WO2021208485A1 - 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 - Google Patents
微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 Download PDFInfo
- Publication number
- WO2021208485A1 WO2021208485A1 PCT/CN2020/139165 CN2020139165W WO2021208485A1 WO 2021208485 A1 WO2021208485 A1 WO 2021208485A1 CN 2020139165 W CN2020139165 W CN 2020139165W WO 2021208485 A1 WO2021208485 A1 WO 2021208485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- groove
- grooves
- processed
- grinding wheel
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000003754 machining Methods 0.000 title claims abstract description 8
- 238000003672 processing method Methods 0.000 claims description 24
- 238000005520 cutting process Methods 0.000 abstract description 35
- 230000000694 effects Effects 0.000 abstract description 13
- 230000017525 heat dissipation Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009966 trimming Methods 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0093—Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/355—Texturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/28—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
Definitions
- This application relates to the technical field of tool processing, in particular to a micro-nano-textured superhard tool bit and a laser-assisted grinding composite processing method.
- Single crystal diamond has extremely high hardness (8000HV) and good wear resistance.
- the cutting edge can be machined very sharply, and it is not easy to stick to the tool and generate built-up edge during cutting, and has a low friction coefficient.
- the deformation is small during processing, and the cutting edge is observed without defects under an 800x microscope.
- the surface roughness can reach Rz 0.1-0.05 ⁇ m, and the shape accuracy of the processed workpiece is controlled below 50nm. It is very suitable for ultra-thin cutting and Ultra-precision processing is widely used in optics, printing, automotive, 3C, defense/aerospace industry, jewelry and other industries, and has broad application prospects.
- Tribological studies have shown that processing a certain shape of surface micro-nano texture on the rake face of the tool can reduce friction and wear, increase the heat dissipation area, and have a significant effect on improving the cutting performance of the tool.
- single crystal diamond tools are often used in the field of precision machining, their own structural accuracy requirements are very high, and they have high hardness, how to machine the required micro-nano texture on the surface of single crystal diamond tools is very difficult, this is also the basis Those skilled in the art currently need to solve problems urgently.
- this application provides a micro-nano-textured superhard tool tip and a laser-assisted grinding composite processing method thereof, which can ensure the shape and size accuracy, processing quality and processing quality of the micro-textured structure processing. Efficiency can improve the cutting performance and service life of superhard tool heads.
- a micro-nano-textured superhard tool tip which includes a rake face, a flank face and a tool tip.
- the rake face is provided with a micro-textured structure, so
- the micro-textured structure includes a plurality of first micro-grooves parallel to each other; the depth of the first micro-grooves is 50-800 ⁇ m, and the distance between two adjacent parallel first micro-grooves is 50-800 ⁇ m.
- the micro-textured structure further includes a plurality of second micro-grooves parallel to each other, and the first micro-grooves and the second micro-grooves are arranged perpendicularly.
- the depth of the second micro-grooves is 50-800 m, and the distance between two adjacent second micro-grooves in parallel is 50-800 m.
- the cross-sectional profile shape of the first micro groove is V-shaped, and the apex angle ⁇ of the first micro groove is 30°-120°.
- the cross-sectional profile shape of the second micro groove is V-shaped, and the apex angle ⁇ of the second micro groove is 30°-120°.
- Another aspect of the present application provides a laser-assisted grinding composite processing method of micro-nano texture superhard tool tip, which includes the following steps:
- step S3 the following steps are further included:
- step S1 includes:
- the laser beam generated by the laser forms a first prefabricated shallow groove on the rake face of the tool head to be processed along a preset path;
- step S2 includes:
- step S4 includes:
- the laser beam generated by the laser forms a second prefabricated shallow groove along a preset path on the rake face of the tool head to be processed;
- step S5 includes:
- step S0 is further included: trimming the tip of the grinding wheel according to the shape of the micro-texture of the tool tip to be processed.
- step S0 includes:
- the grinding wheel is made to perform pair grinding and dressing with a dresser along a preset grinding path, and the edge profile of the micro tip of the grinding wheel is trimmed into a required specific shape.
- the depth of the first prefabricated shallow groove is 10-50 ⁇ m, and the depth of the first micro groove is 50-800 ⁇ m.
- the depth of the second prefabricated shallow groove is 10-50 ⁇ m, and the depth of the second micro groove is 50-800 ⁇ m.
- a micro-nano-textured superhard tool head of the present application includes a rake face, a flank face and a tool tip.
- the rake face is provided with a micro-textured structure, and the micro-textured structure includes a plurality of parallel first A micro groove can increase the heat dissipation area, have a better sharpening effect, improve the chip breaking and heat removal capacity during the cutting process and the cutting performance of the tool bit, thereby increasing the service life; by inserting the first micro groove
- the depth H of the groove is set to 50-800 ⁇ m, and the distance D between the two adjacent first micro grooves is 50-800 ⁇ m, which is convenient for improving the processing accuracy of the micro-textured structure, and has a better sharpening effect. Improve the chip breaking and heat removal ability during the cutting process, and further improve the cutting performance and service life of the cutter head.
- the laser-assisted grinding compound processing method of the micro-nano texture superhard tool bit of the present application first uses a laser beam generated by a laser to cut the rake face of the tool bit to be processed to form a first prefabricated shallow groove. Then use the tip of the grinding wheel to grind the first prefabricated shallow groove to quickly form the first micro-groove.
- the time required for grinding wheel grinding can be greatly reduced and the processing is improved.
- the grinding wheel grinds the first prefabricated shallow groove formed by laser processing to form the first micro groove, which can take full advantage of the high precision of laser-assisted grinding and improve the first micro groove formed by grinding
- the accuracy of the groove can effectively solve the technical problems of long processing time in the prior art and the inability to guarantee the shape and size accuracy of the micro-textured structure and the processing quality.
- the superhard tool tip processed by this composite processing method has better sharpening effect, improves the chip breaking and heat removal ability during the cutting process and the cutting performance of the tip, thereby increasing the service life.
- FIG. 1 is a schematic structural diagram of a micro-nano texture superhard tool bit provided by an embodiment of the present application
- FIG. 2 is a schematic structural diagram of another micro-nano-textured superhard tool bit provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of a laser-assisted grinding composite processing method for a micro-nano texture superhard tool tip provided by an embodiment of the present application;
- FIG. 4 is a schematic diagram of processing a micro-nano texture superhard tool bit provided by an embodiment of the present application
- FIG. 5 is a schematic diagram of processing another micro-nano texture superhard tool bit provided by an embodiment of the present application.
- Fig. 6 is a schematic structural diagram of another micro-nano texture superhard tool bit provided by an embodiment of the present application.
- Figure 7 is a cross-sectional view of the superhard tool bit
- FIG. 8 is a schematic diagram of another laser-assisted grinding composite processing method of micro-nano texture superhard tool tip provided by an embodiment of the present application.
- FIG. 9 is a flowchart of step S1 in FIG. 3;
- FIG. 10 is a flowchart of step S2 in FIG. 3;
- FIG. 11 is a flowchart of step S4 in FIG. 8;
- FIG. 12 is a flowchart of step S5 in FIG. 8;
- Fig. 13 is a flowchart of step S0 in Fig. 8.
- cutter head 11, tool tip; 12, rake face; 13, flank face; 14, first micro groove; 15, cutting edge; 16, second micro groove; 20, grinding wheel; 21 30.
- FIG. 1 schematically shows a micro-nano-textured superhard tool bit 10 of the present application, for example, a single crystal diamond tool bit.
- the superhard tool bit 10 includes a rake face 12 and a rear surface.
- the cutting edge 15 is formed on the side of the rake surface 13 and the cutting edge 11, and the rake surface 12 and the flank surface 13 are connected.
- the rake surface 12 is provided with a micro-textured structure, and the micro-textured structure includes a plurality of parallel to each other.
- ⁇ first micro groove 14 please refer to FIG. 7 again, the depth H of the first micro groove 14 is 50 ⁇ 800 ⁇ m, and the distance D between two adjacent first micro grooves 14 in parallel is 50 ⁇ 800 ⁇ m.
- the heat dissipation area can be increased, and the sharpening effect can be improved.
- the chip breaking and heat removal capacity during the cutting process and the cutting performance of the tool head is set to 50-800 ⁇ m, and the distance between two adjacent first micro grooves 14 is 50-800 ⁇ m. 800 ⁇ m, it is convenient to improve the processing accuracy of the micro-textured structure, has a better sharpening effect, is beneficial to improve the chip breaking and heat removal ability during the cutting process, and further improves the cutting performance and service life of the cutter head.
- a plurality of first micro-grooves 14 parallel to each other on the rake face 12 are perpendicular to the cutting direction of the superhard bit (as shown in FIG. 1), or a plurality of first micro-grooves 14 parallel to each other are perpendicular to the cutting direction of the superhard bit
- the cutting direction of the superhard head is parallel (as shown in Figure 2).
- this application also provides a laser-assisted grinding composite processing method of micro-nano texture superhard tool tip, please refer to FIG. 3, which schematically shows the micro-nano texture superhard
- the compound processing method includes the following steps:
- Step S1 using a laser to cut the rake face of the tool head to be processed to form a first prefabricated shallow groove
- the movement path of the laser is the contour path of the micro-textured structure actually needed to be formed by the tool head to be processed, and the material of the tool head is softened by instantaneous high-temperature laser energy;
- Step S2 Grind the first prefabricated shallow groove with the tip of the grinding wheel to quickly form the first micro groove 14;
- Step S3 Repeat steps S1 and S2 to form a plurality of first micro grooves 14 parallel to each other on the rake surface.
- the steps are staggered and repeated until all the first shallow prefabricated grooves and the first micro grooves 14 are processed; Grind all the first prefabricated shallow grooves into a plurality of first micro grooves 14 parallel to each other.
- the depth of the first prefabricated shallow trench is 10-50 ⁇ m.
- the micro-nano-textured superhard tool tip is processed by the above-mentioned composite processing method.
- the laser beam generated by the laser 30 is first used to cut the rake face of the tool tip to be processed to form a first prefabricated shallow groove.
- the tip of the grinding wheel 20 uses the tip of the grinding wheel 20 to grind the first prefabricated shallow groove to form the first micro groove 14.
- the time required for grinding wheel grinding can be greatly reduced, and the time required for grinding is increased.
- Processing efficiency, and the grinding wheel 20 grinds the first prefabricated shallow groove formed by laser processing to form the first micro groove 14, so that the advantages of high precision of laser-assisted grinding can be fully utilized, and the first shallow groove formed by grinding can be improved.
- the precision of a micro groove 14 can effectively solve the technical problems of long processing time in the prior art and the inability to guarantee the shape and size accuracy of the micro-textured structure and the processing quality.
- the micro-nano-textured superhard tool head 10 processed by the above-mentioned composite processing method has a number of first micro-grooves 14 parallel to each other on the rake face 12, which can effectively improve the precision of the micro-textured structure and make the super
- the hard tool bit 10 has a better sharpening effect, improves the chip breaking and heat removal ability during the cutting process and the cutting performance of the bit.
- the depth H of the first micro groove 14 is machined to 50-800 ⁇ m, adjacent to each other.
- the distance D between the two parallel first micro grooves 14 is 50-800 ⁇ m, which is convenient to improve the machining accuracy of the micro-textured structure, and is more conducive to improving the chip breaking and heat removal ability during the cutting process, and further improving the cutting performance and use of the tool head life.
- the diameter of the grinding wheel 20 is 50-100 mm, the width is 0.3-10 mm, the thickness is 4 mm, and the abrasive grain size is 60-1500 mesh.
- the rotation speed of the grinding wheel 20 is 1000-6000 rpm, and the normal feed depth of the grinding wheel 20 is 1-20 Micron, the feed speed is 1000 ⁇ 1000mm/min.
- the micro-textured structure of the superhard tool bit 10 further includes a plurality of second micro-grooves 16 parallel to each other, and the first micro-grooves 14 and the second micro-grooves 16
- the micro grooves 16 are arranged vertically, which can further increase the heat dissipation area, so that the cutter head 10 has a better grinding effect, thereby further improving the chip breaking and heat removal ability during the cutting process and the cutting performance of the cutter head.
- the depth of the second micro groove 16 is 50 to 800 ⁇ m, and the distance between two adjacent second micro grooves 16 in parallel is 50 to 800 ⁇ m.
- the micro-textured structure formed by the second micro-grooves 16 can make the superhard tool bit 10 have a better sharpening effect.
- the depth of the first microgrooves 14 and the second microgrooves 16 is 200 ⁇ m, and the micro-textured structure of this size can make the sharpening effect of the superhard tool tip the best. Further, referring to FIG.
- the cross-sectional profile shapes of the first microgroove 14 and the second microgroove 16 are both V-shaped, and the first microgroove 14 and the second microgroove
- the apex angle ⁇ of the groove 16 is 30°-120°, so that the micro-textured structure has better chip breaking and heat removal ability, thereby improving the sharpening effect of the cutter head.
- the cross-sectional contour shapes of the first microgrooves 14 and the second microgrooves 16 may also be U-shaped or arc-shaped.
- the composite processing method further includes the following steps after the step S3:
- the laser 30 can choose to use the laser 30 to cut and complete a second prefabricated shallow groove, and then immediately grind and process the newly completed second prefabricated shallow groove into a second micro groove 16 , Thus repeating such steps in staggered fashion until all the second prefabricated shallow grooves and the second micro grooves 16 are processed; Ground all the second prefabricated shallow grooves are ground and processed into a plurality of second micro grooves 16 parallel to each other.
- the depth of the second shallow pre-groove is 10-50 ⁇ m.
- the step S1 includes:
- the laser beam generated by the laser forms a first prefabricated shallow groove on the rake face of the tool head to be processed along a preset path;
- the laser beam generated by the laser 30 is required to move along a preset path so that it can process the first shallow prefabricated groove on the rake face 12.
- the number of first shallow prefabricated grooves is multiple, after processing the previous first shallow prefabricated groove, it is necessary to adjust the position of the laser 30 relative to the tool head to be processed, and then judge the current first shallow prefabricated groove. Whether the quantity reaches the predetermined quantity, if it does not reach, then continue to process the next first shallow prefabricated groove, if it has reached, the laser 30 will stop working, so as to realize the completion of the processing of all the first shallow prefabricated grooves.
- the step S2 includes:
- the laser 30 In the step of processing the first micro-groove 14, for example, in a specific embodiment where the cutting direction of the first micro-groove 14 is perpendicular to the cutting direction of the superhard tool tip (as shown in FIG. 4), that is, in step S11, the laser 30
- the preset path is also perpendicular to the cutting direction of the superhard tool head.
- the action of adjusting the position of the laser 30 relative to the tool head to be processed in step S12 is specifically that the laser 30 first retracts to a first preset distance along the negative direction of the X axis, and then moves a second preset distance along the Z axis, where the second preset distance The distance is equal to the distance D between two adjacent micro grooves 14.
- the action of adjusting the position of the grinding wheel 20 relative to the tool head to be processed in step S22 is specifically that the grinding wheel 20 first retracts along the negative direction of the X axis by a first preset distance, and then moves along the Z axis by a second preset distance.
- the action of adjusting the position of the grinding wheel 20 relative to the tool head to be processed in step S22 may also be that the grinding wheel 20 directly moves along the Z axis The second preset distance, so that when the grinding wheel 20 grinds the next first micro-groove 14, the moving direction is opposite to that of the previous micro-groove 14, and its grinding path is arched, thereby improving the grinding efficiency .
- the preset path of the laser 30 in step S11 is also parallel to the superhard tool bit The cutting direction.
- the action of adjusting the position of the laser 30 relative to the tool head to be processed in step S12 is specifically that the laser 30 first retracts to a first preset distance along the negative direction of the Z axis, and then moves a second preset distance along the X axis, where the second preset distance The distance is equal to the distance D between two adjacent micro grooves 14.
- the action of adjusting the position of the grinding wheel 20 relative to the tool head to be processed in step S22 is specifically that the grinding wheel 20 first retracts along the negative direction of the Z axis by a first preset distance, and then moves along the X axis by a second preset distance.
- the step S4 includes:
- the laser beam generated by the laser forms a second prefabricated shallow groove along a preset path on the rake face of the tool head to be processed;
- the step S5 includes:
- the composite method further includes a step S0: trimming the tip of the grinding wheel according to the shape of the micro-texture of the tool tip to be processed.
- step S0 specifically includes the following steps:
- connection should be understood in a broad sense, for example, it can be a fixed connection or an optional Detachable connection, or integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- connection should be understood in a broad sense, for example, it can be a fixed connection or an optional Detachable connection, or integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- the micro-nano-textured superhard tool tip and its laser-assisted grinding composite processing method provided by this application first use the laser beam generated by the laser to cut the rake face of the tool tip to be processed to form the first Prefabricated shallow grooves, and then use the tip of the grinding wheel to grind the first prefabricated shallow grooves to form the first micro grooves.
- the grinding wheel grinding needs can be greatly reduced Time, improve processing efficiency, and the grinding wheel grinds the first prefabricated shallow groove formed by laser processing to form the first micro groove, which can make full use of the advantages of high precision of laser-assisted grinding, and improve the first prefabricated groove formed by grinding.
- the precision of a micro groove can effectively solve the technical problems of long processing time in the prior art and the inability to guarantee the shape and size accuracy of the micro texture structure and the processing quality.
- the superhard cutter head processed by this compound processing method is provided with a number of first micro grooves parallel to each other on the rake face, which can improve the precision of the micro-textured structure and make the cutter head have better sharpening. The effect is to improve the chip breaking and heat removal capacity during the cutting process, increase the service life, and have a higher promotion and application value.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Laser Beam Processing (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Abstract
一种微纳织构超硬刀具刀头(10)及其激光辅助磨削复合加工方法,所述超硬刀具刀头包括前刀面(12)、后刀面(13)和刀尖(11),所述前刀面上设有微织构结构,所述微织构结构包括若干相互平行的第一微沟槽(14);所述第一微沟槽的深度H为50~800μm,相邻两个平行的所述第一微沟槽的距离D为50~800μm,使得散热面积增大,具有更佳的刃磨效果。复合加工方法包括:S1、利用激光器(30)在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽;S2、利用砂轮(20)的尖端对所述第一预制浅沟槽进行磨削加工以快速形成第一微沟槽;S3、重复步骤S1和S2以在所述前刀面上形成多个相互平行的第一微沟槽,提高了加工效率和加工精度。
Description
本申请要求在2020年04月16日提交中国专利局、申请号为202010303081.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及刀具加工技术领域,特别是涉及一种微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法。
单晶金刚石具有极高的硬度(8000HV)和良好的耐磨性,使用单晶金刚石制成的刀具,刀刃可加工得非常锋利,切削时不易粘刀和产生积屑瘤,且摩擦系数低,加工时变形小,刃口在800倍显微镜下观察无缺陷,加工有色金属时表面粗糙度可达Rz 0.1-0.05μm,被加工工件的形状精度控制50nm以下,非常适合用于进行超薄切割和超精密加工,被广泛的应用在光学、印刷、汽车、3C、国防/航空工业、珠宝首饰等行业中,具有广阔的应用前景。
摩擦学研究表明,在刀具的前刀面上加工出具有一定形状的表面微纳织构,可以起到减摩抗磨、增大散热面积的作用,对提高刀具切削性能有显著效果。由于单晶金刚石刀具常用于精密加工领域,其自身结构精度要求非常高,且其具有较高硬度,如何在单晶金刚石刀具表面加工出符合要求的微纳织构具有较大难度,这也是本领域技术人员目前迫切需要解决的问题。
发明内容
为了解决上述背景技术中的问题,本申请提供了一种微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法,其能够保证微织构结构加工的形状尺寸精度、加工质量和效率,可以提高超硬刀具刀头的切削性能和使用寿命。
基于此,本申请的一个方面,提供了一种微纳织构超硬刀具刀头,其包括前刀面、后刀面和刀尖,所述前刀面上设有微织构结构,所述微织构结构包括若干相互平行的第一微沟槽;所述第一微沟槽的深度为50~800μm,相邻两个平行的所述第一微沟槽的距离为50~800μm。
作为可选方案,所述微织构结构还包括若干相互平行的第二微沟槽,所述第一微沟槽与所述第二微沟槽垂直设置。
作为可选方案,所述第二微沟槽的深度为50~800μm,相邻两个平行的所 述第二微沟槽的距离为50~800μm。
作为可选方案,所述第一微沟槽的截面轮廓形状呈V形,所述第一微沟槽的顶角β为30°~120°。
作为可选方案,所述第二微沟槽的截面轮廓形状呈V形,所述第二微沟槽的顶角β为30°~120°。
本申请的另一个方面,提供一种微纳织构超硬刀具刀头的激光辅助磨削复合加工方法,包括如下步骤:
S1、利用激光器在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽;
S2、利用砂轮的尖端对所述第一预制浅沟槽进行磨削加工以快速形成第一微沟槽;
S3、重复步骤S1和S2以在所述前刀面上形成多个相互平行的第一微沟槽。
作为可选方案,在所述步骤S3之后还包括以下步骤:
S4、利用激光器在待加工刀具刀头的前刀面上沿垂直于所述第一微沟槽的方向切割形成第二预制浅沟槽;
S5、利用砂轮的尖端对所述第二预制浅沟槽进行磨削加工以形成第二微沟槽;
S6、重复步骤S4和S5以在所述第一微沟槽的垂直方向上形成多个第二微沟槽。
作为可选方案,所述步骤S1包括:
S11、激光器产生的激光束在待加工刀具刀头的前刀面上沿预设路径形成一第一预制浅沟槽;
S12、调整激光器相对待加工刀具刀头的位置;
S13、重复步骤S11和S12,直至在待加工刀具刀头的前刀面上形成的多个第一预制浅沟槽。
作为可选方案,所述步骤S2包括:
S21、利用砂轮的尖端在待加工刀具刀头的前刀面上沿任意一条所述第一预制浅沟槽进行磨削加工,形成一第一微沟槽;
S22、调整砂轮相对待加工刀具刀头的位置;
S23、重复步骤S21和S22,直至将其它所有的所述第一预制浅沟槽均磨削加工成所述第一微沟槽。
作为可选方案,所述步骤S4包括:
S41、激光器产生的激光束在待加工刀具刀头的前刀面上沿预设路径形成一第二预制浅沟槽;
S42、调整激光器相对待加工刀具刀头的位置;
S43、重复步骤S41和S42,直至在待加工刀具刀头的前刀面上形成的多个第二预制浅沟槽。
作为可选方案,所述步骤S5包括:
S51、利用砂轮的尖端在待加工刀具刀头的前刀面上沿任意一条所述第二预制浅沟槽进行磨削加工,形成一第二微沟槽;
S52、调整砂轮相对待加工刀具刀头的位置;
S53、重复步骤S51和S52,直至将其它所有的所述第二预制浅沟槽均磨削加工成所述第二微沟槽。
作为可选方案,在步骤S1之前,还包括S0步骤:根据待加工刀具刀头微织构的形状,修整砂轮的尖端。
作为可选方案,所述步骤S0包括:
将所述砂轮连接于数控磨床的砂轮轴上;
使所述砂轮与所述砂轮轴作同轴旋转;
使所述砂轮沿着预设磨削路径与修整器进行对磨修整,并将所述砂轮的微尖端的刃型面修整成所需的特定形状。
作为可选方案,所述第一预制浅沟槽的深度为10~50μm,所述第一微沟槽的深度为50~800μm。
作为可选方案,所述第二预制浅沟槽的深度为10~50μm,所述第二微沟槽的深度为50~800μm。
本申请的一种微纳织构超硬刀具刀头,包括前刀面、后刀面和刀尖,通过在前刀面上设有微织构结构,微织构结构包括若干相互平行的第一微沟槽,能增大散热面积,具有更佳的刃磨效果,提升了切削过程中的断屑排热能力和刀头的切削性能,从而提高使用寿命;通过将所述第一微沟槽的深度H设为50~800μm,相邻两个平行的所述第一微沟槽的距离D为50~800μm,便于提高微织构结构的加工精度,具有更佳的刃磨效果,利于提升切削过程中的断屑排热能力,进一步提高刀头的切削性能和使用寿命。
本申请的一种微纳织构超硬刀具刀头的激光辅助磨削复合加工方法,先利 用激光器产生的激光束在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽,再利用砂轮的尖端对第一预制浅沟槽进行磨削加工以快速形成第一微沟槽,通过先利用激光对待加工刀具刀头进行局部热处理,可以大大减少砂轮磨削所需时间,提高加工效率,且砂轮对激光加工而成的第一预制浅沟槽进行磨削加工以形成第一微沟槽,这样可以充分利用激光辅助磨削高精度的优点,提高磨削形成的第一微沟槽的精度,能够有效解决现有技术加工时间长、无法保证微织构结构形状尺寸精度以及加工质量的技术问题。使用这种复合加工方法加工出来的超硬刀具刀头,具有更佳的刃磨效果,提升了切削过程中的断屑排热能力和刀头的切削性能,从而提高使用寿命。
图1是本申请实施例提供的一种微纳织构超硬刀具刀头的结构示意图;
图2是本申请实施例提供的另一种微纳织构超硬刀具刀头的结构示意图;
图3是本申请实施例提供的一种微纳织构超硬刀具刀头的激光辅助磨削复合加工方法的示意图;
图4是本申请实施例提供的一种微纳织构超硬刀具刀头的加工示意图;
图5是本申请实施例提供的另一种微纳织构超硬刀具刀头的加工示意图;
图6是本申请实施例提供的其它一种微纳织构超硬刀具刀头的结构示意图;
图7是超硬刀具刀头的剖视图;
图8是本申请实施例提供的另一种微纳织构超硬刀具刀头的激光辅助磨削复合加工方法的示意图;
图9是图3中的步骤S1的流程图;
图10是图3中的步骤S2的流程图;
图11是图8中的步骤S4的流程图;
图12是图8中的步骤S5的流程图;
图13是图8中的步骤S0的流程图。
其中,10、刀头;11、刀尖;12、前刀面;13、后刀面;14、第一微沟槽;15、切削刃;16、第二微沟槽;20、砂轮;21、刃型面;30、激光器;H、第一微沟槽的深度;D、相邻两个第一微沟槽的距离;β、第一微沟槽的顶角角度。
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
在本申请的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
请参见图1,示意性地示出了本申请的一种微纳织构超硬刀具刀头10,例如为单晶金刚石刀头,所述超硬刀具刀头10包括前刀面12、后刀面13和刀尖11,前刀面12和后刀面13连接的一侧形成切削刃15,所述前刀面12上设有微织构结构,所述微织构结构包括若干相互平行的第一微沟槽14;请再参见图7,所述第一微沟槽14的深度H为50~800μm,相邻两个平行的所述第一微沟槽14的距离D为50~800μm。
基于上述结构的微纳织构超硬刀具刀头10,通过在前刀面12上设置若干相互平行的第一微沟槽14,能增大散热面积,具有更佳的刃磨效果,提升了切削过程中的断屑排热能力和刀头的切削性能,而且,将第一微沟槽14的深度设置为50~800μm,相邻两个平行的第一微沟槽14的距离为50~800μm,便于提高微织构结构的加工精度,具有更佳的刃磨效果,利于提升切削过程中的断屑排热能力,进一步提高刀头的切削性能和使用寿命。
可选地,前刀面12上若干相互平行的第一微沟槽14与超硬刀头的切削方向垂直(如图1中所示),或者,若干相互平行的第一微沟槽14与超硬刀头的切削方向平行(如图2中所示)。
为实现相同的目的,本申请还提供一种微纳织构超硬刀具刀头的激光辅助磨削复合加工方法,请参见图3,示意性地示出了本申请的微纳织构超硬刀具刀头的激光辅助磨削复合加工方法,该复合加工方法包括如下步骤:
步骤S1、利用激光器在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽;
其中,激光器的移动路径为待加工刀具刀头实际需要形成的微织构结构的轮廓路径,通过瞬时高温激光能量将刀具刀头材料软化;
步骤S2、利用砂轮的尖端对所述第一预制浅沟槽进行磨削加工,以快速形成第一微沟槽14;
步骤S3、重复步骤S1和S2以在所述前刀面上形成多个相互平行的第一微 沟槽14。
在本步骤中,需要说明的是,可以选择采用激光器切割完成一条第一预制浅沟槽之后,紧接着就将刚完成的第一预制浅沟槽磨削加工成一条第一微沟槽14,由此交错重复这样的步骤,直至加工完成所有的第一预制浅沟槽和第一微沟槽14;或者也可以选择,将所有的第一预制浅沟槽全部切割完成后,再一次性地将所有的第一预制浅沟槽磨削加工成多个相互平行的第一微沟槽14。可选地,所述第一预制浅沟槽的深度为10~50μm。
采用上述复合加工方法加工微纳织构超硬刀具刀头,如图4所示,先利用激光器30产生的激光束在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽,再利用砂轮20的尖端对第一预制浅沟槽进行磨削加工,形成第一微沟槽14,通过先利用激光对待加工刀具刀头进行局部热处理,可以大大减少砂轮磨削所需时间,提高加工效率,且砂轮20对激光加工而成的第一预制浅沟槽进行磨削加工以形成第一微沟槽14,这样可以充分利用激光辅助磨削高精度的优点,提高磨削形成的第一微沟槽14的精度,能够有效解决现有技术加工时间长、无法保证微织构结构形状尺寸精度以及加工质量的技术问题。
使用上述复合加工方法加工出来的微纳织构超硬刀具刀头10,在前刀面12上加工出若干相互平行的第一微沟槽14,能有效提高微织构结构的精度,使得超硬刀具刀头10具有更佳的刃磨效果,提升切削过程中的断屑排热能力和刀头的切削性能,而且,将第一微沟槽14的深度H加工为50~800μm,相邻两个平行的第一微沟槽14的距离D为50~800μm,便于提高微织构结构的加工精度,更利于提升切削过程中的断屑排热能力,进一步提高刀头的切削性能和使用寿命。
可选地,所述砂轮20的直径为50~100毫米,宽度0.3~10毫米,厚度4毫米,磨料粒度为60~1500目。进一步可选地,在步骤S2中砂轮20的尖端对第一预制浅沟槽进行磨削加工时,砂轮20的转速为1000~6000转/分,砂轮20的法向进给深度为1~20微米,进给速度为1000~1000毫米/分。
作为可选的实施方式,如图6所示,超硬刀具刀头10的微织构结构还包括若干相互平行的第二微沟槽16,所述第一微沟槽14与所述第二微沟槽16垂直设置,这样能进一步增大散热面积,使得刀头10具有更佳的磨效果,由此进一步提升切削过程中的断屑排热能力和刀头的切削性能。
可选地,所述第二微沟槽16的深度为50~800μm,相邻两个平行的所述第二微沟槽16的距离为50~800μm,由这样的第一微沟槽14和第二微沟槽16形成的微织构结构,可以使得超硬刀具刀头10具有更好的刃磨效果。进一步可选地,第一微沟槽14和第二微沟槽16的深度为200μm,该尺寸的微织构结构可 以使得超硬刀头的刃磨效果最佳。进一步地,参见图7所示,所述第一微沟槽14和所述第二微沟槽16的截面轮廓形状均呈V形,所述第一微沟槽14和所述第二微沟槽16的顶角β为30°~120°,以使得微织构结构断屑排热能力更佳,从而提高刀头的刃磨效果。当然,在其他实施例中,所述第一微沟槽14和所述第二微沟槽16的截面轮廓形状也可以呈U形或者圆弧形。
作为可选的实施方式,参见图8所示,所述复合加工方法在所述步骤S3之后还包括以下步骤:
S4、利用激光器在待加工刀具刀头的前刀面上沿垂直于所述第一微沟槽的方向切割形成第二预制浅沟槽;
S5、利用砂轮的尖端对所述第二预制浅沟槽进行磨削加工以形成第二微沟槽;
S6、重复步骤S4和S5以在所述第一微沟槽的垂直方向上形成多个第二微沟槽。
在本步骤中,需要说明的是,可以选择采用激光器30切割完成一条第二预制浅沟槽之后,紧接着就将刚完成的第二预制浅沟槽磨削加工成一条第二微沟槽16,由此交错重复这样的步骤,直至加工完成所有的第二预制浅沟槽和第二微沟槽16;或者也可以选择,将所有的第二预制浅沟槽全部切割完成后,再一次性地将所有的第二预制浅沟槽磨削加工成多个相互平行的第二微沟槽16。可选地,在本实施例中,所述第二预制浅沟槽的深度为10~50μm。
具体地,参见图9所示,所述步骤S1包括:
S11、激光器产生的激光束在待加工刀具刀头的前刀面上沿预设路径形成一第一预制浅沟槽;
S12、调整激光器相对待加工刀具刀头的位置;
S13、重复步骤S11和S12,直至在待加工刀具刀头的前刀面上形成的多个第一预制浅沟槽。
在采用激光器30加工第一预制浅沟槽的工艺流程中,需要激光器30产生的激光束按预设路径移动,以使得其在前刀面12上加工出所述第一预制浅沟槽,当第一预制浅沟槽的数量为多条时,在加工完前一条第一预制浅沟槽后,需要调整激光器30相对待加工刀具刀头的位置,然后再判断当前第一预制浅沟槽的数量是否达到预定数量,如果未达到则继续加工下一条第一预制浅沟槽,如果已达到则激光器30停止工作,从而实现所有第一预制浅沟槽加工完成。
更具体地,参见图10所示,所述步骤S2包括:
S21、利用砂轮的尖端在待加工刀具刀头的前刀面上沿任意一条所述第一预制浅沟槽进行磨削加工,形成一第一微沟槽;
S22、调整砂轮相对待加工刀具刀头的位置;
S23、重复步骤S21和S22,直至将其它所有的所述第一预制浅沟槽均磨削加工成所述第一微沟槽。
在加工所述第一微沟槽14的步骤中,例如在第一微沟槽14与超硬刀头的切削方向垂直的具体实施例中(如图4所示),即步骤S11中激光器30的预设路径也垂直于超硬刀头的切削方向。步骤S12中调整激光器30相对待加工刀具刀头的位置的动作具体为,激光器30先沿X轴的负方向退回第一预设距离,再沿Z轴移动第二预设距离,其中第二预设距离等于相邻两条所述微沟槽14之间的间距D。步骤S22中调整砂轮20相对待加工刀具刀头的位置的动作具体为,砂轮20先沿X轴的负方向退回第一预设距离,再沿Z轴移动第二预设距离。可选地,在其它实施例中,在磨削完一条第一微沟槽14之后,步骤S22中调整砂轮20相对待加工刀具刀头的位置的动作也可以为,砂轮20直接沿Z轴移动第二预设距离,这样,砂轮20在磨削下一条第一微沟槽14的时候,移动方向与加工前一条微沟槽14时相反,其磨削路径呈弓字形,从而提高磨削效率。
同理,如在第一微沟槽14与超硬刀头的切削方向平行的具体实施例中(如图5所示),即步骤S11中激光器30的预设路径也平行于超硬刀头的切削方向。步骤S12中调整激光器30相对待加工刀具刀头的位置的动作具体为,激光器30先沿Z轴的负方向退回第一预设距离,再沿X轴移动第二预设距离,其中第二预设距离等于相邻两条所述微沟槽14之间的间距D。步骤S22中调整砂轮20相对待加工刀具刀头的位置的动作具体为,砂轮20先沿Z轴的负方向退回第一预设距离,再沿X轴移动第二预设距离。
同样地,参见图11,所述步骤S4包括:
S41、激光器产生的激光束在待加工刀具刀头的前刀面上沿预设路径形成一第二预制浅沟槽;
S42、调整激光器相对待加工刀具刀头的位置;
S43、重复步骤S41和S42,直至在待加工刀具刀头的前刀面上形成的多个第二预制浅沟槽。
进一步地,同理,参见图12,所述步骤S5包括:
S51、利用砂轮的尖端在待加工刀具刀头的前刀面上沿任意一条所述第二预制浅沟槽进行磨削加工,形成一第二微沟槽;
S52、调整砂轮相对待加工刀具刀头的位置;
S53、重复步骤S51和S52,直至将其它所有的所述第二预制浅沟槽均磨削加工成所述第二微沟槽。
进一步,可选地,参见图7所示,在步骤S1之前,所述复合方法还包括S0步骤:根据待加工刀具刀头微织构的形状,修整砂轮的尖端。
示例性地,参见图13所示,所述步骤S0具体地包括如下步骤:
S01、将所述砂轮连接于数控磨床的砂轮轴上;
S02、使所述砂轮与所述砂轮轴作同轴旋转;
S03、使所述砂轮沿着预设磨削路径与修整器进行对磨修整,并将所述砂轮的尖端的刃型面21修整成所需的特定形状。
还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
综上所述,本申请提供的微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法,先利用激光器产生的激光束在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽,再利用砂轮的尖端对第一预制浅沟槽进行磨削加工以形成第一微沟槽,通过先利用激光对待加工刀具刀头进行局部热处理,可以大大减少砂轮磨削所需时间,提高加工效率,且砂轮对激光加工而成的第一预制浅沟槽进行磨削加工以形成第一微沟槽,可以充分利用激光辅助磨削高精度的优点,提高磨削形成的第一微沟槽的精度,能够有效解决现有技术加工时间长、无法保证微织构结构形状尺寸精度以及加工质量的技术问题。使用这种复合加工方法加工出来的超硬刀头,在其前刀面上设置有若干相互平行的第一微沟槽,能提高微织构结构的精度,使得刀头具有更佳的刃磨效果,提升切削过程中的断屑排热能力,提高使用寿命,具有较高的推广应用价值。
Claims (15)
- 一种微纳织构超硬刀具刀头,包括前刀面、后刀面和刀尖,所述前刀面上设有微织构结构,所述微织构结构包括若干相互平行的第一微沟槽;所述第一微沟槽的深度H为50~800μm,相邻两个平行的所述第一微沟槽的距离D为50~800μm。
- 根据权利要求1所述的微纳织构超硬刀具刀头,其中,所述微织构结构还包括若干相互平行的第二微沟槽,所述第一微沟槽与所述第二微沟槽垂直设置。
- 根据权利要求2所述的微纳织构超硬刀具刀头,其中,所述第二微沟槽的深度为50~800μm,相邻两个平行的所述第二微沟槽的距离为50~800μm。
- 根据权利要求1所述的微纳织构超硬刀具刀头,其中,所述第一微沟槽的截面轮廓形状呈V形,所述第一微沟槽的顶角β为30°~120°。
- 根据权利要求2所述的微纳织构超硬刀具刀头,其中,所述第二微沟槽的截面轮廓形状呈V形,所述第二微沟槽的顶角β为30°~120°。
- 一种微纳织构超硬刀具刀头的激光辅助磨削复合加工方法,包括如下步骤:S1、利用激光器在待加工刀具刀头的前刀面上切割形成第一预制浅沟槽;S2、利用砂轮的尖端对所述第一预制浅沟槽进行磨削加工以快速形成第一微沟槽;S3、重复步骤S1和S2以在所述前刀面上形成多个相互平行的第一微沟槽。
- 根据权利要求6所述的复合加工方法,其中,在所述步骤S3之后还包括以下步骤:S4、利用激光器在待加工刀具刀头的前刀面上沿垂直于所述第一微沟槽的方向切割形成第二预制浅沟槽;S5、利用砂轮的尖端对所述第二预制浅沟槽进行磨削加工以形成第二微沟槽;S6、重复步骤S4和S5以在所述第一微沟槽的垂直方向上形成多个第二微沟槽。
- 根据权利要求6所述的复合加工方法,其中,所述步骤S1包括:S11、激光器产生的激光束在待加工刀具刀头的前刀面上沿预设路径形成一第一预制浅沟槽;S12、调整激光器相对待加工刀具刀头的位置;S13、重复步骤S11和S12,直至在待加工刀具刀头的前刀面上形成的多个第一预制浅沟槽。
- 根据权利要求6所述的复合加工方法,其中,所述步骤S2包括:S21、利用砂轮的尖端在待加工刀具刀头的前刀面上沿任意一条所述第一预制浅沟槽进行磨削加工,形成一第一微沟槽;S22、调整砂轮相对待加工刀具刀头的位置;S23、重复步骤S21和S22,直至将其它所有的所述第一预制浅沟槽均磨削加工成所述第一微沟槽。
- 根据权利要求7所述的复合加工方法,其中,所述步骤S4包括:S41、激光器产生的激光束在待加工刀具刀头的前刀面上沿预设路径形成一第二预制浅沟槽;S42、调整激光器相对待加工刀具刀头的位置;S43、重复步骤S41和S42,直至在待加工刀具刀头的前刀面上形成的多个第二预制浅沟槽。
- 根据权利要求7所述的复合加工方法,其中,所述步骤S5包括:S51、利用砂轮的尖端在待加工刀具刀头的前刀面上沿任意一条所述第二预制浅沟槽进行磨削加工,形成一第二微沟槽;S52、调整砂轮相对待加工刀具刀头的位置;S53、重复步骤S51和S52,直至将其它所有的所述第二预制浅沟槽均磨削加工成所述第二微沟槽。
- 根据权利要求6所述的复合加工方法,其中,在步骤S1之前,还包括S0步骤:根据待加工刀具刀头微织构的形状,修整砂轮的尖端。
- 根据权利要求12所述的复合加工方法,其中,所述步骤S0包括:将所述砂轮轴连接于数控磨床的砂轮轴上;使所述砂轮与所述砂轮轴作同轴旋转;使所述砂轮沿着预设磨削路径与修整器进行对磨修整,并将所述砂轮的尖端的刃型面修整成所需的特定形状。
- 根据权利要求6所述的复合加工方法,其中,所述第一预制浅沟槽的深度为10~50μm,所述第一微沟槽的深度为50~800μm。
- 根据权利要求7所述的复合加工方法,其中,所述第二预制浅沟槽的 深度为10~50μm,所述第二微沟槽的深度为50~800μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010303081.8 | 2020-04-16 | ||
CN202010303081.8A CN111590096A (zh) | 2020-04-16 | 2020-04-16 | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021208485A1 true WO2021208485A1 (zh) | 2021-10-21 |
Family
ID=72190288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/139165 WO2021208485A1 (zh) | 2020-04-16 | 2020-12-24 | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111590096A (zh) |
WO (1) | WO2021208485A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111590096A (zh) * | 2020-04-16 | 2020-08-28 | 汇专科技集团股份有限公司 | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 |
CN117124371A (zh) * | 2023-10-26 | 2023-11-28 | 成都飞机工业(集团)有限责任公司 | 一种超声圆盘刀及其加工方法 |
CN117548703A (zh) * | 2024-01-12 | 2024-02-13 | 山东建筑大学 | 一种仿生圆鳞结构微织构刀具及加工方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113894498B (zh) * | 2021-10-28 | 2022-07-29 | 山东大学 | 一种基于超声滚压和飞秒激光加工的微纳织构导轨及方法 |
CN115070513B (zh) * | 2022-05-20 | 2023-11-10 | 江麓机电集团有限公司 | 一种高刚度断续磨头及其激光辅助制造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4629373A (en) * | 1983-06-22 | 1986-12-16 | Megadiamond Industries, Inc. | Polycrystalline diamond body with enhanced surface irregularities |
CN102228998A (zh) * | 2011-06-13 | 2011-11-02 | 华南理工大学 | 一种钛合金切削用刀具及其制作方法 |
CN103028746A (zh) * | 2012-11-09 | 2013-04-10 | 山东大学 | 一种微纳复合织构自润滑陶瓷刀具及其制备方法 |
CN104985206A (zh) * | 2015-03-23 | 2015-10-21 | 贵州大学 | 一种金属切削刀具织构结构 |
CN106271493A (zh) * | 2015-05-21 | 2017-01-04 | 中国科学院宁波材料技术与工程研究所 | 一种激光预制微织构辅助超声铣削工艺方法及加工系统 |
CN109676258A (zh) * | 2019-01-21 | 2019-04-26 | 南京航空航天大学 | 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法 |
CN110524013A (zh) * | 2019-09-09 | 2019-12-03 | 湖南科技大学 | 一种具有纳米涂层的微织构刀具及其制备方法 |
CN110744201A (zh) * | 2019-09-17 | 2020-02-04 | 广东工业大学 | 一种微织构刀具的制备方法及微织构刀具 |
CN111496279A (zh) * | 2020-04-16 | 2020-08-07 | 深圳大学 | 一种微结构刀头及其电火花辅助机械磨削复合加工方法 |
CN111590096A (zh) * | 2020-04-16 | 2020-08-28 | 汇专科技集团股份有限公司 | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639738A (ja) * | 1992-07-28 | 1994-02-15 | Hitachi Ltd | セラミックス工具及び研磨装置 |
KR20100032650A (ko) * | 2008-09-18 | 2010-03-26 | 한국기계연구원 | 레이저 및 절삭 공구를 이용한 홈 가공 방법 |
CN102189287A (zh) * | 2011-04-11 | 2011-09-21 | 山东大学 | 一种微织构自润滑钻头及其制备方法 |
CN206028758U (zh) * | 2016-08-19 | 2017-03-22 | 富耐克超硬材料股份有限公司 | 一种新型超硬刀具 |
CN212734210U (zh) * | 2020-04-16 | 2021-03-19 | 科益展智能装备有限公司 | 一种微纳织构超硬刀具刀头 |
-
2020
- 2020-04-16 CN CN202010303081.8A patent/CN111590096A/zh active Pending
- 2020-12-24 WO PCT/CN2020/139165 patent/WO2021208485A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4629373A (en) * | 1983-06-22 | 1986-12-16 | Megadiamond Industries, Inc. | Polycrystalline diamond body with enhanced surface irregularities |
CN102228998A (zh) * | 2011-06-13 | 2011-11-02 | 华南理工大学 | 一种钛合金切削用刀具及其制作方法 |
CN103028746A (zh) * | 2012-11-09 | 2013-04-10 | 山东大学 | 一种微纳复合织构自润滑陶瓷刀具及其制备方法 |
CN104985206A (zh) * | 2015-03-23 | 2015-10-21 | 贵州大学 | 一种金属切削刀具织构结构 |
CN106271493A (zh) * | 2015-05-21 | 2017-01-04 | 中国科学院宁波材料技术与工程研究所 | 一种激光预制微织构辅助超声铣削工艺方法及加工系统 |
CN109676258A (zh) * | 2019-01-21 | 2019-04-26 | 南京航空航天大学 | 一种基于激光与精密刃磨的cvd金刚石微铣刀制备方法 |
CN110524013A (zh) * | 2019-09-09 | 2019-12-03 | 湖南科技大学 | 一种具有纳米涂层的微织构刀具及其制备方法 |
CN110744201A (zh) * | 2019-09-17 | 2020-02-04 | 广东工业大学 | 一种微织构刀具的制备方法及微织构刀具 |
CN111496279A (zh) * | 2020-04-16 | 2020-08-07 | 深圳大学 | 一种微结构刀头及其电火花辅助机械磨削复合加工方法 |
CN111590096A (zh) * | 2020-04-16 | 2020-08-28 | 汇专科技集团股份有限公司 | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111590096A (zh) * | 2020-04-16 | 2020-08-28 | 汇专科技集团股份有限公司 | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 |
CN117124371A (zh) * | 2023-10-26 | 2023-11-28 | 成都飞机工业(集团)有限责任公司 | 一种超声圆盘刀及其加工方法 |
CN117124371B (zh) * | 2023-10-26 | 2024-03-15 | 成都飞机工业(集团)有限责任公司 | 一种超声圆盘刀及其加工方法 |
CN117548703A (zh) * | 2024-01-12 | 2024-02-13 | 山东建筑大学 | 一种仿生圆鳞结构微织构刀具及加工方法 |
CN117548703B (zh) * | 2024-01-12 | 2024-03-12 | 山东建筑大学 | 一种仿生圆鳞结构微织构刀具及加工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111590096A (zh) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021208485A1 (zh) | 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法 | |
Xie et al. | Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy | |
JP4931964B2 (ja) | 高硬度材の加工装置及び加工方法 | |
CN109333385B (zh) | 一种带有微结构的金刚石砂轮及其制备方法 | |
CN110202478B (zh) | 一种圆弧形金刚石砂轮的修整方法 | |
CN202964426U (zh) | 砂轮 | |
CN105665805B (zh) | 一种淬硬钢模具专用可转位冠球头铣刀 | |
CN110293482B (zh) | 一种圆弧形金刚石砂轮的修锐方法 | |
CN109070315B (zh) | 一种微沟槽加工用的砂轮工具及其制造方法 | |
JP2016112678A (ja) | ダイヤモンド焼結体ボールエンドミルとその製造方法 | |
CN103769960B (zh) | 一种具有微切削刃阵列结构的球形铣刀的制造方法 | |
CN212734210U (zh) | 一种微纳织构超硬刀具刀头 | |
JP4878517B2 (ja) | ダイヤモンド工具 | |
CN1915597B (zh) | 金刚石微刀具阵列的制造方法 | |
CN214392488U (zh) | 一种用于复合材料钻孔用环形刀具 | |
Fujita et al. | Ultra-fine grooving technology with high aspect ratio for cemented carbide by PCD (poly-crystalline diamond) blade | |
TWI417169B (zh) | Cutting tools with the top of the complex cutting | |
JP5183256B2 (ja) | 切削工具とこれを用いた切削方法 | |
CN115351609A (zh) | 一种近无崩刃微圆弧金刚石刀具的力控制机械刃磨工艺 | |
US20210220931A1 (en) | Non-toothed hard alloy tipped circular saw blade | |
CN100391666C (zh) | 钢零件淬火热处理后干态硬车的切削方法 | |
CN106985289B (zh) | 一种超硬材料表面金字塔结构化制造方法 | |
CN111376007A (zh) | 焊接式伪球头金刚石微铣刀、微铣刀片、制造工艺 | |
JP2008229764A (ja) | 回転工具及び加工方法 | |
CN216178986U (zh) | 一种研磨圆弧车刀的研刀器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20930937 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/03/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20930937 Country of ref document: EP Kind code of ref document: A1 |