WO2021208166A1 - 一种核桃壳空气能穿流箱式干燥器及其工作方法 - Google Patents

一种核桃壳空气能穿流箱式干燥器及其工作方法 Download PDF

Info

Publication number
WO2021208166A1
WO2021208166A1 PCT/CN2020/089405 CN2020089405W WO2021208166A1 WO 2021208166 A1 WO2021208166 A1 WO 2021208166A1 CN 2020089405 W CN2020089405 W CN 2020089405W WO 2021208166 A1 WO2021208166 A1 WO 2021208166A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
box
walnut shell
drying
evaporator
Prior art date
Application number
PCT/CN2020/089405
Other languages
English (en)
French (fr)
Inventor
石明村
李长河
刘明政
杨会民
李心平
刘向东
车稷
高连兴
赵华洋
张彦彬
王晓铭
侯亚丽
Original Assignee
青岛理工大学
新疆农业科学院农业机械化研究所
新疆疆宁轻工机械工程技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 新疆农业科学院农业机械化研究所, 新疆疆宁轻工机械工程技术有限责任公司 filed Critical 青岛理工大学
Priority to ZA2021/06719A priority Critical patent/ZA202106719B/en
Publication of WO2021208166A1 publication Critical patent/WO2021208166A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • F26B21/086Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00

Definitions

  • the invention belongs to the field of air energy drying processing, and in particular relates to a walnut shell air energy flow box dryer and a working method thereof.
  • Walnut shells can be ground into superfine powder. Walnut shells have relatively high hardness and are not easy to be damaged. Therefore, in actual operation, mechanical processing must be combined to do the processing of walnut powder, which brings great benefits to related machinery manufacturers.
  • the walnut shell is superfinely pulverized to form a fine powder, it has a wide range of uses, for example, it can be used as a cleaning agent in the metal industry.
  • the whole particles have certain elasticity, and the restoring force and endurance are very good, so it can be used as an abrasive in the airflow washing operation.
  • the ultra-fine powder characteristics of walnut shells can be used as additives.
  • the overall texture is very similar to plastics, but the performance is better than ordinary plastics and coatings.
  • Adding ultra-fine walnut shell powder in the blasting industry can greatly enhance the overall explosive power.
  • the superfine powder of peach shell is a natural substance without any toxicity. Therefore, using it as a related additive is ideal for improving the overall skin care effect.
  • the overall particle size is relatively large and uneven.
  • mechanical pulverization there are many tough materials and flexible processing materials to assist, so the overall effect is relatively good.
  • Airflow ultrafine pulverization uses sonic airflow as the relevant carrier to achieve the purpose of pulverization. Therefore, the overall movement effect is relatively good, and the fineness of the particles can also meet the demand.
  • the walnut shells are sorted, washed, and dried in sequence before being superfinely crushed.
  • the drying link mainly relies on the dryer, commonly known as the drying room, for drying operations.
  • Existing dryers have many styles and different classification standards. Among them, they can be classified according to the operation method, the shape of the dried material and the adaptability of the additional characteristics of the material.
  • the current mainstream dryers can be divided into continuous type and intermittent type according to the operation mode. Since the number of walnut shells dried in each batch is small, intermittent dryers are usually selected. Box dryers are usually used to dry fibrous granular materials. The small ones are called ovens and the large ones are called ovens.
  • the chamber dryer involved in this patent belongs to the category of drying rooms.
  • the airflow in the chamber it is usually divided into a horizontal airflow chamber dryer and a throughflow airflow chamber dryer.
  • the hot air horizontally passes through the surface of the material to take away the moisture.
  • This working form of the dryer becomes a horizontal airflow chamber dryer, which is mainly used for drying mud-like materials that generate dust at the end of the period, and small lump materials; the hot air passes through the materials vertically
  • the dryer in the working mode of the layer is called a throughflow chamber dryer, which is used for drying granular grains, raisins, peppers, and slicing onions, carrots, potatoes, etc. Walnut shells will not produce dust in the final stage of drying, and walnut shells are granular materials, so a through-flow air-flow chamber dryer is used.
  • the heat source devices of traditional airflow chamber dryers are mostly traditional heat sources, such as electric heating, charcoal heating, oil heating, etc., using an open-loop cycle method. These heating methods generally have the characteristics of excessive energy consumption and environmental pollution.
  • the heat source is unevenly distributed inside the dryer, which often results in poor drying effect, and has the disadvantages of low automation, heavy manual burden, and difficult control of temperature and humidity.
  • Application number: 201911230898.0 discloses a spray-drying room with an air supply system and an exhaust gas treatment system integrated with the spray-drying room;
  • the air-supply system includes a fresh air box fixedly connected to one side of the spray-drying room
  • the fresh air box body is provided with a fresh air inlet and an air outlet communicating with the inside of the spray drying room, and an air blower with a heating unit is arranged between the fresh air inlet and the air outlet;
  • the paint mist filter box and the exhaust gas purification box are fixedly connected in turn on the other side of the drying room.
  • At least two stages of filter sections are arranged between the paint mist filter inlet and the paint mist filter outlet;
  • the exhaust gas purification box is provided with an adsorption module and an adsorption fan, and the adsorption module is located at the air inlet of the adsorption fan Between the air outlet of the adsorption fan and the paint mist filter outlet, the air outlet of the adsorption fan communicates with an adsorption purification discharge pipe.
  • Application number: 201921250509.6 discloses a drying room in which a mezzanine cavity is separated by a partition on one side of the chamber, and the partition is provided with air inlets, which connect the mezzanine cavity and the internal space of the chamber, and the mezzanine cavity
  • the cavity is connected with a hot air blower installed outside the room through a pipeline, an air outlet pipe is fixed on the roof of the house and the other side wall, the hot air blower is connected to the air outlet pipe, and a number of air outlets are provided on the air outlet pipe;
  • a dehumidification device is arranged in the interlayer cavity.
  • the hot air of the utility model enters the internal space from the vertical and horizontal directions, and is evenly diffused and distributed in each corner of the internal space, so that the products to be dried in each position in the internal space can be dried, and each piece of the product to be dried can be dried. Dry products can also be dried evenly; in addition, after hot air enters the internal space from both vertical and horizontal directions, the flow rate will increase after the hot air volume in the two directions is superimposed. It is also possible for stacked products to be dried. Fast drying improves drying efficiency.
  • this device separates the mezzanine cavity by a partition on one side of the chamber, and the partition is provided with air inlets, which improves the internal temperature field distribution of the drying chamber, but the material cannot be turned regularly during the drying process. It is easy to cause the drying speed of the material on the side close to the air outlet and the side close to the air outlet to be too fast, resulting in uneven drying effect.
  • Application number: 201720858300.2 discloses an orange-red drying room.
  • a heat-conducting metal tube is arranged under the floor of the orange-red drying room.
  • the heat-conducting metal tube extends to the firewood burning place.
  • the heat is transferred to the floor and four walls of the drying room, and then the heat is transferred to the air in the orange-red drying room, so that the power of the wood fire is directly used for heating to ensure the efficacy of the orange-red medicine, and the effect of the orange-red medicine is not compromised.
  • a cyclone homogenizer is installed in the sealed orange-red drying room.
  • the cyclone homogenizer circulates the hot air in the orange-red drying room to fully mix the internal air to make the internal temperature of the drying room uniform and make each orange-red fruit uniform. Heated to ensure the drying effect.
  • this device uses a cyclone homogenizer to circulate the hot air in the orange-red drying room to fully mix the internal air to achieve the effect of uniformizing the internal temperature of the drying room, which solves the problem of uneven drying effects of traditional drying equipment , But using wood fire as a heat source is unfriendly to the environment and pollutes the environment.
  • the present invention provides a walnut shell air flow box dryer and its working method, which can produce uniform drying effect, save energy, and reduce waste heat.
  • the first aspect of the present invention provides a walnut shell air flow box dryer.
  • a walnut shell air can pass through the box type dryer, including:
  • the box body is provided with a conveying mechanism, the input end of the conveying mechanism is connected with the material inlet, and the conveying mechanism is used for conveying the walnut shells to be dried; at least one air energy heat pump is provided on one side of the box body
  • the air energy heat pump includes an evaporator and a condenser, the evaporator is used to absorb heat from the air inside the box, and the condenser is used to discharge the heat absorbed by the evaporator into the inside of the box, completing a closed loop cycle to achieve The air can flow through the box for the purpose of drying walnut shells.
  • the second aspect of the present invention provides a working method of a walnut shell air flow box dryer.
  • a working method of a walnut shell air flow box dryer includes:
  • the air energy heat pump In the process of walnut shell transmission, the air energy heat pump is turned on, the evaporator of the air energy heat pump absorbs heat from the air inside the box, and the condenser of the air energy heat pump discharges the heat absorbed by the evaporator into the box, completing an air closed loop Circulation to achieve the purpose of air can flow through the box to dry the walnut shell.
  • the dry air in the box of the present invention is heated by the condenser and then discharged into the dryer room to become warm and humid air, and then input into the evaporator. After absorbing heat and dehumidifying, it becomes dry air again, and passes through it again. After the condenser is heated, it enters the inside of the box, which can be adapted to the low temperature and high humidity environment, saving energy and reducing waste heat.
  • Figure 1(a) is the assembly drawing of the shaft side of the air-energy flow box dryer
  • Figure 1(b) is the left side view of the air flow box dryer
  • Figure 1(c) is the top view of the air flow box dryer
  • Figure 2 (a) is an assembly drawing of the shaft side of the air energy heat pump
  • Figure 2(b) is a top view of the air energy heat pump
  • Figure 2(c) is a cross-sectional view of the A-A section in Figure 2(b);
  • Figure 3 is a schematic diagram of the assembly of the core components and auxiliary components of the air energy heat pump
  • Figure 4 is an axonometric assembly drawing of the air supply device
  • Figure 5 is an axonometric view of the air supply fan
  • Figure 6(a) is an axonometric view of the supply air duct
  • Figure 6(b) is a half-sectional view of the air supply duct
  • Figure 7 is an axial view of the exhaust device
  • Figure 8(a) is the assembly drawing of the exhaust fan shaft side
  • Figure 8(b) is an exploded view of the exhaust fan shaft side
  • Figure 9(a) is an axonometric view of a double-disc elbow
  • Figure 9(b) is a top view of a double-disc elbow
  • Figure 9(c) is a cross-sectional view of the A-A section in Figure 9(a);
  • Figure 10(a) is an axonometric view of a double-coil horizontal tube
  • Figure 10(b) is a top view of a double-coiled horizontal tube
  • Figure 10(c) is a cross-sectional view of the A-A section in Figure 10(b);
  • Figure 11(a) is an axonometric view of a double-disc standpipe
  • Figure 11(b) is a top view of a double-disc standpipe
  • Figure 11(c) is a cross-sectional view of the A-A section in Figure 11(b);
  • Figure 12 (a) is the axonometric assembly drawing of the chain conveyor
  • Figure 12 (b) is a cross-sectional view of the chain conveyor
  • Figure 13 shows the longitudinal support frame of the chain conveyor
  • Figure 14(a) is the assembly drawing of the shaft side of the chain plate conveyor belt
  • Figure 14(c) is a top view of the chain conveyor belt
  • Figure 14(d) is a cross-sectional view of the A-A section in Figure 14(c);
  • Figure 15(a) is an axonometric view of the side baffle of the chain conveyor
  • Figure 15(b) is a side view of the side baffle of the chain conveyor
  • Figure 16 (a) is an assembly drawing of the L-shaped support plate on the shaft side
  • Figure 16(b) is a top view of the L-shaped support plate
  • Figure 16(c) is a cross-sectional view of the A-A section in Figure 16(b);
  • Figure 17(a) is an axonometric view of the chain support plate
  • Figure 17(b) is a side view of the chain support plate
  • Figure 18 (a) is an axonometric view of the horizontal mounting frame of the chain conveyor
  • Figure 18(b) is the front view of the horizontal mounting frame of the chain conveyor
  • Figure 18(c) is a side view of the horizontal mounting frame of the chain conveyor
  • Figure 19(a) is an axonometric view of the longitudinal squeegee
  • Figure 19(b) is a top view of a longitudinal scraper
  • Figure 19(c) is a cross-sectional view of A-A in Figure 19(b);
  • Figure 20 (a) is an axonometric view of the rib connecting block
  • Figure 20 (b) is a top view of the rib connecting block
  • Figure 20(c) is a cross-sectional view of the A-A section in Figure 20(b);
  • Figure 21 (a) is an axonometric view of the active roller guide plate
  • Figure 21 (b) is a left view of the active roller guide plate
  • Figure 21(c) is a cross-sectional view of the A-A section in Figure 21(b);
  • Figure 22 (a) is the sprocket assembly diagram
  • Figure 22(b) is an exploded view of the sprocket
  • Figure 22(c) is a side view of the sprocket
  • Figure 22(d) is a cross-sectional view of the A-A section in Figure 22(c);
  • Figure 23(a) is an axonometric drawing of an L-shaped angle code
  • Figure 23(b) is a top view of the L-shaped corner code
  • Figure 23(c) is a cross-sectional view of the A-A section in Figure 23(b);
  • Figure 24(a) is an axonometric view of the mesh tray
  • Figure 24 (b) is a side view of the mesh tray
  • Figure 24 (c) is a top view of the mesh tray
  • Figure 25(a) is an axonometric view of the driven roller
  • Figure 25(b) is a front view of the driven roller
  • Figure 26(a) is a perspective view of the driving roller
  • Figure 26(b) is a front view of the driving roller
  • Figure 27(a) is an assembly drawing of the shaft side of the tubular screw conveyor
  • Figure 27(b) is an exploded view of the shaft side of the tubular screw conveyor
  • Figure 27(c) is the left view of the tubular screw conveyor
  • Figure 27(d) is a top view of the tubular screw conveyor
  • Figure 27 (e) is a front view of the tubular screw conveyor
  • Figure 28 is a partial enlarged view of section II in Figure 27(e);
  • Figure 29 is a partial enlarged view of section I in Figure 27(e);
  • Figure 30 is a partial enlarged view of section III in Figure 27(e);
  • Figure 31 is a cross-sectional view of the A-A section in Figure 27(e);
  • Figure 32 is a partial enlarged view of section IV in Figure 27(e);
  • Figure 33 is a cross-sectional view of the B-B section in Figure 27(e);
  • Figure 34(a) is a schematic diagram of air circulation in the first fan installation scheme
  • Figure 34(b) is a schematic diagram of air circulation in the second fan installation scheme
  • Figure 35 is a transverse cross-sectional view of an air flow box dryer
  • air energy heat pump I air supply device II, exhaust device III, chain conveyor IV, tubular screw conveyor V;
  • I-01-Air heat pump air inlet channel I-02-four-way valve, I-03-air heat pump air inlet fan, I-04-expansion valve, I-05-see liquid tank, I-06-liquid Pipeline drier filter, I-07-compressor, I-08-air heat pump exhaust channel, I-09-control box, I-10-evaporator, I-11-condenser; I-12-section A temperature sensor; I-13-pressure sensor; I-14-pressure controller; I-15-second temperature sensor;
  • II-01-supply fan II-02-supply air duct
  • III-01-Exhaust fan III-02-Double-disc elbow, III-03-Double-disc horizontal pipe, III-04-Double-disc vertical pipe;
  • III-0101-chassis III-0102-motor, III-0103-motor positioning screw, III-0104-impeller,
  • IV-0201-T type scraper IV-0202-T type scraper connecting bolt, IV-0203-chain plate I, IV-0204-chain plate II, IV-0205-T type scraper fastening nut, IV- 0206-pin shaft;
  • azimuth or position relationship is based on the azimuth or position relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element of the present invention. It does not specifically refer to any component or element in the present invention and cannot be understood as a reference Limitations of the invention.
  • the walnut shell air-through-flow box dryer of the present invention includes:
  • the box body is provided with a conveying mechanism, the input end of the conveying mechanism is connected with the material inlet, and the conveying mechanism is used for conveying the walnut shells to be dried; at least one air energy heat pump is provided on one side of the box body
  • the air energy heat pump includes an evaporator and a condenser, the evaporator is used to absorb heat from the air inside the box, and the condenser is used to discharge the heat absorbed by the evaporator into the inside of the box, completing a closed loop cycle to achieve The air can flow through the box for the purpose of drying walnut shells.
  • the walnut shell air energy flow box dryer includes air energy heat pump I, air supply device II, exhaust device III, chain plate conveyor IV and tubular screw conveyor V consists of five major parts.
  • the bottom of the two sets of air energy heat pumps I are respectively connected to the air supply device II inside the dryer box through pipes.
  • the air supply device II is located directly below the chain conveyor IV in the dryer, and the exhaust device is located in the chain inside the dryer. It is directly above the plate conveyor IV, and is connected to the upper working unit of the air energy heat pump I through a pipe.
  • the air energy heat pump I is from the air energy heat pump inlet channel I-01, the four-way valve I-02, the air energy heat pump intake fan I-03, expands Valve I-04, as the liquid tank I-05, the liquid pipeline drier filter I-06, the compressor I-07, the air energy heat pump exhaust channel I-08, the control box I-09, the evaporator I-10, Condenser I-11 is composed.
  • the first temperature sensor I-12 and the second temperature sensor I-15 are used to detect the temperature of the evaporator I-10 and the condenser I-11, and sent to the control box I-09; the pressure sensor I-13 is used to detect The pressure of the compressor I-07 is transmitted to the pressure controller I-14.
  • the evaporator I-10 is located in the upper unit of the air energy heat pump, and is connected to the air energy heat pump casing by screws, and the condenser is located in the lower unit of the air energy heat pump, and is also connected to the air energy heat pump casing by screws, and the compressor I-07 is connected through a double head
  • the stud is connected to the air energy heat pump casing.
  • the liquid line filter drier I-06 is connected to the base of the drier filter through a semicircular snap ring and a hexagon socket head screw.
  • the base of the dryer is connected to the air energy through a double-ended stud.
  • the heat pump casing is connected.
  • the air energy dryer of this embodiment adopts a closed-loop drying system based on the reverse Carnot principle.
  • the heat pump fully absorbs the energy in the low-temperature heat source air and sends it to the dryer, provides a heat source for the drying process, and discharges the evaporated moisture of the material through the dehumidification and dehumidification equipment, thereby realizing the drying of the material.
  • the compressor-condenser-throttle-evaporator-compressor of the heat pump system constitutes the heat supply system.
  • the heat pump working fluid first enters the compressor to realize an isenthalpic boost process in the compressor to become a high-temperature and high-pressure fluid; in the condenser, the liquid and gas phase change and heat release are realized, and the high-temperature heat is sent to the dryer to heat up the air in the dryer. Dry the material; at this time, the working fluid becomes a low-temperature and low-pressure fluid liquid state. When it runs to the evaporator, the liquid quickly evaporates and absorbs heat and then transforms into a gaseous state. At the same time, the temperature of the working fluid drops to minus 20 °C -30 °C, so as to achieve continuous Absorb the energy of the surrounding air.
  • the heat pump working medium continuously circulates to carry the heat in the air to the dryer to heat the air temperature, so as to provide energy for the drying of agricultural materials.
  • the blower II-01 is located at the bottom of the chain plate conveying IV in the dryer, and the air flow direction of the air outlet is perpendicular to the plane of the chain plate, and
  • Each set of air supply fan II-01 includes three air outlets, and each set of air energy heat pump I is equipped with a set of air supply fan II-01.
  • the air supply duct II-02 and the air energy heat pump I are connected by bolts, and the air supply fan II-01 is connected by rivets.
  • the exhaust fan III-01 is connected to the air outlet of the dryer top cover by screws, and the double-disc elbow III-02 and the exhaust fan III-01 are connected by bolts, and
  • the double-disc elbow III-02 is connected to the double-disc cross pipe III-03 by bolts, and the double-disc cross pipe III-03 is connected with the double-disc elbow at the other end by bolts.
  • the upper end of the double-disc vertical pipe III-03 is connected to the double There is a bolt connection between the disc elbows, and the lower end is connected by a bolt air energy heat pump I.
  • the exhaust fan III-01 is equipped with a casing III-0101 outside, and the casing III-0101 is equipped with a motor III-0102, and the motor III-0102 is positioned by the motor
  • the screw III-0103 is fixed to the casing III-0101, and the impeller III-0104 is provided on the motor III-0102,
  • the two ends of the active roller IV-30 are provided with two sets of active roller vertical bearing IV-13, which are connected to the horizontal mounting frame IV-07 of the chain conveyor by bolts.
  • Both ends of the driven roller IV-28 are provided with the driven roller vertical bearing IV-27 which is connected to the horizontal mounting frame IV-07 of the chain conveyor by bolts.
  • Two sets of sprockets IV-12 are provided on both ends of the driving roller IV-30 inside the vertical bearing IV-13 of the driving roller, and a set screw is passed between the sprocket IV-12 and the driving roller IV-30. Connect to limit its axial and circumferential movement.
  • sprockets IV-12 are provided at both ends of the driven roller IV-28 on the inner side of the driven roller vertical bearing IV-27, and between the sprocket IV-12 and the driven roller IV-28 is A set screw is provided to limit its axial and circumferential movement.
  • the sprocket IV-12 is a large-diameter sprocket, so it adopts a separate design.
  • the ring gear IV-1201 is connected with the ring gear connecting bolt IV-1203, and the ring gear fastening nut V-1204 is connected to the hub IV-1202.
  • a ring gear fastening is provided below it.
  • the nut lock washer has IV-1205.
  • the chain plate conveyor belt IV-02 and the chain IV-24 are hinged by a pin, and the chain plate conveyor belt IV-02 is composed of chain plate I IV-0203, chain plate II IV-0204 and the chain through the pin IV-0206 IV-24 is articulated.
  • the chain plate adopts perforated design.
  • the scraper connecting bolt IV-0202 and the T-shaped scraper fastening nut IV-0205 are connected to the chain plate.
  • the main function of the driving roller IV-30 and the driven roller IV-28 is to support the chain plate conveyor belt IV-02 to prevent the chain from being disjointed due to the elastic deformation of the chain plate when carrying materials.
  • a chain support plate IV-06 is provided below the chain IV-24, and a chain conveyor side baffle IV-03 is installed above it, and the chain support plate IV-06 and chain conveyor side baffle IV -03 is connected to the L-shaped supporting plate IV-04 through the L-shaped supporting plate connecting screw IV-05, the L-shaped supporting plate IV-04 is connected to the nut IV-25 through the L-shaped supporting plate, and the L-shaped supporting plate connecting bolt IV-26 is connected to The chain conveyor is connected with the IV-07 horizontal mounting frame.
  • the upper side of the active roller guide plate IV-11 is fixed to the side baffle IV-03 of the chain conveyor by the rib connection block IV-09 and the rib connection block positioning screw IV-10, and the lower side is passed the L-shaped corner code IV- 19 is connected to the IV-07 of the horizontal mounting frame of the chain slat conveyor, where the L-shaped corner code IV-19 and the horizontal mounting frame of the chain slat conveyor IV-07 are connected by the L-shaped angle connection bolt IV-21, the L-shaped corner code Connect the connecting nut IV-22; connect with the active roller guide plate IV-11 through the L-shaped corner code connecting screw IV-20.
  • the mesh pallet IV-23 is connected to the horizontal mounting frame IV-07 of the chain conveyor through the L-shaped corner code IV-19, and the L-shaped corner code IV-19 is fixed to the mesh pallet by the L-shaped corner code connecting screw IV-20 IV-23, through the L-shaped angle connecting bolt IV-21, the L-shaped angle connecting nut IV-22 is connected to the chain conveyor horizontal mounting frame IV-07.
  • the mesh tray IV-23 uses a perforated design with a cavity in the middle.
  • the installation method of the driven roller guide plate IV-29 is exactly the same as that of the driving roller guide plate IV-11.
  • the longitudinal support frame IV-01 of the chain slat conveyor is connected with the horizontal installation frame IV-07 of the chain slat conveyor by bolts.
  • the chain conveyor drive servo motor IV-18 is connected to the motor base IV-14 through the motor positioning double-ended stud IV-16, and the motor fastening nut anti-loosing spring washer IV-17 is arranged on the motor base in turn, and the motor is fastened Nut IV-15.
  • the chain conveyor drive servo motor IV-18 and the driving roller IV-30 are connected by a coupling, and a reducer can be added if necessary.
  • the servo motor V-01 is connected to the tubular screw conveyor base V-09 through the servo motor positioning double-ended stud V-32, and the servo motor tightening is arranged on the servo motor base in turn. Fix the nut lock washer V-34, and the servo motor tighten nut V-35.
  • the servo motor V-01 and the reducer V-02 are connected by a coupling, and the right end of the reducer is half coupling V-15, servo motor half coupling and V-12 are connected through the servo motor half coupling bolt V-16, servo motor half coupling fastening nut V-13, servo motor half coupling fastening nut lock washer V-14 connection, in order to transmit torque between the servo motor V-01 and the servo motor half coupling V-12 is equipped with a servo motor round-head flat key V-11. Between the reducer V-02 and the right half coupling V-15 of the reducer, there is a right-side flat key V-18 of the reducer. They pass through the servo respectively.
  • the motor half coupling tightening screw V-33 and the right end half coupling tightening screw V-17 of the reducer limit its axial sliding.
  • the reducer V-02 locates the double-ended stud V-36 through the reducer, the reducer tightening nut lock washer V-30, and the reducer tightening nut V-31 is connected to the tubular screw conveyor base V-09.
  • the reducer V-02 is connected to the screw shaft V-23 through the right half coupling V-24 of the screw shaft, and the left half coupling V-28 of the reducer is connected to the screw shaft V-23.
  • the left end of the reducer is set between them to transmit torque.
  • the right end cover of the tubular screw conveyor V-10 is connected to the tubular sleeve V-04 by the fastening nut V-07 of the left end cover of the tubular screw conveyor, and the screw shaft V-23 is connected to the square sleeve.
  • the seated bearing V-03 is connected by a set screw
  • the square seated bearing V-03 and the right end cover of the tubular screw conveyor V-10 are connected by a square seated bearing fastening nut V-21
  • the square seated bearing is connected Bolt V-22 connection.
  • connection mode of the left end cover V-06 of the tubular screw conveyor is exactly the same as that of the right end cover. No longer.
  • the feeding bin V-05 is connected with the feeding bin connecting bolt V-19, and the feeding bin fastening nut V-20 is connected with the tubular sleeve V-04.
  • the tubular sleeve and the tubular screw conveyor base V-09 are connected by welding.
  • the chain conveyor of this embodiment has an automatic feeding function.
  • the pyramid-shaped material above the conveyor rotates counterclockwise along the conveyor belt, and falls into the mesh tray under the action of the longitudinal scraper and the active roller baffle.
  • the extension of the T-shaped scraper and the bottom of the mesh tray will push the walnut shell to continue along.
  • the conveyor belt moves in the direction of rotation, and the flattened walnut shells are re-turned onto the conveyor through the driven roller baffle. Through multiple rotations of the walnut shells, the mesh tray and the interval of each T-plate above the conveyor belt will be evenly spread.
  • the chain conveyor will rotate regularly, and the material above the conveyor belt will be exchanged with the material position in the mesh tray at regular intervals to ensure the uniformity of the drying effect; the chain conveyor belt will rotate with the tubular screw conveyor at the same time after drying.
  • the dried walnut shells are automatically sent out of the dryer, with automatic unloading function; the mesh tray adopts a perforated design to ensure that the dry high-temperature air smoothly passes through the mesh tray and the material above the conveyor chain plate, and the drying effect is better .
  • the chain plate After multiple rounds of rotating feeding, the chain plate The interval formed by each T-scraper above the conveyor belt IV-02 is evenly covered with walnut shells, and the mesh tray is also evenly covered with walnut shells, the feeding ends, and the chain conveyor drives the servo motor IV-18. Stop turning. At this time, the air supply fan II-01 is turned on and enters the drying stage. There are two options for the installation position of the air supply device and the exhaust device. One is that the air supply fan II-01 is located directly under the chain conveyor belt III and exhaust The fan III-01 is located directly above the chain conveyor belt III, and the dry hot air is blown from the bottom. The fan II-01 rises vertically to the direction of the mesh tray, and then passes through the mesh tray IV-23 and above the chain conveyor belt.
  • the two-layer material reaches the top of the dryer. At this time, the dry hot air becomes warm and humid air, which enters the upper unit evaporator I-10 of the air energy heat pump I through the exhaust fan III-01 through the air duct location. After absorbing heat and dehumidifying through the evaporator, the air descends and enters the unit where the condenser is located.
  • the air-energy heat pump intake fan I-03 in the air-energy heat pump I is turned on, from the outside world Add air to the inside of the dryer, and the air after dehumidification above is heated by the condenser I-11, and then enters the dryer through the air duct I-02 and the air blower I-01 to repeat the above process.
  • Another solution is to install the air supply fan II-01 and the exhaust fan III-01 at the same time on the side of the dryer. At this time, the working process is that the dry hot air passes through the air supply fan II-01 on the side wall of the dryer and is horizontal.
  • the chain conveyor drive servo motor IV-18 will be turned on regularly.
  • the purpose is to turn the walnut shell above the conveyor belt into the mesh tray IV-23 below, The walnut shell of the tray is turned into the upper chain conveyor IV-02, so that the drying effect is better and uniform.
  • the humidity sensor and temperature sensor in the dryer room will always transmit the detected value to the control system.
  • the equipment of the heat pump drying system adopts a temperature and humidity automatic control system, adopts a PLC (programmable controller) control method, collects the state parameters of each part of the heat pump during the drying process through a variety of sensors, and transmits them to the PCB board, and is equipped with a touch screen and other controls
  • the system intelligently controls the operating status of the unit to realize the intelligent operation of the machine.
  • the wet and dry bulb temperature sensor converts the collected signal to obtain the humidity signal, which is converted into a digital signal by the data processing module.
  • the signal is transmitted to the PLC through the photocoupler, and the PLC compares the converted signal with the set temperature and humidity value . According to the results of the comparison, the operation of the compressor, the opening of the drying fan and the opening of the exhaust fan are controlled.
  • Heating and drying stage the walnut shell begins to be heated and the temperature rises linearly, while the moisture content of the walnut shell gradually decreases. This stage becomes the preheating stage of the material, usually this time is relatively short;
  • Constant-rate drying stage When the moisture inside the walnut shell migrates to the surface of the walnut shell, the rate is greater than or equal to the rate at which water molecules migrate from the surface of the walnut shell to the drying medium. That is, the moisture content of the walnut shell surface is considered to be basically constant, and this stage is a constant speed stage.
  • the driving force of the constant velocity stage is the difference between the moisture vapor pressure of the surface layer of the walnut shell and the moisture vapor pressure of the dry air.
  • the drying rate at this stage depends on factors such as the temperature of the drying medium, the relative humidity of the air, the wind speed and the evaporation area of the material. As long as the moisture inside the walnut shell migrates to the surface of the walnut fast enough, the constant-rate drying period will continue.
  • the constant-rate drying phase ends, and the constant-rate drying time can be calculated by the following formula:
  • m s the total amount of dry matter in dry food, kg
  • H v Solid heat of vaporization, KJ/kg
  • T a and T s respectively the air and material surface temperature, °C;
  • A The surface area of the material in contact with dry air, m 2 .
  • Decreasing rate drying stage In the later stage of drying, when the walnut shell reaches the critical moisture content, the rate of water migration from the interior of the walnut shell to the drying medium is faster than the rate of water replenishment to the surface of the walnut shell. At this time, it is called the reduced rate drying stage. This stage mainly depends on the drying conditions and the properties and structure of the walnut shell itself. Once the moisture content of the walnut shell and the moisture in the dry air reach equilibrium, the drying stops.
  • the chain conveyor IV and the tubular screw conveyor V rotate at the same time to output the dried walnut shells to the dryer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种核桃壳空气能穿流箱式干燥器及其工作方法。核桃壳空气能穿流箱式干燥器包括箱体,箱体内设置有输送机构,输送机构的输入端与入料口相连,输送机构用于传输待干燥的核桃壳;箱体的一侧设置有至少一个空气能热泵(I);空气能热泵(I)包括蒸发器(I-10)和冷凝器(I-11),蒸发器(I-10)用于从箱体内部空气中吸热,冷凝器(I-11)用于将蒸发器(I-10)吸收的热量排入箱体内部,完成一个闭环循环,实现空气能穿流箱体内干燥核桃壳的目的。

Description

一种核桃壳空气能穿流箱式干燥器及其工作方法 技术领域
本发明属于空气能干燥加工领域,尤其涉及一种核桃壳空气能穿流箱式干燥器及其工作方法。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
核桃壳可以磨成超细粉。核桃壳硬度相对较大,不容易破损,因此在实际的操作中必须结合机械处理来做好相关的核桃粉加工工作,这就给相关的机械生产厂家带来了很大的收益。核桃壳经过超微粉碎形成细粉末之后,用途十分广泛,比如在金属行业就可以用作清洗剂。特别是核桃壳被磨成粉碎后,整体的颗粒具有一定的弹性,恢复力和承受力十分好,因此在气流冲洗操作中可以作为研磨剂使用。比如在石油行业之中,就可以结合核桃超细粉末的特征,做好相关的填路基工作,在钻探和开采等环节中都有所使用。在高级涂料行业中,核桃壳的超细粉特征可以用作添加剂使用,整体的质感和塑料十分类似,性能却要优于普通的塑料和涂料。在爆破行业中添加核桃壳的超细粉,则可以大大提升整体的爆炸威力。在化妆品中核,桃壳的超细粉末是天然物质,没有任何的毒性,因此,以此做相关的添加剂,对于整体的护肤效果提升而言十分理想。目前,在核桃壳超细粉加工方面,主要有借助运动介质产生作用力磨成细粉方式、机械磨粉方式以及气流式超微水分方式等几类。借助运动研磨介质有关的作用力粉碎模式中代表的机械磨机、搅拌磨器等,整体上的颗粒度相对较大、不均匀。在机械粉碎中,则有很多的韧性材料和柔性加工材料予以辅佐,因此整体的效果相对较好。气流式超微粉碎则是利用音速气流作为相关载体,从而达到粉碎的目的,因此整体的运动效果相对较好,微粒细微度也能够满足需求。
核桃壳在超微粉碎前依次经过分选、水洗、烘干环节。烘干环节主要依靠干燥器俗称烘房进行烘干作业。现有干燥器样式众多,分类标准也不尽相同,其中主要可以按操作方法、干燥物料形态以及物料附加特征的适应性进行分类。对于目前主流烘干器按操作方式可以分为连续式和间隙式,由于每批次干燥的核桃壳数量较少,又通常会选择间歇式干燥器。箱式干燥器通常用于烘干纤维颗粒状物料,小型的我们称为烘厢,大型的称为烘房。本专利涉及的厢式干燥器属于烘房范畴,根据气流在厢体内的流动形式不同,通常又分为水平气流厢式型干燥器和穿流气流厢式干燥器。热风水平通过物料表面将水分带走,这种工作形式的干燥器成为水平气流厢式型干燥器,主要用于干燥末期产生粉尘的泥状物料,以及小的块状物料;热风垂直穿过物料层的工作模式的干燥器称为穿流气流厢式干燥器,以用于颗粒谷物、葡萄干、胡椒的干燥以及切片洋葱、胡萝卜、薯类等。核桃壳干燥末期不会产生粉尘,且核桃壳属于颗粒状物料,故选用穿流气流厢式干燥器。传统的穿流气流厢式干燥器热源装置多为传统式热源,如电加热、木炭加热、燃油加热等,采用开环循环的方式,这些加热方式普遍存在能耗过大,污染环境的特点,并且热源在干燥器内部分布不均匀,往往造成烘干效果不佳,且存在自动化程度较低,人工负担大,温度,湿度不易掌控的缺点。
申请号:201911230898.0公开了一种喷烘房,所述喷烘房具有与喷烘房一体设置的送风系统和废气治理系统;所述送风系统包括与喷烘房一侧固定连接的新风箱体,所述新风箱体上设有新风入口以 及与喷烘房内部连通的送风口,所述新风入口和送风口之间设有带加热机组的送风风机;所述废气治理系统包括与喷烘房另一侧依次固定连接的漆雾过滤箱体和废气净化箱体,所述漆雾过滤箱体上设有与喷烘房内部连通的漆雾过滤入口以及与废气净化箱体连通的漆雾过滤出口,所述漆雾过滤入口和漆雾过滤出口之间设有至少两级过滤段;所述废气净化箱体内部设有吸附模块以及吸附风机,所述吸附模块位于吸附风机的进风口和漆雾过滤出口之间,所述吸附风机的出风口连通吸附净化排放管道。
发明人发现,此装置设计的废气治理系统可以显著改善烘干作业时产生的环境污染问题,但采用的带加热机组的送风风机则对能源消耗过大,不适应当下绿色发展的大形势。
申请号:201921250509.6公开了一种烘房,在房体内一侧通过隔板隔出夹层空腔,隔板上开设有进风孔,进风孔连通夹层空腔和房体的内部空间,夹层空腔通过管路与房体外设置的热风机连接,在房体的房顶及另一侧墙面上固定有出风管道,热风机与出风管道连接,出风管道上设置有若干出风口;夹层空腔内设置有除湿装置。本实用新型的热风从竖直及水平两个方向进入内部空间,均匀扩散分布在内部空间内的各个角落内,使内部空间内各个位置的待烘干产品都能被烘干,每件待烘干产品也可以被均匀烘干;另外,热风从竖直及水平两个方向进入内部空间后,两个方向的热风量叠加后,流量增大,对于层层堆叠设置的待烘干产品也可以快速烘干,提高了烘干效率。
发明人发现,此装置通过在房体内一侧通过隔板隔出夹层空腔,隔板上开设有进风孔,改善了烘房内部温度场分布,但烘干过程中无法对物料定期翻动,容易造成靠近出风口一侧,及靠近排风口一侧的物料烘干速度过快,造成烘干效果不均匀。
申请号:201720858300.2公开了一种橘红烘房,在橘红烘房的地板下设置有导热金属管,导热金属管伸出至柴火焚烧处,柴火将导热金属管加热烧烫甚至烧红,导热金属管将热量传递给烘房的地板及四壁,再将热量传给橘红烘房内的空气,如此直接利用柴火之力加热确保化橘红的药效,不使化橘红的药效打折扣。同时,密封的橘红烘房内安装有旋风均温机,旋风均温机将橘红烘房的热空气内循环流动使内部空气充分混合达到使烘房内部温度均一的作用,使每个橘红果实均匀受热,确保烘干效果。
发明人发现,此装置采用旋风均温机将橘红烘房的热空气内循环流动使内部空气充分混合达到使烘房内部温度达到均一的效果,解决了传统烘干设备烘干效果不均匀的问题,但采用燃烧柴火作为热源的方式对环境不友好污染较大。
综上所述,发明人发现,传统的烘干设备普遍存在温度场分布不合理、能源消耗大、烘干效果不均匀且污染环境的缺点。
发明内容
为了解决上述问题,本发明提供一种核桃壳空气能穿流箱式干燥器及其工作方法,其能够产生烘干效果均匀、节约能源,减少余热浪费的效果。
为了实现上述目的,本发明采用如下技术方案:
本发明的第一方面提供了一种核桃壳空气能穿流箱式干燥器。
一种核桃壳空气能穿流箱式干燥器,包括:
箱体,所述箱体内设置有输送机构,所述输送机构的输入端与入料口相连,输送机构用于传输待 干燥的核桃壳;所述箱体的一侧设置有至少一个空气能热泵;所述空气能热泵包括蒸发器和冷凝器,所述蒸发器用于从箱体内部空气中吸热,所述冷凝器用于将蒸发器吸收的热量排入箱体内部,完成一个闭环循环,实现空气能穿流箱体内干燥核桃壳的目的。
本发明的第二方面提供了一种核桃壳空气能穿流箱式干燥器的工作方法。
一种核桃壳空气能穿流箱式干燥器的工作方法,包括:
利用输送机构将在箱体内传输从入料口进入箱体的待干燥的核桃壳;
在核桃壳传输的过程中,开启空气能热泵,空气能热泵的蒸发器从箱体内部空气中吸热,空气能热泵的冷凝器将蒸发器吸收的热量排入箱体内部,完成一个空气闭环循环,实现空气能穿流箱体内干燥核桃壳的目的。
本发明的有益效果是:
本发明的箱体内的干燥空气经冷凝器加热后排入干燥器室内,变为温润的湿风,然后经再输入到蒸发器中,经吸热排湿后,再次变为干燥空气,重新经过冷凝器加热后进入箱体内部,可以适应于低温高湿环境,节约能源,减少余热浪费。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1(a)为空气能穿流箱式干燥器轴侧装配图;
图1(b)为空气能穿流箱式干燥器左侧图;
图1(c)为空气能穿流箱式干燥器俯视图;
图2(a)为空气能热泵轴侧装配图;
图2(b)为空气能热泵俯视图;
图2(c)为图2(b)中A-A截面剖视图;
图3为空气能热泵核心部件及辅助部件组装示意图;
图4为送风装置轴测装配图;
图5为送风风机轴测图;
图6(a)为送风风道轴测图;
图6(b)为送风风道半剖图;
图7为排风装置轴侧图;
图8(a)为排风风机轴侧装配图;
图8(b)为排风风机轴侧爆炸图;
图9(a)为双盘弯头轴测图;
图9(b)为双盘弯头俯视图;
图9(c)为图9(a)中A-A截面剖视图;
图10(a)为双盘横管轴测图;
图10(b)为双盘横管俯视图;
图10(c)为图10(b)中A-A截面剖视图;
图11(a)为双盘竖管轴测图;
图11(b)为双盘竖管俯视图;
图11(c)为图11(b)中A-A截面剖视图;
图12(a)为链板式输送机轴测装配图;
图12(b)为链板式输送机剖视图;
图13为链板式输送机纵向支撑架;
图14(a)为链板输送带轴侧装配图;
图14(b)链板输送带轴侧爆炸图;
图14(c)为链板输送带俯视图;
图14(d)为图14(c)中A-A截面剖视图;
图15(a)为链板输送机侧向挡板轴测图;
图15(b)为链板输送机侧向挡板侧视图;
图16(a)为L型支撑板轴侧装配图;
图16(b)为L型支撑板俯视图;
图16(c)为图16(b)中A-A截面剖视图;
图17(a)为链条支撑板轴测图;
图17(b)为链条支撑板侧视图;
图18(a)为链板式输送机横向安装架轴测图;
图18(b)为链板式输送机横向安装架正视图;
图18(c)为链板式输送机横向安装架侧视图;
图19(a)为纵向刮平板轴测图;
图19(b)为纵向刮平板俯视图;
图19(c)为图19(b)中A-A截面剖视图;
图20(a)为凸肋连接块轴测图;
图20(b)为凸肋连接块俯视图;
图20(c)为图20(b)中A-A截面剖视图;
图21(a)为主动辊导向板轴测图;
图21(b)为主动辊导向板左视图;
图21(c)为图21(b)中A-A截面剖视图;
图22(a)为链轮装配图;
图22(b)为链轮爆炸图;
图22(c)为链轮侧视图;
图22(d)为图22(c)中A-A截面剖视图;
图23(a)为L型角码轴测图;
图23(b)为L型角码俯视图;
图23(c)为图23(b)中A-A截面剖视图;
图24(a)为网状托盘轴测图;
图24(b)为网状托盘侧视图;
图24(c)为网状托盘俯视图;
图25(a)为从动辊轴测图;
图25(b)为从动辊正视图;
图26(a)为主动辊轴测图;
图26(b)为为主动辊正视图;
图27(a)为管状螺旋输送机轴侧装配图;
图27(b)为管状螺旋输送机轴侧爆炸图;
图27(c)为管状螺旋输送机左视图;
图27(d)为管状螺旋输送机俯视图;
图27(e)为管状螺旋输送机正视图;
图28为图27(e)中II截面局部放大图;
图29为图27(e)中I截面局部放大图;
图30为图27(e)中III截面局部放大图;
图31为图27(e)中A-A截面剖视图;
图32为图27(e)中IV截面局部放大图;
图33为图27(e)中B-B截面剖视图;
图34(a)为第一种风机安装方案空气循环示意图;
图34(b)为第二种风机安装方案空气循环示意图;
图35为空气能穿流箱式干燥器横向剖视图;
图中,空气能热泵I,送风装置II,排风装置III,链板式输送机IV,管状螺旋输送机V;
I-01-空气能热泵进风通道,I-02-四通阀,I-03-空气能热泵进气风机,I-04-膨胀阀,I-05-视液箱,I-06-液体管路干燥过滤器,I-07-压缩机,I-08-空气能热泵排风通道,I-09-控制箱,I-10-蒸发器,I-11-冷凝器;I-12-第一温度传感器;I-13-压力传感器;I-14-压力控制器;I-15-第二温度传感器;
II-01-送风风机,II-02-送风风道;
III-01-排风风机,III-02-双盘弯头,III-03-双盘横管,III-04-双盘竖管;
IV-01-链板式输送机纵向支撑架,IV-02-链板输送带,IV-03-链板输送机侧向挡板,IV-04-L型支撑板,IV-05-L型支撑板连接螺钉,IV-06-链条支撑板,IV-07-链板式输送机横向安装架,IV-08-纵向刮平板,IV-09-凸肋连接块,IV-10-凸肋连接块定位螺钉,IV-11-主动辊导向板,IV-12-链轮,IV-13-主动辊立式带座轴承,IV-14-电机底座,IV-15-电机紧固螺母,IV-16-电机定位双头螺柱,IV-17-电机紧固螺母防松弹簧垫圈,IV-18-链板式输送机传动伺服电机,IV-19-L型角码,IV-20-L 型角码连接螺钉,IV-21-L型角码连接螺栓,IV-22-L型角码连接螺母,IV-23-网状托盘,IV-24-链条,IV-25-L型支撑板连接螺母,IV-26-L型支撑板连接螺栓,IV-27-从动辊立式带座轴承,IV-28-从动辊,IV-29-从动辊导向板,IV-30-主动辊;
V-01-伺服电机,V-02-减速器,V-03-方形带座轴承,V-04-管状套筒,V-05-进料仓,V-06-管状螺旋输送机左端盖,V-07-管状螺旋输送机左端盖紧固螺母,V-08-管状螺旋输送机左端盖紧固螺栓,V-09-管状螺旋输送机底座,V-10-管状螺旋输送机右端盖,V-11-伺服电机圆头平键,V-12-伺服电机半联轴器,V-13-伺服电机半联轴器紧固螺母,V-14-伺服电机半联轴器紧固螺母防松垫圈,V-15-减速器右端半联轴器,V-16-伺服电机半联轴器连接螺栓,V-17-减速器右端半联轴器紧固螺钉,V-18-减速器右端平键,V-19-进料仓连接螺栓,V-20-进料仓紧固螺母,V-21-方形带座轴承紧固螺母,V-22-方形带座轴承连接螺栓,V-23-螺旋轴,V-24-螺旋轴右侧半联轴器,V-25-螺旋轴右侧半联轴器连接螺栓,V-26-减速器左侧半联轴器防松垫圈,V-27-减速器左侧半联轴器紧固螺母,V-28-减速器左侧半联轴器,V-29-减速器左端平键,V-30-减速器紧固螺母防松垫圈,V-31-减速器紧固螺母,V-32-伺服电机定位双头螺柱,V-33-伺服电机半联轴器紧定螺钉,V-34-伺服电机紧固螺母防松垫圈,V-35-伺服电机紧固螺母,V-36-减速器定位双头螺柱,V-37-螺旋轴右端平键,V-38-螺旋轴右端半联轴器紧定螺钉,V-39-减速器左端半联轴器紧定螺钉;
III-0101-机壳,III-0102-电机,III-0103-电机定位螺钉,III-0104-叶轮,
IV-0201-T型刮板,IV-0202-T型刮板连接螺栓,IV-0203-链板I,IV-0204-链板II,IV-0205-T型刮板紧固螺母,IV-0206-销轴;
IV-1201-齿圈,IV-1202-轮毂,IV-1203-齿圈连接螺栓,IV-1204-齿圈紧固螺母,IV-1205-齿圈紧固螺母防松垫圈。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本发明中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。
本发明中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限 制。
本发明的核桃壳空气能穿流箱式干燥器,包括:
箱体,所述箱体内设置有输送机构,所述输送机构的输入端与入料口相连,输送机构用于传输待干燥的核桃壳;所述箱体的一侧设置有至少一个空气能热泵;所述空气能热泵包括蒸发器和冷凝器,所述蒸发器用于从箱体内部空气中吸热,所述冷凝器用于将蒸发器吸收的热量排入箱体内部,完成一个闭环循环,实现空气能穿流箱体内干燥核桃壳的目的。
下面以箱体为干燥器箱体,箱体的一侧两个空气能热泵,输送机构为链板式输送机为例来详细说明本发明的核桃壳空气能穿流箱式干燥器的结构。
下面结合附图1-附图35对本实施例公开的一种核桃壳空气能穿流箱式干燥器做进一步的说明;
图1(a)-图1(c)所示,核桃壳空气能穿流箱式干燥器包括空气能热泵I,送风装置II,排风装置III,链板式输送机IV及管状螺旋输送机V五大部分组成。两组空气能热泵I的下方分别通过管道分别与干燥器箱体内部的送风装置II相连,送风装置II位于干燥器内部链板式输送机IV的正下方,排风装置位于干燥器内部链板式输送机IV的正上方,且通过管道与空气能热泵I的上方工作单元相连。
图2(a)-图2(c)和图3所示,空气能热泵I由空气能热泵进风通道I-01,四通阀I-02,空气能热泵进气风机I-03,膨胀阀I-04,视液箱I-05,液体管路干燥过滤器I-06,压缩机I-07,空气能热泵排风通道I-08,控制箱I-09,蒸发器I-10,冷凝器I-11组成。第一温度传感器I-12和第二温度传感器I-15用于分别检测蒸发器I-10和冷凝器I-11的温度,并传送至控制箱I-09;压力传感器I-13用于检测压缩机I-07的压力并传送至压力控制器I-14。
蒸发器I-10位于空气能热泵上单元,通过螺钉与空气能热泵机壳相连,冷凝器位于空气能热泵下单元,同样通过螺钉与空气能热泵机壳相连,压缩机I-07通过双头螺柱与空气能热泵机壳连接,液体管路干燥过滤器I-06通过半圆形卡环配合内六角圆柱头螺钉与干燥过滤器底座相连,干燥器底座则通过双头螺柱与空气能热泵机壳相连。它的四大核心部件是压缩机I-07、冷凝器I-11、节流装置和蒸发器I-10,用连接管路和连接部件按一定的组织结构依次将它们连接起来,形成一个封闭的循环系统。本实施例的空气能干燥器采用逆卡诺原理的闭环干燥系统。热泵将低温热源空气中的能量充分吸收并送到干燥器内,为干燥过程提供热源并通过除湿排湿设备将物料蒸发的水分排出,进而实现对物料的干燥。其中热泵系统的压缩机—冷凝器—节流器—蒸发器—压缩机等装置构成了热量提供系统。热泵工质首先进入压缩机,在压缩机内实现等焓升压过程,变为高温高压流体;在冷凝器中实现液气相变放热,产生高温热量送入干燥器实现干燥器内空气升温,对物料进行干燥;此时工质变为低温低压的流液态,当它运行到蒸发器后,液态迅速蒸发吸热再次转化为气态,同时工质温度下降至零下20℃—30℃,从而实现不断的吸收周围空气的能量。热泵工质不断地循环就实现将空气中的热量搬运到干燥器内加热空气温度,从而为农业物料的干燥提供能量。
如图4、图5、图6(a)-图6(b)所示,送风风机II-01位于干燥器中链板式输送IV的底部,其出风口空气流向垂直于链板平面,且每组送风风机II-01包括三个出风口,每组空气能热泵I搭配一组送风风机II-01。送风风道II-02与空气能热泵I之间为螺栓连接,与送风风机II-01通过铆钉 连接。
如图7-图11(c)所示,排风风机III-01通过螺钉与干燥器顶盖出风口相连,双盘弯头III-02与排风风机III-01之间为螺栓连接,且双盘弯头III-02通过螺栓与双盘横管III-03连接,且双盘横管III-03与另一端双盘弯头之间为螺栓连接,双盘竖管III-03上端与双盘弯头之间为螺栓连接,其下端通过螺栓空气能热泵I相连。如图8(a)-图8(b)所示,排风风机III-01外侧设置有机壳III-0101,机壳III-0101内设置有电机III-0102,电机III-0102通过电机定位螺钉III-0103与机壳III-0101固定,电机III-0102上设置有叶轮III-0104,
如图12—图26(b)所示,主动辊IV-30两端设有两组主动辊立式带座轴承IV-13,通过螺栓与链板式输送机横向安装架IV-07相连。从动辊IV-28两端设有从动辊立式带座轴承IV-27通过螺栓与链板式输送机横向安装架IV-07相连。在主动辊IV-30两端位于主动辊立式带座轴承IV-13的内侧分别设有两组链轮IV-12,且链轮IV-12与主动辊IV-30之间通过紧定螺钉连接,以限制其轴向及周向移动。同样在从动辊IV-28两端位于从动辊立式带座轴承IV-27的内侧设有两组链轮IV-12,且链轮IV-12与从动辊IV-28之间为限制其轴向及周向移动设有紧定螺钉。链轮IV-12为大直径链轮,故采用分装式设计。齿圈IV-1201通过齿圈连接螺栓IV-1203,齿圈紧固螺母V-1204与轮毂IV-1202相连,为防止齿圈紧固螺母IV-1204松动,在其下方设有齿圈紧固螺母防松垫圈有IV-1205。链板输送带IV-02与链条IV-24之间通过销轴铰接,且链板输送带IV-02是由链板I IV-0203,链板II IV-0204通过销轴IV-0206与链条IV-24铰接而成,为便于热空气流通,链板采用打孔设计,为将落在输送带上的物料均匀摊平,在其上方设有T型刮板IV-0201,其通过T型刮板连接螺栓IV-0202,T型刮板紧固螺母IV-0205与链板相连。主动辊IV-30与从动辊IV-28的主要作用是对链板输送带IV-02起支撑作用,防止其承载物料时因链板弹性变形,而造成链条脱节。在链条IV-24的下方设有链条支撑板IV-06,在其上方设有链板输送机侧向挡板IV-03,且链条支撑板IV-06,链板输送机侧向挡板IV-03通过L型支撑板连接螺钉IV-05与L型支撑板IV-04相连,L型支撑板IV-04通过L型支撑板连接螺母IV-25,L型支撑板连接螺栓IV-26与链板式输送机横向安装架IV-07相连。主动辊导向板IV-11上侧通过凸肋连接块IV-09及凸肋连接块定位螺钉IV-10固定于链板输送机侧向挡板IV-03,下方则通过L型角码IV-19与链板式输送机横向安装架IV-07相连,其中L型角码IV-19与链板式输送机横向安装架IV-07之间通过L型角码连接螺栓IV-21,L型角码连接螺母IV-22相连;与主动辊导向板IV-11之间通过L型角码连接螺钉IV-20相连。IV-08-纵向刮平板同样通过凸肋连接块IV-09及凸肋连接块定位螺钉IV-10固定于链板输送机侧向挡板IV-03。网状托盘IV-23通过L型角码IV-19与链板式输送机横向安装架IV-07相连,其中L型角码IV-19通过L型角码连接螺钉IV-20固定于网状托盘IV-23,通过L型角码连接螺栓IV-21,L型角码连接螺母IV-22连接于链板式输送机横向安装架IV-07。网状托盘IV-23采用打孔设计,中间设有空洞。从动辊导向板IV-29安装方式与主动辊导向板IV-11完全相同。链板式输送机纵向支撑架IV-01通过螺栓与链板式输送机横向安装架IV-07相连。链板式输送机传动伺服电机IV-18通过电机定位双头螺柱IV-16与电机底座IV-14相连,在电机底座上方依次设有电机紧固螺母防松弹簧垫圈IV-17,电机紧固螺母IV-15。链板式输送机传动伺服电机IV-18与主动辊IV-30之间通过联轴器相连,必要时可增设减速器。
如图27(a)—图33所示,伺服电机V-01通过伺服电机定位双头螺柱V-32与管状螺旋输送机底座V-09相连,在伺服电机底座上方依次设有伺服电机紧固螺母防松垫圈V-34,伺服电机紧固螺母V-35。伺服电机V-01与减速器V-02之间通过联轴器相连,其中减速器右端半联轴器V-15伺服电机半联轴器V-12之间通过伺服电机半联轴器连接螺栓V-16,伺服电机半联轴器紧固螺母V-13,伺服电机半联轴器紧固螺母防松垫圈V-14连接,为传递转矩在伺服电机V-01与伺服电机半联轴器V-12设有伺服电机圆头平键V-11,在减速器V-02与减速器右端半联轴器V-15之间设有减速器右端平键V-18,他们分别通过伺服电机半联轴器紧定螺钉V-33及减速器右端半联轴器紧固螺钉V-17限制其轴向滑动。减速器V-02通过减速器定位双头螺柱V-36,减速器紧固螺母防松垫圈V-30,减速器紧固螺母V-31与管状螺旋输送机底座V-09相连。减速器V-02通过螺旋轴右侧半联轴器V-24,减速器左侧半联轴器V-28与螺旋轴V-23相连,为传递扭矩在他们之间分别设有减速器左端平键V-29,螺旋轴右端平键V-37。并通过螺旋轴右端半联轴器紧定螺钉V-38,减速器左端半联轴器紧定螺钉V-39限制联轴器轴向滑动。管状螺旋输送机右端盖V-10通过管状螺旋输送机左端盖紧固螺母V-07管状螺旋输送机左端盖紧固螺栓V-08与管状套筒V-04相连,螺旋轴V-23与方形带座轴承V-03之间通过紧定螺钉连接,方形带座轴承V-03与管状螺旋输送机右端盖V-10之间通过方形带座轴承紧固螺母V-21,方形带座轴承连接螺栓V-22连接。管状螺旋输送机左端盖V-06连接方式与右端盖完全相同。不再赘述。进料仓V-05通过进料仓连接螺栓V-19,进料仓紧固螺母V-20与管状套筒V-04相连。且管状套筒与管状螺旋输送机底座V-09之间通过焊接相连。
本实施例的链板式输送机,具有自动喂料功能。输送机上方的金字塔形物料通过沿输送带逆时针转动,在纵向刮平板以及主动辊挡板的作用下落入网状拖盘,T型刮板外延与网状托盘底部贴合会推动核桃壳继续沿输送带转动方向移动,通过从动辊挡板,被摊平的核桃壳重新翻入输送机上方,通过多轮转动核桃壳会均匀铺满网状托盘以及输送带上方每个T型板的间隔内,完成自动喂料,自动化程度高,操作方便,物料层较薄,烘干速度更快。链板式输送机会定时转动,会定时将输送带上方物料与网状托盘内的物料位置兑换,保证了烘干效果的均匀性;链板式输送带在烘干结束后会随管状螺旋输送机同时转动,将烘干完成的核桃壳自动送出干燥器,具有自动卸料功能;网状托盘采用打孔设计保证干燥高温空气顺利穿过网状托盘以及输送机链板上方的物料,烘干效果更好。
结合图34(a)—图35,介绍本方案具体工作过程如下,经清洗、沥水处理过后的核桃壳通过斜坡输送带经喂料仓落在链板式输送带IV的上方,逐渐堆积成金字塔形,此时链板式输送机传动伺服电机IV-18带动链板输送带IV-02逆时针转动,在纵向刮平板IV-08的作用下,堆积的核桃壳被摊平。又因为T型刮板IV-0201外沿与网状托盘IV-23底部贴合,所以落入网状托盘下方的核桃壳将与传送带运动方向保持一致,经过多轮的转动喂料,链板输送带IV-02上方的每个T型刮板所组成的间隔内均匀铺满核桃壳,同时网状托盘也均匀铺满核桃壳时,喂料结束,链板式输送机传动伺服电机IV-18停止转动。此时送风风机II-01开启进入烘干阶段,送风装置和排风装置的安装位置有两种方案,一种是送风风机II-01位于链板式输送带III的正下方,排风风机III-01位于链板式输送带III的正上方,干燥的热空气从底部送风风机II-01垂直于网状托盘方向垂直上升,依次穿过网状托盘IV-23及链板输送带上方两层物料,到达干燥器顶部,此时干燥的热风变为温润且含湿量较大的湿风,经排 风风机III-01经气道进入空气能热泵I的上单元蒸发器I-10所在位置。经蒸发器经吸热排湿之后,空气下行,进入冷凝器所在单元,此时为补充蒸发器排湿减少的空气,空气能热泵I中的空气能热泵进气风机I-03开启,从外界往干燥器内部补充空气,同上面排湿过后的空气一起经过冷凝汽器I-11加热后,经送风风道I-02,送风风机I-01进入干燥器内部重复上述过程。另一种方案是送风风机II-01与排风风机III-01同时安装于干燥器一侧,此时工作过程是干燥的热风经位于干燥器侧壁上的送风风机II-01与水平方向倾斜一定角度依次穿过两层物料后,经位于干燥室侧壁上的排风风机III-01排出干燥室,依次进入蒸发器I-10排湿,补风,冷凝器加热的闭环循环方式,经送风风机II-01重新进入干燥器内部。
因靠近进风口位置越近其烘干速度越快,所以链板式输送机传动伺服电机IV-18会定时开启,其目的是将输送带上方核桃壳翻入下方网状托盘IV-23,将下方托盘核桃壳翻入上方链板输送带IV-02,使烘干效果更佳均匀。干燥器室内的湿度传感器,温度传感器会时刻将检测到数值传递到控制系统。热泵干燥系统的设备采用温湿度自动控制系统,采用PLC(可编程控制器)控制方法,通过多种传感器收集热泵在干燥过程中各部分的状态参数,传递到PCB板,并配有触摸屏等操控系统,对机组运行中的状态进行智能控制,实现机器操作的智能化。干湿球温度传感器将采集的信号,通过换算得到湿度信号,经数据处理模块转化为数字信号,信号通过光电耦合器传入PLC,PLC将经转化后的信号与设定的温度值湿度值比较。根据比较的结果来控制压缩机的运行、干燥风机的开启以及排湿风机的开启。
温度和湿度是影响核桃壳干燥的主要因素。在干燥过程中干燥温度不宜过高,因为核桃果壳属于多孔类物质,过高的温度可能会致使果壳皱缩影响内部水分迁移。因此核桃壳干燥分为三个干燥阶段:升温干燥阶段、恒速干燥阶段和降速干燥阶段。
升温干燥阶段:核桃壳开始受热,温度呈直线上升阶段,而核桃壳的含水率逐渐降低,这个阶段成为物料的预热阶段,通常这个时间较短;
恒速干燥阶段:当核桃壳内部水分迁移到核桃果壳表面的速率大于或者等于水分子从核桃壳表面迁移到干燥介质的速率。即核桃壳表面水分含量被认为基本是恒定的,此阶段为恒速阶段。恒速阶段的推动力是核桃壳表层的水分蒸汽压与干空气的水分蒸汽压之差。该阶段的干燥速率取决于干燥介质的温度、空气相对湿度、风速和物料蒸发面积等因素。只要核桃壳内部水分迁移至核桃表层的速率足够快,恒速干燥期就会持续。当核桃壳内部水分迁移比核桃表面蒸发速度慢时,恒速干燥阶段结束,可采用下式求出恒速干燥的时间:
Figure PCTCN2020089405-appb-000001
m s——干燥食品中干物质的总量,kg;
w——湿基含量,kg/kg;
t——干燥时间,min;
H v——气化潜热,KJ/kg;
h——对流传热系数,w/(m 2.℃);
T a和T s——分别为空气和物料表面温度,℃;
A——与干燥空气接触的物料表面积,m 2
降速干燥阶段:在干燥后期,当核桃壳达到临界含水率时,水分从核桃壳内部迁移至干燥介质的速率快于水分补充到核桃壳表层的速率,这时被称为降速干燥阶段。此阶段主要取决于干燥条件以及核桃壳本身的属性结构。一旦核桃壳水分含量与干空气中水分达到平衡时,干燥停止。
当干燥完成时,链板式输送机IV与管状螺旋输送机V同时转动将烘干完成的核桃壳输出干燥器。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种核桃壳空气能穿流箱式干燥器,其特征在于,包括:
    箱体,所述箱体内设置有输送机构,所述输送机构的输入端与入料口相连,输送机构用于传输待干燥的核桃壳;所述箱体的一侧设置有至少一个空气能热泵;所述空气能热泵包括蒸发器和冷凝器,所述蒸发器用于从箱体内部空气中吸热,所述冷凝器用于将蒸发器吸收的热量排入箱体内部,完成一个闭环循环,实现空气能穿流箱体内干燥核桃壳的目的。
  2. 如权利要求1所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述输送机构的正上方设置有送风装置,其用于将被冷凝器释放热量加热形成的干燥热空气排入箱体内。
  3. 如权利要求1所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述输送机构的正下方设置有排风装置,其用于将箱体内的温润湿空气送入蒸发器中进行吸热及排湿。
  4. 如权利要求1所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述箱体内壁的同一侧安装有送风装置和排风装置,送风装置用于将被冷凝器释放热量加热形成的干燥热空气排入箱体内;排风装置用于将箱体内的温润湿空气送入蒸发器中进行吸热及排湿。
  5. 如权利要求1所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述输送机构为链板式输送机。
  6. 如权利要求5所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述链板式输送机下方设置有网状托盘。
  7. 如权利要求6所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述网状托盘下方连通有管状螺旋输送机,其用于将干燥后的核桃壳送出箱体。
  8. 如权利要求1所述的核桃壳空气能穿流箱式干燥器,其特征在于,所述箱体内设置有温湿度传感器,所述温湿度传感器与控制器相连,所述控制器与空气能热泵相连。
  9. 一种如权利要求1-8中任一项所述的核桃壳空气能穿流箱式干燥器的工作方法,其特征在于,包括:
    利用输送机构将在箱体内传输从入料口进入箱体的待干燥的核桃壳;
    在核桃壳传输的过程中,开启空气能热泵,空气能热泵的蒸发器从箱体内部空气中吸热,空气能热泵的冷凝器将蒸发器吸收的热量排入箱体内部,完成一个空气闭环循环,实现空气能穿流箱体内干燥核桃壳的目的。
  10. 如权利要求9所述的核桃壳空气能穿流箱式干燥器的工作方法,其特征在于,当核桃壳水分含量与箱体内空气中水分达到平衡时,停止核桃壳空气能穿流箱式干燥器的干燥工作。
PCT/CN2020/089405 2020-04-13 2020-05-09 一种核桃壳空气能穿流箱式干燥器及其工作方法 WO2021208166A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/06719A ZA202106719B (en) 2020-04-13 2021-09-10 Air energy through-flow box dryer for walnut shells and working method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010302670.4A CN111473637A (zh) 2020-04-13 2020-04-13 一种核桃壳空气能穿流箱式干燥器及其工作方法
CN202010302670.4 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021208166A1 true WO2021208166A1 (zh) 2021-10-21

Family

ID=71754364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089405 WO2021208166A1 (zh) 2020-04-13 2020-05-09 一种核桃壳空气能穿流箱式干燥器及其工作方法

Country Status (3)

Country Link
CN (1) CN111473637A (zh)
WO (1) WO2021208166A1 (zh)
ZA (1) ZA202106719B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265125A (zh) * 2022-08-23 2022-11-01 重庆市诺飞特农业开发有限公司 一种分级式多机组空气能烘干机
CN115435552A (zh) * 2022-09-05 2022-12-06 山东省农业机械科学研究院 一种香菇柄干燥和超微粉碎一体化加工装备及方法
CN115560574A (zh) * 2022-10-14 2023-01-03 青岛理工大学 一种根茎类中药干燥设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287647B (zh) * 2022-01-05 2022-12-02 塔里木大学 一种高效核桃热风循环干燥设备
CN114383406A (zh) * 2022-01-17 2022-04-22 杭州姚生记食品有限公司 山核桃动态循环烘干装置及烘干方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2558503A1 (es) * 2014-07-04 2016-02-04 Das Tech Solutions, S.L.U. Dispositivo y procedimiento para el secado de productos
CN209042989U (zh) * 2018-09-29 2019-06-28 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN209068935U (zh) * 2018-11-15 2019-07-05 四川洁能干燥设备有限责任公司 一种花椒空气能动态干燥机
CN110926129A (zh) * 2018-09-19 2020-03-27 宁夏源泉农林生态科技有限公司 一种闭合双道360°循环除湿烘干房
CN210220226U (zh) * 2019-06-03 2020-03-31 河南中瑞制冷科技有限公司 一种嵌入式烘干机及配套的烘干房
CN211854816U (zh) * 2020-04-13 2020-11-03 青岛理工大学 一种核桃壳干燥器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2160863Y (zh) * 1993-05-20 1994-04-06 田晓亮 一种软胶丸干燥装置
CN204399966U (zh) * 2014-12-22 2015-06-17 迈安德集团有限公司 一种可输送高湿物料的输送机
CN208794921U (zh) * 2018-07-30 2019-04-26 广东欧亚制冷设备制造有限公司 一种热泵烘干系统
CN109186235A (zh) * 2018-09-29 2019-01-11 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN109222158B (zh) * 2018-09-30 2024-02-13 河南中联热科工业节能股份有限公司 一种核桃仁烘干设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2558503A1 (es) * 2014-07-04 2016-02-04 Das Tech Solutions, S.L.U. Dispositivo y procedimiento para el secado de productos
CN110926129A (zh) * 2018-09-19 2020-03-27 宁夏源泉农林生态科技有限公司 一种闭合双道360°循环除湿烘干房
CN209042989U (zh) * 2018-09-29 2019-06-28 山东福航新能源环保股份有限公司 一种粘滞性物体烘干装置
CN209068935U (zh) * 2018-11-15 2019-07-05 四川洁能干燥设备有限责任公司 一种花椒空气能动态干燥机
CN210220226U (zh) * 2019-06-03 2020-03-31 河南中瑞制冷科技有限公司 一种嵌入式烘干机及配套的烘干房
CN211854816U (zh) * 2020-04-13 2020-11-03 青岛理工大学 一种核桃壳干燥器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265125A (zh) * 2022-08-23 2022-11-01 重庆市诺飞特农业开发有限公司 一种分级式多机组空气能烘干机
CN115435552A (zh) * 2022-09-05 2022-12-06 山东省农业机械科学研究院 一种香菇柄干燥和超微粉碎一体化加工装备及方法
CN115560574A (zh) * 2022-10-14 2023-01-03 青岛理工大学 一种根茎类中药干燥设备
CN115560574B (zh) * 2022-10-14 2023-12-15 青岛理工大学 一种根茎类中药干燥设备

Also Published As

Publication number Publication date
ZA202106719B (en) 2021-10-27
CN111473637A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021208166A1 (zh) 一种核桃壳空气能穿流箱式干燥器及其工作方法
CN106369959B (zh) 一种空气能热泵农产品烘干装置
CN205593327U (zh) 一种除湿热泵烘干机
CN107356069B (zh) 一种可回收热量的食品烘干机
CN211854816U (zh) 一种核桃壳干燥器
WO2017142421A1 (en) System and process for drying loose bulk material
CN206974066U (zh) 一种大塑料颗粒混料循环干燥装置
CN207094850U (zh) 伸缩式箱体组件及除湿机
CN208443140U (zh) 一种农业用水稻烘干机
CN208434620U (zh) 热泵房加热式多层网带烘干系统
CN109458790A (zh) 一种高效一体化智能带式污泥除湿热泵干燥箱
CN207716820U (zh) 一种烘干效果好的茶叶烘干装置
KR101357756B1 (ko) 원통형 연속식 유동층 건조기
CN1967132A (zh) 特别用于工业应用中的凝结去湿器
CN205747782U (zh) 一种回转滚筒式烘干机
CN212619966U (zh) 一种炉料烘干系统
CN208349694U (zh) 连续流化床干燥机
CN209456272U (zh) 一种厂房式污泥干化系统
CN209619162U (zh) 低温除湿污泥干化机
CN209619161U (zh) 集成式污泥干化机
CN206891079U (zh) 高氯酸钾一体式气流干燥装置
CN202470275U (zh) 利用空调冷凝水的环保节能加湿机
CN205119676U (zh) 一种换向通风热泵干燥设备
CN202126144U (zh) 流化床干燥设备
CN208139466U (zh) 一种面粉加工厂房除尘除湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930883

Country of ref document: EP

Kind code of ref document: A1