WO2021208611A1 - 一种采用阻碍式多模块水质生物检测设备的水质生物检测方法 - Google Patents

一种采用阻碍式多模块水质生物检测设备的水质生物检测方法 Download PDF

Info

Publication number
WO2021208611A1
WO2021208611A1 PCT/CN2021/078364 CN2021078364W WO2021208611A1 WO 2021208611 A1 WO2021208611 A1 WO 2021208611A1 CN 2021078364 W CN2021078364 W CN 2021078364W WO 2021208611 A1 WO2021208611 A1 WO 2021208611A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstruction
indicator
water
water quality
section
Prior art date
Application number
PCT/CN2021/078364
Other languages
English (en)
French (fr)
Inventor
戴会超
毛劲乔
王刚
许家炜
Original Assignee
中国长江三峡集团有限公司
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 河海大学 filed Critical 中国长江三峡集团有限公司
Priority to US17/434,885 priority Critical patent/US20230046657A1/en
Priority to GB2113031.5A priority patent/GB2597852B/en
Priority to JP2021549876A priority patent/JP7256973B2/ja
Publication of WO2021208611A1 publication Critical patent/WO2021208611A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1893Water using flow cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the invention relates to a water quality biological detection method adopting an obstructive multi-module water quality biological detection equipment.
  • the conventional sewage detection method is the chemical and physical component analysis method, which can detect the specific pollution components and content in the water by using chemical reactions, physical detection and other methods, but the detection cost is high, the efficiency is low, the time is long, and there is a lag. Non-professionals cannot use these complicated sewage detection methods, and their use value is not high when the water quality needs to be quickly known.
  • the publication number CN10119192 is "On-line safety warning system and method for water quality based on avoidance behavior of aquatic organisms", which displays the behavior of test organisms by means of electrical signals obtained through multi-point monitoring. Change the signal, and through the analysis and evaluation of the electrical signal, realize in-situ and real-time biological monitoring, and then provide early warning of unknown pollutants in the water body; public number CN103105398A "a corridor-type water pollution early warning device and early warning method "It uses gridded corridors, video capture devices, image recognition systems, etc., to convert fish trajectories into digital image models to qualitatively measure whether the water quality is polluted.
  • the present invention aims to provide an obstructive multi-module water quality biological detection device to solve the above-mentioned problems in the prior art.
  • the present invention also aims to provide a water quality biological detection method using the above-mentioned obstructive multi-module water quality biological detection equipment.
  • the present invention provides an obstructive multi-module water quality biological detection device.
  • the obstructive multi-module water quality biological detection equipment includes a water quality test device, the water quality test device includes: a test tank and three obstruction units; one end of the test tank is provided with a water inlet gate, and the other end is provided with a water outlet gate;
  • the obstruction units are respectively arranged at the first, second, and third cross sections in the water tank, and the distances from the first, second, and third cross sections to the intake gate increase in sequence; each obstruction unit includes an obstruction indicator generating device and a counter Device; the obstruction index generating device located at the first, second, and third cross-sections increases the degree of obstruction of the indicator organisms in order; each counting device is used to count the indicator organisms passing through the cross-section.
  • the obstruction indicator generating device at the first section is used to generate green single flashes with a frequency of 80-85 times/min; the obstruction indicator generating device at the second section is used to generate a gas supply rate of 40-45L/min. Bubble curtain; the obstruction indicator generating device at the third section is used to generate jet vortex with jet velocity of 1-1.1m/s and green single flash with frequency of 80-85 times/min.
  • each obstruction unit further includes a corresponding alarm device connected to the counting device.
  • the obstruction indicator generating device includes one or more of the following: a flashing generating device, a bubble curtain generating device, a jet vortex generating device, a temperature control device, and a sound generating device.
  • test water tank further includes a water guide pipe connected with the water intake gate and a water inlet of the test water tank connected with the water guide pipe.
  • the obstruction index selection device for selecting each obstruction index generating device;
  • the obstruction index selection device includes a selection tank, a pushing unit arranged at one end of the selection tank, and a push unit arranged at the other end of the selection tank
  • the pushing unit is used to push the liquid in the selection tank to the obstruction unit;
  • the obstruction comparison unit includes a partition plate, the partition plate in the selection tank The other end forms an obstruction section with four identical separation areas, and each separation area is used to install different obstruction indicator generating devices;
  • the one end of the selection tank is provided with a water inlet, and the other end is provided with a water outlet;
  • the monitoring unit is used to monitor the behavior of the indicator organism at the obstructing section.
  • the pushing unit includes a pushing motor, an electric push rod, and a pushing plate, and the pushing motor pushes the pushing plate through the electric push rod to push the liquid in the water tank to the other end.
  • the monitoring unit includes two cameras, and the two cameras are respectively arranged on both sides of the obstructing section.
  • the present invention also provides a water quality biological detection method using the obstructive multi-module water quality biological detection equipment.
  • the method includes the following steps:
  • (S2) Inject non-polluted water into the test tank, set a barrier between the intake gate and the obstruction unit closest to the intake gate, and place the selected indicator organism on the barrier and the intake Between the gates, allow the selected indicator organism to adapt to the environment for m minutes, m ⁇ 10;
  • step (S1) the selection of the obstruction index generating device in each obstruction unit specifically includes the following steps:
  • the single barrier indicator database includes multiple single barrier indicators, each single barrier indicator can produce one or more corresponding barrier degrees, and the single barrier indicator includes any of the following One: flash, bubble curtain, jet vortex, temperature, sound; establishment of indicator biological library;
  • S12 One indicator organism is selected from the indicator organism library, and at least three effective single barrier degrees are selected from the single barrier index library, and the selection method of the effective single barrier degrees is specifically as follows:
  • (S123) indicates the total number of the selected organism is denoted N, the notation indicates the number of organisms in the region of the first to fourth partition are N a, N b, N c , N d, as
  • the corresponding obstacle degree of the selected single obstacle index has an obstructive effect on the indicator organism, and is called the effective single obstacle degree; otherwise, it is the invalid single obstacle degree, and the corresponding obstacle degree of the single obstacle index should be reselected and judged; All obstacle degrees of all single obstacle indicators in the obstacle index library are invalid single obstacle degrees for the selected indicator creature, then the selected indicator creature is replaced to select the effective single obstacle degree;
  • each comprehensive hindrance degree is any one of the at least three effective single hindrance degrees or a combination of any two; the hindrance index that will produce the three kinds of comprehensive hindrance degrees occurs
  • the devices are respectively installed in the second, third, and fourth partition areas of the obstruction section, and the first partition area does not install the obstruction indicator generating device;
  • (S14) Install obstruction index generating devices at each section of the test water tank to generate the effective comprehensive obstruction degree combination.
  • the obstruction index generating device at the first section is used to generate the comprehensive obstruction degree corresponding to the second separation area in the effective obstruction degree combination
  • the obstruction index generating device at the second section is used to generate the effective obstruction degree combination
  • the obstruction index generating device at the third section is used to generate the comprehensive obstruction degree corresponding to the fourth separated area in the effective obstruction degree combination.
  • Step (S4) further includes: when the counting device at the first section counts less than 2/3 of the number of indicator organisms, the indicating water quality is normal; when the counting device at the first section counts not less than 2/3 of the number of indicator organisms , And when the counting device at the second section counts less than 2/3 of the number of indicator organisms, the indicating water quality is slightly polluted; when the counting device at the second section counts not less than 2/3 of the number of indicator organisms, and the third When the counting device at the cross section counts less than 2/3 of the number of indicator organisms, the water quality is indicated as moderately polluted; when the counting device at the third cross section counts at least 2/3 of the number of indicator organisms, the water quality is indicated as heavily polluted.
  • the present invention has the following advantages:
  • the PH value range of the water body to be measured can be roughly estimated
  • the present invention is simple in structure, low in cost, intuitive to observe, powerful in function, and can be operated correctly by non-professionals, and can be applied to rapid water quality detection of lakes, reservoirs, rivers, domestic sewage and other water bodies.
  • Fig. 1 is a schematic flow chart of an obstructive multi-module water quality biological detection method of the present invention.
  • Figure 2 is a schematic diagram of the indicator selection tank used in the present invention.
  • Figure 3 is a schematic diagram of the working state of the selection tank.
  • Figure 4 is a plan view of the test water tank used in the present invention.
  • Fig. 5 is a cross-sectional view of the obstruction unit at the three cross-sections in Fig. 4.
  • Figures 6(a) and 6(b) are a schematic diagram of a low-density bubble tube and a schematic diagram of a high-density bubble tube, respectively.
  • Figure 7 is a side view of three-dimensional bubble generation.
  • Figure 8 is a schematic diagram of the working of the flash.
  • Figures 9(a) and 9(b) are respectively a side view and a top view of the jet vortex when it is working.
  • Figure 10 is a schematic diagram of the selection of the obstruction section in the water tank when the effective single obstruction index is selected.
  • Figure 11 is a schematic diagram of the selection of the obstruction section in the water tank when the effective comprehensive obstruction index combination is selected.
  • the present invention provides an obstructive multi-module water quality biological detection device, which includes an obstruction index selection device and a water quality testing device.
  • the obstruction index selection device is used to select a qualified or effective combination of cascade obstruction levels.
  • the water quality testing module detects the water quality of the water to be tested according to the behavior of each obstacle in the combination of the effective hindrance degree after the indicator organism is injected into the water to be tested.
  • the obstruction index selection device includes: a selection tank 30, a pushing unit placed at one end of the selection tank 30 (see the left end of FIGS. 2 and 3), and an obstruction comparison placed at the other end of the selection tank 30 (see the right end of FIGS. 2 and 3) Unit and monitoring unit.
  • the pushing unit is used to push the liquid in the selective water tank 30 to the obstructing unit.
  • the obstruction comparison unit includes a partition plate, and the partition plate forms an obstruction section with four identical partition areas at the other end of the selection tank 30, and each partition area is used to install a different obstruction indicator generating device.
  • the left end of the selection tank 30 is provided with a water inlet 34, which can supply water to the indicator selection tank 30; the right end of the selection tank 30 is provided with a water outlet 38, which can discharge the water in the selection tank 30.
  • the monitoring unit is used to monitor the behavior of the indicator organism at the obstructing section.
  • the pushing unit includes a pushing motor 31, a connecting link 32, and a pushing plate 33.
  • the pushing motor 31 is connected to the pushing plate 33 through the connecting chain rod 32. After the pushing motor 31 is started, the pushing plate 33 can be pushed to move closer to the obstructing comparison unit.
  • the selection area between the pushing plate 33 and the obstructing section 36 in the water tank 30 is a selective adaptation area, and the area near the obstructing section 36 is a strong interference area.
  • the obstructing section 36 is divided into four areas a, b, c, and d by the partition plate 37, a Obstruction generating devices are installed in the four areas of, b, c, and d to generate corresponding obstruction indicators.
  • the water outlets 38 are provided in the four areas of a, b, c, and d.
  • the monitoring unit includes two camera devices, and the two camera devices 39 are located on both sides of the obstructing section 36 respectively.
  • the water quality test device includes a test tank 1 and three obstruction units.
  • One end of the test tank 1 (see the right end of FIG. 4) is provided with an inlet gate 22, and the other end (see the left end of FIG. 4) is provided with an outlet gate 21.
  • the three obstruction units are respectively arranged at the sections e, f, and g in the water tank 1.
  • the distances from sections e, f, and g to the water inlet gradually increase.
  • the test tank 1 is divided into four areas I, II, III, and IV by the three obstructive sections e, f, and g.
  • Each obstruction unit includes an obstruction indicator generating device and a counting device, and also includes an alarm device corresponding to and connected to the counting device one-to-one.
  • the obstruction indicator generating device at each obstruction unit is selected from one or more combinations: flashing generating device, bubble curtain generating device, jet vortex generating device, temperature control device, sound generating device, and can be based on The obstacle index selection device described above makes selection.
  • the counting device is used to count the indicator organisms passing through the section.
  • the present invention Based on the obstructive multi-module water quality biological detection equipment shown in FIGS. 2 to 5, the present invention also provides a water quality biological detection method using the above obstructed multi-module water quality biological detection equipment.
  • the method roughly includes the following steps:
  • Step 1 Select the indicator organism, and select and install the obstruction index generating device required in each obstruction unit in the test tank 1.
  • Step 2 Inject pollution-free water into the test tank 1, set a barrier 41 between the intake gate 22 and the obstruction unit at the first section, and place the selected indicator organism on the barrier 41 and the inlet Between the water gates 22, allow the selected indicator organism to adapt to the environment for m minutes, m ⁇ 10.
  • Step 3 Start each obstruction indicator generating device in the test water tank 1 and remove the blocking net so that the water body to be tested is injected into the test water tank 1 through the water inlet 22.
  • Step 4 Determine the water quality of the water body to be tested according to the count changes of the counting devices in the three obstruction units.
  • step 1 The process of step 1 is roughly shown in Figure 1, which specifically includes:
  • the single obstruction index library may include, but is not limited to, flash, bubble curtain, jet vortex, temperature, and sound waiting to be selected.
  • Bubble screen and flashing fish repelling technology are one of the important fish potentially harmless repelling technologies. Bubble screens and flashing lights act as obstacles to certain organisms.
  • the jet direction of the jet is perpendicular to the direction of the water flow.
  • the water flow through the pressure water pipe will have a certain initial velocity at the outlet.
  • the speed difference and viscosity between the static water body and the jet flow are used to generate a vortex with vorticity in the water body.
  • the jet vortex is formed, and the jet vortex will have a certain impact on the sensory system such as the visual and auditory senses of the indicator organism, and it is also a potential obstructive indicator.
  • Each single obstruction index has one or more corresponding obstruction degrees, where the obstruction degree is characterized by the attribute and intensity value of a certain single obstruction index, for example, the color, frequency and intensity of the flashing light, and the value of the bubble curtain. Density, vortex of jet vortex, temperature value, volume value, etc.
  • the selected indicator organisms should have the characteristics of fast movement and sensitive response to environmental changes.
  • the indicator biobank may include, but is not limited to, fishes living in upper-middle water bodies, amphibious frogs, benthic eels, etc.
  • the indicator biobank includes light barb, carp, silver carp, and eel.
  • S12 Select one indicator organism from the indicator biobank, and select at least three effective single obstruction levels from the single obstruction index library.
  • light barb is selected as the preliminary indicator organism, and the number of light barb is 100, body length (10 ⁇ 1) cm, body weight (12 ⁇ 1) grams, and juvenile fish.
  • the jet vortex is selected from the single obstruction index library as the preliminary single obstruction index, and the degree of obstruction of the jet vortex is preliminarily selected as: jet velocity 1-1.11 m/s, as shown in Fig. 8.
  • the obstruction indicator generating device capable of generating jet vortices with jet velocity of 1-1.1m/s is installed in the second, third, and fourth partitioned areas of the obstruction section 36 (respectively corresponding to b, c, d in FIG. 9 Area), the first partition area (corresponding to area a in Fig. 9) is not installed with any obstruction indicator generating device.
  • the obstacle index selection water tank 30 is a rectangular single-layer transparent glass water tank (inside dimension, length, width, and height: 26m ⁇ 1m ⁇ 1.5m, and outer dimension, length, width, and height: 26m ⁇ 1.2m ⁇ 1.7m).
  • the blocking net 42 in the adaptation selection area of the obstruction index selection tank 30 (that is, between the pushing plate 33 and the obstructing section 36), and put 100 light barbs into the area between the blocking net 42 and the push plate 33, and wait The light barbs adapt to the water environment for 30 minutes.
  • the strong interference area (as shown in Figure 2, Figure 3 and Figure 9).
  • the monitoring unit at the obstruction section 36 is used to count the number of indicator organisms in each divided area.
  • the effective single obstruction degree is: a green single flash with a frequency of 80-85 times/min, and a gas supply of 40- Low-density bubble curtain of 45L/min, high-density bubble curtain with air supply of 75-80L/min, jet vortex with jet velocity of 1-1.1m/s.
  • step S13 Determine the obstruction index generating device in the three obstruction units of the test tank 1 according to the four effective single obstruction degrees selected in step S12, which specifically includes:
  • each comprehensive hindrance degree is any one or a combination of more of the above four effective single hindrance degrees.
  • Figure 10 shows two sets of candidate comprehensive obstacle degree combinations, which correspond to the following combinations of working condition 1 and working condition 2:
  • Working condition 1 area a is blank control, area b is flashing (single flash, white, The frequency is 60-65 times/min), zone c is a low-density bubble curtain (air supply is 40-45L/min), zone d is a high-density bubble curtain + flash (air supply is 75-80L/min, single Flash, white, frequency is 80-85 times/min).
  • Working condition 2 Area a is blank control, area b is flashing (single flash, green, frequency is 80-85 times/min), area c is low-density bubble curtain (air supply is 40-5L/min), d The zone is jet vortex + flash (jet velocity 1-1.1m/s, single flash, green, frequency 80-85 times/min).
  • S132 Fill the selected water tank 30 with clean water, fill the selected water tank 30 with clean water, put 100 barbs into the barrier 41 and the push plate 33, and wait for the light barbs to adapt to the water environment for 30 minutes .
  • a, b, c, d of optical Spinibarbus four regions in the number N a, N b, N c , N d are: 75,16, 6, 3, in line with It is determined that the combination of the three comprehensive obstacle degrees selected in the second working condition is the effective comprehensive obstacle degree combination.
  • the test tank 1 is selected Shaped concrete sink without cover (inside dimensions: 26m ⁇ 1m ⁇ 1.5m, outer dimensions: length, width and height: 26m ⁇ 1.2m ⁇ 1.7m).
  • the obstruction indicator generating device at the section e of the test tank 1 includes the first flashlight belt 6 and the first power supply 25, and the obstruction indicator generating device at the section f includes the low-density bubble tube 11 and the air pump 24.
  • the obstruction indicator generating device at the section g includes a jet partition 8, a jet tube 9, a high-density bubble tube, a pressure water pump 28, a second flash lamp belt 12 and a second power source 2.
  • the first flash lamp strip 6, the low-density bubble tube 11, and the second flash lamp strip 12 are all installed on the bottom surface of the test tank 1, the jet block 8 is installed inside the test tank 1, and the jet tube 9 is nested and installed on the jet block 8. Inside, a jet nozzle 40 is installed on the jet tube 9.
  • the counting devices 5, 26, and 27 at the sections e, f, and g are all infrared counting devices, and the three infrared counting devices are all installed on the upper part of the corresponding three obstructing sections.
  • the low-density bubble tube 11 is provided with 14 main bubble holes 16 without auxiliary holes on the side, and the high-density bubble tube is provided with 14 main bubble holes 16 and 56 auxiliary bubble holes 17 at the same time.
  • the air pump 24 provides compressed air to the low-density bubble tube 11 and the high-density bubble tube.
  • the air supply volume of the air pump 24 is controlled at 40L-45L/min to produce the low-density bubble curtain 19;
  • the air supply volume of the air pump 24 is controlled at 75L-80L/min to generate the high-density bubble curtain 18.
  • the diameter of the main bubble hole 16 is 0.5 cm, and the diameter of the auxiliary bubble hole 17 is 0.3 cm.
  • the air pumps 24 are all 750W-140L OUTSTANDING air compressed air pumps, and the maximum output of compressed gas is 140L/min.
  • the first power supply 25 provides power to the first flash strip 6, and the second power supply 2 provides power to the flash strip 12, and the flash 14 is mounted on the flash strip 12 and the flash strip 6.
  • the flash 14 generates a single flash 20, the color and frequency of the single flash 20 are controllable, and the frequency is 60-100 times/minute.
  • the pressurized water pump 28 supplies a pressurized water flow to the jet pipe 9.
  • the water pump 28 is an RGZ15-20 Hengge booster pump, which can provide the jet nozzle 40 with a pressure flow of 1-3 m/s.
  • Step 2 specifically includes: injecting the test water tank 1 into a clean water body, so that the clean water body is filled with the water quality test water tank 1. Then put 100 barbs of light into the area between the barrier 41 and the inlet gate 22, wait for 30 minutes, and wait for the light of barbs to adapt to a clean water environment.
  • Step 3 specifically includes: activating the obstruction generating power devices of the obstructed sections e, f, and g in the test tank 1, respectively, generating flashes on the obstructing section e (single flash, green, frequency 80-85 times/min), and at the obstructing section f Produce a low-density bubble curtain (air supply rate of 40-45L/min), jet vortex and flash on the g obstructed section (jet velocity 1-1.1m/s, single flash, green, frequency 80-85 times/minute ).
  • Remove the barrier 41 quickly pour 10L of the water to be tested into the cylindrical water inlet 3, make the water to be tested into the test tank 1 through the water inlet 22, and wait for 5 minutes.
  • determining the water quality of the water body to be tested includes:
  • the test fish When the fishes pass through the low-degree obstructed section, they enter the II zone of the water quality test tank. Because the obstructive effect of the moderately obstructed section is stronger, the obstructive effect of the lower obstructed section is stronger. Under the threat of invasion of only lightly polluted water bodies, the test fish will not easily try to pass the moderately obstructed section, and no less than 2/3 of the indicator organisms choose to adapt to the water environment and continue to be located in Zone II of the water quality test tank, the moderate pollution warning light 10 does not light up, and only the light pollution warning light 7 lights up, then the water body is judged to be lightly polluted.
  • S43 Medium pollution situation: When the added water body to be tested is moderately polluted, according to the selected indicator organism's own biological habits, in order to avoid polluted water body and protect itself, the indicator organism first passes through the low-degree obstructing section, and the light pollution alarm is reported. The light 7 is on. When the medium-polluted water body is invaded, the indicator organism chooses to try to pass the moderately obstructed section. When 2/3 of the indicator organism passes through the moderately obstructed section, the moderately polluted warning light 10 is on. When the indicator organism passes through the moderately obstructed section, it enters the III zone of the water quality test tank.
  • the indicator organism Because the obstructive effect of the high obstructed section is greater than that of the moderately obstructed section, the indicator organism is not threatened by the invasion of moderately polluted water bodies. Almost try to pass a high degree of obstruction section, indicating organisms choose to adapt to the water environment, no less than 2/3 of the indicating organisms are continuously located in Zone III of the water quality test tank, the heavy pollution warning light 13 will not light up, and the moderate pollution warning light 10 lights up, it is judged that the water body is moderately polluted.
  • S44 Severe pollution situation: When the added water body to be tested is heavily polluted, according to the selected fish's own biological habits, the instructing organism maintains continuous excitement, passes through the low-degree obstructing section, the medium-degree obstructing section, and the light pollution alarm Both the light 7 and the medium pollution warning light 10 will be on. At this time, the indicator organisms enter Zone III. Due to the serious threat of the heavily polluted water body, the fish try to pass through the high-degree obstructed section, and eventually more than 2/3 of the indicator organisms enter the place. In the IV area of the water quality test tank, if the heavy pollution warning light 13 is on, it is judged that the water body is heavily polluted.
  • the results of some test examples are shown in Table 1-5.
  • “ ⁇ ” means that the warning light has no alarm
  • “ ⁇ ” means that the warning light is alarming.
  • the PH value is used to measure the degree of water pollution (6.5 ⁇ PH ⁇ 7.8 means normal water quality; 5 ⁇ PH ⁇ 6.5 or 7.8 ⁇ PH ⁇ 8.5 means mild Pollution; 3 ⁇ PH ⁇ 5 or 8.5 ⁇ PH ⁇ 9 means moderate pollution; PH ⁇ 3 or 9 ⁇ PH means heavy pollution); under different circumstances, the operator can choose the measurement index and measurement standard according to the actual situation, and it is not limited The indicators and standards proposed in this case.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种采用阻碍式多模块水质生物检测设备的水质生物检测方法,该设备包括阻碍指标选择装置与水质测试装置两个部分,阻碍指标选择装置用于挑选出合格或有效的梯级阻碍程度组合,水质测试装置根据指示生物在注入待测水体后,通过有效阻碍程度组合中各阻碍时的行为对待测水体的水质进行检测。该方法以指示生物在干净水体与受污染水体的行为区别为基础,通过建立水体污染程度与指示生物分布区域之间的关系,统计指示生物的分布区域,以测定水体污染程度。该方法可以准确、快速地检测出水体污染程度,无需采用化学分析、物理检测等技术,具有成本低廉、操作快捷、结果准确等优点。

Description

一种采用阻碍式多模块水质生物检测设备的水质生物检测方法 技术领域
本发明涉及一种采用阻碍式多模块水质生物检测设备的水质生物检测方法。
背景技术
随着经济的快速发展与人口的急剧膨胀,导致对自然资源的快速开发和利用,在水资源水污染方面,大量的工业污水和生活废水排入自然水体中,水污染问题变得日益严重,并且严重威胁着人们日常的用水安全。常规的污水检测方法为化学物理成分分析法,利用化学反应、物理检测等方法,能够检测出水中的具体污染成分及含量,但检测成本高、效率低、耗时长、并存在滞后性。非专业人员无法运用这些复杂的污水检测方法,对于需要快速知道水体质量的情况下,其使用价值不高。
近年来水污染生物检测技术逐步兴起,例如,公开号为CN10119192的“基于水生生物回避行为的水质在线安全预警系统和方法”,其通过以多点监测获得的电信号方式显示受试生物的行为变化信号,并经过对电信号的分析评估,实现了原位和实时的生物监测,进而对水体的未知污染物进行预警;公开号为CN103105398A的“一种廊道式水质污染预警装置及预警方法”,其利用带有格栅的廊道,视频采集器,图像识别系统等,将鱼类的运动轨迹转化为数字图像型号,定性衡量水质是否污染。这些生物检测装置及方法,在选择指示生物过程中,均直接人为指定某一种生物,但所指定的生物是否具有指示效果及指示准确性,却无法衡量,具有一定的盲目性,存在误报的情况,但最为重要的是,目前还没有一种方法及装置能做到从指示生物选择、阻碍指标选择、监测指标选择到最终的结果评价方法这样的系统。
发明内容
发明目的:本发明旨在提出一种阻碍式多模块水质生物检测装置,以解决上述现有技术中存在的问题。
本发明还旨在提出一种采用上述阻碍式多模块水质生物检测设备的水质生物检测方法。
技术方案:一方面中,本发明提供一种阻碍式多模块水质生物检测设备。该阻碍式多模块水质生物检测设备包括水质测试装置,所述水质测试装置包括:测试水槽和三个阻碍单元;所述测试水槽的一端设有进水闸门,另一端设有出水闸门;三个阻碍单元分别设置在所述水槽内的第一、第二、第三断面处,第一、第二、第三断面到进水闸门的距离依次 增加;每一阻碍单元包括阻碍指标发生装置和计数装置;位于第一、第二、第三断面处的阻碍指标发生装置对指示生物的阻碍程度依次递增;各计数装置用于对通过所在断面的指示生物进行计数。
进一步地,第一断面处的阻碍指标发生装置用于产生频率为80-85次/分钟的绿色单闪光;第二断面处的阻碍指标发生装置用于产生供气量为40-45L/分钟的气泡幕;第三断面处的阻碍指标发生装置用于产生射流速度为1-1.1m/s的射流涡旋和频率为80-85次/分钟的绿色单闪光。
进一步地,每一阻碍单元还包括与所述计数装置相连的对应报警装置。
进一步地,所述阻碍指标发生装置包括以下各项中的一者或多者的组合:闪光发生装置、气泡幕发生装置、射流涡旋发生装置、温度控制装置、声音发生装置。
进一步地,所述测试水槽还包括与所述进水闸门相连的导水管和与所述导水管相连的测试水槽进水口。
进一步地,还包括用于对各阻碍指标发生装置进行选取的阻碍指标选择装置;所述阻碍指标选择装置包括选择水槽、安置在所述选择水槽一端的推动单元、安置在所述选择水槽另一端的阻碍比较单元和监控单元;所述推动单元用于将选择水槽中的液体向所述阻碍单元推进;所述阻碍比较单元包括分隔板,所述分隔板在所述选择水槽的所述另一端形成具有四个相同分隔区域的阻碍断面,每一分隔区域用于安装不同的阻碍指标发生装置;所述选择水槽的所述一端设有进水口,所述另一端设有出水口;所述监控单元用于监控所述阻碍断面处指示生物的行为。
进一步地,所述推动单元包括推动电机、电动推杆和推动板,所述推动电机通过所述电动推杆推动所述推动板,以使水槽中的液体向所述另一端推进。
进一步地,所述监控单元包括两个摄像头,所述两个摄像头分别安置在所述阻碍断面的两侧。
另一方面中,本发明还提供一种采用所述阻碍式多模块水质生物检测设备的水质生物检测方法。该方法包括如下步骤:
(S1)选取指示生物,并对所述测试水槽中各阻碍单元中所需的阻碍指标发生装置进行选取和安装;
(S2)在所述测试水槽中注入无污染水体,在所述进水闸门和离所述进水闸门最近的阻碍单元间设置拦网,将所选指示生物放置于所述拦网和所述进水闸门之间,使所选指示生物适应环境m分钟,m≥10;
(S3)启动所述测试水槽中的各阻碍指标发生装置,取走拦网,使待测水体通过进水闸门注入所述测试水槽;
(S4)根据所述三个阻碍单元内计数装置的计数变化确定所述待测水体的水质。
步骤(S1)中,对各阻碍单元中的阻碍指标发生装置进行选取,具体包括如下步骤:
(S11)建立单阻碍指标库,所述单阻碍指标库包括多种单阻碍指标,每一单阻碍指标能够产生一种或多种对应阻碍程度,所述单阻碍指标包括以下各项中的任一者:闪光、气泡幕、射流涡旋、温度、声音;建立指示生物库;
(S12)从所述指示生物库中挑选一种指示生物,从所述单阻碍指标库中挑选至少三种有效单阻碍程度,所述有效单阻碍程度的挑选方式具体为:
(S121)从所述单阻碍指标库中选取一种单阻碍指标的对应阻碍程度,将能够产生该对应阻碍程度的单阻碍指标发生装置分别安装于所述阻碍比较单元的第二、第三和第四分隔区域,第一分隔区域不安装阻碍指标发生装置;
(S122)在所述选择水槽中注满无污染水体并放置指示生物,使用所述推动单元将所述指示生物全部推入所述阻碍断面,利用所述监控单元统计各分隔区域中指示生物的数量;
(S123)记所选指示生物总数为N,记第一至第四分隔区域内的指示生物数量分别为N a、N b、N c、N d,当
Figure PCTCN2021078364-appb-000001
时,则所选单阻碍指标的对应阻碍程度对指示生物具有阻碍作用,称为有效单阻碍程度;否则为无效单阻碍程度,应重新选取单阻碍指标的对应阻碍程度并进行判断;若所述单阻碍指标库中的所有单阻碍指标的所有阻碍程度对所选指示生物均为无效单阻碍程度,则更换所选指示生物,以选出有效单阻碍程度;
(S13)根据步骤(S12)中挑选的至少三种有效单阻碍程度确定所述测试水槽的三个阻碍单元中的阻碍指标发生装置:
(S131)构造三种综合阻碍程度,每一综合阻碍程度为所述至少三种有效单阻碍程度中的任一者或任意两者的组合;将产生所述三种综合阻碍程度的阻碍指标发生装置分别安装于所述阻碍断面的第二、第三和第四分隔区域中,第一分隔区域不安装阻碍指标发生装置;
(S132)在所述选择水槽中注满无污染水体并放置指示生物,使用所述推动单元将步骤中最终选定的指示生物全部推入所述阻碍断面,利用所述监控单元统计各分隔区域中指示生物的数量;
(S133)当N a、N b、N c、N d满足以下条件时,则认为所选三种综合阻碍程度的组合为 有效阻碍程度组合,否则为无效阻碍程度组合,需重复构造新的三种综合阻碍程度,以最终挑选出有效阻碍程度组合:
Figure PCTCN2021078364-appb-000002
(S14)在所述测试水槽的各断面处分别安装阻碍指标发生装置,以产生所述有效综合阻碍程度组合。其中,第一断面处的阻碍指标发生装置用于产生所述有效阻碍程度组合中与第二分隔区域对应的综合阻碍程度,第二断面处的阻碍指标发生装置用于产生所述有效阻碍程度组合中与第三分隔区域对应的综合阻碍程度,第三断面处的阻碍指标发生装置用于产生所述有效阻碍程度组合中与第四分隔区域对应的综合阻碍程度。
步骤(S4)进一步包括:当第一断面处计数装置的计数少于2/3数量的指示生物时,指示水质正常;当第一断面处计数装置的计数不少于2/3数量的指示生物,且第二断面处计数装置的计数少于2/3数量的指示生物时,指示水质轻度污染;当第二断面处计数装置的计数不少于2/3数量的指示生物,且第三断面处计数装置的计数少于2/3数量的指示生物时,指示水质中度污染;当第三断面处计数装置的计数不少于2/3数量的指示生物时,指示水质重度污染。
有益效果:与现有技术相比,本发明有以下优点:
1、无需进行水质物理化学成分分析,图像识别系统等复杂系统,无需计算指示生物游动轨迹、游动速度等指标,克服了常规检测装置的滞后性。利用三种阻碍状态:低程度阻碍状态,中等程度阻碍状态,高程度阻碍状态,将指示生物对污水的逃避行为施加不同程度的约束,放大了指示生物对不同程度的污水(轻度污染、中度污染、重度污染)的逃避行为,可以直观检测得到水体是否污染,并准确快速的评价出水体污染程度,实时监测水体污染状况。
2、可以大致估算出待测水体PH值的范围;
3、从指示生物选择、阻碍指标选择、监测指标选择到最终的结果评价方法,提出了一套完整的阻碍式多模块水质生物检测方法及装置;
4、本发明结构简单,成本低廉,观察直观,功能强大,非专业人员亦可正确操作,可应用于湖泊、水库、河流、生活污水等水体的水质快速检测。
附图说明
图1为本发明一种阻碍式多模块水质生物检测方法的流程示意图。
图2为本发明所采用的指标选择水槽示意图。
图3为选择水槽的工作状态示意图。
图4为本发明所采用的测试水槽平面图。
图5为图4中的三个断面处阻碍单元的剖面图。
图6(a)和6(b)分别为低密度气泡管示意图和高密度气泡管示意图。
图7为三维气泡生成侧视图。
图8为闪光灯工作示意图。
图9(a)和图9(b)分别为射流涡旋工作时的侧视图和俯视图。
图10为进行有效单阻碍指标选择时选择水槽中阻碍断面的示意图。
图11为进行有效综合阻碍指标组合选择时选择水槽中阻碍断面的示意图。
具体实施方式
为使本发明更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图2-5,本发明提供的一种阻碍式多模块水质生物检测设备,包括阻碍指标选择装置与水质测试装置两个部分,阻碍指标选择装置用于挑选出合格或有效的梯级阻碍程度组合,水质测试模块根据指示生物在注入待测水体后,通过有效阻碍程度组合中各阻碍时的行为对待测水体的水质进行检测。
阻碍指标选择装置包括:选择水槽30、安置在选择水槽30一端(见图2和3的左端)的推动单元、安置在所述选择水槽30另一端(见图2和3的右端)的阻碍比较单元和监控单元。推动单元用于将选择水槽30中的液体向所述阻碍单元推进。阻碍比较单元包括分隔板,该分隔板在所述选择水槽30的另一端形成具有四个相同分隔区域的阻碍断面,每一分隔区域用于安装不同的阻碍指标发生装置。选择水槽30的左端设有进水口34,进水口34可向所述指标选择水槽30内补水;选择水槽30右端设有出水口38,出水口可将所述选择水槽30内的水体排出。监控单元用于监控所述阻碍断面处指示生物的行为。
推动单元包括推动电机31、连接链杆32、推动板33。所述推动电机31通过连接链杆32与推动板33相连接,在推动电机31启动后,可推动推动板33向靠近阻碍比较单元的方向运动。选择水槽30中推动板33到阻碍断面36之间为选择适应区,阻碍断面36附近处为强干扰区,阻碍断面36被分隔板37分为a、b、c、d四个区域,a、b、c、d四个区域内均安装有阻碍发生装置,可产生对应阻碍指标,a、b、c、d四个区域均设有所述出水口38。监控单元包括两个摄像装置,两个摄像装置39分别位于阻碍断面36两侧。
水质测试装置包括测试水槽1和三个阻碍单元。测试水槽1的一端(见图4右端)设有进水闸门22,另一端(见图4左端)设有出水闸门21。三个阻碍单元分别设置在水槽1 内的断面e、f、g处。如图3所示,断面e、f、g到进水口的距离逐渐增加。如图2和3,测试水槽1被e、f、g三个阻碍断面划分为I、II、III、IV四个区域,进水闸门22、出水闸门21通过测试水槽1上的闸门槽23与水槽1相连接,测试水槽进水口3通过导水管4与进水闸门22相连接。每一阻碍单元包括阻碍指标发生装置和计数装置,还包含与计数装置一一对应且相连的报警装置。每一阻碍单元处的阻碍指标发生装置选自各项中的一者或多者的组合:闪光发生装置、气泡幕发生装置、射流涡旋发生装置、温度控制装置、声音发生装置,且可以根据上述阻碍指标选择装置进行选择。计数装置用于对通过所在断面的指示生物进行计数。
基于图2至5所示的阻碍式多模块水质生物检测设备,本发明还提供了一种采用上述阻碍式多模块水质生物检测设备的水质生物检测方法。该方法大致包括如下步骤:
步骤1:选取指示生物,并对所述测试水槽1中各阻碍单元中所需的阻碍指标发生装置进行选取和安装。
步骤2:在所述测试水槽1中注入无污染水体,在所述进水闸门22和第一断面处的阻碍单元间设置拦网41,将所选指示生物放置于所述拦网41和所述进水闸门22之间,使所选指示生物适应环境m分钟,m≥10。
步骤3:启动所述测试水槽1中的各阻碍指标发生装置,取走拦网,使待测水体通过进水闸门22注入所述测试水槽1。
步骤4:根据所述三个阻碍单元内计数装置的计数变化确定所述待测水体的水质。
步骤1的流程大致如图1所示,具体包括:
S11:建立待选指标库
(S111)建立单阻碍指标库:单阻碍指标库可包括但不限于闪光、气泡幕、射流涡旋、温度、声音等待选指标。气泡幕和闪光驱鱼技术是重要的鱼类潜在无损伤驱导技术之一,气泡幕和闪光作为障碍对特定生物具有阻碍作用。射流的射流方向垂直水流方向,水流通过压力水管,在出口处将具有一定的初速度,利用静止水体与射流之间的速度差与粘滞性,在水体中产生具有涡量的涡旋,从而形成所述射流涡旋,射流涡旋对于指示生物的视觉、听觉等感官系统将产生一定影响,也是一种潜在的阻碍指标。
每一单阻碍指标又具有一种或多种对应阻碍程度,这里的阻碍程度用某一种单阻碍指标的属性及强度量值来表征,例如,闪光的颜色、频率和强度值、气泡幕的密度、射流涡旋的涡量、温度值、音量值等。
(S112)建立指示生物库:所选指示生物应具有运动速度快,对环境变化反应敏感等 特点。指示生物库可包括但不限于生活于中上层水体中的鱼类、两栖蛙类、底栖鳝鱼类等。在本实施例中,指示生物库包括光倒刺鲃、鲤鱼、白鲢、鳝鱼。
S12:从指示生物库中挑选一种指示生物,从单阻碍指标库中挑选至少三种有效单阻碍程度。
例如,选择光倒刺鲃作为初步的指示生物,且光倒刺鲃的数目为100条,体长(10±1)厘米,体重(12±1)克,幼鱼。
有效单阻碍程度的挑选方式具体为:
(S121)从单阻碍指标库选择射流涡旋作为初步的单阻碍指标,所述射流涡旋的阻碍程度初步选为:射流速度1-1.11m/s,如附图八所示。将能够产生射流速度1-1.1m/s的射流涡旋的阻碍指标发生装置分别安装于阻碍断面36中的第二、第三和第四分隔区域(分别对应图9中的b、c、d区域),第一分隔区域(对应图9中的a区域)不安装任何阻碍指标发生装置。
(S122)将阻碍指标选择水槽30注满干净无污染水体。本实施例中,阻碍指标选择水槽30为长方体的单层透明玻璃水槽(里尺寸长宽高为:26m×1m×1.5m,外尺寸长宽高26m×1.2m×1.7m)。在阻碍指标选择水槽30的适应选择区内(即推动板33和阻碍断面36之间)放入拦网42,将100条光倒刺鲃放入拦网42与推动板33之间的区域内,等待光倒刺鲃适应水体环境30分钟。启动水泵在阻碍断面36产生射流涡旋,取走拦网42,启动摄像装置39和推动电机31,将100条光倒刺鲃向前推进,直至光倒刺鲃均进入所述阻碍断面36处附近的强干扰区(如图2、图3和图9所示)。利用阻碍断面36处的监控单元统计各分隔区域中指示生物的数量。
(S123)分析a、b、c、d四个区域内的光倒刺鲃,记所选指示生物总数为N,记第一至第四分隔区域内的指示生物数量分别为N a、N b、N c、N d,当N a≥2/3N时,则所选单阻碍指标的对应阻碍程度对指示生物具有阻碍作用,称为有效单阻碍程度,否则为无效单阻碍程度,应重新选取单阻碍指标的对应阻碍程度并进行判断;若所述单阻碍指标库中的所有单阻碍指标的所有阻碍程度对所选指示生物均为无效单阻碍程度,则更换所选指示生物,以选出有效单阻碍程度。在本实施例中,由于a、b、c、d四个区域内的光倒刺鲃的条数分别为:75、8、10、7,根据所得到的各区域光倒刺鲃的数量,判定该实施例所选用的射流速度为1-1.1m/s的射流涡旋指标符合要求。
将阻碍指标射流涡旋更换为单阻碍指标库的其他指标,并再次进行判断,直到挑选至少三种有效单阻碍程度。在本实施例中,最终选择符合单阻碍指标分析模块相关要求的指 示生物为光倒刺鲃,有效单阻碍程度为:频率为80-85次/分钟的绿色单闪光、供气量为40-45L/分钟的低密度气泡幕、供气量为75-80L/分钟的高密度气泡幕、射流速度为1-1.1m/s的射流涡旋。
S13:根据步骤S12中挑选的四种有效单阻碍程度确定所述测试水槽1的三个阻碍单元中的阻碍指标发生装置,具体包括:
S131:将步骤S12中挑选出的四种有效单阻碍程度进行组合,以构造三种综合阻碍程度。其中,每一综合阻碍程度为上述四种有效单阻碍程度中的任一者或多者的组合。例如,图10给出了两套待选综合阻碍程度组合,分别对应如下工况一和工况二中的组合:工况一:a区为空白对照、b区为闪光(单闪光、白色、频率为60-65次/分钟)、c区为低密度气泡幕(供气量为40-45L/分钟)、d区为高密度气泡幕+闪光(供气量为75-80L/分钟、单闪光、白色、频率为80-85次/分钟)。
工况二:a区为空白对照、b区为闪光(单闪光、绿色、频率为80-85次/分钟)、c区为低密度气泡幕(供气量为40-5L/分钟)、d区为射流涡旋+闪光(射流速度1-1.1m/s、单闪光、绿色、频率为80-85次/分钟)。
S132:将选择水槽30注满干净水体,在选择水槽30注满干净水体,将100条光倒刺鲃放入所述拦网41和推动板33之间,等待光倒刺鲃适应水体环境30分钟。启动相应阻碍发生装置,产生工况一或工况二中的综合阻碍程度组合,取走拦网42,启动摄像装置39和推动电机31,将100条光倒刺鲃向前推进,直至光倒刺鲃均进入所述阻碍断面36附近的强干扰区。
S133:分析阻碍断面36处a、b、c、d四个区域内的光倒刺鲃。在如图十工况一对应的综合阻碍指标组合情况下,a、b、c、d四个区域内的光倒刺鲃的条数N a、N b、N c、N d分别为:61、17、10、12,根据所得到的各区域光倒刺鲃的数量,由于未满足
Figure PCTCN2021078364-appb-000003
判定工况一所选用的三种综合阻碍程度的组合为无效综合阻碍程度组合。在工况二对应的综合阻碍指标组合情况下,a、b、c、d四个区域内的光倒刺鲃的条数N a、N b、N c、N d分别为:75、16、6、3,符合
Figure PCTCN2021078364-appb-000004
判定工况二所选用的三种综合阻碍程度的组合为有效综合阻碍程度组合。
S14:在测试水槽1的各断面处分别安装阻碍指标发生装置,以产生步骤S13中确定的工况二对应的有效综合阻碍程度组合。
本实施例中,测试水槽1选用
Figure PCTCN2021078364-appb-000005
形混凝土无盖水槽(里尺寸长宽高为:26m×1m×1.5m,外尺寸长宽高26m×1.2m×1.7m)。如图6-8,对应地,测试水槽1的断面e处的阻碍指标发生装置包括第一闪光灯带6和第一电源25,断面f处的阻碍指标发生装置包括低密度气泡管11和气泵24,断面g处的阻碍指标发生装置包括射流隔墩8、射流管9、高密度气泡管、压力水泵28、第二闪光灯带12和第二电源2。其中,第一闪光灯带6、低密度气泡管11、第二闪光灯带12均安装在测试水槽1的底面,射流隔墩8安装与测试水槽1内侧,射流管9嵌套安装于射流隔墩8内部,安装所述射流管9上安装有射流喷头40。断面e、f、g处的计数装置5、26和27均为红外计数装置,三个红外计数装置均安装于对应三个阻碍断面上部。低密度气泡管11上设有14个主汽泡孔16,未在侧面开副孔,高密度气泡管同时设有14个主汽泡孔16和56个副气泡孔17。气泵24向低密度气泡管11和高密度气泡管提供压缩空气,当为产生低密度气泡时,气泵24供气量控制在40L-45L/分钟,以供产生低密度气泡幕19;当为产生高密度气泡时,气泵24供气量控制在75L-80L/分钟,以供产生高密度气泡幕18。主气泡孔16直径为0.5CM,副气泡孔17直径为0.3CM。气泵24均采用750W-140L OUTSTANDING空气压缩气泵,压缩气体最大产生量为140L/分钟。第一电源25向第一闪光灯带6提供用电,第二电源2向闪光灯带12提供电源,闪光灯14安装在闪光灯带12和闪光灯带6上。闪光灯14产生单闪光20,单闪光20颜色及频率可控,频率为60-100次/分钟。压力水泵28向射流管9提供有压水流。水泵28为RGZ15-20恒格增压泵,可为射流喷头40提供1-3m/s的有压流。
步骤2具体包括:将测试水槽1注入干净水体,使干净水体充满所述水质测试水槽1。再将光倒刺鲃100条放入所述拦网41与进水闸门22之间的区域,等待30分钟,待光倒刺鲃适应干净的水体环境。
步骤3具体包括:启动测试水槽1中e、f、g阻碍断面的阻碍发生动力装置,分别在e阻碍断面产生闪光(单闪光、绿色、频率为80~85次/分钟)、在f阻碍断面产生低密度气泡幕(供气量为40-45L/分钟)、在g阻碍断面产生射流涡旋和闪光(射流速度1-1.1m/s、单闪光、绿色、频率为80-85次/分钟)。取走拦网41,将10L待检测水体快速倒入圆柱形进水口3,使待测水体通过进水闸门22注入测试水槽1,等待5分钟。
步骤4中,确定待测水体的水质包括:
S41:无污染情况:当所加入的待测水体没有污染时,在阻碍指标作用下,根据所选定的指示生物所具有的自身生物习性,指示生物集中在水槽内的I区活动,不少于2/3的指示生物持续位于I区,轻度污染报警灯7不会亮起,说明待测水体水质正常,未受污染。
S42:轻度污染情况:当所加入的待测水体为轻度污染时,待测水体通过导水管进入所述水质测试水槽时,轻度污染水体逐步向前扩散,根据所选定指示生物的自身生物习性,指示生物的游泳行为忽然转为活跃,移动速度,呼吸速率等指标提高,为躲避轻度污染水体的扩散入侵,指示生物尝试穿过所述低程度阻碍断面,当超过2/3数量的指示生物通过所述低程度阻碍断面时,轻度污染报警灯7亮起,进行报警,当鱼群穿过所述低程度阻碍断面后,进入所述水质测试水槽的II区。由于中等程度阻碍断面的阻碍作用较低程度阻碍断面的阻碍作用更强,在只有轻度污染水体的入侵威胁下,试验鱼不轻易尝试通过中等程度阻碍断面,不少于2/3的指示生物选择适应水环境,持续位于所述水质测试水槽的II区,中度污染报警灯10不亮起,只有轻度污染报警灯7亮起,则判断水体为轻度污染。
S43:中污染情况:当所加入的待测水体为中度污染时,根据所选定指示生物的自身生物习性,为躲避污染水体,保护自身,指示生物首先通过低程度阻碍断面,轻度污染报警灯7亮起,在受到中度污染水体的入侵时,指示生物选择尝试通过中等程度阻碍断面,当2/3数量的指示生物通过中等程度阻碍断面时,中度污染报警灯10亮起。当指示生物穿过中等程度阻碍断面后,进入所述水质测试水槽的III区,由于高程度阻碍断面的阻碍作用较中等程度阻碍断面更大,在中度污染水体的入侵威胁下,指示生物不轻易尝试通过高程度阻碍断面,指示生物选择适应水体环境,不少于2/3的指示生物持续位于所述水质测试水槽的III区,重度污染报警灯13不会亮起,中度污染报警灯10亮起,则判断水体为中度污染。
S44:重度污染情况:当所加入的待测水体为重度污染时,根据所选定鱼类的自身生物习性,指示生物保持持续兴奋,先后通过低程度阻碍断面,中等程度阻碍断面,轻度污染报警灯7和中度污染报警灯10都会亮起,此时指示生物进入III区,由于受到重度污染水体的严重威胁,鱼群尝试通过高程度阻碍断面,最终超过2/3数量的指示生物进入所述水质测试水槽IV区,重度污染报警灯13亮起,则判断水体为重度污染。
根据待测水体污染程度的不同,部分检测实例的结果如表1-5所示。其中,“○”表示该报警灯没有报警,“√”表示该报警灯报警。其中,待测水体的水质情况在使用物理化学检测方法进行验证时,采用PH值衡量衡量水体污染程度(6.5<PH<7.8即水质正常;5<PH<6.5或7.8<PH<8.5即轻度污染;3<PH<5或8.5<PH<9即中度污染;PH<3或9<PH即重度污染);不同的情况下,操作人员可实际情况自行选择衡量指标和衡量标准,可不局限于本案例所提出的指标与标准。
表1检测实例一:
Figure PCTCN2021078364-appb-000006
表2检测实例二
Figure PCTCN2021078364-appb-000007
表3检测实例三
Figure PCTCN2021078364-appb-000008
表4检测实例四
Figure PCTCN2021078364-appb-000009
表5检测实例五
Figure PCTCN2021078364-appb-000010
在实验结果中,出现了死鱼数量,其是由于在待测水体被污染的情况下,部分指示生物受到污染水体的影响较为严重,从而导致了实验鱼死亡。本发明的生物检测方法与理化性质分析结果一致,说明了本发明具有非常高的准确性与良好的实际应用。
以上描述的仅仅是本发明的一种实施例,而不是全部的实施例,并不用于限制本发明。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,都属于本发明保护的范围。

Claims (7)

  1. 一种采用阻碍式多模块水质生物检测设备的水质生物检测方法,所述阻碍式多模块水质生物检测设备包括水质测试装置,所述水质测试装置包括:测试水槽(1)和三个阻碍单元;所述测试水槽(1)的一端设有进水闸门(22),另一端设有出水闸门(21);三个阻碍单元分别设置在所述水槽(1)内的第一、第二、第三断面处,第一、第二、第三断面到进水闸门(22)的距离依次增加;每一阻碍单元包括阻碍指标发生装置和计数装置;位于第一、第二、第三断面处的阻碍指标发生装置对指示生物的阻碍程度依次递增;各计数装置用于对通过所在断面的指示生物进行计数;
    所述水质测试装置还包括用于对各阻碍指标发生装置进行选取的阻碍指标选择装置;所述阻碍指标选择装置包括选择水槽(30)、安置在所述选择水槽(30)一端的推动单元、安置在所述选择水槽(30)另一端的阻碍比较单元和监控单元;所述推动单元用于将选择水槽(30)中的液体向所述阻碍单元推进;所述阻碍比较单元包括分隔板,所述分隔板在所述选择水槽(30)的所述另一端形成具有四个相同分隔区域的阻碍断面(36),每一分隔区域用于安装一种或多种的阻碍指标发生装置;所述选择水槽(30)的所述一端设有进水口(34),所述另一端设有出水口(38);所述监控单元用于监控所述阻碍断面处指示生物的行为;
    所述方法包括如下步骤:
    (S1)选取指示生物,并对所述测试水槽(1)中各阻碍单元中所需的阻碍指标发生装置进行选取和安装;步骤(S1)中,对各阻碍单元中的阻碍指标发生装置进行选取,具体包括如下步骤:
    (S11)建立单阻碍指标库,所述单阻碍指标库包括多种单阻碍指标,每一单阻碍指标能够产生一种或多种阻碍程度,所述单阻碍指标包括以下各项中的任一者:闪光、气泡幕、射流涡旋、温度、声音;建立指示生物库;
    (S12)从所述指示生物库中挑选一种指示生物,从所述单阻碍指标库中挑选至少三种有效单阻碍程度,所述有效单阻碍程度的挑选方式具体为:
    (S121)从所述单阻碍指标库中选取一种单阻碍指标的对应阻碍程度,将能够产生该对应阻碍程度的单阻碍指标发生装置分别安装于所述阻碍比较单元的第二、第三和第四分隔区域,第一分隔区域不安装阻碍指标发生装置;
    (S122)在所述选择水槽(30)中注满无污染水体并放置指示生物,使用所述推动单元将所述指示生物全部推入所述阻碍断面,利用所述监控单元统计各分隔区域中指示生物的数量;
    (S123)记所选指示生物总数为N,记第一至第四分隔区域内的指示生物数量分别为N a、N b、N c、N d,当
    Figure PCTCN2021078364-appb-100001
    时,则所选单阻碍指标的对应阻碍程度对指示生物具有阻碍作用,称为有效单阻碍程度;否则为无效单阻碍程度,应重新选取单阻碍指标的对应阻碍程度并进行判断;若所述单阻碍指标库中的所有单阻碍指标的所有阻碍程度对所选指示生物均为无效单阻碍程度,则更换所选指示生物,以选出有效单阻碍程度;
    (S13)根据步骤(S12)中挑选的至少三种有效单阻碍程度确定所述测试水槽(1)的三个阻碍单元中的阻碍指标发生装置:
    (S131)构造三种综合阻碍程度,每一综合阻碍程度为所述至少三种有效单阻碍程度中的任一者或多者的组合;将产生所述三种综合阻碍程度的阻碍指标发生装置分别安装于所述阻碍断面的第二、第三和第四分隔区域中,第一分隔区域不安装阻碍指标发生装置;
    (S132)在所述选择水槽(30)中注满无污染水体并放置指示生物,使用所述推动单元将步骤(S12)中最终选定的指示生物全部推入所述阻碍断面,利用所述监控单元统计各分隔区域中指示生物的数量;
    (S133)当N a、N b、N c、N d满足以下条件时,则认为所选三种综合阻碍程度的组合为有效综合阻碍程度组合,否则为无效综合阻碍程度组合,需重复构造新的三种综合阻碍程度,以最终挑选出有效综合阻碍程度组合:
    Figure PCTCN2021078364-appb-100002
    (S14)在所述测试水槽(1)的各断面处分别安装阻碍指标发生装置,以产生所述有效综合阻碍程度组合;
    (S2)在所述测试水槽(1)中注入无污染水体,在所述进水闸门(22)和第一断面处的阻碍单元间设置拦网(41),将所选指示生物放置于所述拦网(41)和所述进水闸门(22)之间,使所选指示生物适应环境m分钟,m≥10;
    (S3)启动所述测试水槽(1)中的各阻碍指标发生装置,取走拦网,使待测水体通过进水闸门(22)注入所述测试水槽(1);
    (S4)根据所述三个阻碍单元内计数装置的计数变化确定所述待测水体的水质。
  2. 根据权利要求1所述的水质生物检测方法,其特征在于,第一断面处的阻碍指标发生装置用于产生频率为80-85次/分钟的绿色单闪光;第二断面处的阻碍指标发生装置用于产生供气量为40-45L/分钟的气泡幕;第三断面处的阻碍指标发生装置用于产生射流速 度为1-1.1m/s的射流涡旋和频率为80-85次/分钟的绿色单闪光。
  3. 根据权利要求1所述的水质生物检测方法,其特征在于,每一阻碍单元还包括与所述计数装置相连的对应报警装置;所述阻碍指标发生装置包括以下各项中的一者或多者的组合:闪光发生装置、气泡幕发生装置、射流涡旋发生装置、温度控制装置、声音发生装置。
  4. 根据权利要求1所述的水质生物检测方法,其特征在于,所述测试水槽(1)还包括与所述进水闸门(22)相连的导水管(4)和与所述导水管(4)相连的测试水槽进水口(3)。
  5. 根据权利要求4所述的水质生物检测方法,其特征在于,所述推动单元包括推动电机(31)、连接链杆(32)和推动板(33),所述推动电机(31)通过所述连接链杆(32)推动所述推动板(33),以使水槽(30)中的液体向所述另一端推进。
  6. 根据权利要求4所述的水质生物检测方法,其特征在于,所述监控单元包括两个摄像装置(39),所述两个摄像装置(39)分别安置在所述阻碍断面(36)的两侧。
  7. 根据权利要求1所述的水质生物检测方法,其特征在于,步骤(S4)中:
    当第一断面处计数装置的计数少于2/3数量的指示生物时,指示水质正常;
    当第一断面处计数装置的计数不少于2/3数量的指示生物,且第二断面处计数装置的计数少于2/3数量的指示生物时,指示水质轻度污染;
    当第二断面处计数装置的计数不少于2/3数量的指示生物,且第三断面处计数装置的计数少于2/3数量的指示生物时,指示水质中度污染;
    当第三断面处计数装置的计数不少于2/3数量的指示生物时,指示水质重度污染。
PCT/CN2021/078364 2020-04-16 2021-03-01 一种采用阻碍式多模块水质生物检测设备的水质生物检测方法 WO2021208611A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/434,885 US20230046657A1 (en) 2020-04-16 2021-03-01 Biological water-quality detection method using obstructive multi-module biological water-quality detection device
GB2113031.5A GB2597852B (en) 2020-04-16 2021-03-01 Biological water-quality detection method using obstructive multi-module biological water-quality detection device
JP2021549876A JP7256973B2 (ja) 2020-04-16 2021-03-01 障害性マルチモジュール水質生物学的測定装置を採用する水質生物学的測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010299618.8A CN111366700B (zh) 2020-04-16 2020-04-16 一种阻碍式多模块水质生物检测设备及方法
CN202010299618.8 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021208611A1 true WO2021208611A1 (zh) 2021-10-21

Family

ID=71205369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078364 WO2021208611A1 (zh) 2020-04-16 2021-03-01 一种采用阻碍式多模块水质生物检测设备的水质生物检测方法

Country Status (5)

Country Link
US (1) US20230046657A1 (zh)
JP (1) JP7256973B2 (zh)
CN (1) CN111366700B (zh)
GB (1) GB2597852B (zh)
WO (1) WO2021208611A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366700B (zh) * 2020-04-16 2021-03-16 河海大学 一种阻碍式多模块水质生物检测设备及方法
CN112067768A (zh) * 2020-08-20 2020-12-11 重庆文理学院 一种用于水生动物多样性保护的河流网络构建方法
CN115676935B (zh) * 2023-01-03 2023-04-07 南京博知源环境科技有限公司 一种基于纳米水处理技术的河道净化处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105398A (zh) * 2013-01-18 2013-05-15 河海大学 一种廊道式水质污染预警装置及预警方法
JP2014178184A (ja) * 2013-03-14 2014-09-25 Hiroshima Univ 水質検査システムおよび魚類監視システム
CN106680448A (zh) * 2017-01-12 2017-05-17 河海大学 一种水体复合污染生物预警监测装置及试验方法
CN110050730A (zh) * 2019-05-23 2019-07-26 中国长江三峡集团有限公司 一种测试鱼类对气泡幕与灯光趋向行为的实验装置及方法
CN110412230A (zh) * 2019-08-06 2019-11-05 河海大学 一种基于鱼类行为的水污染监测预警装置及其预警方法
CN111366700A (zh) * 2020-04-16 2020-07-03 河海大学 一种阻碍式多模块水质生物检测设备及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571969A (en) * 1980-06-06 1982-01-07 Hitachi Ltd Detector for changes in water quality
JPH09229924A (ja) * 1996-02-20 1997-09-05 Anima Denshi Kk 水棲生物による水質監視装置
JP2007085828A (ja) * 2005-09-21 2007-04-05 Japan Organo Co Ltd 水質監視方法および装置
CN102297865B (zh) * 2011-05-27 2013-02-20 宁波大学 一种鱼类行为的生物水质监测系统及其监测方法
CN102339521A (zh) * 2011-06-14 2012-02-01 华南理工大学 利用水生生物行为图像提取的水源水突发污染的预警方法
WO2016199201A1 (ja) * 2015-06-08 2016-12-15 株式会社アニマックス バイオアッセイ用水槽システム、バイオアッセイ装置及びコンピュータ用プログラム
CN107817087B (zh) * 2017-11-01 2020-02-21 河海大学 一种用于模拟明渠水动力特征的水槽装置及操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105398A (zh) * 2013-01-18 2013-05-15 河海大学 一种廊道式水质污染预警装置及预警方法
JP2014178184A (ja) * 2013-03-14 2014-09-25 Hiroshima Univ 水質検査システムおよび魚類監視システム
CN106680448A (zh) * 2017-01-12 2017-05-17 河海大学 一种水体复合污染生物预警监测装置及试验方法
CN110050730A (zh) * 2019-05-23 2019-07-26 中国长江三峡集团有限公司 一种测试鱼类对气泡幕与灯光趋向行为的实验装置及方法
CN110412230A (zh) * 2019-08-06 2019-11-05 河海大学 一种基于鱼类行为的水污染监测预警装置及其预警方法
CN111366700A (zh) * 2020-04-16 2020-07-03 河海大学 一种阻碍式多模块水质生物检测设备及方法

Also Published As

Publication number Publication date
GB2597852A (en) 2022-02-09
GB202113031D0 (en) 2021-10-27
CN111366700A (zh) 2020-07-03
JP2022532467A (ja) 2022-07-15
GB2597852B (en) 2022-07-27
CN111366700B (zh) 2021-03-16
US20230046657A1 (en) 2023-02-16
JP7256973B2 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2021208611A1 (zh) 一种采用阻碍式多模块水质生物检测设备的水质生物检测方法
CN107003173A (zh) 水量测量装置以及水量监控系统
CN111811580A (zh) 一种水量/水质监测布点方法及预警响应系统
CN106680448A (zh) 一种水体复合污染生物预警监测装置及试验方法
CN110412230B (zh) 一种基于鱼类行为的水污染监测预警装置及其预警方法
JP2005052697A (ja) 水質監視システム
US7559236B1 (en) Portable profiler for profiling a marine biosphere and method of assembling the profiler
CN1234002C (zh) 一种吸气式激光图像感烟火灾探测方法和装置
CN112987808B (zh) 一种管网管理方法及数字管网系统
CN111815062B (zh) 一种基于污染信息分析的污染源溯源系统
KR101602819B1 (ko) 저수지 통합 관리 시스템
Huthoff et al. Evaluation of a simple hydraulic resistance model using flow measurements colected in vegetated waterways
KR101739117B1 (ko) 자가 진단이 가능한 저수지 통합 관리 시스템
MoayeriKashani et al. Tracking the hydrodynamic behavior of fine sediment using particle image velocimetry
CN112067768A (zh) 一种用于水生动物多样性保护的河流网络构建方法
He et al. Demo abstract: An underwater sonar-based drowning detection system
CN104535462A (zh) 一种原位实时测量悬移质浓度和级配的装置及方法
CN116935576B (zh) 一种河道壅塞监测分析预警方法及系统
CN117198007B (zh) 一种基于水中硫化氢检测的报警系统
CN109781211A (zh) 一种在线泥沙监测装置
RU2802233C1 (ru) Рыбозащитное устройство (варианты)
Ceenepalli et al. IoT-Enabled Flood Wall: Advancing Real-Time Flash Flood Monitoring and Forecasting
KR102631531B1 (ko) 제설 용액의 농도 측정 기능을 구비한 용액 저장 탱크 및 이의 구동 방법
CN115112576A (zh) 一种高光谱水质监测与预警方法
KR101739109B1 (ko) 붕괴 감지 기능을 갖는 저수지 통합 관리 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549876

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202113031

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210301

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21787829

Country of ref document: EP

Kind code of ref document: A1