WO2021207909A1 - 一种移动式变压吸附氧气生产装置的方法 - Google Patents

一种移动式变压吸附氧气生产装置的方法 Download PDF

Info

Publication number
WO2021207909A1
WO2021207909A1 PCT/CN2020/084597 CN2020084597W WO2021207909A1 WO 2021207909 A1 WO2021207909 A1 WO 2021207909A1 CN 2020084597 W CN2020084597 W CN 2020084597W WO 2021207909 A1 WO2021207909 A1 WO 2021207909A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
pressure swing
adsorption tower
section
pressure
Prior art date
Application number
PCT/CN2020/084597
Other languages
English (en)
French (fr)
Inventor
宋宇文
Original Assignee
成都盈辰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都盈辰科技有限公司 filed Critical 成都盈辰科技有限公司
Priority to EP20930709.9A priority Critical patent/EP4137451A4/en
Priority to CN202080001884.6A priority patent/CN111971251B/zh
Priority to US17/925,296 priority patent/US20240058744A1/en
Priority to PCT/CN2020/084597 priority patent/WO2021207909A1/zh
Publication of WO2021207909A1 publication Critical patent/WO2021207909A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/027Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/0274Other molecular sieve materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40015Pressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/40033Depressurization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40037Equalization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/4006Less than four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40062Four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40064Five
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40067Seven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40069Eight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/455Gas separation or purification devices adapted for specific applications for transportable use
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0015Physical processing by adsorption in solids characterised by the adsorbent
    • C01B2210/0018Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0015Physical processing by adsorption in solids characterised by the adsorbent
    • C01B2210/002Other molecular sieve materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0062Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the technical field of pressure swing adsorption, in particular to a method for a mobile pressure swing adsorption oxygen production device.
  • the pure oxygen used in the gas cutting process is produced by a cryogenic device.
  • the pure oxygen is compressed to 12.5MPa or more with a compressor, and then packed into a special 40-liter rigid bottle, and then transported to each user.
  • the user pressure is lower than 0.95MPa, which consumes a lot of manpower and material resources, not only the cost of oxygen is high, but also the safety is poor.
  • the purpose of the present invention is to provide a new product of a mobile pressure swing adsorption pure oxygen production device that is small in size, light in weight, open and stopped at any time, convenient to use and low in pressure, which greatly reduces the cost of oxygen and improves the safety of oxygen use.
  • the purpose of the present invention is achieved through the following technical solutions:
  • a method for a mobile pressure swing adsorption oxygen production device adopts three-stage pressure swing adsorption in series operation.
  • the raw material air first enters the desiccant bed and the speed-selective adsorbent bed from the bottom of the adsorption tower of the first pressure swing adsorption section Layer, most of the gaseous water in the raw air is adsorbed by the desiccant bed, most of the oxygen is adsorbed by the speed-selective adsorbent bed, most of the nitrogen and argon are discharged from the outlet of the adsorption tower, and the desorbed gaseous water and rich Oxygen enters the desiccant bed and nitrogen balance selective adsorbent bed from the bottom of the adsorption tower of the second pressure swing adsorption section.
  • Type adsorbent bed is adsorbed, oxygen, argon and a small amount of nitrogen flow out from the outlet of the adsorption tower, and then enter the nitrogen balance selective adsorbent bed again from the bottom of the adsorption tower of the third pressure swing adsorption section, and most of the nitrogen is adsorbed.
  • Oxygen, argon and a small amount of nitrogen flow out from the outlet of the adsorption tower.
  • the adsorption tower of the first pressure swing adsorption section sequentially undergoes two pressure swing adsorption process steps of adsorption A and vacuum VC in one cycle; the adsorption tower of the second pressure swing adsorption section sequentially undergoes adsorption A and homogenization in one cycle
  • the pressure swing adsorption process steps of pressure drop ED, reverse discharge BD and equal pressure rise ER; the adsorption tower of the third pressure swing adsorption stage at least sequentially undergoes adsorption A, equal pressure drop ED, reverse discharge BD and equal pressure rise in one cycle.
  • ER pressure swing adsorption process steps are sequentially undergoes two pressure swing adsorption process steps of adsorption A and vacuum VC in one cycle; the adsorption tower of the second pressure swing adsorption section sequentially undergoes adsorption A and homogenization in one cycle
  • the adsorption tower of the first pressure swing adsorption section increases the equalizing pressure drop ED after the adsorption step A, and at the same time adds the equalizing pressure rising ER pressure swing adsorption process step after the vacuuming VC step.
  • the adsorption tower of the first pressure swing adsorption section adds a sequential PP step after the adsorption A step.
  • the adsorption tower of the second pressure swing adsorption section adds a final pressure swing adsorption process step for FR after the equalization pressure rise ER step.
  • the adsorption tower of the third pressure swing adsorption section adds a final pressure swing adsorption process step for FR after the equalization pressure rise ER step.
  • the adsorption tower of the second pressure swing adsorption stage adds a third stage desorption gas to purge the P3 pressure swing adsorption process step after the reverse discharge BD step.
  • the adsorption tower of the second pressure swing adsorption stage adds a third stage desorbed gas boost R3 pressure swing adsorption process step after the third stage desorbed gas purge P3 step.
  • the adsorption tower of the second pressure swing adsorption section adds a step of PP after the equalizing pressure drop ED step, and at the same time, a step of purge P is added after the BD step of reverse.
  • the adsorption tower of the third pressure swing adsorption section adds a step of PP after the equalizing pressure drop ED step, and at the same time, a step of purge P is added after the BD step of reverse.
  • the adsorption tower of the second pressure swing adsorption stage adds a third stage desorption gas boosting R3 pressure swing adsorption process step after the purge step.
  • desorption gas from the adsorption tower of the third PSA section is returned to be mixed with the oxygen-rich desorption gas from the first PSA section.
  • the adsorption tower of the second pressure swing adsorption section adds a vacuum VC pressure swing adsorption process step after the reverse discharge BD step.
  • the adsorption tower of the third pressure swing adsorption section adds a vacuum VC pressure swing adsorption process step after the reverse discharge BD step.
  • the pressure of the adsorption tower adsorption A step of the first pressure swing adsorption section is 0.18-0.22MPa (gauge pressure); the second pressure swing adsorption section and the third pressure swing adsorption section adsorption tower adsorption A step pressure is 0.9- 1.2MPa (gauge pressure).
  • the concentration of oxygen in the outlet gas at the end of the adsorption step A of the adsorption tower of the first pressure swing adsorption section is 7-12% (V).
  • the concentration of oxygen in the outlet gas at the end of the adsorption step A of the adsorption tower of the second pressure swing adsorption section is 85-96% (V).
  • the lower part of the adsorption tower of the first pressure swing adsorption section is filled with activated alumina and the upper part is filled with carbon molecular sieve;
  • the lower part of the adsorption tower of the second pressure swing adsorption section is filled with activated alumina, and the upper part is filled with 5A type molecular sieve or X type lithium molecular sieve;
  • the adsorption tower of the pressure swing adsorption section is filled with 5A type molecular sieve or X type lithium molecular sieve.
  • a pressure swing adsorption drying section is added to remove gaseous water in the air to meet the moisture requirements of the adsorption tower entering the first pressure swing adsorption section.
  • the adsorption tower of the pressure adsorption section is no longer filled with the desiccant bed.
  • the pressure swing adsorption drying section sequentially undergoes two pressure swing adsorption process steps of adsorption A and purge P in one cycle.
  • the gas of the purge P step comes from the outlet of the adsorption step A of the adsorption tower of the first pressure swing adsorption section.
  • the air and the adsorption tower of the second pressure swing adsorption section decompose the air.
  • the drying section is filled with activated alumina; the adsorption tower of the first pressure swing adsorption section is filled with carbon molecular sieves; the adsorption tower of the second pressure swing adsorption section is filled with 5A molecular sieves or X-type lithium molecular sieves; The inside of the adsorption tower is filled with 5A type molecular sieve or X type lithium molecular sieve.
  • the present invention provides a new product-a mobile pressure swing adsorption pure oxygen production device, which greatly reduces the cost of oxygen and greatly improves the safety.
  • the mobile pressure swing adsorption pure oxygen production device is small in size, light in weight and easy to open. It is convenient to stop and use, and the maximum pressure is only 1.2MPa.
  • Fig. 1 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 1 of the present invention.
  • Figure 2 is a process flow diagram of Example 1 of the present invention.
  • Fig. 3 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the second embodiment of the present invention.
  • FIG. 4 Process flow diagram of Examples 2, 5 and 6 of the present invention.
  • Fig. 5 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 3 of the present invention.
  • Fig. 6 is a process flow diagram of Example 3 of the present invention.
  • Fig. 7 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 4 of the present invention.
  • Fig. 8 is a process flow diagram of Example 4 of the present invention.
  • Figure 9 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the fifth embodiment of the present invention.
  • Figure 10 is a process flow diagram of Example 7 of the present invention.
  • Fig. 11 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve according to the sixth embodiment of the present invention.
  • Figure 12 is a process flow diagram of Example 8 of the present invention.
  • Fig. 13 is a sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the seventh embodiment of the present invention.
  • Figure 14 is a process flow diagram of Example 9 of the present invention.
  • Figure 15 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 8 of the present invention.
  • Figure 16 is a process flow diagram of Example 10 of the present invention.
  • Fig. 17 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 9 of the present invention.
  • Figure 18 is a process flow diagram of Example 11 of the present invention.
  • Fig. 19 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 9 of the present invention.
  • Figure 20 is a process flow diagram of Example 12 of the present invention.
  • Fig. 21 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 11 of the present invention.
  • Fig. 22 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 12 of the present invention.
  • Fig. 1 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 1 of the present invention.
  • Figure 2 is a process flow diagram of Example 1 of the present invention.
  • the blower C0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process piping and fittings, adsorption tower T0101A and T0101B constitute the first pressure swing adsorption section, and the adsorption tower is filled with adsorbent from bottom to top
  • the order is activated alumina and carbon molecular sieve, running single tower adsorption vacuuming program; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, instrumentation, process piping fittings, adsorption tower T0201A, T0201B and T0201C It constitutes the second pressure swing adsorption section.
  • the adsorbents filled from bottom to top in the adsorption tower are activated alumina and 5 molecular sieves or X-type lithium molecular sieves, and the single-tower adsorption pressure equalization reverse discharge program is run; product pure oxygen buffer tank V0301 Programmable valve, PLC control system, instrumentation, process pipe fittings, pressure stabilizing valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section.
  • the adsorbent in the adsorption tower is 5 molecular sieve or X-type lithium molecular sieve, running Single tower adsorption pressure equalization reverse discharge program.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted to 5KPa by a blower (C0101) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and oxygen in the air in sequence.
  • the adsorbed part of oxygen and difficult-to-adsorb nitrogen and argon components are discharged and vented from the outlet end.
  • vacuum is immediately carried out, and the gaseous water, carbon dioxide, oxygen and nitrogen extracted by the vacuum pump After being compressed to 1.2MPa by the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201), it enters the adsorption tower in the second pressure swing adsorption section in the adsorption step.
  • V0201 compressor buffer tank
  • C0201 oxygen-enriched compressor
  • the adsorbent in the adsorption tower selectively adsorbs the oxygen-enriched gas mixture in turn
  • the gaseous water, carbon dioxide, nitrogen and other components in the gaseous water, oxygen and argon that are not easily adsorbed flow out from the outlet end into the third pressure swing adsorption section in the adsorption step of the adsorption tower, and the adsorbent in the adsorption tower further mixes the oxygen-rich
  • the nitrogen in the gas is adsorbed, and components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 15-20.8% (V) after the adsorption is completed.
  • the adsorption tower undergoes two pressure swing adsorption process steps of adsorption A and vacuum VC in one cycle.
  • the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A, equalizing pressure drop ED, and reverse discharge BD in a cycle.
  • the equalization pressure rise ER pressure swing adsorption process step the third pressure swing adsorption section is in the adsorption step, the oxygen concentration in the outlet gas of the adsorption tower is controlled to be above 99.5% (V), and the adsorption tower undergoes adsorption A,
  • the total recovery rate of oxygen is about 60%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the two-stage cycle time is generally 20-80 seconds.
  • the first stage of vacuum is -0.095MPa, blower capacity, two-stage adsorption tower
  • the speed of the empty tower, the pumping capacity of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the adsorbent adsorbs The total amount of gaseous water, carbon dioxide, oxygen and other components in the adsorption tower continues to increase.
  • V the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 20% (V)
  • the adsorption tower T0101A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • open the programmable valves KV1A-2 and KV2A-2 of the second pressure swing adsorption section, and the oxygen-enriched gas mixture extracted from the vacuum (VC) step of the adsorption tower of the first pressure swing adsorption section is sent to the compressor buffer tank (V0201), Compressed by the oxygen-enriched compressor (C0201) to 1.2MPa, it enters the adsorption tower T0201A adsorbent bed from the bottom to increase the pressure, while the second pressure swing adsorption section of the adsorption tower outlet gas passes through the programmable valve KV2A-2 to the adsorption tower T0201A from the top The pressure is increased.
  • the adsorbent in the adsorption tower T0201A is selectively enriched with gaseous water, carbon dioxide, and nitrogen in the oxygen mixture, and the unadsorbed part of nitrogen and the difficult-to-adsorb oxygen and argon Open the program-controlled valve KV2A-2 with equal components and flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the total amount of gaseous water, carbon dioxide, nitrogen and other components adsorbed by the adsorbent continues Increase, when the adsorption tower T0201A is saturated with nitrogen, stop the gas supply, and the adsorption ends at this time.
  • the dead space gas in the adsorption tower T0201A will be discharged from the adsorption tower outlet into the adsorption tower T0201C which has completed the reverse release BD step to increase the pressure, and try to make the pressures of the two towers equal.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the programmable valves KV1A-3 and KV2A-3 of the third PSA section open the programmable valves KV1A-3 and KV2A-3 of the third PSA section.
  • the oxygen-enriched gas mixture flowing out of the adsorption tower adsorption step A of the second PSA section enters the adsorption tower T0301A adsorbent bed from the bottom to increase the pressure.
  • the outlet gas of the adsorption tower of the third pressure swing adsorption section pressurizes the adsorption tower T0301A from the top through the programmable valve KV2A-3.
  • the adsorbent in the adsorption tower T0301A selectively adsorbs the oxygen-rich mixed gas Open the program-controlled valve KV2A-3 from the outlet end into the product pure oxygen buffer tank (V0301), and then send it to use (gas cutting, etc.) after passing through the regulator valve. As it progresses, the total amount of nitrogen adsorbed by the adsorbent continues to increase. When the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the adsorption tower T0301A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0301A, except that they are staggered in time. .
  • the compressed exhaust pressure of the oxygen-enriched compressor (C0201) can also be lower than 1.2MPa, which is mainly determined according to the needs of use.
  • the result of this embodiment is that the product oxygen concentration is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 30% less than that of bottled oxygen.
  • Fig. 3 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the second embodiment of the present invention.
  • Figure 4 is a process flow diagram of Example 2 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled from bottom to top are activated alumina and carbon molecular sieve, and run single-tower adsorption equalization and vacuuming procedures; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, instrumentation , Process pipe fittings, adsorption towers T0201A, T0201B and T0201C form the second pressure swing adsorption section.
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieve or X-type lithium molecular sieve.
  • Pressure reverse discharge program product pure oxygen buffer tank V0301, programmable valve, PLC control system, instrumentation, process pipe fittings, pressure regulator valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section, and the adsorption tower is filled
  • the adsorbent is 5 molecular sieve or X-type lithium molecular sieve, and the single-tower adsorption pressure equalization reverse discharge program is run. In this embodiment, the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A
  • the pressure swing adsorption process steps of equalizing pressure drop ED, reverse discharge BD and equalizing pressure rise ER; the oxygen concentration in the outlet gas of the adsorption tower in the third pressure swing adsorption stage in the adsorption step is controlled above 99.5% (V), and the adsorption tower is in one In the cycle, the process steps of adsorption A, equal pressure drop ED, reverse discharge BD and equal pressure rise ER are sequentially experienced.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the two stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the compressor capacity is two stages.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the air compressor (C0101) After the raw material air is boosted to 0.2MPa (G) by the air compressor (C0101), open the programmable valve KV1A-1 and enter the adsorption tower T0101A to increase the pressure.
  • the adsorption pressure When the adsorption pressure is increased, open the programmable valve KV2A-1, and the pressure in the adsorption tower
  • the adsorbent selectively adsorbs the gaseous water, carbon dioxide, oxygen and other components in the air in sequence, and the unadsorbed part of oxygen and the difficult to adsorb nitrogen and argon components open the programmable valve KV2A-1 and discharge from the outlet end.
  • the total amount of gaseous water, carbon dioxide, oxygen and other components adsorbed by the adsorbent continues to increase.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 7-12% (V)
  • the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0101A is discharged from the adsorption tower outlet into the adsorption tower T0101C that has completed the reverse discharge BD step in this section to increase the pressure, and try to make the pressure of the two towers equal.
  • the programmable valve KV4A-1 from the bottom of the adsorption tower to use a vacuum pump to extract the gaseous water, carbon dioxide, oxygen, and nitrogen adsorbed by the adsorbent into the compressor buffer tank (V0201) to make The adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the programmable valve KV12 is opened, and the vacuum pump is connected to the vacuum buffer tank V0101.
  • the adsorption tower T0101A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 35% less than that of bottled oxygen.
  • Fig. 5 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 3 of the present invention.
  • Fig. 6 is a process flow diagram of Example 3 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled from bottom to top are activated alumina and carbon molecular sieve in sequence, and run single-tower adsorption sequential discharge equalization and vacuuming procedures; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, Instrumentation, process piping fittings, adsorption towers T0201A, T0201B and T0201C constitute the second pressure swing adsorption section.
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieves or X-type lithium molecular sieve, and a single tower is operated.
  • Adsorption equalization and reverse discharge program product pure oxygen buffer tank V0301, programmable valve, PLC control system, instrumentation, process pipe fittings, pressure regulator valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section, inside the adsorption tower
  • the packed adsorbent is 5 molecular sieves or X-type lithium molecular sieves, and the single-tower adsorption equalization pressure reverse discharge program is run.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than 85-96% (V) of nitrogen gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence. Oxygen and other components, unadsorbed part of oxygen and difficult-to-adsorb nitrogen and argon components are discharged and vented from the outlet end.
  • the first pressure swing adsorption stage is followed by pressure equalization and vacuum evacuation.
  • the gaseous water, carbon dioxide, oxygen and nitrogen extracted by the vacuum pump are compressed to 1.2MPa through the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201), and then enter the second pressure swing adsorption section in the adsorption step of the adsorption tower, adsorption tower
  • the adsorbent in the sorbent selectively adsorbs gaseous water, carbon dioxide, and nitrogen in the oxygen-enriched gas mixture in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end and enter the third pressure swing adsorption stage.
  • the adsorption is in the adsorption step.
  • the adsorbent in the adsorption tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption stage is controlled to be 7-12% (V) after the end of the adsorption.
  • Vacuum VC and equalizing pressure rising ER pressure swing adsorption process steps the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption section in the adsorption step is controlled at about 85-96% (V), and the adsorption towers are sequentially in a cycle After the process steps of adsorption A, equalizing pressure drop ED, reverse discharge BD, and equalizing pressure rise ER, the oxygen concentration in the outlet gas of the adsorption tower in the third adsorption step is controlled above 99.5% (V), and The adsorption tower sequentially undergoes the adsorption A, equalizing pressure drop ED, reverse discharge BD and equalizing pressure rise ER pressure swing adsorption process steps in one cycle.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the two stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the compressor capacity is two stages.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the air compressor (C0101) After the raw material air is boosted to 0.2MPa (G) by the air compressor (C0101), open the programmable valve KV1A-1 and enter the adsorption tower T0101A to increase the pressure.
  • the adsorption pressure When the adsorption pressure is increased, open the programmable valve KV2A-1, and the pressure in the adsorption tower
  • the adsorbent selectively adsorbs the gaseous water, carbon dioxide, oxygen and other components in the air in sequence, and the unadsorbed part of oxygen and the difficult to adsorb nitrogen and argon components open the programmable valve KV2A-1 and discharge from the outlet end.
  • the total amount of gaseous water, carbon dioxide, oxygen and other components adsorbed by the adsorbent continues to increase.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 7-12% (V)
  • the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0101A is discharged from the outlet of the adsorption tower, when the pressure drops to 0.08-0.12MPa (G), close the programmable valve KV11, and the PP discharge ends.
  • the programmable valve KV4A-1 from the bottom of the adsorption tower to use a vacuum pump to extract the gaseous water, carbon dioxide, oxygen, and nitrogen adsorbed by the adsorbent into the compressor buffer tank (V0201) to make The adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the programmable valve KV12 is opened, and the vacuum pump is connected to the vacuum buffer tank V0101.
  • the adsorption tower T0101A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is reduced by 40% compared with bottled oxygen.
  • Fig. 7 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 4 of the present invention.
  • Fig. 8 is a process flow diagram of Example 4 of the present invention.
  • the air compressor C0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, and the adsorption tower is from bottom to top
  • the loaded adsorbents are activated alumina and carbon molecular sieve in sequence, and the single-tower adsorption sequence and vacuuming procedures are run; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, instrumentation, process pipe fittings,
  • the adsorption towers T0201A, T0201B and T0201C form the second pressure swing adsorption section.
  • the adsorbents filled from bottom to top in the adsorption tower are activated alumina and 5 molecular sieves or X-type lithium molecular sieves, and the single-tower adsorption pressure equalization reverse discharge program is run;
  • the product pure oxygen buffer tank V0301, programmable valve, PLC control system, instrumentation, process pipe fittings, stabilizing valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section, the adsorbent in the adsorption tower is 5 molecular sieves Or X-type lithium molecular sieve, run the single-tower adsorption equalization pressure reverse discharge program.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence. Oxygen and other components, unadsorbed part of oxygen, difficult-to-adsorb nitrogen and argon and other components are discharged and vented from the outlet end. After the adsorption of the adsorption tower in the first pressure swing adsorption section is completed, it is first discharged and then vacuumed.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled to be 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, sequential discharge PP and vacuum VC pressure swing adsorption in a cycle.
  • the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A, equal pressure drop ED, reverse in one cycle.
  • the pressure swing adsorption process steps of releasing BD and equalizing pressure rising ER; the oxygen concentration in the outlet gas of the adsorption tower in the third pressure swing adsorption stage in the adsorption step is controlled above 99.5% (V), and the adsorption tower undergoes adsorption sequentially in a cycle A.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the two stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the compressor capacity is two stages.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the air compressor (C0101) After the raw material air is boosted to 0.2MPa (G) by the air compressor (C0101), open the programmable valve KV1A-1 and enter the adsorption tower T0101A to increase the pressure.
  • the adsorption pressure When the adsorption pressure is increased, open the programmable valve KV2A-1, and the pressure in the adsorption tower
  • the adsorbent selectively adsorbs the gaseous water, carbon dioxide, oxygen and other components in the air in sequence, and the unadsorbed part of oxygen and the difficult to adsorb nitrogen and argon components open the programmable valve KV2A-1 and discharge from the outlet end.
  • the total amount of gaseous water, carbon dioxide, oxygen and other components adsorbed by the adsorbent continues to increase.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 7-12% (V)
  • the air intake is stopped and the adsorption ends.
  • the adsorption tower T0101A discharges PP in sequence, open the programmable valve KV3A-1 from the bottom of the adsorption tower to use a vacuum pump to extract the gaseous water, carbon dioxide, oxygen and nitrogen adsorbed by the adsorbent into the compressor buffer tank (V0201) to make the adsorption
  • the agent is regenerated and at the same time an oxygen-rich intermediate gas is obtained.
  • the adsorption tower T0101A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the result of this embodiment is that the product oxygen concentration is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 30% less than that of bottled oxygen.
  • Figure 9 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the fifth embodiment of the present invention.
  • Figure 4 is a process flow diagram of Example 5 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled from bottom to top are activated alumina and carbon molecular sieve, and run single-tower adsorption equalization and vacuuming procedures; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, instrumentation , Process pipe fittings, adsorption towers T0201A, T0201B and T0201C form the second pressure swing adsorption section.
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieve or X-type lithium molecular sieve.
  • Pressure reverse discharge and repressurization procedures; product pure oxygen buffer tank V0301, programmable valve, PLC control system, instrumentation, process pipe fittings, pressure regulator valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section, adsorption
  • the adsorbent filled in the tower is 5 molecular sieves or X-type lithium molecular sieves, and the single-tower adsorption pressure equalization reverse discharge program is run.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A,
  • the third pressure swing adsorption section is in the adsorption step, and the oxygen concentration in the outlet gas of the adsorption tower is controlled above 99.5% (V)
  • the adsorption tower undergoes the adsorption A, equalization pressure drop ED, reverse discharge BD, and equalization rise ER pressure swing adsorption process steps in a cycle.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the two stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the compressor capacity is two stages.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorbent in the adsorption tower T0201A selectively adsorbs the gaseous water, carbon dioxide and nitrogen in the oxygen-enriched gas mixture in turn, and the unadsorbed part Nitrogen, oxygen and argon that are not easily adsorbed open the programmable valve KV2A-2 from the outlet end into the third pressure swing adsorption stage in the adsorption step of the adsorption tower, as time goes by, the gaseous water, carbon dioxide and carbon dioxide adsorbed by the adsorbent The total amount of nitrogen and other components continues to increase. When the adsorption tower T0201A is saturated with gaseous water, carbon dioxide and nitrogen, the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0201A will be discharged from the adsorption tower outlet into the adsorption tower T0201C which has completed the reverse release BD step to increase the pressure, and try to make the pressures of the two towers equal.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is reduced by 40% compared with bottled oxygen.
  • Fig. 11 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve according to the sixth embodiment of the present invention.
  • Figure 4 is a process flow diagram of Example 6 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled from bottom to top are activated alumina and carbon molecular sieve in sequence, and run single-tower adsorption equalization and vacuuming procedures; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, instrumentation , Process piping fittings, adsorption towers T0201A, T0201B and T0201C constitute the second pressure swing adsorption section.
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieve or X-type lithium molecular sieve.
  • Pressure reverse discharge and repressurization procedures; product pure oxygen buffer tank V0301, programmable valve, PLC control system, instrumentation, process pipe fittings, pressure stabilizing valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section, adsorption
  • the adsorbent filled in the tower is 5 molecular sieve or X-type lithium molecular sieve, and the single-tower adsorption equalization pressure reverse discharge and repressurization procedures are operated.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled to be 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower sequentially undergoes adsorption A,
  • the third pressure swing adsorption section is in the adsorption step, and the oxygen concentration in the outlet gas of the adsorption tower is controlled above 99.5% (V)
  • the adsorption tower goes through the process steps of adsorption A, equalizing pressure drop ED, reverse discharge BD, equalizing pressure rising ER, and final pressure rising FR in a cycle.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • a step enters the third PSA section of the adsorption tower T0301A, in the adsorption tower
  • the adsorbent further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301). With the passage of time, the total amount of nitrogen adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the adsorption tower T0301A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0301A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is reduced by 40% compared with bottled oxygen.
  • Fig. 13 is a sequence diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the seventh embodiment of the present invention.
  • Figure 10 is a process flow diagram of Example 7 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled from bottom to top are activated alumina and carbon molecular sieve, and run single-tower adsorption equalization and vacuuming procedures; oxygen-enriched compressor C0201, compressor buffer tank V0201, programmable valve, PLC control system, instrumentation , Process piping fittings, adsorption towers T0201A, T0201B, T0201C and T0201D constitute the second pressure swing adsorption section.
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieves or X-type lithium molecular sieves, and a single tower is operated.
  • Adsorption, pressure equalization, reverse discharge, the third stage of analytical gas purging and repressurization procedures; product pure oxygen buffer tank V0301, programmable valve, PLC control system, instrumentation, process pipe fittings, pressure regulator valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section.
  • the adsorbent in the adsorption tower is 5 molecular sieves or X-type lithium molecular sieves, and the single-tower adsorption equalization pressure reverse discharge and repressurization procedures are run.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A, Pressure swing adsorption process steps of equalizing pressure drop ED, reverse discharge BD, third stage desorption gas purge P3, equalizing pressure rise ER and final pressure rise FR pressure swing adsorption; the third pressure swing adsorption stage is in the adsorption step of the adsorption tower outlet gas concentration of oxygen Control above 99.5% (V), the adsorption tower sequentially undergoes adsorption A, equalizing pressure drop ED, reverse discharge BD, equalizing pressure rising ER, and final pressure rising FR pressure swing adsorption process steps in one cycle.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorbent in the adsorption tower T0201A selectively adsorbs the gaseous water, carbon dioxide and nitrogen in the oxygen-enriched gas mixture in turn, and the unadsorbed part Nitrogen, oxygen and argon that are not easily adsorbed open the programmable valve KV2A-2 from the outlet end into the third pressure swing adsorption stage in the adsorption step of the adsorption tower, as time goes by, the gaseous water, carbon dioxide and carbon dioxide adsorbed by the adsorbent The total amount of nitrogen and other components continues to increase. When the adsorption tower T0201A is saturated with gaseous water, carbon dioxide and nitrogen, the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0201A will be discharged from the adsorption tower outlet into the adsorption tower T0201C which has completed the reverse release BD step to increase the pressure, and try to make the pressures of the two towers equal.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 45% less than that of bottled oxygen.
  • Figure 15 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 8 of the present invention.
  • Figure 12 is a process flow diagram of Example 8 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieve or X-type lithium molecular sieve.
  • Tower adsorption, pressure equalization, reverse discharge, third-stage analytical gas purging, third-stage analytical gas boost and repressurization procedures; product pure oxygen buffer tank V0301, reverse discharge buffer tank V0302, programmable valve, PLC control system, Instrumentation, process piping fittings, stabilizing valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section.
  • the adsorbent in the adsorption tower is 5 molecular sieve or X-type lithium molecular sieve. Release and repressurization procedures.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A,
  • the oxygen concentration in the outlet gas of the adsorption tower of the step is controlled to be above 99.5% (V), and the adsorption tower undergoes adsorption A, equalization pressure drop ED, reverse discharge BD, equalization pressure rise ER, and final pressure rise FR in a cycle.
  • the total recovery rate of oxygen is about 85%
  • the oxygen concentration of the first stage vacuum analysis is about 80%
  • the three-stage cycle time is generally 20-80 seconds
  • the first stage vacuum degree is -0.095MPa
  • the compressor air volume is designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorbent in the adsorption tower T0201A selectively adsorbs the gaseous water, carbon dioxide and nitrogen in the oxygen-enriched gas mixture in turn, and the unadsorbed part Nitrogen, oxygen and argon that are not easily adsorbed open the programmable valve KV2A-2 from the outlet end into the third pressure swing adsorption stage in the adsorption step of the adsorption tower, as time goes by, the gaseous water, carbon dioxide and carbon dioxide adsorbed by the adsorbent The total amount of nitrogen and other components continues to increase. When the adsorption tower T0201A is saturated with gaseous water, carbon dioxide and nitrogen, the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0201A will be discharged from the adsorption tower outlet into the adsorption tower T0201C which has completed the reverse release BD step to increase the pressure, and try to make the pressures of the two towers equal.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • a step enters the third PSA section of the adsorption tower T0301A, in the adsorption tower
  • the adsorbent further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301). With the passage of time, the total amount of nitrogen adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the air intake is stopped and the adsorption ends.
  • the adsorption tower T0301A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0301A, except that they are staggered in time.
  • the result of this embodiment is that the oxygen concentration of the product is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 45% less than that of bottled oxygen.
  • Fig. 17 is a timing diagram of the operation steps of each stage of the adsorption tower and the switch of the programmable valve in the embodiment 9 of the present invention.
  • Figure 14 is a process flow diagram of Example 9 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbent in the adsorption tower is 5 molecular sieves or X Type lithium molecular sieve, run single tower adsorption pressure equalization, reverse discharge and final pressure increase procedures.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled to be 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower sequentially undergoes adsorption A, Equalization pressure drop ED, sequential release PP, reverse release BD, sequential deflation purge P, third stage desorption gas purge P3, third stage desorption gas purge R3, equalization pressure rise ER and final pressure rise FR pressure swing adsorption Process step: The oxygen concentration in the outlet gas of the adsorption tower in the third pressure swing adsorption stage is controlled above 99.5% (V), and the adsorption tower undergoes adsorption A, equalized pressure drop ED, and reverse discharge BD in a cycle.
  • the pressure swing adsorption process steps of equalizing pressure rising ER and final pressure rising FR are equalizing.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorbent in the adsorption tower T0201A selectively adsorbs the gaseous water, carbon dioxide and nitrogen in the oxygen-enriched gas mixture in turn, and the unadsorbed part Nitrogen, oxygen and argon that are not easily adsorbed, open the program-controlled valve KV2A-2 from the outlet end into the third pressure swing adsorption section in the adsorption step of the adsorption tower, as time goes by, the gaseous water, carbon dioxide and carbon dioxide adsorbed by the adsorbent The total amount of nitrogen and other components continues to increase. When the adsorption tower T0201A is saturated with gaseous water, carbon dioxide and nitrogen, the air intake is stopped and the adsorption ends.
  • the adsorption tower T0201A purges the P along with the exhaust gas, open KV21, and the mixed gas desorbed in the late stage of the BD step of the adsorption tower in the third pressure swing adsorption section enters the adsorption tower through the programmed valve KV4A-2 from the outlet end of the adsorption tower T0201A. Then the process control valve KV5A-2 is discharged and vented from the bottom of the adsorption tower T0201A.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the result of this embodiment is that the product oxygen concentration is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is reduced by 50% compared with bottled oxygen.
  • Fig. 19 is a timing diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 10 of the present invention.
  • Figure 16 is a process flow diagram of Example 10 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process piping and pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieve or X-type lithium molecular sieve.
  • Tower adsorption, pressure equalization, reverse discharge, the third stage of analytical gas purging, the third stage of analytical gas boost and final boost procedures; product pure oxygen buffer tank V0301, reverse discharge buffer tank V0302, sequential release buffer tank V0303, program control Valves, PLC control system, instrumentation, process pipe fittings, pressure stabilizing valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section.
  • the adsorbent in the adsorption tower is 5 molecular sieve or X-type lithium molecular sieve.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to 85-96% (V) or more.
  • the third PSA section is used to make the second PSA section of the adsorption tower the oxygen concentration out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A,
  • the oxygen concentration in the outlet gas of the adsorption tower of the step is controlled above 99.5% (V), and the adsorption tower undergoes adsorption A, equalization pressure drop ED, sequential discharge PP, reverse discharge BD, purge P, equalization pressure in a cycle.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorption tower of the second PSA section is in the process of adsorbing the oxygen-enriched gas mixture with the oxygen concentration of 85-96% (V) in step A from the third change.
  • the bottom of the adsorption tower of the pressure adsorption section enters, and the adsorbent in the adsorption tower further adsorbs the nitrogen in the oxygen-enriched gas mixture.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end and enter the product pure oxygen buffer tank (V0301). With the passage of time, the total amount of nitrogen adsorbed by the adsorbent continues to increase.
  • the adsorption tower T0301A is saturated with nitrogen, the gas supply is stopped, and the adsorption ends.
  • the dead space gas in the adsorption tower T0301A is discharged from the adsorption tower outlet into the adsorption tower T0301C that has completed the purge step P to increase the pressure, try to make the pressure of the two towers equal .
  • the adsorption tower T0301A purges the P along with the venting, open the program-controlled valves KV3A-3 and KV3B-3, and use the gas discharged from the ED step of the adsorption tower T0301B to enter the adsorption tower from the outlet end of the adsorption tower T0301A to make the adsorption tower T0301A Increase the pressure until the pressures of the adsorption towers T0301A and T0301C are equal.
  • the adsorption tower T0301A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0301A, except that they are staggered in time.
  • the result of this embodiment is that the product oxygen concentration is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 55% less than that of bottled oxygen.
  • Fig. 21 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 11 of the present invention.
  • Figure 18 is a process flow diagram of Example 11 of the present invention.
  • the air compressor C0101, vacuum buffer tank V0101, vacuum pump P0101, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption towers T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, the adsorption tower
  • the adsorbents filled in the adsorption tower from bottom to top are activated alumina and 5 molecular sieve or X-type lithium.
  • Molecular sieve run single tower adsorption, equalization, sequential discharge, reverse discharge, purge and final pressure increase program; product pure oxygen buffer tank V0301, sequential release buffer tank V0303, programmable valve, PLC control system, instrumentation, process pipe fittings , Stabilizing valve, adsorption towers T0301A, T0301B and T0301C constitute the third pressure swing adsorption section.
  • the adsorbent in the adsorption tower is 5 molecular sieve or X-type lithium molecular sieve. Purge and final boost procedure.
  • the above-mentioned three stages of pressure swing adsorption are operated in series.
  • the first pressure swing adsorption stage adsorbs gaseous water, carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage is used to parse the first pressure swing adsorption stage.
  • the gaseous water, carbon dioxide and nitrogen are adsorbed, and the oxygen is increased to more than 85-96% (V).
  • the third PSA section is used to make the second PSA section of the adsorption tower the concentration of oxygen out of the adsorption step A is greater than
  • the nitrogen in the 85-96% (V) mixed gas is further adsorbed, and the oxygen is increased to above 99.5% (V).
  • the raw material air is boosted by an air compressor (C0101) to 0.2MPa(G) and enters the adsorption tower in the first pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs gaseous water, carbon dioxide and carbon dioxide in the air in sequence.
  • the components such as oxygen, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed are discharged and vented from the outlet end.
  • the gaseous water, carbon dioxide, oxygen and nitrogen out of the compressor buffer tank (V0201) and oxygen-enriched compressor (C0201) are compressed to 1.2MPa and then enter the second pressure swing adsorption stage in the adsorption step of the adsorption tower, the adsorption in the adsorption tower
  • the agent selectively adsorbs the gaseous water, carbon dioxide, nitrogen and other components in the oxygen-enriched mixed gas in sequence.
  • the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section.
  • the adsorbent in the tower further adsorbs the nitrogen in the oxygen-rich mixed gas, and the components such as oxygen and argon that are not easily adsorbed flow out from the outlet end into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled at 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower undergoes adsorption A, Pressure swing adsorption process steps of equalizing pressure drop ED, sequential release PP, reverse release BD, purge P, equalizing pressure increase ER and final pressure increase FR; the third pressure swing adsorption section is in the adsorption step of the adsorption tower outlet gas concentration control Above 99.5% (V), the adsorption tower undergoes adsorption A, equalization pressure drop ED, sequential release PP, reverse release BD, purge P, equalization increase ER, and final pressure swing adsorption in one cycle.
  • the desorption gas of the adsorption tower of the third pressure swing adsorption section in the reverse discharge BD and purge P steps are all returned to the compressor buffer tank V0201.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the three stages is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • the adsorbent in the adsorption tower T0201A selectively adsorbs the gaseous water, carbon dioxide and nitrogen in the oxygen-enriched gas mixture in turn, and the unadsorbed part Nitrogen, oxygen and argon that are not easily adsorbed open the programmable valve KV2A-2 from the outlet end into the third pressure swing adsorption stage in the adsorption step of the adsorption tower, as time goes by, the gaseous water, carbon dioxide and carbon dioxide adsorbed by the adsorbent The total amount of nitrogen and other components continues to increase. When the adsorption tower T0201A is saturated with gaseous water, carbon dioxide and nitrogen, the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0201A will be discharged from the adsorption tower outlet into the adsorption tower T0201C that has completed the purge step P to increase the pressure, try to make the pressure of the two towers equal .
  • the adsorption tower T0201A purges the P along with the venting, open the programmed valves KV3A-2 and KV3B-2, and use the gas discharged from the ED step of the adsorption tower T0201B to enter the adsorption tower from the outlet end of the adsorption tower T0201A to make the adsorption tower T0201A Increase the pressure until the pressures of the adsorption towers T0201A and T0201C are equal.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the result of this embodiment is that the product oxygen concentration is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is 55% less than that of bottled oxygen.
  • Fig. 22 is a time sequence diagram of the operation steps of each stage of the adsorption tower and the switching of the programmable valve in the embodiment 12 of the present invention.
  • Figure 20 is a process flow diagram of Example 12 of the present invention.
  • the air compressor C0100, programmable valve, PLC control system, instrumentation, process pipe fittings, adsorption tower T0100A and T0100B constitute the pressure swing adsorption drying section.
  • the adsorbent filled in the adsorption tower is activated alumina.
  • adsorption tower T0101A, T0101B and T0101C constitute the first pressure swing adsorption section, and the adsorption tower is filled with
  • the adsorbent is carbon molecular sieve, which runs single-tower adsorption, pressure equalization and vacuuming procedures; oxygen-enriched compressor C0201, compressor buffer tank V0201, sequential buffer tank V0202, programmable valve, PLC control system, instrumentation, process pipe fittings,
  • the adsorption towers T0201A, T0201B and T0201C form the second pressure swing adsorption section.
  • the adsorbent in the adsorption tower is 5 molecular sieves or X-type lithium molecular sieves. It operates single tower adsorption, equalization, sequential discharge, reverse discharge, purge and final rise. Pressure program; product pure oxygen buffer tank V0301, sequential buffer tank V0303, program-controlled valve, PLC control system, instrumentation, process pipe fittings, pressure regulator valve, adsorption tower T0301A, T0301B and T0301C constitute the third pressure swing adsorption section, adsorption
  • the adsorbent filled in the tower is 5 molecular sieves or X-type lithium molecular sieves, and the single-tower adsorption, pressure equalization, sequential discharge, reverse discharge, purge and final pressure increase procedures are operated.
  • the above-mentioned four pressure swing adsorption stages are operated in series.
  • the pressure swing adsorption drying stage adsorbs gaseous water in the air
  • the first pressure swing adsorption stage adsorbs carbon dioxide and oxygen in the air
  • the second pressure swing adsorption stage uses
  • the third PSA section is used to connect the adsorption tower of the second PSA section to The nitrogen in the mixed gas with the oxygen concentration greater than 85-96% (V) flowing out of the adsorption step A is further adsorbed, and the oxygen is increased to more than 99.5% (V).
  • the raw material air is boosted by an air compressor (C0100) to 0.2MPa(G) and enters from the bottom of the adsorption tower of the pressure swing adsorption drying section.
  • the adsorbent in the adsorption tower selectively adsorbs the gaseous water in the air, and the oxygen,
  • the components such as nitrogen and argon are discharged from the outlet end into the adsorption tower of the first pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower is selectively carbon dioxide and oxygen and other components, unadsorbed part of oxygen and nitrogen that are not easily adsorbed.
  • the components such as argon and argon are discharged and vented from the outlet end.
  • the pressure is equalized and then vacuumed.
  • the carbon dioxide, oxygen and nitrogen extracted by the vacuum pump pass through the compressor buffer tank (V0201) Compressed with oxygen-enriched compressor (C0201) to 1.2MPa, it enters the adsorption tower in the second pressure swing adsorption stage in the adsorption step.
  • the adsorbent in the adsorption tower selectively adsorbs nitrogen in the oxygen-enriched gas mixture, and oxygen and The argon and other components flow out from the outlet end into the adsorption tower in the third pressure swing adsorption section in the adsorption step.
  • the adsorbent in the adsorption tower further adsorbs the nitrogen in the oxygen-rich gas mixture, and the components such as oxygen and argon that are not easily adsorbed are removed from The outlet end flows out into the product pure oxygen buffer tank (V0301).
  • the oxygen concentration in the outlet gas of the adsorption tower of the first pressure swing adsorption section is controlled to be 7-12% (V) after the end of adsorption.
  • the adsorption tower undergoes adsorption A, equalization pressure drop ED, vacuum VC and equalization in a cycle.
  • the pressure rise ER pressure swing adsorption process step the oxygen concentration in the outlet gas of the adsorption tower in the second pressure swing adsorption stage in the adsorption step is controlled at about 85-96% (V), and the adsorption tower sequentially undergoes adsorption A, Pressure swing adsorption process steps of equalizing pressure drop ED, sequential release PP, reverse release BD, purge P, equalizing pressure increase ER, and final pressure increase FR; the third pressure swing adsorption section is in the adsorption step of the adsorption tower outlet gas concentration control Above 99.5% (V), the adsorption tower undergoes adsorption A, equalizing pressure drop ED, sequential discharge PP, reverse discharge BD, purge P, equalizing pressure rise ER, and final pressure swing adsorption in one cycle.
  • the desorption gas of the adsorption tower of the third pressure swing adsorption section in the reverse discharge BD and purge P steps are all returned to the compressor buffer tank V0201.
  • the total recovery rate of oxygen is about 85%.
  • the oxygen concentration in the first stage of vacuum analysis is about 80%.
  • the cycle time of the fourth stage is generally 20-80 seconds.
  • the vacuum degree of the first stage is -0.095MPa.
  • the compressor air volume is about 80%.
  • the superficial velocity of the adsorption tower, the suction volume of the vacuum pump, the amount of adsorbent, the diameter of the adsorption tower, and other design parameters are designed according to the usual conditions in the field of pressure swing adsorption technology.
  • Each adsorption tower of the present invention sequentially undergoes the following steps in a cycle.
  • step P enters the adsorption tower from the outlet end of the adsorption tower T0100A through the programmable valve KV3A-0, and then is discharged from the bottom of the adsorption tower T0100A through the process control valve KV4A-0.
  • the programmable valve KV3A- is closed. 0 and KV4A-0.
  • the adsorption tower T0100A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0100A, except that they are staggered in time.
  • the adsorption tower of the first PSA section is adsorption tower of the first PSA section:
  • the outlet mixed gas of the adsorption step A of the pressure swing adsorption drying section enters from the bottom of the adsorption tower T0101A to increase the pressure, when the adsorption pressure is increased, open the programmable valve KV2A-1, and the adsorbent in the adsorption tower is selected Absorb carbon dioxide and oxygen in the air, the unadsorbed part of oxygen, nitrogen and argon that are not easily adsorbed, open the programmable valve KV2A-1 and discharge from the outlet end to the pressure swing adsorption drying section to purge and regenerate activated alumina As time goes by, the total amount of carbon dioxide and oxygen adsorbed by the adsorbent continues to increase.
  • the oxygen concentration at the outlet of the adsorption tower T0101A is greater than 7-12% (V)
  • the air intake is stopped and the adsorption ends.
  • the dead space gas in the adsorption tower T0101A is discharged from the adsorption tower outlet into the adsorption tower T0101C that has completed the reverse discharge BD step in this section to increase the pressure, and try to make the pressure of the two towers equal.
  • the programmable valve KV4A-1 from the bottom of the adsorption tower to use a vacuum pump to extract the gaseous water, carbon dioxide, oxygen, and nitrogen adsorbed by the adsorbent into the compressor buffer tank (V0201) to make The adsorbent is regenerated and the oxygen-rich intermediate gas is obtained at the same time.
  • the programmable valve KV12 is opened, and the vacuum pump is connected to the vacuum buffer tank V0101.
  • the adsorption tower T0101A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0101A, except that they are staggered in time.
  • the adsorbent in the adsorption tower T0201A selectively adsorbs carbon dioxide and nitrogen in the oxygen-enriched mixed gas, and the unadsorbed part of the nitrogen is difficult to adsorb Open the programmable valve KV2A-2 from the outlet end into the adsorption tower in the third pressure swing adsorption stage. Over time, the total amount of carbon dioxide, nitrogen and other components adsorbed by the adsorbent When the adsorption tower T0201A is saturated with carbon dioxide and nitrogen, stop the air intake, and the adsorption ends at this time.
  • the dead space gas in the adsorption tower T0201A will be discharged from the adsorption tower outlet into the adsorption tower T0201C that has completed the purge step P to increase the pressure, try to make the pressure of the two towers equal .
  • the adsorption tower T0201A purges the P along with the venting, open the programmed valves KV3A-2 and KV3B-2, and use the gas discharged from the ED step of the adsorption tower T0201B to enter the adsorption tower from the outlet end of the adsorption tower T0201A to make the adsorption tower T0201A Increase the pressure until the pressures of the adsorption towers T0201A and T0201C are equal.
  • the adsorption tower T0201A completes a cycle and enters the raw gas adsorption again.
  • the steps and sequence of the other adsorption towers in this section are exactly the same as the adsorption tower T0201A, except that they are staggered in time.
  • the result of this embodiment is that the product oxygen concentration is greater than or equal to 99.5% (V), the pressure is greater than or equal to 1.0 MPa, and the cost of oxygen is reduced by 50% compared with bottled oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明提供一种移动式变压吸附氧气生产装置的方法,其包括串联操作的第一变压吸附段、第二变压吸附段和第三变压吸附段,第一变压吸附段通过速度选择型吸附剂吸附原料空气中的氧气;第二变压吸附段通过氮平衡选择型吸附剂吸附第一变压吸附段的解析气中的氮气等;第三变压吸附段脱除第二变压吸附段流出的富氧气体中的氮气;在一个循环周期中,第一变压吸附段至少依次经历吸附A和抽真空VC;第二变压吸附段至少依次经历吸附A、均压降ED、逆放BD和均压升ER;第三变压吸附段至少依次经历吸附A、均压降ED、逆放BD和均压升ER。采用本发明的技术方案的生产装置体积小、重量轻、使用方便和压力低,可以大大降低用氧成本和大幅度提高用氧安全性。

Description

一种移动式变压吸附氧气生产装置的方法 技术领域
本发明涉及变压吸附技术领域,具体涉及一种移动式变压吸附氧气生产装置的方法。
背景技术
目前,在气割过程中所用的纯氧均是采用深冷装置制出纯氧后,用压缩机将纯氧压缩到12.5MPa以上装入特制的40升刚瓶中,然后运输到各个用户,而用户使用压力低于0.95MPa,耗费大量的人力和物力,不仅用氧成本高,而且安全性差。
发明内容
本发明的目的是提供一种体积小、重量轻、随开随停、使用方便和压力低的移动式变压吸附纯氧生产装置新产品,大大降低用氧成本和幅度提高用氧安全性。本发明的目的是通过以下技术方案实现的:
一种移动式变压吸附氧气生产装置的方法,此方法采用三段变压吸附串联操作,原料空气首先从第一变压吸附段的吸附塔底部进入干燥剂床层和速度选择型吸附剂床层,原料空气中的气态水绝大部分被干燥剂床层吸附,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,解析出来的气态水和富氧从第二变压吸附段的吸附塔底部进入干燥剂床层和氮平衡选择型吸附剂床层,富氧中的气态水绝大部分被干燥剂床层吸附,大部分氮气被氮平衡选择型吸附剂床层吸附,氧气和氩气以及少量氮气从吸附塔出口流出,然后,从第三变压吸附段的吸附塔底部再次进入氮平衡选择型吸附剂床层,大部分氮气被吸附下来,氧气和氩气以及少量氮气从吸附塔出口流出。第一变压吸附段的吸附塔在一个循环周期中依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。
进一步,第一变压吸附段的吸附塔在吸附A步骤之后增加均压降ED,同时在抽真空VC步骤之后增加均压升ER变压吸附工艺步骤。
进一步,第一变压吸附段的吸附塔在吸附A步骤之后增加顺放PP步骤。
进一步,第二变压吸附段的吸附塔在均压升ER步骤后增加最终升压FR变压吸附工艺步骤。
进一步,第三变压吸附段的吸附塔在均压升ER步骤后增加最终升压FR变压吸附工艺步骤。
进一步,第二变压吸附段的吸附塔在逆放BD步骤之后增加第三段解吸气吹扫P3变压吸附工艺步骤。
进一步,第二变压吸附段的吸附塔在第三段解吸气吹扫P3步骤之后增加第三段解吸气升压R3变压吸附工艺步骤。
进一步,第二变压吸附段的吸附塔在均压降ED步骤后增加顺放PP步骤,同时在逆放BD步骤后增加吹扫P步骤。
进一步,第三变压吸附段的吸附塔在均压降ED步骤后增加顺放PP步骤,同时在逆放BD步骤后增加吹扫P步骤。
进一步,第二变压吸附段的吸附塔在吹扫P步骤之后增加第三段解吸气升压R3变压吸附工艺步骤。
进一步,把第三变压吸附段的吸附塔解析气全部或部分返回与第一变压吸附段的富氧解析气混合。
进一步,第二变压吸附段的吸附塔在逆放BD步骤之后增加抽真空VC变压吸附工艺步骤。
进一步,第三变压吸附段的吸附塔在逆放BD步骤之后增加抽真空VC变压吸附工艺步骤。
进一步,第一变压吸附段的吸附塔吸附A步骤的压力为0.18-0.22MPa(表压);第二变压吸附段和第三变压吸附段的吸附塔吸附A步骤的压力为0.9-1.2MPa(表压)。
进一步,第一变压吸附段的吸附塔吸附A步骤结束时出口气中氧气的浓度为7-12%(V)。
进一步,第二变压吸附段的吸附塔吸附A步骤结束时出口气中氧气的浓度为85~96%(V)。
进一步,第一变压吸附段的吸附塔下部装填活性氧化铝、上部装填碳分子筛;第二变压吸附段的吸附塔下部装填活性氧化铝、上部装填5A型分子筛或X型锂分子筛;第三变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛。
进一步,原料空气进入第一段之前增加一个变压吸附干燥段,用于除去空气中的气态水,达到进入第一变压吸附段的吸附塔对水分的要求,同时第一段和第二变压吸附段的吸附塔内不再装填干燥剂床层。该变压吸附干燥段在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤,吹扫P步骤的气体来源于第一变压吸附段的吸附塔吸附A步骤出口的放空气和第二变压吸附段的吸附塔解析放空气。
进一步,干燥段装填活性氧化铝;第一变压吸附段的吸附塔内部装填碳分子筛;第二变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛;第三变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛。
本发明提供一种全新产品-移动式变压吸附纯氧生产装置,大大降低用氧成本,而且安全性大幅度提高,本移动式变压吸附纯氧生产装置体积小、重量轻、随开随停、使用方便,最高压力只有1.2MPa。
附图说明
图1是本发明实施例1各段吸附塔运行步骤及程控阀开关时序图。
图2是本发明实施例1的工艺流程图。
图3是本发明实施例2各段吸附塔运行步骤及程控阀开关时序图。
图4本发明实施例2、5和6的工艺流程图。
图5是本发明实施例3各段吸附塔运行步骤及程控阀开关时序图。
图6是本发明实施例3的工艺流程图。
图7是本发明实施例4各段吸附塔运行步骤及程控阀开关时序图。
图8是本发明实施例4的工艺流程图。
图9是本发明实施例5各段吸附塔运行步骤及程控阀开关时序图。
图10是本发明实施例7的工艺流程图。
图11是本发明实施例6各段吸附塔运行步骤及程控阀开关时序图。
图12是本发明实施例8的工艺流程图。
图13是本发明实施例7各段吸附塔运行步骤及程控阀开关时序图。
图14是本发明实施例9的工艺流程图。
图15是本发明实施例8各段吸附塔运行步骤及程控阀开关时序图。
图16是本发明实施例10的工艺流程图。
图17是本发明实施例9各段吸附塔运行步骤及程控阀开关时序图。
图18是本发明实施例11的工艺流程图。
图19是本发明实施例9各段吸附塔运行步骤及程控阀开关时序图。
图20是本发明实施例12的工艺流程图。
图21是本发明实施例11各段吸附塔运行步骤及程控阀开关时序图。
图22是本发明实施例12各段吸附塔运行步骤及程控阀开关时序图。
具体实施方式
下面结合附图对本发明的具体实施方式加以说明,应当知晓,以下实施例只是为更好地理解本发明的技术方案所提供的的优选实施例,不作为对本发明所要求保护的权利要求范围的限定。
实施例1:
图1是本发明实施例1各段吸附塔运行步骤及程控阀开关时序图。
图2是本发明实施例1的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.05MPa(G)
如图2所示,鼓风机C0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A和T0101B组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过鼓风机(C0101)升压到5KPa进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,马上进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在15~20.8%(V),其吸附塔在一个循环周期中依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。氧气总回收率在60%左右,第一段真空解析气氧浓度在80%左右,两段循环时间一般为20-80秒,第一段真空度为-0.095MPa,鼓风机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
原料空气经过鼓风机(C0101)升压到5KPa后,打开程控阀KV1A-1进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于20%(V)时,停止进气,此时吸附结束。
⑵抽真空VC
吸附塔T0101A吸附结束后,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的气态水、二氧化碳、氧气及氮气等组分抽出来进入压缩机缓冲罐(V0201),使吸附剂得到再生,同时获得富氧中间气。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
同时打开第二变压吸附段的程控阀KV1A-2和KV2A-2,第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后从底部进入吸附塔T0201A吸附剂床层升压,同时第二变压吸附段的吸附塔出口气通过程控阀KV2A-2从顶部对吸附塔T0201A进行升压,当升到吸附压力时,吸附塔T0201A中的吸附剂选择性地依次富氧混合气中的气态水、二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0201A均压降ED结束后,打开程控阀KV4A-2,将吸附塔T0201A内气体逆向放空,直至接近常压。
⑷均压升ER
吸附塔T0201A逆放BD结束后,打开程控阀KV3A-2和KV3B-2,利用吸附塔T0201B均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升 高压力,尽量让吸附塔T0201A和T0201B压力相等。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
第三变压吸附段
⑴吸附A
同时打开第三变压吸附段的程控阀KV1A-3和KV2A-3,第二变压吸附段的吸附塔吸附A步骤流出的富氧混合气从底部进入吸附塔T0301A吸附剂床层升压,同时第三变压吸附段的吸附塔出口气通过程控阀KV2A-3从顶部对吸附塔T0301A进行升压,当升到吸附压力时,吸附塔T0301A中的吸附剂选择性地吸附富氧混合气中的氮气,不易吸附的氧和氩等组分打开程控阀KV2A-3从出口端流出进入产品纯氧缓冲罐(V0301),经过稳压阀后送去使用(气割等),随着时间的推移,吸附剂吸附的氮气总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0301A均压降ED结束后,打开程控阀KV4A-3,将吸附塔T0301A内气体逆向放空,直至接近常压。
⑷均压升ER
吸附塔T0301A逆放BD结束后,打开程控阀KV3A-3和KV3B-3,利用吸附塔T0301B均压降ED步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。。
富氧压缩机(C0201)压缩的排气压力也可以低于到1.2MPa,主要根据使用需要来确定。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约30%。
实施例2:
图3是本发明实施例2各段吸附塔运行步骤及程控阀开关时序图。
图4是本发明实施例2的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图4所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,两段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)后,打开程控阀KV1A-1进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于7-12%(V)时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-1和KV3C-1,吸附塔T0101A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0101C升压,尽量让两塔压力相等。
⑶抽真空VC
吸附塔T0101A均压降ED结束后,打开程控阀KV4A-1从吸附塔底部用真空泵将吸附剂吸附的气态水、二氧化碳、氧气及氮气等组分抽出来进入压缩机缓冲罐(V0201),使吸附剂得到再生,同时获得富氧中间气,当没有吸附塔抽真空时,打开程控阀KV12,真空泵与真空缓冲罐V0101连通。
⑷均压升ER
吸附塔T0101A抽真空VC结束后,打开程控阀KV3A-1和KV3B-1,利用吸附塔T0101B均压降ED步骤排出的气体,从吸附塔T0101A出口端进入吸附塔,使吸附塔T0101A升高压力,尽量让吸附塔T0101A和T0101B压力相等。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段和第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例1的第二变压吸附段和第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约35%。
实施例3:
图5是本发明实施例3各段吸附塔运行步骤及程控阀开关时序图。
图6是本发明实施例3的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图6所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附顺放均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行顺放再进行均压和抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、顺放PP、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,两段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)后,打开程控阀KV1A-1进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于7-12%(V)时,停止进气,此时吸附结束。
⑵顺放PP
吸附结束后,打开程控阀KV3A-1和KV11,吸附塔T0101A内死空间气体从吸附塔出口排出放空,当压力降到0.08-0.12MPa(G)时,关闭程控阀KV11,顺放PP结束。
⑶均压降ED
顺放结束后,打开程控阀KV3C-1,吸附塔T0101A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0101C升压,尽量让两塔压力相等。
⑷抽真空VC
吸附塔T0101A均压降ED结束后,打开程控阀KV4A-1从吸附塔底部用真空泵将吸附剂吸附的气态水、二氧化碳、氧气及氮气等组分抽出来进入压缩机缓冲罐(V0201),使吸附剂得到再生,同时获得富氧中间气,当没有吸附塔抽真空时,打开程控阀KV12,真空泵与真空缓冲罐V0101连通。
⑸均压升ER
吸附塔T0101A抽真空VC结束后,打开程控阀KV3A-1和KV3B-1,利用吸附塔T0101B均压降ED步骤排出的气体,从吸附塔T0101A出口端进入吸附塔,使吸附塔T0101A升高压力,尽量让吸附塔T0101A和T0101B压力相等。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段和第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例1的第二变压吸附段和第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约40%。
实施例4:
图7是本发明实施例4各段吸附塔运行步骤及程控阀开关时序图。
图8是本发明实施例4的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图8所示,空气压缩机C0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附顺放和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行顺放再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、顺放PP和抽真空VC变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,两段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔:
⑴吸附A
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)后,打开程控阀KV1A-1进入吸附塔T0101A升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出放空,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于7-12%(V)时,停止进气,此时吸附结束。
⑵顺放PP
吸附结束后,关闭程控阀KV1A-1,程控阀KV2A-1继续打开,吸附塔T0101A内死空间气体从吸附塔出口排出放空,当压力降到接近常压时,关闭程控阀KV2A-1,顺放PP结束。
⑶抽真空VC
吸附塔T0101A顺放PP结束后,打开程控阀KV3A-1从吸附塔底部用真空泵将吸附剂吸附的气态水、二氧化碳、氧气及氮气等组分抽出来进入压缩机缓冲罐(V0201),使吸附剂得到再生,同时获得富氧中间气。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段和第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例1的第二变压吸附段和第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约30%。
实施例5:
图9是本发明实施例5各段吸附塔运行步骤及程控阀开关时序图。
图4是本发明实施例5的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图4所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、 仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附均压逆放和再加压程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,两段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、两段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例2的第一变压吸附段相同。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,将第一变压吸附段的吸附塔抽真空 (VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附气态水、二氧化碳及氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0201A均压降ED结束后,打开程控阀KV4A-2,将吸附塔T0201A内气体逆向放空,直至接近常压。
⑷均压升ER
吸附塔T0201A逆放BD结束后,打开程控阀KV3A-2和KV3B-2,利用吸附塔T0201B均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升高压力,尽量让吸附塔T0201A和T0201B压力相等。
⑸最终升压FR
均压升ER结束后,关闭程控阀KV3A-2,打开程控阀KV2A-2,用吸附过程中的出口气对吸附塔T0201A进行升压,直到接近第二变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例1的第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约40%。
实施例6:
图11是本发明实施例6各段吸附塔运行步骤及程控阀开关时序图。
图4是本发明实施例6的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图4所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压 吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附均压逆放和再加压程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放和再加压程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER和最终升压FR变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,三段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例2的第一变压吸附段相同。
第二变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实 施例5的第二变压吸附段相同。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,第二变压吸附段的吸附塔吸附A步骤从出口端流出的富氧混合气进入第三变压吸附段的吸附塔T0301A,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。随着时间的推移,吸附剂吸附的氮气总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0301A均压降ED结束后,打开程控阀KV4A-3,将吸附塔T0301A内气体逆向放空,直至接近常压。
⑷均压升ER
吸附塔T0301A逆放BD结束后,打开程控阀KV3A-3和KV3B-3,利用吸附塔T0301B均压降ED步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
⑸最终升压FR
均压升ER结束后,关闭程控阀KV3A-3,打开程控阀KV2A-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约40%。
实施例7:
图13是本发明实施例7各段吸附塔运行步骤及程控阀开关时序图。
图10是本发明实施例7的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图10所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC 控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附、均压、逆放、第三段解析气吹扫和再加压程序;产品纯氧缓冲罐V0301、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压逆放和再加压程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD、第三段解析气吹扫P3、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER和最终升压FR变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,三段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例2的第一变压吸附段相同。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,将第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附气态水、二氧化碳及氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0201A均压降ED结束后,打开程控阀KV5A-2,将吸附塔T0201A内气体逆向放空,直至接近常压。
⑷第三段解析气吹扫P3
吸附塔T0201A逆放BD结束后,打开程控阀KV4A-2和KV6A-2,第三变压吸附段的吸附塔逆放BD步骤解析出来的混合气从吸附塔T0201A出口端经程控阀KV4A-2进入吸附塔,然后经过程控阀KV6A-2从吸附塔T0201A底部排出放空。
⑸均压升ER
吸附塔T0201A第三段解析气吹扫P3结束后,打开程控阀KV3A-2和KV3C-2,利用吸附塔T0201C均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升高压力,尽量让吸附塔T0201A和T0201C压力相等。
⑹最终升压FR
均压升ER结束后,关闭程控阀KV3A-2,打开程控阀KV2A-2,用吸附过程中的出口气对吸附塔T0201A进行升压,直到接近第二变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约45%。
实施例8:
图15是本发明实施例8各段吸附塔运行步骤及程控阀开关时序图。
图12是本发明实施例8的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图12所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附、均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附、均压、逆放、第三段解析气吹扫、第三段解析气升压和再加压程序;产品纯氧缓冲罐V0301、逆放缓冲罐V0302、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压、逆放和再加压程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD、第三段解析气吹扫P3、第三段解析气吹扫R3、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER和最终升压FR变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,三段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、三段吸附塔的空塔速度、 真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例2的第一变压吸附段相同。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,将第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附气态水、二氧化碳及氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0201A均压降ED结束后,打开程控阀KV5A-2,将吸附塔T0201A内气体逆向放空,直至接近常压。
⑷第三段解析气吹扫P3
吸附塔T0201A逆放BD结束后,打开程控阀KV4A-2和KV21,第三变压吸附段的吸附塔逆放BD步骤后期解析出来的混合气从吸附塔T0201A出口端经程控阀KV4A-2进入吸附塔,然后经过程控阀KV5A-2从吸附塔T0201A底部排出放空。
⑸第三段解析气升压R3
吸附塔T0201A第三段解析气吹扫P3结束后,打开程控阀KV3A-2和KV22,逆放缓冲罐(V0302)的混合气从吸附塔T0201A出口端经程控阀KV3A-2进入吸附塔T0201A升压,直到吸附塔T0201A与逆放缓冲罐(V0302)的压力相等。
⑹均压升ER
吸附塔T0201A第三段解析气升压R3结束后,打开程控阀KV3A-2和KV3C-2,利用吸附塔T0201C均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升高压力,直到吸附塔T0201A和T0201C压力相等。
⑺最终升压FR
均压升ER结束后,关闭程控阀KV3A-2,打开程控阀KV2A-2,用吸附过程中的出口气对吸附塔T0201A进行升压,直到接近第二变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3,第二变压吸附段的吸附塔吸附A步骤从出口端流出的富氧混合气进入第三变压吸附段的吸附塔T0301A,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。随着时间的推移,吸附剂吸附的氮气总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶逆放BD
吸附塔T0301A均压降ED结束后,打开程控阀KV4A-3和KV31,将吸附塔T0301A内气体逆向放入逆放缓冲罐(V0302),吸附塔T0301A与逆放缓冲罐(V0302)压力接近后,关闭程控阀KV31,再打开程控阀KV21。
⑷均压升ER
吸附塔T0301A逆放BD结束后,打开程控阀KV3A-3和KV3B-3,利用吸附塔T0301B均压降ED步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,尽量让吸附塔T0301A和T0301B压力相等。
⑸最终升压FR
均压升ER结束后,关闭程控阀KV3A-3,打开程控阀KV2A-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约45%。
实施例9:
图17是本发明实施例9各段吸附塔运行步骤及程控阀开关时序图。
图14是本发明实施例9的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图14所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附、均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、顺放缓冲罐V0202、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附、均压、顺放、逆放、吹扫、第三段解析气吹扫、第三段解析气升压和最终升压程序;产品纯氧缓冲罐V0301、逆放缓冲罐V0302、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附均压、逆放和最终升压程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、顺放PP、逆放BD、顺放气吹扫P、第三段解析气吹扫P3、第三段解析气吹扫R3、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD和均压升ER和最终升压FR变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,三段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例2的第一变压吸附段相同。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,将第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附气态水、二氧化碳及氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附A结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成第三段解析气升压R3步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶顺放PP
均压降ED结束后,打开程控阀KV4A-2和KV23,吸附塔T0101A内死空间气体从吸附塔出口排出进入顺放缓冲罐(V0202),当压力降到0.38-0.42MPa(G)时,关闭程控阀KV4A-2和KV23,顺放PP结束。
⑷逆放BD
吸附塔T0201A顺放PP结束后,打开程控阀KV5A-2,将吸附塔T0201A内气体逆向放空,直至接近常压。
⑸顺放气吹扫P
吸附塔T0201A逆放BD结束后,打开程控阀KV4A-2和KV23,顺放缓冲罐(V0202)的混合气从吸附塔T0201A出口端经程控阀KV4A-2进入吸附塔,然后经过程控阀KV5A-2从吸附塔T0201A底部排出放空,顺放气吹扫P结束后,关闭KV23。
⑹第三段解析气吹扫P3
吸附塔T0201A顺放气吹扫P结束后,打开KV21,第三变压吸附段的吸附塔逆放BD步骤后期解析出来的混合气从吸附塔T0201A出口端经程控阀KV4A-2进入吸附塔,然后经过程控阀KV5A-2从吸附塔T0201A底部排出放空。
⑺第三段解析气升压R3
吸附塔T0201A第三段解析气吹扫P3结束后,打开程控阀KV3A-2和KV22,逆放缓冲罐(V0302)的混合气从吸附塔T0201A出口端经程控阀KV3A-2进入吸附塔T0201A升压,直到吸附塔T0201A与逆放缓冲罐(V0302)的压力相等。
⑻均压升ER
吸附塔T0201A第三段解析气升压R3结束后,打开程控阀KV3A-2和KV3C-2,利用吸附塔T0201C均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升高压力,直到吸附塔T0201A和T0201C压力相等。
⑼最终升压FR
均压升ER结束后,关闭程控阀KV3A-2,打开程控阀KV2A-2,用吸附过程中的出口气对吸附塔T0201A进行升压,直到接近第二变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例8的第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约50%。
实施例10:
图19是本发明实施例10各段吸附塔运行步骤及程控阀开关时序图。
图16是本发明实施例10的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图16所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附、均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B、T0201C和T0201D组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附、均压、逆放、第三段解析气吹扫、第三段解析气升压和最终升压程序;产品纯氧缓冲罐V0301、逆放缓冲罐V0302、顺放缓冲罐V0303、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附、均压、顺放、逆放、吹扫和最终升压程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上, 第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、逆放BD、第三段解析气吹扫P3、第三段解析气吹扫R3、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升ER和最终升压FR变压吸附工艺步骤。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,三段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例2的第一变压吸附段相同。
第二变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例8的第二变压吸附段相同。
第三变压吸附段
⑴吸附A
打开第三变压吸附段的程控阀KV1A-3和KV1A-3,第二变压吸附段的吸附塔处于吸附A步骤氧气浓度在85-96%(V)的富氧混合气从第三变压吸附段的吸附塔底部进入,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301),随着时间的推移,吸附剂吸附的氮气总量不断增加,当吸附塔T0301A吸附氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附A结束后,打开程控阀KV3A-3和KV3C-3,吸附塔T0301A内死空间气体从吸附塔出口排出进入本段已完成吹扫P步骤的吸附塔T0301C升压,尽量让两塔压力相等。
⑶顺放PP
均压降ED结束后,关闭程控阀KV3C-3,打开程控阀KV32,吸附塔T0301A内死空间气体从吸附塔出口排出进入顺放缓冲罐(V0303),当压力降到0.38-0.42MPa(G)时,关闭程控阀KV3A-3和KV32,顺放PP结束。
⑷逆放BD
吸附塔T0301A顺放PP结束后,打开程控阀KV4A-3,将吸附塔T0301A内气体逆向放空,直至接近常压。
⑸顺放气吹扫P
吸附塔T0301A逆放BD结束后,打开程控阀KV3A-3和KV32,顺放缓冲罐(V0303)的混合气从吸附塔T0301A出口端经程控阀KV3A-3进入吸附塔,然后经过程控阀KV4A-3从吸附塔T0301A底部排出放空,顺放气吹扫P结束后,关闭KV32。
⑹均压升ER
吸附塔T0301A顺放气吹扫P结束后,打开程控阀KV3A-3和KV3B-3,利用吸附塔T0301B均压降ED步骤排出的气体,从吸附塔T0301A出口端进入吸附塔,使吸附塔T0301A升高压力,直到吸附塔T0301A和T0301C压力相等。
⑺最终升压FR
均压升ER结束后,关闭程控阀KV3A-3,打开程控阀KV2A-3,用吸附过程中的出口气对吸附塔T0301A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0301A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0301A完全一样,只是在时间上相互错开。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约55%。
实施例11:
图21是本发明实施例11各段吸附塔运行步骤及程控阀开关时序图。
图18是本发明实施例11的工艺流程图。
本实施例的原料空气组成如下:
组份 O 2 N 2 Ar CO 2 其它
浓度(%)(V) 20.93 78.03 0.932 0.03 0.078 100
温度:≤40℃
压力:0.2MPa(G)
如图18所示,空气压缩机C0101、真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及碳分子筛,运行单塔吸附、 均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、顺放缓冲罐V0202、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内由下到上装填的吸附剂依次为活性氧化铝及5分子筛或X型锂分子筛,运行单塔吸附、均压、顺放、逆放、吹扫和最终升压程序;产品纯氧缓冲罐V0301、顺放缓冲罐V0303、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附、均压、顺放、逆放、吹扫和最终升压程序。本实施例将上述三段变压吸附串联操作,第一变压吸附段将空气中的气态水、二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的气态水、二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0101)升压到0.2MPa(G)进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附空气中的气态水、二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的气态水、二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升ER和最终升压FR变压吸附工艺步骤,第三变压吸附段的吸附塔在逆放BD和吹扫P步骤的解析气全部返回到压缩机缓冲罐V0201。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,三段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、三段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
第一变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实 施例2的第一变压吸附段相同。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,将第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地依次吸附富氧混合气中的气态水、二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的气态水、二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附气态水、二氧化碳及氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附A结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成吹扫P步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶顺放PP
均压降ED结束后,关闭程控阀KV3C-2,打开程控阀KV23,吸附塔T0201A内死空间气体从吸附塔出口排出进入顺放缓冲罐(V0202),当压力降到0.38-0.42MPa(G)时,关闭程控阀KV3A-2和KV23,顺放PP结束。
⑷逆放BD
吸附塔T0201A顺放PP结束后,打开程控阀KV4A-2,将吸附塔T0201A内气体逆向放空,直至接近常压。
⑸顺放气吹扫P
吸附塔T0201A逆放BD结束后,打开程控阀KV3A-2和KV23,顺放缓冲罐(V0202)的混合气从吸附塔T0201A出口端经程控阀KV3A-2进入吸附塔,然后经过程控阀KV4A-2从吸附塔T0201A底部排出放空,顺放气吹扫P结束后,关闭KV23。
⑹均压升ER
吸附塔T0201A顺放气吹扫P结束后,打开程控阀KV3A-2和KV3B-2,利用吸附塔T0201B均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升高压力,直到吸附塔T0201A和T0201C压力相等。
⑺最终升压FR
均压升ER结束后,关闭程控阀KV3A-2,打开程控阀KV2A-2,用吸附过程中的出口气对吸附塔T0201A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例10的第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约55%。
实施例12:
图22是本发明实施例12各段吸附塔运行步骤及程控阀开关时序图。
图20是本发明实施例12的工艺流程图。
本实施例的原料空气组成如下:
Figure PCTCN2020084597-appb-000001
温度:≤40℃
压力:0.2MPa(G)
如图20所示,空气压缩机C0100、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0100A和T0100B组成变压吸附干燥段,吸附塔内装填的吸附剂为活性氧化铝,运行单塔吸附和吹扫程序;真空缓冲罐V0101、真空泵P0101、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0101A、T0101B和T0101C组成第一变压吸附段,吸附塔内装填的吸附剂为碳分子筛,运行单塔吸附、均压和抽真空程序;富氧压缩机C0201、压缩机缓冲罐V0201、顺放缓冲罐V0202、程控阀、PLC控制系统、仪器仪表、工艺管道管件、吸附塔T0201A、T0201B和T0201C组成第二变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附、均压、顺放、逆放、吹扫和最终升压程序;产品纯氧缓冲罐V0301、顺放缓冲罐V0303、程控阀、PLC控制系统、仪器仪表、工艺管道管件、稳压阀、吸附塔T0301A、T0301B和T0301C组成第三变压吸附段,吸附塔内装填的吸附剂为5分子筛或X型锂分子筛,运行单塔吸附、均压、顺放、逆放、吹扫和最终升压程序。本实施例将上述四段变压吸附串联操作,变压吸附干燥段将空气中的气态水吸附下来,第一变压吸附段将空气中的二氧化碳及氧气吸附下来,第二变压吸附段用于将第一变压吸附段解析出来的二氧化碳及氮吸附下来,并把氧提高到85-96%(V)以上,第三变压吸附段用于将第二变压吸附段的吸附塔在吸附A步骤流出的氧气浓度大于85-96%(V)的混合气中氮气进一步吸附,并把氧提高到99.5%(V)以上。
原料空气经过空气压缩机(C0100)升压到0.2MPa(G)从变压吸附干燥段的吸附塔底部进入,吸附塔中的吸附剂选择性地吸附空气中的气态水,不易吸附的氧、氮和氩等组分从出口端排出进入第一变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地二氧化碳及氧气等组分,未吸附的部分氧和不易吸附的氮和氩等组分从出口端排出放空,第一变压吸附段的吸附塔吸附结束后,先进行均压再进行抽真空,真空泵抽出来的二氧化碳、氧气及氮气经过压缩机缓冲罐(V0201)和富氧压缩机(C0201)压缩到1.2MPa后进入第二变压吸附段处于吸附步骤的吸附塔,吸附塔中的吸附剂选择性地吸附富氧混合气中的氮气,不易吸附的氧和氩等组分从出口端流出进入第三变压吸附段处于 吸附步骤的吸附塔,吸附塔中的吸附剂进一步将富氧混合气中的氮气吸附下来,不易吸附的氧和氩等组分从出口端流出进入产品纯氧缓冲罐(V0301)。第一变压吸附段的吸附塔吸附结束后出口气中氧气浓度控制在7~12%(V),其吸附塔在一个循环周期中依次经历吸附A、均压降ED、抽真空VC和均压升ER变压吸附工艺步骤;第二变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在85-96%(V)左右,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升ER和最终升压FR变压吸附工艺步骤;第三变压吸附段处于吸附步骤的吸附塔出口气中氧气浓度控制在99.5%(V)以上,其吸附塔在一个循环周期中依次经历吸附A、均压降ED、顺放PP、逆放BD、吹扫P、均压升ER和最终升压FR变压吸附工艺步骤,第三变压吸附段的吸附塔在逆放BD和吹扫P步骤的解析气全部返回到压缩机缓冲罐V0201。氧气总回收率在85%左右,第一段真空解析气氧浓度在80%左右,四段循环时间一般为20-80秒,第一段真空度为-0.095MPa,压缩机机气量、四段吸附塔的空塔速度、真空泵的抽气量、吸附剂用量和吸附塔直径以及其他设计参数按变压吸附技术领域通常的情况进行设计。
本发明的每个吸附塔在一个循环中依次经历如下步骤。
变压吸附干燥段
⑴吸附A
打开程控阀KV1A-0和KV2A-0,原料空气经过空气压缩机(C0100)升压到0.2MPa(G)后,从吸附塔T0100A底部进入活性氧化铝床层,将空气中的气态水吸附下来,未吸附的不易吸附的氧气、氮气和氩气等组分从出口端排出,然后计入第一变压吸附段的吸附塔底部,随着时间的推移,活性氧化铝吸附的气态水总量不断增加,当活性氧化铝吸附气态水饱和时,停止进气,此时吸附结束,控制变压吸附干燥段吸附A步骤的出口混合气露点再-50℃左右。
⑵吹扫
吸附塔T0100A吸附结束后,打开程控阀KV3A-0和KV4A-0,第一变压吸附段的吸附塔吸附A步骤的放空气和第二变压吸附段的吸附塔逆放BD步骤及吹扫P步骤的放空气从吸附塔T0100A出口端经程控阀KV3A-0进入吸附塔,然后经过程控阀KV4A-0从吸附塔T0100A底部排出放空,顺放气吹扫P结束后,关闭程控阀KV3A-0和KV4A-0。
经过上述步骤后,吸附塔T0100A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0100A完全一样,只是在时间上相互错开。
第一变压吸附段的吸附塔:
⑴吸附A
打开程控阀KV1A-1,变压吸附干燥段吸附A步骤的出口混合气从吸附塔T0101A底部进入进行升压,当升到吸附压力时,打开程控阀KV2A-1,吸附塔中的吸附剂选择性地吸附空气中的二氧化碳及氧气等组分,未吸附的部分氧气和不易吸附的氮和氩等组分打开程控阀KV2A-1从出口端排出去变压吸附干燥段吹扫再生活性氧化铝,随着时间的推 移,吸附剂吸附的二氧化碳及氧气等组分的总量不断增加,当吸附塔T0101A出口的氧气浓度大于7-12%(V)时,停止进气,此时吸附结束。
⑵均压降ED
吸附结束后,打开程控阀KV3A-1和KV3C-1,吸附塔T0101A内死空间气体从吸附塔出口排出进入本段已完成逆放BD步骤的吸附塔T0101C升压,尽量让两塔压力相等。
⑶抽真空VC
吸附塔T0101A均压降ED结束后,打开程控阀KV4A-1从吸附塔底部用真空泵将吸附剂吸附的气态水、二氧化碳、氧气及氮气等组分抽出来进入压缩机缓冲罐(V0201),使吸附剂得到再生,同时获得富氧中间气,当没有吸附塔抽真空时,打开程控阀KV12,真空泵与真空缓冲罐V0101连通。
⑷均压升ER
吸附塔T0101A抽真空VC结束后,打开程控阀KV3A-1和KV3B-1,利用吸附塔T0101B均压降ED步骤排出的气体,从吸附塔T0101A出口端进入吸附塔,使吸附塔T0101A升高压力,尽量让吸附塔T0101A和T0101B压力相等。
经过上述步骤后,吸附塔T0101A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0101A完全一样,只是在时间上相互错开。
第二变压吸附段
⑴吸附A
打开第二变压吸附段的程控阀KV1A-2,将第一变压吸附段的吸附塔抽真空(VC)步骤抽出的富氧混合气送入压缩机缓冲罐(V0201),经富氧压缩机(C0201)压缩到1.2MPa后进入吸附塔T0201A吸附剂床层,吸附塔T0201A中的吸附剂选择性地吸附富氧混合气中的二氧化碳及氮气等组分,未吸附的部分氮气和不易吸附的氧和氩等组分打开程控阀KV2A-2从出口端流出进入第三变压吸附段处于吸附步骤的吸附塔,随着时间的推移,吸附剂吸附的二氧化碳及氮气等组分的总量不断增加,当吸附塔T0201A吸附二氧化碳及氮气饱和时,停止进气,此时吸附结束。
⑵均压降ED
吸附A结束后,打开程控阀KV3A-2和KV3C-2,吸附塔T0201A内死空间气体从吸附塔出口排出进入本段已完成吹扫P步骤的吸附塔T0201C升压,尽量让两塔压力相等。
⑶顺放PP
均压降ED结束后,关闭程控阀KV3C-2,打开程控阀KV23,吸附塔T0201A内死空间气体从吸附塔出口排出进入顺放缓冲罐(V0202),当压力降到0.38-0.42MPa(G)时,关闭程控阀KV3A-2和KV23,顺放PP结束。
⑷逆放BD
吸附塔T0201A顺放PP结束后,打开程控阀KV4A-2,将吸附塔T0201A内气体逆向降压送到变压吸附干燥段去吹扫再生活性氧化铝。
⑸顺放气吹扫P
吸附塔T0201A逆放BD结束后,打开程控阀KV3A-2和KV23,顺放缓冲罐(V0202)的混合气从吸附塔T0201A出口端经程控阀KV3A-2进入吸附塔,然后经过程控阀KV4A-2从吸附塔T0201A底部排出送到变压吸附干燥段去吹扫再生活性氧化铝,顺放气吹扫P结束后,关闭KV23。
⑹均压升ER
吸附塔T0201A顺放气吹扫P结束后,打开程控阀KV3A-2和KV3B-2,利用吸附塔T0201B均压降ED步骤排出的气体,从吸附塔T0201A出口端进入吸附塔,使吸附塔T0201A升高压力,直到吸附塔T0201A和T0201C压力相等。
⑺最终升压FR
均压升ER结束后,关闭程控阀KV3A-2,打开程控阀KV2A-2,用吸附过程中的出口气对吸附塔T0201A进行升压,直到接近第三变压吸附段的吸附压力。
经过上述步骤后,吸附塔T0201A完成了一个循环,再次进入原料气吸附,本段其他吸附塔的步骤和次序与吸附塔T0201A完全一样,只是在时间上相互错开。
第三变压吸附段的吸附塔在一个循环中依次经历的工艺步骤和程控阀开关时序与实施例11的第三变压吸附段相同。
本实施例结果为产品氧气浓度大于或等于99.5%(V),压力大于或等于1.0MPa,用氧成本比瓶装氧气节约50%。

Claims (20)

  1. 一种移动式变压吸附氧气生产装置的方法,其特征在于,此方法包括串联操作的第一变压吸附段、第二变压吸附段和第三变压吸附段,干燥的原料空气首先经过第一变压吸附段的速度选择型吸附剂床层,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,第一变压吸附段解析出来的富氧混合气进入第二变压吸附段的吸附塔,并经由氮平衡选择型吸附剂床层,大部分氮气被氮平衡选择型吸附剂床层吸附,氧气和氩气以及少量氮气从吸附塔出口流出进入从第三变压吸附段的吸附塔中经由氮平衡选择型吸附剂床层,大部分氮气被吸附下来,氧气和氩气以及少量氮气从吸附塔出口流出;第一变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A和抽真空VC两个变压吸附工艺步骤;第二变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤;第三变压吸附段的吸附塔在一个循环周期中至少依次经历吸附A、均压降ED、逆放BD和均压升ER变压吸附工艺步骤。
  2. 根据权利要求1所述的移动式变压吸附氧气生产装置的方法,其特征在于,第一变压吸附段的吸附塔在吸附A步骤之后增加均压降ED步骤,同时在抽真空VC步骤之后增加均压升ER步骤。
  3. 根据权利要求1或2所述的移动式变压吸附氧气生产装置的方法,其特征在于,第一变压吸附段的吸附塔在吸附A步骤之后增加顺放PP步骤。
  4. 根据权利要求1至3任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二变压吸附段的吸附塔在均压升ER步骤后增加最终升压FR变压吸附工艺步骤。
  5. 根据权利要求1至4任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第三变压吸附段的吸附塔在均压升ER步骤后增加最终升压FR变压吸附工艺步骤。
  6. 根据权利要求1至5任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二变压吸附段的吸附塔在逆放BD步骤之后增加第三变压吸附段解吸气吹扫P3变压吸附工艺步骤。
  7. 根据权利要求6所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二变压吸附段的吸附塔在第三变压吸附段解吸气吹扫P3步骤之后增加第三变压吸附段解吸气升压R3变压吸附工艺步骤。
  8. 根据权利要求1至6任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二变压吸附段的吸附塔在均压降ED步骤后增加顺放PP步骤,同时在逆放BD步骤后增加吹扫P步骤。
  9. 根据权利要求1至8任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第三变压吸附段的吸附塔在均压降ED步骤后增加顺放PP步骤,同时在逆放BD步骤后增加吹扫P步骤。
  10. 根据权利要求8或9所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二 变压吸附段的吸附塔在吹扫P步骤之后增加第三变压吸附段解吸气升压R3变压吸附工艺步骤。
  11. 根据权利要求1至10任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第三变压吸附段的吸附塔的解析气全部或部分返回与第一变压吸附段的富氧解析气混合流入第二变压吸附段。
  12. 根据权利要求1至7任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二变压吸附段的吸附塔在逆放BD步骤之后增加抽真空VC变压吸附工艺步骤。
  13. 根据权利要求1至7任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第三变压吸附段的吸附塔在逆放BD步骤之后增加抽真空VC变压吸附工艺步骤。
  14. 根据权利要求1至13任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第一变压吸附段的吸附塔吸附A步骤的压力为0.15-0.22MPa(表压);第二变压吸附段和第三变压吸附段的吸附塔吸附A步骤的压力为0.8-1.2MPa(表压)。
  15. 根据权利要求1至14任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第一变压吸附段的吸附塔吸附A步骤结束时出口气中氧气的浓度为3-12%(V)。
  16. 根据权利要求1至15任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第二变压吸附段的吸附塔吸附A步骤结束时出口气中氧气的浓度为85~96%(V)。
  17. 根据权利要求1至16任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第一变压吸附段和第二变压吸附段的吸附塔下部装填干燥剂床层;原料空气首先从第一变压吸附段的吸附塔底部进入干燥剂床层和速度选择型吸附剂床层,原料空气中的气态水绝大部分被干燥剂床层吸附,大部分氧气被速度选择型吸附剂床层吸附,大部分氮气和氩气从吸附塔出口排出,解析出来的气态水和富氧从第二变压吸附段的吸附塔底部进入干燥剂床层和氮平衡选择型吸附剂床层,富氧中的气态水绝大部分被干燥剂床层吸附,大部分氮气被氮平衡选择型吸附剂床层吸附,氧气和氩气以及少量氮气从吸附塔出口流出,然后,从第三变压吸附段的吸附塔底部再次进入氮平衡选择型吸附剂床层,大部分氮气被吸附下来,氧气和氩气以及少量氮气从吸附塔出口流出。
  18. 根据权利要求1至17任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,第一变压吸附段的吸附塔下部装填活性氧化铝作为干燥剂、上部装填碳分子筛作为速度选择型吸附剂;第二变压吸附段的吸附塔下部装填活性氧化铝作为干燥剂、上部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂;第三变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
  19. 根据权利要求1至16任一所述的移动式变压吸附氧气生产装置的方法,其特征在于,在第一变压吸附段之前增设变压吸附干燥段,用于除去空气中的气态水,使进入第一变压吸附段的空气达到速度选择型吸附剂床层对水分的要求;该变压吸附干燥段在一个循环周期中依次经历吸附A和吹扫P两个变压吸附工艺步骤,吹扫P步骤的气体来源于第一变压吸附段的吸附塔吸附A步骤出口的放空气和第二变压吸附段的吸附 塔解析放空气。
  20. 根据权利要求19所述的移动式变压吸附氧气生产装置的方法,其特征在于,干燥段装填活性氧化铝作为干燥剂;第一变压吸附段的吸附塔内部装填碳分子筛作为速度选择型吸附剂;第二变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂;第三变压吸附段的吸附塔内部装填5A型分子筛或X型锂分子筛作为氮平衡选择型吸附剂。
PCT/CN2020/084597 2020-04-14 2020-04-14 一种移动式变压吸附氧气生产装置的方法 WO2021207909A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20930709.9A EP4137451A4 (en) 2020-04-14 2020-04-14 METHOD FOR A MOVABLE PRESSURE SWING ADSORPTION OXYGEN PRODUCTION DEVICE
CN202080001884.6A CN111971251B (zh) 2020-04-14 2020-04-14 一种移动式变压吸附氧气生产装置的方法
US17/925,296 US20240058744A1 (en) 2020-04-14 2020-04-14 Method for Mobile Pressure Swing Adsorption Oxygen Production Device
PCT/CN2020/084597 WO2021207909A1 (zh) 2020-04-14 2020-04-14 一种移动式变压吸附氧气生产装置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084597 WO2021207909A1 (zh) 2020-04-14 2020-04-14 一种移动式变压吸附氧气生产装置的方法

Publications (1)

Publication Number Publication Date
WO2021207909A1 true WO2021207909A1 (zh) 2021-10-21

Family

ID=73386931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084597 WO2021207909A1 (zh) 2020-04-14 2020-04-14 一种移动式变压吸附氧气生产装置的方法

Country Status (4)

Country Link
US (1) US20240058744A1 (zh)
EP (1) EP4137451A4 (zh)
CN (1) CN111971251B (zh)
WO (1) WO2021207909A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015823A (zh) * 2021-10-27 2022-02-08 山西沃能化工科技有限公司 一种变压吸附提氢解析气用于高炉氢能炼铁装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028143B (zh) * 2021-03-07 2024-02-06 上海技典工业产品设计有限公司 一种能将低氧浓度的富氧空气提纯的变压吸附工艺和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640694A (en) * 1981-08-19 1987-02-03 Linde Aktiengesellschaft Adsorption process
FR2624759B1 (fr) * 1987-12-22 1990-05-04 Air Liquide Procede de traitement d'un melange gazeux par adsorption
US6428607B1 (en) * 2000-06-26 2002-08-06 Air Products And Chemicals, Inc. Pressure swing adsorption process which provides product gas at decreasing bed pressure
CN1557528A (zh) * 2004-01-18 2004-12-29 成都天立化工科技有限公司 采用三段变压吸附装置从变换气中脱除二氧化碳的方法
CN1583222A (zh) * 2004-06-11 2005-02-23 成都天立化工科技有限公司 采用三段变压吸附装置生产氧气的方法
CN102935324A (zh) * 2012-10-17 2013-02-20 四川天一科技股份有限公司 一种提高吸附相产品回收率的变压吸附方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140933A (en) * 1960-12-02 1964-07-14 Union Carbide Corp Separation of an oxygen-nitrogen mixture
JP2562326B2 (ja) * 1987-08-07 1996-12-11 住友精化株式会社 空気から高濃度酸素を取得する方法
JPH0768042B2 (ja) * 1988-08-18 1995-07-26 三菱重工業株式会社 高純度酸素製造方法
CA2102775C (en) * 1992-11-16 1999-01-19 Ravi Kumar Extended vacuum swing adsorption process
JP3694343B2 (ja) * 1995-05-01 2005-09-14 昭和エンジニアリング株式会社 低濃度酸素用psa
CN1142006C (zh) * 2002-04-29 2004-03-17 成都天立化工科技有限公司 采用两段变压吸附技术从空气中生产富氧的方法
US7066985B2 (en) * 2003-10-07 2006-06-27 Inogen, Inc. Portable gas fractionalization system
CN105749699B (zh) * 2016-03-31 2020-04-21 四川天采科技有限责任公司 一种全温程变压吸附气体分离提纯与净化的方法
CN206103653U (zh) * 2016-08-31 2017-04-19 成都华西堂环保科技有限公司 一种实现气体均布的真空变压制氧吸附塔
CN109704284B (zh) * 2019-02-01 2023-11-07 工业和信息化部威海电子信息技术综合研究中心 具有气体波动的分子筛吸附塔制氧装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640694A (en) * 1981-08-19 1987-02-03 Linde Aktiengesellschaft Adsorption process
FR2624759B1 (fr) * 1987-12-22 1990-05-04 Air Liquide Procede de traitement d'un melange gazeux par adsorption
US6428607B1 (en) * 2000-06-26 2002-08-06 Air Products And Chemicals, Inc. Pressure swing adsorption process which provides product gas at decreasing bed pressure
CN1557528A (zh) * 2004-01-18 2004-12-29 成都天立化工科技有限公司 采用三段变压吸附装置从变换气中脱除二氧化碳的方法
CN1583222A (zh) * 2004-06-11 2005-02-23 成都天立化工科技有限公司 采用三段变压吸附装置生产氧气的方法
CN102935324A (zh) * 2012-10-17 2013-02-20 四川天一科技股份有限公司 一种提高吸附相产品回收率的变压吸附方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4137451A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015823A (zh) * 2021-10-27 2022-02-08 山西沃能化工科技有限公司 一种变压吸附提氢解析气用于高炉氢能炼铁装置及方法

Also Published As

Publication number Publication date
US20240058744A1 (en) 2024-02-22
CN111971251A (zh) 2020-11-20
EP4137451A1 (en) 2023-02-22
CN111971251B (zh) 2024-01-19
EP4137451A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
EP1867379B1 (en) Pressure swing adsorption process with improved recovery of high-purity product
US5085674A (en) Duplex adsorption process
ES2256839T3 (es) Procedimiento de absorcion vsa de funcionamiento continuo.
JP2634022B2 (ja) 真空スイング吸着法によるガス成分の分離方法
TWI221785B (en) Vacuum swing adsorption process with controlled waste gas withdrawal
KR930012040B1 (ko) 기체상 혼합물을 분리하기 위한 압력 스윙(swing)식 흡착방법
KR100254295B1 (ko) 단일 흡착 베드를 이용한 압력 스윙 흡착 방법
US4765804A (en) PSA process and apparatus employing gaseous diffusion barriers
CA2189232C (en) Method of recovering oxygen-rich gas
EP0791388A2 (en) VSA adsorption process with energy recovery
US5906674A (en) Process and apparatus for separating gas mixtures
TW436316B (en) Pressure swing process and system using single adsorber and single blower for separating a gas mixture
US4959083A (en) Separation of gas mixtures
AU2005251849B2 (en) Oxygen production process using three-stage pressure swing adsorption plants
JPH0257972B2 (zh)
WO2014136645A1 (ja) メタンガス濃縮方法
WO2021207909A1 (zh) 一种移动式变压吸附氧气生产装置的方法
EP0266884A2 (en) Process and apparatus for pressure swing adsorption employing gaseous diffusion barriers
US5997611A (en) Single vessel gas adsorption system and process
WO2021207906A1 (zh) 一种移动式变压吸附氧气生产装置的方法
WO2021207914A1 (zh) 一种采用变压吸附技术生产氧气的方法
WO2021207903A1 (zh) 一种移动式变压吸附氧气生产装置的方法
RU196293U1 (ru) Портативный мембранно-адсорбцонный концентратор кислорода
JPH11267439A (ja) ガス分離方法及びこの方法を実施するガス分離装置
TW587955B (en) Pressure swing adsorption process with controlled internal depressurization flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020930709

Country of ref document: EP

Effective date: 20221114