WO2021208283A1 - 一种用于大型零件加工的超声振动平台及其操作工艺 - Google Patents

一种用于大型零件加工的超声振动平台及其操作工艺 Download PDF

Info

Publication number
WO2021208283A1
WO2021208283A1 PCT/CN2020/103007 CN2020103007W WO2021208283A1 WO 2021208283 A1 WO2021208283 A1 WO 2021208283A1 CN 2020103007 W CN2020103007 W CN 2020103007W WO 2021208283 A1 WO2021208283 A1 WO 2021208283A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
horn
stage
longitudinal
ultrasonic
Prior art date
Application number
PCT/CN2020/103007
Other languages
English (en)
French (fr)
Inventor
丁文锋
吴帮福
徐九华
傅玉灿
苏宏华
陈燕
杨长勇
赵正彩
张全利
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2021208283A1 publication Critical patent/WO2021208283A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies

Definitions

  • the invention belongs to the technical field of ultrasonic processing, and particularly relates to an ultrasonic vibration platform used for processing large-scale parts and an operation technology thereof.
  • Ultrasonic machining is the use of ultrasonic vibration tools in the abrasive liquid medium or dry abrasive to produce abrasive impact, polishing, hydraulic impact and the resulting cavitation to remove materials, or to apply tools or workpieces in a certain direction Ultrasonic vibration is used for vibration processing.
  • the invention patent discloses a grinding device that applies ultrasonic vibration to the tool. This device fixes the grinding wheel on the ultrasonic knife. The end of the shank can thus be ground. When the diameter of the grinding wheel is large, the application of the device will be limited.
  • the invention patent discloses a horizontal ultrasonic vibration auxiliary grinding device, which connects two ultrasonic vibration systems in linear series to realize the overall horizontal vibration of multiple small workpieces.
  • the fixed platform of most ultrasonic vibration devices is small, and the application range is limited when the workpiece is large.
  • the present invention provides an ultrasonic vibration platform with a simple structure and convenient for processing large parts.
  • An ultrasonic vibration platform for processing large parts including piezoelectric ceramic transducer, longitudinal vibration horn, bending vibration horn, vibration transmission rod, stage, front support, rear support and vibration isolation base;
  • the longitudinal vibration horn is fixed on the front bracket through a flange, the front end is connected with the piezoelectric ceramic transducer, and the rear end is connected with the bending vibration horn.
  • the bending vibration horn is connected to the load at 1/4 and 3/4 of the length.
  • the front end of the stage is connected, the two ends of the side of the bending vibration horn are connected with one end of the vibration transmission rod, and the other end of the vibration transmission rod is connected with the back end of the stage.
  • the rear brackets are respectively fixed on the vibration isolation base.
  • the longitudinal vibration horn is a single horn structure or a multi-segment composite horn structure, the flange is located at the vibration node, and there are three through holes on one side in the circumferential direction.
  • the flexural vibration horn can generate flexural vibrations of 5 levels of vibration, and its axial section is rectangular, with threaded holes in the middle of one side of the rod, and 1/4 and 3/4 on the other side of the rod. At the same time, threaded holes are opened at both ends.
  • the axial section of the vibration transmission rod is a rectangular structure, the two ends of the side surface are respectively provided with threaded holes, and the middle position of the outer side is provided with a threaded hole.
  • the stage is a stepped structure with a narrow front and a wide rear.
  • a threaded hole is provided at the connection between the front end and the bending vibration horn, and a through hole is opened at the connection between the rear end and the vibration transmission rod.
  • the invention converts the single-excited ultrasonic longitudinal vibration into the flexural vibration of multiple antinodes, and then converts the multiple flexural vibrations into multiple longitudinal vibration outputs, thereby causing the entire stage to generate longitudinal vibrations.
  • Simplifies the overall structure of the ultrasonic vibration platform for processing large parts reduces the complexity of the vibration system, and facilitates processing and manufacturing; in addition, the vibration device only needs an ultrasonic power source for excitation, which is less difficult to control and avoids the problem of mutual matching of multiple excitations. Improve the reliability of the system.
  • Figure 1 is a schematic diagram of the overall structure of an ultrasonic vibration platform for processing large parts of the present invention
  • Fig. 2 is a schematic diagram of the structure of the longitudinal vibrating horn 2 in Fig. 1;
  • FIG. 3 is a cross-sectional view of the flexural vibration horn 3 in FIG. 1;
  • Fig. 4 is a cross-sectional view of the vibration transmission rod 4 in Fig. 1;
  • FIG. 5 is a schematic diagram of the structure of the stage 5 in FIG. 1;
  • Figure 6 is a diagram of the ultrasonic vibration effect obtained in Example 1.
  • Fig. 7 is a partial structural dimension diagram of the ultrasonic vibration platform in the second embodiment.
  • FIG. 1 is a schematic diagram of the overall structure of an ultrasonic vibration platform for processing large parts of the present invention
  • FIG. 2 is a schematic diagram of the structure of the longitudinal vibration horn 2 in FIG. 1.
  • the ultrasonic vibration platform for processing large parts includes piezoelectric ceramic transducer 1, longitudinal vibration horn 2, bending vibration horn 3, vibration transmission rod 4, stage 5, and rear bracket 6. Front support 7 and vibration isolation base 8.
  • the longitudinal vibration horn 2 is fixed on the concave table of the front bracket 7 through a flange 9, the front end is connected with the piezoelectric ceramic transducer 1 through a double-ended stud, and the rear end is connected with the bending vibration horn 3 through a double-ended stud. Connection; 1/4 and 3/4 of the length of the flexural vibration horn 2 are connected with the front end of the stage 5.
  • the two ends of the side of the flexural vibration horn 2 are connected with one end of the vibration transmission rod 4, and the other end of the vibration transmission rod 4 is connected with the load
  • the back end of the object table 5 is connected, the middle node of the vibration transmission rod 4 is fixed on the rear support 6 by bolts, and the front support 7 and the rear support 6 are respectively fixed on the vibration isolation base 8.
  • Fig. 3 is a cross-sectional view of the flexural vibration horn 3.
  • the flexural vibration horn 3 can generate 5 levels of flexural vibration. Its axial section is a rectangular structure. There is a threaded hole 12 in the middle of one side of the rod. There are through holes 11 at 1/4 and 3/4 of the length on the other side, and threaded holes 10 are opened at both ends.
  • the vibration transmission rod 4 is a cross-sectional view of the vibration transmission rod 4, the axial cross section of the vibration transmission rod 4 is a rectangular structure, the two ends are respectively provided with threaded holes 13, and the middle position of the outer side is provided with a threaded hole 14.
  • FIG. 5 is a schematic diagram of the structure of the stage.
  • the stage 5 is a stepped structure with a narrow front and a wide rear.
  • Two threaded holes 15 are opened at the junction of the front end and the bending vibration horn 3, and the two sides of the rear end are connected with the vibration transmission rod.
  • 4 through holes 16 are opened at the connection.
  • the workpiece is fixed on the stage 5, the ultrasonic power is turned on, and the piezoelectric ceramic transducer 1 generates longitudinal ultrasonic vibration under the action of an external excitation voltage, and passes the longitudinal ultrasonic vibration through the longitudinal vibration horn 2 Amplify, the amplified ultrasonic vibration is transmitted to the flexural vibration horn 3, so that the flexural vibration horn 3 produces 5 levels of flexural vibration, in which the length of the flexural vibration horn 3 is 1/4 and 3/
  • the antinodes at 4 places are transmitted to the front end of the stage, and the antinodes at both ends of the flexural vibration horn are transmitted to the back end of the stage through the vibration transmission rod 4, which finally makes the entire stage vibrate, and then drives the workpiece to vibrate ,
  • the vibration effect is shown in Figure 6.
  • the flatness and perpendicularity of the contact surfaces between the piezoelectric ceramic transducer 1, the longitudinal vibration horn 2, the bending vibration horn 3, the vibration transmission rod 4 and the stage 5 should be ensured, and the contact surfaces should be avoided. There are gaps, which cause energy loss and reduce the vibration effect of the platform.
  • the ultrasonic vibration platform In order to ensure the vibration effect of the workpiece, first determine the size of the stage 5 according to the size of the workpiece, and then determine the size of the bending vibration horn 3 and the vibration transmission rod 4 through the size of the 5 stage. Therefore, the required ultrasonic vibration frequency range is selected, and the resonance frequency and size of the longitudinal vibration horn 2 and the piezoelectric ceramic transducer 1 are finally determined. At the same time, since the stage 5 is ultrasonically vibrated as a whole, the workpiece can obtain uniform vibration as a whole instead of local vibration, which enhances the application effect of ultrasonic vibration.
  • the ultrasonic vibration platform first estimate the size of the workpiece, assuming that the workpiece is a rectangular parallelepiped, regardless of the thickness of the workpiece, its length is 100mm, and its width is 100mm. Since the threaded holes on the structure are located at the flange and the vibration node, the impact on the structure is small. At the same time, in order to simplify the calculation, the design of the threaded holes is not considered in this embodiment.
  • the structure size of the ultrasonic vibration primary computing platform include long L 1 and width W 1, and the length L 2 width W 2, the bending vibration horn stage pass the horn length L 3 and a width W 3, longitudinal vibration The length L 4 of the horn, the major diameter D at the front end and the minor diameter d at the rear end.
  • the length L 2 of the vibrating rod satisfies the half-wavelength law, namely
  • the flexural vibration horn is used to generate flexural vibration with multiple vibration levels. Refer to Feng Ruo's "Ultrasonic Handbook" for its resonance length
  • is the wavelength
  • r is the radius of gyration of the section
  • J is the moment of inertia of the rod section to the neutral axis
  • S is the cross-sectional area
  • E and G are the tensile and compression elastic modulus and shear modulus of the rod material, respectively
  • A, B, P and Q are coefficients, which are related to the number of vibration levels.
  • the cross-section of the flexural vibration horn is square.
  • the length of the longitudinal vibrating horn is L 4 , the large diameter at the front end D and the small diameter at the rear end d
  • the longitudinal vibration horn can choose a single horn or a compound horn. Whether it is a single horn or a compound horn, there are many design reference materials, so I won't introduce it in detail here.
  • a conical horn is selected for calculation, and the frequency equation is
  • the working frequency of this platform that is, the resonant frequency is 20000Hz
  • the length L 4 of the longitudinal vibration horn is 166 mm

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明涉及一种用于大型零件加工的超声振动平台及其操作工艺,该平台包括压电陶瓷换能器、纵向振动变幅杆、弯曲振动变幅杆、传振杆、载物台、前支架、后支架和隔振底座,其中,弯曲振动变幅杆长度1/4和3/4处与载物台前端连接,弯曲振动变幅杆侧面两末端与传振杆一端连接,传振杆另一端与载物台后端连接。压电陶瓷换能器在外界激励电压作用下产生纵向超声振动,1级纵向振动变幅杆的纵向振动通过弯曲振动变幅杆把单激励超声纵向振动转换为多个波腹的弯曲振动,再将多个弯曲振动转换为多个纵向振动输出,从而使载物台整体产生纵向振动。可以实现大型零件的超声振动加工。

Description

一种用于大型零件加工的超声振动平台及其操作工艺 技术领域
本发明属于超声加工技术领域,尤其涉及用于大型零件加工的超声振动平台及其操作工艺。
技术背景
超声加工是利用超声振动的工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或者给工具或工件沿一定方向施加超声频振动进行振动加工。
如果对工具施加超声振动,随着工具的磨损或负载的剧烈变化,超声振动系统的频率会发生改变,影响加工的稳定性。针对一些特定的加工机床,对工具头施加超声振动也多有不便,例如发明专利(公开号:CN206286938U)公开了一种对工具施加超声振动的磨削装置,该装置通过将砂轮固定在超声波刀柄末端从而实现磨削加工,当砂轮直径较大时,该装置的应用将受到限制。
因此许多研究者尝试对工件施加超声振动,并取得了一些研究成果。例如发明专利(公开号:CN108788974A)公开了一种水平超声振动辅助磨削装置,该装置将两个超声振动系统呈直线式串联在一起,能够实现多个小型工件的整体水平振动。但是大部分超声振动装置的固定平台较小,在工件较大的情况下,应用范围有限。
发明内容
本发明为了解决现有技术中的不足之处,提供了一种结构简单,便于大型零件加工的超声振动平台。
为了实现上述发明目的,本发明采用的技术方案是:
一种用于大型零件加工的超声振动平台,包括压电陶瓷换能器、纵向振动变幅杆、弯曲振动变幅杆、传振杆、载物台、前支架、后支架和隔振底座;纵向振动变幅杆通过法兰固定在前支架上,前端与压电陶瓷换能器连接,后端与弯曲振动变幅杆连接,弯曲振动变幅杆长度1/4和3/4处与载物台前端连接,弯曲振动变幅杆侧面两末端与传振杆一端连接,传振杆另一端与载物台后端连接,传振杆中间节点位置通过螺栓固定在后支架上,前支架和后支架分别固定在隔振底座上。
所述纵向振动变幅杆是单一的变幅杆结构,或者是多段复合的变幅杆结构,法兰位于振动节点处,圆周方向一侧有3个通孔。
所述弯曲振动变幅杆可以产生5级振动级数的弯曲振动,其轴向截面为矩形结构,杆的一侧中间位置有螺纹孔,杆另一侧1/4和3/4处有通孔,同时两端开设螺纹孔。
所述传振杆轴向截面为矩形结构,侧面两端分别有螺纹孔,外侧中间位置开设螺纹孔。
所述载物台为前窄后宽的阶梯形结构,前端与弯曲振动变幅杆连接处开设有螺纹孔,后端与传振杆连接处开设有通孔。
本发明通过弯曲振动变幅杆的特殊结构把单激励超声纵向振动转换为多个波腹的弯曲振动,再将多个弯曲振动转换为多个纵向振动输出,从而使载物台整体产生纵向振动,简化了大型零件加工超声振动平台的整体结构,降低了振动系统的复杂程度,便于加工制造;另外该振动装置仅需要一个超声电源进行激励,控制难度小,避免了多激励的相互匹配问题,提高了系统工作可靠性。
附图说明
图1是本发明大型零件加工的超声振动平台的整体结构示意图;
图2是图1中纵向振动变幅杆2的结构示意图;
图3是图1中弯曲振动变幅杆3的剖面图;
图4是图1中传振杆4的剖面图;
图5是图1中载物台5的结构示意图;
图6是实施例1所得超声振动效果图;
图7是实施例2中超声振动平台部分结构尺寸图。
具体实施方式
以下将结合实施例和附图具体说明本发明的技术方案。
实施例1
图1是本发明大型零件加工的超声振动平台整体结构示意图,图2是图1中纵向振动变幅杆2的结构示意图。
参照图1-2所示,大型零件加工的超声振动平台包括压电陶瓷换能器1、纵向振动变幅杆2、弯曲振动变幅杆3、传振杆4、载物台5、后支架6、前支架7和隔振底座8。
纵向振动变幅杆2通过法兰9固定在前支架7的凹台上,前端与压电陶瓷换能器1通过双头螺柱连接,后端与弯曲振动变幅杆3通过双头螺柱连接;弯曲振动变幅杆2长度1/4和3/4处与载物台5前端连接,弯曲振动变幅杆2侧面两末端与传振杆4一端连接,传振杆4另一端与载物台5后端连接,传振杆4中间节点位置通过螺栓固定在后支架6上,前支架7和后支架6分别固定在隔振底座8上。
图3是弯曲振动变幅杆3的剖面图,弯曲振动变幅杆3可以产生5级振动级数的弯曲振动,其轴向截面为矩形结构,杆的一侧中间位置有螺纹孔12,杆另一侧长度1/4和3/4处有通孔11,同时两端开设螺纹孔10。
图4是传振杆4的剖面图,传振杆4的轴向截面为矩形结构,两端分别有螺纹孔13,外侧中间位置开设螺纹孔14。
图5是载物台的结构示意图,载物台5为前窄后宽的阶梯形结构,前端与弯曲振动变幅杆3连接处开设有两个螺纹孔15,后端两侧与传振杆4连接处开设有通孔16。
在超声振动辅助加工试验中,工件固定在载物台5上,开启超声波电源,压电陶瓷换能器1在外界激励电压作用下产生纵向超声振动,并将纵向超声振动通过纵向振动变幅杆2放大,经过放大的超声振动传递至弯曲振动变幅杆3,使得弯曲振动变幅杆3产生5级振动级数的弯曲振动,其中弯曲振动变幅杆3长度纵向长度1/4和3/4处的波腹传至载物台的前端,弯曲振动变幅杆的两端波腹通过传振杆4传至载物台的后端,最终使得整个载物台振动,进而带动工件进行振动,振动效果如图6所示。
应保证压电陶瓷换能器1、纵向振动变幅杆2、弯曲振动变幅杆3、传振杆4和载物台5之间相互接触面的平面度和垂直度,避免接触面之间有缝隙,造成能量损失,降低平台的振动效果。
设计该超声振动平台时,为了保证工件的振动效果,首先根据工件的大小确定载物台5的尺寸,通过载物5台的尺寸进而确定弯曲振动变幅杆3和传振杆4的尺寸,从而选择所需的超声振动频率范围,最终确定纵向振动变幅杆2和压电陶瓷换能器1的谐振频率和尺寸。同时,由于载物台5是整体超声振动,从而 使得工件整体获得均匀的振动,而非局部振动,增强了超声振动的应用效果。
实施例2:
根据超声振动平台的应用场合,先预计工件的大小,假设工件为长方体,不考虑工件厚度,其长为100mm,宽为100mm。由于结构上的螺纹孔位于法兰和振动节点处,对结构影响较小,同时为了简化计算,本实施例中不考虑螺纹孔的设计。因此超声振动平台主要计算的结构尺寸包括载物台的长L 1和宽W 1,传振杆的长L 2和宽W 2,弯曲振动变幅杆的长L 3和宽W 3,纵向振动变幅杆的长L 4,前端大径D和后端小径d。
1.载物台的长L 1和宽W 1
载物台主要用于定位夹紧工件,根据工件的大小,先设置载物台尺寸的初始值,L 1=120mm,W 1=120mm;随后根据传振杆的长L 2和弯曲振动变幅杆的长L 3修正载物台的长L 1和宽W 1
2.传振杆的长L 2和宽W 2
根据纵波传播理论,传振杆的长度L 2满足半波长规律,即
L 2=c/2f            (1)
其中c为材料的声速,f为谐振频率。同时根据结构要求,传振杆的长度L 2也满足,
L 2>L 1               (2)
传振杆的材料为45号钢,声速为5200m/s,由式(1)和式(2)可得谐振频率f<21666Hz,结合实际应用情况,在此选择谐振频率f=20000Hz;再由式(1)可得传振杆的长L 2=130mm。为了避免杆的横向振动,传振杆的宽度W 2<<c/4f,因此确定W 2=20mm;同时杆的横截面为矩形,因此其高度也为 20mm。
3.弯曲振动变幅杆的长L 3和宽W 3
弯曲振动变幅杆用于产生多级振动级数的弯曲振动,参考冯若的《超声手册》,其谐振长度
Figure PCTCN2020103007-appb-000001
其中,λ为波长,r为截面回转半径,
Figure PCTCN2020103007-appb-000002
J为杆截面对中性轴的惯性矩,S为横截面面积,E和G分别为杆材料的拉压弹性模量和剪切模量,k为截面形状决定的系数(矩形截面k=0.83);A,B,P和Q为系数,与振动级数有关。
弯曲振动变幅杆的横截面为正方形,为了避免横向振动,取W 3=20mm。杆的材料为45号钢,代入相关参数,λ=260mm,r=6,E=208GPa,G=80GPa,k=0.83;当振动级数为5时,查阅《超声手册》表6.3.33,A=47.51655,B=3.97912,P=1.04806,Q=1.00034,由式(3)计算可得L 3=237mm。此时根据结构尺寸关系,对载物台的尺寸进行修正,最终可得L 1=135mm,W 1=144mm。
4.纵向振动变幅杆的长度L 4,前端大径D和后端小径d
纵向振动变幅杆可以选择单一变幅杆,或者复合变幅杆。无论单一变幅杆,还是复合变幅杆,设计参考资料较多,在此不做详细介绍。本实施例中选择圆锥形变幅杆进行计算,其频率方程为
Figure PCTCN2020103007-appb-000003
其中,α为圆波数,α=2πf/c,N为面积系数,N=D/d。
纵向振动变幅杆材料为45号钢,结合上述分析,谐振频率f和声速c已知, α=0.0234,D为前端大径,可根据购买的换能器的直径尺寸确定,此处取D=50mm;后端小径与弯曲振动变幅杆连接,为了避免能量的损失,后端小径取d=W 3=20mm。由式(4)计算可得L 4=166mm。
通过以上分析,确定了超声振动平台结构的关键尺寸。本平台的工作频率,也就是谐振频率为20000Hz,载物台的长L 1=135mm和宽W 1=144mm,传振杆的长L 2=130mm和宽W 2=20mm,弯曲振动变幅杆的长L 3=237mm和宽W 3=20mm,纵向振动变幅杆的长L 4=166mm,前端大径D=50mm和后端小径d=20mm。
本实施例并非对本发明的形状、材料、结构等作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的保护范围。

Claims (6)

  1. 一种用于大型零件加工的超声振动平台,其特征在于:包括压电陶瓷换能器、纵向振动变幅杆、弯曲振动变幅杆、传振杆、载物台、前支架、后支架和隔振底座;
    纵向振动变幅杆通过法兰固定在前支架上,前端与压电陶瓷换能器连接,后端与弯曲振动变幅杆连接,弯曲振动变幅杆长度1/4和3/4处与载物台前端连接,弯曲振动变幅杆侧面两末端与传振杆一端连接,传振杆另一端与载物台后端连接,传振杆中间节点位置通过螺栓固定在后支架上,前支架和后支架分别固定在隔振底座上。
  2. 根据权利要求1所述的一种用于大型零件加工的超声振动平台,其特征在于:纵向振动变幅杆是单一的变幅杆结构,或者是多段复合的变幅杆结构,法兰位于振动节点处,圆周方向一侧有3个通孔。
  3. 根据权利要求1所述的一种用于大型零件加工的超声振动平台,其特征在于:弯曲振动变幅杆可以产生5级振动级数的弯曲振动,其轴向截面为矩形结构,杆的一侧中间位置有螺纹孔,杆另一侧1/4和3/4处有通孔,同时两端开设螺纹孔。
  4. 根据权利要求1所述的一种用于大型零件加工的超声振动平台,其特征在于:传振杆的轴向截面为矩形,侧面两端分别有螺纹孔,外侧中间位置开设螺纹孔。
  5. 根据权利要求1所述的一种用于大型零件加工的超声振动平台,其特征在于:载物台为前窄后宽的阶梯形结构,前端与弯曲振动变幅杆连接处开设有螺纹孔,后端与传振杆连接处开设有通孔。
  6. 权利要求1所述的一种用于大型零件加工的超声振动平台的操作方式,其特征在于,开启超声波电源,1级纵向振动变幅杆的纵向振动通过弯曲振动变幅杆把单激励超声纵向振动转换为多个波腹的弯曲振动,再将多个弯曲振动转换为多个纵向振动输出,从而使载物台整体产生纵向振动,由于载物台(5)是整体超声振动,从而使得工件整体获得均匀的超声振动,而非局部超声振动。
PCT/CN2020/103007 2020-04-15 2020-07-20 一种用于大型零件加工的超声振动平台及其操作工艺 WO2021208283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010293803.6 2020-04-15
CN202010293803.6A CN111482347B (zh) 2020-04-15 2020-04-15 一种用于大型零件加工的超声振动平台及其操作工艺

Publications (1)

Publication Number Publication Date
WO2021208283A1 true WO2021208283A1 (zh) 2021-10-21

Family

ID=71798759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103007 WO2021208283A1 (zh) 2020-04-15 2020-07-20 一种用于大型零件加工的超声振动平台及其操作工艺

Country Status (2)

Country Link
CN (1) CN111482347B (zh)
WO (1) WO2021208283A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769693A (zh) * 2022-04-26 2022-07-22 南京工程学院 一种用于超声辅助铣削的扭振刀具平台及其测试系统
CN115365103A (zh) * 2022-08-26 2022-11-22 广东利元亨智能装备股份有限公司 一种超声波振动辅助焊接装置及焊接设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333864A (zh) * 2021-06-08 2021-09-03 北京航空航天大学 一种多模态超声振动辅助加工装置及方法
CN113601279B (zh) * 2021-08-16 2022-10-25 南京航空航天大学 一种工件径向超声振动辅助磨削装置及其操作工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230182A (en) * 1992-07-31 1993-07-27 Hughes Aircraft Company Apparatus for optical materials fabrication by ultrasonic machining
WO2003095144A1 (fr) * 2002-05-09 2003-11-20 Kazumasa Ohnishi Dispositif de rodage et procede de travail de rodage
JP2007216372A (ja) * 2006-02-17 2007-08-30 Kumakura:Kk 超音波加振ユニット・超音波加振テーブルユニット・超音波加振水槽ユニット・超音波加振ホーンユニット
CN203792105U (zh) * 2014-01-27 2014-08-27 河北工业大学 一种超声振动平台
CN204448483U (zh) * 2015-02-02 2015-07-08 中国地质大学(武汉) 一种双换能器驱动超声振动平台
CN109622349A (zh) * 2019-01-31 2019-04-16 天津大学 一种用于微纳加工的二维超声振动平台
CN110899077A (zh) * 2019-10-31 2020-03-24 南京航空航天大学 一种基于二维振动的用于大型零件加工的单向超声振动平台及其操作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196874A (ja) * 1982-05-12 1983-11-16 多賀電気株式会社 超音波処理装置
JP2002128259A (ja) * 2000-10-26 2002-05-09 Toyota Industries Corp 物体浮揚装置
CN201020440Y (zh) * 2007-04-06 2008-02-13 广州市新栋力超声电子设备有限公司 一种弯曲振动式超声棒
CN104624463B (zh) * 2015-01-09 2017-01-25 天津大学 一种二维超声振动平台
CN105880140B (zh) * 2016-03-31 2018-07-27 天津大学 一种基于柔性铰链结构的二维超声振动平台
CN109530198B (zh) * 2019-01-10 2024-04-09 河北工业大学 一种楔形预紧的二维柔顺振动平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230182A (en) * 1992-07-31 1993-07-27 Hughes Aircraft Company Apparatus for optical materials fabrication by ultrasonic machining
WO2003095144A1 (fr) * 2002-05-09 2003-11-20 Kazumasa Ohnishi Dispositif de rodage et procede de travail de rodage
JP2007216372A (ja) * 2006-02-17 2007-08-30 Kumakura:Kk 超音波加振ユニット・超音波加振テーブルユニット・超音波加振水槽ユニット・超音波加振ホーンユニット
CN203792105U (zh) * 2014-01-27 2014-08-27 河北工业大学 一种超声振动平台
CN204448483U (zh) * 2015-02-02 2015-07-08 中国地质大学(武汉) 一种双换能器驱动超声振动平台
CN109622349A (zh) * 2019-01-31 2019-04-16 天津大学 一种用于微纳加工的二维超声振动平台
CN110899077A (zh) * 2019-10-31 2020-03-24 南京航空航天大学 一种基于二维振动的用于大型零件加工的单向超声振动平台及其操作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769693A (zh) * 2022-04-26 2022-07-22 南京工程学院 一种用于超声辅助铣削的扭振刀具平台及其测试系统
CN114769693B (zh) * 2022-04-26 2023-12-19 南京工程学院 一种用于超声辅助铣削的扭振刀具平台及其测试系统
CN115365103A (zh) * 2022-08-26 2022-11-22 广东利元亨智能装备股份有限公司 一种超声波振动辅助焊接装置及焊接设备

Also Published As

Publication number Publication date
CN111482347A (zh) 2020-08-04
CN111482347B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2021208283A1 (zh) 一种用于大型零件加工的超声振动平台及其操作工艺
Shuyu Load characteristics of high power sandwich piezoelectric ultrasonic transducers
CN104014473B (zh) 一种大振幅夹心式压电超声复合换能器
CN206316006U (zh) 一种复合振动变幅杆
WO2020093418A1 (zh) 热装式超磁致伸缩超声刀柄
Lin Study on the longitudinal-torsional composite mode exponential ultrasonic horns
JPH06198249A (ja) 超音波加工装置のソノトロード
CN106076793B (zh) 高能效压电超声换能器及其端盖
JPH0511718B2 (zh)
Shu et al. On the design and analysis of acoustic horns for ultrasonic welding
CN103212532B (zh) T型大功率超声波换能器
Lin Design of piezoelectric sandwich ultrasonic transducers with large cross-section
JP2006205140A (ja) 超音波加工装置
JP7253910B2 (ja) 振動変換装置
CN115007431B (zh) 具有二级放大超声换能器的超声振动辅助切削装置及二级放大超声换能器设计方法
WO2023195179A1 (ja) 超音波放射ユニット
CN104438029B (zh) 一种单激励超声椭圆振动微细加工工作平台
CN104475320B (zh) 单激励超声椭圆振动微细加工工作平台
RU2548344C2 (ru) Устройство для ультразвуковой обработки
JP5879582B2 (ja) 超音波振動接合装置、及び超音波振動溶着装置
RU2345505C2 (ru) Ультразвуковой магнитострикционный преобразователь
RU2291044C1 (ru) Устройство для ультразвуковой обработки поверхностей деталей
JP4082982B2 (ja) 超音波撓み振動体の支持方法
Mahdavinejad Finite element dimensional design and modeling of an ultrasonic transducer
Wang et al. Design and test of a small high frequency ultrasonic cleaning transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931613

Country of ref document: EP

Kind code of ref document: A1