21 吉林大学 一种带有转矩定向分配功能的电动差速器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109151A (zh) * 1994-03-25 1995-09-27 吴秋明 机械式无级自动变速变矩器
US20020010049A1 (en) * 2000-06-26 2002-01-24 Forsyth John R. Compact front wheel drive six-speed transaxle
DE102014206667A1 (de) * 2014-04-07 2015-10-08 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung, umfassend einer Getriebeanordnung mit zwei Teilgetrieben
CN106195191A (zh) * 2015-05-29 2016-12-07 通用汽车环球科技运作有限责任公司 具有无级变速最终驱动组件的双离合变速器
CN205064744U (zh) * 2015-10-27 2016-03-02 东风汽车公司 一种新型车辆分动箱
CN106884950A (zh) * 2017-03-23 2017-06-23 山东卫禾传动科技有限公司 一种农业装备用四驱变速箱
CN107387671A (zh) * 2017-07-25 2017-11-24 罗灿 双输入行星排减速器
CN107387675A (zh) * 2017-07-25 2017-11-24 罗灿 行星排非等比相减性减速器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301670A (zh) * 2020-03-19 2020-06-19 常州华创航空科技有限公司 一种共轴双旋翼直升机主减速器及一种直升机
CN111301670B (zh) * 2020-03-19 2023-06-16 常州华创航空科技有限公司 一种共轴双旋翼直升机主减速器及一种直升机

Also Published As

Publication number Publication date
CN110541923A (zh) 2019-12-06
CN111556937A (zh) 2020-08-18
CN111556937B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
KR101502778B1 (ko) 트랜스미션
US20200164734A1 (en) Hybrid electric powertrain configurations with a ball variator used as a continuously variable mechanical transmission
JP2022503343A (ja) 全歯車式無段自動変速及び回転比アクティブ制御システム
CN111630302B (zh) 双流百向传动器
WO2019020131A1 (zh) 变线速行星排传动机构
WO2019195229A1 (en) Traction device
TWI693355B (zh) 利用變速馬達和行星齒輪機構的自行車變速裝置
WO2019228262A1 (zh) 同向分动差速传动器
JP2023508823A (ja) 車両用トランスミッションアセンブリ
US11131372B2 (en) Equidirectional transfer universal transmission
CN106828066B (zh) 双电机章动变速装置及其工作方法
WO2019228265A1 (zh) 变线速减速离合器
CN111566387B (zh) 同向分动双控百向传动器
KR100931965B1 (ko) 유성치차를 이용한 연속 고변속장치
CN102996748A (zh) 大功率输出无级变速器
KR101654501B1 (ko) 유성 기어 감속기
CN109891130B (zh) 非锥齿轮差速器
CN113153988B (zh) 三自由度九档复合行星传动机构
CN218777402U (zh) 两电机驱动桥结构
CN219492975U (zh) 行星齿轮差速器
CN110541920A (zh) 反向分动差速传动器
CN110017361A (zh) 双流可调阻尼差速器
CN117267336A (zh) 集中矢量控制差速器
CN114248262A (zh) 一种双动力驱动机器人的单轴的驱动装置及方法
JPS61274168A (ja) 無段に変化するトルク分割複合出力用変位歯車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811735

Country of ref document: EP

Kind code of ref document: A1