WO2021205775A1 - 信号伝送装置および信号伝送回路 - Google Patents

信号伝送装置および信号伝送回路 Download PDF

Info

Publication number
WO2021205775A1
WO2021205775A1 PCT/JP2021/007450 JP2021007450W WO2021205775A1 WO 2021205775 A1 WO2021205775 A1 WO 2021205775A1 JP 2021007450 W JP2021007450 W JP 2021007450W WO 2021205775 A1 WO2021205775 A1 WO 2021205775A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
signal
power supply
wiring
signal line
Prior art date
Application number
PCT/JP2021/007450
Other languages
English (en)
French (fr)
Inventor
植松 裕
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US17/917,631 priority Critical patent/US20230179255A1/en
Priority to CN202180027213.1A priority patent/CN115380477A/zh
Priority to DE112021000952.4T priority patent/DE112021000952T5/de
Publication of WO2021205775A1 publication Critical patent/WO2021205775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/075Ladder networks, e.g. electric wave filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components

Definitions

  • the signal transmission device has a first signal line connected to one side of the first electrode, a first signal line connected to one side of the first electrode, and a second signal connected to the other side of the first electrode.
  • the first capacitive coupling portion that capacitively couples the ground wiring or the power supply wiring
  • a second capacitive coupling portion that capacitively couples the fourth electrode and the ground wiring or the power supply wiring.
  • the first signal line and the second signal line form a first differential wiring
  • the third signal line and the fourth signal line form a second differential wiring
  • the first signal line is formed.
  • the differential wiring and the first electrode, and the second differential wiring and the second electrode form a transmission path for transmitting an electric signal
  • the wiring preferably transmits power from the third electrode and the fourth electrode via the first electrode and the second electrode.
  • the range of the filter frequency can be extended to the high frequency side. Issues, configurations and effects other than those described above will be clarified by the following description of embodiments for carrying out the invention.
  • PoC is an abbreviation for Power over Coaxial cable.
  • PoC filter components are electronic components that contain at least an inductor component.
  • the filter components 2-2 to 2-3 have the same configuration, but often have a configuration using PoC filter components having different sizes and characteristics.
  • the signal side electrodes 3 of the filter component 2-1 are connected to the signal lines 1-1 and 1-2.
  • the power supply side electrode 4 of the filter component 2-1 is connected to the power supply wiring 5 via the filter components 2-2 to 2-3.
  • the filter frequency range is to be expanded to the high frequency side, it is essential to utilize components having a high antiresonance frequency, but due to the structure of the filter components 2-1 to 2-3, the antiresonance frequency is increased. There is a limit to the increase, and it has been difficult to construct a filter up to a filter frequency range of, for example, 10 GHz level.
  • a structure for forming a signal / power supply separation filter corresponding to a high-speed signal exceeding 10 Gbps on a printed wiring board at low cost is provided. can do.
  • FIG. 3 is a diagram showing the configuration of the signal transmission device 100 according to the first embodiment.
  • signal lines 1-1 and 1-2 are formed on the substrate 11 by printed wiring.
  • the signal lines 1-1 and 1-2 form a transmission line for transmitting an electric signal and are connected to a device such as a communication LSI.
  • a filter component 2-1 constituting a signal / power supply separation filter is connected between the signal line 1-1 and the signal line 1-2, and further connected to the power supply wiring 5 via the filter component 2-1.
  • the power supply wiring 5 is connected to a power supply IC (not shown).
  • the signal / power supply separation filter may show only the filter component 2-1. However, if necessary, a comparative example is shown. Filter components 2-2 to 2-3 and the like may be included.
  • the signal lines 1-1 and 1-2 are connected to the power supply wiring 5 via the signal side electrode 3, the electronic component 2 and the power supply side electrode 4.
  • the power for the power supply output from the power supply IC is transmitted to the transmission signal lines 1-1 and 1-2 via the power supply wiring 5, the power supply side electrode 4, the signal side electrode 3, and the electronic component 2. It is supplied to devices such as LSIs at these connection destinations via transmission signal lines 1-1 and 1-2. That is, the transmission signal lines 1-1 and 1-2 transmit electric power between the power supply IC and the connected device via the signal side electrode 3, the electronic component 2, and the power supply side electrode 4.
  • the filter component 2-1 including the signal side electrode 3, the electronic component 2, and the power supply side electrode 4 is arranged in the removal portion 9 of the ground wiring on the substrate 11.
  • the electrode patterns 6-1 and 6-2 provided on both sides of the power supply side electrode 4 are arranged so as to face the ground wiring 8-1 (see FIG. 4) of the substrate 11. That is, the electrode patterns 6-1 and 6-2 function as a capacitive coupling portion 6 that capacitively couples the power supply side electrode 4 and the ground wiring 8-1.
  • the capacitive coupling portion 6 includes a first capacitive coupling portion (electrode pattern 6-1) and a second capacitive coupling portion (electrode pattern 6-2).
  • the first capacitive coupling portion is provided outside the connection portion a between the signal side electrode 3 and the signal line 1-1, and the power supply side electrode 4 and the ground wiring 8-1 are capacitively coupled.
  • the second capacitive coupling portion is provided outside the connection point b between the signal side electrode 3 and the signal line 1-2, and capacitively couples the power supply side electrode 4 and the ground wiring 8-1.
  • FIG. 5A shows an equivalent circuit of the signal transmission device 100.
  • FIG. 5B shows an S-parameter profile of the signal transmission device 100.
  • the horizontal axis is the frequency and the vertical axis is the S parameter.
  • the capacitive coupling portion 6 is added to the power supply side electrode 4 of the filter component 2-1 in the first stage.
  • the filter performance is widened by preventing the inflow of high-frequency current leaking to the power supply side through the parasitic capacitance of the filter component 2-1.
  • the signal passing characteristics (S 21 ) can be compared. It has almost no effect when compared with the example. Then, the filter characteristic (S 31 ) can be expanded to a high frequency filter frequency range as compared with the comparative example.
  • FIG. 6A is a diagram showing a signal passing characteristic (S 21 )
  • FIG. 6B is a diagram showing a filter characteristic (S 31).
  • S 21 signal passing characteristic
  • S 31 filter characteristic
  • the range of the filter frequency can be expanded to the high frequency side, and the capacitive coupling portion 6 can be configured only by the pattern wiring of the substrate 11, and the substrate has a very small pattern wiring. There is almost no effect on the area of 11, and there is no additional cost.
  • FIGS. 8 and 9 A second embodiment will be described with reference to FIGS. 8 and 9. The same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the electrode patterns 6-1 and 6-2 are provided on both sides of the power supply side electrode 4, but in the second embodiment, the electrode patterns 6-1 and 6-2 are provided on both sides of the power supply side electrode 4. 6-2, 6-3, 6-4 are provided. Thereby, the filter performance can be further improved.
  • the size of the electrode pattern of the capacitive coupling portion 6 is increased in order to improve the characteristics in the high frequency region, resonance occurs according to the size of the electrode pattern, so it is desirable to provide a plurality of small electrode patterns. Therefore, in the second embodiment, as shown in FIG. 8, two electrode patterns 6-1, 6-2, 6-3, and 6-4 are provided on the left and right sides of the power supply side electrode 4, for a total of four. Then, by making the electrode patterns 6-1, 6-2, 6-3, and 6-4 face the ground wiring 8-1 (see FIG. 4), a parallel flat plate type capacitor is formed, and the capacitive coupling portion 6 is formed. Realize.
  • the number of electrode patterns is not limited to four, and more electrode patterns may be provided.
  • FIG. 9A is a diagram showing changes in the electric field when a high-frequency current flows through the signal lines 1-1 and 1-2 in the present embodiment.
  • the change in the electric field E obtained by electromagnetic field analysis is shown by the dotted line.
  • the capacitive coupling portion 6 needs to be arranged symmetrically on both sides of the power supply side electrode 4. .. Further, since the coupling is from the signal side electrode 3, it is desirable that the capacitive coupling portion 6 of the power supply side electrode 4 is on the signal lines 1-1 and 1-2. For example, when there are two electrode patterns 6-1 and 6-2 as shown in the first embodiment, the electrode patterns 6-1 and 6-2 are signal lines 1-1 as shown in FIG. Place it on the 1-2 side. Even when there are a plurality of electrode patterns, the electrode patterns are arranged on the signal lines 1-1 and 1-2 as much as possible.
  • the capacitive coupling portion 6 is formed by widening the width W of the power supply side electrode 4.
  • the width W of the power supply side electrode 4 is made larger than the width of the removal portion 9 of the ground wiring.
  • the signal side electrode 3 has a size that fits in the width of the removal portion 9 of the ground wiring.
  • the width W of the power supply side electrode 4 is made larger than the width of the signal side electrode 3.
  • the length of the filter component 2-1 in the longitudinal direction is the same as that of the first embodiment.
  • the widths of the power supply side electrode 4 and the signal side electrode 3 are the same as those in the first embodiment, but the removal portion 9 of the ground wiring directly under the power supply side electrode 4
  • the width is narrower than that of the removal portion 9 of the ground wiring directly under the signal side electrode 3.
  • both ends 6-5 and 6-6 of the power supply side electrode 4 that overlap with the ground wiring face the ground wiring to form a parallel flat plate type capacitor and form the capacitive coupling portion 6.
  • the signal side electrode 3 has a size that fits in the width of the removal portion 9 of the ground wiring.
  • the length of the filter component 2-1 in the longitudinal direction is the same as that of the first embodiment. According to this embodiment, a remarkable effect can be obtained with a simple configuration in which the ground wiring is simply devised.
  • the capacitive coupling portion 6 is formed by increasing the size of the power supply side electrode 4 as in the third embodiment.
  • protrusions 6-5 and 6-6 are formed on the power supply side electrode 4 so that the area of the power supply side electrode 4 near the signal lines 1-1 and 1-2 is wide.
  • the protrusions 6-5 and 6-6 are made larger than the width of the removal portion 9 of the ground wiring.
  • the protrusions 6-5 and 6-6 of the power supply side electrode 4 that overlap the ground wiring face the ground wiring to form a parallel flat plate type capacitor and form the capacitive coupling portion 6. According to this embodiment, a remarkable effect can be obtained by a simple configuration in which the power supply side electrodes 4 are the protrusions 6-5 and 6-6.
  • a seventh embodiment will be described with reference to FIG.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the signal transmission device 100 is utilized for superimposing the power supply on the differential signal line, and as such an utilization mode, there is, for example, PoDL (Power over Data Line).
  • the filter component 21 including the signal side electrode 3-1 and the electronic component 2-1 and the power supply side electrode 4-1 is arranged in the ground wiring removing portion 9-1 on the substrate 11. Then, the signal side electrode 3-1 is connected to the P side wiring 1-1 and 1-2.
  • the electrode patterns 6-1 and 6-2 provided on both sides of the power supply side electrode 4-1 are arranged so as to face the ground wiring 8-1 (see FIG. 4) of the substrate 11. That is, the electrode patterns 6-1 and 6-2 function as a capacitive coupling portion 6 that capacitively couples the power supply side electrode 4-1 and the ground wiring 8-1.
  • a first signal line 1-1 connected to one side of the first electrode 3-1 and a second signal line 1-2 connected to the other side of the first electrode 3-1.
  • it includes a third signal line 1-3 connected to one side of the second electrode 3-2 and a fourth signal line 1-4 connected to the other side of the second electrode 3-2.
  • the first signal line 1-1 and the second signal line 1-2 are P-side wirings.
  • the third signal line 1-3 and the fourth signal line 1-4 are N-side wirings.
  • the single filter component 10 is paired with the first electrode 3-1 and the second electrode 3-2, and the first electrode 3-1 and the second electrode 3 pass through an electronic component containing at least an inductor component. It includes a third electrode 4-1 and a fourth electrode 4-2 connected to -2.
  • the first signal line 1-1 and the second signal line 1-2 form the first differential wiring
  • the third signal line 1-3 and the fourth signal line 1-4 are the second difference.
  • Configure dynamic wiring Then, the first differential wiring and the first electrode 3-1 and the second differential wiring and the second electrode 3-2 form a transmission path for transmitting an electric signal, and the first differential wiring is formed.
  • the wiring and the second differential wiring transmit power from the third electrode 4-1 and the fourth electrode 4-2 to the first electrode 3-1 and the second electrode 3-2.
  • the example in which one single filter component 10 is provided has been described, but a plurality of single filter components 10 may be connected in series and connected to the power supply wirings 5-1 and 5-2.
  • the first-stage single filter component 10 connected to the first differential wiring and the second differential wiring has the first capacitive coupling portions 6-1 and 6-2 and the second capacitive coupling portion 6-.
  • 3 and 6-4 are provided, the single filter component 10 in the subsequent stage does not have a capacitive coupling portion.
  • the single filter component 10 since the single filter component 10 is used, it is possible to suppress the common mode component due to the difference in characteristics between components due to the variation of the components, as compared with the case where a plurality of filter components 10 are used.
  • FIG. 16 is a diagram showing a circuit configuration of the signal transmission circuit 1000.
  • the signal transmission circuit 1000 in the present embodiment is the one to which the signal transmission device 100 described in the first to eighth embodiments is applied.
  • the camera unit 19 includes a camera 16, an image IC 13-1, a serializer 14, and a capacitor 12-1.
  • the image data captured by the camera 16 is image-processed by the image IC 13-1, converted into serial data by the serializer 14, and transmitted to the coaxial cable 18 via the DC blocking capacitor 12-1.
  • the power supplied via the coaxial cable 18 is supplied to the DCDC converter 17-1 via the signal transmission device 100.
  • the DCDC converter 17-1 supplies power to the camera 16, the image IC 13-1, and the serializer 14.
  • the signal transmission device 100 includes the capacitive coupling unit 6 shown in each of the above-described embodiments.
  • the ECU module 20 includes a capacitor 12-2, a deserializer 15, and a control IC 13-2.
  • the signal transmitted to the ECU module 20 is transmitted to the deserializer 15 via the DC cutoff capacitor 12-2, converted into parallel data by the deserializer 15, and input to the control IC 13-2.
  • the DCDC converter 17-2 receives power from a battery or the like and supplies a predetermined power to the coaxial cable 18 via the signal transmission device 100.
  • the signal transmission device 100 includes the capacitive coupling unit 6 shown in each of the above-described embodiments.
  • the surface layer of the substrate 11 is the mounting surface of the filter component 2-1 and the power supply wiring layer 23 is directly below the mounting surface. Further, a ground wiring layer 8 is provided below the power supply wiring layer 23.
  • the power supply wiring layer 23 and the ground wiring layer 8 have a capacitance with a very large parallel flat plate, it is equivalent to being connected with low impedance at high frequencies.
  • the substrate 11 having such a configuration even if the power supply wiring removing portion 9 is provided directly under the filter component 2-1, the same effect as described in the first embodiment or the like can be obtained.
  • the power supply wiring layer 23 exists directly below the electrode patterns 6-1 and 6-2 provided on both sides of the power supply side electrode 4. That is, the electrode patterns 6-1 and 6-2 form a parallel flat plate with the power supply wiring layer 23 and function as the capacitive coupling portion 6.
  • This embodiment can be similarly applied not only to the first embodiment but also to the second to ninth embodiments.
  • a signal transmission device 100 that covers a frequency range of more than 10 GHz, which is difficult to reach only by combining filter components. Furthermore, since it can be configured only with the pattern wiring of the printed wiring board, high performance can be realized at low cost and high density.
  • Such a signal transmission device 100 is applied to various product fields such as other information devices, infrastructure control devices, etc., in which power is superimposed on a signal line and transmitted, typified by communication between a camera and a control unit of an in-vehicle device. It is possible.
  • the first capacitive coupling portion 6-1 that capacitively couples the third electrode 4-1 and the fourth electrode 4-2 connected to 2, the third electrode 4-1 and the ground wiring or the power supply wiring, It has a 6-2, second capacitive coupling portions 6-3 and 6-4 for capacitively coupling the fourth electrode 4-2 and the ground wiring or the power supply wiring, and the first signal line 1-1.
  • the second signal line 1-2 constitutes the first differential wiring
  • the third signal line 1-3 and the fourth signal line 1-4 form the second differential wiring
  • the first The differential wiring and the first electrode 3-1 and the second differential wiring and the second electrode 3-2 form a transmission path for transmitting an electric signal
  • the first differential wiring and the second electrode 3-2 form a transmission path.
  • the differential wiring transmits power from the third electrode 4-1 and the fourth electrode 4-2 to the first electrode 3-1 and the second electrode 3-2. This makes it possible to extend the range of the filter frequency to the high frequency side.
  • the present invention is not limited to the above-described embodiment, and other embodiments that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structure Of Printed Boards (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

信号側電極と、前記信号側電極の一方側と繋がる第1の信号線と、前記信号側電極の他方側と繋がる第2の信号線と、前記信号側電極と対をなし、少なくともインダクタ成分を含む電子部品を介して前記信号側電極に接続される電源側電極と、前記電源側電極とグランド配線もしくは電源配線とを容量結合する容量結合部と、を有し、前記第1の信号線と前記信号側電極と前記第2の信号線は、電気信号を伝送する伝送路を形成し、前記第1の信号線および前記第2の信号線は、前記信号側電極、前記電子部品、および前記電源側電極を介して電力を伝送する信号伝送装置。

Description

信号伝送装置および信号伝送回路
 本発明は、信号伝送装置および信号伝送回路に関する。
 特許文献1によれば、モニタ用回路とカメラ用回路の間を同軸ケーブルで接続し、同軸ケーブルに信号と電源とを重畳させて伝送している。信号ラインの経路には送受信用ICの直近に直流カット用のコンデンサを配置し、また電源ラインには信号ラインとの接続点にアクティブフィルタを挿入することで、フィルタ周波数の範囲に応じて信号と電源の分離を行っている。
米国特許出願公開第2013/0187445号明細書
 フィルタ周波数の範囲を高周波側に広げることが困難であった。
 本発明の第1の態様による信号伝送装置は、信号側電極と、前記信号側電極の一方側と繋がる第1の信号線と、前記信号側電極の他方側と繋がる第2の信号線と、前記信号側電極と対をなし、少なくともインダクタ成分を含む電子部品を介して前記信号側電極に接続される電源側電極と、前記電源側電極とグランド配線もしくは電源配線とを容量結合する容量結合部と、を有し、前記第1の信号線と前記信号側電極と前記第2の信号線は、電気信号を伝送する伝送路を形成し、前記第1の信号線および前記第2の信号線は、前記信号側電極、前記電子部品、および前記電源側電極を介して電力を伝送するのが好ましい。
 本発明の第2の態様による信号伝送装置は、第1の電極と、前記第1の電極の一方側と繋がる第1の信号線と、前記第1の電極の他方側と繋がる第2の信号線と、第2の電極と、前記第2の電極の一方側と繋がる第3の信号線と、前記第2の電極の他方側と繋がる第4の信号線と、前記第1の電極および前記第2の電極と対をなし、少なくともインダクタ成分を含む電子部品を介して前記第1の電極と第2の電極に接続される第3の電極および第4の電極と、前記第3の電極とグランド配線もしくは電源配線とを容量結合する第1の容量結合部と、前記第4の電極と前記グランド配線もしくは前記電源配線とを容量結合する第2の容量結合部と、を有し、前記第1の信号線と前記第2の信号線は第1の差動配線を構成し、前記第3の信号線と前記第4の信号線は第2の差動配線を構成し、前記第1の差動配線と前記第1の電極、および第2の差動配線と前記第2の電極は、電気信号を伝送する伝送路を形成し、前記第1の差動配線と前記第2の差動配線は、前記第3の電極と前記第4の電極から前記第1の電極と前記第2の電極を介して電力を伝送するのが好ましい。
 本発明によれば、フィルタ周波数の範囲を高周波側に広げることが可能になる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態の説明により明らかにされる。
比較例における信号伝送装置の構成図である。 (A)(B)比較例における信号伝送装置の等価回路およびインピーダンスプロファイルを示す図である。 第1の実施形態における信号伝送装置の構成を示す図である。 (A)(B)第1の実施形態における基板上にフィルタ部品を配置した状態のプリント基板断面図である。 (A)(B)第1の実施形態における信号伝送装置の等価回路、信号伝送装置のSパラメータプロファイルを示す図である。 (A)(B)第1の実施形態における信号通過特性(S21)、フィルタ特性(S31)を示す図である。 第1の実施形態における信号伝送装置を示す斜視図である。 第2の実施形態における信号伝送装置の構成を示す図である。 (A)(B)(C)第2の実施形態における信号伝送装置の電場の変化を示す図、信号通過特性(S21)、フィルタ特性(S31)を示す図である。 第3の実施形態における信号伝送装置の構成を示す図である。 第4の実施形態における信号伝送装置の構成を示す図である。 第5の実施形態における信号伝送装置の構成を示す図である。 第6の実施形態における信号伝送装置の構成を示す図である。 第7の実施形態における信号伝送装置の構成を示す図である。 第8の実施形態における信号伝送装置の構成を示す図である。 第9の実施形態における信号伝送回路の回路構成を示す図である。 (A)(B)第10の実施形態における基板上にフィルタ部品を配置した状態のプリント基板断面図である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
[比較例]
 本実施形態を説明する前に、本実施形態と対比される比較例について説明する。
 図1は比較例における信号伝送装置の構成図である。信号伝送装置は、図中左側の信号線1-1と図中右側の信号線1-2の中央で分岐して、フィルタ部品2-1~2-3により構成される信号・電源分離フィルタを介して電源配線5に接続される。信号線1-1、1-2は、電気信号を伝送する伝送路を形成し、通信LSI等のデバイスに接続される。フィルタ部品2-1は、信号側電極3と電源側電極4との間にPoCフィルタ部品を配置して成る。PoCはPower over Coaxial cableの略である。PoCフィルタ部品は、少なくともインダクタ成分を含む電子部品である。フィルタ部品2-2~2-3も同様の構成であるが、サイズおよび特性の異なるPoCフィルタ部品を使った構成をとることが多い。フィルタ部品2-1の信号側電極3は、信号線1-1、1-2に接続される。フィルタ部品2-1の電源側電極4は、フィルタ部品2-2~2-3を介して電源配線5に接続される。
 図2(A)は、信号伝送装置の等価回路を示す。図2(B)は、信号伝送装置のインピーダンスプロファイルを示す。図2(B)において、横軸は周波数、縦軸はインピーダンスである。
 図2(A)に示すとおり、フィルタ部品は単純なインダクタンスではなく、インダクタンスに直列に入った抵抗成分、さらには寄生容量成分がインダクタンスに並列に入った回路で表現される。すなわち、フィルタ部品2-1~2-3は、並列LC回路である。図2(B)に示すように、インダクタンスLと容量Cで決まる反共振周波数でインピーダンスの極大値をとるような山型のインピーダンスプロファイルを有する。フィルタ部品2-1~2-3のインピーダンスプロファイルはそれぞれ、L1~L3であり、信号・電源分離フィルタの合成インピーダンスプロファイルはLである。
 信号・電源分離フィルタの役割は、信号線1に対して十分に高いインピーダンスとなる部品を電源配線5との接続点に挿入することで、電源配線5側にエネルギーが伝わることを防ぐ役割がある。信号・電源分離フィルタの機能として、信号のエネルギーが存在するフィルタ周波数範囲(信号伝送用周波数範囲)を基準インピーダンスZ0以上のインピーダンスになるようにする必要がある。一方で単一のフィルタ部品のインピーダンスでは幅広い周波数範囲をカバーできないため、反共振周波数の異なる部品を複数用いることでフィルタ周波数範囲を広げる。図2(B)は、3つのフィルタ部品2-1~2-3を使うことでフィルタ周波数範囲を広げた例を示す。反共振周波数が最も高いフィルタ部品2-1を信号線1-1、1-2との接続点に設けることで、高周波のエネルギー漏れを防ぐ役割を果たす。
 しかしながら、この比較例において、高周波側にフィルタ周波数範囲を広げようとすると、反共振周波数の高い部品の活用が必須になるが、フィルタ部品2-1~2-3の構造上、反共振周波数を高めることに限界があり、例えば、10GHzレベルのフィルタ周波数範囲までフィルタを構成することが困難であった。
 以下に説明する各実施形態によれば、このような信号伝送装置において、例えば、10Gbpsを超えるような高速信号に対応した信号・電源分離フィルタを低コストにプリント配線基板上に形成する構造を提供することができる。
[第1の実施形態]
 図3は、第1の実施形態における信号伝送装置100の構成を示す図である。
 図3に示すように、基板11上に信号線1-1、1-2をプリント配線により形成する。この信号線1-1、1-2は、電気信号を伝送する伝送路を形成し、通信LSI等のデバイスに繋がる配線である。この信号線1-1と信号線1-2の間には、信号・電源分離フィルタを構成するフィルタ部品2-1が接続され、さらに、フィルタ部品2-1を介して電源配線5へ接続される。電源配線5は不図示の電源ICと接続される。なお、本実施形態および以降の実施形態においては、説明を簡単にするために、信号・電源分離フィルタはフィルタ部品2-1のみを図示する場合があるが、必要に応じて、比較例で示したフィルタ部品2-2~2-3等を含めてもよい。
 フィルタ部品2-1は、信号側電極3と、信号側電極3と対をなし、少なくともインダクタ成分を含む電子部品2を介して信号側電極3に接続される電源側電極4を備える。信号線1-1は信号側電極3の一方側に繋がり、信号線1-2は信号側電極3の他方側に繋がる。電源側電極4には、電源側電極4の両側に、それぞれ、電極パターン6-1、6-2が、電極パターン6-1、6-2よりも細い配線パターン7-1、7-2を介して接続される。
 信号線1-1、1-2は、信号側電極3、電子部品2および電源側電極4を介して電源配線5に繋がっている。これにより、電源ICから出力される電源用の電力が、電源配線5、電源側電極4、信号側電極3および電子部品2を経由して伝送信号線1-1、1-2に伝達され、伝送信号線1-1、1-2を介して、これらの接続先にあるLSI等のデバイスに供給される。すなわち、伝送信号線1-1、1-2は、信号側電極3、電子部品2、および電源側電極4を介して、電源ICと接続先のデバイスとの間で電力を伝送する。
 信号側電極3、電子部品2、電源側電極4よりなるフィルタ部品2-1は、基板11上のグランド配線の除去部9に配置される。一方、電源側電極4の両側に設けられた電極パターン6-1、6-2は、基板11のグランド配線8-1(図4参照)に対向して配置される。すなわち、電極パターン6-1、6-2は、電源側電極4とグランド配線8-1とを容量結合する容量結合部6として機能する。換言すれば、容量結合部6は、第1の容量結合部(電極パターン6-1)と第2の容量結合部(電極パターン6-2)を備える。そして、第1の容量結合部は、信号側電極3と信号線1-1との接続箇所aよりも外側に設けられ、電源側電極4とグランド配線8-1とを容量結合する。第2の容量結合部は、信号側電極3と信号線1-2との接続箇所bよりも外側に設けられ、電源側電極4とグランド配線8-1とを容量結合する。
 図4は、基板11上にフィルタ部品2-1を配置した状態の断面図であり、図4(A)は、その側面図を、図4(B)は、その後面図を示す。図4(A)は、図3のX-X線の断面図、図4(B)は、図3のY-Y線の断面図である。
 基板11は多層配線基板であり、基板11の表層がフィルタ部品2-1の搭載面であり、その直下にグランド配線層8-1がある。図4(A)ではグランド配線層8-1の更に下層もグランド配線層8-2を設けた例で記載したが、この層は信号層であってもよい。図4(A)に示すように、信号側電極3、電子部品2、電源側電極4の直下は、不要な寄生容量が発生しないようにグランド配線の除去部9を設けている。
 一方で、図4(B)に示すように、電源側電極4の両側に設けられた電極パターン6-1、6-2の直下には、グランド配線層8-1が存在する。すなわち、電極パターン6-1、6-2は、グランド配線層8-1と平行平板を形成して容量結合部6として機能する。
 図5(A)は、信号伝送装置100の等価回路を示す。図5(B)は、信号伝送装置100のSパラメータプロファイルを示す。図5(B)において、横軸は周波数、縦軸はSパラメータである。
 本実施形態では、図5(A)に示すように、初段のフィルタ部品2-1の電源側電極4に容量結合部6を追加する。これにより、フィルタ部品2-1の寄生容量を介して電源側に漏洩する高周波電流の流入を防ぐことでフィルタ性能を広帯域化する。
 本実施形態によれば、図5(B)に示すように、容量結合部6を初段のフィルタ部品2-1の電源側電極4に追加することで、信号通過特性(S21)は、比較例と比較してもほとんど影響を与えない。そして、フィルタ特性(S31)は、比較例と比較して高周波のフィルタ周波数範囲に拡大することができる。
 図6(A)は、信号通過特性(S21)を、図6(B)は、フィルタ特性(S31)を示す図である。
 図6(A)に示すように、本実施形態によれば、容量結合部6を初段のフィルタ部品2-1の電源側電極4に追加することで、信号通過特性(S21)は、ほとんど影響を与えない。そして、図6(B)に示すように、フィルタ特性(S31)が改善していく傾向が確認できる。
 図7は本実施形態における信号伝送装置100を示す斜視図である。
 図7に示すように、電極パターン6-1、6-2をグランド配線8と対向させることで、平行平板型のコンデンサを形成し、容量結合部6を実現する。電極パターン6-1は、図示を省略しているが、電源側電極4の両側に、それぞれ、電極パターン6-1、6-2が、電極パターン6-1、6-2よりも細い配線パターン7-1、7-2を介して接続される。容量結合部6を設けることにより追加する容量としては0.1pF~数 pF程度であり、10GHz帯のフィルタ性能改善に寄与する。また、電極パターン6-1、6-2の位置は信号線1-1、1-2側にそれぞれ近いほうが望ましい。また、電源側電極4の両側に設ける電極パターン6-1、6-2は左右対称であることが望ましい。これらの配置の理由については第2の実施形態の中で電磁界解析の結果も含めて説明する。
 本実施形態によれば、フィルタ周波数の範囲を高周波側に広げることが可能になり、しかも、基板11のパターン配線のみで容量結合部6を構成でき、また非常に小さいパターン配線であることから基板11の面積への影響もほとんどなく、追加コストもかからない。
[第2の実施形態]
 図8および図9を参照して第2の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。第1の実施形態では、電源側電極4の両側に、電極パターン6-1、6-2を設けたが、第2の実施形態では、電源側電極4の両側に、電極パターン6-1、6-2、6-3、6-4を設ける。これにより、フィルタ性能をさらに改善することができる。
 高周波領域の特性改善のため容量結合部6の電極パターンのサイズを大きくすると、電極パターンの大きさに応じた共振が発生するため、小さい電極パターンを複数設けることが望ましい。このため、第2の実施形態では、図8に示すように、電極パターン6-1、6-2、6-3、6-4を電源側電極4の左右に2個ずつ計4個設ける。そして、電極パターン6-1、6-2、6-3、6-4をグランド配線8-1(図4参照)と対向させることで、平行平板型のコンデンサを形成し、容量結合部6を実現する。なお、電極パターンは4個に限らず、より多くの電極パターンを設けてもよい。
 図9(A)は、本実施形態において、信号線1-1、1-2に高周波電流が流れた時の電場の変化を示す図である。電磁界解析により求めた電場Eの変化を点線で示す。
 信号線1-1、1-2を流れる電流が信号側電極3に到達したとき、電場Eの乱れが生じる。これは、信号側電極3の存在により配線幅が大きく変わったこと、また信号側電極3のインピーダンス整合のために信号側電極3直下にグランド配線の除去部9を設けているためリターン電流が不連続となることに因る。この電場Eの乱れは直近にある電源側電極4への結合となり、高周波電流の漏洩となる。この漏洩電流を即座にグランド配線に流すために両端に配置した容量結合部6が効果を発揮する。信号線1-1、1-2上の高周波電流は双方向に流れ、電源側電極4の両側で結合が起こるため、容量結合部6は電源側電極4の両側に対称に配置する必要がある。また、信号側電極3からの結合のため、電源側電極4の容量結合部6は信号線1-1、1-2側にあることが望ましい。例えば、第1の実施形態で示したように電極パターン6-1、6-2が2個の場合は、図3に示すように、電極パターン6-1、6-2を信号線1-1、1-2側に配置する。電極パターンが複数の場合も、可能な限り電極パターンを信号線1-1、1-2側に配置する。
 図9(B)は、信号通過特性(S21)を、図9(C)は、フィルタ特性(S31)を示す図である。
 図9(B)に示すように、本実施形態によれば、容量結合部6を複数の電極パターンで構成することで、信号通過特性(S21)は、ほとんど影響を与えない。そして、図9(C)に示すように、フィルタ特性(S31)が改善していく傾向が確認できる。
[第3の実施形態]
 図10を参照して第3の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。
 本実施形態では、電源側電極4の幅Wを広げることで容量結合部6を形成する。電源側電極4の幅Wは、グランド配線の除去部9の幅よりも大きくする。これにより、グランド配線と重なる電源側電極4の両端部がグランド配線と対向することで、平行平板型のコンデンサとなり、容量結合部6(6-5、6-6)を形成する。
 電源側電極4のサイズより僅かに、例えば10%程度、その幅Wを広げるだけでも0.1~0.3pF程度の容量を形成できるため、単純な構成で顕著な効果が出る。信号側電極3はグランド配線の除去部9の幅に収まるサイズとする。換言すれば、電源側電極4の幅Wを信号側電極3の幅よりも大きくする。また、フィルタ部品2-1の長手方向の長さは第1の実施形態と同じである。
[第4の実施形態]
 図11を参照して第4の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。
 本実施形態では、図11に示すように、電源側電極4および信号側電極3の幅は、第1の実施形態と同じく変わらないが、電源側電極4の直下のグランド配線の除去部9が信号側電極3の直下のグランド配線の除去部9よりも幅が狭い。これにより、グランド配線と重なる電源側電極4の両端部6-5、6-6がグランド配線と対向することで、平行平板型のコンデンサとなり、容量結合部6を形成する。信号側電極3はグランド配線の除去部9の幅に収まるサイズとする。また、フィルタ部品2-1の長手方向の長さは第1の実施形態と同じである。
 本実施形態によれば、グランド配線を工夫するだけの単純な構成で顕著な効果が出る。
[第5の実施形態]
 図12を参照して第5の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。
 本実施形態では、第3の実施形態と同様に電源側電極4のサイズを大きくすることで容量結合部6を形成する。この場合、電源側電極4の信号線1-1、1-2に近い側の面積が幅広になるように電源側電極4を台形の形状とする。電源側電極4は、台形の幅広部分6-5、6-6がグランド配線の除去部9の幅よりも大きくする。これにより、グランド配線と重なる電源側電極4の幅広部分6-5、6-6がグランド配線と対向することで、平行平板型のコンデンサとなり、容量結合部6を形成する。
 本実施形態によれば、電源側電極4を台形の形状とする単純な構成で顕著な効果が出る。
[第6の実施形態]
 図13を参照して第6の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。
 本実施形態では、第3の実施形態と同様に電源側電極4のサイズを大きくすることで容量結合部6を形成する。この場合、電源側電極4の信号線1-1、1-2に近い側の面積が幅広になるように電源側電極4に突起部6-5、6-6を形成する。電源側電極4は、突起部6-5、6-6がグランド配線の除去部9の幅よりも大きくする。これにより、グランド配線と重なる電源側電極4の突起部6-5、6-6がグランド配線と対向することで、平行平板型のコンデンサとなり、容量結合部6を形成する。
 本実施形態によれば、電源側電極4を突起部6-5、6-6とする単純な構成で顕著な効果が出る。
[第7の実施形態]
 図14を参照して第7の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。
 本実施形態では、差動信号線への電源重畳に信号伝送装置100を活用したものであり、このような活用形態として、例えばPoDL(Power over Data Line)がある。
 信号側電極3-1、電子部品2-1、電源側電極4-1よりなるフィルタ部品21は、基板11上のグランド配線の除去部9-1に配置される。そして、信号側電極3-1はP側配線1-1、1-2に接続される。電源側電極4-1の両側に設けられた電極パターン6-1、6-2は、基板11のグランド配線8-1(図4参照)に対向して配置される。すなわち、電極パターン6-1、6-2は、電源側電極4-1とグランド配線8-1とを容量結合する容量結合部6として機能する。
 信号側電極3-2、電子部品2-2、電源側電極4-2よりなるフィルタ部品22は、基板11上のグランド配線の除去部9-2に配置される。そして、信号側電極3-2はN側配線1-3、1-4に接続される。電源側電極4-2の両側に設けられた電極パターン6-3、6-4は、基板11のグランド配線8-1(図4参照)に対向して配置される。すなわち、電極パターン6-3、6-4は、電源側電極4-2とグランド配線とを容量結合する容量結合部6として機能する。
 本実施形態によれば、信号伝送装置100を差動信号線への電源重畳に活用することができる。
[第8の実施形態]
 図15を参照して第8の実施形態について説明する。第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。
 本実施形態は、より高周波な差動配線向けのPoDLに対応した例である。より高周波では、P側配線1-1、1-2とN側配線1-3、1-4に個別のフィルタ部品を用いると、フィルタ部品のばらつきによる部品間特性差によりコモンモード成分を発生する可能性があるため、4端子の単一フィルタ部品10を活用する。
 図15に示すように、第1の電極3-1の一方側と繋がる第1の信号線1-1と、第1の電極3-1の他方側と繋がる第2の信号線1-2とを備える。さらに、第2の電極3-2の一方側と繋がる第3の信号線1-3と、第2の電極3-2の他方側と繋がる第4の信号線1-4とを備える。第1の信号線1-1と第2の信号線1-2はP側配線である。第3の信号線1-3と第4の信号線1-4はN側配線である。
 単一フィルタ部品10は、第1の電極3-1および第2の電極3-2と対をなし、少なくともインダクタ成分を含む電子部品を介して第1の電極3-1および第2の電極3-2に接続される第3の電極4-1および第4の電極4-2を備える。
 単一フィルタ部品10は、グランド配線の除去部9に配置される。そして、第3の電極4-1とグランド配線とを容量結合する第1の容量結合部6-1、6-2と、第4の電極4-2とグランド配線とを容量結合する第2の容量結合部6-3、6-4とを備える。第3の電極4-1の両側に設けられた第1の容量結合部6-1、6-2は、基板11のグランド配線8-1(図4参照)に対向して配置され、第3の電極4-1とグランド配線とを容量結合する。第4の電極4-2の両側に設けられた第2の容量結合部6-3、6-4は、基板11のグランド配線8-1(図4参照)に対向して配置され、第4の電極4-2とグランド配線とを容量結合する。
 第1の信号線1-1と第2の信号線1-2は第1の差動配線を構成し、第3の信号線1-3と第4の信号線1-4は第2の差動配線を構成する。そして、第1の差動配線と第1の電極3-1、および第2の差動配線と第2の電極3-2は、電気信号を伝送する伝送路を形成し、第1の差動配線と第2の差動配線は、第3の電極4-1と第4の電極4-2から第1の電極3-1と第2の電極3-2を介して電力を伝送する。
 本実施形態では、単一フィルタ部品10を一個設けた例で説明したが、単一フィルタ部品10を直列に複数個接続して電源配線5-1、5-2へ接続してもよい。この場合、第1の差動配線と第2の差動配線に接続される初段の単一フィルタ部品10は第1の容量結合部6-1、6-2および第2の容量結合部6-3、6-4を備えているが、後段の単一フィルタ部品10は容量結合部を備えていない。
 本実施形態によれば、単一フィルタ部品10を用いたので、フィルタ部品10を複数用いるのに比較して、部品のばらつきによる部品間特性差によるコモンモード成分を抑えることができる。
[第9の実施形態]
 図16は、信号伝送回路1000の回路構成を示す図である。本実施形態における信号伝送回路1000は、第1~第8の実施形態で説明した信号伝送装置100を適用したものである。
 図16に示すように、信号伝送回路1000は、カメラ部19とECUモジュール20とを同軸ケーブル18で接続して構成される。同軸ケーブル18を用いて、ECUモジュール20からカメラ部19へ電源を供給するとともに、同軸ケーブル18を介して、主にカメラ部19からECUモジュール20に対して高速に信号を伝送する。
 カメラ部19は、カメラ16、画像IC13-1、シリアライザ14、コンデンサ12-1を備える。カメラ16で撮像された画像データは画像IC13-1で画像処理され、シリアライザ14でシリアルデータに変換され、直流遮断用のコンデンサ12-1を介して、同軸ケーブル18へ伝送される。一方、同軸ケーブル18を介して供給された電源は、信号伝送装置100を介してDCDCコンバータ17-1へ供給される。DCDCコンバータ17-1は、カメラ16、画像IC13-1およびシリアライザ14へ電力を供給する。信号伝送装置100は上述した各実施形態で示した容量結合部6を備えている。
 ECUモジュール20は、コンデンサ12-2、デシリアライザ15、制御IC13-2を備える。ECUモジュール20へ伝送された信号は直流遮断用のコンデンサ12-2を介してデシリアライザ15へ伝送され、デシリアライザ15でパラレルデータに変換され制御IC13-2へ入力される。一方、DCDCコンバータ17-2はバッテリー等からの給電を受けて所定の電源を、信号伝送装置100を介して同軸ケーブル18へ供給する。信号伝送装置100は上述した各実施形態で示した容量結合部6を備えている。
 本実施形態によれば、カメラ部19およびECUモジュール20の双方に、容量結合部6を備えた信号伝送装置100を用いたので、例えば、10Gbps級のPoC対応の高速通信を実現することができる。
[第10の実施形態]
 図17は、基板11上にフィルタ部品2-1を配置した状態の断面図であり、図17(A)は、その側面図を、図17(B)は、その後面図を示す。図4に示す第1の実施形態と同一の個所には同一の符号を附してその説明を省略する。第1の実施形態とは、多層配線構造の基板11の構成が相違する。
 図17(A)に示すように、基板11の表層がフィルタ部品2-1の搭載面であり、その直下に電源配線層23がある。さらに、電源配線層23の下層にグランド配線層8を設けている。このような多層配線構造の基板11の場合、電源配線層23とグランド配線層8の間が非常に大きな平行平板で容量を持つため、高周波において低インピーダンスで接続されていることと等価である。このような構成の基板11では、フィルタ部品2-1の直下に電源配線の除去部9を設けても、第1の実施形態等で述べたと同等の効果を得ることができる。
 図17(B)に示すように、電源側電極4の両側に設けられた電極パターン6-1、6-2の直下には、電源配線層23が存在する。すなわち、電極パターン6-1、6-2は、電源配線層23と平行平板を形成して容量結合部6として機能する。
 本実施形態は、第1の実施形態のみならず、第2の実施形態~第9の実施形態にも同様に適用することができる。
 本実施形態によれば、フィルタ部品の組合せのみでは到達が困難な10GHz超の周波数範囲をカバーする信号伝送装置100を実現することができる。さらに、プリント配線基板のパターン配線のみで構成できるため、低コスト、高密度で高性能化を実現できる。このような信号伝送装置100は、車載機器のカメラと制御部の間の通信を代表に、その他の情報機器、インフラ用制御機器など、信号ラインに電源重畳して伝送する様々な製品分野に適用可能である。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)信号伝送装置100は、信号側電極3と、信号側電極3の一方側と繋がる第1の信号線1-1と、信号側電極3の他方側と繋がる第2の信号線1-2と、信号側電極3と対をなし、少なくともインダクタ成分を含む電子部品2を介して信号側電極3に接続される電源側電極4と、電源側電極4とグランド配線8-1、8-2もしくは電源配線23とを容量結合する容量結合部6と、を有し、第1の信号線1-1と信号側電極3と第2の信号線1-2は、電気信号を伝送する伝送路を形成し、第1の信号線1-1および第2の信号線1-2は、信号側電極3、電子部品2、および電源側電極4を介して電力を伝送する。これにより、フィルタ周波数の範囲を高周波側に広げることが可能になる。
(2)信号伝送装置100は、第1の電極3-1と、第1の電極3-1の一方側と繋がる第1の信号線1-1と、第1の電極3-1の他方側と繋がる第2の信号線1-2と、第2の電極3-2の一方側と繋がる第3の信号線1-3と、第2の電極3-2の他方側と繋がる第4の信号線1-4と、第1の電極3-1および第2の電極3-2と対をなし、少なくともインダクタ成分を含む電子部品を介して第1の電極3-1および第2の電極3-2に接続される第3の電極4-1および第4の電極4-2と、第3の電極4-1とグランド配線もしくは電源配線とを容量結合する第1の容量結合部6-1、6-2と、第4の電極4-2とグランド配線もしくは電源配線とを容量結合する第2の容量結合部6-3、6-4とを有し、第1の信号線1-1と第2の信号線1-2は第1の差動配線を構成し、第3の信号線1-3と第4の信号線1-4は第2の差動配線を構成し、第1の差動配線と第1の電極3-1、および第2の差動配線と第2の電極3-2は、電気信号を伝送する伝送路を形成し、第1の差動配線と第2の差動配線は、第3の電極4-1と第4の電極4-2から第1の電極3-1と第2の電極3-2を介して電力を伝送する。これにより、フィルタ周波数の範囲を高周波側に広げることが可能になる。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の各実施形態を組み合わせた構成としてもよい。
 1-1、1-2・・・信号線、2、2-1、2-2、2-3・・・フィルタ部品(電子部品)、3、3-1、3-2・・・信号側電極、4、4-1、4-2・・・電源側電極、5・・・電源配線、6-1、6-2、6-3、6-4・・・電極パターン、6、6-5、6-6・・・容量結合部、7-1、7-2・・・配線パターン、8-1、8-2・・・グランド配線、9・・・グランド配線もしくは電源配線の除去部、11・・・基板、12-1、12-2・・・コンデンサ、13-1・・・画像IC、13-2・・・制御IC、14・・・シリアライザ、15・・・デシリアライザ、16・・・カメラ、18・・・同軸ケーブル、19・・・カメラ部、20・・・ECUモジュール、22・・・フィルタ部品、23・・・電源配線、100・・・信号伝送装置、1000・・・信号伝送回路。

Claims (12)

  1.  信号側電極と、
     前記信号側電極の一方側と繋がる第1の信号線と、
     前記信号側電極の他方側と繋がる第2の信号線と、
     前記信号側電極と対をなし、少なくともインダクタ成分を含む電子部品を介して前記信号側電極に接続される電源側電極と、
     前記電源側電極とグランド配線もしくは電源配線とを容量結合する容量結合部と、を有し、
     前記第1の信号線と前記信号側電極と前記第2の信号線は、電気信号を伝送する伝送路を形成し、前記第1の信号線および前記第2の信号線は、前記信号側電極、前記電子部品、および前記電源側電極を介して電力を伝送する信号伝送装置。
  2.  請求項1に記載の信号伝送装置において、
     前記容量結合部は、前記信号側電極と前記第1の信号線との接続箇所よりも外側に設けられ、前記電源側電極と前記グランド配線もしくは前記電源配線とを容量結合する第1の容量結合部と、前記信号側電極と前記第2の信号線との接続箇所よりも外側に設けられ、前記電源側電極と前記グランド配線もしくは前記電源配線とを容量結合する第2の容量結合部と、を備える信号伝送装置。
  3.  請求項2に記載の信号伝送装置において、
     前記第1の容量結合部および前記第2の容量結合部は、前記グランド配線もしくは前記電源配線と対向するそれぞれの電極パターンにより構成される信号伝送装置。
  4.  請求項3に記載の信号伝送装置において、
     前記電極パターンは、前記電極パターンよりも細い配線パターンにより前記電源側電極と接続される信号伝送装置。
  5.  請求項4に記載の信号伝送装置において、
     前記第1の容量結合部および前記第2の容量結合部は、それぞれ、複数の前記電極パターンと各電極パターンを接続する複数の前記配線パターンとにより構成される信号伝送装置。
  6.  請求項2に記載の信号伝送装置において、
     前記第1の容量結合部および前記第2の容量結合部は、それぞれ、前記電源側電極の幅を前記信号側電極の幅よりも大きくすることで形成される信号伝送装置。
  7.  請求項6に記載の信号伝送装置において、
     前記第1の容量結合部および前記第2の容量結合部は、前記電源側電極の形状を前記第1の信号線および前記第2の信号線の配線側が幅広になる台形とすることで形成される信号伝送装置。
  8.  請求項6に記載の信号伝送装置において、
     前記第1の容量結合部および前記第2の容量結合部は、前記電源側電極の両側であって、前記第1の信号線および前記第2の信号線の配線側が幅広になる突起部により形成される信号伝送装置。
  9.  請求項2に記載の信号伝送装置において、
     前記第1の容量結合部および前記第2の容量結合部は、それぞれ、前記電源側電極の直下の前記グランド配線もしくは前記電源配線の除去部が前記信号側電極の直下の前記グランド配線もしくは前記電源配線の除去部よりも幅が狭いことで形成される信号伝送装置。
  10.  請求項1から請求項9までの何れか一項に記載の信号伝送装置において、
     前記第1の信号線および前記第2の信号線が差動配線を形成する信号伝送装置。
  11.  第1の電極と、
     前記第1の電極の一方側と繋がる第1の信号線と、
     前記第1の電極の他方側と繋がる第2の信号線と、
     第2の電極と、
     前記第2の電極の一方側と繋がる第3の信号線と、前記第2の電極の他方側と繋がる第4の信号線と、
     前記第1の電極および前記第2の電極と対をなし、少なくともインダクタ成分を含む電子部品を介して前記第1の電極と第2の電極に接続される第3の電極および第4の電極と、
     前記第3の電極とグランド配線もしくは電源配線とを容量結合する第1の容量結合部と、
     前記第4の電極と前記グランド配線もしくは前記電源配線とを容量結合する第2の容量結合部と、を有し、
     前記第1の信号線と前記第2の信号線は第1の差動配線を構成し、
     前記第3の信号線と前記第4の信号線は第2の差動配線を構成し、
     前記第1の差動配線と前記第1の電極、および第2の差動配線と前記第2の電極は、電気信号を伝送する伝送路を形成し、前記第1の差動配線と前記第2の差動配線は、前記第3の電極と前記第4の電極から前記第1の電極と前記第2の電極を介して電力を伝送する信号伝送装置。
  12.  カメラとECUモジュールを同軸ケーブルで接続する信号伝送回路であって、
     前記カメラに前記ECUモジュールから前記同軸ケーブルを介して電源供給を行い、
     前記同軸ケーブルを介して前記カメラと前記ECUモジュールとの間で信号通信を行い、
     前記カメラと前記ECUモジュールの少なくとも一方の基板において、前記信号通信と前記電源供給を行う請求項1から請求項9までの何れか一項に記載の信号伝送装置を備える信号伝送回路。
PCT/JP2021/007450 2020-04-10 2021-02-26 信号伝送装置および信号伝送回路 WO2021205775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/917,631 US20230179255A1 (en) 2020-04-10 2021-02-26 Signal transmission device and signal transmission circuit
CN202180027213.1A CN115380477A (zh) 2020-04-10 2021-02-26 信号传输装置以及信号传输电路
DE112021000952.4T DE112021000952T5 (de) 2020-04-10 2021-02-26 Signalübertragungsvorrichtung und signalübertragungsschaltung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020070830A JP2021168442A (ja) 2020-04-10 2020-04-10 信号伝送装置および信号伝送回路
JP2020-070830 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021205775A1 true WO2021205775A1 (ja) 2021-10-14

Family

ID=78022527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007450 WO2021205775A1 (ja) 2020-04-10 2021-02-26 信号伝送装置および信号伝送回路

Country Status (5)

Country Link
US (1) US20230179255A1 (ja)
JP (1) JP2021168442A (ja)
CN (1) CN115380477A (ja)
DE (1) DE112021000952T5 (ja)
WO (1) WO2021205775A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030718A (ja) * 2011-07-29 2013-02-07 Murata Mfg Co Ltd 積層セラミックコンデンサおよびこれを用いたジャンパ実装構造
US20170174131A1 (en) * 2015-12-17 2017-06-22 Magna Electronics Inc. Vehicle vision system with camera line power filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030718A (ja) * 2011-07-29 2013-02-07 Murata Mfg Co Ltd 積層セラミックコンデンサおよびこれを用いたジャンパ実装構造
US20170174131A1 (en) * 2015-12-17 2017-06-22 Magna Electronics Inc. Vehicle vision system with camera line power filter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Automotive 2-MP Camera Module Reference Design With MIPI CSI-2 Video Interface FPD-Link III and POC", TEXAS INSTRUMENTS, November 2017 (2017-11-01), pages 1 - 28, XP055866152, Retrieved from the Internet <URL:https://www.ti.com/lit/ug/tidud51a/tidud51a.pdf?ts=1619507567788> [retrieved on 20210427] *
UEMATSU, YUTAKA ET AL.: "High Bandwidth and Multi- Channel Power over Coaxial Filters for Automotive Low-Voltage Differential Signaling Interconnect", IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC, 3 June 2020 (2020-06-03), pages 1749 - 1756, XP033807841, DOI: 10.1109/ECTC32862.2020.00273 *

Also Published As

Publication number Publication date
CN115380477A (zh) 2022-11-22
JP2021168442A (ja) 2021-10-21
DE112021000952T5 (de) 2022-12-15
US20230179255A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
EP2439845B1 (en) Common mode noise suppression circuit
US9538634B2 (en) Printed circuit board
US9264007B2 (en) Noise filter and transmission device
CN106068058B (zh) 车载以太网电路布线方法
US20190387614A1 (en) Flexible printed circuit board
WO2006022093A1 (ja) アンテナスイッチモジュール
JP2007123744A (ja) 光送受信モジュール
JP4852979B2 (ja) フレックスリジッド基板、光送受信モジュール及び光送受信装置
JP7046054B2 (ja) Emiが低減された同軸データ通信
CN113287225B (zh) 信号传输装置
JP5674363B2 (ja) ノイズ抑制構造を有する回路基板
WO2021205775A1 (ja) 信号伝送装置および信号伝送回路
CN112310590B (zh) 定向耦合器
US7906840B2 (en) Semiconductor integrated circuit package, printed circuit board, semiconductor apparatus, and power supply wiring structure
KR20200067455A (ko) 소형 저손실 밀리미터파 전력 분배 결합 장치
US9640914B2 (en) Connectors and systems having improved crosstalk performance
JP2010062900A (ja) リミッタ回路
US20130049883A1 (en) Waveguide network
TW201414194A (zh) 帶通濾波器
JP2004129053A (ja) Dcブロック回路および通信装置
CN206350006U (zh) 车载以太网电路板
WO2022244324A1 (ja) 差動伝送基板および電力重畳差動データ通信装置
CN217522992U (zh) 多层布线板及具有其的车辆设备
US11711225B2 (en) Reduction of power-over-data-lines (PODL) filter parasitics for multi-gigabit ethernet
CN113453415B (zh) 信号传输电路以及印刷电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784724

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21784724

Country of ref document: EP

Kind code of ref document: A1