WO2021207914A1 - 一种采用变压吸附技术生产氧气的方法 - Google Patents

一种采用变压吸附技术生产氧气的方法 Download PDF

Info

Publication number
WO2021207914A1
WO2021207914A1 PCT/CN2020/084614 CN2020084614W WO2021207914A1 WO 2021207914 A1 WO2021207914 A1 WO 2021207914A1 CN 2020084614 W CN2020084614 W CN 2020084614W WO 2021207914 A1 WO2021207914 A1 WO 2021207914A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
pressure swing
section
oxygen
swing adsorption
Prior art date
Application number
PCT/CN2020/084614
Other languages
English (en)
French (fr)
Inventor
宋宇文
Original Assignee
成都盈辰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都盈辰科技有限公司 filed Critical 成都盈辰科技有限公司
Priority to PCT/CN2020/084614 priority Critical patent/WO2021207914A1/zh
Priority to CN202080001888.4A priority patent/CN112004774B/zh
Publication of WO2021207914A1 publication Critical patent/WO2021207914A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/0266Carbon based materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/027Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0078Noble gases
    • C01B2210/0082Argon

Definitions

  • the invention relates to the field of oxygen production by pressure swing adsorption technology, in particular to a method for producing oxygen by using pressure swing adsorption technology.
  • the Chinese patent uses two stages to increase the oxygen recovery rate and reduce the power consumption) to adsorb the nitrogen in the air, and then the oxygen and argon enter the carbon molecular sieve (speed selective adsorption, the US patent is the second pressure swing adsorption
  • the Chinese patent is the third pressure swing adsorption stage) to adsorb oxygen, remove argon and a small amount of nitrogen, and increase the oxygen concentration to 99.5% (V); while the US patent US4190424 provides two pressure swing adsorption technologies for pure oxygen production.
  • the first pressure swing adsorption technology to produce pure oxygen first uses zeolite molecular sieve (nitrogen equilibrium adsorption, the first pressure swing adsorption stage) to adsorb nitrogen in the air, and then oxygen and argon enter the carbon molecular sieve (speed selective adsorption, the first The second pressure swing adsorption section) adsorbs oxygen, removes argon and a small amount of nitrogen, and increases the oxygen concentration to 99.5% (V).
  • zeolite molecular sieve nitrogen equilibrium adsorption, the first pressure swing adsorption stage
  • oxygen and argon enter the carbon molecular sieve (speed selective adsorption, the first
  • the second pressure swing adsorption section) adsorbs oxygen, removes argon and a small amount of nitrogen, and increases the oxygen concentration to 99.5% (V).
  • the second pressure swing adsorption technology for producing pure oxygen first uses carbon molecular sieve (speed selective adsorption, first A pressure swing adsorption section) adsorbs the oxygen in the air, and the resolved oxygen-rich and a small amount of nitrogen and argon enter the zeolite molecular sieve (nitrogen equilibrium adsorption, the second pressure swing adsorption section) to adsorb nitrogen and remove a small amount of nitrogen. Increase the oxygen concentration to 99.5% (V).
  • the power consumption of the two US patents US4190424 and US5395427 for pure oxygen production by pressure swing adsorption is much higher than that of the current cryogenic oxygen production. So far, there has been no commercial application of pressure swing adsorption for pure oxygen production.
  • the purpose of the present invention is to address the high power consumption problem of the current pressure swing adsorption technology for producing pure oxygen (99.5% V), and provide a method for producing oxygen using the pressure swing adsorption technology with low energy consumption and a safer and more reliable production process.
  • the present invention The purpose of is achieved through the following technical solutions:
  • a method for producing oxygen using pressure swing adsorption technology which includes a first pressure swing adsorption section and a second pressure swing adsorption section operated in series, and a speed-selective adsorbent bed that feeds dry raw material air into the first pressure swing adsorption section Most of the oxygen in the raw material air is adsorbed by the speed-selective adsorbent bed, most of the nitrogen and argon are discharged from the outlet of the adsorption tower and vented; the vacuum desorption gas in the first PSA section is removed from the second PSA section The bottom of the adsorption tower enters the velocity-selective adsorbent bed again, most of the oxygen in the vacuum desorption gas in the first PSA section is adsorbed by the velocity-selective adsorbent bed in the second PSA section, most of the nitrogen and argon Gas and a small amount of oxygen are vented from the outlet of the adsorption tower or flow into another adsorption tower that has just been evacuate
  • Nitrogen and argon are discharged from the outlet of the adsorption tower and vented.
  • the second pressure swing adsorption section After the adsorption of the adsorption tower is completed, part of the oxygen drawn by the vacuum pump of the second pressure swing adsorption section enters the adsorbent bed from the bottom of the second pressure swing adsorption section of the adsorption tower to replace the nitrogen and argon adsorbed by the adsorbent, and the replaced tail gas Discharge from the top of the adsorption tower, flow into the adsorption tower of the first pressure swing adsorption section or mix with the vacuum desorption gas of the adsorption tower of the first pressure swing adsorption section into the adsorption tower of the second pressure swing adsorption section as raw gas adsorption;
  • the adsorption tower of one pressure swing adsorption section undergoes at least two pressure swing adsorption process steps of adsorption A and vacuum VC in one cycle; the adsorption tower
  • the mixed gas at the bottom inlet of the first PSA section in series adsorption step A1 comes from the mixed gas at the outlet of the adsorption tower in the second PSA section in the oxygen replacement step P; the second PSA section in series adsorption step A1
  • the mixed gas at the bottom inlet comes from the mixed gas discharged from the outlet of the adsorption tower of the second pressure swing adsorption section in the adsorption A step.
  • the adsorption tower of the first PSA section undergoes at least two pressure swing adsorption process steps in sequence during a cycle of adsorption A and vacuum VC; the adsorption tower of the second PSA section undergoes at least sequentially during a cycle cycle
  • the mixed gas discharged from the outlet of the adsorption tower There are five pressure swing adsorption process steps: adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1; the displacement gas of the series displacement P1 step comes from the other in the second pressure swing adsorption stage in the oxygen displacement P step The mixed gas discharged from the outlet of the adsorption tower.
  • the tail gas of the step P1 of the second pressure swing adsorption section is discharged from the top of the adsorption tower, mixed with the vacuum desorption gas of the adsorption tower of the first pressure swing adsorption section, and enters the adsorption tower of the second pressure swing adsorption section as raw gas adsorption .
  • the adsorption tower of the first pressure swing adsorption section adds a series adsorption A1 step after the adsorption A step, that is, the adsorption tower of the first pressure swing adsorption section at least sequentially undergoes adsorption A, series adsorption A1 and vacuum VC in one cycle.
  • the adsorption tower of the first PSA section undergoes at least three PSA process steps in sequence, namely adsorption A, PSA A1, and vacuum VC; the adsorption tower of the second PSA section is in a cycle.
  • at least three pressure swing adsorption process steps of adsorption A, oxygen replacement P, and vacuum VC are carried out in sequence, and the mixed gas discharged from the outlet of the adsorption tower in the second pressure swing adsorption section in the oxygen replacement step P and the adsorption step A enters the first
  • the pressure swing adsorption section is in the adsorption tower of the series adsorption step A1 as the feed gas adsorption.
  • the adsorption tower of the second pressure swing adsorption section undergoes at least four pressure swing adsorption process steps in sequence in one cycle: adsorption A, series displacement P1, oxygen displacement P, and vacuum VC, and the second pressure swing adsorption section is in series
  • the mixed gas discharged from the outlet of the adsorption tower in the replacement step P1 enters the adsorption tower in the first pressure swing adsorption section in the series adsorption step A1 as the raw gas adsorption.
  • the adsorption tower of the second pressure swing adsorption section adds a step A2 of adsorption of dry raw material air after the step of vacuuming the VC.
  • the adsorption tower of the first PSA section undergoes at least three PSA process steps in sequence, namely adsorption A, series adsorption A1, and evacuated VC in one cycle.
  • the adsorption tower of the second PSA section is evacuated After the VC step, add the dry raw material air adsorption A2 step, that is, the adsorption tower of the second pressure swing adsorption section at least sequentially undergoes adsorption A, oxygen replacement P and vacuum VC, dry raw air adsorption A2 and series adsorption in one cycle.
  • A1 five pressure swing adsorption process steps; the mixed gas of the first pressure swing adsorption section in series adsorption of the A1 step is discharged from the outlet of the adsorption tower in the second pressure swing adsorption section in the series adsorption step A1 and the series replacement P1 step.
  • a third PSA section is added after the second PSA section, the adsorption tower of the third PSA section is filled with nitrogen balance selective adsorbent, the first PSA section, the second PSA section and The third PSA section is operated in series, and the oxygen-enriched gas mixture desorbed from the adsorption tower of the second PSA section is evacuated and enters the third PSA section filled with nitrogen-balanced adsorbent bed.
  • the oxygen-rich gas mixture is contained
  • the nitrogen is adsorbed, oxygen and argon flow out from the outlet of the adsorption tower to obtain product oxygen.
  • the adsorption tower of the third pressure swing adsorption stage at least sequentially undergoes adsorption A, equal pressure drop ED, reverse discharge BD, and equal pressure rise in a cycle.
  • the adsorption tower of the third pressure swing adsorption section adds a sequential PP step after the equalizing pressure drop ED step, and at the same time adds a purge P step after the reverse discharge BD step, and the gas for the purge P step comes from the sequential PP step.
  • the adsorption tower of the third pressure swing adsorption section adds a vacuum VC step after the reverse discharge BD step.
  • the adsorption tower of the third pressure swing adsorption section uses a vacuum VC step instead of the reverse discharge BD step.
  • the adsorption tower of the third pressure swing adsorption section is connected with the pressure swing adsorption tower of the first pressure swing adsorption section that has been evacuated (after the vacuum VC step) in the reverse discharge BD step or/and the vacuum VC step.
  • a fourth PSA section is added after the third PSA section, and the adsorption tower of the fourth PSA section is filled with a nitrogen balance selective adsorbent.
  • the four PSA sections are operated in series, and the third PSA section is
  • the oxygen-rich mixed gas at the outlet of the adsorption tower adsorption step A enters the fourth pressure swing adsorption section of the adsorption tower filled with nitrogen equilibrium adsorption adsorbent bed, the nitrogen in the oxygen-rich mixed gas is adsorbed, and oxygen and argon flow out from the outlet of the adsorption tower
  • the adsorption tower of the fourth pressure swing adsorption stage undergoes at least five pressure swing adsorption processes in one cycle: adsorption A, equal pressure drop ED, reverse discharge BD or vacuum VC, equal pressure rise and final rise FR. step.
  • the adsorption tower of the fourth pressure swing adsorption section at least sequentially undergoes the steps of adsorption A, equalization pressure drop ED, sequential release PP, reverse release BD, purge P, equalization pressure increase, and final FR increase in one cycle.
  • the gas in the sweep P step comes from the sequential PP step.
  • the adsorption tower of the fourth pressure swing adsorption section undergoes at least six pressure swing adsorption process steps in sequence in one cycle: adsorption A, equal pressure drop ED, reverse discharge BD, vacuum VC, equal pressure rise and final rise FR.
  • the adsorption tower of the fourth pressure swing adsorption section communicates with the pressure swing adsorption tower after the vacuum VC step of the third pressure swing adsorption section during the reverse discharge BD step or/and the vacuum VC step.
  • Option 1 The bottom of the adsorption towers of the first and second PSA stages are filled with desiccant, and the upper filling speed selective adsorbent bed, the raw material air containing gaseous water is from the bottom of the first PSA adsorption tower
  • the first pressure swing adsorption stage resolves Gaseous water and oxygen-enriched gas enter the desiccant bed and speed-selective adsorbent bed from the bottom of the adsorption tower of the second pressure swing adsorption section.
  • the gaseous water is adsorbed by the desiccant bed, and most of the oxygen is selected by the speed.
  • Type adsorbent bed adsorption most of the nitrogen and argon are discharged from the outlet of the adsorption tower, the gaseous water and oxygen enriched from the second pressure swing adsorption section enter the adsorption tower of the third pressure swing adsorption section and the nitrogen balance selective adsorbent In the bed, most of the gaseous water in the oxygen-rich mixed gas desorbed in the second PSA section is adsorbed by the desiccant bed in the third PSA section, and most of the nitrogen is balanced by the nitrogen in the third PSA section Selective adsorbent bed adsorption, oxygen, argon and a small amount of nitrogen flow out from the outlet of the adsorption tower.
  • the lower part of the adsorption tower of the first pressure swing adsorption section and the second pressure swing adsorption section is filled with activated alumina as the desiccant, and the upper part is filled with carbon molecular sieve as the speed selective adsorbent;
  • the lower part of the adsorption tower of the third pressure swing adsorption section is filled Activated alumina is used as desiccant, and the upper part is filled with 5A molecular sieve or X-type lithium molecular sieve as nitrogen balance selective adsorbent;
  • the adsorption tower of the fourth pressure swing adsorption section is filled with 5A molecular sieve or X-type lithium molecular sieve as nitrogen balance selective adsorbent .
  • Option 2 Set up a pressure swing adsorption drying section before the first pressure swing adsorption section to remove gaseous water in the raw material air to meet the requirements for moisture entering the adsorption tower of the first pressure swing adsorption section; the pressure swing adsorption drying section is in At least two pressure swing adsorption process steps of adsorption A and purge P are sequentially experienced in one cycle.
  • the gas of the purge P step comes from the venting of the first pressure swing adsorption section and the second pressure swing adsorption section.
  • Solution 3 Set up a temperature swing adsorption drying section before the first pressure swing adsorption section to remove gaseous water in the raw material air to meet the moisture requirements of the adsorption tower entering the first pressure swing adsorption section; the temperature swing adsorption drying section is in a cycle During the cycle, at least three PSA process steps, namely adsorption A, heating regeneration T, and cooling L are carried out in sequence. Part of the air discharged from the first PSA section and the second PSA section passes through the first PSA section to the fourth PSA section. The hot gas discharged from any power equipment of the pressure adsorption section heats up and regenerates the desiccant bed. The other part of the first pressure swing adsorption section and the second pressure swing adsorption section release air to cool the heated desiccant bed.
  • the pressure swing adsorption drying section or the temperature swing adsorption drying section is filled with activated alumina as a desiccant;
  • the adsorption towers of the first pressure swing adsorption section and the second pressure swing adsorption section are filled with carbon molecular sieve as the speed selective adsorbent;
  • the adsorption towers of the pressure adsorption section and the fourth pressure swing adsorption section are packed with 5A type molecular sieves or X type lithium molecular sieves as nitrogen balance selective adsorbents.
  • the pressure of the adsorption tower adsorption step A of the first and second pressure swing adsorption section is 0.002-0.01MPa (gauge pressure); the third pressure swing adsorption section and the pressure swing adsorption adsorption tower adsorption step A
  • the pressure is 0.005-3.5MPa (gauge pressure).
  • the concentration of oxygen in the outlet gas at the end of the adsorption step A of the adsorption tower of the first pressure swing adsorption section and the second pressure swing adsorption section of adsorbing the raw material air is 18-20.8% (V).
  • the adsorption towers of the first PSA section and the second PSA section are packed with carbon molecular sieves as the speed selective adsorbent; the adsorption towers of the third PSA zone and the fourth PSA zone are packed with 5A molecular sieves or X Lithium molecular sieve as nitrogen balance selective adsorbent.
  • the method of the present invention provides a pressure swing adsorption pure oxygen production technical solution with lower power consumption, saves electricity by more than 35% compared with cryogenic oxygen production, and the production process is safer.
  • Fig. 1 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of the process flow of Example 1 of the present invention.
  • Fig. 3 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the second embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the process flow of embodiment 2 of the present invention.
  • Fig. 5 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 3 of the present invention.
  • Fig. 6 is a schematic diagram of the process flow of Example 3 of the present invention.
  • Fig. 7 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 4 of the present invention.
  • Fig. 8 is a schematic diagram of the process flow of Example 4 of the present invention.
  • Figure 9 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the fifth embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the process flow of Example 5 of the present invention.
  • Fig. 11 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve according to the sixth embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the process flow of Example 6 of the present invention.
  • Fig. 13 is a sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the seventh embodiment of the present invention.
  • Fig. 14 is a schematic diagram of the process flow of Example 7 of the present invention.
  • Figure 15 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 8 of the present invention.
  • Fig. 16 is a schematic diagram of the process flow of Example 8 of the present invention.
  • Fig. 17 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 9 of the present invention.
  • Fig. 18 is a schematic diagram of the process flow of Example 9 of the present invention.
  • Fig. 19 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 10 of the present invention.
  • Fig. 20 is a schematic diagram of the process flow of Example 10 of the present invention.
  • Fig. 21 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 11 of the present invention.
  • Fig. 22 is a schematic diagram of the process flow of Example 11 of the present invention.
  • Fig. 23 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 12 of the present invention.
  • Fig. 24 is a schematic diagram of the process flow of Example 12 of the present invention.
  • Fig. 25 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 13 of the present invention.
  • Figure 26 is a schematic diagram of the process flow of Example 13 of the present invention.
  • Figure 27 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in Embodiment 14 of the present invention.
  • Fig. 28 is a schematic diagram of the process flow of Example 14 of the present invention.
  • Fig. 29 is a sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the fifteenth embodiment of the present invention.
  • Fig. 30 is a schematic diagram of the process flow of Example 16 of the present invention.
  • Figure 31 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the 16th embodiment of the present invention.
  • Fig. 32 is a schematic diagram of the process flow of Example 16 of the present invention.
  • Figure 33 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the 17th embodiment of the present invention.
  • Figure 34 is a schematic diagram of the process flow of Example 17 of the present invention.
  • 35 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the 18th embodiment of the present invention.
  • Fig. 36 is a schematic diagram of the process flow of Example 18 of the present invention.
  • Fig. 37 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 19 of the present invention.
  • Fig. 38 is a schematic diagram of the process flow of Example 19 of the present invention.
  • Fig. 1 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of the process flow of Example 1 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A and T0101B constitute the first pressure swing adsorption section.
  • the adsorbent in the adsorption tower is carbon molecular sieve, and a single tower is operated.
  • Adsorption vacuuming program pure oxygen vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0201, adsorption tower T0201A, T0201B, T0201C and T0201D constitute the second pressure swing adsorption section, adsorption tower
  • the adsorbent filled in is carbon molecular sieve, and the single-tower series adsorption, displacement and vacuuming procedures are run.
  • the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • vacuum is immediately carried out.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the sorbent selectively adsorbs oxygen and other components in the oxygen-rich mixture.
  • the exhaust gas such as nitrogen, argon, and a small amount of oxygen that is not easy to adsorb flows out from the outlet end into another adsorption tower that has just been evacuated to boost pressure and adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easily adsorbed are vented from the outlet end.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through the two pressure swing adsorption process steps of adsorption A and vacuum VC successively; the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled to be close to the oxygen concentration of the raw gas, and the adsorption towers are sequentially in a cycle It has undergone four pressure swing adsorption process steps: adsorption A, oxygen replacement P, vacuum VC, and series adsorption A1.
  • the total oxygen recovery rate is about 60%
  • the first pressure swing adsorption stage vacuum analysis gas oxygen concentration is about 40%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is two stages.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V), stop the air intake, and the adsorption ends at this time.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the adsorption tower of the first PSA section is replaced with the adsorption tower T0201D and flows out from the top. After the exhaust gas is mixed, it enters the adsorbent bed of the adsorption tower T0201A from the bottom.
  • the adsorbent in the adsorption tower T0201A selectively enriches the oxygen and other components in the oxygen mixture, the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gas.
  • adsorption tower T0201B Flow out from the outlet end and enter the bottom of the adsorption tower T0201B to increase the pressure.
  • the adsorption pressure is increased, open the programmable valve KV2B-2, and the unadsorbed nitrogen and argon are vented from the outlet of the adsorption tower T0201B.
  • the adsorbent adsorbs The total amount of oxygen keeps increasing.
  • the adsorption tower T0201A is saturated with oxygen, stop the air intake and the adsorption ends.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-30%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Fig. 3 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the second embodiment of the present invention.
  • Figure 4 is a schematic diagram of the process flow of Example 2 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A and T0101B constitute the first pressure swing adsorption section.
  • the adsorbent in the adsorption tower is carbon molecular sieve, and a single tower is operated.
  • Adsorption vacuuming program pure oxygen vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0201, adsorption tower T0201A, T0201B, T0201C, T0201D and T0201E constitute the second pressure swing adsorption section
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single-tower series adsorption, series displacement and vacuuming procedures are run.
  • the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air, and the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • vacuum is immediately carried out.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the sorbent selectively adsorbs oxygen and other components in the oxygen-rich mixture.
  • the exhaust gas such as nitrogen, argon, and a small amount of oxygen that is not easy to adsorb flows out from the outlet end into another adsorption tower that has just been evacuated to boost pressure and adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easily adsorbed are vented from the outlet end.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through the two pressure swing adsorption process steps of adsorption A and vacuum VC successively; the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled to be close to the oxygen concentration of the raw gas, and the adsorption towers are sequentially in a cycle It has undergone five pressure swing adsorption process steps: adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1.
  • the total oxygen recovery rate is about 60%
  • the first pressure swing adsorption stage vacuum analysis gas oxygen concentration is about 40%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is two stages.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V), stop the air intake, and the adsorption ends at this time.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture, and the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gas flow out from the outlet end and enter the bottom of the adsorption tower T0201B to increase the pressure.
  • the programmable valve KV2B-2 is opened, and the unadsorbed nitrogen and argon are vented from the outlet of the adsorption tower T0201B. With the passage of time, the total amount of oxygen adsorbed by the adsorbent continues to increase. When the adsorption tower T0201A adsorbs oxygen saturation Stop the air intake at the time, and the adsorption ends at this time.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-15% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-40%. The lower the product oxygen concentration, the power consumption can be saved. more. .
  • Fig. 5 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 3 of the present invention.
  • Fig. 6 is a schematic diagram of the process flow of Example 3 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Single tower adsorption, second pressure swing adsorption stage replacement gas adsorption and vacuuming procedures single tower adsorption, second pressure swing adsorption stage replacement gas adsorption and vacuuming procedures; pure oxygen vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0201, adsorption tower T0201A, T0201B, T0201C, T0201D and T0201E constitute the second pressure swing adsorption section, the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single-tower series adsorption, series displacement and vacuuming procedures are run.
  • the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air, and the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and it is difficult to adsorb nitrogen and nitrogen.
  • the tail gas such as argon and a small amount of oxygen flows out from the outlet end into another adsorption tower that has just been evacuated to boost pressure and adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and it is difficult to adsorb nitrogen and argon.
  • the points are vented from the exit end.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, the second pressure swing adsorption section series replacement tail gas adsorption A1, and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption section is controlled close to the feed gas
  • the adsorption tower undergoes five pressure swing adsorption process steps in a cycle: adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the first pressure swing adsorption stage vacuum analysis gas is about 40-60%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is The empty tower speed of the two-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the technical field of pressure swing adsorption.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V), stop the air intake, and the adsorption ends at this time.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture, and the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gas flow out from the outlet end and enter the bottom of the adsorption tower T0201B to increase the pressure.
  • the programmable valve KV2B-2 is opened, and the unadsorbed nitrogen and argon are vented from the outlet of the adsorption tower T0201B. With the passage of time, the total amount of oxygen adsorbed by the adsorbent continues to increase. When the adsorption tower T0201A adsorbs oxygen saturation Stop the air intake at the time, and the adsorption ends at this time.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first place through the programmable valve KV7B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-20% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration lower than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-50%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Fig. 7 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 4 of the present invention.
  • Fig. 8 is a schematic diagram of the process flow of Example 4 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B, and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Single tower adsorption, second pressure swing adsorption stage replacement gas adsorption and vacuuming procedures; pure oxygen vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0201, adsorption tower T0201A, T0201B, T0201C and T0201D form the second pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single-tower adsorption, serial displacement and vacuuming procedures are run.
  • the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air, and the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and it is difficult to adsorb nitrogen and nitrogen.
  • Exhaust gas such as argon and a small amount of oxygen is vented from the outlet end.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, the second pressure swing adsorption section series replacement tail gas adsorption A1, and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption section is controlled close to the feed gas
  • the adsorption tower undergoes four pressure swing adsorption process steps, namely adsorption A, serial displacement P1, oxygen displacement P, and vacuum VC in a cycle.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the first pressure swing adsorption stage vacuum analysis gas is about 40-60%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is The empty tower speed of the two-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V), stop the air intake, and the adsorption ends at this time.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the T0201A adsorbent bed of the adsorption tower from the bottom to increase the pressure to
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture, and the unadsorbed part of oxygen and the exhaust gas such as nitrogen and argon that are not easily adsorbed are vented from the outlet end.
  • the total amount of adsorbed oxygen by the adsorbent continues to increase.
  • the air intake is stopped and the adsorption ends.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first place through the programmable valve KV7B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-20% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-50%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Figure 9 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the fifth embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the process flow of Example 5 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Single tower adsorption, second pressure swing adsorption stage replacement gas adsorption and vacuuming procedures; pure oxygen vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0201, adsorption tower T0201A, T0201B and T0201C constitutes the second pressure swing adsorption section.
  • the adsorbent in the adsorption tower is carbon molecular sieve, and it runs single-tower adsorption, single-tower replacement and vacuum pumping procedures.
  • the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air, and the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the tail gas after the adsorption tower of the second pressure swing adsorption section adsorbs the oxygen-enriched feed gas is immediately passed to adsorb, and the tail gas adsorption is completed , Vacuuming is carried out immediately, the oxygen-enriched raw material gas drawn by the vacuum pump is mixed with the tail gas after oxygen replacement of the second pressure swing adsorption stage adsorption tower product, and then enters the second pressure swing adsorption stage adsorption tower in the adsorption step, the adsorption in the adsorption tower
  • the agent selectively adsorbs oxygen and other components in the mixed raw material gas, and exhaust gas such as nitrogen, argon and a small amount of oxygen that are not easily adsorbed is returned to the first pressure swing adsorption section from the outlet end for adsorption.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, adsorption tail gas adsorption A1 in the second PSA section, and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second PSA section in the adsorption step is controlled to be close to that of the raw material gas. Concentration, the adsorption tower undergoes three pressure swing adsorption process steps of adsorption A, oxygen replacement P, and vacuum VC in a cycle.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the first pressure swing adsorption stage vacuum analysis gas is about 40-60%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is The empty tower speed of the two-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the technical field of pressure swing adsorption.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V), stop the air intake, and the adsorption ends at this time.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the adsorbed part of oxygen and the difficult-to-adsorb tail gas such as nitrogen and argon return to the first pressure swing adsorption stage for adsorption from the outlet end. With the passage of time, the total amount of adsorbed oxygen by the adsorbent continues to increase. When the adsorption tower T0201A is saturated with oxygen, Stop the air intake, and the adsorption ends at this time.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-20% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration lower than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-50%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Fig. 11 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve according to the sixth embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the process flow of Example 6 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A and T0101B constitute the first pressure swing adsorption section.
  • the adsorbent in the adsorption tower is carbon molecular sieve, and a single tower is operated.
  • Adsorption vacuuming program pure oxygen vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0201, adsorption tower T0201A, T0201B, T0201C, T0201D and T0201E constitute the second pressure swing adsorption section
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single-tower series adsorption, displacement, vacuuming and raw air adsorption procedures are run.
  • the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air, and the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • vacuum is immediately carried out.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorbent selectively adsorbs oxygen and other components in the oxygen-enriched mixed gas.
  • the exhaust gas such as nitrogen, argon and a small amount of oxygen that is not easy to adsorb flows out from the outlet end into another adsorption tower that has just adsorbed dry air to adsorb oxygen.
  • the adsorbent in the exhaust gas further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easily adsorbed are vented from the outlet end.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through the two pressure swing adsorption process steps of adsorption A and vacuum VC successively; the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled to be close to the oxygen concentration of the raw gas, and the adsorption towers are sequentially in a cycle It has undergone five pressure swing adsorption process steps: adsorption A, oxygen replacement P, vacuum VC, raw material air adsorption A2, and series adsorption A1.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the first pressure swing adsorption stage vacuum analysis gas is about 40-60%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is The empty tower speed of the two-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the technical field of pressure swing adsorption.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the adsorption tower of the first PSA section is replaced with the adsorption tower T0201E and flows out from the top. After the exhaust gas is mixed, it enters the adsorbent bed of the adsorption tower T0201A from the bottom.
  • the adsorbent in the adsorption tower T0201A selectively enriches the oxygen and other components in the oxygen mixture, the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gas.
  • the adsorption tower T0201A air adsorption A2 ends, close the program-controlled valves KV7A-2 and KV2A-2, open the program-controlled valves KV1E-2, KV4E-2 and KV2A-2, the oxygen-enriched feed gas and the product of the adsorption tower T0201D will flow out from the top after oxygen replacement
  • the exhaust gas enters the adsorbent bed of the adsorption tower T0201E to adsorb oxygen
  • the exhaust gas enters the adsorption tower T0201A through the programmable valve KV4E-2 to adsorb oxygen.
  • the nitrogen, argon and a small amount of oxygen that are not easily adsorbed are vented through the programmable valve KV2A-2.
  • the adsorption tower T0201E adsorption and T0201A series adsorption are completed, close the programmable valves KV1E-2, KV4E-2 and KV2A-2.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-20% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-60%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Fig. 13 is a sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the seventh embodiment of the present invention.
  • Fig. 14 is a schematic diagram of the process flow of Example 7 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single tower series adsorption, series displacement, vacuum and air adsorption A2 procedures are run. In this embodiment, the above-mentioned two pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air, and the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen and argon that are not easily adsorbed And a small amount of tail gas such as oxygen flows out from the outlet end into another adsorption tower that has just completed air adsorption to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easy to adsorb return from the outlet end.
  • the first pressure swing adsorption section The first pressure swing adsorption section.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, second PSA replacement tail gas and adsorption tail gas adsorption A1 and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second PSA adsorption step is controlled to be close to The oxygen concentration of the raw material gas, and its adsorption tower sequentially undergoes six pressure swing adsorption process steps of adsorption A, series displacement P1, oxygen displacement P, vacuum VC, air adsorption A2 and series adsorption A1 in a cycle.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the first pressure swing adsorption stage vacuum analysis gas is about 40-60%
  • the two-stage cycle time is generally 20-80 seconds
  • the vacuum degree of the two stages is -0.095MPa
  • the air volume of the blower is The empty tower speed of the two-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the technical field of pressure swing adsorption.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the second pressure swing adsorption section of the adsorption tower T0101A replaces the tail gas in series and adsorbs the tail gas in series
  • close the programmable valves KV4A-1 and KV2A-1 and open the programmable valve KV3A-1 to adsorb the adsorbent from the bottom of the adsorption tower with a vacuum pump
  • the components such as oxygen and nitrogen are pumped out into the adsorption tower of the second pressure swing adsorption section in the adsorption step, so that the adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the program control valve KV3A-1 is closed. After the vacuum desorption gas is cooled to 40°C, it enters the next section.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture, and the unadsorbed part of oxygen and the difficult-to-adsorb nitrogen and argon tail gas flow out from the outlet end into the bottom of the adsorption tower T0201B, open the programmable valve KV2B -2.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first through the programmable valve KV2B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201F adsorbent bed to adsorb oxygen
  • the adsorption tower T0201F is enriched with oxygen.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-enriched feed gas adsorption again.
  • the steps and sequence of the other five adsorption towers are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-20% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-60%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Figure 15 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 8 of the present invention.
  • Fig. 16 is a schematic diagram of the process flow of Example 8 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Single tower adsorption, second pressure swing adsorption stage replacement tail gas and adsorption tail gas adsorption and vacuuming procedures; oxygen-enriched vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0201A, T0201B, T0201C, T0201D, T0201E and T0201F form the second pressure swing adsorption section.
  • the adsorbent in the adsorption tower is carbon molecular sieve, and the A2 program of single tower series adsorption, series displacement, vacuuming and air adsorption is running; pure oxygen vacuum pump P0301, programmable valve, PLC control system , Instrumentation, process pipe fittings, vacuum buffer tank V0301, product pure oxygen buffer tank V0302, adsorption tower T0301A, T0301B, T0301C, T0301D and T0301E constitute the third pressure swing adsorption section, the adsorbent filled in the adsorption tower is zeolite molecular sieve or Lithium molecular sieve, run single tower adsorption, three pressure equalization and vacuuming procedures.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to desorb the oxygen in the oxygen enriched by the first pressure swing adsorption stage.
  • the oxygen is further adsorbed to further increase the oxygen concentration.
  • the third PSA section is used to adsorb the nitrogen in the oxygen-rich mixed gas desorbed in the second PSA section, and the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower as a product , And increase the oxygen concentration to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen and argon that are not easily adsorbed And a small amount of tail gas such as oxygen flows out from the outlet end into another adsorption tower that has just completed air adsorption to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and components such as nitrogen and argon that are not easily adsorbed return from the outlet end.
  • V 99.5%
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, second PSA replacement tail gas and adsorption tail gas adsorption A1 and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second PSA adsorption step is controlled to be close to The oxygen concentration of the raw material gas, the adsorption tower undergoes six pressure swing adsorption process steps in a cycle of adsorption A, series displacement P1, oxygen displacement P, vacuum VC, air adsorption A2 and series adsorption A1; the third pressure swing adsorption The adsorption tower of the stage sequentially undergoes nine pressure swing adsorption process steps of adsorption A, three equal pressure drops, vacuum VC, three equal
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60% (V)
  • the oxygen concentration of the vacuum desorption gas in the second PSA section is greater than 80% (V)
  • the third stage The cycle time is generally 20-80 seconds
  • the three-stage vacuum degree is -0.095MPa
  • the air volume of the blower the empty tower speed of the three-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower and other design parameters are based on the pressure swing adsorption Design under normal conditions in the technical field.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmable valve KV2A-1 to discharge and vent from the outlet end. With the passage of time, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the programmable valves KV1A-2 and KV4A-2 of the second PSA section open the programmable valves KV1A-2 and KV4A-2 of the second PSA section, the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the adsorption tower of the first PSA section and the vacuum analysis of the third PSA section After the gas is mixed, it enters the adsorbent bed of the adsorption tower T0201A from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • the outlet end flows out and enters the bottom of the adsorption tower T0201B. Open the programmable valve KV2B-2.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first place through the programmable valve KV2B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201F adsorbent bed to adsorb oxygen
  • the adsorption tower T0201F is enriched with oxygen.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-enriched feed gas adsorption again.
  • the steps and sequence of the other five adsorption towers are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the adsorption tower T0301A Opens the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, and the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon components open the programmable valve KV2A-3 from the outlet end to flow into the product pure oxygen buffer Tank V0302, with the passage of time, the total amount of nitrogen and other components adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the program-controlled valve KV4B-3 is closed, and the program-controlled valve KV4C-3 is opened.
  • the gas discharged from the two-equalize E2D step of the adsorption tower T0301C is used to enter the adsorption tower from the outlet end of the adsorption tower T0301A to make the adsorption Increase the pressure of tower T0301A, try to make the pressure of adsorption tower T0301A and T0301C equal.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-25% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-60%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Fig. 17 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 9 of the present invention.
  • Fig. 18 is a schematic diagram of the process flow of Example 9 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Single tower adsorption, second pressure swing adsorption stage replacement tail gas adsorption and vacuuming procedures; oxygen-enriched vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0201A, T0201B, T0201C, T0201D and T0201E constitute the first In the second pressure swing adsorption section, the adsorbent in the adsorption tower is carbon molecular sieve, and the single-tower series adsorption, series replacement and vacuuming procedures are run; pure oxygen vacuum pump P0301, programmable valve, PLC control system, instrumentation, process pipe fittings, vacuum Buffer tank V0301, product pure oxygen buffer tank V0302, adsorption towers T0301A, T0301B, T0301C, T0301D and T0301E constitute the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve, and single tower adsorption is run for three times. Pressure equalization and vacuuming procedures.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to desorb the oxygen in the oxygen enriched by the first pressure swing adsorption stage.
  • the oxygen is further adsorbed to further increase the oxygen concentration.
  • the third PSA section is used to adsorb the nitrogen in the oxygen-rich mixed gas desorbed in the second PSA section, and the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower as a product , And increase the oxygen concentration to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen, argon, and a small amount of oxygen that are not easily adsorbed.
  • the tail gas flows out from the outlet end and enters another adsorption tower that has just completed vacuuming to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easily adsorbed are vented from the outlet end; the second change
  • the oxygen-enriched gas mixture desorbed by the vacuum of the adsorption tower of the pressure adsorption section enters the adsorption tower of the third pressure swing adsorption section in the adsorption step. After the nitrogen is adsorbed, it flows out from the outlet as product oxygen, and the concentration is controlled at 99.5% (V) Above, the vacuum desorption gas of the third PSA section returns to the inlet of the second PSA section and is mixed with the vacuum desorption gas of the first PSA section as the raw material gas of the second PSA section.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through the three pressure swing adsorption process steps of adsorption A, second pressure swing adsorption stage replacement tail gas adsorption A1, and vacuum VC; the second pressure swing adsorption stage is in the adsorption step, and the oxygen concentration in the outlet gas of the adsorption tower is controlled close to the raw gas oxygen
  • the adsorption tower undergoes five pressure swing adsorption process steps in a cycle: adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1; the adsorption tower of the third pressure swing adsorption section is in a cycle In the cycle, it goes through nine pressure swing adsorption process steps of adsorption A, three equal pressure drops, vacuum VC, three equal
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60% (V)
  • the oxygen concentration of the vacuum desorption gas in the second PSA section is greater than 80% (V)
  • the third stage The cycle time is generally 20-80 seconds
  • the three-stage vacuum degree is -0.095MPa
  • the air volume of the blower the empty tower speed of the three-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower and other design parameters are based on the pressure swing adsorption Design under normal conditions in the technical field.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the second PSA section replaces the tail gas in series from the bottom of the adsorption tower T0101A into the adsorbent bed, and after adsorbing the oxygen, it passes through the programmable valve KV2A-1 is vented.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the programmable valves KV1A-2 and KV4A-2 of the second PSA section open the programmable valves KV1A-2 and KV4A-2 of the second PSA section, the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the adsorption tower of the first PSA section and the vacuum analysis of the third PSA section After the gas is mixed, it enters the adsorbent bed of the adsorption tower T0201A from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • the outlet end flows out into the bottom of the adsorption tower T0201B.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first place through the programmable valve KV2B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the adsorption tower T0301A Opens the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, and the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon components open the programmable valve KV2A-3 from the outlet end to flow into the product pure oxygen buffer Tank V0302, with the passage of time, the total amount of nitrogen and other components adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the program-controlled valve KV4B-3 is closed, and the program-controlled valve KV4C-3 is opened.
  • the gas discharged from the two-equalize E2D step of the adsorption tower T0301C is used to enter the adsorption tower from the outlet end of the adsorption tower T0301A to make the adsorption Increase the pressure of tower T0301A, try to make the pressure of adsorption tower T0301A and T0301C equal.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-22% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-65%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Fig. 19 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 10 of the present invention.
  • Fig. 20 is a schematic diagram of the process flow of Example 10 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Single tower adsorption, second pressure swing adsorption stage replacement tail gas and adsorption tail gas adsorption and vacuuming procedures; oxygen-enriched vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0201A, T0201B, T0201C, T0201D, T0201E and T0201F form the second pressure swing adsorption section.
  • the adsorbent in the adsorption tower is carbon molecular sieve, and the A2 program of single tower series adsorption, series displacement, vacuum and air adsorption is run; programmable valve, PLC control system, instrumentation, process
  • the third pressure swing adsorption section is composed of pipe fittings, line buffer tank V0301, product pure oxygen buffer tank V0302, adsorption tower T0301A, T0301B, T0301C, T0301D and T0301E.
  • the adsorbent in the adsorption tower is zeolite molecular sieve or lithium molecular sieve.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to desorb the oxygen in the oxygen enriched by the first pressure swing adsorption stage.
  • the oxygen is further adsorbed to further increase the oxygen concentration.
  • the third PSA section is used to adsorb the nitrogen in the oxygen-rich mixed gas desorbed in the second PSA section, and the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower as a product , And increase the oxygen concentration to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen and argon that are not easily adsorbed And a small amount of tail gas such as oxygen flows out from the outlet end into another adsorption tower that has just completed air adsorption to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easy to adsorb return from the outlet end.
  • the concentration of oxygen is controlled above 99.5% (V).
  • the reverse discharge and purge gas of the third PSA section returns to the inlet of the second PSA section and is mixed with the vacuum desorption gas of the first PSA section as the second Raw material gas in the PSA section.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, second PSA replacement tail gas and adsorption tail gas adsorption A1 and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second PSA adsorption step is controlled to be close to The oxygen concentration of the raw material gas, the adsorption tower undergoes six pressure swing adsorption process steps in a cycle of adsorption A, series displacement P1, oxygen displacement P, vacuum VC, air adsorption A2 and series adsorption A1; the third pressure swing adsorption The adsorption tower of the stage sequentially undergoes seven pressure swing adsorption process steps of adsorption A, a uniform pressure drop, sequential discharge, reverse discharge
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60% (V)
  • the oxygen concentration of the vacuum desorption gas in the second PSA section is greater than 80% (V)
  • the third stage The cycle time is generally 20-80 seconds
  • the three-stage vacuum degree is -0.095MPa
  • the air volume of the blower the empty tower speed of the three-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent and the diameter of the adsorption tower, and other design parameters are based on pressure swing adsorption
  • the design is usually carried out in the technical field. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the programmable valves KV1A-2 and KV4A-2 of the second PSA section open the programmable valves KV1A-2 and KV4A-2 of the second PSA section, the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the adsorption tower of the first PSA section and the vacuum analysis of the third PSA section After the gas is mixed, it enters the adsorbent bed of the adsorption tower T0201A from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • the outlet end flows out and enters the bottom of the adsorption tower T0201B. Open the programmable valve KV2B-2.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201F adsorbent bed to adsorb oxygen
  • the adsorption tower T0201F is enriched with oxygen.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-enriched feed gas adsorption again.
  • the steps and sequence of the other five adsorption towers are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the adsorption tower T0301A Opens the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, and the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon components open the programmable valve KV2A-3 from the outlet end to flow into the product pure oxygen buffer Tank V0302, with the passage of time, the total amount of nitrogen and other components adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-25% compared with the cryogenic method.
  • Fig. 21 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 11 of the present invention.
  • Fig. 22 is a schematic diagram of the process flow of Example 11 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B, T0101C and T0101D constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • Run single-tower adsorption, second pressure swing adsorption stage replacement tail gas adsorption, vacuuming and boosting procedures; oxygen-enriched vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0201A, T0201B, T0201C, T0201D and T0201E form the second pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single tower series adsorption, series replacement and vacuuming procedures are run; programmable valves, PLC control systems, instrumentation, process pipe fittings, products Pure oxygen buffer tank V0302, adsorption towers T0301A, T0301B, T0301C, T0301D, and T0301E constitute the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve. It operates single tower adsorption, three equalization and reverse discharge. program. In this embodiment, the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to desorb the oxygen in the oxygen enriched by the first pressure swing adsorption stage.
  • the oxygen is further adsorbed to further increase the oxygen concentration.
  • the third PSA section is used to adsorb the nitrogen in the oxygen-rich mixed gas desorbed in the second PSA section, and the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower as a product , And increase the oxygen concentration to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen, argon, and a small amount of oxygen that are not easily adsorbed.
  • the tail gas flows out from the outlet end and enters another adsorption tower that has just completed vacuuming to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easily adsorbed are vented from the outlet end; the second change
  • the oxygen-enriched gas mixture desorbed by the vacuum of the adsorption tower of the pressure adsorption section enters the adsorption tower of the third pressure swing adsorption section in the adsorption step. After the nitrogen is adsorbed, it flows out from the outlet as product oxygen, and the concentration is controlled at 99.5% (V)
  • V 99.5%
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through the four pressure swing adsorption process steps of adsorption A, second PSA replacement tail gas adsorption A1, vacuum VC, and boost R in sequence; the oxygen concentration in the outlet gas of the adsorption tower in the second PSA adsorption step is controlled at Close to the oxygen concentration of the raw gas, the adsorption tower undergoes five pressure swing adsorption process steps in a cycle: adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1; adsorption in the third pressure swing adsorption section The tower goes through nine pressure swing adsorption process steps of adsorption A, three equal pressure drops, reverse discharge BD, three equal pressure rises, and final rise in one cycle.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60% (V)
  • the oxygen concentration of the vacuum desorption gas in the second PSA section is greater than 80% (V)
  • the third stage The cycle time is generally 20-80 seconds
  • the three-stage vacuum degree is -0.095MPa
  • the air volume of the blower the empty tower speed of the three-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower and other design parameters are based on the pressure swing adsorption Design under normal conditions in the technical field.
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the second PSA section replaces the tail gas in series from the bottom of the adsorption tower T0101A into the adsorbent bed, and after adsorbing the oxygen, it passes through the programmable valve KV2A-1 is vented.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • Part of the unadsorbed oxygen and difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end into the bottom of the adsorption tower T0201B, and open the programmable valve KV7B -2.
  • the unadsorbed nitrogen and argon are vented from the outlet of the adsorption tower T0201B.
  • the total amount of adsorbed oxygen by the adsorbent is increasing.
  • the adsorption tower T0201A is saturated with oxygen, stop the air intake, and the adsorption will be carried out at this time. Finish.
  • the oxygen-enriched gas evacuated in this section enters the adsorption from the bottom of the adsorption tower T0201E.
  • the agent bed replaces nitrogen and argon, and then flows out from the top.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201A.
  • the adsorbent bed of the adsorption tower T0201A adsorbs oxygen, it returns to the first variable pressure through the programmable valve KV2A-2
  • the adsorption section performs re-adsorption.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the adsorption tower T0301A Opens the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, and the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon components open the programmable valve KV2A-3 from the outlet end to flow into the product pure oxygen buffer Tank V0302, with the passage of time, the total amount of nitrogen and other components adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the program-controlled valve KV4B-3 is closed, and the program-controlled valve KV4C-3 is opened.
  • the gas discharged from the two-equalize E2D step of the adsorption tower T0301C is used to enter the adsorption tower from the outlet end of the adsorption tower T0301A to make the adsorption Increase the pressure of tower T0301A, try to make the pressure of adsorption tower T0301A and T0301C equal.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-30% compared with the cryogenic method.
  • Fig. 23 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 12 of the present invention.
  • Fig. 24 is a schematic diagram of the process flow of Example 12 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single-tower adsorption, displacement, vacuum and air adsorption A2 procedures are run; vacuum pump P0301, programmable valve, PLC control system, instrumentation, process pipe fittings,
  • the adsorption towers T0301A, T0301B, T0301C, T0301D, and T0301E constitute the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve.
  • the operation of single tower adsorption, two equalization, vacuum, pressure increase and final Ascending program; programmable valve, PLC control system, instrumentation, process piping and fittings, product pure oxygen buffer tank V0401, adsorption tower T0401A, T0401B, T0401C, T0401D and T0401E constitute the fourth pressure swing adsorption section, the adsorbent filled in the adsorption tower It is a zeolite molecular sieve or a lithium molecular sieve, and it runs a single column adsorption, three times equalization, reverse discharge and final rise procedures.
  • the above-mentioned four pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage absorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed to further increase the oxygen concentration.
  • the third PSA section is used to adsorb the nitrogen in the oxygen-rich mixed gas desorbed in the second PSA section.
  • the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower and enters the second
  • the fourth pressure swing adsorption stage is the adsorption tower in the adsorption step to further adsorb the nitrogen in the mixed gas and increase the oxygen concentration to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen and argon that are not easily adsorbed And a small amount of tail gas such as oxygen flows out from the outlet end and returns to the first PSA section; the oxygen-enriched gas mixture desorbed from the adsorption tower vacuum in the second PSA section enters the adsorption tower in the third PSA section where it is in the adsorption step.
  • the nitrogen After the part of the nitrogen is adsorbed, it flows out from the outlet into the adsorption tower of the fourth pressure swing adsorption section in the adsorption step, further adsorbs the nitrogen in the mixed gas, and increases the oxygen concentration to more than 99.5% (V).
  • the evacuated desorption gas in the third PSA section is vented, and the desorption gas in the fourth PSA section in the reverse discharge step is returned to the evacuated adsorption tower in the third PSA section to boost the pressure, and the fourth PSA section
  • the adsorbent in the section is regenerated, and the oxygen recovery rate is improved at the same time.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through three pressure swing adsorption process steps of adsorption A, second PSA replacement tail gas and adsorption tail gas adsorption A1 and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second PSA adsorption step is controlled to be close to The oxygen concentration of the raw material gas, the adsorption tower undergoes four pressure swing adsorption process steps in a cycle: adsorption A, oxygen replacement P, vacuum VC, and air adsorption A2; the adsorption tower in the third pressure swing adsorption section is in a cycle cycle In order to experience eight changes of adsorption A, primary equalizing pressure drop E1D, secondary equalizing pressure drop E2D, vacuum VC, four-stage
  • the total oxygen recovery rate is about 60%
  • the first pressure swing adsorption stage vacuum desorption gas oxygen concentration is about 40-60% (V)
  • the second pressure swing adsorption stage vacuum desorption gas oxygen concentration is greater than 80% (V)
  • the fourth stage The cycle time is generally 20-80 seconds
  • the four-stage vacuum is generally -0.095MPa
  • the air volume of the blower the empty tower speed of the four-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent and the diameter of the adsorption tower, and other design parameters are based on the pressure swing
  • the design is usually carried out in the field of adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the second pressure swing adsorption section of the adsorption tower T0101A replaces the tail gas in series and adsorbs the tail gas in series
  • close the programmable valves KV4A-1 and KV2A-1 and open the programmable valve KV3A-1 to adsorb the adsorbent from the bottom of the adsorption tower with a vacuum pump
  • the components such as oxygen and nitrogen are pumped out into the adsorption tower of the second pressure swing adsorption section in the adsorption step, so that the adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the program control valve KV3A-1 is closed. After the vacuum desorption gas is cooled to 40°C, it enters the next section.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A selectively enriches the oxygen and other components in the oxygen mixture, and the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end and return to the first pressure swing adsorption section for re-adsorption.
  • the total amount of oxygen adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0201A is saturated with oxygen, the air intake is stopped, and the adsorption ends at this time.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • T0301A Open the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon and other components.
  • the dead space gas in the adsorption tower T0301A is discharged from the outlet of the adsorption tower into this section.
  • the fourth change has been completed.
  • the pressure of the adsorption tower T0301D in the R step of reverse venting and boosting is increased, and the pressure of the two towers should be equal as much as possible.
  • the adsorption tower T0301A completes a cycle, and then enters the second pressure swing adsorption section to evacuated the oxygen-enriched feed gas adsorption.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0301A, except in terms of time. Stagger each other.
  • the adsorption tower T0401A completes a cycle, and then enters the third pressure swing adsorption section to adsorb the oxygen-rich feed gas in step A.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0401A, except in time Staggered on each other.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-35% compared with the cryogenic method.
  • Fig. 25 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 13 of the present invention.
  • Figure 26 is a schematic diagram of the process flow of Example 13 of the present invention.
  • the vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B, T0101C and T0101D constitute the first pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve , Run single-tower adsorption, second PSA stage replacement tail gas and adsorption tail gas adsorption and vacuuming procedures; oxygen-enriched vacuum pump P0201, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0201A, T0201B, T0201C and T0201D constitutes the second pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve. It runs single tower adsorption, replacement, vacuum and air adsorption A2 programs; programmable valves, PLC control systems, instrumentation, process pipe fittings, and adsorption Columns T0301A, T0301B, T0301C, T0301D and T0301E form the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve.
  • Single tower adsorption, two equalization, reverse discharge, pressure increase, two times Equalization and final elevation procedures; programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0401, adsorption tower T0401A, T0401B, T0401C, T0401D and T0401E constitute the fourth pressure swing adsorption section, inside the adsorption tower
  • the packed adsorbent is zeolite molecular sieve or lithium molecular sieve, and the operation of single-tower adsorption, three times equalization, reverse discharge and final rise procedures.
  • the above-mentioned four pressure swing adsorption stages are operated in series.
  • the first pressure swing adsorption stage absorbs oxygen in the dry air
  • the second pressure swing adsorption stage is used to remove the oxygen-enriched oxygen from the first pressure swing adsorption stage.
  • the oxygen is further adsorbed to further increase the oxygen concentration.
  • the third PSA section is used to adsorb the nitrogen in the oxygen-rich mixed gas desorbed in the second PSA section.
  • the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower and enters the second
  • the fourth pressure swing adsorption stage is the adsorption tower in the adsorption step to further adsorb the nitrogen in the mixed gas and increase the oxygen concentration to above 99.5% (V).
  • Dry air with a pressure greater than 5KPa enters the adsorption tower in the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, unadsorbed part of oxygen, and difficult-to-adsorb nitrogen and argon.
  • the other components are discharged and vented from the outlet.
  • the second PSA section is immediately passed to the second PSA section to replace the tail gas and adsorb the tail gas adsorption. After the tail gas adsorption is completed, vacuum immediately.
  • the oxygen-enriched oxygen extracted by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and nitrogen and argon that are not easily adsorbed, as well as a small amount
  • the tail gas such as oxygen flows out from the outlet end and returns to the first PSA section; the oxygen-enriched gas mixture desorbed in the vacuum of the adsorption tower of the second PSA section enters the adsorption tower of the third PSA section in the adsorption step, and part of it
  • the nitrogen flows out from the outlet into the adsorption tower of the fourth pressure swing adsorption stage in the adsorption step, further adsorbs the nitrogen in the mixed gas, and increases the oxygen concentration to more than 99.5% (V).
  • the desorption gas in the reverse release step of the third PSA section is returned to the adsorption tower of the first PSA section to increase the pressure, and the desorption gas in the fourth PSA section in the reverse release step is returned to the third PSA section.
  • the completed adsorption tower is pressurized, the adsorbent in the fourth pressure swing adsorption section is regenerated, and the oxygen recovery rate is improved at the same time.
  • the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower is in a cycle Go through the four pressure swing adsorption process steps of adsorption A, second PSA stage replacement tail gas and adsorption tail gas adsorption A1, vacuum VC, and third PSA stage reverse degassing and boost R; the second PSA stage is in The oxygen concentration in the outlet gas of the adsorption tower of the adsorption step is controlled to be close to the oxygen concentration of the raw material gas, and the adsorption tower undergoes four pressure swing adsorption process steps of adsorption A, oxygen replacement P, vacuum VC, and air adsorption A2 in a cycle; The adsorption tower of the third pressure swing adsorption stage sequentially undergoes adsorption A, primary uniform pressure drop E1D, secondary uniform pressure drop E
  • the total oxygen recovery rate is about 60%
  • the first pressure swing adsorption stage vacuum desorption gas oxygen concentration is about 40-60% (V)
  • the second pressure swing adsorption stage vacuum desorption gas oxygen concentration is greater than 80% (V)
  • the cycle time is generally 20-80 seconds
  • the four-stage vacuum is generally -0.095MPa
  • the air volume of the blower the empty tower speed of the four-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent and the diameter of the adsorption tower, and other design parameters are based on the pressure swing
  • the design is usually carried out in the field of adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmed valve KV2A-1 to discharge and vent from the outlet end. As time goes by, the total amount of oxygen and other components adsorbed by the adsorbent will continue to increase.
  • the adsorption tower T0101A exits When the oxygen concentration is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake and the adsorption ends.
  • the second PSA section replaces the tail gas and the adsorption tail gas from the bottom of the adsorption tower T0101A into the adsorbent bed, and after adsorbing the oxygen, it passes through The programmable valve KV2A-1 is vented.
  • the second pressure swing adsorption stage of the adsorption tower T0101A replaces the tail gas and adsorbs the tail gas adsorption A1 step
  • close the programmable valve KV4A-1 and KV2A-1 open the programmable valve KV3A-1 from the bottom of the adsorption tower to use a vacuum pump to absorb the oxygen and oxygen absorbed by the adsorbent.
  • the nitrogen and other components are pumped out into the adsorption tower of the second pressure swing adsorption section in the adsorption step, so that the adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the program control valve KV3A-1 is closed. After the vacuum desorption gas is cooled to 40°C, it enters the next section.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A selectively enriches the oxygen and other components in the oxygen mixture, and the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end and return to the first pressure swing adsorption section for re-adsorption.
  • the total amount of oxygen adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0201A is saturated with oxygen, the air intake is stopped, and the adsorption ends at this time.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • T0301A Open the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon and other components.
  • the dead space gas in the adsorption tower T0301A is discharged from the outlet of the adsorption tower into this section.
  • the fourth change has been completed.
  • the pressure of the adsorption tower T0301D in the R step of reverse venting and boosting is increased, and the pressure of the two towers should be equal as much as possible.
  • the adsorption tower T0301A After the step of reducing E2D in the adsorption tower T0301A, close the program-controlled valves KV4A-3 and KV4D-3, open the program-controlled valve KV5A-3, and connect the adsorption tower T0301A with the first pressure swing adsorption stage vacuumed adsorption tower, using adsorption
  • the pressure of the desorbed gas of the tower T0301A is boosted by the reverse discharge. After the pressure boost is completed, the adsorption tower T0301A is in a vacuum state.
  • the reverse discharge step of the adsorption tower T0301A After the reverse discharge step of the adsorption tower T0301A is completed, close the programmable valve KV5A-3, open the programmable valve KV4A-3, and use the fourth pressure swing adsorption stage to reverse discharge the gas discharged from the BD step to enter the adsorption tower from the outlet end of the adsorption tower T0301A. Increase the pressure of the adsorption tower T0301A, try to make the adsorption tower pressure equal to the adsorption tower T0301A and the fourth pressure swing adsorption stage reverse discharge BD step.
  • the adsorption tower T0301A completes a cycle, and then enters the second pressure swing adsorption section to evacuated the oxygen-rich feed gas adsorption.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0301A, except in terms of time. Stagger each other.
  • the adsorption tower T0401A completes a cycle, and then enters the third pressure swing adsorption section to adsorb the oxygen-rich feed gas in the step A.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0401A, except in time Staggered on each other.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-35% compared with the cryogenic method.
  • Figure 27 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in Embodiment 14 of the present invention.
  • Fig. 28 is a schematic diagram of the process flow of Example 14 of the present invention.
  • blower C0100, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0100A and T0100B constitute pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower is activated alumina desiccant.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single-tower series adsorption, series displacement, vacuum and air adsorption A2 procedures are run.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the pressure swing adsorption in the drying section is used to adsorb gaseous water in the air to meet the water requirements of the pressure swing adsorption oxygen generation adsorbent.
  • the first pressure swing adsorption section will dry The oxygen in the air is adsorbed, and the second pressure swing adsorption section is used to further adsorb the oxygen in the rich oxygen desorbed from the first pressure swing adsorption section, and increase the oxygen to more than 99.5% (V).
  • the air After the air is boosted to 5KPa by the blower C0100, it enters the pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower selectively adsorbs the gaseous water and other components in the humid air, and the components such as oxygen, nitrogen and argon that are not easily adsorbed are from the outlet end.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, and the unadsorbed part of oxygen and the non-adsorbable nitrogen and argon components are from the outlet end
  • the adsorption of dry air in the adsorption tower of the first pressure swing adsorption section is completed, immediately pass into the second pressure swing adsorption section to replace the tail gas in series and to adsorb the tail gas in series.
  • the oxygen-enriched gas directly enters the adsorption tower in the second pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs the oxygen and other components in the oxygen-enriched mixed gas, and the difficult-to-adsorb tail gas such as nitrogen and argon and a small amount of oxygen
  • the outlet end flows into another adsorption tower that has just completed air adsorption to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easy to adsorb return to the first pressure swing adsorption section from the outlet end. .
  • the pressure swing adsorption in the drying section is used to control the dew point of the humid air above -50°C.
  • the adsorption tower undergoes two pressure swing adsorption process steps of adsorption A and purge P in one cycle; the first pressure swing adsorption section After the adsorption of the adsorption tower is completed, the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower undergoes adsorption A and second in a cycle.
  • the pressure swing adsorption section replaces the tail gas and adsorbs the tail gas.
  • A1 and vacuum VC There are three pressure swing adsorption process steps: A1 and vacuum VC; the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption section is controlled to be close to the oxygen concentration of the raw gas, and the adsorption
  • the tower sequentially undergoes six pressure swing adsorption process steps of adsorption A, series displacement P1, oxygen displacement P, vacuum VC, air adsorption A2 and series adsorption A1 in a cycle.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60%(V)
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the pressure swing adsorption section is -0.095MPa
  • the air volume of the blower the empty tower speed of the three-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent and the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. .
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • step A2 enters the adsorption tower from the outlet end of the adsorption tower T0100A through the programmable valve KV3A-0, and then is discharged from the bottom of the adsorption tower T0100A through the process control valve KV4A-0.
  • the purge P is completed, close the programmable valves KV3A-0 and KV4A -0.
  • the adsorption tower T0100A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0100A, except that they are staggered in time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmable valve KV2A-1 and discharge from the outlet end back to the drying section.
  • Pressure swing adsorption is used as a purge gas to regenerate gaseous water. As time goes by, the adsorbent adsorbs oxygen and other components. The total amount of fractions keeps increasing.
  • V 15-20.8%
  • V the oxygen concentration can also be controlled below 15% (V)
  • the second PSA section replaces the tail gas in series and the tail gas of the series adsorption enters the adsorbent bed from the bottom of the adsorption tower T0101A, and adsorbs the oxygen in it.
  • the programmable valve KV2A-1 discharged from the outlet end and returned to the drying section pressure swing adsorption as the purge gas to regenerate gaseous water.
  • the second pressure swing adsorption section of the adsorption tower T0101A replaces the tail gas in series and adsorbs the tail gas in series
  • close the programmable valves KV4A-1 and KV2A-1 and open the programmable valve KV3A-1 to adsorb the adsorbent from the bottom of the adsorption tower with a vacuum pump
  • the components such as oxygen and nitrogen are pumped out into the adsorption tower of the second pressure swing adsorption section in the adsorption step, so that the adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the program control valve KV3A-1 is closed. After the vacuum desorption gas is cooled to 40°C, it enters the next section.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture, and the unadsorbed part of oxygen and the difficult-to-adsorb nitrogen and argon tail gas flow out from the outlet end into the bottom of the adsorption tower T0201B, open the programmable valve KV2B -2.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first through the programmable valve KV2B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201F adsorbent bed to adsorb oxygen
  • the adsorption tower T0201F is enriched with oxygen.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-enriched feed gas adsorption again.
  • the steps and sequence of the other five adsorption towers are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-15% compared with the cryogenic method.
  • Fig. 29 is a sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the fifteenth embodiment of the present invention.
  • Figure 30 is a schematic diagram of the process flow of Example 15 of the present invention.
  • blower C0100, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0100A and T0100B constitute pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower is activated alumina desiccant.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve, and the single tower series adsorption, series replacement and vacuuming procedures are run.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the pressure swing adsorption in the drying section is used to adsorb gaseous water in the air to meet the water requirements of the pressure swing adsorption oxygen generation adsorbent.
  • the first pressure swing adsorption section will dry The oxygen in the air is adsorbed, and the second pressure swing adsorption section is used to further adsorb the oxygen in the rich oxygen desorbed from the first pressure swing adsorption section, and increase the oxygen to more than 99.5% (V).
  • the air After the air is boosted to 5KPa by the blower C0100, it enters the pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower selectively adsorbs the gaseous water and other components in the humid air, and the components such as oxygen, nitrogen and argon that are not easily adsorbed are from the outlet end.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, and the unadsorbed part of oxygen and the non-adsorbable nitrogen and argon components are from the outlet end Discharge and return to the drying section PSA as the purge gas to regenerate gaseous water.
  • the adsorption of dry air in the adsorption tower of the first PSA section is completed, it is immediately passed into the second PSA section to replace the tail gas adsorption in series. After the tail gas adsorption is completed, immediately Vacuum is carried out.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched mixed gas, and nitrogen that is not easily adsorbed. Exhaust gas such as argon and a small amount of oxygen flows out from the outlet end into another adsorption tower that has just completed air adsorption to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and components such as nitrogen and argon that are not easily adsorbed are removed from the outlet.
  • the pressure swing adsorption in the drying section is used to control the dew point of the humid air above -50°C.
  • the adsorption tower undergoes two pressure swing adsorption process steps of adsorption A and purge P in one cycle; the first pressure swing adsorption section After the adsorption of the adsorption tower is completed, the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower undergoes adsorption A and second in a cycle.
  • the pressure swing adsorption section replaces the exhaust gas adsorption A1 and vacuum VC three pressure swing adsorption process steps; the second pressure swing adsorption section is in the adsorption step of the adsorption tower outlet gas is controlled to be close to the oxygen concentration of the raw material gas, the adsorption tower is in one In the cycle, it sequentially undergoes six pressure swing adsorption process steps: adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1.
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60%(V)
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the pressure swing adsorption section is -0.095MPa
  • the air volume of the blower the empty tower speed of the three-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent and the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. .
  • multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA stage adsorbs the air in the step A and the tail gas adsorption step A1 and the adsorption tower of the second PSA stage is adsorbed in series.
  • the air in step A1 enters the adsorption tower from the outlet end of the adsorption tower T0100A through the programmable valve KV3A-0, and then is discharged from the bottom of the adsorption tower T0100A through the process control valve KV4A-0.
  • the adsorption tower T0100A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0100A, except that they are staggered in time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the programmable valve KV2A-1 and discharge from the outlet end back to the drying section.
  • Pressure swing adsorption is used as a purge gas to regenerate gaseous water. As time goes by, the adsorbent adsorbs oxygen and other components. The total amount of fractions keeps increasing.
  • V 15-20.8%
  • V the oxygen concentration can also be controlled below 15% (V)
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other two adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • Part of the unadsorbed oxygen and difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end into the bottom of the adsorption tower T0201B, and open the programmable valve KV7B -2.
  • the unadsorbed nitrogen and argon are returned from the outlet of the adsorption tower T0201B to the drying section.
  • the pressure swing adsorption is used as the purge gas to regenerate gaseous water.
  • the total amount of oxygen adsorbed by the adsorbent continues to increase.
  • the air intake is stopped, and the adsorption ends at this time.
  • the replacement tail gas from the top enters from the bottom of the adsorption tower T0201B, passes through the adsorption tower T0201B adsorbent bed to adsorb oxygen, and then returns to the first place through the programmable valve KV2B-2
  • the pressure swing adsorption section performs re-adsorption.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201E adsorbent bed to adsorb oxygen, and then the tail gas After entering the adsorption tower T0201A through the programmable valve KV4E-2 to boost pressure and adsorb oxygen, the unadsorbed nitrogen and argon are returned to the drying section through the programmable valve KV7A-2 as the purge gas to regenerate gaseous water.
  • the adsorption tower T0201F oxygen-enriched adsorption After the adsorption in series with T0201A is completed, close the program-controlled valves KV1E-2, KV4E-2 and KV7A-2.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-15% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-30%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Figure 31 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the 16th embodiment of the present invention.
  • Fig. 32 is a schematic diagram of the process flow of Example 16 of the present invention.
  • the blower C0100, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0100A and T0100B constitute pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower is activated alumina desiccant.
  • the adsorbent in the adsorption tower is carbon molecular sieve. It runs single tower series adsorption, series replacement and vacuuming procedures; programmable valves, PLC control systems, instrumentation, process pipelines Pipe fittings, product pure oxygen buffer tank V0302, adsorption towers T0301A, T0301B, T0301C, T0301D and T0301E constitute the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve. Single tower adsorption and three pressure equalization are operated. And the reverse program. In this embodiment, the above four stages of pressure swing adsorption are operated in series.
  • the pressure swing adsorption in the drying section is used to adsorb gaseous water in the air to meet the water requirements of the pressure swing adsorption oxygen generation adsorbent.
  • the first pressure swing adsorption section will dry The oxygen in the air is adsorbed.
  • the second PSA section is used to further adsorb the oxygen in the oxygen-enriched oxygen desorbed from the first PSA section to further increase the oxygen concentration.
  • the third PSA section is used to The nitrogen in the oxygen-enriched mixed gas desorbed by the vacuum in the second pressure swing adsorption section is adsorbed, and the oxygen that is not easily adsorbed flows out from the outlet of the adsorption tower as a product, and the oxygen concentration is increased to 99.5% (V) or more.
  • the air After the air is boosted to 5KPa by the blower C0100, it enters the pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower selectively adsorbs the gaseous water and other components in the humid air, and the components such as oxygen, nitrogen and argon that are not easily adsorbed are from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and it is difficult to adsorb nitrogen and nitrogen.
  • the tail gas such as argon and a small amount of oxygen flows out from the outlet end and enters another adsorption tower that has just been evacuated to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easy to adsorb from the outlet end
  • the pressure swing adsorption is returned to the drying section as the purge gas to regenerate gaseous water; the oxygen-rich mixed gas desorbed from the adsorption tower vacuum of the second pressure swing adsorption section enters the adsorption tower of the third pressure swing adsorption section in the adsorption step, and the nitrogen in it is adsorbed After that, it flows out from the outlet as product oxygen, and the concentration is controlled above 99.5% (V), and the reverse release desorption gas of the third PSA section returns to the evacuated adsorption tower of the first PSA section.
  • V 99.5%
  • the pressure swing adsorption in the drying section is used to control the dew point of the humid air above -50°C.
  • the adsorption tower undergoes two pressure swing adsorption process steps of adsorption A and purge P in one cycle; the first pressure swing adsorption section After the adsorption of the adsorption tower is completed, the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower undergoes adsorption A and second in a cycle.
  • the pressure swing adsorption section replaces tail gas adsorption A1, evacuates VC, and the three-stage desorption gas boost R four pressure swing adsorption process steps; the second pressure swing adsorption section is in the adsorption step, and the oxygen concentration in the outlet gas of the adsorption tower is controlled close to the raw gas
  • the oxygen concentration, the adsorption tower undergoes five pressure swing adsorption process steps, namely adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1 in a cycle; the adsorption tower of the third pressure swing adsorption section is in one In the cycle, it goes through nine pressure swing adsorption process steps of adsorption A, three equal pressure drops, reverse discharge BD, three equal pressure rises and final rise.
  • the total oxygen recovery rate is about 60%
  • the first pressure swing adsorption stage vacuum desorption gas oxygen concentration is about 40-60% (V)
  • the second pressure swing adsorption stage vacuum desorption gas oxygen concentration is greater than 80% (V)
  • the fourth stage The cycle time is generally 20-80 seconds.
  • the vacuum degree of the first PSA, the second PSA and the third PSA is -0.095MPa
  • the air volume of the blower the empty tower speed of the four-stage adsorption tower, and the vacuum pump
  • the pumping volume, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA stage adsorbs the air in the step A and the tail gas adsorption step A1 and the adsorption tower of the second PSA stage is adsorbed in series.
  • the mixed gas of step A1 enters the adsorption tower from the outlet end of the adsorption tower T0100A through the programmable valve KV3A-0, and then is discharged from the bottom of the adsorption tower T0100A through the process control valve KV4A-0.
  • close the programmable valves KV3A-0 and KV4A -0 close the programmable valves KV3A-0 and KV4A -0.
  • the adsorption tower T0100A completes a cycle and enters air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0100A, except that they are staggered in time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the program-controlled valve KV2A-1 and discharge from the outlet end to return to the drying section.
  • Pressure swing adsorption purge the gaseous water adsorbed by the regenerated alumina.
  • the adsorbent adsorbs the oxygen
  • the total amount of other components is continuously increasing.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake, and the adsorption ends at this time .
  • the second PSA section replaces the tail gas in series from the bottom of the adsorption tower T0101A into the adsorbent bed, and after adsorbing the oxygen, it passes through the programmable valve KV2A-1 returns to the drying section of the pressure swing adsorption to purge the gaseous water adsorbed by the regenerated alumina.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • Part of the unadsorbed oxygen and difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end into the bottom of the adsorption tower T0201B, and open the programmable valve KV7B -2.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201E adsorbent bed to adsorb oxygen, and its tail gas After entering the adsorption tower T0201A through the programmable valve KV4E-2 to boost pressure and adsorb oxygen, the unadsorbed nitrogen and argon return to the drying section through the programmable valve KV7A-2 to purge the gaseous water adsorbed by the regenerated alumina through the programmable valve KV7A-2.
  • the adsorption tower T0201E is enriched After the oxygen adsorption and T0201A series adsorption are completed, close the programmable valves KV1E-2, KV4E-2 and KV7A-2.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • T0301A Open the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs nitrogen and other components in the oxygen-enriched mixed gas, and the components such as oxygen and argon that are not easily adsorbed.
  • the program-controlled valve KV4B-3 is closed, and the program-controlled valve KV4C-3 is opened.
  • the gas discharged from the two-equalize E2D step of the adsorption tower T0301C is used to enter the adsorption tower from the outlet end of the adsorption tower T0301A to make the adsorption Increase the pressure of tower T0301A, try to make the pressure of adsorption tower T0301A and T0301C equal.
  • the adsorption tower T0301A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0301A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-25% compared with the cryogenic method.
  • This embodiment can also be used to produce product oxygen with a concentration of less than 99.5% (V).
  • V 99.5%
  • the power consumption can be saved by about 10%-40%. The lower the product oxygen concentration, the power consumption can be saved. more.
  • Figure 33 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the 17th embodiment of the present invention.
  • Figure 34 is a schematic diagram of the process flow of Example 17 of the present invention.
  • blower C0100, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0100A and T0100B constitute pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower is activated alumina desiccant.
  • the adsorbent in the adsorption tower is carbon molecular sieve. It runs single tower series adsorption, series replacement and vacuuming procedures; programmable valves, PLC control systems, instrumentation, process pipelines Pipe fittings, product pure oxygen buffer tank V0302, adsorption towers T0301A, T0301B, T0301C, T0301D and T0301E constitute the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve. It operates single-tower adsorption and two-stage adsorption.
  • Pressure and reverse discharge program programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0401, adsorption tower T0401A, T0401B, T0401C, T0401D and T0401E constitute the fourth pressure swing adsorption section, and the adsorption tower is filled
  • the adsorbent is zeolite molecular sieve or lithium molecular sieve, and run single tower adsorption, three times equalization, reverse discharge and final rise procedures. In this embodiment, the above-mentioned five stages of pressure swing adsorption are operated in series.
  • the pressure swing adsorption in the drying section is used to adsorb gaseous water in the air to meet the water requirements of the pressure swing adsorption oxygen generation adsorbent.
  • the first pressure swing adsorption section will dry The oxygen in the air is adsorbed.
  • the second PSA section is used to further adsorb the oxygen in the oxygen-enriched oxygen desorbed from the first PSA section to further increase the oxygen concentration.
  • the third PSA section is used to The nitrogen in the oxygen-enriched mixed gas desorbed by the vacuum in the second pressure swing adsorption section is adsorbed, and the difficult-to-adsorb oxygen flows out from the outlet of the adsorption tower into the adsorption tower in the fourth pressure swing adsorption section, which is in the adsorption step, and further adsorbs the nitrogen in the mixed gas. , And increase the oxygen concentration to above 99.5% (V).
  • the air After the air is boosted to 5KPa by the blower C0100, it enters the pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower selectively adsorbs the gaseous water and other components in the humid air, and the components such as oxygen, nitrogen and argon that are not easily adsorbed are from the outlet end.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, and it is difficult to adsorb nitrogen and nitrogen.
  • the tail gas such as argon and a small amount of oxygen flows out from the outlet end and enters another adsorption tower that has just been evacuated to adsorb oxygen.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easy to adsorb from the outlet end
  • the pressure swing adsorption is returned to the drying section as the purge gas to regenerate gaseous water; the oxygen-enriched gas mixture desorbed from the vacuum of the adsorption tower of the second pressure swing adsorption section enters the adsorption tower of the third pressure swing adsorption section in the adsorption step, and part of the nitrogen After adsorption, it flows out from the outlet into the adsorption tower of the fourth pressure swing adsorption stage in the adsorption step, further adsorbs the nitrogen in the mixed gas, and increases the oxygen concentration to more than 99.5% (V).
  • the desorption gas in the reverse release step of the third PSA section is returned to the adsorption tower of the first PSA section to increase the pressure, and the desorption gas in the fourth PSA section in the reverse release step is returned to the third PSA section.
  • the completed adsorption tower is pressurized, the adsorbent in the fourth pressure swing adsorption section is regenerated, and the oxygen recovery rate is improved at the same time.
  • the pressure swing adsorption in the drying section is used to control the dew point of the humid air above -50°C.
  • the adsorption tower undergoes two pressure swing adsorption process steps of adsorption A and purge P in one cycle; the first pressure swing adsorption section After the adsorption of the adsorption tower is completed, the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower undergoes adsorption A and second in a cycle.
  • the pressure swing adsorption section replaces tail gas adsorption A1, evacuates VC, and the three-stage desorption gas boost R four pressure swing adsorption process steps; the second pressure swing adsorption section is in the adsorption step, and the oxygen concentration in the outlet gas of the adsorption tower is controlled close to the raw gas
  • the oxygen concentration, the adsorption tower undergoes five pressure swing adsorption process steps, namely adsorption A, series displacement P1, oxygen displacement P, vacuum VC, and series adsorption A1 in a cycle;
  • the adsorption tower of the third pressure swing adsorption section is in one
  • the seven pressure swing adsorption process steps of adsorption A, two equal pressure drops, reverse discharge BD, two equal pressure rises, and final rise are sequentially experienced in the cycle;
  • Adsorption A primary equalization drop E1D, secondary equalization drop E2D, three equalization drop E3D, reverse discharge BD, three equalization rise E3R, secondary equalization rise
  • the total recovery rate of oxygen is about 60%
  • the oxygen concentration of the vacuum desorption gas in the first PSA section is about 40-60%(V)
  • the oxygen concentration of the vacuum desorption gas in the second PSA section is greater than 80%(V)
  • the fifth stage The cycle time is generally 20-80 seconds.
  • the vacuum degree of the other four sections is generally -0.095MPa
  • the air volume of the blower is generally -0.095MPa
  • the empty tower speed of the five-stage adsorption tower the suction volume of the vacuum pump
  • the amount of adsorbent and the diameter of the adsorption tower and Other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section will adsorb the air in the step A and the tail gas adsorption step A1, and the adsorption tower of the second PSA section will be adsorbed in series.
  • the mixed gas of step A1 enters the adsorption tower from the outlet end of the adsorption tower T0100A through the programmable valve KV2A-0, and then is discharged from the bottom of the adsorption tower T0100A through the process control valve KV4A-0.
  • close the programmable valves KV2A-0 and KV4A -0 close the programmable valves KV2A-0 and KV4A -0.
  • the adsorption tower T0100A completes a cycle and enters air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0100A, except that they are staggered in time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the program-controlled valve KV2A-1 and discharge from the outlet end to return to the drying section.
  • Pressure swing adsorption purge the gaseous water adsorbed by the regenerated alumina.
  • the adsorbent adsorbs the oxygen
  • the total amount of other components is continuously increasing.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake, and the adsorption ends at this time .
  • the second PSA section replaces the tail gas in series from the bottom of the adsorption tower T0101A into the adsorbent bed, and after adsorbing the oxygen, it passes through the programmable valve KV2A-1 returns to the drying section of the pressure swing adsorption to purge the gaseous water adsorbed by the regenerated alumina.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with oxygen and other components in the oxygen mixture.
  • Part of the unadsorbed oxygen and difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end into the bottom of the adsorption tower T0201B, and open the programmable valve KV7B -2.
  • the oxygen-enriched feed gas first enters the adsorption tower T0201E adsorbent bed to adsorb oxygen, and its tail gas After entering the adsorption tower T0201A through the programmable valve KV4E-2 to boost pressure and adsorb oxygen, the unadsorbed nitrogen and argon return to the drying section through the programmable valve KV7A-2 to purge the gaseous water adsorbed by the regenerated alumina through the programmable valve KV7A-2.
  • the adsorption tower T0201E is enriched After the oxygen adsorption and T0201A series adsorption are completed, close the programmable valves KV1E-2, KV4E-2 and KV7A-2.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • T0301A Open the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon and other components.
  • the dead space gas in the adsorption tower T0301A is discharged from the outlet of the adsorption tower into this section.
  • the fourth change has been completed.
  • the pressure of the adsorption tower T0301D in the R step of reverse venting and boosting is increased, and the pressure of the two towers should be equal as much as possible.
  • the adsorption tower T0301A After the step of reducing E2D in the adsorption tower T0301A, close the program-controlled valves KV4A-3 and KV4D-3, open the program-controlled valve KV5A-3, and connect the adsorption tower T0301A with the first pressure swing adsorption stage vacuumed adsorption tower, using adsorption
  • the pressure of the desorbed gas of the tower T0301A is boosted by the reverse discharge. After the pressure boost is completed, the adsorption tower T0301A is in a vacuum state.
  • the reverse discharge step of the adsorption tower T0301A After the reverse discharge step of the adsorption tower T0301A is completed, close the programmable valve KV5A-3, open the programmable valve KV4A-3, and use the fourth pressure swing adsorption stage to reverse discharge the gas discharged from the BD step to enter the adsorption tower from the outlet end of the adsorption tower T0301A. Increase the pressure of the adsorption tower T0301A, try to make the adsorption tower pressure equal to the adsorption tower T0301A and the fourth pressure swing adsorption stage reverse discharge BD step.
  • the adsorption tower T0301A completes a cycle, and then enters the second pressure swing adsorption section to evacuated the oxygen-enriched feed gas adsorption.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0301A, except in terms of time. Stagger each other.
  • the adsorption tower T0401A completes a cycle, and then enters the third pressure swing adsorption section to adsorb the oxygen-rich feed gas in the step A.
  • the steps and sequence of the other four adsorption towers are exactly the same as the adsorption tower T0401A, except in time Staggered on each other.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), and the pressure is greater than or equal to normal pressure, which saves power consumption by about 10-40% compared with the cryogenic method.
  • 35 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the 18th embodiment of the present invention.
  • Fig. 36 is a schematic diagram of the process flow of Example 18 of the present invention.
  • the blower C0100, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0100A and T0100B constitute pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower is activated alumina desiccant.
  • the adsorbent filled in the adsorption tower is carbon molecular sieve. It runs single-tower adsorption, single-tower replacement and vacuuming procedures; programmable valves, PLC control systems, instruments, and processes Pipe fittings, product pure oxygen buffer tank V0302, adsorption towers T0301A, T0301B, T0301C, T0301D and T0301E constitute the third pressure swing adsorption section.
  • the adsorbent filled in the adsorption tower is zeolite molecular sieve or lithium molecular sieve, and single tower adsorption is run twice.
  • Pressure equalization and reverse discharge program programmable valve, PLC control system, instrumentation, process pipe fittings, product pure oxygen buffer tank V0401, adsorption tower T0401A, T0401B, T0401C, T0401D and T0401E constitute the fourth pressure swing adsorption section, inside the adsorption tower
  • the packed adsorbent is zeolite molecular sieve or lithium molecular sieve, and the operation of single-tower adsorption, three times equalization, reverse discharge and final rise procedures.
  • the above-mentioned five stages of pressure swing adsorption are operated in series.
  • the pressure swing adsorption in the drying section is used to adsorb gaseous water in the air to meet the water requirements of the pressure swing adsorption oxygen generation adsorbent.
  • the first pressure swing adsorption section will dry The oxygen in the air is adsorbed.
  • the second PSA section is used to further adsorb the oxygen in the oxygen-enriched oxygen desorbed from the first PSA section to further increase the oxygen concentration.
  • the third PSA section is used to The nitrogen in the oxygen-enriched mixed gas desorbed by the vacuum in the second pressure swing adsorption section is adsorbed, and the difficult-to-adsorb oxygen flows out from the outlet of the adsorption tower into the fourth pressure swing adsorption section in the adsorption step of the adsorption tower, and further adsorbs the nitrogen in the mixed gas , And increase the oxygen concentration to above 99.5% (V).
  • the air After the air is boosted to 5KPa by the blower C0100, it enters the pressure swing adsorption in the drying section.
  • the adsorbent in the adsorption tower selectively adsorbs the gaseous water and other components in the humid air, and the components such as oxygen, nitrogen and argon that are not easily adsorbed are from the outlet end.
  • the dry air adsorption of the adsorption tower in the first pressure swing adsorption stage After the dry air adsorption of the adsorption tower in the first pressure swing adsorption stage is completed, immediately pass into the second pressure swing adsorption stage to replace the tail gas and adsorb the tail gas adsorption. After the tail gas adsorption is completed, Vacuum immediately.
  • the oxygen-enriched oxygen drawn by the vacuum pump directly enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the oxygen-enriched gas mixture, which is not easy to adsorb
  • the tail gas such as nitrogen, argon and a small amount of oxygen flows out from the outlet end and returns to the first pressure swing adsorption section.
  • the adsorbent in the adsorption tower further adsorbs the oxygen in the tail gas, and the components such as nitrogen and argon that are not easily adsorbed are returned to the outlet end for drying.
  • Stage pressure swing adsorption is used as purge gas to regenerate gaseous water; the oxygen-rich mixture gas desorbed from the adsorption tower vacuum of the second pressure swing adsorption stage enters the adsorption tower of the third pressure swing adsorption stage in the adsorption step, and part of the nitrogen is adsorbed. , It flows out from the outlet into the adsorption tower of the fourth pressure swing adsorption stage in the adsorption step, further adsorbs the nitrogen in the mixed gas, and increases the oxygen concentration to more than 99.5% (V).
  • V 99.5%
  • the desorption gas in the reverse release step of the third PSA section is returned to the adsorption tower of the first PSA section to increase the pressure, and the desorption gas in the fourth PSA section in the reverse release step is returned to the third PSA section.
  • the completed adsorption tower is pressurized, the adsorbent in the fourth pressure swing adsorption section is regenerated, and the oxygen recovery rate is improved at the same time.
  • the pressure swing adsorption in the drying section is used to control the dew point of the humid air above -50°C.
  • the adsorption tower undergoes two pressure swing adsorption process steps of adsorption A and purge P in one cycle; the first pressure swing adsorption section After the adsorption of the adsorption tower is completed, the oxygen concentration in the outlet gas is controlled at 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), and the adsorption tower undergoes adsorption A and second in a cycle.
  • the pressure swing adsorption section replaces the tail gas and the adsorption tail gas adsorption A1, the vacuum VC, and the three-stage desorption gas boost R four pressure swing adsorption process steps; the second pressure swing adsorption section is in the adsorption step, and the oxygen concentration in the outlet gas of the adsorption tower is controlled at Close to the oxygen concentration of the raw gas, its adsorption tower undergoes four pressure swing adsorption process steps in a cycle: adsorption A, oxygen replacement P, vacuum VC, and air adsorption A2; the adsorption tower of the third pressure swing adsorption section is in a cycle In the cycle, it goes through the seven pressure swing adsorption process steps of adsorption A, two equal pressure drops, reverse discharge BD, two equal pressure rises and final rise; the adsorption tower of the fourth pressure swing adsorption section undergoes adsorption in a cycle.
  • the vacuum degree of the other four sections is generally -0.095MPa, the air volume of the blower, the empty tower speed of the five-stage adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent and the diameter of the adsorption tower, and Other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology. When the processing air is large, multiple adsorption towers can be used to complete each step at the same time.
  • Each adsorption tower in this embodiment sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section will adsorb the air in the step A and the tail gas adsorption step A1, and the adsorption tower of the second PSA section will be adsorbed in series.
  • the mixed gas of step A1 enters the adsorption tower from the outlet end of the adsorption tower T0100A through the programmable valve KV2A-0, and then is discharged from the bottom of the adsorption tower T0100A through the process control valve KV4A-0.
  • close the programmable valves KV2A-0 and KV4A -0 close the programmable valves KV2A-0 and KV4A -0.
  • the adsorption tower T0100A completes a cycle and enters air adsorption again.
  • the steps and sequence of the other adsorption tower are exactly the same as the adsorption tower T0100A, except that they are staggered in time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the dry air enters the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, the adsorbent in the adsorption tower selectively adsorbs oxygen and other components in the air, not adsorbed Part of the oxygen, nitrogen and argon that are not easily adsorbed, open the program-controlled valve KV2A-1 and discharge from the outlet end to return to the drying section.
  • Pressure swing adsorption purge the gaseous water adsorbed by the regenerated alumina.
  • the adsorbent adsorbs the oxygen
  • the total amount of other components is continuously increasing.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 15-20.8% (V) (the oxygen concentration can also be controlled below 15% (V)), stop the air intake, and the adsorption ends at this time .
  • the second PSA section replaces the tail gas and the adsorption tail gas in series from the bottom of the adsorption tower T0101A into the adsorbent bed, and after adsorbing the oxygen in it, Return to the drying section through the programmable valve KV2A-1 to purge the gaseous water adsorbed by the regenerated alumina by the pressure swing adsorption.
  • the second pressure swing adsorption section of the adsorption tower T0101A replaces the tail gas in series and adsorbs the tail gas.
  • close the programmable valves KV4A-1 and KV2A-1 open the programmable valve KV3A-1 from the bottom of the adsorption tower to use a vacuum pump to absorb the oxygen from the adsorbent
  • the components such as nitrogen and nitrogen are pumped out into the adsorption tower of the second pressure swing adsorption section in the adsorption step, so that the adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the program control valve KV3A-1 is closed. After the vacuum desorption gas is cooled to 40°C, it enters the next section.
  • the adsorption tower T0101A completes a cycle and enters the dry air adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the first PSA section enters the adsorption tower T0201A adsorbent bed from the bottom.
  • the adsorbent in the adsorption tower T0201A selectively enriches the oxygen and other components in the oxygen mixture, and the unadsorbed part of the oxygen and the difficult-to-adsorb nitrogen and argon tail gases flow out from the outlet end and return to the first pressure swing adsorption section for re-adsorption.
  • the total amount of oxygen adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0201A is saturated with oxygen, the air intake is stopped, and the adsorption ends at this time.
  • the adsorption tower T0201A completes a cycle and enters the oxygen-rich feed gas adsorption again.
  • the steps and sequence of the other three adsorption towers are exactly the same as the adsorption tower T0201A, but they are staggered in time.
  • the series adsorption A1 step and the series replacement P1 step of the second pressure swing adsorption section can adopt three or more adsorption towers in series. The more adsorption towers in series, the more energy saving, but the greater the investment.
  • T0301A Open the programmable valve KV1A-3 of the third pressure swing adsorption section, and send the oxygen-rich gas mixture extracted from the vacuum (VC) step of the second pressure swing adsorption section to the T0301A adsorbent bed of the adsorption tower from the bottom, the adsorption tower
  • the adsorbent in T0301A selectively adsorbs the nitrogen and other components in the oxygen-rich mixture, the unadsorbed part of nitrogen and the difficult to adsorb oxygen and argon and other components.
  • the dead space gas in the adsorption tower T0301A is discharged from the outlet of the adsorption tower into this section.
  • the fourth change has been completed.
  • the pressure of the adsorption tower T0301D in the R step of reverse venting and boosting is increased, and the pressure of the two towers should be equal as much as possible.
  • the adsorption tower T0301A After the step of reducing E2D in the adsorption tower T0301A, close the program-controlled valves KV4A-3 and KV4D-3, open the program-controlled valve KV5A-3, and connect the adsorption tower T0301A with the first pressure swing adsorption stage vacuumed adsorption tower, using adsorption
  • the pressure of the desorbed gas of the tower T0301A is boosted by the reverse discharge. After the pressure boost is completed, the adsorption tower T0301A is in a vacuum state.
  • the reverse discharge step of the adsorption tower T0301A After the reverse discharge step of the adsorption tower T0301A is completed, close the programmable valve KV5A-3, open the programmable valve KV4A-3, and use the fourth pressure swing adsorption stage to reverse discharge the gas discharged from the BD step to enter the adsorption tower from the outlet end of the adsorption tower T0301A. Increase the pressure of the adsorption tower T0301A, try to make the adsorption tower pressure equal to the adsorption tower T0301A and the fourth pressure swing adsorption stage reverse discharge BD step.

Abstract

本发明提供一种采用变压吸附技术生产氧气的方法,其包括串联操作的两个变压吸附段,原料空气在第一变压吸附段经速度选择型吸附剂吸附后其真空解析气输入第二变压吸附段的吸附塔中再次经速度选择型吸附剂吸附,第二段吸附结束后,所得的部分氧气进入第二段的吸附塔置换氮气和氩气,置换后尾气流入其他吸附塔作为原料气吸附;第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A和抽真空VC两个步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC三个步骤,且第一段的吸附A步骤之后或第二段的抽真空VC步骤之后设有串联吸附A1步骤。本发明的方法电耗更低,与深冷制氧相比节电35%以上,且生产过程更加安全。

Description

一种采用变压吸附技术生产氧气的方法 技术领域
本发明涉及变压吸附技术制氧领域,具体涉及一种采用变压吸附技术生产氧气的方法。
背景技术
目前,在采用变压吸附技术生产纯氧(99.5%V)的专利中主要有美国专利US4190424和US5395427以及中国专利200410046599.9,美国专利US5395427和中国专利200410046599.9先采用沸石分子筛(氮平衡吸附,其中美国专利采用了一段,中国专利采用了两段以提高氧气回收率,降低电耗)将空气中的氮气吸附下来,氧气和氩气再进入碳分子筛(速度选择性吸附,美国专利为第二变压吸附段,中国专利为第三变压吸附段)吸附氧气,将氩气和少量的氮气除去,将氧气浓度提高到99.5%(V);而美国专利US4190424提供了两种变压吸附制纯氧技术,第一种变压吸附制纯氧技术先采用沸石分子筛(氮平衡吸附,第一变压吸附段)将空气中的氮气吸附下来,氧气和氩气再进入碳分子筛(速度选择性吸附,第二变压吸附段)吸附氧气,将氩气和少量的氮气除去,将氧气浓度提高到99.5%(V),第二种变压吸附制纯氧技术先采用碳分子筛(速度选择性吸附,第一变压吸附段)将空气中的氧气吸附下来,解析出来的富氧气和少量氮气、氩气再进入沸石分子筛(氮平衡吸附,第二变压吸附段)吸附氮气,将少量的氮气除去,将氧气浓度提高到99.5%(V)。两个美国专利US4190424和US5395427变压吸附制纯氧技术的电耗远远高于目前的深冷制氧,至今未见有变压吸附制纯氧工业装置推广应用。
发明内容
本发明的目的就是针对目前变压吸附技术生产纯氧(99.5%V)电耗高的问题,提供一种能耗低且生产过程更加安全可靠的采用变压吸附技术生产氧气的方法,本发明的目的是通过以下技术方案实现的:
一种采用变压吸附技术生产氧气的方法,其包括串联操作的第一变压吸附段和第二变压吸附段,将干燥的原料空气输入第一变压吸附段的速度选择型吸附剂床层,原料空气中的大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出放空;第一变压吸附段的真空解析气从第二变压吸附段的吸附塔底部再次进入速度选择型吸附剂床层,第一变压吸附段的真空解析气中的大部分氧气被第二变压吸附段的速度选择型吸附剂床层吸附,大部分氮气和氩气以及少量氧气从吸附塔出口放空或流入第二变压吸附段的另一个刚抽完真空的吸附塔升压和吸附氧气,氮气和氩气从吸附塔出口排出放空,第二变压吸附段的吸附塔吸附结束后,用第二变压吸附段真空泵抽出的部分氧气从第二变压吸附段的吸附塔底部进入其吸附剂床层置换吸附剂吸附的氮气和氩气,置换后的尾气从吸附塔顶部排出,流入到第一变压吸附段的吸附塔内或与第一变压吸附段的吸附塔的真空解析气混合进入第二变压吸附段的吸附塔作为原料气吸附;第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A和抽真空VC两个变压吸附工艺步 骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC三个变压吸附工艺步骤,且第一变压吸附段的吸附A步骤之后或第二变压吸附段的抽真空VC步骤之后设有串联吸附A1变压吸附工艺步骤:其中,第一变压吸附段串联吸附A1步骤的底部进口混合气来自于第二变压吸附段处于氧气置换P步骤的吸附塔出口排出混合气;第二变压吸附段串联吸附A1步骤的底部进口混合气来自于第二变压吸附段处于吸附A步骤的吸附塔出口排出混合气。
进一步,第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤;所述串联置换P1步骤的置换气来自第二变压吸附段另一个处于氧气置换P步骤的吸附塔出口排出的混合气。
进一步,第二变压吸附段的串联置换P1步骤的尾气从吸附塔顶部排出,与第一变压吸附段的吸附塔的真空解析气混合进入第二变压吸附段的吸附塔作为原料气吸附。
进一步,第一变压吸附段的吸附塔在吸附A步骤之后增加串联吸附A1步骤,即第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、串联吸附A1和抽真空VC三个变压吸附工艺步骤;且第二变压吸附段处于串联置换P1步骤的吸附塔出口排出的混合气进入第一变压吸附段处于串联吸附A1步骤的吸附塔作为原料气吸附。
进一步,第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、变压吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC三个变压吸附工艺步骤,且第二变压吸附段处于氧气置换P步骤和吸附A步骤的吸附塔出口排出的混合气进入第一变压吸附段处于串联吸附A1步骤的吸附塔作为原料气吸附。
进一步,第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、串联置换P1、氧气置换P和抽真空VC四个变压吸附工艺步骤,且第二变压吸附段处于串联置换P1步骤的吸附塔出口排出混合气进入第一变压吸附段处于串联吸附A1步骤的吸附塔作为原料气吸附。
进一步,第二变压吸附段的吸附塔在抽真空VC步骤之后增加干燥的原料空气吸附A2步骤。
进一步,第一变压吸附段的吸附塔在在一个循环周期中至少依次经历吸附A、串联吸附A1和抽真空VC三个变压吸附工艺步骤,第二变压吸附段的吸附塔在抽真空VC步骤之后增加干燥的原料空气吸附A2步骤,即第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC、干燥的原料空气吸附A2和串联吸附A1五个变压吸附工艺步骤;第一变压吸附段串联吸附A1步骤的混合气来自第二变压吸附段 处于串联吸附A1步骤和串联置换P1步骤的吸附塔出口排出混合气。
进一步,在第二变压吸附段之后增加第三变压吸附段,第三变压吸附段的吸附塔内装填氮平衡选择型吸附剂,第一变压吸附段、第二变压吸附段和第三变压吸附段串联操作,第二变压吸附段的吸附塔抽真空解析出来的富氧混合气进入第三变压吸附段装填氮平衡吸附剂床层的吸附塔,富氧混合气中的氮被吸附下来,氧和氩从吸附塔出口流出获得产品氧气,第三变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD、均压升ER和终升FR五个变压吸附工艺步骤。
进一步,第三变压吸附段的吸附塔在均压降ED步骤之后增加顺放PP步骤,同时在逆放BD步骤之后增加吹扫P步骤,吹扫P步骤的气体来自顺放PP步骤。
进一步,第三变压吸附段的吸附塔在逆放BD步骤之后增加抽真空VC步骤。
进一步,第三变压吸附段的吸附塔用抽真空VC步骤代替逆放BD步骤。
进一步,第三变压吸附段的吸附塔解析气全部返回第二变压吸附段的吸附塔入口与第一变压吸附段的吸附塔的真空解析气混合进入第二变压吸附段的吸附塔作为原料气吸附。
进一步,第三变压吸附段的吸附塔在逆放BD步骤或/和抽真空VC步骤与第一变压吸附段抽完真空(真空VC步骤之后)的变压吸附塔连通。
进一步,在第三变压吸附段之后增加第四变压吸附段,第四变压吸附段的吸附塔内装填氮平衡选择型吸附剂,四段变压吸附串联操作,第三变压吸附段的吸附塔吸附A步骤的出口富氧混合气进入第四变压吸附段装填氮平衡吸附吸附剂床层的吸附塔,富氧混合气中的氮被吸附下来,氧和氩从吸附塔出口流出获得产品氧气,第四变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD或抽真空VC、均压升和终升FR五个变压吸附工艺步骤。
进一步,第四变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升和终升FR步骤,其中吹扫P步骤的气体来自顺放PP步骤。
进一步,第四变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD、抽真空VC、均压升和终升FR六个变压吸附工艺步骤。
进一步,第四变压吸附段的吸附塔在逆放BD步骤或/和抽真空VC步骤与第三变压吸附段真空VC步骤之后的变压吸附塔连通。
考虑到原料空气中可能含水的情况,为保证吸附效果和效率,需要对原料空气进行干燥,对此,本申请提供三种方案:
方案1:第一变压吸附段和第二变压吸附段吸附塔的底部装填干燥剂、上部装填速 度选择型吸附剂床层,含有气态水的原料空气从第一变压吸附段吸附塔底部通过时,其气态水绝大部分被干燥剂床层吸附,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,第一变压吸附段解析出来的气态水和富氧从第二变压吸附段的吸附塔底部再进入干燥剂床层和速度选择型吸附剂床层,其气态水绝大部分被干燥剂床层吸附,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,第二变压吸附段解析出来的气态水和富氧进入第三变压吸附段的吸附塔和氮平衡选择型吸附剂床层,第二变压吸附段解析出的富氧混合气中的绝大部分气态水被第三变压吸附段的干燥剂床层吸附,大部分氮气被第三变压吸附段的氮平衡选择型吸附剂床层吸附,氧气和氩气以及少量氮气从吸附塔出口流出。优选地,第一变压吸附段和第二变压吸附段的吸附塔下部装填活性氧化铝作为干燥剂,上部装填碳分子筛作为速度选择型吸附剂;第三变压吸附段的吸附塔下部装填活性氧化铝作为干燥剂,上部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂;第四变压吸附段的吸附塔装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
方案2:第一变压吸附段之前设置变压吸附干燥段,用于除去原料空气中的气态水,达到进入第一变压吸附段的吸附塔对水分的要求;该变压吸附干燥段在一个循环周期中至少依次经历吸附A和吹扫P两个变压吸附工艺步骤,吹扫P步骤的气体来源于第一变压吸附段和第二变压吸附段的放空气。
方案3:第一变压吸附段之前设置变温吸附干燥段,用于除去原料空气中的气态水,达到进入第一变压吸附段的吸附塔对水分的要求;该变温吸附干燥段在一个循环周期中至少依次经历吸附A、加热再生T和冷却L三个变压吸附工艺步骤,第一变压吸附段和第二变压吸附段的部分放空气经过第一变压吸附段到第四变压吸附段的任一动力设备排出的热气体升温后去加热再生干燥剂床层,第一变压吸附段和第二变压吸附段的另一部分放空气去冷却加热后的干燥剂床层。
进一步,变压吸附干燥段或变温吸附干燥段装填活性氧化铝作为干燥剂;第一变压吸附段和第二变压吸附段的吸附塔内部装填碳分子筛作为速度选择型吸附剂;第三变压吸附段和第四变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
进一步,第一变压吸附段和第二变压吸附段的吸附塔吸附A步骤的压力为0.002-0.01MPa(表压);第三变压吸附段和变压吸附的吸附塔吸附A步骤的压力为0.005-3.5MPa(表压)。
进一步,第一变压吸附段和第二变压吸附段的吸附塔吸附A步骤吸附原料空气结束时出口气中氧气的浓度为18-20.8%(V)。
进一步,第一变压吸附段和第二变压吸附段的吸附塔装填碳分子筛作为速度选择型吸附剂;第三变压吸附段和第四变压吸附段的吸附塔装填5A型分子筛或X型锂分子筛 作为氮平衡选择型吸附剂。
本发明的方法提供了电耗更低的变压吸附制纯氧技术方案,与深冷制氧相比节电35%以上,而且生产过程更加安全。
附图说明
图1是本发明实施例1各段吸附塔运行步骤及程控阀开关时序图。
图2是本发明实施例1的工艺流程简图。
图3是本发明实施例2各段吸附塔运行步骤及程控阀开关时序图。
图4本发明实施例2的工艺流程简图。
图5是本发明实施例3各段吸附塔运行步骤及程控阀开关时序图。
图6是本发明实施例3的工艺流程简图。
图7是本发明实施例4各段吸附塔运行步骤及程控阀开关时序图。
图8是本发明实施例4的工艺流程简图。
图9是本发明实施例5各段吸附塔运行步骤及程控阀开关时序图。
图10是本发明实施例5的工艺流程简图。
图11是本发明实施例6各段吸附塔运行步骤及程控阀开关时序图。
图12是本发明实施例6的工艺流程简图。
图13是本发明实施例7各段吸附塔运行步骤及程控阀开关时序图。
图14是本发明实施例7的工艺流程简图。
图15是本发明实施例8各段吸附塔运行步骤及程控阀开关时序图。
图16是本发明实施例8的工艺流程简图。
图17是本发明实施例9各段吸附塔运行步骤及程控阀开关时序图。
图18是本发明实施例9的工艺流程简图。
图19是本发明实施例10各段吸附塔运行步骤及程控阀开关时序图。
图20是本发明实施例10的工艺流程简图。
图21是本发明实施例11各段吸附塔运行步骤及程控阀开关时序图。
图22是本发明实施例11的工艺流程简图。
图23是本发明实施例12各段吸附塔运行步骤及程控阀开关时序图。
图24是本发明实施例12的工艺流程简图。
图25是本发明实施例13各段吸附塔运行步骤及程控阀开关时序图。
图26是本发明实施例13的工艺流程简图。
图27是本发明实施例14各段吸附塔运行步骤及程控阀开关时序图。
图28是本发明实施例14的工艺流程简图。
图29是本发明实施例15各段吸附塔运行步骤及程控阀开关时序图。
图30是本发明实施例16的工艺流程简图。
图31是本发明实施例16各段吸附塔运行步骤及程控阀开关时序图。
图32是本发明实施例16的工艺流程简图。
图33是本发明实施例17各段吸附塔运行步骤及程控阀开关时序图。
图34是本发明实施例17的工艺流程简图。
图35是本发明实施例18各段吸附塔运行步骤及程控阀开关时序图。
图36是本发明实施例18的工艺流程简图。
图37是本发明实施例19各段吸附塔运行步骤及程控阀开关时序图。
图38是本发明实施例19的工艺流程简图。
具体实施方式
下面结合附图对本发明的优选实施例加以说明,以下实施例只是为方便理解本发明的技术方案而给出的优选实施例,不作为对本发明权利要求保护范围的限定。
实施例1:
图1是本发明实施例1各段吸附塔运行步骤及程控阀开关时序图。
图2是本发明实施例1的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图2所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A和T0101B组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、置换和抽真空程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚抽完真空的吸附塔进行升压和吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端放空。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V) 以下),其吸附塔在一个循环周期中依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P、抽真空VC和串联吸附A1四个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)时,停止进气,此时吸附结束。
⑵抽真空VC
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另一个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气与吸附塔T0201D置换后从顶部流出的尾气混合后,从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部升压,当升到吸附压力时,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口放空,随着时间的推移,吸附剂吸附的氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层顶部流出,顶部流出的混合气返回第二变压吸附段的入口与第一变压吸附段的吸附塔 抽真空(VC)步骤抽出的富氧混合气混合后作为原料气进入第二变压吸附段的吸附塔吸附。
⑶抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑷串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1D-2、KV4D-2和KV2A-2,富氧原料气与吸附塔T0201C产品氧气置换后从顶部流出的尾气混合后先进入吸附塔T0201D吸附剂床层吸附氧气,其尾气再通过程控阀KV4D-2进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV2A-2放空,吸附塔T0201D吸附和T0201A串联吸附结束后,关闭程控阀KV1D-2、KV4D-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他三个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-30%左右,产品氧气浓度越低电耗节约越多。
实施例2:
图3是本发明实施例2各段吸附塔运行步骤及程控阀开关时序图。
图4是本发明实施例2的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图4所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A和T0101B组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气 中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚抽完真空的吸附塔进行升压和吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端放空。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)时,停止进气,此时吸附结束。
⑵抽真空VC
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另一个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部升压,当升到吸附压力时,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口放空,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV6E-2、KV3E-2和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201E底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2放空。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2放空。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV2A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气,吸附塔T0201E富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-15%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-40%左右,产品氧气浓度越低电耗节约越多。。
实施例3:
图5是本发明实施例3各段吸附塔运行步骤及程控阀开关时序图。
图6是本发明实施例3的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图6所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换气吸附和抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段吸附塔串联置换后的尾气吸附,置换尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚抽完真空的吸附塔进行升压和吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端放空。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段串联置换尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开 程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换结束后的尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段置换尾气吸附A1结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部升压,当升到吸附压力时,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口放空,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV6E-2、KV3E-2和KV7A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201E底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV7A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV3A-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV7B-2返回第一 变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV2A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV2A-2放空,吸附塔T0201E富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-20%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-50%左右,产品氧气浓度越低电耗节约越多。
实施例4:
图7是本发明实施例4各段吸附塔运行步骤及程控阀开关时序图。
图8是本发明实施例4的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图8所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换气吸附和抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、串联置换和抽真空程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段吸附塔串联置换后的尾气吸附,置换尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端放空。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段串联置换尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P和抽真空VC四个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换结束后的尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段置换尾气吸附A1结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层升压,升到吸附压力后再打开程控阀KV2A-2,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端放空,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2和KV2A-2,打开程控阀KV6D-2、KV3D-2和KV7A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201D底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV7A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6D-2、KV3D-2和KV7A-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV7B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层,抽真空结束后,关闭程控阀KV5A-2。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他三个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-20%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-50%左右,产品氧气浓度越低电耗节约越多。
实施例5:
图9是本发明实施例5各段吸附塔运行步骤及程控阀开关时序图。
图10是本发明实施例5的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图10所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换气吸附和抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、单塔置换和抽真空程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段吸附塔吸附富氧原料气后的尾气进行吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧原料气与第二变压吸附段吸附塔产品氧气置换后的尾气混合后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附混合原料气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端返回第一变压吸附段吸附。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段吸附尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P和抽真空VC三个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于 15-20.8%(V)时,停止进气,此时吸附结束。
⑵第二变压吸附段吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段吸附结束后的尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段吸附尾气吸附A1结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来与第二变压吸附段吸附塔产品氧气置换后的尾气混合后进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧原料气与第二变压吸附段吸附塔产品氧气置换后的尾气混合后从底部进入吸附塔T0201A吸附剂床层升压,升到吸附压力后再打开程控阀KV2A-2,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端返回第一变压吸附段吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附A步骤结束后,关闭程控阀KV1A-2和KV2A-2,打开程控阀KV5A-2和KV3A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气返回第二变压吸附段入口与第一变压吸附段抽真空出来的气体混合作为第二变压吸附段的原料气吸附。
⑶抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV5A-2和KV3A-2,打开程控阀KV4A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层,抽真空结束后,关闭程控阀KV4A-2。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他两个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-20%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-50%左右,产品氧气浓度越低电耗节约越多。
实施例6:
图11是本发明实施例6各段吸附塔运行步骤及程控阀开关时序图。
图12是本发明实施例6的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图12所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A和T0101B组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、置换、抽真空和原料空气吸附程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚吸附完干燥空气的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端放空。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P、抽真空VC、原料空气吸附A2和串联吸附A1五个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个 吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵抽真空VC
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另一个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气与吸附塔T0201E置换后从顶部流出的尾气混合后,从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口放空,随着时间的推移,吸附剂吸附的氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层顶部流出,顶部流出的混合气返回第二变压吸附段的入口与第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气混合后作为原料气进入第二变压吸附段的吸附塔吸附。
⑶抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑷空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV7A-2和KV2A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV2A-2放空。
⑸串联吸附A1
吸附塔T0201A空气吸附A2结束后,关闭程控阀KV7A-2和KV2A-2,打开程控阀KV1E-2、KV4E-2和KV2A-2,富氧原料气与吸附塔T0201D产品氧气置换后从顶部流出的尾气混合后先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV2A-2放空,吸附塔T0201E吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-20%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-60%左右,产品氧气浓度越低电耗节约越多。
实施例7:
图13是本发明实施例7各段吸附塔运行步骤及程控阀开关时序图。
图14是本发明实施例7的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图14所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C、T0201D、T0201E和T0201F组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换、抽真空和空气吸附A2程序。本实施例将上述两段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气和串联吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成空气吸附的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回第一变压吸附段。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC、空气吸附A2和串联吸附A1六个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%左右,两段循环时间一般为20-80秒,两段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和串联吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和串联吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到 40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV6F-2、KV3F-2和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201F底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6F-2、KV3F-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV7A-2和KV8A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV8A-2放空。
⑹串联吸附A1
吸附塔T0201A空气吸附A2结束后,关闭程控阀KV7A-2和KV8A-2,打开程控阀KV1F-2、KV4F-2和KV2A-2,富氧原料气先进入吸附塔T0201F吸附剂床层吸附氧气, 其尾气再通过程控阀KV4F-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV2A-2返回第一变压吸附段进行再吸附,吸附塔T0201F富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1F-2、KV4F-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他五个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-20%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-60%左右,产品氧气浓度越低电耗节约越多。
实施例8:
图15是本发明实施例8各段吸附塔运行步骤及程控阀开关时序图。
图16是本发明实施例8的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图16所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C、T0201D、T0201E和T0201F组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换、抽真空和空气吸附A2程序;纯氧真空泵P0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、真空缓冲罐V0301、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压和抽真空程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出作为产品,并把氧浓度提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的 吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气和串联吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成空气吸附的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回第一变压吸附段;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的氮气吸附后,从出口流出作为产品氧气,浓度控制在99.5%(V)以上,第三变压吸附段的真空解析气返回第二变压吸附段的入口与第一变压吸附段的真空解析气混合后作为第二变压吸附段的原料气。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC、空气吸附A2和串联吸附A1六个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、三次均压降、抽真空VC、三次均压升和终升九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),三段循环时间一般为20-80秒,三段真空度为-0.095MPa,鼓风机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和串联吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和串联吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来与第三变压吸附段的真空解析气混合后进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气与第三变压吸附段的真空解析气混合后从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV6F-2、KV3F-2和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201F底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6F-2、KV3F-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,本段抽真空VC步骤解析出来的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分富氧气体作为原料气送入第三变压吸附段,另一部分作为置换气返回本段去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV7A-2和 KV8A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV8A-2放空。
⑹串联吸附A1
吸附塔T0201A空气吸附A2结束后,关闭程控阀KV7A-2和KV8A-2,打开程控阀KV1F-2、KV4F-2和KV2A-2,富氧原料气先进入吸附塔T0201F吸附剂床层吸附氧气,其尾气再通过程控阀KV4F-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV2A-2返回第一变压吸附段进行再吸附,吸附塔T0201F富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1F-2、KV4F-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他五个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入产品纯氧缓冲罐V0302,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-3,打开程控阀KV4E-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0301E升压,尽量让两塔压力相等。
⑸抽真空VC
吸附塔T0301A三均降E3D步骤结束后,关闭程控阀KV4A-3和KV4E-3,打开程控阀KV5A-3,将吸附塔T0301A内吸附剂吸附的氮气抽出来返回变压吸附第二变压吸附段 入口与第一变压吸附段真空解析出来的富氧混合进入第二变压吸附段处于吸附步骤的吸附塔。
⑹三均升E3R
吸附塔T0301A抽真空VC步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3和KV4B-3,利用吸附塔T0301B三均降E3D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
⑺二均升E2R
吸附塔T0301A三均升E3R步骤结束后,关闭程控阀KV4B-3,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑻一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-25%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-60%左右,产品氧气浓度越低电耗节约越多。
实施例9:
图17是本发明实施例9各段吸附塔运行步骤及程控阀开关时序图。
图18是本发明实施例9的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图18所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气吸附及抽真空程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C、 T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序;纯氧真空泵P0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、真空缓冲罐V0301、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压和抽真空程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出作为产品,并把氧浓度提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成抽真空的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端放空;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的氮气吸附后,从出口流出作为产品氧气,浓度控制在99.5%(V)以上,第三变压吸附段的真空解析气返回第二变压吸附段的入口与第一变压吸附段的真空解析气混合后作为第二变压吸附段的原料气。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、三次均压降、抽真空VC、三次均压升和终升九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),三段循环时间一般为20-80秒,三段真空度为-0.095MPa,鼓风机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来与第三变压吸附段的真空解析气混合后进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气与第三变压吸附段的真空解析气混合后从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV7B-2,未吸附的氮气和氩气从吸附塔T0201B的出口放空,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV7B-2,打开程控阀KV6E-2、KV3E-2和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201E底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,本段抽真空VC步骤解析出来的富氧气体从吸附塔T0201A底部进 入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分富氧气体作为原料气送入第三变压吸附段,另一部分作为置换气返回本段去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV7A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV7A-2放空,吸附塔T0201E富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV7A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入产品纯氧缓冲罐V0302,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-3,打开程控阀KV4E-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0301E升压,尽量让两塔压力相等。
⑸抽真空VC
吸附塔T0301A三均降E3D步骤结束后,关闭程控阀KV4A-3和KV4E-3,打开程控阀KV5A-3,将吸附塔T0301A内吸附剂吸附的氮气抽出来返回变压吸附第二变压吸附段入口与第一变压吸附段真空解析出来的富氧混合进入第二变压吸附段处于吸附步骤的吸附塔。
⑹三均升E3R
吸附塔T0301A抽真空VC步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3和KV4B-3,利用吸附塔T0301B三均降E3D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
⑺二均升E2R
吸附塔T0301A三均升E3R步骤结束后,关闭程控阀KV4B-3,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑻一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-22%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-65%左右,产品氧气浓度越低电耗节约越多。
实施例10:
图19是本发明实施例10各段吸附塔运行步骤及程控阀开关时序图。
图20是本发明实施例10的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图20所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C、T0201D、T0201E和T0201F组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换、抽真空和空气吸附A2程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、顺放缓冲罐V0301、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、一次均压、顺放、逆放和吹扫程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出作为产品,并把氧浓度提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气和串联吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成空气吸附的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回第一变压吸附段;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的氮气吸附后,从出口流出作为产品氧气,浓度控制在99.5%(V)以上,第三变压吸附段的逆放和吹扫气返回第二变压吸附段的入口与第一变压吸附段的真空解析气混合后作为第二变压吸附段的原料气。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC、空气吸附A2和串联吸附A1六个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降、顺放、逆放、吹扫、一次均压升和终升七个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空 解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),三段循环时间一般为20-80秒,三段真空度为-0.095MPa,鼓风机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和串联吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和串联吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来与第三变压吸附段的真空解析气混合后进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气与第三变压吸附段的真空解析气混合后从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV6F-2、KV3F-2 和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201F底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6F-2、KV3F-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,本段抽真空VC步骤解析出来的部分富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分富氧气体作为原料气送入第三变压吸附段,另一部分作为置换气返回本段去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV7A-2和KV8A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV8A-2放空。
⑹串联吸附A1
吸附塔T0201A空气吸附A2结束后,关闭程控阀KV7A-2和KV8A-2,打开程控阀KV1F-2、KV4F-2和KV2A-2,富氧原料气先进入吸附塔T0201F吸附剂床层吸附氧气,其尾气再通过程控阀KV4F-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV2A-2返回第一变压吸附段进行再吸附,吸附塔T0201F富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1F-2、KV4F-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他五个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入产品纯氧缓冲罐V0302,随着时间的推移, 吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶顺放PP
均压降ED步骤结束后,关闭程控阀KV3C-3,打开程控阀KV6-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入顺放缓冲罐V0301,压力将根据需要调整。
⑷逆放BD
吸附塔T0301A顺放PP步骤结束后,关闭程控阀KV3A-3和KV6-3,打开程控阀KV6A-3,将吸附塔T0301A内吸附剂吸附的氮气放出返回变压吸附第二变压吸附段入口与第一变压吸附段真空解析出来的富氧混合进入第二变压吸附段处于吸附步骤的吸附塔,让吸附剂获得再生。
⑸吹扫P
逆放BD步骤结束后,关闭程控阀KV6A-3,打开程控阀KV4A-3和KV5A-3,顺放缓冲罐V0301中气体从出口进入吸附塔T0301A,将吸附剂床层中吸附的氮气吹扫出来,让吸附剂进一步再生。
⑹均压升ER
吸附塔T0301A吹扫P步骤结束后,关闭程控阀KV4A-3和KV5A-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D均压降ED步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑺最终升压FR
均压升ER步骤结束后,关闭程控阀KV3A-3和KV3D-3,打开程控阀KV2A-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-25%左右。
实施例11:
图21是本发明实施例11各段吸附塔运行步骤及程控阀开关时序图。
图22是本发明实施例11的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图22所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B、T0101C和T0101D组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气吸附、抽真空及升压程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压和逆放程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出作为产品,并把氧浓度提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成抽真空的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端放空;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的氮气吸附后,从出口流出作为产品氧气,浓度控制在99.5%(V)以上,第三变压吸附段的逆放解析气返回第一变压吸附段抽完真空的吸附塔。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气吸附A1、抽真空VC和升压R四个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、三次均压降、逆放BD、三次均压升和终升九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),三段循环时间一般为20-80秒,三段真空度为-0.095MPa,鼓风机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大 时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
⑷三段解析气升压R
吸附塔T0101A抽真空VC步骤结束后,关闭程控阀KV3A-1,打开程控阀KV5A-1与第三变压吸附段处于逆放BD步骤的吸附塔连通,用第三变压吸附段的解析气升压,同时使第三变压吸附段吸附塔的吸附剂得到再生,三段解析气升压R结束后,关闭程控阀KV5A-1。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另三个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV7B-2,未吸附的氮气和氩气从吸附塔T0201B的出口放空,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV7B-2,打开程控阀KV6E-2、KV3E-2和KV2A-2,本段抽真空出来的富氧气体从吸附塔T0201E底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,本段抽真空出来的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分富氧气体作为第三变压吸附段的原料气,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV7A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV7A-2放空,吸附塔T0201E富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV7A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入产品纯氧缓冲罐V0302,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸 附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-3,打开程控阀KV4E-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0301E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0301A三均降E3D步骤结束后,关闭程控阀KV4A-3和KV4E-3,打开程控阀KV5A-3,将吸附塔T0301A与第一变压吸附段抽完真空的吸附塔连通,用吸附塔T0301A的逆放气对第一变压吸附段抽完真空的吸附塔升压,同时吸附塔T0301A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0301A逆放BD步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3和KV4B-3,利用吸附塔T0301B三均降E3D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
⑺二均升E2R
吸附塔T0301A三均升E3R步骤结束后,关闭程控阀KV4B-3,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑻一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-30%左右。
实施例12:
图23是本发明实施例12各段吸附塔运行步骤及程控阀开关时序图。
图24是本发明实施例12的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图24所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、置换、抽真空和空气吸附A2程序;真空泵P0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、两次均压、抽真空、升压和终升程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0401、吸附塔T0401A、T0401B、T0401C、T0401D和T0401E组成第四变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压、逆放和终升程序。本实施例将上述四段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气和串联吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出返回第一变压吸附段;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的部分氮气吸附后,从出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。第三变压吸附段的抽真空解析气放空,第四变压吸附段处于逆放步骤吸附塔的解析气返回第三变压吸附段抽完真空的吸附塔进行升压,第四变压吸附段的吸附剂获得再生,同时提高了氧气回收率。第一变压吸附段的吸附塔吸附结束后出口 气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P、抽真空VC和空气吸附A2四个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、抽真空VC、四段解析气升压R、二次均压升E2R、一次均压升E1R和终升FR八个变压吸附工艺步骤;第四变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、三次均压降E3D、逆放BD、三次均压升E3R、二次均压升E2R、一次均压升E1R和终升FR九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),四段循环时间一般为20-80秒,四段真空度一般为-0.095MPa,鼓风机气量、四段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例各段的吸附塔在一个循环中依次经历的步骤如下。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和串联吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和串联吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV2A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附A步骤结束后,关闭程控阀KV1A-2,打开程控阀KV6A-2,本段抽真空VC步骤获得的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出返回第一变压吸附段进行再吸附。
⑶抽真空VC
吸附塔T0201A本段抽真空VC步骤获得的氧气置换P步骤结束后,关闭程控阀KV2A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为原料气送入第三变压吸附段,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑷空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV3A-2和KV4A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV4A-2放空。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他三个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入第四变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成第四变压吸附段逆放气升压R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷抽真空VC
吸附塔T0301A二均降E2D步骤结束后,关闭程控阀KV4A-3和KV4D-3,打开程控阀KV5A-3,将吸附塔T0301A内吸附剂吸附的氮气抽出放空。
⑸第四变压吸附段逆放气升压R
吸附塔T0301A抽真空VC步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3,利用第四变压吸附段逆放BD步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和第四变压吸附段逆放BD步骤的吸附塔压力相等。
⑹二均升E2R
吸附塔T0301A第四变压吸附段逆放气升压R步骤结束后,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑺一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑻最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入第二变压吸附段抽真空的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
第四变压吸附段
⑴吸附A
打开第四变压吸附段的程控阀KV1A-4,将第三变压吸附段的吸附塔在吸附A步骤的出口富氧气体送入吸附塔T0401A吸附剂床层,吸附塔T0401A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-4从出口端流出进入产品纯氧缓冲罐V0401,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0401A吸附氮气饱和时,停止进气,此时吸 附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-4和KV2A-4,打开程控阀KV3A-4和KV3C-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0401C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-4和KV3C-4,打开程控阀KV4A-4和KV4D-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0401D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-4,打开程控阀KV4E-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0401E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0401A三均降E3D步骤结束后,关闭程控阀KV4A-4和KV4E-4,打开程控阀KV5A-4,将吸附塔T0401A与第三变压吸附段抽完真空的吸附塔连通,用吸附塔T0401A的逆放气对第三变压吸附段抽完真空的吸附塔升压R,同时吸附塔T0401A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0401A逆放BD步骤结束后,关闭程控阀KV5A-4,打开程控阀KV4A-4和KV4B-4,利用吸附塔T0401B三均降E3D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401B压力相等。
⑺二均升E2R
吸附塔T0401A三均升E3R步骤结束后,关闭程控阀KV4B-4,打开程控阀KV4C-4,利用吸附塔T0401C二均降E2D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401C压力相等。
⑻一均升E1R
吸附塔T0401A二均升E2R步骤结束后,关闭程控阀KV4A-4和KV4C-4,打开程控阀KV3A-4和KV3D-4,利用吸附塔T0401D一均降E1D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-4,打开程控阀KV8-4,用吸附过程中的出口气对吸附塔T0401A进行升压,直到接近第四变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0401A完成了一个循环,再次进入第三变压吸附段吸附A 步骤的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0401A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-35%左右。
实施例13:
图25是本发明实施例13各段吸附塔运行步骤及程控阀开关时序图。
图26是本发明实施例13的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图26所示,真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B、T0101C和T0101D组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、置换、抽真空和空气吸附A2程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、两次均压、逆放、升压、两次均升和终升程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0401、吸附塔T0401A、T0401B、T0401C、T0401D和T0401E组成第四变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压、逆放和终升程序。本实施例将上述四段变压吸附串联操作,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。
压力大于5KPa的干燥空气进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段置换尾气和吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出返回 第一变压吸附段;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的部分氮气吸附后,从出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。第三变压吸附段的逆放步骤的解析气返回第一变压吸附段的吸附塔升压,第四变压吸附段处于逆放步骤吸附塔的解析气返回第三变压吸附段逆放完成的吸附塔进行升压,第四变压吸附段的吸附剂获得再生,同时提高了氧气回收率。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1、抽真空VC和第三变压吸附段逆放气升压R四个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P、抽真空VC和空气吸附A2四个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、逆放BD、四段解析气升压R、二次均压升E2R、一次均压升E1R和终升FR八个变压吸附工艺步骤;第四变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、三次均压降E3D、逆放BD、三次均压升E3R、二次均压升E2R、一次均压升E1R和终升FR九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),四段循环时间一般为20-80秒,四段真空度一般为-0.095MPa,鼓风机气量、四段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例各段的吸附塔在一个循环中依次经历的步骤如下。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段置换尾气和吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1放空。
⑶抽真空VC
吸附塔T0101A第二变压吸附段置换尾气和吸附尾气吸附A1步骤结束后,关闭程控 阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
⑷三段解析气升压R
吸附塔T0101A抽真空VC步骤结束后,关闭程控阀KV3A-1,打开程控阀KV5A-1与第三变压吸附段处于逆放BD步骤的吸附塔连通,用第三变压吸附段的解析气升压,同时使第三变压吸附段吸附塔的吸附剂得到再生,三段解析气升压R结束后,关闭程控阀KV5A-1。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另三个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV2A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附A步骤结束后,关闭程控阀KV1A-2,打开程控阀KV6A-2,本段抽真空VC步骤获得的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出返回第一变压吸附段进行再吸附。
⑶抽真空VC
吸附塔T0201A本段抽真空VC步骤获得的氧气置换P步骤结束后,关闭程控阀KV2A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为原料气送入第三变压吸附段,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑷空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV3A-2和KV4A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV4A-2放空。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他三个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入第四变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成第四变压吸附段逆放气升压R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷逆放BD
吸附塔T0301A二均降E2D步骤结束后,关闭程控阀KV4A-3和KV4D-3,打开程控阀KV5A-3,将吸附塔T0301A与第一变压吸附段抽完真空的吸附塔连通,用吸附塔T0301A的逆放解析气升压,升压完成后,吸附塔T0301A处于真空状态。
⑸第四变压吸附段逆放气升压R
吸附塔T0301A逆放BD步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3,利用第四变压吸附段逆放BD步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和第四变压吸附段逆放BD步骤的吸附塔压力相等。
⑹二均升E2R
吸附塔T0301A第四变压吸附段逆放气升压R步骤结束后,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑺一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑻最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入第二变压吸附段抽真空的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
第四变压吸附段
⑴吸附A
打开第四变压吸附段的程控阀KV1A-4,将第三变压吸附段的吸附塔在吸附A步骤的出口富氧气体送入吸附塔T0401A吸附剂床层,吸附塔T0401A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-4从出口端流出进入产品纯氧缓冲罐V0401,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0401A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-4和KV2A-4,打开程控阀KV3A-4和KV3C-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0401C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-4和KV3C-4,打开程控阀KV4A-4和KV4D-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0401D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-4,打开程控阀KV4E-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0401E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0401A三均降E3D步骤结束后,关闭程控阀KV4A-4和KV4E-4,打开程控阀KV5A-4,将吸附塔T0401A与第三变压吸附段抽完真空的吸附塔连通,用吸附塔T0401A的逆放气对第三变压吸附段抽完真空的吸附塔升压R,同时吸附塔T0401A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0401A逆放BD步骤结束后,关闭程控阀KV5A-4,打开程控阀KV4A-4和KV4B-4,利用吸附塔T0401B三均降E3D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401B压力相等。
⑺二均升E2R
吸附塔T0401A三均升E3R步骤结束后,关闭程控阀KV4B-4,打开程控阀KV4C-4,利用吸附塔T0401C二均降E2D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401C压力相等。
⑻一均升E1R
吸附塔T0401A二均升E2R步骤结束后,关闭程控阀KV4A-4和KV4C-4,打开程控阀KV3A-4和KV3D-4,利用吸附塔T0401D一均降E1D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-4,打开程控阀KV8-4,用吸附过程中的出口气对吸附塔T0401A进行升压,直到接近第四变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0401A完成了一个循环,再次进入第三变压吸附段吸附A步骤的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0401A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-35%左右。
实施例14:
图27是本发明实施例14各段吸附塔运行步骤及程控阀开关时序图。
图28是本发明实施例14的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图28所示,鼓风机C0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A和T0100B组成干燥段变压吸附,吸附塔内装填的吸附剂为活性氧化铝干燥剂,运行单塔吸附和吹扫再生程序;真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C、T0201D、T0201E和T0201F组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换、抽真空和空气吸附A2程序。本实施例将上述三段变压吸附串联操作,干燥段变压吸附用于将空气中的气态水吸附下来,满足变压吸附制氧吸附剂对水的要求,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧 中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
空气经过鼓风机C0100升压到5KPa后进入干燥段变压吸附,吸附塔中的吸附剂选择性地吸附湿空气中的气态水等组分,不易吸附的氧、氮和氩等组分从出口端进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气和串联吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成空气吸附的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回第一变压吸附段。干燥段变压吸附用于将湿空气的露点控制在-50℃以上,其吸附塔在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤;第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC、空气吸附A2和串联吸附A1六个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,三段循环时间一般为20-80秒,第一变压吸附段和第二变压吸附段真空度为-0.095MPa,鼓风机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
变压吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV2A-0,原料空气经过鼓风机(C0101)升压到5KPa(G)后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,不易吸附的氧气、氮气和氩气等组分从出口端排出进入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点再-50℃左右。
⑵吹扫
吸附塔T0100A吸附结束后,打开程控阀KV3A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔空气吸附A2步骤的放空气从吸附塔T0100A出口端经程控阀KV3A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,吹扫P结束后,关闭程控阀KV3A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入干燥空气吸附,另一个吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出返回干燥段变压吸附作为吹扫气再生气态水,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和串联吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1从出口端排出返回干燥段变压吸附作为吹扫气再生气态水。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和串联吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV2B-2,未吸附的氮气和氩气从吸附塔T0201B的出口返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV2B-2,打开程控阀KV6F-2、KV3F-2和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201F底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附 段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6F-2、KV3F-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV7A-2和KV8A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV8A-2返回干燥段变压吸附作为吹扫气再生气态水。
⑹串联吸附A1
吸附塔T0201A空气吸附A2结束后,关闭程控阀KV7A-2和KV8A-2,打开程控阀KV1F-2、KV4F-2和KV2A-2,富氧原料气先进入吸附塔T0201F吸附剂床层吸附氧气,其尾气再通过程控阀KV4F-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV2A-2返回第一变压吸附段进行再吸附,吸附塔T0201F富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1F-2、KV4F-2和KV2A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他五个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-15%左右。
实施例15:
图29是本发明实施例15各段吸附塔运行步骤及程控阀开关时序图。
图30是本发明实施例15的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图30所示,鼓风机C0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A和T0100B组成干燥段变压吸附,吸附塔内装填的吸附剂为活性氧化铝干燥剂,运行单塔吸附和吹扫再生程序;真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附及抽真空程序;纯氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0201、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序。本实施例将上述三段变压吸附串联操作,干燥段变压吸附用于将空气中的气态水吸附下来,满足变压吸附制氧吸附剂对水的要求,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,并把氧提高到99.5%(V)以上。
空气经过鼓风机C0100升压到5KPa后进入干燥段变压吸附,吸附塔中的吸附剂选择性地吸附湿空气中的气态水等组分,不易吸附的氧、氮和氩等组分从出口端进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出返回干燥段变压吸附作为吹扫气再生气态水,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成空气吸附的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回干燥段变压吸附作为吹扫气再生气态水。干燥段变压吸附用于将湿空气的露点控制在-50℃以上,其吸附塔在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤;第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1六个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,三段循环时间一般为20-80秒,第一变压吸附段和第二变压吸附段真空度为-0.095MPa,鼓风机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
变压吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV2A-0,原料空气经过鼓风机(C0101)升压到5KPa(G)后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,不易吸附的氧气、氮气和氩气等组分从出口端排出进入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点再-50℃左右。
⑵吹扫
吸附塔T0100A吸附结束后,打开程控阀KV3A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔串联吸附A1步骤的放空气从吸附塔T0100A出口端经程控阀KV3A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,吹扫P结束后,关闭程控阀KV3A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入干燥空气吸附,另一个吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出返回干燥段变压吸附作为吹扫气再生气态水,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1从出口端排出返回干燥段变压吸附作为吹扫气再生气态水。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另两个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV7B-2,未吸附的氮气和氩气从吸附塔T0201B的出口返回干燥段变压吸附作为吹扫气再生气态水,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV7B-2,打开程控阀KV6E-2、KV3E-2和KV2A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201F底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV2A-2返回第一变压吸附段进行再吸附。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV2A-2,打开程控阀KV3A-2和KV6A-2,用第二变压吸附段真空泵抽出的部分氧气从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2、KV2B-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为产品氧气送出,另一部分作为置换气返回去置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV7A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV7A-2返回干燥段变压吸附作为吹扫气再生气态水,吸附塔T0201F富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV7A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-15%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压吸附法相比节约电耗10%-30%左右,产品氧气浓度越低电耗节约越多。
实施例16:
图31是本发明实施例16各段吸附塔运行步骤及程控阀开关时序图。
图32是本发明实施例16的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图32所示,鼓风机C0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A和T0100B组成干燥段变压吸附,吸附塔内装填的吸附剂为活性氧化铝干燥剂,运行单塔吸附和吹扫再生程序;真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B、T0101C和T0101D组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气吸附、抽真空及升压程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压和逆放程序。本实施例将上述四段变压吸附串联操作,干燥段变压吸附用于将空气中的气态水吸附下来,满足变压吸附制氧吸附剂对水的要求,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出作为产品,并把氧浓度提高到99.5%(V)以上。
空气经过鼓风机C0100升压到5KPa后进入干燥段变压吸附,吸附塔中的吸附剂选择性地吸附湿空气中的气态水等组分,不易吸附的氧、氮和氩等组分从出口端进入第一变压吸附段处于吸附步骤的吸附塔,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出进入另一个刚完成抽真空的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧 气吸附下来,不易吸附的氮和氩等组分从出口端返回干燥段变压吸附作为吹扫气再生气态水;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的氮气吸附后,从出口流出作为产品氧气,浓度控制在99.5%(V)以上,第三变压吸附段的逆放解析气返回第一变压吸附段抽完真空的吸附塔。干燥段变压吸附用于将湿空气的露点控制在-50℃以上,其吸附塔在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤;第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气吸附A1、抽真空VC和三段解析气升压R四个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、三次均压降、逆放BD、三次均压升和终升九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),四段循环时间一般为20-80秒,第一变压吸附段、第二变压吸附段和第三变压吸附段真空度为-0.095MPa,鼓风机气量、四段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
变压吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV2A-0,原料空气经过鼓风机(C0100)升压到5KPa(G)后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,不易吸附的氧气、氮气和氩气等组分从出口端排出进入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点在-50℃以上。
⑵吹扫
吸附塔T0100A吸附结束后,打开程控阀KV3A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔串联吸附A1步骤的混合气从吸附塔T0100A出口端经程控阀KV3A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,吹扫P结束后,关闭程控阀KV3A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入空气吸附,另一个吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
⑷三段解析气升压R
吸附塔T0101A抽真空VC步骤结束后,关闭程控阀KV3A-1,打开程控阀KV5A-1与第三变压吸附段处于逆放BD步骤的吸附塔连通,用第三变压吸附段的解析气升压,同时使第三变压吸附段吸附塔的吸附剂得到再生,三段解析气升压R结束后,关闭程控阀KV5A-1。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另三个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV7B-2,未吸附的氮气和氩气从吸附塔T0201B的出口返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV7B-2,打开程控阀KV6E-2、KV3E-2和KV2A-2,本段真空解析的富氧混合气从吸附塔T0201E底部进入吸附剂床层置换氮气 和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV7A-2返回返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV7A-2,打开程控阀KV3A-2和KV6A-2,本段抽真空出来的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分富氧气体作为第三变压吸附段的原料气,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV7A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV7A-2返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,吸附塔T0201E富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV7A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入产品纯氧缓冲罐V0302,产品氧气浓度控制在99.5%(V),随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔 T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-3,打开程控阀KV4E-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0301E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0301A三均降E3D步骤结束后,关闭程控阀KV4A-3和KV4E-3,打开程控阀KV5A-3,将吸附塔T0301A与第一变压吸附段抽完真空的吸附塔连通,用吸附塔T0301A的逆放气对第一变压吸附段抽完真空的吸附塔升压,同时吸附塔T0301A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0301A逆放BD步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3和KV4B-3,利用吸附塔T0301B三均降E3D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
⑺二均升E2R
吸附塔T0301A三均升E3R步骤结束后,关闭程控阀KV4B-3,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑻一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-25%左右。
本实施例也可以用来生产浓度低于99.5%(V)的产品氧气,与传统的深冷法和变压 吸附法相比节约电耗10%-40%左右,产品氧气浓度越低电耗节约越多。
实施例17:
图33是本发明实施例17各段吸附塔运行步骤及程控阀开关时序图。
图34是本发明实施例17的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图34所示,鼓风机C0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A和T0100B组成干燥段变压吸附,吸附塔内装填的吸附剂为活性氧化铝干燥剂,运行单塔吸附和吹扫再生程序;真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B、T0101C和T0101D组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气吸附、抽真空及升压程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C、T0201D和T0201E组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔串联吸附、串联置换和抽真空程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、两次均压和逆放程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0401、吸附塔T0401A、T0401B、T0401C、T0401D和T0401E组成第四变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压、逆放和终升程序。本实施例将上述五段变压吸附串联操作,干燥段变压吸附用于将空气中的气态水吸附下来,满足变压吸附制氧吸附剂对水的要求,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。
空气经过鼓风机C0100升压到5KPa后进入干燥段变压吸附,吸附塔中的吸附剂选择性地吸附湿空气中的气态水等组分,不易吸附的氧、氮和氩等组分从出口端进入第一变压吸附段处于吸附步骤的吸附塔,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段串联置换尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流 出进入另一个刚完成抽真空的吸附塔吸附氧气,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回干燥段变压吸附作为吹扫气再生气态水;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的部分氮气吸附后,从出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。第三变压吸附段的逆放步骤的解析气返回第一变压吸附段的吸附塔升压,第四变压吸附段处于逆放步骤吸附塔的解析气返回第三变压吸附段逆放完成的吸附塔进行升压,第四变压吸附段的吸附剂获得再生,同时提高了氧气回收率。干燥段变压吸附用于将湿空气的露点控制在-50℃以上,其吸附塔在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤;第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气吸附A1、抽真空VC和三段解析气升压R四个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、两次均压降、逆放BD、两次均压升和终升七个变压吸附工艺步骤;第四变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、三次均压降E3D、逆放BD、三次均压升E3R、二次均压升E2R、一次均压升E1R和终升FR九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),五段循环时间一般为20-80秒,除干燥段外,其他四段真空度一般为-0.095MPa,鼓风机气量、五段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
变压吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV3A-0,原料空气经过鼓风机(C0100)升压到5KPa(G)后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,不易吸附的氧气、氮气和氩气等组分从出口端排出进入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点在-50℃以上。
⑵吹扫
吸附塔T0100A吸附结束后,打开程控阀KV2A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔串联吸附A1步 骤的混合气从吸附塔T0100A出口端经程控阀KV2A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,吹扫P结束后,关闭程控阀KV2A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入空气吸附,另一个吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
⑷三段解析气升压R
吸附塔T0101A抽真空VC步骤结束后,关闭程控阀KV3A-1,打开程控阀KV5A-1与第三变压吸附段处于逆放BD步骤的吸附塔连通,用第三变压吸附段的解析气升压,同时使第三变压吸附段吸附塔的吸附剂得到再生,三段解析气升压R结束后,关闭程控阀KV5A-1。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另三个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV4A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出进入吸附塔T0201B底部,打开程控阀KV7B-2,未吸附的 氮气和氩气从吸附塔T0201B的出口返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵串联置换P1
吸附结束后,关闭程控阀KV1A-2、KV4A-2和KV7B-2,打开程控阀KV6E-2、KV3E-2和KV2A-2,本段真空解析的富氧混合气从吸附塔T0201E底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201A的底部进入,经过吸附塔T0201A吸附剂床层吸附氧气后,通过程控阀KV7A-2返回返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
⑶氧气置换P
串联置换P1步骤结束后,关闭程控阀KV6E-2、KV3E-2和KV7A-2,打开程控阀KV3A-2和KV6A-2,本段抽真空出来的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出,顶部流出的置换尾气从吸附塔T0201B的底部进入,经过吸附塔T0201B吸附剂床层吸附氧气后,通过程控阀KV2B-2返回第一变压吸附段进行再吸附。
⑷抽真空VC
吸附塔T0201A氧气置换P结束后,关闭程控阀KV3A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分富氧气体作为第三变压吸附段的原料气,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑸串联吸附A1
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV1E-2、KV4E-2和KV7A-2,富氧原料气先进入吸附塔T0201E吸附剂床层吸附氧气,其尾气再通过程控阀KV4E-2进入吸附塔T0201A升压和吸附氧气后,未吸附的氮气和氩气通过程控阀KV7A-2返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,吸附塔T0201E富氧吸附和T0201A串联吸附结束后,关闭程控阀KV1E-2、KV4E-2和KV7A-2。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的 氧和氩等组分打开程控阀KV2A-3从出口端流出进入第四变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成第四变压吸附段逆放气升压R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷逆放BD
吸附塔T0301A二均降E2D步骤结束后,关闭程控阀KV4A-3和KV4D-3,打开程控阀KV5A-3,将吸附塔T0301A与第一变压吸附段抽完真空的吸附塔连通,用吸附塔T0301A的逆放解析气升压,升压完成后,吸附塔T0301A处于真空状态。
⑸第四变压吸附段逆放气升压R
吸附塔T0301A逆放BD步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3,利用第四变压吸附段逆放BD步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和第四变压吸附段逆放BD步骤的吸附塔压力相等。
⑹二均升E2R
吸附塔T0301A第四变压吸附段逆放气升压R步骤结束后,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑺一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑻最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入第二变压吸附段抽真空的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
第四变压吸附段
⑴吸附A
打开第四变压吸附段的程控阀KV1A-4,将第三变压吸附段的吸附塔在吸附A步骤的出口富氧气体送入吸附塔T0401A吸附剂床层,吸附塔T0401A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-4从出口端流出进入产品纯氧缓冲罐V0401,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0401A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-4和KV2A-4,打开程控阀KV3A-4和KV3C-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0401C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-4和KV3C-4,打开程控阀KV4A-4和KV4D-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0401D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-4,打开程控阀KV4E-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0401E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0401A三均降E3D步骤结束后,关闭程控阀KV4A-4和KV4E-4,打开程控阀KV5A-4,将吸附塔T0401A与第三变压吸附段抽完真空的吸附塔连通,用吸附塔T0401A的逆放气对第三变压吸附段抽完真空的吸附塔升压R,同时吸附塔T0401A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0401A逆放BD步骤结束后,关闭程控阀KV5A-4,打开程控阀KV4A-4和KV4B-4,利用吸附塔T0401B三均降E3D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401B压力相等。
⑺二均升E2R
吸附塔T0401A三均升E3R步骤结束后,关闭程控阀KV4B-4,打开程控阀KV4C-4,利用吸附塔T0401C二均降E2D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401C压力相等。
⑻一均升E1R
吸附塔T0401A二均升E2R步骤结束后,关闭程控阀KV4A-4和KV4C-4,打开程控 阀KV3A-4和KV3D-4,利用吸附塔T0401D一均降E1D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-4,打开程控阀KV8-4,用吸附过程中的出口气对吸附塔T0401A进行升压,直到接近第四变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0401A完成了一个循环,再次进入第三变压吸附段吸附A步骤的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0401A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-40%左右。
实施例18:
图35是本发明实施例18各段吸附塔运行步骤及程控阀开关时序图。
图36是本发明实施例18的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图36所示,鼓风机C0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A和T0100B组成干燥段变压吸附,吸附塔内装填的吸附剂为活性氧化铝干燥剂,运行单塔吸附和吹扫再生程序;真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B、T0101C和T0101D组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附、抽真空及升压程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、单塔置换和抽真空程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、两次均压和逆放程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0401、吸附塔T0401A、T0401B、T0401C、T0401D和T0401E组成第四变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压、逆放和终升程序。本实施例将上述五段变压吸附串联操作,干燥段变压吸附用于将空气中的气态水吸附下来,满足变压吸附制氧吸附剂对水的要求,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析 出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。
空气经过鼓风机C0100升压到5KPa后进入干燥段变压吸附,吸附塔中的吸附剂选择性地吸附湿空气中的气态水等组分,不易吸附的氧、氮和氩等组分从出口端进入第一变压吸附段处于吸附步骤的吸附塔,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段置换尾气和吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出返回第一变压吸附段的,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回干燥段变压吸附作为吹扫气再生气态水;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的部分氮气吸附后,从出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。第三变压吸附段的逆放步骤的解析气返回第一变压吸附段的吸附塔升压,第四变压吸附段处于逆放步骤吸附塔的解析气返回第三变压吸附段逆放完成的吸附塔进行升压,第四变压吸附段的吸附剂获得再生,同时提高了氧气回收率。干燥段变压吸附用于将湿空气的露点控制在-50℃以上,其吸附塔在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤;第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1、抽真空VC和三段解析气升压R四个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P、抽真空VC和空气吸附A2四个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、两次均压降、逆放BD、两次均压升和终升七个变压吸附工艺步骤;第四变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、三次均压降E3D、逆放BD、三次均压升E3R、二次均压升E2R、一次均压升E1R和终升FR九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),五段循环时间一般为20-80秒,除干燥段外,其他四段真空度一般为-0.095MPa,鼓风机气量、五段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
变压吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV3A-0,原料空气经过鼓风机(C0100)升压到5KPa(G)后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,不易吸附的氧气、氮气和氩气等组分从出口端排出进入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点在-50℃以上。
⑵吹扫
吸附塔T0100A吸附结束后,打开程控阀KV2A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔串联吸附A1步骤的混合气从吸附塔T0100A出口端经程控阀KV2A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,吹扫P结束后,关闭程控阀KV2A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入空气吸附,另一个吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
⑷三段解析气升压R
吸附塔T0101A抽真空VC步骤结束后,关闭程控阀KV3A-1,打开程控阀KV5A-1与第三变压吸附段处于逆放BD步骤的吸附塔连通,用第三变压吸附段的解析气升压,同时使第三变压吸附段吸附塔的吸附剂得到再生,三段解析气升压R结束后,关闭程控阀 KV5A-1。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另三个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV2A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附A步骤结束后,关闭程控阀KV1A-2,打开程控阀KV6A-2,本段抽真空VC步骤获得的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出返回第一变压吸附段进行再吸附。
⑶抽真空VC
吸附塔T0201A本段抽真空VC步骤获得的氧气置换P步骤结束后,关闭程控阀KV2A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为原料气送入第三变压吸附段,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑷空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV3A-2和KV4A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV4A-2返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他三个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入第四变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成第四变压吸附段逆放气升压R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷逆放BD
吸附塔T0301A二均降E2D步骤结束后,关闭程控阀KV4A-3和KV4D-3,打开程控阀KV5A-3,将吸附塔T0301A与第一变压吸附段抽完真空的吸附塔连通,用吸附塔T0301A的逆放解析气升压,升压完成后,吸附塔T0301A处于真空状态。
⑸第四变压吸附段逆放气升压R
吸附塔T0301A逆放BD步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3,利用第四变压吸附段逆放BD步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和第四变压吸附段逆放BD步骤的吸附塔压力相等。
⑹二均升E2R
吸附塔T0301A第四变压吸附段逆放气升压R步骤结束后,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑺一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑻最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入第二变压吸附段抽真空的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
第四变压吸附段
⑴吸附A
打开第四变压吸附段的程控阀KV1A-4,将第三变压吸附段的吸附塔在吸附A 步骤的出口富氧气体送入吸附塔T0401A吸附剂床层,吸附塔T0401A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-4从出口端流出进入产品纯氧缓冲罐V0401,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0401A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-4和KV2A-4,打开程控阀KV3A-4和KV3C-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0401C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-4和KV3C-4,打开程控阀KV4A-4和KV4D-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0401D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-4,打开程控阀KV4E-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0401E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0401A三均降E3D步骤结束后,关闭程控阀KV4A-4和KV4E-4,打开程控阀KV5A-4,将吸附塔T0401A与第三变压吸附段抽完真空的吸附塔连通,用吸附塔T0401A的逆放气对第三变压吸附段抽完真空的吸附塔升压R,同时吸附塔T0401A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0401A逆放BD步骤结束后,关闭程控阀KV5A-4,打开程控阀KV4A-4和KV4B-4,利用吸附塔T0401B三均降E3D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401B压力相等。
⑺二均升E2R
吸附塔T0401A三均升E3R步骤结束后,关闭程控阀KV4B-4,打开程控阀KV4C-4,利用吸附塔T0401C二均降E2D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401C压力相等。
⑻一均升E1R
吸附塔T0401A二均升E2R步骤结束后,关闭程控阀KV4A-4和KV4C-4,打开程控阀KV3A-4和KV3D-4,利用吸附塔T0401D一均降E1D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-4,打开程控阀KV8-4,用吸附过程中的出口气对吸附塔T0401A进行升压,直到接近第四变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0401A完成了一个循环,再次进入第三变压吸附段吸附A步骤的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0401A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-40%左右。
实施例19:
图37是本发明实施例19各段吸附塔运行步骤及程控阀开关时序图。
图38是本发明实施例19的工艺流程简图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.005MPa(G)(也可以采用更高吸附压力)
如图38所示,鼓风机C0100、换热器E0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A、T0100B和T0100C组成变温吸附干燥段,吸附塔内装填的吸附剂为活性氧化铝干燥剂,运行单塔吸附、加热再生和冷却程序;真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B、T0101C和T0101D组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、第二变压吸附段置换尾气和吸附尾气吸附、抽真空及升压程序;富氧真空泵P0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、单塔置换和抽真空程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0302、吸附塔T0301A、T0301B、T0301C、T0301D和T0301E组成第三变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、两次均压和逆放程序;程控阀、PLC控制系统、仪器仪表、工艺管道管件、产品纯氧缓冲罐V0401、吸附塔T0401A、T0401B、T0401C、T0401D和T0401E组成第四变压吸附段,吸附塔内装填的吸附剂为沸石分子筛或锂分子筛,运行单塔吸附、三次均压、逆放和终升程序。本实施例将上述五段变压吸附串联操作,变温吸附干燥段用于将空气中的气态水吸附下来,满足变压吸附制氧吸附剂对水的要求,第一变压吸附段将干燥空气中的氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的富氧中的氧进一步吸附下来,将氧气浓度进一步提高,第三变压吸附段用于将第二变压吸附段真空解析出来的富氧混合气中的氮气吸附,不易吸附的氧从吸附塔出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将 混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。
空气经过鼓风机C0100升压到5KPa后进入变温吸附干燥段,吸附塔中的吸附剂选择性地吸附湿空气中的气态水等组分,不易吸附的氧、氮和氩等组分从出口端进入第一变压吸附段处于吸附步骤的吸附塔,第一变压吸附段的吸附塔干燥空气吸附结束后,马上通入第二变压吸附段置换尾气和吸附尾气吸附,尾气吸附结束后,马上进行抽真空,真空泵抽出来的富氧直接进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氧气等组分,不易吸附的氮和氩以及少量氧气等尾气从出口端流出返回第一变压吸附段的,吸附塔中的吸附剂进一步将尾气中的氧气吸附下来,不易吸附的氮和氩等组分从出口端返回干燥段变压吸附作为吹扫气再生气态水;第二变压吸附段的吸附塔真空解析出来的富氧混合气进入第三变压吸附段处于吸附步骤的吸附塔,将其中的部分氮气吸附后,从出口流出进入第四变压吸附段处于吸附步骤的吸附塔,进一步将混合气中的氮气吸附下来,并把氧浓度提高到99.5%(V)以上。第三变压吸附段的逆放步骤的解析气返回第一变压吸附段的吸附塔升压,第四变压吸附段处于逆放步骤吸附塔的解析气返回第三变压吸附段逆放完成的吸附塔进行升压,第四变压吸附段的吸附剂获得再生,同时提高了氧气回收率。变温吸附干燥段用于将湿空气的露点控制在-50℃以上,其吸附塔在一个循环周期中依次经历吸附A、加热再生T和冷却L三个变温吸附工艺步骤;第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V)(也可以将氧浓度控制在15%(V)以下),其吸附塔在一个循环周期中依次经历吸附A、第二变压吸附段置换尾气和吸附尾气吸附A1、抽真空VC和三段解析气升压R四个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在接近原料气氧浓度,其吸附塔在一个循环周期中依次经历吸附A、氧气置换P、抽真空VC和空气吸附A2四个变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中依次经历吸附A、两次均压降、逆放BD、两次均压升和终升七个变压吸附工艺步骤;第四变压吸附段的吸附塔在一个循环周期中依次经历吸附A、一次均压降E1D、二次均压降E2D、三次均压降E3D、逆放BD、三次均压升E3R、二次均压升E2R、一次均压升E1R和终升FR九个变压吸附工艺步骤。氧气总回收率在60%左右,第一变压吸附段真空解析气氧浓度在40-60%(V)左右,第二变压吸附段真空解析气氧浓度大于80%(V),五段循环时间一般为20-80秒,除干燥段外,其他四段真空度一般为-0.095MPa,鼓风机气量、五段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。处理空气大时,可以采用多个吸附塔同时完成各个步骤。
本实施例的每个吸附塔在一个循环中依次经历如下步骤。
变温吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV2A-0,原料空气经过鼓风机(C0100)升压到5KPa(G) 后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,不易吸附的氧气、氮气和氩气等组分从出口端排出进入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点在-50℃以上。
⑵加热再生T
吸附塔T0100A吸附结束后,打开程控阀KV2A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔串联吸附A1步骤、空气吸附A2步骤等所有混合气的一部分经过换热器E0100与第一变压吸附段的真空解析气换热升温后,进入吸附塔T0100A床层加热升温,把干燥剂床层吸附的气态水解析出来,加热完成后,关闭程控阀KV2A-0。加热气体的流量根据物料和热量衡算决定,当第一变压吸附段的真空解析气热量不够时,可以把第二变压吸附段的真空解析气热量利用起来。
⑶冷却L
吸附塔T0100A加热再生T结束后,打开程控阀KV5A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤和尾气吸附A1步骤的放空气和第二变压吸附段的吸附塔串联吸附A1步骤、空气吸附A2步骤等所有混合气的另一部分(即加热气利用后余下的部分)从吸附塔T0100A出口端经程控阀KV5A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,冷却L结束后,关闭程控阀KV5A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入空气吸附,另一个吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,干燥空气进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出返回干燥段变压吸附吹扫再生氧化铝吸附的气态水,随着时间的推移,吸附剂吸附的氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于15-20.8%(V)(也可以将氧浓度控制在15%(V)以下)时,停止进气,此时吸附结束。
⑵第二变压吸附段置换尾气和吸附尾气吸附A1
吸附塔T0101A吸附结束后,关闭程控阀KV1A-1,打开程控阀KV4A-1,第二变压吸附段串联置换尾气和吸附尾气从吸附塔T0101A底部进入吸附剂床层,吸附其中的氧气后,通过程控阀KV2A-1返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
⑶抽真空VC
吸附塔T0101A第二变压吸附段串联置换尾气和吸附尾气吸附A1步骤结束后,关闭程控阀KV4A-1和KV2A-1,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的 氧气及氮气等组分抽出来进入第二变压吸附段处于吸附步骤的吸附塔,使吸附剂得到再生,同时获得富氧中间气,抽真空结束后,关闭程控阀KV3A-1。真空解析气冷却到40℃后进入下一工段。
吸附塔T0101A抽真空VC步骤结束后,关闭程控阀KV3A-1,打开程控阀KV5A-1与第三变压吸附段处于逆放BD步骤的吸附塔连通,用第三变压吸附段的解析气升压,同时使第三变压吸附段吸附塔的吸附剂得到再生,三段解析气升压R结束后,关闭程控阀KV5A-1。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入干燥空气吸附,另三个吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV2A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地富氧混合气中的氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等尾气从出口端流出返回第一变压吸附段再吸附,随着时间的推移,吸附剂吸附氧气的总量不断增加,当吸附塔T0201A吸附氧气饱和时,停止进气,此时吸附结束。
⑵氧气置换P
吸附A步骤结束后,关闭程控阀KV1A-2,打开程控阀KV6A-2,本段抽真空VC步骤获得的富氧气体从吸附塔T0201A底部进入吸附剂床层置换氮气和氩气,然后从顶部流出返回第一变压吸附段进行再吸附。
⑶抽真空VC
吸附塔T0201A本段抽真空VC步骤获得的氧气置换P步骤结束后,关闭程控阀KV2A-2和KV6A-2,打开程控阀KV5A-2从吸附塔底部用真空泵将吸附剂吸附的氧气抽出来,一部分作为原料气送入第三变压吸附段,另一部分作为置换气返回本段置换吸附剂床层。真空解析气冷却到40℃后进入下一工段。
⑷空气吸附A2
吸附塔T0201A抽真空VC结束后,关闭程控阀KV5A-2,打开程控阀KV3A-2和KV4A-2,干燥空气进入吸附塔T0201A升压和吸附氧气,不易吸附的氮和氩以及少量的氧通过程控阀KV4A-2返回干燥段变压吸附吹扫再生氧化铝吸附的气态水。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入富氧原料气吸附,其他三个吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。第二变压吸附段的串联吸附A1步骤和串联置换P1步骤可以采用三个或三个以上的吸附塔串联,串联的吸附塔越多越节能,但是投资越大。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,将第二变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气从底部送入吸附塔T0301A吸附剂床层,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入第四变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-3和KV2A-3,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-3和KV3C-3,打开程控阀KV4A-3和KV4D-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成第四变压吸附段逆放气升压R步骤的吸附塔T0301D升压,尽量让两塔压力相等。
⑷逆放BD
吸附塔T0301A二均降E2D步骤结束后,关闭程控阀KV4A-3和KV4D-3,打开程控阀KV5A-3,将吸附塔T0301A与第一变压吸附段抽完真空的吸附塔连通,用吸附塔T0301A的逆放解析气升压,升压完成后,吸附塔T0301A处于真空状态。
⑸第四变压吸附段逆放气升压R
吸附塔T0301A逆放BD步骤结束后,关闭程控阀KV5A-3,打开程控阀KV4A-3,利用第四变压吸附段逆放BD步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和第四变压吸附段逆放BD步骤的吸附塔压力相等。
⑹二均升E2R
吸附塔T0301A第四变压吸附段逆放气升压R步骤结束后,打开程控阀KV4C-3,利用吸附塔T0301C二均降E2D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301C压力相等。
⑺一均升E1R
吸附塔T0301A二均升E2R步骤结束后,关闭程控阀KV4A-3和KV4C-3,打开程控阀KV3A-3和KV3D-3,利用吸附塔T0301D一均降E1D步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301D压力相等。
⑻最终升压FR
一均升E1R结束后,关闭程控阀KV3D-3,打开程控阀KV8-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入第二变压吸附段抽真空的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
第四变压吸附段
⑴吸附A
打开第四变压吸附段的程控阀KV1A-4,将第三变压吸附段的吸附塔在吸附A步骤的出口富氧气体送入吸附塔T0401A吸附剂床层,吸附塔T0401A中的吸附剂选择性地吸附富氧混合气中的氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-4从出口端流出进入产品纯氧缓冲罐V0401,随着时间的推移,吸附剂吸附的氮气等组分的总量不断增加,当吸附塔T0401A吸附氮气饱和时,停止进气,此时吸附结束。
⑵一均降E1D
吸附结束后,关闭程控阀KV1A-4和KV2A-4,打开程控阀KV3A-4和KV3C-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成二均升E2R步骤的吸附塔T0401C升压,尽量让两塔压力相等。
⑶二均降E2D
一均降E1D步骤结束后,关闭程控阀KV3A-4和KV3C-4,打开程控阀KV4A-4和KV4D-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成三均升E3R步骤的吸附塔T0401D升压,尽量让两塔压力相等。
⑷三均降E3D
二均降E2D步骤结束后,关闭程控阀KV4D-4,打开程控阀KV4E-4,吸附塔T0401A内死空间气体从吸附塔出口排出进入本段已完成抽真空VC步骤的吸附塔T0401E升压,尽量让两塔压力相等。
⑸逆放BD
吸附塔T0401A三均降E3D步骤结束后,关闭程控阀KV4A-4和KV4E-4,打开程控阀KV5A-4,将吸附塔T0401A与第三变压吸附段抽完真空的吸附塔连通,用吸附塔T0401A的逆放气对第三变压吸附段抽完真空的吸附塔升压R,同时吸附塔T0401A内的吸附剂获得再生。
⑹三均升E3R
吸附塔T0401A逆放BD步骤结束后,关闭程控阀KV5A-4,打开程控阀KV4A-4和KV4B-4,利用吸附塔T0401B三均降E3D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401B压力相等。
⑺二均升E2R
吸附塔T0401A三均升E3R步骤结束后,关闭程控阀KV4B-4,打开程控阀KV4C-4,利用吸附塔T0401C二均降E2D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔, 使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401C压力相等。
⑻一均升E1R
吸附塔T0401A二均升E2R步骤结束后,关闭程控阀KV4A-4和KV4C-4,打开程控阀KV3A-4和KV3D-4,利用吸附塔T0401D一均降E1D步骤排出的气体,从吸附塔T0401A出口端进入吸附塔,使吸附塔T0401A升高压力,尽量让吸附塔T0401A和T0401D压力相等。
⑼最终升压FR
一均升E1R结束后,关闭程控阀KV3D-4,打开程控阀KV8-4,用吸附过程中的出口气对吸附塔T0401A进行升压,直到接近第四变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0401A完成了一个循环,再次进入第三变压吸附段吸附A步骤的富氧原料气吸附,其他四个吸附塔的步骤和次序与吸附塔T0401A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于常压,与深冷法相比节约电耗10-40%左右。

Claims (26)

  1. 一种采用变压吸附技术生产氧气的方法,其特征在于,此方法包括串联操作的第一变压吸附段和第二变压吸附段,将干燥的原料空气输入第一变压吸附段的速度选择型吸附剂床层,原料空气中的大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出放空;第一变压吸附段的真空解析气从第二变压吸附段的吸附塔底部再次进入速度选择型吸附剂床层,第一变压吸附段的真空解析气中的大部分氧气被第二变压吸附段的速度选择型吸附剂床层吸附,大部分氮气和氩气以及少量氧气从吸附塔出口放空或流入第二变压吸附段的另一个刚抽完真空的吸附塔升压和吸附氧气,氮气和氩气从吸附塔出口排出放空,第二变压吸附段的吸附塔吸附结束后,用第二变压吸附段真空泵抽出的部分氧气从第二变压吸附段的吸附塔底部进入其吸附剂床层置换吸附剂吸附的氮气和氩气,置换后的尾气从吸附塔顶部排出,流入到第一变压吸附段的吸附塔内或与第一变压吸附段的吸附塔的真空解析气混合进入第二变压吸附段的吸附塔作为原料气吸附;第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC三个变压吸附工艺步骤,且第一变压吸附段的吸附A步骤之后或第二变压吸附段的抽真空VC步骤之后设有串联吸附A1变压吸附工艺步骤:其中,第一变压吸附段串联吸附A1步骤的底部进口混合气来自于第二变压吸附段处于氧气置换P步骤的吸附塔出口排出混合气;第二变压吸附段串联吸附A1步骤的底部进口混合气来自于第二变压吸附段处于吸附A步骤的吸附塔出口排出混合气。
  2. 根据权利要求1所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、串联置换P1、氧气置换P、抽真空VC和串联吸附A1五个变压吸附工艺步骤;所述串联置换P1步骤的置换气来自第二变压吸附段另一个处于氧气置换P步骤的吸附塔出口排出的混合气。
  3. 根据权利要求2所述的采用变压吸附技术生产氧气的方法,其特征在于,第二变压吸附段的串联置换P1步骤的尾气从吸附塔顶部排出,与第一变压吸附段的吸附塔的真空解析气混合进入第二变压吸附段的吸附塔作为原料气吸附。
  4. 根据权利要求2所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段的吸附塔在吸附A步骤之后增加串联吸附A1步骤,即第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、串联吸附A1和抽真空VC三个变压吸附工艺步骤;且第二变压吸附段处于串联置换P1步骤的吸附塔出口排出的混合气进入第一变压吸附段处于串联吸附A1步骤的吸附塔作为原料气吸附。
  5. 根据权利要求1所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、变压吸附A1和抽真空VC三个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC三个变压吸附工艺步骤,且第二变压吸附段处于氧气置换P步骤和吸附A步骤的吸附塔出口排出的混合气进入第一变压吸附段处于串联吸附A1步骤的吸附塔作为原料气吸附。
  6. 根据权利要求5所述的采用变压吸附技术生产氧气的方法,其特征在于,第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、串联置换P1、氧气置换P和抽真空VC四个变压吸附工艺步骤,且第二变压吸附段处于串联置换P1步骤的吸附塔出口排出混合气进入第一变压吸附段处于串联吸附A1步骤的吸附塔作为原料气吸附。
  7. 根据权利要求1至6所述的采用变压吸附技术生产氧气的方法,其特征在于,第二变压吸附段的吸附塔在抽真空VC步骤之后增加干燥的原料空气吸附A2步骤。
  8. 根据权利要求2至4任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段的吸附塔在在一个循环周期中至少依次经历吸附A、串联吸附A1和抽真空VC三个变压吸附工艺步骤,第二变压吸附段的吸附塔在抽真空VC步骤之后增加干燥的原料空气吸附A2步骤,即第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、氧气置换P和抽真空VC、干燥的原料空气吸附A2和串联吸附A1五个变压吸附工艺步骤;第一变压吸附段串联吸附A1步骤的混合气来自第二变压吸附段处于串联吸附A1步骤和串联置换P1步骤的吸附塔出口排出混合气。
  9. 根据权利要求1至8任一所述的采用变压吸附技术生产氧气的方法,其特征在于,在第二变压吸附段之后增加第三变压吸附段,第三变压吸附段的吸附塔内装填氮平衡选择型吸附剂,第一变压吸附段、第二变压吸附段和第三变压吸附段串联操作,第二变压吸附段的吸附塔抽真空解析出来的富氧混合气进入第三变压吸附段装填氮平衡吸附剂床层的吸附塔,富氧混合气中的氮被吸附下来,氧和氩从吸附塔出口流出获得产品氧气,第三变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD、均压升ER和终升FR五个变压吸附工艺步骤。
  10. 根据权利要求9所述的采用变压吸附技术生产氧气的方法,其特征在于,第三变压吸附段的吸附塔在均压降ED步骤之后增加顺放PP步骤,同时在逆放BD步骤之后增加吹扫P步骤,吹扫P步骤的气体来自顺放PP步骤。
  11. 根据权利要求9所述的采用变压吸附技术生产氧气的方法,其特征在于,第三变压吸附段的吸附塔在逆放BD步骤之后增加抽真空VC步骤。
  12. 根据权利要求9所述的采用变压吸附技术生产氧气的方法,其特征在于,第三变压吸附段的吸附塔用抽真空VC步骤代替逆放BD步骤。
  13. 根据权利要求9至12任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第三变压吸附段的吸附塔解析气全部返回第二变压吸附段的吸附塔入口与第一变压 吸附段的吸附塔的真空解析气混合进入第二变压吸附段的吸附塔作为原料气吸附。
  14. 根据权利要求9至12任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第三变压吸附段的吸附塔在逆放BD步骤或/和抽真空VC步骤与第一变压吸附段抽完真空(真空VC步骤之后)的变压吸附塔连通。
  15. 根据权利要求9至14任一所述的采用变压吸附技术生产氧气的方法,其特征在于,在第三变压吸附段之后增加第四变压吸附段,第四变压吸附段的吸附塔内装填氮平衡选择型吸附剂,四段变压吸附串联操作,第三变压吸附段的吸附塔吸附A步骤的出口富氧混合气进入第四变压吸附段装填氮平衡吸附吸附剂床层的吸附塔,富氧混合气中的氮被吸附下来,氧和氩从吸附塔出口流出获得产品氧气,第四变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD或抽真空VC、均压升和终升FR五个变压吸附工艺步骤。
  16. 根据权利要求15所述的采用变压吸附技术生产氧气的方法,其特征在于,第四变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升和终升FR步骤,其中吹扫P步骤的气体来自顺放PP步骤。
  17. 根据权利要求15所述的采用变压吸附技术生产氧气的方法,其特征在于,第四变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD、抽真空VC、均压升和终升FR六个变压吸附工艺步骤。
  18. 根据权利要求15所述的采用变压吸附技术生产氧气的方法,其特征在于,第四变压吸附段的吸附塔在逆放BD步骤或/和抽真空VC步骤与第三变压吸附段真空VC步骤之后的变压吸附塔连通。
  19. 根据权利要求1至18任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段和第二变压吸附段吸附塔的底部装填干燥剂、上部装填速度选择型吸附剂床层,含有气态水的原料空气从第一变压吸附段吸附塔底部通过时,其气态水绝大部分被干燥剂床层吸附,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,第一变压吸附段解析出来的气态水和富氧从第二变压吸附段的吸附塔底部再进入干燥剂床层和速度选择型吸附剂床层,其气态水绝大部分被干燥剂床层吸附,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,第二变压吸附段解析出来的气态水和富氧进入第三变压吸附段的吸附塔和氮平衡选择型吸附剂床层,第二变压吸附段解析出的富氧混合气中的绝大部分气态水被第三变压吸附段的干燥剂床层吸附,大部分氮气被第三变压吸附段的氮平衡选择型吸附剂床层吸附,氧气和氩气以及少量氮气从吸附塔出口流出。
  20. 根据权利要求1至18任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段之前设有变压吸附干燥段,用于除去原料空气中的气态水,达到进入第一变压吸附段的吸附塔对水分的要求;该变压吸附干燥段在一个循环周期中至少依次经历吸附A和吹扫P两个变压吸附工艺步骤,吹扫P步骤的气体来源于第一变压吸 附段和第二变压吸附段的放空气。
  21. 根据权利要求1至18任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段之前设有变温吸附干燥段,用于除去原料空气中的气态水,达到进入第一变压吸附段的吸附塔对水分的要求;该变温吸附干燥段在一个循环周期中至少依次经历吸附A、加热再生T和冷却L三个变压吸附工艺步骤,第一变压吸附段和第二变压吸附段的部分放空气经过第一变压吸附段到第四变压吸附段的任一动力设备排出的热气体升温后去加热再生干燥剂床层,第一变压吸附段和第二变压吸附段的另一部分放空气去冷却加热后的干燥剂床层。
  22. 根据权利要求20或21所述的采用变压吸附技术生产氧气的方法,其特征在于,变压吸附干燥段或变温吸附干燥段装填活性氧化铝作为干燥剂;第一变压吸附段和第二变压吸附段的吸附塔内部装填碳分子筛作为速度选择型吸附剂;第三变压吸附段和第四变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
  23. 根据权利要求19所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段和第二变压吸附段的吸附塔下部装填活性氧化铝作为干燥剂,上部装填碳分子筛作为速度选择型吸附剂;第三变压吸附段的吸附塔下部装填活性氧化铝作为干燥剂,上部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂;第四变压吸附段的吸附塔装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
  24. 根据权利要求1至23任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段和第二变压吸附段的吸附塔吸附A步骤的压力为0.002-0.01MPa(表压);第三变压吸附段和变压吸附的吸附塔吸附A步骤的压力为0.005-3.5MPa(表压)。
  25. 根据权利要求1至24任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段和第二变压吸附段的吸附塔吸附A步骤吸附原料空气结束时出口气中氧气的浓度为18-20.8%(V)。
  26. 根据权利要求1至18任一所述的采用变压吸附技术生产氧气的方法,其特征在于,第一变压吸附段和第二变压吸附段的吸附塔装填碳分子筛作为速度选择型吸附剂;第三变压吸附段和第四变压吸附段的吸附塔装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
PCT/CN2020/084614 2020-04-14 2020-04-14 一种采用变压吸附技术生产氧气的方法 WO2021207914A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/084614 WO2021207914A1 (zh) 2020-04-14 2020-04-14 一种采用变压吸附技术生产氧气的方法
CN202080001888.4A CN112004774B (zh) 2020-04-14 2020-04-14 一种采用变压吸附技术生产氧气的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084614 WO2021207914A1 (zh) 2020-04-14 2020-04-14 一种采用变压吸附技术生产氧气的方法

Publications (1)

Publication Number Publication Date
WO2021207914A1 true WO2021207914A1 (zh) 2021-10-21

Family

ID=73475288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084614 WO2021207914A1 (zh) 2020-04-14 2020-04-14 一种采用变压吸附技术生产氧气的方法

Country Status (2)

Country Link
CN (1) CN112004774B (zh)
WO (1) WO2021207914A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180529A (zh) * 2021-11-30 2022-03-15 湖南泰瑞医疗科技有限公司 一种医用氧气的提纯装置及方法
CN114471082B (zh) * 2021-12-27 2023-11-24 昆山欧拓气体设备有限公司 节能型vpsa制氧方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
US4661125A (en) * 1984-05-22 1987-04-28 Seitetsu Kagaku Co., Ltd. Process for producing high concentration oxygen by a pressure-swing-adsorption method
US4781735A (en) * 1986-12-26 1988-11-01 Osaka Sanso Kogyo Ltd. Enrichment in oxygen gas
US5395427A (en) * 1994-01-12 1995-03-07 Air Products And Chemicals, Inc. Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
CN1583222A (zh) * 2004-06-11 2005-02-23 成都天立化工科技有限公司 采用三段变压吸附装置生产氧气的方法
CN1597054A (zh) * 2004-06-11 2005-03-23 成都天立化工科技有限公司 一种改进的两段变压吸附制富氧方法
CN203724983U (zh) * 2014-02-17 2014-07-23 上海穗杉实业有限公司 一种能提高氧气回收率的两级串联变压吸附制氧系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683806B2 (ja) * 1988-03-17 1997-12-03 住友精化株式会社 濃縮酸素回収方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
US4661125A (en) * 1984-05-22 1987-04-28 Seitetsu Kagaku Co., Ltd. Process for producing high concentration oxygen by a pressure-swing-adsorption method
US4781735A (en) * 1986-12-26 1988-11-01 Osaka Sanso Kogyo Ltd. Enrichment in oxygen gas
US5395427A (en) * 1994-01-12 1995-03-07 Air Products And Chemicals, Inc. Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
CN1583222A (zh) * 2004-06-11 2005-02-23 成都天立化工科技有限公司 采用三段变压吸附装置生产氧气的方法
CN1597054A (zh) * 2004-06-11 2005-03-23 成都天立化工科技有限公司 一种改进的两段变压吸附制富氧方法
CN203724983U (zh) * 2014-02-17 2014-07-23 上海穗杉实业有限公司 一种能提高氧气回收率的两级串联变压吸附制氧系统

Also Published As

Publication number Publication date
CN112004774A (zh) 2020-11-27
CN112004774B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
ES2256839T3 (es) Procedimiento de absorcion vsa de funcionamiento continuo.
JP2634022B2 (ja) 真空スイング吸着法によるガス成分の分離方法
US5656067A (en) VSA adsorption process with energy recovery
CA2148527C (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
CN108348839B (zh) 组合的变压和变温吸附中的吸附剂再生方法
US5540758A (en) VSA adsorption process with feed/vacuum advance and provide purge
US5906674A (en) Process and apparatus for separating gas mixtures
US3221476A (en) Adsorption-desorption method
JP5577044B2 (ja) 空気の精製方法
JPH0127962B2 (zh)
JP2000317244A (ja) ガス精製方法及び装置
WO2021207914A1 (zh) 一种采用变压吸附技术生产氧气的方法
JP2014169383A (ja) メタンガス濃縮方法
JPH0565206B2 (zh)
WO2021207909A1 (zh) 一种移动式变压吸附氧气生产装置的方法
WO2021207906A1 (zh) 一种移动式变压吸附氧气生产装置的方法
WO2021207903A1 (zh) 一种移动式变压吸附氧气生产装置的方法
KR20090041215A (ko) 산소 생산 장치 및 그 제어 방법
CN114483546A (zh) 一种提高空压站的压缩空气品质的方法
RU2597600C1 (ru) Разделение газовых смесей способом короткоцикловой безнагревной адсорбции с использованием трех адсорбционных колонн
CN113277486A (zh) 一种组合制氮机及其制氮工艺
JP3895037B2 (ja) 低圧酸素濃縮法
JP2601909B2 (ja) 圧力スイング式ガス分離方法
JPS58167411A (ja) アルゴンの製造方法
JPH0351646B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930833

Country of ref document: EP

Kind code of ref document: A1