WO2021204276A1 - 一种反馈信息的发送方法及装置 - Google Patents

一种反馈信息的发送方法及装置 Download PDF

Info

Publication number
WO2021204276A1
WO2021204276A1 PCT/CN2021/086290 CN2021086290W WO2021204276A1 WO 2021204276 A1 WO2021204276 A1 WO 2021204276A1 CN 2021086290 W CN2021086290 W CN 2021086290W WO 2021204276 A1 WO2021204276 A1 WO 2021204276A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
dcis
harq
ack codebook
data
Prior art date
Application number
PCT/CN2021/086290
Other languages
English (en)
French (fr)
Inventor
马蕊香
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21784566.8A priority Critical patent/EP4120605A4/en
Publication of WO2021204276A1 publication Critical patent/WO2021204276A1/zh
Priority to US17/959,863 priority patent/US20230028448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method and device for sending feedback information.
  • the terminal device can place the feedback information of downlink data scheduled by multiple physical downlink control channels (PDCCH) in a hybrid automatic repeat request-acknowledgement (HARQ-ACK).
  • the codebook is sent to the network device.
  • the terminal device can also determine the specific uplink control channel resource indication (PUCCH resource indication, PRI) field in the downlink control information (downlink control information, DCI) carried by the last PDCCH of the multiple PDCCHs.
  • PUCCH resource indication, PRI specific uplink control channel resource indication
  • DCI downlink control information
  • the network device can repeat the PDCCH, that is, the network device can send multiple repeated PDCCHs.
  • the repeated PDCCH carries the same DCI, and the value of the PRI field in each DCI is also the same.
  • the terminal device determines the uplink resource used to transmit the HARQ-ACK codebook
  • the last PDCCH among the multiple PDCCHs used to generate the HARQ-ACK codebook is a repetition of a previous PDCCH
  • the The size of the uplink resource determined by the PRI field in the DCI carried by the last PDCCH may not match the number of bits included in the HARQ-ACK codebook to be sent. Because the PRI field in the DCI just duplicates the value of the PRI field in the DCI carried by another PDCCH used to schedule the same data, and when the network device sends the other PDCCH used to schedule the same data, It may not take into account all the feedback information that needs to be sent in the HARQ-ACK codebook. Therefore, if the uplink resource determined by the terminal device is too large, the uplink resource will be wasted. On the contrary, if the uplink resource determined by the terminal device is too small, the reliability of the feedback information cannot be guaranteed.
  • the embodiments of the present application provide a method and device for sending feedback information, which are used to determine the time-frequency resource used in sending the HARQ-ACK codebook, so that the size of the time-frequency resource corresponds to the feedback information included in the HARQ-ACK codebook Match the number of bits to improve resource utilization and enhance the reliability of feedback information.
  • an embodiment of the present application provides a method for sending feedback information.
  • the method may be executed by a terminal device, or may be executed by a component (for example, a chip or a circuit) configured in the terminal device.
  • the method may include: a terminal device receives M DCIs from a network device, the M DCIs are used to schedule N data, and the M DCIs include at least one of a first DCI and a second DCI, where the first DCI And the second DCI are two repetitions of the same DCI, and the first DCI and the second DCI are used to schedule the same data in N data, M is an integer greater than or equal to 2, and N is less than or equal to M and greater than Or an integer equal to 2; the terminal device determines the time-frequency resource for transmitting the HARQ-ACK codebook according to the resource indication information in the third DCI, where the third DCI is the DCI with the lowest position in the time domain among the K DCIs , The K DCIs are a proper subset of the M
  • the terminal device may determine the time-frequency resource for transmitting the HARQ-ACK codebook according to the indication information in the third DCI with the lowest position in the time domain among the K DCIs, where the K DCIs are The true subset of M DCIs, for example, may include only the DCI transmitted for the first time among the M DCIs. In this way, the size of the determined time-frequency resource and the bits of the feedback information included in the HARQ-ACK codebook to be sent can be made Matching the numbers, thereby effectively improving resource utilization and enhancing the reliability of feedback information.
  • the K DCIs are used to schedule K data out of N data, and the i-th DCI in the K DCIs is used to schedule data #i among the K data.
  • the i-th DCI is the first DCI in the DCI of scheduling data #i, and i is a positive integer less than or equal to K.
  • each of the K DCIs is the DCI with the highest position in the time domain among the DCIs used to schedule its scheduled data, that is, the K DCIs are the first time.
  • the transmitted DCI is not a duplication of other DCIs.
  • the resource indication information in each DCI of the K DCIs can be dynamically adjusted by the network device according to the scheduling policy, thereby effectively improving the accuracy and flexibility of the network device indicating the resource for sending the HARQ-ACK codebook.
  • the third DCI may be the DCI intermediate frequency with the lowest position in the time domain among the K DCIs The DCI with the highest domain position; or, the third DCI may also be the DCI with the largest identifier of the cell in the DCI with the lowest time domain position among the K DCIs; or, the third DCI may also be among the K DCIs
  • the DCI with the lowest position in the time domain has the largest ID of the cell, and the DCI with the largest ID of the CORESET; or, the third DCI can also be the cell in the DCI with the lowest position in the time domain among the K DCIs.
  • the K DCIs being a proper subset of the M DCIs may include: M DCIs include a fourth DCI, and the fourth DCIs are not included in the K DCIs; wherein, The fourth DCI may be a repetition of one DCI among the K DCIs; or, the fourth DCI may also be a repetition of the fifth DCI, and the fifth DCI is received from the network device except for the M DCIs. Outside another DCI.
  • the embodiments of this application can be applied to scenarios where there is DCI repetition, that is, at least one DCI in the M DCIs is a repetition of another DCI whose time domain position is before the time domain position of the DCI, and the other DCI may It is a certain DCI among the K DCIs, or it may be other DCIs except for the M DCIs.
  • the method further includes: the terminal device determines the first resource set according to the number of bits of the feedback information included in the HARQ-ACK codebook, where the HARQ-ACK codebook includes The number of bits of the feedback information belongs to the bit number interval corresponding to the first resource set; further, the terminal device can determine the time for sending the HARQ-ACK codebook in the first resource set according to the resource indication information in the third DCI Frequency resources, the resource indication information may be, for example, PRI indication information in the PRI domain of DCI.
  • the terminal device when determining the time-frequency resource used to transmit the HARQ-ACK codebook, the terminal device may first determine a resource set according to the number of bits included in the HARQ-ACK codebook, and then use the determined resource set According to the PRI indication information in the third DCI, the specific time-frequency resource used is determined. In this way, the size of the determined time-frequency resource can be matched with the number of bits of the HARQ-ACK codebook that needs to be sent, thereby effectively improving Resource utilization.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; the method further includes: the terminal device receives the first indication information from the network device , The first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the M DCIs are carried in the same CORESET group, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the CORESET group; or, the M DCIs are Each DCI in the DCI indicates that the feedback information of the scheduled data is sent in the first time unit, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first time unit.
  • the M DCIs specifically refer to the DCIs sent in the same HARQ-ACK codebook with the feedback information of the scheduled data, and the feedback information of the M DCIs scheduled data is included in the same HARQ-ACK codebook.
  • the transmission in the ACK codebook can have multiple possible implementations as described above, so that the applicability of the method can be enhanced.
  • the embodiments of the present application provide a method for sending feedback information.
  • the method may be executed by a network device, or may be executed by a component (for example, a chip or a circuit) configured in the network device.
  • the method may include: the network device sends M DCIs to the terminal device, the M DCIs are used to schedule N data, the M DCIs include at least one of the first DCI and the second DCI, where the first DCI and The second DCI is two repetitions of the same DCI, and the first DCI and the second DCI are used to schedule the same data in N data, M is an integer greater than or equal to 2, and N is less than or equal to M and greater than or An integer equal to 2, the M DCIs further include a third DCI, and the resource indication information in the third DCI indicates the time-frequency resources of the HARQ-ACK codebook for hybrid automatic repeat request confirmation, and the HARQ-ACK codebook Includes feedback information of each of the N pieces of data, the third DCI is the last DCI in the
  • the network device can also determine the time and frequency for receiving the HARQ-ACK codebook according to the resource indication information in the third DCI with the lowest position in the time domain among the K DCIs.
  • the K DCIs are a proper subset of M DCIs, for example, it may only include the DCI transmitted for the first time among the M DCIs. In this way, the size of the determined time-frequency resource and the HARQ-ACK code to be received can be made The number of bits of the feedback information included in the book matches, thereby effectively improving resource utilization and enhancing the reliability of feedback information.
  • the K DCIs are used to schedule K data among N data
  • the i-th DCI among the K DCIs is used to schedule data #i among K data.
  • the i-th DCI is the first DCI in the DCI of scheduling data #i
  • i is a positive integer less than or equal to K.
  • the third DCI may be the intermediate frequency of the DCI with the lowest position in the time domain among the K DCIs.
  • the DCI with the highest domain position; or, the third DCI may also be the DCI with the largest identifier of the cell in the DCI with the lowest position in the time domain among the K DCIs; or, the third DCI may also be K DCIs
  • the DCI with the lowest position in the time domain has the largest cell ID and the DCI with the largest CORESET ID; or, the third DCI can also be the DCI with the lowest position in the time domain among the K DCIs.
  • the ID of the cell is the largest, and the DCI with the largest ID of the CORESET group in which it is located.
  • the K DCIs being a proper subset of the M DCIs may include: M DCIs include a fourth DCI, and the fourth DCIs are not included in the K DCIs; Wherein, the fourth DCI is a repetition of one of the K DCIs; or, the fourth DCI and may be a repetition of the fifth DCI, and the fifth DCI is a repetition of a DCI sent by a network device other than the M DCIs Another DCI.
  • the time-frequency resource is the time-frequency resource in the first resource set corresponding to the resource indication information in the third DCI, and the bits of the feedback information included in the HARQ-ACK codebook The number belongs to the bit number interval corresponding to the first resource set.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2.
  • the method further includes: the network device sends the first indication information to the terminal device, The first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the M DCIs are carried in the same CORESET group, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the CORESET group; or, the M Each of the DCIs indicates that the feedback information of the scheduled data is sent in the first time unit, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first time unit.
  • the embodiments of the present application provide a method for sending feedback information.
  • the method may be executed by a terminal device, or may be executed by a component (for example, a chip or a circuit) configured in a network device.
  • the method may include: the terminal device receives M DCIs from the network device, the M DCIs are used to schedule N data, and the M DCIs include at least one of the first DCI and the second DCI, where the first DCI and The second DCI is two repetitions of the same DCI.
  • the first DCI and the second DCI are used to schedule the same data among N pieces of data, and the value of the PRI field in the first DCI is the same as the PRI in the second DCI.
  • the value of the field is different, M is an integer greater than or equal to 2, and N is an integer less than or equal to M and greater than or equal to 2.
  • the terminal device determines to send the HARQ-ACK codebook according to the value of the PRI field in the third DCI
  • the third DCI is the last DCI in the time domain among the M DCIs, and the HARQ-ACK codebook includes feedback information for each of the N data; the terminal equipment determines the time
  • the HARQ-ACK codebook is sent to the network device on the frequency resource.
  • the value of the PRI field in two or more repeated DCIs may be different.
  • the PRI field in the DCI The value of can be dynamically changed by the network device according to the scheduling strategy.
  • the terminal device determines the time-frequency resource for transmitting the HARQ-ACK codebook according to the value of the PRI field in the DCI with the lowest time-domain position among the M DCIs, so that the size of the determined time-frequency resource can be made It matches the number of bits of feedback information included in the HARQ-ACK codebook that needs to be sent, thereby effectively improving resource utilization and enhancing the reliability of feedback information.
  • the third DCI may be the DCI intermediate frequency with the lowest position in the time domain among the M DCIs.
  • the DCI with the highest domain position; or, the third DCI may also be the DCI with the largest identifier of the cell in the DCI with the lowest time domain position among the M DCIs; or, the third DCI may also be among the M DCIs.
  • the DCI with the lowest position in the time domain has the largest ID of the cell, and the DCI with the largest ID of the CORESET; or, the third DCI can also be the cell in the DCI with the lowest position in the time domain among the M DCIs
  • the method further includes: the terminal device determines the first resource set according to the number of bits of the feedback information included in the HARQ-ACK codebook, wherein the HARQ-ACK codebook includes The number of bits of the feedback information belongs to the bit number interval corresponding to the first resource set; further, the terminal device can determine the HARQ-ACK codebook in the first resource set according to the value of the PRI field in the third DCI Time-frequency resources.
  • the terminal device when determining the time-frequency resource used to transmit the HARQ-ACK codebook, the terminal device may first determine a resource set according to the number of bits included in the HARQ-ACK codebook, and then use the determined resource set According to the PRI indication information in the third DCI, the specific time-frequency resource used is determined. In this way, the size of the determined time-frequency resource can be matched with the number of bits of the HARQ-ACK codebook that needs to be sent, thereby effectively improving Resource utilization.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; the method further includes: the terminal device receives the first indication information from the network device , The first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the M DCIs are carried in the same CORESET group, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the CORESET group; or, the M DCIs are Each DCI in the DCI indicates that the feedback information of the scheduled data is sent in the first time unit, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first time unit.
  • the M DCIs specifically refer to the DCIs sent in the same HARQ-ACK codebook with the feedback information of the scheduled data, and the feedback information of the M DCIs scheduled data is included in the same HARQ-ACK codebook.
  • the transmission in the ACK codebook can have multiple possible implementations as described above, so that the applicability of the method can be enhanced.
  • the method further includes: the terminal device combines and decodes the remaining bit fields except the PRI field in the DCI used to schedule the same data among the M DCIs, thereby improving feedback information Reliability.
  • an embodiment of the present application provides a method for sending feedback information.
  • the method may be executed by a network device, or may be executed by a component (for example, a chip or a circuit) configured in the terminal device.
  • the method may include: the network device sends M DCIs to the terminal device, the M DCIs are used to schedule N data, the M DCIs include at least one of the first DCI and the second DCI, where the first DCI and The second DCI is two repetitions of the same DCI.
  • the first DCI and the second DCI are used to schedule the same data among the N pieces of data, and the value of the PRI field in the first DCI is the same as that in the second DCI.
  • the value of the PRI field is different, M is an integer greater than or equal to 2, and N is an integer less than or equal to M and greater than or equal to 2; the M DCIs also include a third DCI, and the PRI in the third DCI
  • the value of the field indicates the time-frequency resource of the HARQ-ACK codebook for hybrid automatic repeat request confirmation.
  • the HARQ-ACK codebook includes feedback information for each of the N pieces of data, and the third DCI is The DCI with the lowest position in the time domain among the M DCIs; the network device receives the HARQ-ACK codebook from the terminal device on the time-frequency resource.
  • the value of the PRI field in two or more repeated DCIs may be different.
  • the PRI field in the DCI The value of can be dynamically changed by the network device according to the scheduling strategy. In this way, the network device determines the time-frequency resource for receiving the HARQ-ACK codebook according to the value of the PRI field in the DCI with the lowest time-domain position among the M DCIs, so that the determined time-frequency resource size and needs can be determined.
  • the number of bits of the feedback information included in the transmitted HARQ-ACK codebook matches, thereby effectively improving resource utilization and enhancing the reliability of feedback information.
  • the third DCI may be the DCI intermediate frequency with the lowest position in the time domain among the M DCIs.
  • the DCI with the highest domain position; or, the third DCI may also be the DCI with the largest identifier of the cell in the DCI with the lowest time domain position among the M DCIs; or, the third DCI may also be among the M DCIs.
  • the DCI with the lowest position in the time domain has the largest ID of the cell, and the DCI with the largest ID of the CORESET; or, the third DCI can also be the cell in the DCI with the lowest position in the time domain among the M DCIs
  • the method further includes: the network device determines the first resource set according to the number of bits of the feedback information included in the HARQ-ACK codebook, wherein the HARQ-ACK codebook includes The number of bits of the feedback information belongs to the bit number interval corresponding to the first resource set; further, the network device can determine the time-frequency resource for receiving HARQ-ACK in the first resource set according to the value of the PRI field in the third DCI .
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2.
  • the method further includes: the network device sends the first indication information to the terminal device, The first indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the M DCIs are carried in the same CORESET group, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the CORESET group; or, the M DCIs are Each DCI in the DCI indicates that the feedback information of the scheduled data is sent in the first time unit, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the first time unit.
  • an embodiment of the present application provides a communication device.
  • the device may also have the function of implementing the terminal device in any possible design of the first aspect or the first aspect, or may have the function of implementing the third aspect or the first aspect.
  • the function of the terminal device in any of the three possible designs.
  • the device may be a terminal device or a chip included in the terminal device.
  • the device has the function of realizing the network device in any possible design of the foregoing second aspect or the second aspect, or has the function of realizing the network device in any possible design of the foregoing fourth aspect or the fourth aspect.
  • the device may be a network device or a chip included in the network device.
  • the functions of the above-mentioned communication device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units or means corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the first aspect or the corresponding function of the terminal device in any of the first aspects of the design. , Or perform the corresponding function of the network device in the above-mentioned second aspect or any one of the second aspects of the design, or perform the corresponding function of the terminal device in the above-mentioned third aspect or any of the possible designs of the third aspect, or perform the above-mentioned The corresponding function of the network device in the fourth aspect or any possible design of the fourth aspect.
  • the transceiver module is used to support the communication between the device and other communication devices.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the device.
  • the processing module may be a processor
  • the transceiving module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute computer program instructions stored in the memory, so that the device executes the method in any possible design of the first aspect or the first aspect, or executes the second aspect or the second aspect.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the network device or terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , So that the chip system implements the method in any possible design of the first aspect or the first aspect, or implements the method in any possible design of the second aspect or the second aspect, or implements the method in the first aspect.
  • the chip system further includes an interface circuit, which is used to exchange code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored.
  • the computer executes the first aspect or any one of the first aspect.
  • embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes the first aspect or any one of the possible design methods in the first aspect, Or implement the method in any possible design of the above second aspect or the second aspect, or implement the method in any possible design of the above third aspect or the third aspect, or implement the fourth or first aspect above Any of the four possible design methods.
  • an embodiment of the present application provides a communication system, which includes the network device and at least one terminal device described in the foregoing aspects.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of scheduling downlink data for terminal equipment in an embodiment of the application
  • FIG. 3 is a schematic diagram of sending multiple repeated PDCCHs provided in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a control resource set CORESET provided in an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a method for sending feedback information according to an embodiment of the application
  • FIG. 6 is a specific example of a method for sending feedback information provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of another method for sending feedback information according to an embodiment of the application.
  • FIG. 8 is a specific example of another method for sending feedback information provided by an embodiment of the application.
  • FIG. 9 is another specific example of another method for sending feedback information provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is another schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of another communication device provided by an embodiment of this application.
  • LTE long term evolution
  • FDD frequency division duplex
  • NR new radio
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the communication system includes a network device and at least one terminal device (terminals 1 to 6 shown in FIG. 1).
  • the network device can communicate with at least one terminal device (such as the terminal device 1) through uplink (UL) and downlink (DL).
  • UL uplink
  • DL downlink
  • the network device in FIG. 1 may be an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems.
  • 4G 4th generation
  • 5G 5th generation
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the network equipment in FIG. 1 can also correspond to the access network equipment in the future mobile communication system.
  • the embodiment of the present application does not limit the number of network devices and the number of terminal devices included in the communication system. .
  • the network device in FIG. 1 and each of some or all of the terminal devices in at least one terminal device can implement the technical solutions provided in the embodiments of the present application.
  • the various terminal devices shown in FIG. 1 are only partial examples of terminal devices, and it should be understood that the terminal devices in the embodiments of the present application are not limited thereto.
  • Terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air ( For example, airplanes, balloons, satellites, etc.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device can be a mobile phone or a tablet Computers, computers with wireless transceiver functions, mobile Internet equipment, wearable devices, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and intelligence Wireless terminals in the power grid, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Terminal devices may sometimes be referred to as user equipment (user equipment, UE), mobile stations, remote stations, etc.
  • the embodiments of the present application do not limit the specific technology, device form, and name adopted by the terminal device.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device in the embodiments of the present application may also be an on-board module, on-board component, on-board chip, or on-board unit built into a vehicle as one or more components or units.
  • the vehicle passes through the built-in on-board module, on-board module, and Components, on-board chips, or on-board units can implement the method of the present application.
  • Network equipment also called access network equipment, is a device in the network used to connect terminal equipment to the wireless network.
  • the network device may be a node in a radio access network, may also be called a base station, or may also be called a RAN node (or device).
  • the network equipment may be an evolved NodeB (eNodeB) in an LTE system or an evolved LTE system (LTE-Advanced, LTE-A), or it may be a next generation node in a 5G NR system.
  • eNodeB evolved NodeB
  • LTE-A evolved LTE system
  • 5G NR 5G NR
  • B gNodeB
  • TRP transmission reception point
  • BBU baseband unit
  • AP WiFi access point
  • CU central unit
  • DU distributed unit
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • DU mainly supports radio link control (RLC) layer protocol, medium access control (MAC) layer protocol and physical layer protocol.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the descriptions of “first” and “second” do not limit the objects to be different.
  • the network device may send a PDCCH to the terminal device, and the PDCCH carries the DCI.
  • the PDCCH can be used to schedule a physical downlink shared channel (PDSCH) for a terminal device, and the PDSCH carries downlink data sent to the terminal device.
  • PDSCH physical downlink shared channel
  • the terminal device can receive the DCI carried in the PDCCH, determine the time unit where the PDSCH is located and the specific time domain resources occupied by the PDSCH in the time unit according to the time domain resource indication information in the DCI, and then receive the downlink data carried in the PDSCH.
  • the time domain resource indication information can be used to indicate a row in a time domain resource table, and each row in the time domain resource table includes an indication information K0 and a starting and length indication value (SLIV) indication information.
  • the indication information K0 is used to indicate the number of time units that differ between the time unit where the PDSCH is located and the time unit where the PDCCH is located; Start symbol and length.
  • the time unit is a slot
  • the value of the indication information K0 is 1, and if the time unit where the PDCCH is located is slot(n), then the time unit where the PDSCH is located is slot(n+1).
  • the SLIV indication information indicates that the PDSCH starts from the second symbol and has a length of 2 symbols, it means that the PDSCH occupies the second symbol and the third symbol in slot(n+1).
  • the time unit may be a time slot (slot) or a sub-slot (sub-slot), which is not specifically limited.
  • one slot includes 14 symbols
  • the extended cyclic prefix one slot includes 12 symbols.
  • the sub-slot may include 2 symbols or 7 symbols.
  • the sub-slots can also be called mini-slots.
  • the number of symbols included in one sub-slot is less than the number of symbols included in the time slot, and the specific number of symbols included in one sub-slot can be indicated by high-level signaling sent by the network device. After receiving the high-level signaling instructions, the terminal equipment can know the number of symbols included in a sub-slot.
  • high-level signaling can indicate that the number of symbols in a sub-slot is 2 symbols or 7 symbols; or it can indicate a slot as 2 symbols multiplied by 7, indicating that a slot contains 7 sub-slots, and each sub-slot
  • the number of symbols in a slot is 2 symbols; or one slot can be indicated as 7 symbols multiplied by 2, indicating that a slot includes 2 sub-slots, and the number of symbols in each sub-slot is 7 symbols.
  • the place where "time slot" appears can be replaced by "sub-time slot”.
  • the symbols or time-domain symbols mentioned in the embodiments of this application are all orthogonal frequency division multiplexing (OFDM) symbols.
  • the terminal device After receiving the downlink data carried in the PDSCH, the terminal device can send feedback information to the network device according to the result of data decoding.
  • the feedback information may be an acknowledgement (acknowledgement, ACK) used to indicate a successful data reception, or a negative acknowledgement (NACK) used to indicate a failure of data reception.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the terminal device can also determine the time unit for sending the feedback information according to the indication information K1 in the DCI.
  • the indication information K1 is used to indicate the number of time units that differ between the time unit for sending the feedback information and the time unit for receiving the PDSCH. . This means that the timing relationship of n+K1 needs to be satisfied between the terminal device receiving the downlink data and sending the feedback information to the network device. In other words, if the terminal device receives the PDSCH in slot(n), the terminal device should send feedback information to the network device in slot(n+K1).
  • the indication information K1 may indicate a value in a K1 set, and the K1 set may be configured by a network device through high-level signaling or may also be predefined. For example, assuming that the network device configuration K1 set is ⁇ 1,2,3,4,5,6,7,8 ⁇ , the indication information K1 in the DCI occupies 3 bits, then if the indication information K1 indicates "001", it can indicate The value of K1 is 2.
  • the high-level signaling refers to signaling sent by a high-level protocol layer
  • the high-level protocol layer may include at least one protocol layer above the physical layer.
  • the high-level protocol layer may include at least one of the following protocol layers: MAC layer, RLC layer, PDCP layer, RRC layer, and non-access stratum (NAS).
  • the network equipment can also indicate the number of PDSCH repetitions through high-level signaling. That is, the DCI carried in one PDCCH can schedule multiple repeated PDSCHs. In other words, one DCI can schedule multiple transmissions of one PDSCH. These repeated PDSCHs carry the same downlink data sent to the terminal equipment.
  • the terminal device may send feedback information to the network device according to the decoding result of the downlink data carried in the multiple PDSCHs. That is, multiple repeated PDSCHs can correspond to the same feedback information. If the terminal device successfully decodes the downlink data carried by one or more of the multiple repeated PDSCHs, it can feed back an ACK to the network device. If the decoding of the downlink data carried by the multiple repeated PDSCHs fails, the NACK can be fed back to the network device.
  • multiple repeated PDSCHs can occupy consecutive time units in the time domain, and each PDSCH appears only once in a time unit, and each PDSCH is in a time unit The same time domain location.
  • the time unit for the terminal device to send the feedback information to the network device is determined according to the last PDSCH among the multiple repeated PDSCHs.
  • the terminal device can receive the first PDSCH in slot(n+1), receive the second PDSCH in slot(n+2), and then send feedback information to the network device in slot(n+3) .
  • the network device may also repeatedly send multiple PDCCHs, and multiple DCIs carried in the multiple PDCCHs repeatedly sent may be used to schedule the same PDSCH or multiple repeated PDSCHs.
  • the multiple PDCCHs that are repeatedly sent may be repeated in the time domain and/or the frequency domain. Wherein, repetition in the time domain may mean that multiple PDCCHs are repeated at different PDCCH monitoring occasions in the time domain; repetition in the frequency domain may mean that multiple PDCCHs are repeated at different frequency domain resource positions in the frequency domain.
  • the network device repeatedly sends two PDCCHs at different PDCCH monitoring occasions in the time domain, and the DCI carried in each PDCCH can be used for scheduling in the time domain.
  • Two repeated PDSCHs in the example shown in part (b) of Figure 3, the network device repeatedly sends two PDCCHs on different frequency domain resources in the frequency domain, and each PDCCH is used to schedule two PDCCHs in the time domain.
  • Duplicate PDSCH in this application, the PDCCH scheduling PDSCH is equivalent to the DCI scheduling PDSCH carried in the PDCCH.
  • the multiple PDCCHs that are repeatedly sent may also belong to different control resource set (CORESET) groups.
  • CORESET control resource set
  • the terminal device does not send feedback information one by one, but may generate a hybrid automatic repeat request-acknowledgement (HARQ-ACK) codebook from multiple feedback information that needs to be sent together , And then send the HARQ-ACK codebook to the network device.
  • HARQ-ACK codebook includes a group of consecutive bits obtained by concatenating the ACK or NACK that needs to be fed back in one time unit.
  • the terminal device may include multiple PDCCH-scheduled data feedback information in one HARQ-ACK codebook and send it to the network device.
  • the feedback information of the scheduled data may also have duplicate PDCCHs among multiple PDCCHs sent in the same HARQ-ACK codebook.
  • PDCCH repetition and DCI repetition have the same meaning.
  • all DCIs except the first DCI can be regarded as the repetition of the first DCI.
  • the first DCI refers to the DCI that meets one or more of the following conditions among multiple repeated DCIs:
  • the DCI with the highest position in the time domain among multiple repeated DCIs in other words the one with the highest DCI blind detection opportunity; or, the DCI with the highest frequency domain position among the multiple repeated DCIs; or, multiple Among the repeated DCIs, the DCI with the smallest cell ID; or, the DCI with the smallest ID of the CORESET group in the multiple repeated DCIs; or the DCI with the smallest ID of the CORESET group in the multiple repeated DCIs.
  • the DCI is the first DCI.
  • the HARQ-ACK codebook may be carried on a physical uplink control channel (PUCCH).
  • the terminal device can determine the number of bits of the feedback information contained in the HARQ-ACK codebook and the indication of the PRI field in the DCI carried by a certain PDCCH of the multiple PDCCHs used to generate the HARQ-ACK codebook. Send the uplink resource of the HARQ-ACK codebook.
  • the network device may send the X1th indication information to the terminal device.
  • the X1th indication information indicates one or more CORESETs.
  • the X1th indication information may contain the following information: the identification of each CORESET, the identification of each CORESET The number of time-domain symbols (for example, one symbol, two symbols, or three symbols can be selected), the frequency-domain resource location of each CORESET, etc.
  • the terminal device can determine the identity of each CORESET in the multiple CORESETs, the frequency domain resource location of each CORESET, and the number of time domain symbols of each CORESET according to the received X1th indication information.
  • the network device may also send X2-th indication information to the terminal device, where the X2-th indication information indicates one or more search spaces.
  • the X2th indication information may include at least one of the following information: the identification of each search space, the identification of the CORESET associated with each search space, and the period of each search space in the time domain, Bias, and blind detection patterns.
  • the period can be, for example, 2 slots; the offset refers to which slot in the period, such as the second; the pattern indicates the specific positions in the determined slot for blind detection, which can be indicated by the 14-bit bitmap bitmap.
  • the indication 1010101010101010 means that blind PDCCH detection needs to be started at the positions of the 1, 3, 5, 7, 9, 11, and 13 symbols in a slot.
  • time-domain positions are called the time-domain starting positions of the search space .
  • the terminal device can determine the identities of the multiple search spaces and the time domain starting positions of the multiple search spaces according to the received X2th indication information. Since each search space is associated with a CORESET, the time domain start position of the search space is determined, and the time domain start position of CORESET is determined. The start position of the time domain position of CORESET is the search associated with the CORESET After the time domain start position of the space and the start position of the CORESET time domain are determined, combined with the number of CORESET symbols, the time domain position of CORESET can be determined, and the time domain position of CORESET can also be called the PDCCH monitoring opportunity.
  • the number of time-domain symbols of CORESET p is 3, the search space s is configured with a period of 2 slots, the offset is the second, and the 14-bit bitmap is 10001000100000.
  • the search space s is associated with CORESET p, then It can be determined that the time-domain starting position of the search space is the first, fifth, and ninth symbol of the second slot in every two slots, and the starting position of the time-domain position of CORESET p is every 2
  • the first, fifth, and ninth symbols in the second slot in each slot, and the number of symbols in CORESET p is 3 symbols, then the time domain position of CORESET is that of the second slot in every two slots Symbols 1-3, 5-7, 9-11.
  • the PDCCH monitoring timings are in slot 1 and slot 3.
  • Each slot has 3 PDCCH monitoring timings, and each PDCCH monitoring timing has 3 symbols.
  • the terminal equipment can perform blind detection at the determined PDCCH monitoring timing. After receiving the PDCCH, the terminal equipment can determine the time-frequency position of the CORESET or the PDCCH received in which CORESET the time-frequency position of the PDCCH is received. Determine which CORESET the PDCCH bears on, that is, determine which CORESET bears the DCI carried by the PDCCH, or determine which CORESET the PDCCH belongs to, or determine which CORESET the DCI carried by the PDCCH belongs to, or the other way around, the CORESET Carry the PDCCH or the DCI.
  • the network device may send the X1th indication information to the terminal device.
  • the X1th indication information indicates one or more CORESETs.
  • the X1th indication information may contain the following information:
  • the group corresponding to the CORESET group where each CORESET is located Identification (denoted as CORESETGroupIndex).
  • the CORESET group can also be called a CORESET pool. Therefore, the group ID corresponding to the CORESET group where each CORESET is located can also be called the pool ID (denoted as CORESETPoolIndex) of the CORESET pool where each CORESET is located.
  • the terminal device receives the X1th indication information, and therefore determines the group ID corresponding to the CORESET group in which each CORESET of the multiple CORESETs is located.
  • the candidate values of the group identifier can be 0 to W-1, where W represents several CORESET groups, which are CORESET group 0 to CORESET group W-1, respectively, and W is an integer greater than or equal to 2. Because a CORESET can only belong to one CORESET group, a CORESET group can include multiple CORESETs.
  • the network device indicates 3 CORESETs for the terminal device, and their identifiers are 1, 2, and 3 respectively.
  • multiple DCIs carried in multiple PDCCHs that are repeatedly sent may correspond to one or multiple HARQ-ACK codebooks.
  • FIG. 5 is a schematic diagram of a method for sending feedback information according to an embodiment of this application.
  • the method specifically includes:
  • Step S501 The network device sends M DCIs to the terminal device, where the M DCIs are used to schedule N data, M is an integer greater than or equal to 2, and N is an integer less than or equal to M and greater than or equal to 2.
  • the network device sending M DCIs to the terminal device can be understood as the network device sending M PDCCHs to the terminal device.
  • Each PDCCH of the M PDCCHs respectively carries one DCI of the M DCIs.
  • the DCI is used to schedule one PDSCH or multiple repeated PDSCHs, and the PDSCH carries one of the N pieces of data. It should be noted that when one DCI is used to schedule multiple repeated PDSCHs, the multiple repeated PDSCHs carry the same data.
  • the M DCIs are used to schedule N pieces of data, and each DCI of the M DCIs is used to schedule one of the N pieces of data. According to the value range of M and N, when M is greater than N, M DCIs are used to schedule N data representations, and there are two or more DCIs in M DCIs that are used to schedule the same data, that is, In other words, there are repeated DCIs in the M DCIs, and these repeated DCIs are used to schedule the same data.
  • M DCIs are used to schedule N data, that is, M DCIs are used to schedule M data. This means that each DCI of M DCIs is used to schedule one data of M data. There are situations in which two or more DCIs are used to schedule the same data, that is, different DCIs among the M DCIs are used to schedule different data, and there are no duplicate DCIs among the M DCIs.
  • the M DCIs specifically refer to the M DCIs sent in the same HARQ-ACK codebook for the feedback information of the scheduled data, that is, the feedback information of the N data scheduled by the M DCIs is in the same HARQ-ACK codebook. Sent in this book. Specifically, sending the feedback information of the M DCI scheduled data in the same HARQ-ACK codebook may have the following multiple possible implementation manners:
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; accordingly, the network device may send the first indication information to the terminal device, and the first indication The information indicates joint feedback of feedback information in the L CORESET groups.
  • the joint feedback refers to that the feedback information of the data scheduled by the DCI received at the PDCCH monitoring occasions in the CORESET included in the L CORESET groups is jointly sent in the same HARQ-ACK codebook. That is, the L CORESET groups correspond to the same HARQ-ACK codebook, and the HARQ-ACK codebook refers to one HARQ-ACK codebook used for joint feedback.
  • the terminal device may combine the feedback information of the N data scheduled by the M DCIs in one HARQ-ACK code Feedback in this book.
  • the M DCIs are carried in the same CORESET group, and the HARQ-ACK codebook refers to the HARQ-ACK codebook corresponding to the CORESET group.
  • the terminal device may generate a corresponding HARQ-ACK codebook for the CORESET group carrying the M DCIs.
  • a CORESET group may include one or more CORESETs. Therefore, the M DCIs carried in the same CORESET group may mean that the M DCIs are carried in one or more of the same CORESET group. Among the CORESETs, or the CORESETs carrying the M DCIs belong to the same CORESET group.
  • the HARQ-ACK codebook corresponding to a CORESET group refers to the feedback information of the data scheduled by the DCI received at the PDCCH monitoring occasion in one or more CORESETs included in the CORESET group, if required at the same time Unit feedback, the feedback information is included in the same HARQ-ACK codebook and sent, and the HARQ-ACK codebook is the HARQ-ACK codebook corresponding to the CORESET group.
  • the network device may send second indication information to the terminal device, where the second indication information indicates that the feedback information in different CORESET groups is separately feedback.
  • the time unit for sending the feedback information of the scheduled data indicated by each of the M DCIs is the same, for example, each DCI indicates the feedback information of the scheduled data
  • the time unit may be a time slot or a sub-slot.
  • the HARQ-ACK codebook may refer to the HARQ-ACK codebook corresponding to the first time unit.
  • the terminal device can generate a corresponding HARQ-ACK codebook for the first time unit.
  • each DCI may further include priority indication information, where the priority indication information is used to indicate the priority of the feedback information of the data scheduled by the DCI.
  • the M DCIs may also be M DCIs in which the indicated time units for sending feedback information are all the same, and the priority of the indicated feedback information is also the same. For example, each of the M DCIs indicates that the feedback information of the scheduled data is sent in the first time unit, and the priority of the feedback information is priority 0.
  • the HARQ-ACK codebook may refer to the HARQ-ACK code corresponding to priority 0 in the first time unit Book.
  • the terminal device generates a corresponding HARQ-ACK codebook for the first time unit and priority 0.
  • each DCI may further include a group identification indication information, the group identification indication information is used to indicate the group identification of the feedback information of the data scheduled by the DCI, and the group identification is used to indicate the information of the data scheduled by the DCI.
  • the M DCIs may also be M DCIs in which the indicated time units for sending feedback information are all the same, and the group identifiers of the indicated feedback information are also the same.
  • each of the M DCIs indicates that the feedback information of the scheduled data is sent in the first time unit, and the group identifier of the feedback information is the group identifier 0.
  • the HARQ-ACK codebook may refer to the HARQ-ACK code corresponding to the group ID 0 in the first time unit Book.
  • the terminal device generates a corresponding HARQ-ACK codebook for the first time unit and the group identifier 0.
  • the network device may also send other DCIs other than the M DCIs to the terminal device, but it should be noted that the other DCIs are not used to generate the HARQ-ACK codebook. That is to say, if the other DCI is used to schedule other data except the N data, the feedback information of the data scheduled by the other DCI will not be fed back in the HARQ-ACK codebook, and the terminal device can Another HARQ-ACK codebook is generated according to the other DCI, and the other HARQ-ACK codebook is different from the above-mentioned HARQ-ACK codebook containing the feedback information of M DCI scheduled data.
  • the M DCIs specifically refer to the M DCIs fed back in the same HARQ-ACK codebook for the feedback information of the scheduled data
  • M is equal to N
  • the absence of duplicate DCIs in the M DCIs does not mean that The other DCI sent by the network device to the terminal device will not overlap with a certain DCI of the M DCIs, that is, other DCIs sent by the network device to the terminal device may also be used for scheduling with a certain DCI of the M DCIs.
  • the same data since M is equal to N, the absence of duplicate DCIs in the M DCIs does not mean that The other DCI sent by the network device to the terminal device will not overlap with a certain DCI of the M DCIs, that is, other DCIs sent by the network device to the terminal device may also be used for scheduling with a certain DCI of the M DCIs. The same data.
  • the M DCIs may include at least one of the first DCI and the second DCI.
  • the first DCI and the second DCI are two repetitions of the same DCI and are used to schedule the same one of the N data.
  • the data for example, can all be used to schedule the first data, and the first data is one of the N data.
  • the M DCIs include the first DCI and the second DCI at the same time, it means that there are duplicate DCIs in the M DCIs, which corresponds to the above-mentioned situation that M is greater than N.
  • the first DCI and the second DCI may belong to different CORESET groups, but the feedback information in the two CORESET groups needs to be combined. Feedback; or, the first DCI and the second DCI may also belong to the same CORESET group; or, the first DCI and the second DCI may also indicate the same time unit for sending feedback information.
  • the terminal device may generate feedback information of the first data according to only one of the first DCI and the second DCI.
  • the HARQ-ACK codebook includes only one piece of feedback information for the first data.
  • the entire HARQ-ACK codebook includes a total of N pieces of feedback information, and the N pieces of feedback information are one for each of the N pieces of data. correspond.
  • the feedback information of the first data is generated according to the DCI with the highest position in the time domain in the first DCI and the second DCI. If the DCI with the highest position in the time domain is the first DCI, then the feedback information of the first data is in this The position in the HARQ-ACK codebook is determined according to the first DCI.
  • the terminal device may also generate feedback information of the first data according to the first DCI and the second DCI, respectively.
  • the HARQ-ACK codebook includes two pieces of feedback information of the first data, and the two pieces of feedback information of the first data can be understood as two copies of the feedback information of the first data.
  • the entire HARQ-ACK codebook includes a total of M pieces of feedback information, and the M pieces of feedback information respectively correspond to M pieces of DCI one-to-one. The position of the feedback information of the first data in the HARQ-ACK codebook is determined according to the first DCI and the second DCI.
  • first DCI and the second DCI are included in the M DCIs, for example, the first DCI is included but the second DCI is not included, then it means that there is one other than the M DCIs that overlaps the first DCI.
  • the second DCI is only one of the first DCI and the second DCI included in the M DCIs, for example, the first DCI is included but the second DCI is not included, then it means that there is one other than the M DCIs that overlaps the first DCI.
  • the second DCI is not included
  • the first DCI and the second DCI may belong to different CORESET groups, but the feedback information in the two CORESET groups needs to be separately Feedback, therefore, the feedback information of the data scheduled by the second DCI can be fed back in the HARQ-ACK codebook corresponding to another CORESET group; or, the first DCI and the second DCI indicate different time units for sending feedback information, Therefore, the feedback information of the data scheduled by the second DCI can be fed back in the HARQ-ACK codebook corresponding to another time unit; or, the feedback information of the first data can also be fed back only in the HARQ-ACK codebook corresponding to the first DCI.
  • the first DCI may be the DCI with the highest position in the time domain among the multiple DCIs used to schedule the first data, or the first DCI may also be multiple DCIs used to schedule the first data
  • the DCI with the highest time unit for sending feedback information indicated in, or the first DCI may also be the DCI with the largest time-frequency resource for sending feedback information indicated among the multiple DCIs used for scheduling first data, or
  • the first DCI may also be the DCI with the smallest time-frequency resource indicated among the multiple DCIs used to schedule the first data for sending feedback information, or the first DCI may also have other implementation manners, which will not be described here. Enumerate.
  • the first DCI if the time domain position of the second DCI is before the time domain position of the first DCI, it can indicate that the first DCI is not the first to schedule the first data.
  • the first DCI is not the DCI with the highest position in the time domain among the multiple DCIs sent by the network device for scheduling the first data, or in other words, the first DCI is not the DCI transmitted for the first time.
  • the time domain position of the first DCI is before the time domain position of the second DCI, it can indicate that the second DCI is not the first DCI used to schedule the first data, or in other words, the second DCI is not sent by the network device.
  • the DCI with the highest position in the time domain, or in other words, the second DCI is not the DCI transmitted for the first time.
  • the first DCI may be the first DCI used for scheduling the first data, or may not be the first DCI used for scheduling the first data.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the value of M and /N; or, the value of M and/or N involved in the embodiment of this application
  • the value can also be pre-defined, and the pre-definition can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing or pre-burning, etc., which will not be described in detail below.
  • Step S502 The terminal device receives M DCIs from the network device.
  • each DCI in the M DCIs may also indicate the time domain resource location of one PDSCH or multiple PDSCHs to be scheduled. In this way, after receiving the M DCIs, the terminal device may receive the N data at the time domain resource locations indicated by the M DCIs.
  • the terminal device may generate a HARQ-ACK codebook according to the indication of the downlink assignment index (DAI) field in the M DCIs and the decoding result of the N data scheduled by the M DCIs.
  • the HARQ-ACK codebook includes feedback information for each of the N data. Specifically, if the terminal device successfully decodes certain data among the N pieces of data, the feedback information corresponding to the data in the HARQ-ACK codebook is ACK, and if the terminal device fails to decode the data, the HARQ-ACK code The feedback information corresponding to the data in this document is NACK.
  • the M DCIs may include repeated DCIs. If the M DCIs include multiple repeated DCIs, and the multiple repeated DCIs are used to schedule the same data, then in a possible implementation manner
  • the terminal device may generate a piece of scheduled data feedback information for multiple repeated DCIs, for example, may generate the scheduled data feedback information according to one of the multiple repeated DCIs.
  • the HARQ-ACK codebook will include a copy of the feedback information of the multiple repeated DCI scheduled data, and the position of the copy in the HARQ-ACK codebook is determined according to the DCI used to generate the copy. Is determined according to the indication of the DAI field in the DCI used to generate the copy. It can be seen that in this implementation manner, the entire HARQ-ACK codebook includes a total of N pieces of feedback information, that is, the feedback information of each of the N pieces of data includes only one copy in the codebook.
  • the terminal device may generate a piece of scheduled data feedback information for the multiple repeated DCIs, and correspondingly, the HARQ-ACK codebook will include the feedback information of its scheduled data Multiple copies of the information, each copy corresponds to one DCI of the multiple repeated DCIs, and the position of the multiple copies in the HARQ-ACK codebook is determined according to the multiple repeated DCIs, that is, according to the multiple The indication of the DAI field in the repeated DCI is determined.
  • the entire HARQ-ACK codebook includes a total of M pieces of feedback information, that is, each of the N pieces of data has a copy of the feedback information in the HARQ-ACK codebook. The number is consistent with the number of DCIs used to schedule the data in the M DCIs.
  • Step S503 The terminal device determines the time-frequency resource used to send the HARQ-ACK codebook according to the resource indication information in the third DCI.
  • the resource indication information may be PRI indication information.
  • the PRI indication information may be located in the PRI field in the DCI. Different values of the PRI field may represent different PRI indication information and are used to indicate different resources in a resource set.
  • the terminal device determining the time-frequency resource used to send the HARQ-ACK codebook may specifically include:
  • the terminal device may determine a first resource set from multiple resource sets according to the number of bits of feedback information included in the HARQ-ACK codebook, and the number of bits of feedback information included in the HARQ-ACK codebook belongs to the first resource.
  • the bit number interval corresponding to the set may be determined.
  • the network device may configure multiple resource sets for the terminal device through high-level signaling, and the resource sets may also be referred to as PUCCH resource sets.
  • the network device may send resource set configuration information to the terminal device, where the resource set configuration information is used to indicate information about multiple resource sets configured by the network device.
  • each resource set may include multiple PUCCH resources, and the PUCCH resources may be used to carry HARQ-ACK codebooks.
  • Each resource set can also correspond to a bit number interval, and the bit number intervals corresponding to different resource sets do not overlap each other. In this way, after the terminal device determines the number of bits of the feedback information included in the HARQ-ACK codebook to be transmitted, it can determine which resource set the number of bits belongs to, and then determine which resource set the PUCCH resources included in the resource set are used for. Send the HARQ-ACK codebook.
  • the number of bits included in each feedback information in the HARQ-ACK codebook is not limited, and one feedback information may include one or more bits.
  • the terminal device may determine the time-frequency resource used for sending the HARQ-ACK codebook in the first resource set according to the PRI indication information in the third DCI of the M DCIs.
  • the PRI indication information indicates a PUCCH resource in the determined first resource set
  • the PRI indication information may also be understood as an index (index) of the PUCCH resource in the resource set.
  • the third DCI is the last DCI in the time domain among the K DCIs. If there are multiple DCIs with the lowest position in the time domain among the K DCIs, the third DCI may be the DCI with the highest position in the frequency domain among the DCIs with the lowest position in the time domain among the K DCIs.
  • the highest frequency domain position means that the identifier of the resource block (resource block, RB) where the DCI is located is the largest or the identifier of the resource element (resource element, RE) where the DCI is located is the largest; or, the third DCI may also be the K DCIs
  • the DCI with the largest identifier of) and the largest identifier of the CORESET group in which it is located; or, the third DCI may also have other implementation manners, which is not limited in this application. In this application, the terms identification and index are interchangeable.
  • the K DCIs mentioned in the embodiment of this application are a proper subset of the M DCIs, that is, the K DCIs are K of the M DCIs, or can be understood as the K DCIs It is a set consisting of K DCIs satisfying the set conditions among M DCIs, and K is a positive integer less than M.
  • the K DCIs are used to schedule K data of the N data, and each DCI of the K DCIs is used to schedule one data of the K data. That is to say, each of the K DCIs is used to schedule different data in the K pieces of data. Therefore, K is also a positive integer less than or equal to N at the same time.
  • Each DCI in the K DCIs is the first DCI in the DCI used to schedule the scheduled data.
  • the specific description of the first DCI please refer to the first in the above repetition of multiple DCIs. The description of each DCI will not be repeated here.
  • each of the K DCIs is the DCI with the highest position in the time domain among the DCIs used to schedule the scheduled data, or in other words, the K DCIs are all the first transmissions DCI.
  • the i-th DCI in the K DCIs is used to schedule data #i in the K data, and i is a positive integer less than or equal to K, it can be represented that the i-th DCI is the schedule data #i
  • the DCI with the highest position in the time domain in the DCI, that is, the i-th DCI is the first DCI sent by the network device for scheduling data #i.
  • the K DCIs being a proper subset of the M DCIs
  • at least one DCI in the M DCIs is not included in the K DCIs. That is, at least one DCI in the M DCIs is not the DCI transmitted for the first time, but is the repetition of another DCI whose time domain position is before it, and the two are used to schedule the same data.
  • the DCI that is repeated with it may be located in the K DCIs, or may be located outside of the M DCIs, for example, may be other DCIs sent by the network device to the terminal device other than the M DCIs, but the other DCIs
  • the feedback information of the DCI-scheduled data and the feedback information of the M DCI-scheduled data are not fed back in one HARQ-ACK codebook.
  • one fourth DCI may be included in the M DCIs, and the fourth DCI is not included in the K DCIs.
  • the fourth DCI may be a repetition of a certain DCI of the K DCIs, that is, the fourth DCI and a certain DCI of the K DCIs are used to schedule the same data, but the time domain of the fourth DCI The position is located after the time domain position of the DCI used for scheduling the same data as the fourth DCI among the K DCIs.
  • the fourth DCI may also be a repetition of the fifth DCI
  • the fifth DCI is another DCI received by the terminal device from the network device other than the M DCIs, the fourth DCI and the fifth DCI Used to schedule the same data, but the time domain position of the fourth DCI is behind the time domain position of the fifth DCI.
  • the PRI indication information in the DCI used to schedule the same data may be the same. That is, the repeated DCI is used to schedule the same data, and the value of the PRI field therein is also the same. In this way, the value of the PRI field in the first DCI and the value of the PRI field in the second DCI mentioned in the above example may be the same.
  • the time-frequency resources for the terminal device to send the HARQ-ACK codebook can be uniformly allocated by the network device.
  • the network device can send resource indication information to the terminal device through the third DCI, so that the terminal device can determine the resource indication information for sending the HARQ-ACK codebook according to the resource indication information.
  • Time-frequency resources so that network equipment and terminal equipment have a consistent understanding of the time-frequency resources for sending HARQ-ACK codebooks.
  • Step S504 The terminal device sends the HARQ-ACK codebook to the network device on the time-frequency resource, where the HARQ-ACK codebook includes feedback information of each of the N pieces of data.
  • Step S505 The network device receives the HARQ-ACK codebook sent by the terminal device on the time-frequency resource.
  • the terminal device can send the HARQ-ACK codebook to the network device through the PUCCH channel on the determined time-frequency resource.
  • the network device can also receive the terminal device's pass PUCCH on the determined time-frequency resource. HARQ-ACK codebook for channel transmission.
  • the value of the PRI field in the repeated DCI is also the same, and the value of the PRI field in the DCI transmitted for the first time can be dynamically and flexibly changed by the network device according to the scheduling policy.
  • the time-frequency resource used to transmit the HARQ-ACK codebook is determined according to the indication of the PRI field of the third DCI whose position is the lowest in the time domain among the DCIs transmitted for the first time among the M DCIs. In this way, the size of the determined time-frequency resource can be matched with the number of bits of feedback information included in the HARQ-ACK codebook that needs to be sent, avoiding resource waste or poor reliability of feedback information, thereby improving the network The accuracy and flexibility of the device's indication of the resources used to send the HARQ-ACK codebook.
  • two DCI 1 are repeatedly sent, and both are used to schedule data 1.
  • the first DCI 1 is carried in CORESET group 1
  • the second DCI 1 is carried in CORESET group 2.
  • the PRI fields in the two DCIs are the same, and both indicate PRI 1.
  • Two DCI 2 are repeatedly sent, and both are used to schedule data 2.
  • the first DCI 2 is carried on CORESET group 2
  • the second DCI 2 is carried on CORESET group 1.
  • the PRI fields in the two DCI 2 are the same, and both indicate PRI 2.
  • the terminal device can generate a HARQ-ACK code according to the first DCI 1 and the second DCI 2
  • the HARQ-ACK codebook includes 1 bit feedback information of data 1 and 1 bit feedback information of data 2.
  • the terminal device can determine the corresponding PUCCH resource set 1 according to the 2-bit feedback information included in the HARQ-ACK codebook, and then determine the PUCCH resource set 1 according to the PRI 1 indicated by the PRI field in the first DCI 1
  • the HARQ-ACK codebook is sent on PUCCH resource 1 in.
  • the first DCI 1 is the first DCI used to schedule data 1, that is, the DCI used to schedule data 1 has the best time domain position.
  • the top DCI belongs to the DCI transmitted for the first time
  • the second DCI 2 is not the first DCI used to schedule data 2, or it is not the DCI with the highest position in the time domain among the DCIs used to schedule data 2.
  • the second DCI2 is actually a repetition of the first DCI 2 with the first time domain position, not the DCI transmitted for the first time. Therefore, the K DCIs only include the first DCI 1, and K DCIs The DCI with the lowest position in the time domain among the K DCIs is also the first DCI1.
  • the terminal device can generate a HARQ-ACK codebook based on the second DCI 1 and the first DCI 2, that is, M DCIs include the second DCI 1 and the first DCI 2, and the HARQ-ACK
  • the codebook includes 1 bit feedback information of data 1 and 1 bit feedback information of data 2.
  • the terminal device can determine the corresponding PUCCH resource set 1 according to the 2-bit feedback information included in the HARQ-ACK codebook, and then determine the PUCCH resource set 1 according to the PRI 2 indicated by the PRI field in the first DCI 2
  • the HARQ-ACK codebook is sent on PUCCH resource 2 in.
  • the DCI with the lowest position in the time domain among the K DCIs is also the first DCI 2.
  • the terminal device can be based on the first DCI 1, the second DCI 1, the first DCI 2 and the second DCI 2 , Generate a joint HARQ-ACK codebook, that is, M DCIs include the first DCI 1, the second DCI 1, the first DCI 2 and the second DCI 2, and the HARQ-ACK codebook includes data 1 2bit feedback information and data 2 2bit feedback information.
  • the terminal device can determine the corresponding PUCCH resource set 2 according to the 4-bit feedback information included in the HARQ-ACK codebook, and then determine the PUCCH resource set 2 according to the PRI 2 indicated by the PRI field in the first DCI 2
  • the HARQ-ACK codebook is sent on PUCCH resource 1 in.
  • the K DCIs include the first DCI 1 and the first DCI 2. Since the time domain position of the first DCI 1 is the same as the time domain position of the first DCI 2, choose two The first DCI 2 in the higher frequency domain is used to determine the PUCCH resource for transmitting the HARQ-ACK codebook.
  • FIG. 7 is a schematic diagram of another method for sending feedback information provided by an embodiment of this application.
  • the method specifically includes:
  • Step S701 The network device sends M DCIs to the terminal device, where the M DCIs are used to schedule N data, M is an integer greater than or equal to 2, and N is an integer less than or equal to M and greater than or equal to 2.
  • step S701 the specific implementation manner of the M DCIs and the implementation manner of including the feedback information of the M DCI scheduled data in the same HARQ-ACK codebook can refer to the step S501 in the first embodiment. The description will not be repeated here.
  • the second embodiment can also be applied to scenarios where there is DCI repetition. It can be that two or more of the M DCIs are repeated, or it can be sent by a certain DCI of the M DCIs and a network device. Except for the M DCIs, other DCIs are repeated, which is not specifically limited. That is to say, at least one DCI in the M DCIs is not the DCI transmitted for the first time, but the repetition of another DCI whose time domain position is before it, and the two are used to schedule the same data. Moreover, the DCI that is repeated with it may be located in the M DCIs, or may be located outside the M DCIs, for example, may be other DCIs other than the M DCIs sent by the network device to the terminal device.
  • the M DCIs may include at least one of the first DCI and the second DCI.
  • the first DCI and the second DCI are two repetitions of the same DCI, and the scheduled data of the two are the same. For example, they can both be used for scheduling.
  • the first data the first data is one of the N data.
  • the value of the PRI field in the first DCI may be different from the value of the PRI field in the second DCI, that is, the PRI indication information in the first DCI is different from the PRI indication information in the second DCI.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the value of M and /N; or, the value of M and/or N involved in the embodiment of this application
  • the value can also be predefined.
  • Step S702 The terminal device receives M DCIs from the network device.
  • step S702 For the specific implementation of step S702, refer to step S701, and the description of step S501 and step S502 in the first embodiment, which will not be repeated here.
  • Step S703 The terminal device determines the time-frequency resource for transmitting the HARQ-ACK codebook according to the value of the PRI field in the third DCI.
  • the third DCI refers to the DCI with the lowest position in the time domain among the M DCIs.
  • the manner of the DCI with the lowest position in the time domain among the M DCIs is similar to the manner of the DCI with the lowest position in the time domain among the K DCIs in step S503.
  • the third DCI may be the DCI with the highest position in the frequency domain among the DCIs with the lowest position in the time domain among the M DCIs, so The highest frequency domain position refers to the largest identifier of the RB where the DCI is located or the highest identifier of the RE where the DCI is located; alternatively, the third DCI may also be the cell where the DCI with the lowest position in the time domain of the M DCIs is located.
  • the DCI with the largest ID; or, the third DCI can also be the DCI with the largest cell ID in the DCI with the lowest time domain position among the M DCIs, and the DCI with the largest CORESET ID; or The third DCI may also be the DCI with the largest identifier of the cell in the DCI with the lowest position in the time domain among the M DCIs, and the largest identifier of the CORESET group in which it is located.
  • step S703 according to the value of the PRI field in the third DCI, the specific implementation manner of determining the time-frequency resource for transmitting the HARQ-ACK codebook can refer to the description in step S503 in the first embodiment, which will not be repeated here.
  • the third DCI in the second embodiment of the present application is different from the third DCI in the first embodiment.
  • the third DCI in the second embodiment refers to the lowest position in the time domain among the M DCIs.
  • the third DCI in the first embodiment refers to the DCI with the lowest position in the time domain among the K DCIs.
  • the K DCIs are a proper subset of the M DCIs, and the DCI with the lowest position in the time domain among the K DCIs and the DCI with the lowest position in the time domain among the M DCIs may be the same or different DCI.
  • the terminal device may also combine and decode the remaining bit fields other than the PRI field in one or more DCIs used for scheduling the same data among the M DCIs, so as to ensure the reliability of the PDCCH.
  • Step S704 The terminal device sends the HARQ-ACK codebook to the network device on the time-frequency resource, where the HARQ-ACK codebook includes feedback information of each of the N pieces of data.
  • Step S705 The network device receives the HARQ-ACK codebook sent by the terminal device on the time-frequency resource.
  • the terminal device may send the HARQ-ACK codebook to the network device through the PUCCH channel on the determined time-frequency resource.
  • the network device may also receive the terminal device through the PUCCH channel on the time-frequency resource. The transmitted HARQ-ACK codebook.
  • the DCI on which the time-frequency resource for transmitting the HARQ-ACK codebook is determined is also different.
  • the value of the PRI field in the repeated DCI can be different, for a DCI, whether the DCI is a repeated DCI or the first transmission of DCI, the value of the PRI field in the DCI The value can be dynamically and flexibly changed by the network device according to the scheduling strategy.
  • the time-frequency resource used to transmit the HARQ-ACK codebook is determined according to the value of the PRI field in the DCI with the lowest time-domain position among the M DCIs, so that the determined time-frequency resource size and needs can be determined
  • the number of bits of the feedback information included in the transmitted HARQ-ACK codebook is matched, avoiding resource waste or poor reliability of the feedback information, and improving the accuracy of the resource indication used by the network device for sending the HARQ-ACK codebook Sex and flexibility.
  • two DCI 1 are repeatedly sent, and both are used to schedule data 1.
  • the first DCI 1 is carried in CORESET group 1
  • the second DCI 1 is carried in CORESET group 2.
  • the values of the PRI fields in the two DCI 1 are different, and the PRI field in the first DCI 1 indicates PRI1 ,
  • the PRI field in the second DCI 1 indicates PRI4.
  • DCI 2 and DCI 3 are sent separately, of which DCI 2 and DCI 3 are both carried in CORESET group 2, DCI 2 is used to schedule data 2, the PRI field in DCI 2 indicates PRI4, DCI 3 is used to schedule data 3, and DCI The PRI field in 3 indicates PRI3.
  • the terminal device can generate a HARQ-ACK codebook according to the first DCI 1, and the HARQ-ACK
  • the codebook includes 1-bit feedback information of data 1. Furthermore, the terminal device can determine the corresponding PUCCH resource set 1 according to the 1-bit feedback information included in the HARQ-ACK codebook, and then determine the PUCCH resource set 1 according to the PRI 1 indicated by the PRI field in the first DCI 1
  • the HARQ-ACK codebook is sent on PUCCH resource 1 in.
  • the DCI with the lowest position in the time domain among the M DCIs is the first DCI1.
  • the terminal device can generate a HARQ-ACK codebook based on DCI 2, DCI 3, and the second DCI 1.
  • the HARQ-ACK codebook includes 1 bit feedback information of data 1 and 1 bit feedback information of data 2 And 1bit feedback information of data 3.
  • the terminal device can determine the corresponding PUCCH resource set 1 according to the 3-bit feedback information included in the HARQ-ACK codebook, and then determine the PUCCH resource set 1 according to the PRI 4 indicated by the PRI field in the second DCI 1
  • the HARQ-ACK codebook is sent on PUCCH resource 4 in.
  • the DCI with the lowest position in the time domain among the M DCIs is the second DCI1.
  • two DCI 1 are repeatedly sent, and both are used to schedule data 1.
  • the first DCI 1 is carried in CORESET group 1
  • the second DCI 1 is carried in CORESET group 2.
  • the values of the PRI fields in the two DCI 1 are different, and the PRI field in the first DCI 1 indicates PRI 1
  • the PRI field in the second DCI 1 indicates PRI 4.
  • Two DCI 2 are repeatedly sent, and both are used to schedule data 2.
  • the first DCI 2 is carried in CORESET group 2
  • the second DCI 2 is carried in CORESET group 1.
  • the values of the PRI fields in the two DCIs 2 are different, and the PRI field in the first DCI 2 indicates PRI 2
  • the PRI field in the second DCI 2 indicates PRI 3.
  • the terminal device can be based on the first DCI 1, the second DCI 1, the first DCI 2 and the second DCI 2 , Generate a joint HARQ-ACK codebook, the HARQ-ACK codebook includes the 2-bit feedback information of data 1 and the 2-bit feedback information of data 2. Furthermore, the terminal device can determine the corresponding PUCCH resource set 2 according to the 4-bit feedback information included in the HARQ-ACK codebook, and then determine the PUCCH resource set 2 according to the PRI 4 indicated by the PRI field in the second DCI 1 The HARQ-ACK codebook is sent on PUCCH resource 4 in.
  • the time domain position of the second DCI 1 is the same as the time domain position of the second DCI 2, and there are two DCIs with the lowest position in the time domain among the M DCIs. In this case, you can The second DCI1 with a higher frequency domain position among the two is selected to determine the PUCCH resource for transmitting the HARQ-ACK codebook.
  • FIG. 10 is a schematic structural diagram of a communication device provided in an embodiment of the application.
  • the communication device 1000 includes: a transceiver module 1010 and a processing module 1020.
  • the communication device can be used to implement the functions related to terminal equipment in any of the foregoing method embodiments.
  • the communication device may be a terminal device, a chip included in the terminal device, or a device including the terminal device, such as various types of vehicles.
  • the transceiver module 1010 is used to receive M DCIs from a network device, and the M DCIs are used to schedule N data
  • the M DCIs include at least one of the first DCI and the second DCI, where the first DCI and the second DCI are two repetitions of the same DCI, and the first DCI and the second DCI are used to schedule N data
  • M is an integer greater than or equal to 2
  • N is an integer less than or equal to M and greater than or equal to 2
  • the processing module 1020 is configured to determine that it is used to send HARQ according to the resource indication information in the third DCI -The time-frequency resource of the ACK codebook, the third DCI is the lowest DCI in the time domain among the K DCIs, the K DCIs are a proper subset of the M DCIs, and the HARQ-ACK codebook includes N
  • K is a positive integer
  • the processing module 1020 is configured to determine that it is used to send HARQ according to the resource indication information in the third
  • the processing module 1020 is specifically configured to determine the first resource set according to the number of bits of the feedback information included in the HARQ-ACK codebook, where the value of the feedback information included in the HARQ-ACK codebook is The number of bits belongs to the bit number interval corresponding to the first resource set; and, according to the resource indication information in the third DCI, the time-frequency resource for transmitting the HARQ-ACK codebook is determined in the first resource set, and the resource indication
  • the information may be, for example, PRI indication information in the PRI field of DCI.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; the transceiver module 1010 is also configured to receive first indication information from a network device.
  • the indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the transceiver module 1010 is used to receive M DCIs from the network equipment, and the M DCIs are used to schedule N data, and among the M DCIs It includes at least one of the first DCI and the second DCI, where the first DCI and the second DCI are two repetitions of the same DCI, and the first DCI and the second DCI are used to schedule the same data among the N pieces of data , And the value of the PRI field in the first DCI is different from the value of the PRI field in the second DCI, M is an integer greater than or equal to 2, and N is an integer less than or equal to M and greater than or equal to 2; processing module 1020 is used to determine the time-frequency resource for transmitting the HARQ-ACK codebook according to the value of the PRI field in the third DCI.
  • the third DCI is the lowest DCI in the time domain among the M DCIs.
  • the ACK codebook includes feedback information of each of the N pieces of data; the transceiver module 1010 is also configured to send the HARQ-ACK codebook to the network device on the determined time-frequency resource.
  • the processing module 1020 is specifically configured to determine the first resource set according to the number of bits of the feedback information included in the HARQ-ACK codebook, where the bits of the feedback information included in the HARQ-ACK codebook are The number belongs to the bit number interval corresponding to the first resource set; and, according to the value of the PRI field in the third DCI, the time-frequency resource for transmitting the HARQ-ACK codebook is determined in the first resource set.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; the transceiver module 1010 is also configured to receive first indication information from a network device.
  • the indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the processing module 1020 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver module 1010 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 5 or FIG. 7, and is not repeated here for brevity.
  • FIG. 11 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a memory. Of course, it may also include a radio frequency circuit, an antenna, an input/output device, and the like.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1110 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1110 can be regarded as the sending unit, that is, the transceiving unit 1110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1110 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1120 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • FIG. 12 is a schematic structural diagram of a communication device provided in an embodiment of this application.
  • the communication device 1200 includes a transceiver module 1210 and a processing module 1220.
  • the communication device can be used to implement the functions related to the network equipment in any of the foregoing method embodiments.
  • the communication device may be a network device or a chip included in the network device.
  • the transceiver module 1210 is configured to send M downlink control information DCIs to the terminal device, and the M DCIs are used to schedule N Data
  • the M DCIs include at least one of the first DCI and the second DCI, where the first DCI and the second DCI are two repetitions of the same DCI, and the first DCI and the second DCI are used for scheduling N
  • M is an integer greater than or equal to 2
  • N is an integer less than or equal to M and greater than or equal to 2.
  • the processing module 1220 is configured to determine the Receive the hybrid automatic repeat request to confirm the time-frequency resource of the HARQ-ACK codebook, the third DCI is the last DCI in the time domain among the K DCIs, and the K DCIs are a true subset of the M DCIs.
  • the HARQ-ACK codebook includes feedback information for each of the N data, and K is a positive integer; the transceiver module 1210 is also configured to receive the HARQ-ACK codebook from the terminal device on the determined time-frequency resource.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; the transceiver module 1210 is also configured to send first indication information to the terminal device by the network device, An indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is a HARQ-ACK codebook fed back jointly by L CORESET groups.
  • the transceiver module 1210 is used to send M DCIs to the terminal device.
  • the M DCIs are used to schedule N data
  • the M DCIs include At least one of the first DCI and the second DCI, where the first DCI and the second DCI are two repetitions of the same DCI, and the first DCI and the second DCI are used to schedule the same one of the N pieces of data Data, and the value of the PRI field in the first DCI is different from the value of the PRI field in the second DCI, M is an integer greater than or equal to 2, and N is an integer less than or equal to M and greater than or equal to 2; processing
  • the module 1220 is configured to determine the time-frequency resource for receiving the HARQ-ACK codebook according to the value of the PRI field in the third DCI.
  • the third DCI is the lowest DCI in the time domain among the M DCIs.
  • the HARQ The ACK codebook includes feedback information of each of the N pieces of data; the transceiver module 1210 is also configured to receive the HARQ-ACK codebook from the terminal device on the determined time-frequency resource.
  • the M DCIs are carried in L CORESET groups, and L is an integer greater than or equal to 2; the transceiver module 1210 is also configured to send first indication information to the terminal device by the network device, An indication information indicates that the feedback information in the L CORESET groups is fed back together.
  • the HARQ-ACK codebook is the HARQ-ACK codebook fed back jointly by L CORESET groups.
  • processing module 1220 involved in the communication device may be implemented by a processor or processor-related circuit components
  • transceiver module 1210 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 5 or FIG. 7, and is not repeated here for brevity.
  • FIG. 13 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may be specifically a type of network equipment, such as a base station, for implementing the functions of the network equipment in any of the foregoing method embodiments.
  • the network equipment includes: one or more radio frequency units, such as remote radio unit (RRU) 1301 and one or more baseband units (BBU) (also called digital unit, digital unit, DU) ) 1302.
  • the RRU 1301 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 13011 and a radio frequency unit 13012.
  • the RRU 1301 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals.
  • the 1302 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1301 and the BBU 1302 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1302 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1302 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 1302 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) with a single access indication, or may support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1302 may further include a memory 13021 and a processor 13022, and the memory 13021 is used to store necessary instructions and data.
  • the processor 13022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
  • the memory 13021 and the processor 13022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiment may be completed by a logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a network device and at least one terminal device.
  • processors mentioned in the embodiments of the present application may be a CPU, or other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种反馈信息的发送方法及装置,该方法包括:终端设备接收网络设备发送的M个DCI,根据M个DCI中的第三DCI中的资源指示信息,确定用于发送HARQ-ACK码本的时频资源,然后在该时频资源上向网络设备发送HARQ-ACK码本。第三DCI的选择过程如下:先从M个DCI中选出那些DCI重复中的第一个DCI,假设一共选出了K个DCI,然后再在这K个DCI中选择时域位置最靠后的一个DCI作为第三DCI。采用上述方法来确定发送HARQ-ACK码本的时频资源,可使确定出的时频资源的大小与需要发送的HARQ-ACK码本中包括的反馈信息的比特数相匹配,从而有效提高资源利用率,增强反馈信息的可靠性。

Description

一种反馈信息的发送方法及装置
相关申请的交叉引用
本申请要求在2020年04月10日提交中国国家知识产权局、申请号为202010281669.8、申请名称为“一种反馈信息的发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种反馈信息的发送方法及装置。
背景技术
现有技术中,终端设备可将多个物理下行控制信道(physical downlink control channel,PDCCH)调度的下行数据的反馈信息放在一个混合自动重传请求确认(hybrid automatic repeat request-acknowledgement,HARQ-ACK)码本中发送给网络设备。此外,终端设备还可根据该多个PDCCH中的最后一个PDCCH承载的下行控制信息(downlink control information,DCI)中的物理上行控制信道资源指示(PUCCH resource indication,PRI)域,确定具体用于发送该HARQ-ACK码本的上行资源。
为了保证超可靠低延迟通信(ultra-reliable and low-latency communication,URLLC)业务的可靠性并减小时延,网络设备可将PDCCH进行重复,即网络设备可发送多个重复的PDCCH,该多个重复的PDCCH承载有相同的DCI,每个DCI中的PRI域的取值也相同。
如此,在终端设备确定用于发送HARQ-ACK码本的上行资源时,若用于生成该HARQ-ACK码本的多个PDCCH中的最后一个PDCCH是前面的某一个PDCCH的重复,那么根据该最后一个PDCCH承载的DCI中的PRI域确定出的上行资源的大小,有可能与需要发送的HARQ-ACK码本所包括的比特数不匹配。因为该DCI中的PRI域只是复制了前面用于调度相同数据的另一个PDCCH承载的DCI中的PRI域的取值,而网络设备在发送该前面的用于调度相同数据的另一个PDCCH时,可能并未考虑到需要在该HARQ-ACK码本中发送的所有反馈信息。因此,若终端设备确定出的上行资源过大,则会导致上行资源的浪费,反之,若终端设备确定出的上行资源过小,则会使得反馈信息的可靠性无法保障。
发明内容
本申请实施例提供一种反馈信息的发送方法及装置,用于确定在发送HARQ-ACK码本使用的时频资源,使得该时频资源的大小与该HARQ-ACK码本中包括的反馈信息的比特数相匹配,从而提高资源利用率,增强反馈信息的可靠性。
第一方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由终端设备执行,也可以由配置于终端设备中的部件(例如芯片或电路)执行。该方法可以包括:终端设备接收来自网络设备的M个DCI,该M个DCI用于调度N个数据,该M个DCI中包括第 一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,且第一DCI和第二DCI用于调度N个数据中的同一个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;终端设备根据第三DCI中的资源指示信息,确定用于发送HARQ-ACK码本的时频资源,该第三DCI为K个DCI中时域位置最靠后的一个DCI,所述K个DCI为M个DCI的真子集,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息,K为正整数;终端设备在确定的时频资源上向网络设备发送HARQ-ACK码本。
本申请实施例中,终端设备可根据K个DCI中时域位置最靠后的第三DCI中的指示信息,来确定用于发送HARQ-ACK码本的时频资源,所述K个DCI是M个DCI的真子集,例如可以仅包括M个DCI中第一次传输的DCI,如此,可使得确定出的时频资源的大小与需要发送的HARQ-ACK码本中包括的反馈信息的比特数相匹配,从而有效提高资源利用率,增强反馈信息的可靠性。
在第一方面的一种可能的设计中,所述K个DCI用于调度N个数据中的K个数据,该K个DCI中的第i个DCI用于调度K个数据中的数据#i,且该第i个DCI为调度数据#i的DCI中的第一个DCI,i为小于或等于K的正整数。
本申请实施例中,所述K个DCI中的每个DCI都是在用于调度其调度的数据的DCI中时域位置最靠前的DCI,也就是说,K个DCI都是第一次传输的DCI,而不是其他DCI的重复。如此,K个DCI中的每个DCI中的资源指示信息都可由网络设备根据调度策略进行动态调整,从而有效提高网络设备指示用于发送HARQ-ACK码本的资源的准确性和灵活性。
在第一方面的一种可能的设计中,若K个DCI中时域位置最靠后的一个DCI有多个,那么该第三DCI可以为K个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,该第三DCI还可以为K个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,该第三DCI还可以为K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET的标识最大的一个DCI;或者,该第三DCI还可以为K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET组的标识最大的一个DCI。
在第一方面的一种可能的设计中,所述K个DCI为M个DCI的真子集可以包括:M个DCI中包括第四DCI,该第四DCI未包含在K个DCI中;其中,该第四DCI可以为K个DCI中的一个DCI的重复;或者,该第四DCI也可以为第五DCI的重复,该第五DCI为接收到的来自网络设备的除所述M个DCI之外的另一DCI。
本申请实施例可应用于存在DCI重复的场景下,即所述M个DCI中至少存在一个DCI是时域位置位于该DCI的时域位置之前的另一DCI的重复,且该另一DCI可以是K个DCI中的某个DCI,也可以是除M个DCI之外的其他DCI。
在第一方面的一种可能的设计中,该方法还包括:终端设备根据HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中,该HARQ-ACK码本中包括的反馈信息的比特数属于第一资源集合对应的比特数区间;进而,终端设备可根据第三DCI中的资源指示信息,在该第一资源集合中确定用于发送HARQ-ACK码本的时频资源,所述资源指示信息例如可以是DCI的PRI域中的PRI指示信息。
本申请实施例中,终端设备在确定发送HARQ-ACK码本使用的时频资源时,可首先 根据HARQ-ACK码本中包括的比特数,确定一资源集合,然后再在该确定的资源集合中,根据第三DCI中的PRI指示信息,确定具体使用的时频资源,如此,可使确定出的时频资源的大小与需要发送的HARQ-ACK码本的比特数相匹配,从而有效提高资源利用率。
在第一方面的一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;该方法还包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。这一场景下,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
在第一方面的一种可能的设计中,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为该CORESET组对应的HARQ-ACK码本;或者,所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为第一时间单元对应的HARQ-ACK码本。
本申请实施例中,所述M个DCI具体是指调度的数据的反馈信息在同一个HARQ-ACK码本中发送的DCI,其中将M个DCI调度的数据的反馈信息包含在同一个HARQ-ACK码本中发送可具有如上描述的多种可能的实现方式,从而可增强本方法的适用性。
第二方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由网络设备执行,也可以由配置于网络设备中的部件(例如芯片或电路)执行。该方法可以包括:网络设备向终端设备发送M个DCI,该M个DCI用于调度N个数据,该M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,且第一DCI和第二DCI用于调度N个数据中的同一个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数,所述M个DCI还包括第三DCI,所述第三DCI中的资源指示信息指示混合自动重传请求确认HARQ-ACK码本的时频资源,所述HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息,所述第三DCI为K个DCI中时域位置最靠后的一个DCI,所述K个DCI为所述M个DCI的真子集,K为正整数;网络设备在确定的时频资源上接收来自终端设备的HARQ-ACK码本。
本申请实施例中,与终端设备侧类似,网络设备也可根据K个DCI中时域位置最靠后的第三DCI中的资源指示信息,来确定用于接收HARQ-ACK码本的时频资源,所述K个DCI是M个DCI的真子集,例如可以仅包括M个DCI中第一次传输的DCI,如此,可使得确定出的时频资源的大小与待接收的HARQ-ACK码本中包括的反馈信息的比特数相匹配,从而有效提高资源利用率,增强反馈信息的可靠性。
在第二方面的一种可能的设计中,所述K个DCI用于调度N个数据中的K个数据,该K个DCI中的第i个DCI用于调度K个数据中的数据#i,且该第i个DCI为调度数据#i的DCI中的第一个DCI,i为小于或等于K的正整数。
在第二方面的一种可能的设计中,若K个DCI中时域位置最靠后的一个DCI有多个,那么该第三DCI可以为K个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,该第三DCI为还可以为K个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,该第三DCI还可以为K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET的标识最大的一个DCI;或者,该第三DCI还可以为K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET组的标识最大的一个DCI。
在第二方面的一种可能的设计中,所述K个DCI为M个DCI的真子集可以包括:M个DCI中包括第四DCI,该第四DCI未包含在所述K个DCI中;其中,该第四DCI为K个DCI中的一个DCI的重复;或者,该第四DCI与可以为第五DCI的重复,该第五DCI为网络设备发送的除所述M个DCI之外的另一DCI。
在第二方面的一种可能的设计中,所述时频资源为第一资源集合中与第三DCI中的资源指示信息对应的时频资源,HARQ-ACK码本中包括的反馈信息的比特数属于该第一资源集合对应的比特数区间。
在第二方面的一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;该方法还包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。在这一场景中,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
在第二方面的一种可能的设计中,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为所述CORESET组对应的HARQ-ACK码本;或者,所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为第一时间单元对应的HARQ-ACK码本。
上述第二方面的各种可能的设计的有益效果,可参考终端设备侧对应的描述,在此不再重复。
第三方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由终端设备执行,也可以由配置于网络设备中的部件(例如芯片或电路)执行。该方法可以包括:终端设备接收来自网络设备的M个DCI,该M个DCI用于调度N个数据,M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,该第一DCI和第二DCI用于调度N个数据中的同一个数据,且第一DCI中的PRI域的取值与第二DCI中的PRI域的取值不同,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;终端设备根据第三DCI中的PRI域的取值,确定发送HARQ-ACK码本的时频资源,该第三DCI为M个DCI中时域位置最靠后的一个DCI,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息;终端设备在确定的时频资源上向网络设备发送HARQ-ACK码本。
本申请实施例中,重复的两个或多个DCI中PRI域的取值可以不同,对于一个DCI来说,不论该DCI是重复的DCI,还是第一次传输DCI,该DCI中的PRI域的取值都可以由网络设备根据调度策略进行动态改变。如此,终端设备根据M个DCI中的时域位置最靠后的DCI中的PRI域的取值来确定用于发送HARQ-ACK码本的时频资源,可以使确定出的时频资源的大小与需要发送的HARQ-ACK码本中包括的反馈信息的比特数相匹配,从而可有效提高资源利用率,增强反馈信息的可靠性。
在第三方面的一种可能的设计中,若M个DCI中时域位置最靠后的一个DCI有多个,那么该第三DCI可以为M个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,该第三DCI还可以为M个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,该第三DCI还可以为M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET的标识最大的一个DCI;或者,该第三DCI还可以为M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET组的标识最大的一个DCI。
在第三方面的一种可能的设计中,该方法还包括:终端设备根据HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中该HARQ-ACK码本中包括的反馈信息的比特数属于第一资源集合对应的比特数区间;进而,终端设备可根据第三DCI中的PRI域的取值,在该第一资源集合中确定用于发送HARQ-ACK码本的时频资源。
本申请实施例中,终端设备在确定发送HARQ-ACK码本使用的时频资源时,可首先根据HARQ-ACK码本中包括的比特数,确定一资源集合,然后再在该确定的资源集合中,根据第三DCI中的PRI指示信息,确定具体使用的时频资源,如此,可使确定出的时频资源的大小与需要发送的HARQ-ACK码本的比特数相匹配,从而有效提高资源利用率。
在第三方面的一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;该方法还包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示L个CORESET组中的反馈信息联合反馈。这一场景下,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
在第三方面的一种可能的设计中,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为该CORESET组对应的HARQ-ACK码本;或者,所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为第一时间单元对应的HARQ-ACK码本。
本申请实施例中,所述M个DCI具体是指调度的数据的反馈信息在同一个HARQ-ACK码本中发送的DCI,其中将M个DCI调度的数据的反馈信息包含在同一个HARQ-ACK码本中发送可具有如上描述的多种可能的实现方式,从而可增强本方法的适用性。
在第三方面的一种可能的设计中,该方法还包括:终端设备将M个DCI中用于调度相同数据的DCI中除PRI域之外剩余的比特域进行合并译码,从而提高反馈信息的可靠性。
第四方面,本申请实施例提供一种反馈信息的发送方法,该方法可以由网络设备执行,也可以由配置于终端设备中的部件(例如芯片或电路)执行。该方法可以包括:网络设备向终端设备发送M个DCI,该M个DCI用于调度N个数据,该M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,该第一DCI和第二DCI用于调度所述N个数据中的同一个数据,且第一DCI中的PRI域的取值与第二DCI中的PRI域的取值不同,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;所述M个DCI还包括第三DCI,所述第三DCI中的PRI域的取值指示混合自动重传请求确认HARQ-ACK码本的时频资源,所述HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息,所述第三DCI为M个DCI中时域位置最靠后的一个DCI;网络设备在所述时频资源上接收来自终端设备的HARQ-ACK码本。
本申请实施例中,重复的两个或多个DCI中PRI域的取值可以不同,对于一个DCI来说,不论该DCI是重复的DCI,还是第一次传输DCI,该DCI中的PRI域的取值都可以由网络设备根据调度策略进行动态改变。如此,网络设备根据M个DCI中的时域位置最靠后的DCI中的PRI域的取值来确定接收HARQ-ACK码本的时频资源,可以使确定出的时频资源的大小与需要发送的HARQ-ACK码本中包括的反馈信息的比特数相匹配,从而可有效提高资源利用率,增强反馈信息的可靠性。
在第四方面的一种可能的设计中,若M个DCI中时域位置最靠后的一个DCI有多个,那么该第三DCI可以为M个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者, 该第三DCI还可以为M个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,该第三DCI还可以为M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET的标识最大的一个DCI;或者,该第三DCI还可以为M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET组的标识最大的一个DCI。
在第四方面的一种可能的设计中,该方法还包括:网络设备根据HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中该HARQ-ACK码本中包括的反馈信息的比特数属于第一资源集合对应的比特数区间;进而,网络设备可根据第三DCI中的PRI域的取值,在第一资源集合中确定用于接收HARQ-ACK的时频资源。
在第四方面的一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;该方法还包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示L个CORESET组中的反馈信息联合反馈。在这一场景下,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
在第四方面的一种可能的设计中,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为该CORESET组对应的HARQ-ACK码本;或者,所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为第一时间单元对应的HARQ-ACK码本。
上述第四方面的各种可能的设计的有益效果,可参考终端设备侧对应的描述,在此不再重复。
第五方面,本申请实施例提供一种通信装置,该装置也可以具有实现上述第一方面或第一方面的任一种可能的设计中终端设备的功能,或者具有实现上述第三方面或第三方面的任一种可能的设计中终端设备的功能。该装置可以为终端设备,也可以为终端设备中包括的芯片。
该装置具有实现上述第二方面或第二方面的任一种可能的设计中网络设备的功能,或具有实现上述第四方面或第四方面的任一种可能的设计中网络设备的功能。该装置可以为网络设备,也可以为网络设备中包括的芯片。
上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种设计中终端设备相应的功能,或者执行上述第二方面或第二方面的任一种设计中网络设备相应的功能,或者执行上述第三方面或第三方面的任一种可能的设计中终端设备相应的功能,或者执行上述第四方面或第四方面的任一种可能的设计中网络设备相应的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为终端设备时,可向网络设备发送HARQ-ACK码本。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,收发模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能 的设计中的方法,或者执行上述第三方面或第三方面的任一种可能的设计中的方法,或者执行上述第四方面或第四方面的任一种可能的设计中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为网络设备或终端设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备或终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第六方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法,或实现上述第二方面或第二方面的任一种可能的设计中的方法,或实现上述第三方面或第三方面的任一种可能的设计中的方法,或实现上述第四方面或第四方面的任一种可能的设计中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第七方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法,或执行上述第二方面或第二方面的任一种可能的设计中的方法,或执行上述第三方面或第三方面的任一种可能的设计中的方法,或执行上述第四方面或第四方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法,或执行上述第二方面或第二方面的任一种可能的设计中的方法,或执行上述第三方面或第三方面的任一种可能的设计中的方法,或执行上述第四方面或第四方面的任一种可能的设计中的方法。
第九方面,本申请实施例提供一种通信系统,该通信系统包括上述各方面中所述的网络设备和至少一个终端设备。
附图说明
图1为本申请实施例适用的一种通信系统的结构示意图;
图2为本申请实施例中为终端设备调度下行数据的示意图;
图3为本申请实施例中提供的发送多个重复的PDCCH的示意图;
图4为本申请实施例中提供的控制资源集合CORESET的示意图;
图5为本申请实施例提供的一种反馈信息的发送方法的流程示意图;
图6为本申请实施例提供的一种反馈信息的发送方法的一个具体示例;
图7为本申请实施例提供的另一种反馈信息的发送方法的流程示意图;
图8为本申请实施例提供的另一种反馈信息的发送方法的一个具体示例;
图9为本申请实施例提供的另一种反馈信息的发送方法的另一个具体示例;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种通信装置的另一结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的另一结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1,为本申请实施例提供的一种通信系统的结构示意图,该通信系统中包括网络设备和至少一个终端设备(如图1中所示出的终端1至6)。网络设备可通过上行链路(uplink,UL)和下行链路(downlink,DL)与至少一个终端设备(如终端设备1)进行通信。
图1中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代(4th generation,4G)移动通信系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。当然,本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图1中的网络设备也可以对应未来的移动通信系统中的接入网设备。
应理解,该通信系统中也可以存在多个网络设备,且一个网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中包括的网络设备的数量以及终端设备的数量均不作限定。图1中的网络设备以及至少一个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以实施本申请实施例所提供的技术方案。另外,图1中所示出的各种终端设备仅为终端设备的部分示例,应理解,本申请实施例中的终端设备不限于此。
下面对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。所述终端设备可以是手机、平板电脑、带无线收发功能的电脑、移动互联网设备、可穿戴设备、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设 备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络设备,也称接入网设备,是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为RAN节点(或设备)。所述网络设备可以是LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB),或者也可以是5G NR系统中的下一代基站(next generation node B,gNodeB),或者还可以是传输接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)或WiFi接入点(access point,AP)等,再或者还可以是集中式单元(central unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。在接入网设备包括CU和DU的分离部署场景中,CU支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU主要支持无线链路控制(radio link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理层协议。
3)需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
下面对本申请实施例中涉及的终端设备发送反馈信息的过程进行说明。
如图2中的(a)部分所示,网络设备可以向终端设备发送PDCCH,该PDCCH中承载有DCI。PDCCH可用于为终端设备调度物理下行共享信道(physical downlink shared channel,PDSCH),该PDSCH中承载有发送给终端设备的下行数据。
终端设备可接收PDCCH中承载的DCI,根据DCI中的时域资源指示信息,确定PDSCH 所在的时间单元以及PDSCH在该时间单元中占用的具体时域资源,进而接收PDSCH中承载的下行数据。该时域资源指示信息可用于指示一个时域资源表格中的一行,该时域资源表格中的每一行均包括一个指示信息K0和一个开始与长度指示值(starting and length indication value,SLIV)指示信息。其中,指示信息K0用于指示PDSCH所在的时间单元与PDCCH所在的时间单元之间相差的时间单元的个数;SLIV指示信息用于指示PDSCH在其所在的时间单元中具体占用的时域资源的开始符号和长度。例如,假设时间单元为一个时隙(slot),指示信息K0的取值为1,如果PDCCH所在的时间单元为slot(n),那么PDSCH所在的时间单元为slot(n+1)。进一步地,如果SLIV指示信息指示PDSCH从第2个符号开始,长度为2个符号,那么则表示PDSCH占用slot(n+1)中的第2个符号和第3个符号。
本申请实施例中,所述时间单元可以为一个时隙(slot),也可以为一个子时隙(sub-slot),具体并不限定。其中,在正常循环前缀下,一个时隙中包括14个符号,在扩展循环前缀下,一个时隙中包括12个符号。子时隙可包括2个符号或7个符号。子时隙也可以叫做迷你时隙mini-slot。一个子时隙中包括的符号个数是小于时隙中包括的符号个数,具体一个子时隙中包括的符号的个数可以通过网络设备发送的高层信令指示。终端设备收到高层信令指示后,便可以知道一个子时隙中包括的符号个数。例如,高层信令可以指示子时隙的符号个数为2符号,或者7符号;或者可以通过指示将一个slot指示为2符号乘以7,指示出一个时隙包含7个子时隙,每个子时隙的符号个数为2符号;或者还可以通过指示将一个slot指示为7符号乘以2,指示出一个时隙包含2个子时隙,每个子时隙的符号个数为7符号。在本申请的实施例中,出现“时隙”的地方都可以用“子时隙”代替。本申请实施例中所提及的符号或时域符号均为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
终端设备接收到PDSCH中承载的下行数据后,可根据数据译码的结果,向网络设备发送反馈信息。该反馈信息可以为用于表示数据接收成功的确认应答(acknowledgement,ACK),或者是用于表示数据接收失败的否定应答(negative acknowledgement,NACK)。
终端设备还可根据DCI中的指示信息K1,确定发送反馈信息的时间单元,该指示信息K1用于指示终端设备发送反馈信息的时间单元与接收PDSCH的时间单元之间相差的时间单元的个数。这表示终端设备接收到下行数据到向网络设备发送反馈信息之间需要满足n+K1的定时关系。也就是说,如果终端设备在slot(n)中接收到PDSCH,那么终端设备应在slot(n+K1)上向网络设备发送反馈信息。在具体实施中,指示信息K1可指示一个K1集合中的一个值,该K1集合可以是网络设备通过高层信令配置的或者也可以是预定义的。例如,假设网络设备配置K1集合为{1,2,3,4,5,6,7,8},DCI中的指示信息K1占用3比特,那么如果指示信息K1指示“001”,则可表示K1的取值为2。
本申请实施例中,所述高层信令是指高层协议层发出的信令,所述高层协议层可包括物理层之上的至少一个协议层。具体的,高层协议层可以包括下列协议层中的至少一个:MAC层、RLC层、PDCP层、RRC层和非接入层(non access stratum,NAS)。
进一步地,网络设备还可通过高层信令指示PDSCH的重复次数,也就是说,一个PDCCH中承载的DCI可调度多个重复的PDSCH,换句话说,一个DCI可调度一个PDSCH的多次传输,这些重复的PDSCH中承载有发送给终端设备的相同的下行数据。终端设备可根据对多个PDSCH中承载的下行数据的译码结果,向网络设备发送反馈信息。即,多 个重复的PDSCH可对应同一个反馈信息,若终端设备对该多个重复的PDSCH中的一个或多个PDSCH承载的下行数据译码成功,则可向网络设备反馈ACK,若终端设备对该多个重复的PDSCH承载的下行数据都译码失败,则可向网络设备反馈NACK。
如图2中的(b)部分所示,多个重复的PDSCH可在时域上占据连续的时间单元,且每个PDSCH在一个时间单元中仅出现一次,且每个PDSCH在一个时间单元内的相同时域位置。相应的,终端设备向网络设备发送反馈信息的时间单元根据该多个重复的PDSCH中的最后一个PDSCH确定。例如,假设PDSCH的重复次数为2次,PDSCH在一个时隙(slot)中仅出现一次,如果终端设备在slot(n)接收到PDCCH,该PDCCH承载的DCI指示K0的取值为1,K1的取值为1,那么终端设备可在slot(n+1)接收第一个PDSCH,在slot(n+2)接收第二个PDSCH,然后在slot(n+3)向网络设备发送反馈信息。
为了保证PDCCH信道的可靠性,网络设备也可以重复发送多个PDCCH,该重复发送的多个PDCCH中承载的多个DCI可以用于调度同一个PDSCH或者多个重复的PDSCH。该重复发送的多个PDCCH可以在时域和/或频域上重复。其中,在时域上重复可以是指多个PDCCH在时域上的不同PDCCH监测时机上重复;在频域上重复可以是指多个PDCCH在频域上的不同的频域资源位置上重复。例如,在图3的(a)部分所示的示例中,网络设备在时域上不同的PDCCH监测时机中重复发送的两个PDCCH,每个PDCCH中承载的DCI可以均用于调度时域上两个重复的PDSCH;在图3的(b)部分所示的示例中,网络设备在频域上的不同频域资源上重复发送的两个PDCCH,每个PDCCH用于调度时域上两个重复的PDSCH。本申请中,PDCCH调度PDSCH与PDCCH中承载的DCI调度PDSCH是等价的含义。
可选的,该重复发送的多个PDCCH也可以属于不同的控制资源集合(control resource set,CORESET)组(group)。
在实际应用中,终端设备并不是一个一个的发送反馈信息,而是可能将多个需要一起发送的反馈信息生成一个混合自动重传请求确认(hybrid automatic repeat request-acknowledgement,HARQ–ACK)码本,然后向网络设备发送该HARQ-ACK码本。该HARQ-ACK码本包括需要在一个时间单元中反馈的ACK或NACK串联得到的一组连续的比特。
也就是说,终端设备可将多个PDCCH调度的数据的反馈信息包含在一个HARQ-ACK码本中发送给网络设备。结合前面所介绍的内容可知,该调度的数据的反馈信息在同一HARQ-ACK码本中发送的多个PDCCH中也可能存在重复的PDCCH。
本申请中,PDCCH重复与DCI重复是相同的含义。在多个DCI重复时,即多个DCI调度同一个数据时,除第一个DCI以外的DCI都可以看做是第一个DCI的重复。其中第一个DCI是指在多个重复的DCI中满足下述条件中的一个或者多个的DCI:
多个重复的DCI中时域位置最靠前的那个DCI,换句话说DCI的盲检测时机最靠前的那一个DCI;或者,多个重复的DCI中频域位置最高的DCI;或者,多个重复的DCI中小区的标识最小的一个DCI;或者,多个重复的DCI中所在的CORESET组的标识最小的一个DCI;或者,多个重复的DCI中所在的CORESET组的标识最小的一个DCI。
在一个DCI调度一个数据时,即没有DCI重复时,该DCI即为第一个DCI。
本申请实施例中,HARQ-ACK码本可承载在物理上行控制信道(physical uplink control channel,PUCCH)上。终端设备可根据该HARQ-ACK码本中包含的反馈信息的比特数, 以及用于生成该HARQ-ACK码本的多个PDCCH中的某个PDCCH承载的DCI中PRI域的指示,确定用于发送该HARQ-ACK码本的上行资源。
网络设备可以向终端设备发送第X1指示信息,该第X1指示信息指示一个或者多个CORESET,针对每个CORESET,该第X1指示信息中可以包含下列信息:每个CORESET的标识,每个CORESET的时域符号个数(例如可以选择是1个符号,2个符号,或者3个符号),每个CORESET的频域资源位置等。终端设备根据接收到的该第X1指示信息,可以确定多个CORESET中每个CORESET的标识,以及每个CORESET的频域资源位置、每个CORESET的时域符号个数。
网络设备还可以向终端设备发送第X2指示信息,该第X2指示信息指示一个或多个搜索空间。针对每个搜索空间,该第X2指示信息中可以包含下列信息中的至少一个:每个搜索空间的标识,每个搜索空间关联的CORESET的标识,以及每个搜索空间在时域上的周期,偏置,以及盲检测图案(pattern)。周期例如可以是2个slot;偏置是指在周期中的哪一个slot,比如第2个;pattern指示在该确定的slot中的具体哪些位置进行盲检测,具体可通过14bit的比特图bitmap指示,例如指示10101010101010,表示在一个slot中需要在第1、3、5、7、9、11、13个符号的位置开始进行PDCCH盲检测,这些时域位置称为搜索空间的时域起始位置。终端设备根据接收到的该第X2指示信息,可以确定多个搜索空间的标识,以及多个搜索空间的时域起始位置。由于每一个搜索空间关联了一个CORESET,则确定出了搜索空间的时域起始位置也就确定了CORESET的时域位置起始位置,CORESET的时域位置的起始位置就是该CORESET关联的搜索空间的时域起始位置,CORESET的时域位置的起始位置确定了之后,结合CORESET的符号个数,则可以确定CORESET的时域位置,而CORESET的时域位置也可以叫做PDCCH监测时机。
例如图4所示,CORESET p的时域符号个数为3,搜索空间s的配置为周期为2slot,偏置为第2个,且14bit的bitmap为10001000100000,假设搜索空间s关联CORESET p,则可确定出搜索空间的时域起始位置为每2个slot中的第2个slot中的第1,第5,第9个符号,则CORESET p的时域位置的起始位置就是为每2个slot中的第2个slot中的第1,第5,第9个符号,CORESET p的符号个数为3符号,则CORESET的时域位置为每2个slot中的第2个slot中的第1-3,第5-7,第9-11个符号。例如,可以确定PDCCH监测时机在slot 1和slot 3中,每个slot有3个PDCCH监测时机,每个PDCCH监测时机有3个符号。
终端设备可以在确定出的PDCCH监测时机进行盲检测,终端设备接收到PDCCH后,可以根据接收该PDCCH的时频位置是哪个CORESET的时频位置,或者说在哪个CORESET中接收到的PDCCH,确定出该PDCCH承载在哪个CORESET上,即确定出该PDCCH承载的DCI承载在哪个CORESET上,或者说确定PDCCH属于哪个CORESET,或者说确定PDCCH承载的DCI属于哪个CORESET,也可以反过来说,该CORESET承载了该PDCCH或者该DCI。
网络设备可以向终端设备发送第X1指示信息,该第X1指示信息指示一个或者多个CORESET,针对每个CORESET,该第X1指示信息中可以包含下列信息:每个CORESET所在的CORESET组对应的组标识(记为CORESETGroupIndex)。所述CORESET组也可 以称为CORESET池(pool),因此,每个CORESET所在的CORESET组对应的组标识也可以叫做每个CORESET所在的CORESET池的池标识(记为CORESETPoolIndex)。终端设备接收该第X1指示信息,因此确定了多个CORESET中每个CORESET所在的CORESET组对应的组标识。组标识的候选值可以为0到W-1,其中W是代表有几个CORESET组,分别为CORESET组0至CORESET组W-1,W为大于或者等于2的整数。因为一个CORESET只能属于一个CORESET组,一个CORESET组中可以包括多个CORESET。
例如,W=2,网络设备为终端设备指示了3个CORESET,它们的标识分别为1、2、3,我们将3个CORESET分别记为CORESET1,CORESET2,CORESET3,并且指示它们的组标识分别为0,1,1。即CORESET1是属于CORESET group 0,CORESET 2和CORESET3都属于CORESET group1。如果针对任意一个CORESET。该第X1指示信息中不包含该CORESET对应的组标识,则认为该CORESET是属于CORESET group 0。
前述确定PDCCH或者DCI承载的CORESET后,根据该CORESET所属的CORESET组可以确定该PDCCH或者DCI承载在哪个CORESET组中。
可选的,重复发送的多个PDCCH中承载的多个DCI可以对应一个或多个HARQ-ACK码本。
实施例一
请参考图5,为本申请实施例提供的一种反馈信息的发送方法的示意图,该方法具体包括:
步骤S501、网络设备向终端设备发送M个DCI,所述M个DCI用于调度N个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数。
本申请实施例中,网络设备向终端设备发送M个DCI可以理解为,网络设备向终端设备发送M个PDCCH,该M个PDCCH中的每个PDCCH分别承载M个DCI中的一个DCI,每个DCI用于调度一个PDSCH或多个重复的PDSCH,所述PDSCH中承载有所述N个数据中的一个数据。应注意,当一个DCI用于调度多个重复的PDSCH时,所述多个重复的PDSCH中承载有相同的数据。
所述M个DCI用于调度N个数据,该M个DCI中的每个DCI分别用于调度N个数据中的其中一个数据。根据M和N的取值范围可知,当M大于N时,M个DCI用于调度N个数据表示,M个DCI中存在两个或两个以上的DCI用于调度同一数据的情形,也就是说,所述M个DCI中存在重复的DCI,这些重复的DCI用于调度相同的数据。
当M等于N时,M个DCI用于调度N个数据也就是M个DCI用于调度M个数据,这表示M个DCI中的每个DCI分别用于调度M个数据中的一个数据,不存在两个或两个以上的DCI用于调度同一数据的情形,也就是说,M个DCI中的不同的DCI用于调度不同的数据,M个DCI中不存在重复的DCI。
所述M个DCI具体是指调度的数据的反馈信息在同一个HARQ-ACK码本中发送的M个DCI,即所述M个DCI调度的N个数据的反馈信息在同一个HARQ-ACK码本中发送。具体的,所述M个DCI调度的数据的反馈信息在同一个HARQ-ACK码本中发送可具有如下多种可能的实现方式:
在一种可能的实现方式中,所述M个DCI承载在L个CORESET组中,L为大于或 等于2的整数;相应地,网络设备可向终端设备发送第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈(joint feedback)。
所述联合反馈是指将在L个CORESET组包括的CORESET中的PDCCH监测时机上接收的DCI所调度的数据的反馈信息联合在同一个HARQ-ACK码本中发送。即,所述L个CORESET组对应同一个HARQ-ACK码本,该HARQ-ACK码本是指用于联合反馈的一个HARQ-ACK码本。相应的,当所述M个DCI指示所述M个DCI调度的数据在同一个时间单元反馈时,终端设备可将所述M个DCI调度的N个数据的反馈信息联合在一个HARQ-ACK码本中反馈。
在另一种可能的实现方式中,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本是指该CORESET组对应的HARQ-ACK码本。终端设备可针对承载所述M个DCI的CORESET组生成一个对应的HARQ-ACK码本。
如前所述,一个CORESET组可包括一个或多个CORESET,因此,所述M个DCI承载在同一个CORESET组中可以是指,所述M个DCI承载在同一个CORESET组包括的一个或多个CORESET中,或者承载所述M个DCI的CORESET属于同一个CORESET组。
进一步地,一个CORESET组对应的HARQ-ACK码本是指,从该CORESET组包括的一个或多个CORESET中的PDCCH监测时机上接收的DCI所调度的数据的反馈信息,如果需要在同一个时间单元反馈,则将这些反馈信息包含在同一个HARQ-ACK码本中发送,该HARQ-ACK码本即为该CORESET组对应的HARQ-ACK码本。
可选的,网络设备可向终端设备发送第二指示信息,该第二指示信息指示不同CORESET组中的反馈信息分别反馈(separate feedback)。
在又一种可能的实现方式中,所述M个DCI中的每个DCI指示的用于发送调度的数据的反馈信息的时间单元均相同,例如,每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述时间单元可以是一个时隙或子时隙。
由于需要在同一时间单元中发送的反馈信息可以生成一个HARQ-ACK码本,因此,所述HARQ-ACK码本可以是指该第一时间单元对应的HARQ-ACK码本。相应的,终端设备可针对该第一时间单元生成一个对应的HARQ-ACK码本。
可选的,每个DCI中还可进一步包括一个优先级指示信息,该优先级指示信息用于指示DCI所调度的数据的反馈信息的优先级。此时,所述M个DCI还可以为指示的用于发送反馈信息的时间单元均相同,且指示的反馈信息的优先级也相同的M个DCI。例如,所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,且反馈信息的优先级为优先级0。
由于需要在同一时间单元发送的优先级相同的反馈信息可以生成一个HARQ-ACK码本,因此,所述HARQ-ACK码本可以是指该第一时间单元中优先级0对应的HARQ-ACK码本。终端设备针对该第一时间单元和优先级0生成一个对应的HARQ-ACK码本。
可选的,每个DCI中还可进一步包括一个组标识指示信息,该组标识指示信息用于指示DCI所调度的数据的反馈信息的组标识,所述组标识用于指示DCI调度的数据的反馈信息属于哪个反馈组。此时,所述M个DCI还可以为指示的用于发送反馈信息的时间单元均相同,且指示的反馈信息的组标识也相同的M个DCI。例如,所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,且反馈信息的组标识为组标识0。
由于需要在同一时间单元发送的组标识相同的反馈信息可以生成一个HARQ-ACK码本,因此,所述HARQ-ACK码本可以是指该第一时间单元中组标识0对应的HARQ-ACK码本。终端设备针对该第一时间单元和组标识0生成一个对应的HARQ-ACK码本。
需要说明的是,本申请实施例中,网络设备还可向终端设备发送除所述M个DCI之外的其它DCI,但应注意,该其它DCI并不用于生成所述HARQ-ACK码本。也就是说,若该其它DCI用于调度除所述N个数据之外的其它数据,那么该其它DCI调度的数据的反馈信息将不会在所述HARQ-ACK码本中反馈,终端设备可根据该其它DCI生成另一HARQ-ACK码本,该另一HARQ-ACK码本与上文中所述的包含M个DCI调度的数据的反馈信息的HARQ-ACK码本不同。
进一步地,由于M个DCI具体是指调度的数据的反馈信息在同一个HARQ-ACK码本反馈的M个DCI,因此,当M等于N时,M个DCI中不存在重复的DCI并不代表网络设备向终端设备发送的其它DCI不会与所述M个DCI中的某个DCI重复,即网络设备向终端设备发送的其它DCI也有可能与所述M个DCI中的某个DCI用于调度相同的数据。
举例来说,M个DCI中可包括第一DCI和第二DCI中的至少一个,该第一DCI和第二DCI为同一个DCI的两次重复,且用于调度N个数据中的同一个数据,例如可以均用于调度第一数据,该第一数据为N个数据中的其中一个数据。
若M个DCI中同时包括第一DCI和第二DCI,那么则表示M个DCI中存在重复的DCI,对应上文所述的M大于N的情形。具体的,根据上文中所描述的HARQ-ACK码本的几种可能的实现方式可知,该第一DCI和第二DCI可能属于不同的CORESET组,但这两个CORESET组中的反馈信息需要联合反馈;或者,该第一DCI和第二DCI也可能属于同一CORESET组;再或者,该第一DCI和第二DCI也有可能指示的用于发送反馈信息的时间单元相同。
需要说明的是,在具体实施中,终端设备可仅根据第一DCI和第二DCI中的其中一个DCI,生成第一数据的反馈信息。在这一场景下,HARQ-ACK码本中仅包括一份第一数据的反馈信息,相应的,整个HARQ-ACK码本中共包括N个反馈信息,N个反馈信息分别与N个数据一一对应。例如,根据第一DCI和第二DCI中时域位置靠前的那个DCI来生成第一数据的反馈信息,若时域位置靠前的DCI为第一DCI,那么第一数据的反馈信息在该HARQ-ACK码本中的位置根据第一DCI确定。
或者,终端设备也可根据第一DCI和第二DCI,分别生成第一数据的反馈信息。在这一场景下,HARQ-ACK码本中包括两份第一数据的反馈信息,所述两份第一数据的反馈信息可以理解为第一数据的反馈信息的两个副本。相应的,整个HARQ-ACK码本中共包括M个反馈信息,M个反馈信息分别与M个DCI一一对应。第一数据的反馈信息在该HARQ-ACK码本中的位置根据第一DCI和第二DCI确定。
若M个DCI中仅包括第一DCI和第二DCI中的其中一个,例如包括第一DCI,但不包括第二DCI,那么则表示在所述M个DCI之外存在一个与第一DCI重复的第二DCI。
具体的,根据上文中所描述的HARQ-ACK码本的几种可能的实现方式可知,该第一DCI和第二DCI可能属于不同的CORESET组,但这两个CORESET组中的反馈信息需要分别反馈,因此,第二DCI调度的数据的反馈信息可以在另一个CORESET组对应的HARQ-ACK码本中反馈;或者,第一DCI与第二DCI指示的用于发送反馈信息的时间单元不同,因此,第二DCI调度的数据的反馈信息可以在另一个时间单元对应的HARQ-ACK 码本中反馈;再或者,第一数据的反馈信息也可以仅在第一DCI对应的HARQ-ACK码本中反馈,此时,该第一DCI可能是用于调度第一数据的多个DCI中时域位置最靠前的DCI,或者该第一DCI也可能是用于调度第一数据的多个DCI中指示的用于发送反馈信息的时间单元最靠前的DCI,或者该第一DCI也可能是用于调度第一数据的多个DCI中指示的发送反馈信息的时频资源最大的DCI,或者该第一DCI也可能是用于调度第一数据的多个DCI中指示的发送反馈信息的时频资源最小的DCI,或者该第一DCI也可以具有其他的实现方式,在此不再一一列举。
可以理解,根据前述多个DCI中第一个DCI的描述,若第二DCI的时域位置位于第一DCI的时域位置之前,那么可表示第一DCI不是第一个用于调度第一数据的DCI,或者说,第一DCI不是网络设备发送的用于调度第一数据的多个DCI中时域位置最靠前的DCI,或者说,第一DCI不是第一次传输的DCI。
类似的,若第一DCI的时域位置位于第二DCI的时域位置之前,那么可表示第二DCI不是第一个用于调度第一数据的DCI,或者说,第二DCI不是网络设备发送的用于调度第一数据的多个DCI中时域位置最靠前的DCI,或者说,第二DCI不是第一次传输的DCI。但是应理解,此时,该第一DCI可能是第一个用于调度第一数据的DCI,也可能不是第一个用于调度第一数据的DCI。
可选的,网络设备还可向终端设备发送第三指示信息,该第三指示信息用于指示M和/N的取值;或者,本申请实施例中所涉及的M和/或N的取值还可以是预定义的,所述预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化或预烧制等,下文不再赘述。
步骤S502、终端设备接收来自网络设备的M个DCI。
本申请实施例中,所述M个DCI中的每个DCI还可指示调度的一个PDSCH或多个PDSCH的时域资源位置。如此,终端设备在接收到所述M个DCI后,可在所述M个DCI指示的时域资源位置处接收所述N个数据。
进而,终端设备可根据所述M个DCI中下行分配索引(downlink assignment index,DAI)域的指示,以及对M个DCI调度的N个数据的译码结果,生成一个HARQ-ACK码本,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息。具体的,若终端设备对N个数据中的某个数据译码成功,则HARQ-ACK码本中该数据对应的反馈信息为ACK,若终端设备对该数据译码失败,则HARQ-ACK码本中该数据对应的反馈信息为NACK。
如前所述,所述M个DCI中可能包括重复的DCI,若M个DCI中包括多个重复的DCI,该多个重复的DCI用于调度相同的数据,那么在一种可能的实现方式中,终端设备可针对多个重复的DCI生成一份调度的数据的反馈信息,例如可以根据多个重复的DCI中的其中一个DCI来生成调度的数据的反馈信息。相应的,该HARQ-ACK码本将包括该多个重复的DCI调度的数据的反馈信息的一个副本,该副本在HARQ-ACK码本中的位置根据用于生成该副本的那个DCI确定,具体的是根据用于生成该副本的DCI中的DAI域的指示确定。可以看出,在这一实现方式中,整个HARQ-ACK码本共包括N个反馈信息,即,所述N个数据中的每个数据的反馈信息在该码本中都仅包括一个副本。
或者,在另一种可能的实现方式中,终端设备可针对该多个重复的DCI分别生成一份调度的数据的反馈信息,相应的,该HARQ-ACK码本将包括其调度的数据的反馈信息的多个副本,每个副本分别与该多个重复的DCI中的一个DCI对应,且该多个副本在 HARQ-ACK码本中的位置根据该多个重复的DCI确定,即根据该多个重复的DCI中的DAI域的指示确定。可以看出,在这一实现方式中,整个HARQ-ACK码本共包括M个反馈信息,即所述N个数据中的每个数据在该HARQ-ACK码本中具有的反馈信息的副本的数量,与所述M个DCI中用于调度该数据的DCI的数量一致。
步骤S503、终端设备根据第三DCI中的资源指示信息,确定用于发送HARQ-ACK码本的时频资源。
所述资源指示信息可以为PRI指示信息,该PRI指示信息可以位于DCI中的PRI域中,PRI域的不同取值可代表不同的PRI指示信息,并用于指示一个资源集合中的不同资源。
在步骤S503中,所述终端设备确定用于发送HARQ-ACK码本的时频资源具体可包括:
首先,终端设备可根据HARQ-ACK码本中包括的反馈信息的比特数,从多个资源集合中确定第一资源集合,该HARQ-ACK码本中包括的反馈信息的比特数属于第一资源集合对应的比特数区间。
本申请实施例中,网络设备可通过高层信令为终端设备配置多个资源集合,所述资源集合也可称为PUCCH资源集合。例如,网络设备可向终端设备发送资源集合配置信息,该资源集合配置信息用于指示网络设备配置的多个资源集合的信息。
具体来说,每个资源集合中可包含多个PUCCH资源,所述PUCCH资源可以用于承载HARQ-ACK码本。每个资源集合还可对应于一个比特数区间,而且不同资源集合对应的比特数区间互不重叠。如此,终端设备确定待发送的HARQ-ACK码本中包括的反馈信息的比特数之后,可判断该比特数属于哪个资源集合对应的比特数区间,进而确定采用哪个资源集合中包括的PUCCH资源来发送该HARQ-ACK码本。
需要说明的是,本申请实施例中对HARQ-ACK码本中每个反馈信息包括的比特数并不限定,一个反馈信息可以包括一个或多个比特。
随后,终端设备可根据M个DCI中第三DCI中的PRI指示信息,在该第一资源集合中确定用于发送HARQ-ACK码本的时频资源。
本申请实施例中,所述PRI指示信息指示出在确定出的第一资源集合中的一个PUCCH资源,该PRI指示信息也可以理解为资源集合中PUCCH资源的索引(index)。
所述第三DCI为K个DCI中时域位置最靠后的一个DCI。若所述K个DCI中时域位置最靠后的DCI有多个,那么该第三DCI可以为所述K个DCI中时域位置最靠后的DCI中频域位置最高的一个DCI,所述频域位置最高是指DCI所在的资源块(resource block,RB)的标识最大或DCI所在的资源元素(resource element,RE)的标识最大;或者,该第三DCI也可以为所述K个DCI中时域位置最靠后的DCI中所在小区(cell)的标识最大的一个DCI;或者,该第三DCI也可以为所述K个DCI中时域位置最靠后的DCI中所在小区(cell)的标识最大,且所在的CORESET组的标识最大的DCI;或者,该第三DCI也可以有其他的实现方式,本申请并不限定。在本申请中,术语标识和索引可以互换。
本申请实施例中所提及的所述K个DCI是所述M个DCI的真子集,即所述K个DCI是所述M个DCI中的K个,或者可以理解为所述K个DCI是由M个DCI中满足设定条件的K个DCI组成的一个集合,K为小于M的正整数。
具体的,所述K个DCI用于调度N个数据中的K个数据,K个DCI中的每个DCI用于调度K个数据中的一个数据。也就是说,K个DCI中的每个DCI分别用于调度K个数据中的不同数据,因此,K同时也为小于或等于N的正整数。
所述K个DCI中的每个DCI均为用于调度其所调度的数据的DCI中的第一个DCI,具体关于第一个DCI的说明可以参照上文中对多个DCI重复中的第一个DCI的描述,在此不再赘述。
为了便于说明,下面将以第一个DCI为多个重复的DCI中时域位置最靠前的DCI为例进行描述。也就是说,所述K个DCI中的每个DCI均为用于调度其所调度的数据的DCI中时域位置最靠前的DCI,或者说,所述K个DCI均为第一次传输的DCI。
例如,若所述K个DCI中的第i个DCI用于调度K个数据中的数据#i,i为小于或等于K的正整数,那么可表示该第i个DCI为调度数据#i的DCI中时域位置最靠前的DCI,即该第i个DCI为网络设备发送的第一个用于调度数据#i的DCI。
鉴于此,根据所述K个DCI为所述M个DCI的真子集可知,所述M个DCI中至少存在一个DCI未包含在所述K个DCI中。也就是说,即所述M个DCI中至少存在一个DCI不是第一次传输的DCI,而是时域位置在其之前的另一个DCI的重复,二者用于调度相同的数据。而且,与其重复的DCI可能位于所述K个DCI之中,也可能位于M个DCI之外,例如可能是网络设备向终端设备发送的除所述M个DCI之外的其他DCI,但是该其它DCI调度的数据的反馈信息与所述M个DCI调度的数据的反馈信息不在一个HARQ-ACK码本中反馈。
例如,M个DCI中可包括一个第四DCI,该第四DCI未被包含在K个DCI中。该第四DCI可能是所述K个DCI中的某一个DCI的重复,即该第四DCI与所述K个DCI中的某个DCI用于调度相同的数据,但是该第四DCI的时域位置位于所述K个DCI中与第四DCI用于调度相同数据的那个DCI的时域位置之后。
或者,该第四DCI也可能是第五DCI的重复,该第五DCI为终端设备接收到的来自网络设备的除所述M个DCI之外的另一DCI,该第四DCI和第五DCI用于调度相同的数据,但是该第四DCI的时域位置位于第五DCI的时域位置之后。
可选的,本申请实施例中,用于调度相同数据的DCI中的PRI指示信息可以相同。即重复的DCI用于调度相同的数据,而且其中的PRI域的取值也相同。如此,在上文中的示例中所提及的第一DCI中的PRI域的取值和第二DCI中PRI域的取值可以相同。
可以理解的是,终端设备发送HARQ-ACK码本的时频资源可以由网络设备统一分配的。网络设备在确定了终端设备发送HARQ-ACK码本的时频资源之后,可以通过第三DCI向终端设备发送资源指示信息,以便终端设备根据该资源指示信息确定用于发送HARQ-ACK码本的时频资源,从而使得网络设备和终端设备对发送HARQ-ACK码本的时频资源有一致的理解。
步骤S504、终端设备在所述时频资源上向网络设备发送所述HARQ-ACK码本,该HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息。
步骤S505、网络设备在所述时频资源上接收终端设备发送的所述HARQ-ACK码本。
在步骤S504和步骤S505中,终端设备可在确定的时频资源上通过PUCCH信道向网络设备发送HARQ-ACK码本,相应的,网络设备也可在确定的时频资源上接收终端设备通过PUCCH信道发送的HARQ-ACK码本。
可以看出,本申请实施例中,考虑到重复的DCI中PRI域的取值也相同,而第一次传输的DCI中的PRI域的取值可以由网络设备根据调度策略进行动态灵活地改变,因此,本申请实施例中根据M个DCI中第一次传输的DCI中时域位置最靠后的第三DCI的PRI域 的指示,来确定用于发送HARQ-ACK码本的时频资源,如此,可使得确定出的时频资源的大小与需要发送的HARQ-ACK码本中包括的反馈信息的比特数相匹配,避免资源浪费或者反馈信息的可靠性较差的问题,从而提高网络设备对用于发送HARQ-ACK码本的资源指示的准确性和灵活性。
例如,在图6所示的示例中,两个DCI 1重复发送,均用于调度数据1。其中第一个DCI 1承载在CORESET组1中,第二个DCI 1承载在CORESET组2中,两个DCI 1中的PRI域相同,均指示PRI 1。两个DCI 2重复发送,均用于调度数据2。其中第一个DCI 2承载在CORESET组2上,第二个DCI 2承载在CORESET组1中,两个DCI 2中的PRI域相同,均指示PRI 2。应注意,在图6中,DCI所在的位置在横轴上越靠左,表示时域位置越靠前,越靠右,表示时域位置越靠后;DCI所在的位置在纵轴上越靠上,表示频域位置越高,越靠下,表示频域位置越低。图8和图9与此类似。
若两个CORESET组中的反馈信息分别反馈,并假设每个反馈信息占据1比特,那么针对CORESET组1,终端设备可根据第一个DCI 1和第二个DCI 2,生成一个HARQ-ACK码本,即M个DCI包括第一个DCI 1和第二个DCI 2,该HARQ-ACK码本中包括数据1的1bit反馈信息和数据2的1bit反馈信息。进而,终端设备可根据该HARQ-ACK码本包括的2比特反馈信息,确定出对应的PUCCH资源集合1,然后根据第一个DCI 1中的PRI域指示的PRI 1,确定在PUCCH资源集合1中的PUCCH资源1上发送该HARQ-ACK码本。
在这一场景下,由于用于生成该HARQ-ACK码本的DCI中,第一个DCI 1是第一个用于调度数据1的DCI,即用于调度数据1的DCI中时域位置最靠前的DCI,属于第一次传输的DCI,而第二个DCI 2不是第一个用于调度数据2的DCI,或者说不是用于调度数据2的DCI中时域位置最靠前的DCI,该第二个DCI2实际上是时域位置在前的第一个DCI 2的重复,不是第一次传输的DCI,因此,所述K个DCI中仅包括第一个DCI 1,K个DCI中K个DCI中的时域位置最靠后的DCI也是该第一个DCI 1。
针对CORESET组2,终端设备可根据第二个DCI 1和第一个DCI 2,生成一个HARQ-ACK码本,即M个DCI包括第二个DCI 1和第一个DCI 2,该HARQ-ACK码本中包括数据1的1bit反馈信息和数据2的1bit反馈信息。进而,终端设备可根据该HARQ-ACK码本包括的2比特反馈信息,确定出对应的PUCCH资源集合1,然后根据第一个DCI 2中的PRI域指示的PRI 2,确定在PUCCH资源集合1中的PUCCH资源2上发送该HARQ-ACK码本。
类似的,在这一场景下,所述K个DCI中仅包括第一个DCI 2,K个DCI中的时域位置最靠后的DCI也是该第一个DCI 2。
若两个CORESET组中的反馈信息联合反馈,并假设每个反馈信息占据1比特,那么终端设备可根据第一个DCI 1、第二个DCI 1、第一个DCI 2和第二个DCI 2,生成一个联合的HARQ-ACK码本,即M个DCI包括第一个DCI 1、第二个DCI 1、第一个DCI 2和第二个DCI 2,该HARQ-ACK码本中包括数据1的2bit反馈信息和数据2的2bit反馈信息。进而,终端设备可根据该HARQ-ACK码本包括的4比特反馈信息,确定出对应的PUCCH资源集合2,然后根据第一个DCI 2中的PRI域指示的PRI 2,确定在PUCCH资源集合2中的PUCCH资源1上发送该HARQ-ACK码本。
在这一场景下,K个DCI中包括第一个DCI 1和第一个DCI 2,由于第一个DCI 1的 时域位置与第一个DCI 2的时域位置相同,此时,选择二者中频域位置较高的第一个DCI 2,来确定发送HARQ-ACK码本的PUCCH资源。
实施例二
请参考图7,为本申请实施例提供的另一种反馈信息的发送方法的示意图,该方法具体包括:
步骤S701、网络设备向终端设备发送M个DCI,所述M个DCI用于调度N个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数。
在步骤S701中,所述M个DCI的具体实施方式,以及将M个DCI调度的数据的反馈信息包含在同一个HARQ-ACK码本中发送的实现方式可参考实施例一中步骤S501中的描述,在此不再重复。
类似的,该实施例二也可应用于存在DCI重复的场景下,可以是M个DCI中的两个或多个DCI发生重复,也可以是M个DCI中的某个DCI与网络设备发送的除所述M个DCI之外的其他DCI发生重复,具体并不限定。也就是说,M个DCI中至少存在一个DCI不是第一次传输的DCI,而是时域位置在其之前的另一个DCI的重复,二者用于调度相同的数据。而且,与其重复的DCI可能位于所述M个DCI之中,也可能位于所述M个DCI之外,例如可能是网络设备向终端设备发送的除所述M个DCI之外的其他DCI。
可以理解,通常两个或多个重复的DCI用于调度相同的数据,而且DCI中包括的信息也相同。但应注意,在本申请的实施例二中用于调度相同数据的两个或多个DCI中的PRI域的取值可以不同,但是我们仍可将该两个或多个DCI视为重复的DCI。
例如,M个DCI中可包括第一DCI和第二DCI中的至少一个,该第一DCI和第二DCI为同一个DCI的两次重复,二者调度的数据相同,例如可以均用于调度第一数据,该第一数据为N个数据中的其中一个数据。但是第一DCI中的PRI域的取值可以与第二DCI中的PRI域的取值不同,即第一DCI中的PRI指示信息与第二DCI中的PRI指示信息不同。
可选的,网络设备还可向终端设备发送第三指示信息,该第三指示信息用于指示M和/N的取值;或者,本申请实施例中所涉及的M和/或N的取值还可以是预定义的。
步骤S702、终端设备接收来自网络设备的M个DCI。
该步骤S702的具体实施方式可参考步骤S701,以及实施例一中步骤S501和步骤S502的描述,在此不再重复。
步骤S703、终端设备根据第三DCI中的PRI域的取值,确定发送HARQ-ACK码本的时频资源。
本申请实施例中,所述第三DCI是指M个DCI中时域位置最靠后的一个DCI。此处,所述M个DCI中时域位置最靠后的一个DCI与步骤S503中K个DCI中时域位置最靠后的一个DCI的方式类似。具体来说,若所述M个DCI中时域位置最靠后的DCI有多个,那么该第三DCI可以是M个DCI中时域位置最靠后的DCI中频域位置最高的DCI,所述频域位置最高是指DCI所在的RB的标识最大或DCI所在的RE的标识最大;或者,该第三DCI也可以为M个DCI中时域位置最靠后的DCI中所在小区(cell)的标识最大的一个DCI;或者,该第三DCI也可以为M个DCI中时域位置最靠后的DCI中所在小区(cell)的标识最大,且所在的CORESET的标识最大的一个DCI;或者,该第三DCI还可以为M 个DCI中时域位置最靠后的DCI中所在小区(cell)的标识最大,且所在的CORESET组的标识最大的一个DCI。
在步骤S703中,根据第三DCI中的PRI域的取值,确定发送HARQ-ACK码本的时频资源的具体实施方式可参考实施例一中步骤S503中的描述,在此不再重复。但应注意,在本申请的实施例二中的第三DCI与实施例一中的第三DCI是不同的,该实施例二中的第三DCI是指M个DCI中时域位置最靠后的DCI,而实施例一中的第三DCI是指K个DCI中时域位置最靠后的DCI。所述K个DCI是M个DCI的真子集,所述K个DCI中时域位置最靠后的DCI与M个DCI中时域位置最靠后的DCI可能是同一个DCI,也可能是不同的DCI。
可选的,终端设备还可对所述M个DCI中用于调度相同数据的一个或多个DCI中除PRI域之外的剩余比特域进行合并译码,从而保证PDCCH的可靠性。
步骤S704、终端设备在所述时频资源上向网络设备发送所述HARQ-ACK码本,该HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息。
步骤S705、网络设备在所述时频资源上接收终端设备发送的所述HARQ-ACK码本。
在步骤S704和S705中,终端设备可在确定的时频资源上通过PUCCH信道向网络设备发送HARQ-ACK码本,相应的,网络设备也可在所述时频资源上接收终端设备通过PUCCH信道发送的HARQ-ACK码本。
可以看出,考虑到重复的DCI中PRI域的指示方式不同,本申请的实施例二与实施例一中,在确定发送HARQ-ACK码本的时频资源时依据的DCI也不同。
在本申请的实施例二中,由于重复的DCI中PRI域的取值可以不同,因此,对于一个DCI,不论该DCI是重复的DCI,还是第一次传输DCI,该DCI中的PRI域的取值都可以由网络设备根据调度策略进行动态灵活地改变。如此,根据M个DCI中的时域位置最靠后的DCI中的PRI域的取值来确定用于发送HARQ-ACK码本的时频资源,可以使确定出的时频资源的大小与需要发送的HARQ-ACK码本中包括的反馈信息的比特数相匹配,避免发生资源浪费或者反馈信息的可靠性较差的问题,提高网络设备对用于发送HARQ-ACK码本的资源指示的准确性和灵活性。
例如,在图8所示的示例中,两个DCI 1重复发送,均用于调度数据1。其中第一个DCI 1承载在CORESET组1中,第二个DCI 1承载在CORESET组2中,两个DCI 1中的PRI域的取值不同,其中第一个DCI 1中的PRI域指示PRI1,第二个DCI 1中的PRI域指示PRI4。此外,DCI 2和DCI 3单独发送,其中DCI 2和DCI 3均承载在CORESET组2中,DCI 2用于调度数据2,DCI 2中的PRI域指示PRI4,DCI 3用于调度数据3,DCI 3中的PRI域指示PRI3。
若两个CORESET组中的反馈信息分别反馈,并假设每个反馈信息占据1比特,那么针对CORESET组1,终端设备可根据第一个DCI 1,生成一个HARQ-ACK码本,该HARQ-ACK码本中包括数据1的1bit反馈信息。进而,终端设备可根据该HARQ-ACK码本包括的1比特反馈信息,确定出对应的PUCCH资源集合1,然后根据第一个DCI 1中的PRI域指示的PRI 1,确定在PUCCH资源集合1中的PUCCH资源1上发送该HARQ-ACK码本。
在这一场景下,M个DCI中的时域位置最靠后的DCI为第一个DCI 1。
针对CORESET组2,终端设备可根据DCI 2、DCI 3和第二个DCI 1,生成一个HARQ-ACK码本,该HARQ-ACK码本中包括数据1的1bit反馈信息、数据2的1bit反馈信息和数据3的1bit反馈信息。进而,终端设备可根据该HARQ-ACK码本包括的3比特反馈信息,确定出对应的PUCCH资源集合1,然后根据第二个DCI 1中的PRI域指示的PRI 4,确定在PUCCH资源集合1中的PUCCH资源4上发送该HARQ-ACK码本。
在这一场景下,M个DCI中的时域位置最靠后的DCI为第二个DCI 1。
再例如,在图9所示的示例中,两个DCI 1重复发送,均用于调度数据1。其中第一个DCI 1承载在CORESET组1中,第二个DCI 1承载在CORESET组2中,两个DCI 1中的PRI域的取值不同,第一个DCI 1中的PRI域指示PRI 1,第二个DCI 1中的PRI域指示PRI 4。两个DCI 2重复发送,均用于调度数据2。其中第一个DCI 2承载在CORESET组2上,第二个DCI 2承载在CORESET组1中,两个DCI 2中的PRI域的取值不同,第一个DCI 2中的PRI域指示PRI 2,第二个DCI 2中的PRI域指示PRI 3。
若两个CORESET组中的反馈信息联合反馈,并假设每个反馈信息占据1比特,那么终端设备可根据第一个DCI 1、第二个DCI 1、第一个DCI 2和第二个DCI 2,生成一个联合的HARQ-ACK码本,该HARQ-ACK码本中包括数据1的2bit反馈信息和数据2的2bit反馈信息。进而,终端设备可根据该HARQ-ACK码本包括的4比特反馈信息,确定出对应的PUCCH资源集合2,然后根据第二个DCI 1中的PRI域指示的PRI 4,确定在PUCCH资源集合2中的PUCCH资源4上发送该HARQ-ACK码本。
在这一场景下,第二个DCI 1的时域位置与第二个DCI 2的时域位置相同,且均为M个DCI中时域位置最靠后的DCI有两个,此时,可选择二者中频域位置较高的第二个DCI1,来确定发送HARQ-ACK码本的PUCCH资源。
本申请实施例还提供一种通信装置,请参考图10,为本申请实施例提供的一种通信装置的结构示意图。该通信装置1000包括:收发模块1010和处理模块1020。该通信装置可用于实现上述任一方法实施例中涉及终端设备的功能。例如,该通信装置可以是终端设备,还可以是终端设备中包括的芯片,也可以是包括终端设备的装置,如各种类型的车辆等。
示例性的,当该通信装置作为终端设备,执行图5中所示的方法实施例时,收发模块1010用于,接收来自网络设备的M个DCI,该M个DCI用于调度N个数据,该M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,且第一DCI和第二DCI用于调度N个数据中的同一个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;处理模块1020用于,根据第三DCI中的资源指示信息,确定用于发送HARQ-ACK码本的时频资源,该第三DCI为K个DCI中时域位置最靠后的一个DCI,所述K个DCI为M个DCI的真子集,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息,K为正整数;所述收发模块1010还用于,在确定的时频资源上向网络设备发送HARQ-ACK码本。
在一种可能的设计中,处理模块1020具体用于,根据HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中,该HARQ-ACK码本中包括的反馈信息的比特数属于第一资源集合对应的比特数区间;以及,根据第三DCI中的资源指示信息,在该第一资源集合中确定用于发送HARQ-ACK码本的时频资源,所述资源指示信息例如可以是DCI的PRI域中的PRI指示信息。
在一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;收发模块1010还用于,接收来自网络设备的第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。这一场景下,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
当该通信装置作为终端设备,执行图7中所示的方法实施例时,收发模块1010用于,接收来自网络设备的M个DCI,该M个DCI用于调度N个数据,M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,该第一DCI和第二DCI用于调度N个数据中的同一个数据,且第一DCI中的PRI域的取值与第二DCI中的PRI域的取值不同,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;处理模块1020用于,根据第三DCI中的PRI域的取值,确定发送HARQ-ACK码本的时频资源,该第三DCI为M个DCI中时域位置最靠后的一个DCI,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息;收发模块1010还用于,在确定的时频资源上向网络设备发送HARQ-ACK码本。
在一种可能的设计中,处理模块1020具体用于:根据HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中该HARQ-ACK码本中包括的反馈信息的比特数属于第一资源集合对应的比特数区间;以及,根据第三DCI中的PRI域的取值,在该第一资源集合中确定用于发送HARQ-ACK码本的时频资源。
在一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;收发模块1010还用于,接收来自网络设备的第一指示信息,该第一指示信息指示L个CORESET组中的反馈信息联合反馈。这一场景下,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
该通信装置中涉及的处理模块1020可以由处理器或处理器相关电路组件实现,收发模块1010可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图5或图7中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图11,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置具体可为一种终端设备。便于理解和图示方便,在图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限 制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发电路。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。应理解,收发单元1110用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供另一种通信装置,请参考图12,为本申请实施例提供的一种通信装置的结构示意图,该通信装置1200包括:收发模块1210和处理模块1220。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片。
示例性的,当该通信装置作为网络设备,执行图5中所示的方法实施例时,收发模块1210用于,向终端设备发送M个下行控制信息DCI,该M个DCI用于调度N个数据,该M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,且第一DCI和第二DCI用于调度N个数据中的同一个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;处理模块1220用于,根据第三DCI中的资源指示信息,确定用于接收混合自动重传请求确认HARQ-ACK码本的时频资源,该第三DCI为K个DCI中时域位置最靠后的一个DCI,所述K个DCI为M个DCI的真子集,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息,K为正整数;收发模块1210还用于,在确定的时频资源上接收来自终端设备的HARQ-ACK码本。
在一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;收发模块1210还用于,网络设备向终端设备发送第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。在这一场景,所述HARQ-ACK码本为L个CORESET组联合反馈的HARQ-ACK码本。
当该通信装置作为网络设备,执行图7中所示的方法实施例时,收发模块1210用于,向终端设备发送M个DCI,该M个DCI用于调度N个数据,M个DCI中包括第一DCI和第二DCI中的至少一个,其中,第一DCI和第二DCI为同一个DCI的两次重复,该第一DCI和第二DCI用于调度所述N个数据中的同一个数据,且第一DCI中的PRI域的取值与第二DCI中的PRI域的取值不同,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;处理模块1220用于,根据第三DCI中的PRI域的取值,确定接收HARQ-ACK码本的时频资源,该第三DCI为M个DCI中时域位置最靠后的一个DCI,该HARQ-ACK码本中包括N个数据中的每个数据的反馈信息;收发模块1210还用于,在确定的时频资源上接收来自终端设备的HARQ-ACK码本。
在一种可能的设计中,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;收发模块1210还用于,网络设备向终端设备发送第一指示信息,该第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。在这一场景,所述HARQ-ACK码 本为L个CORESET组联合反馈的HARQ-ACK码本。
高层应理解,该通信装置中涉及的处理模块1220可以由处理器或处理器相关电路组件实现,收发模块1210可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图5或图7中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图13,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1301和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1302。所述RRU 1301可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线13011和射频单元13012。所述RRU 1301部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 1302部分主要用于进行基带处理,对基站进行控制等。所述RRU 1301与BBU 1302可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1302为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1302可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1302可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1302还可以包括存储器13021和处理器13022,所述存储器13021用于存储必要的指令和数据。所述处理器13022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器13021和处理器13022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和至少一个终端设备。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中涉及的各种数字编号仅为描述方便进行的区分,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (28)

  1. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的M个下行控制信息DCI,所述M个DCI用于调度N个数据,所述M个DCI中包括第一DCI和第二DCI中的至少一个,所述第一DCI和所述第二DCI为同一个DCI的两次重复,所述第一DCI和所述第二DCI用于调度所述N个数据中的同一个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;
    根据第三DCI中的资源指示信息,确定用于发送混合自动重传请求确认HARQ-ACK码本的时频资源,所述第三DCI为K个DCI中时域位置最靠后的一个DCI,所述K个DCI为所述M个DCI的真子集,所述HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息,K为正整数;
    在所述时频资源上向所述网络设备发送所述HARQ-ACK码本。
  2. 根据权利要求1所述的方法,其特征在于,所述K个DCI用于调度所述N个数据中的K个数据,所述K个DCI中的第i个DCI用于调度所述K个数据中的数据#i,且所述第i个DCI为调度所述数据#i的DCI中的第一个DCI,i为小于或等于K的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第三DCI为K个DCI中时域位置最靠后的一个DCI,包括:
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的控制资源集合CORESET的标识最大的一个DCI;或者,
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的控制资源集合CORESET组的标识最大的一个DCI。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述K个DCI为所述M个DCI的真子集,包括:
    所述M个DCI中包括第四DCI,所述第四DCI未包含在所述K个DCI中;
    其中,所述第四DCI为所述K个DCI中的一个DCI的重复;或者,所述第四DCI为第五DCI的重复,所述第五DCI为接收到的来自所述网络设备的除所述M个DCI之外的另一DCI。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中,所述HARQ-ACK码本中包括的反馈信息的比特数属于所述第一资源集合对应的比特数区间;
    所述根据第三DCI中的资源指示信息,确定发送HARQ-ACK码本的时频资源,包括:
    根据所述第三DCI中的资源指示信息,在所述第一资源集合中确定所述时频资源。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;
    所述方法还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为所述CORESET组对应的HARQ-ACK码本;或者,
    所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为所述第一时间单元对应的HARQ-ACK码本。
  8. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    向终端设备发送M个下行控制信息DCI,所述M个DCI用于调度N个数据,所述M个DCI中包括第一DCI和第二DCI中的至少一个,所述第一DCI和所述第二DCI为同一个DCI的两次重复,所述第一DCI和所述第二DCI用于调度所述N个数据中的同一个数据,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数,所述M个DCI还包括第三DCI,所述第三DCI中的资源指示信息指示混合自动重传请求确认HARQ-ACK码本的时频资源,所述HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息,所述第三DCI为K个DCI中时域位置最靠后的一个DCI,所述K个DCI为所述M个DCI的真子集,K为正整数;
    在所述时频资源上接收来自所述终端设备的所述HARQ-ACK码本。
  9. 根据权利要求8所述的方法,其特征在于,所述K个DCI用于调度所述N个数据中的K个数据,所述K个DCI中的第i个DCI用于调度所述K个数据中的数据#i,且所述第i个DCI为调度所述数据#i的DCI中的第一个DCI,i为小于或等于K的正整数。
  10. 根据权利要求8所述的方法,其特征在于,所述第三DCI为K个DCI中时域位置最靠后的一个DCI,包括:
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的控制资源集合CORESET的标识最大的一个DCI;或者,
    所述第三DCI为所述K个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的控制资源集合CORESET组的标识最大的一个DCI。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述K个DCI为所述M个DCI的真子集,包括:
    所述M个DCI中包括第四DCI,所述第四DCI未包含在所述K个DCI中;
    其中,所述第四DCI为所述K个DCI中的一个DCI的重复;或者,所述第四DCI为第五DCI的重复,所述第五DCI为所述网络设备发送的除所述M个DCI之外的另一DCI。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述时频资源为第一资源集合中与所述第三DCI中的资源指示信息对应的时频资源,所述HARQ-ACK码本中包括的反馈信息的比特数属于所述第一资源集合对应的比特数区间。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;
    所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  14. 根据权利要求8至12中任一项所述的方法,其特征在于,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为所述CORESET组对应的HARQ-ACK码本;或者,
    所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为所述第一时间单元对应的HARQ-ACK码本。
  15. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的M个下行控制信息DCI,所述M个DCI用于调度N个数据,所述M个DCI中包括第一DCI和第二DCI中的至少一个,所述第一DCI和所述第二DCI为同一个DCI的两次重复,所述第一DCI和所述第二DCI用于调度所述N个数据中的同一个数据,且所述第一DCI中的物理上行控制信道资源指示PRI域的取值与所述第二DCI中的PRI域的取值不同,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;
    根据第三DCI中的PRI域的取值,确定发送混合自动重传请求确认HARQ-ACK码本的时频资源,所述第三DCI为所述M个DCI中时域位置最靠后的一个DCI,所述HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息;
    在所述时频资源上向所述网络设备发送所述HARQ-ACK码本。
  16. 根据权利要求15所述的方法,其特征在于,所述第三DCI为所述M个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,
    所述第三DCI为所述M个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者,
    所述第三DCI为所述M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的控制资源集合CORESET的标识最大的一个DCI;或者,
    所述第三DCI为所述M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET组的标识最大的一个DCI。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    根据所述HARQ-ACK码本中包括的反馈信息的比特数,确定第一资源集合,其中所述HARQ-ACK码本中包括的反馈信息的比特数属于所述第一资源集合对应的比特数区间;
    所述根据第三DCI中的PRI域的取值,确定发送HARQ-ACK码本的时频资源,包括:
    根据所述第三DCI中的PRI域的取值,在所述第一资源集合中确定所述时频资源。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;
    所述方法还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为所述CORESET组对应的HARQ-ACK码本;或者,
    所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为所述第一时间单元对应的HARQ-ACK码本。
  20. 一种反馈信息的发送方法,其特征在于,所述方法包括:
    向终端设备发送M个下行控制信息DCI,所述M个DCI用于调度N个数据,所述M个DCI中包括第一DCI和第二DCI中的至少一个,所述第一DCI和所述第二DCI为同一个DCI的两次重复,所述第一DCI和所述第二DCI用于调度所述N个数据中的同一个数据,且所述第一DCI中的物理上行控制信道资源指示PRI域的取值与所述第二DCI中的PRI域的取值不同,M为大于或等于2的整数,N为小于或等于M且大于或等于2的整数;
    在时频资源上接收来自所述终端设备的混合自动重传请求确认HARQ-ACK码本,所述时频资源根据第三DCI中的PRI域的取值确定,所述第三DCI为所述M个DCI中时域位置最靠后的一个DCI,所述HARQ-ACK码本中包括所述N个数据中的每个数据的反馈信息。
  21. 根据权利要求20所述的方法,其特征在于,所述第三DCI为所述M个DCI中时域位置最靠后的DCI中频域位置最高的DCI;或者,
    所述第三DCI为所述M个DCI中时域位置最靠后的DCI中所在小区的标识最大的一个DCI;或者
    所述第三DCI为所述M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的控制资源集合CORESET的标识最大的一个DCI;或者,
    所述第三DCI为所述M个DCI中时域位置最靠后的DCI中所在小区的标识最大,且所在的CORESET组的标识最大的一个DCI。
  22. 根据权利要求20或21所述的方法,其特征在于,所述时频资源为第一资源集合中与所述第三DCI中的PRI域的取值对应的时频资源,所述HARQ-ACK码本中包括的反馈信息的比特数属于所述第一资源集合对应的比特数区间。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,所述M个DCI承载在L个CORESET组中,L为大于或等于2的整数;
    所述方法还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息指示所述L个CORESET组中的反馈信息联合反馈。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述M个DCI承载在同一个CORESET组中,所述HARQ-ACK码本为所述CORESET组对应的HARQ-ACK码本;或者,
    所述M个DCI中的每个DCI均指示调度的数据的反馈信息在第一时间单元发送,所述HARQ-ACK码本为所述第一时间单元对应的HARQ-ACK码本。
  25. 一种通信装置,其特征在于,所述装置包括用于执行如权利要求1至7中任一项所述方法的单元,或者包括用于执行如权利要求8至14中任一项所述方法的单元,或者包括用于执行如权利要求15至19中任一项所述方法的单元,或者包括用于执行如权利要求20至24中任一项所述方法的单元。
  26. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以 使得所述装置执行如权利要求1至7中任一项所述的方法,或者使得所述装置执行如权利要求8至14中任一项所述的方法,或者使得所述装置执行如权利要求15至19中任一项所述的方法,或者使得所述装置执行如权利要求20至24中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,实现如权利要求1至7中任一项所述的方法,或者实现如权利要求8至14中任一项所述的方法,或者实现如权利要求15至19中任一项所述的方法,或者实现如权利要求20至24中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括第一通信装置和第二通信装置;
    其中,所述第一通信装置被配置用于执行如权利要求1至7中任一项所述的方法或用于执行如权利要求15至19中任一项所述的方法;所述第二通信装置被配置用于执行如权利要求8至14中任一项所述的方法,或用于执行如权利要求20至24中任一项所述的方法。
PCT/CN2021/086290 2020-04-10 2021-04-09 一种反馈信息的发送方法及装置 WO2021204276A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21784566.8A EP4120605A4 (en) 2020-04-10 2021-04-09 METHOD AND APPARATUS FOR SENDING FEEDBACK INFORMATION
US17/959,863 US20230028448A1 (en) 2020-04-10 2022-10-04 Feedback information sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281669.8A CN113517958B (zh) 2020-04-10 2020-04-10 一种反馈信息的发送方法及装置
CN202010281669.8 2020-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/959,863 Continuation US20230028448A1 (en) 2020-04-10 2022-10-04 Feedback information sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2021204276A1 true WO2021204276A1 (zh) 2021-10-14

Family

ID=78023096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086290 WO2021204276A1 (zh) 2020-04-10 2021-04-09 一种反馈信息的发送方法及装置

Country Status (4)

Country Link
US (1) US20230028448A1 (zh)
EP (1) EP4120605A4 (zh)
CN (1) CN113517958B (zh)
WO (1) WO2021204276A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116827480A (zh) * 2022-01-13 2023-09-29 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
WO2024007155A1 (en) * 2022-07-05 2024-01-11 Zte Corporation Data transmission acknowledgement, apparatus, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811094A (zh) * 2017-05-02 2018-11-13 普天信息技术有限公司 一种数据传输方法
CN110932825A (zh) * 2018-09-20 2020-03-27 维沃移动通信有限公司 混合自动重传请求应答反馈方法和终端
CN112492647A (zh) * 2019-09-12 2021-03-12 维沃移动通信有限公司 一种dci调度方法、设备及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109639398B (zh) * 2017-10-09 2021-12-31 华为技术有限公司 Harq-ack反馈码本的发送方法、装置及设备
CN110475359A (zh) * 2018-05-10 2019-11-19 北京三星通信技术研究有限公司 传输上行控制信息的方法及设备
CN110557231B (zh) * 2018-06-04 2021-02-12 华为技术有限公司 传输信息的方法和通信设备
US11432369B2 (en) * 2018-06-19 2022-08-30 Apple Inc. Reference signal and control information processing in 5G-NR wireless systems
EP3831122A4 (en) * 2018-08-03 2022-04-27 Sharp Kabushiki Kaisha DETERMINATION OF HARQ-ACK TIMING AND PUCCH RESOURCES FOR ULTRA-LOW-LATENCY PDSCH TRANSMISSION
CN110880963B (zh) * 2019-11-07 2022-03-11 北京紫光展锐通信技术有限公司 上行控制信息的传输方法及相关装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811094A (zh) * 2017-05-02 2018-11-13 普天信息技术有限公司 一种数据传输方法
CN110932825A (zh) * 2018-09-20 2020-03-27 维沃移动通信有限公司 混合自动重传请求应答反馈方法和终端
CN112492647A (zh) * 2019-09-12 2021-03-12 维沃移动通信有限公司 一种dci调度方法、设备及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On multi-TRP/multi-panel transmission", 3GPP DRAFT; R1-1910668_R2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789460 *
QUALCOMM: "Remaining Issues on UCI Enhancements for URLLC", 3GPP DRAFT; R1-2000969, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. eMeeting; 20200224 - 20200306, 15 February 2020 (2020-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853543 *
See also references of EP4120605A4 *

Also Published As

Publication number Publication date
EP4120605A1 (en) 2023-01-18
EP4120605A4 (en) 2023-08-09
US20230028448A1 (en) 2023-01-26
CN113517958A (zh) 2021-10-19
CN113517958B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2021052254A1 (zh) 数据传输方法、装置和系统
CN111867070B (zh) 通信方法和通信装置
WO2021043174A1 (zh) 一种通信方法及装置
WO2018024068A1 (zh) 一种动态确定上行dmrs的传输位置的方法及设备
WO2021057805A1 (zh) 一种通信方法及装置
US20230028448A1 (en) Feedback information sending method and apparatus
WO2019214559A1 (zh) 通信的方法和通信装置
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2020169063A1 (zh) 一种数据传输方法及通信装置
CN111406431B (zh) 用于指示连续的资源分配的方法、装置和计算机可读介质
WO2020063838A1 (zh) 传输数据的方法及装置
JP2021536181A (ja) フィードバック情報の伝送装置及び方法
WO2020200053A1 (zh) 一种数据传输方法及装置
CN110730513B (zh) 一种通信方法及装置
JP2021533637A (ja) 通信方法及び通信装置
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2016127556A1 (zh) 一种基站、用户终端及载波调度指示方法
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置
JP2023542690A (ja) ユーザ装置及びユーザ装置の方法
WO2021035440A1 (zh) 收发控制信息的方法、装置和系统
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2022082599A1 (en) Methods for feedback configuration, terminal device, network device, and computer readable media
WO2021088063A1 (zh) 一种通信方法及装置
CN114503721A (zh) 一种混合自动重传请求反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021784566

Country of ref document: EP

Effective date: 20221014

NENP Non-entry into the national phase

Ref country code: DE