WO2021203637A1 - 地埋式除尘系统 - Google Patents

地埋式除尘系统 Download PDF

Info

Publication number
WO2021203637A1
WO2021203637A1 PCT/CN2020/117763 CN2020117763W WO2021203637A1 WO 2021203637 A1 WO2021203637 A1 WO 2021203637A1 CN 2020117763 W CN2020117763 W CN 2020117763W WO 2021203637 A1 WO2021203637 A1 WO 2021203637A1
Authority
WO
WIPO (PCT)
Prior art keywords
buried
removal system
dust removal
dust
lifting
Prior art date
Application number
PCT/CN2020/117763
Other languages
English (en)
French (fr)
Inventor
何曦
吴卫
Original Assignee
航天凯天环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天凯天环保科技股份有限公司 filed Critical 航天凯天环保科技股份有限公司
Publication of WO2021203637A1 publication Critical patent/WO2021203637A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours

Definitions

  • the invention belongs to special dust removal technology, and specifically relates to an underground dust removal system.
  • Wind blades are the core component of wind power generation.
  • the largest wind blades now have a diameter of more than 70 meters, which is equivalent to the wingspan of a Boeing airplane.
  • the grinding and polishing of wind blades during the manufacturing process will produce a lot of fine dust. These dusts are difficult to settle by gravity, float in the workshop for a long time, and are not easy to be discharged after being inhaled into the lungs, which will have a huge impact on the health of the operators.
  • the technical problem solved by the present invention is to provide a buried dust removal system in view of the problems of low efficiency and high cost in capturing dust generated during the grinding and polishing process of wind blades.
  • the present invention adopts the following technical solutions to achieve.
  • the buried dust removal system includes a dust collection filter module and a semi-closed structure that is hidden underground and can be raised above the ground.
  • the semi-closed structure has a dust collection channel for covering the polishing station, and the dust collection channel is provided with The air inlet end opening and the negative pressure end opening, the negative pressure end opening is closed, and is connected with the negative pressure air inlet of the dust collection filter module, after the grinding station is covered by the dust collection channel, the dust collection filter mold is used The negative pressure of the group sucks and captures the dust air formed in the dust collection channel.
  • the semi-closed structure includes a plurality of frameworks and a membrane structure laid between the frameworks, and the framework and the membrane structure form a continuous arched dust collection channel through the framework structure
  • the overall structure of the arched dust collection channel formed by the membrane structure is lighter.
  • the framework includes an underground machine base and a lifting arch
  • the underground machine base is fixedly buried in the ground on both sides of the work station
  • the lifting arch is round Arc arches
  • the lifting arches are respectively erected on the buried machine bases on both sides of the work station above the ground, and abut against each other to form a circular arc arch-shaped frame
  • the underground machine base is provided with a lifting arch
  • the underground machine bases on both sides of the station are provided with guide rails for accommodating the introduction of the lifting arch frame under the ground. The impact of artifacts.
  • the lifting driving device adopts a rack and pinion mechanism, which includes a driving gear installed on the underground machine base and an arc-shaped rack fixed along the lifting arch.
  • the driving gear is driven by a motor on the underground machine base.
  • the arc-shaped rack is meshed with the driving gear and driven by the motor.
  • the gear and rack are used to transmit power to drive the lifting arch to lift.
  • the membrane structure includes a reel on the skeleton and a stretchable film wound on the reel, and the stretchable films on adjacent skeletons are pulled from the reel to form a gap between the skeletons.
  • the wall of the dust collection channel and the membrane structure are retracted during the lifting and lowering process of the skeleton, so as to avoid the pulling damage of the membrane structure due to the unsynchronized lifting between the skeletons.
  • the butting ends of the stretchable membranes are provided with mutually magnetically attracted concave-convex sealing structures to ensure the reliable butting of the stretchable membranes.
  • the inner ribs are spliced by a plurality of electromagnets, and all adjacent electromagnets are energized to attract each other to form a rigid strip support structure.
  • the reel is connected with the motor drive to realize the automatic winding of the retractable membrane and the inner rib, and the membrane structure and the skeleton structure can be automatically operated.
  • the dust collection filter module is arranged at the negative pressure end opening of the dust collection channel, and is hidden underground by using a buried lifting structure, and is lifted to a half height above the ground along with the semi-closed structure.
  • the negative pressure end of the closed structure is closed, and the dust collection filter module also adopts an underground structure to reduce the occupation of the ground and improve the utilization rate of the internal space of the workshop.
  • the present invention has the following beneficial effects.
  • the buried dust removal system used in the present invention drops below the ground when not in use, does not occupy workshop area when not working, does not affect the handling of workpieces and equipment, and does not affect other operations on the floor of the workshop.
  • the buried dust removal system of the present invention adopts a semi-closed dust collection channel that fully covers the polishing station, and when it rises above the ground, a dust collection channel that completely covers the polishing area of the workpiece at the station is formed.
  • a dust collection channel that completely covers the polishing area of the workpiece at the station is formed.
  • the semi-closed dust collection channel in the buried dust removal system of the present invention can control the grinding workpieces such as wind blades to the smallest possible range, and the energy consumption of the dust removal system can be reduced to less than 1% of the overall ventilation of the workshop.
  • the length of the semi-closed dust collection channel of the buried dust removal system of the present invention can be adjusted by controlling the number of lifting frames, thereby adapting to the control of workpieces of different sizes, and effectively improving the utilization efficiency of the workshop site.
  • the present invention only covers the polishing station, and does not affect the overall constant temperature and humidity of the workshop.
  • the buried dust removal system of the present invention can be well adapted to the grinding and dust removal treatment of wind blades or other long and narrow workpieces. It has the advantages of flexible control, concealed equipment, obvious dust removal effect, and low energy consumption. It can be widely promoted application.
  • Fig. 1 is a top view of the buried dust removal system of the embodiment.
  • Fig. 2 is a side view of a set of skeletons of the buried dust removal system of the embodiment raised above the ground.
  • Fig. 3 is a side view of a set of skeletons of the buried dust removal system of the embodiment falling below the ground.
  • Fig. 4 is a schematic diagram of the winding of the retractable film of the buried dust removal system on the reel of the embodiment.
  • Figure 5 is a schematic diagram of the butt joint of the stretchable membranes between adjacent frameworks in the buried dust removal system of the embodiment.
  • Fig. 6 is a side view of the butt joint structure of the ends of the stretchable film in the embodiment, mainly showing a schematic diagram of the concave-convex sealing structure on the stretchable film.
  • Fig. 7 is a top view of the butt joint structure of the ends of the stretchable film in the embodiment.
  • Fig. 8 is a schematic diagram of the internal rib structure in the embodiment.
  • the buried dust removal system in the figure is a specific implementation of the present invention.
  • the wind blade manufacturing workshop of an enterprise is 450m long, 38.5m wide, and 14m high.
  • the workshop is divided into equidistant and unobstructed 3 stages: forming, sanding and painting.
  • the polishing section is completely exposed in the workshop, and the worker holds the polishing equipment for polishing as needed, and the dust generated by the polishing escapes everywhere.
  • the polishing station of the workshop is to remove dust during the polishing process of the wind blade 1.
  • the polishing of the wind blade 1 is mainly carried out around the wind blade, so the polishing station of the wind blade 1 is a long station around the wind blade.
  • the buried dust removal system of this embodiment fully covers the entire work station.
  • the entire system adopts an buried structure. When it is not polished, the entire system can be lowered to the ground to hide. When the wind blade 1 is polished, the entire system rises to Above the ground, a semi-closed dust collection channel 100 is formed to cover the polishing station area, so that the wind blade 1 can be polished for efficient dust removal.
  • the entire dust removal system includes a semi-closed structure and a dust collection filter module.
  • the semi-closed structure forms a dust collection channel for dust collection at the polishing station.
  • the semi-closed structure is hidden below the ground 5 when it is not working.
  • the channel can be raised to above the ground 5 during polishing.
  • the dust collection channel 100 formed inside will fully cover the polishing station.
  • the two ends of the entire dust collection channel 100 are respectively set as the air inlet opening 101 and the negative pressure end opening 102 to collect dust.
  • the filter module sucks the dust air inside the dust collection channel, and filters the dust in the air.
  • the negative pressure air inlet of the dust collection filter module is connected with the negative pressure air inlet 102 of the dust collection channel, and passes After the dust channel covers the polishing station, the negative pressure of the dust collection filter module is used to suction and collect the dust air formed in the dust channel.
  • the dust collection filter module can adopt a fixed dust removal device, and its negative pressure air inlet is connected to the negative pressure air inlet of the dust collection channel 100 through a pipe.
  • the dust collection filter module is the buried dust collection filter module 4 in FIG. This embodiment will not be repeated here.
  • the buried dust collection filter module 4 adopts a buried structure, the entire module frame is set at the negative pressure end opening 102 of the dust collection channel 100, and the buried lifting structure is hidden underground, and the scissor lifting platform can be driven by a motor Achieve underground lifting.
  • the buried dust collection filter module 4 is lifted above the ground together with the semi-closed structure to close the negative pressure end opening 102 of the semi-closed structure, and the negative pressure air inlet of the fan is set directly toward the negative pressure end opening 102 of the dust collection channel .
  • the semi-closed structure of this embodiment includes several sets of skeletons 2 and membrane structures laid between the skeletons.
  • the skeleton 2 and the membrane structure form a continuous arched dust collection channel that straddles the polishing station, and the skeleton 2 serves as a dust collecting channel.
  • the supporting structure of the channel 100, and the membrane structure serves as the dust collecting channel wall of the dust collecting channel 100.
  • the skeleton 2 includes an underground machine base 21 and a lifting arch 22.
  • Two pairs of underground machine bases 21 and two pairs of lifting arches 22 constitute a set of skeleton 2.
  • the underground machine base 21 is fixed and buried on the ground on both sides of the polishing station. , And are arranged symmetrically and evenly on both sides of the polishing station, the lifting arch 22 is an arc-shaped arch, at least 1/4 arc arch, so that two pairs of lifting arches 22 are erected on both sides of the station above the ground.
  • the skeleton is arranged and constituted.
  • the underground machine base 21 is provided with a lifting drive device (not shown in the figure) for guiding the corresponding lifting arch 22 into the ground.
  • the underground machine base 21 located on both sides of the polishing station is provided with a guide rail 23 below the ground for accommodating the lifting arch 22 leading into the ground.
  • the guide rail is a continuous arc formed by the lifting arch 22 above the ground.
  • the guide rail, the lifting drive device on the underground machine base 21 lowers the lifting arch 22 into the guide rail 23 along its own arc track below the ground, as shown in FIG. 3.
  • the dust collection channel 100 formed by the lifting arch 22 is opened from both sides and then descends below the ground.
  • the lifting arch 22 is raised from both sides of the work station to the top of the polishing station Closed into a dust collection channel, not affected by the blade workpiece on the workstation.
  • the lifting driving device for driving the lifting arch 22 on the underground machine base 21 can adopt a rack and pinion mechanism, which includes a driving gear installed on the underground machine base 21 and an arc-shaped rack fixed along the lifting arch.
  • the driving gear is driven by the ground.
  • the arc-shaped rack is meshed with the driving gear for transmission.
  • the arc-shaped rack is fixed on the lifting arch 22, which can be regarded as a section of the inner gear ring.
  • the guide rail guides the position, the motor drives the driving gear, and the gear and rack are used to transmit power to drive the lifting arch 22 to move along its own arc trajectory to realize the lifting action of the lifting arch 22.
  • the transmission structure of the rack and pinion is a conventional transmission mechanism, and the specific installation method is not described here in this embodiment.
  • the film structure in this embodiment includes a reel 32 and a telescopic film 3 wound on the reel 32.
  • the reel 32 is rotatably mounted on the lifting arch 22 of the skeleton 2, and a universal flexible shaft is used for lifting along The arc-shaped track installation of the arch 22, the retractable film 3 is wound on the reel 32 when the dust removal system is not in use.
  • the membrane structure is retracted during the lifting and lowering process of the skeleton to avoid the pulling damage of the membrane structure due to the unsynchronized lifting between the skeletons.
  • the stretchable film 3 on the adjacent skeletons is pulled out from the reel 32 and abutted along a direction perpendicular to the vertical plane where the skeletons are located to form a channel arch wall between the skeletons, as shown in FIG. 5.
  • the butting end of the stretchable film 3 is provided with a concave-convex sealing structure 31 that magnetically attracts each other.
  • the concave-convex sealing structure 31 includes magnetic strips respectively arranged on the butting sides of the stretchable film 3. The grooves and protruding strips are fitted into each other, and mutually attracting magnetic attraction is formed between each other, so as to ensure the formation of a sealed and reliable butt joint structure between the stretchable films.
  • the stretchable film 3 is manually pulled from the reel 32 to unfold for docking.
  • the reel 32 is set with a return coil spring (not shown in the figure). After the concave-convex sealing structure 31 between the stretchable films 3 is released, the stretchable film 3 It can be automatically wound onto the reel 32 under the action of the return coil spring.
  • This embodiment also provides an automatic winding solution for the stretchable membrane.
  • a number of internal ribs 33 are embedded on the stretchable membrane 3 to improve the support strength of the membrane structure. It is parallel and perpendicular to the vertical plane where the arched support is located.
  • the inner rib 33 can improve the strength of the arch wall of the entire passage.
  • the flexible film between the flexible film and the ground form a rigid butt seal to avoid the formation of flexible gaps between the flexible film and cause the sanding dust to escape; secondly, it is used as a transmission structure for the automatic winding of the flexible film 3, and the inner rib 33 passes through a number of electromagnetic
  • the iron 34 is successively spliced in the same strip-shaped dust collection channel.
  • the electromagnet 34 is in a discrete and free state when it is not energized. It can be freely wound on the reel 32 with the stretchable film. All adjacent electromagnets 34 are in between. After being energized, they are attracted to each other, so that the entire inner rib 33 forms a rigid strip support structure. Using the characteristic of the inner rib 33, this embodiment connects the reel 32 to the winding motor installed inside the lifting arch. The reel 32 rolls out the telescopic membrane 3 and the inner rib 33. After the inner rib 33 is energized, a rigid strip supporting structure is automatically formed to stretch the entire telescopic membrane 3 forward.
  • One side of the frame can also be provided with support ribs that provide support for the inner ribs to ensure that the inner ribs 33 and the telescopic membrane 3 are smoothly stretched forward, and the winding motor reverses to pull the telescopic membrane 3 and the inner rib 33 back to the reel.
  • support ribs that provide support for the inner ribs to ensure that the inner ribs 33 and the telescopic membrane 3 are smoothly stretched forward, and the winding motor reverses to pull the telescopic membrane 3 and the inner rib 33 back to the reel.
  • the lifting arch 22 can be made of lightweight aluminum alloy, and the overall structure is lighter.
  • the stretchable film 3 adopts a light-transmitting film to improve the transparency of the light inside the sanding dust collection channel to reduce the lighting energy consumption.
  • the arched framework formed by the lifting arch 22 is equipped with supporting facilities related to the operation, including But not limited to power supply, positive (negative) compressed air (other) gas, emergency alarm, lighting, voice communication, video communication, infrared scanning, positioning, etc.
  • the lifting arch 22 of the skeleton 2 and the buried dust collection filter module 4 are gradually raised.
  • the number of skeletons 2 that need to be raised can be selected according to the length of the wind blade 1 to ensure that the All the wind blades are covered.
  • the dust collection channel formed by the skeleton 2 and the retractable membrane 3 covers the wind blade 1 while leaving a space for workers to operate around.
  • the worker enters the dust collection channel and starts to polish the wind blade 1, and then the raised underground dust collection
  • the filter module 4 is turned on, and the dust generated by the grinding of the wind blade 1 is all concentrated in the dust collecting channel.
  • the air inside the grinding dust collecting channel is from the air inlet end of the dust collecting channel under the action of the fan of the buried dust collecting filter module 4
  • the opening 101 is poured into the polishing dust collection channel at a certain flow rate.
  • a negative pressure is formed in the dust collection channel, and the dust generated by the polishing inside the dust collection channel is brought to the interior of the buried dust collection filter module 4 for collection and separation, and at the same time, the dust is filtered. After the clean air is discharged into the workshop to avoid the loss of heat and humidity.
  • this embodiment can not only completely capture the dust generated during the grinding process, but also reduce the energy consumption of the system operation to within 1% of the overall ventilation of the workshop.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Cleaning In General (AREA)

Abstract

地埋式除尘系统,包括集尘过滤模组(4)和隐藏在地下并可升至地面(5)以上的半密闭结构,半密闭结构具有用于覆盖打磨工位的集尘通道(100),该集尘通道(100)设有进风端开口(101)和负压端开口(102),负压端开口(102)封闭,并与集尘过滤模组(4)的负压进风口连通。

Description

地埋式除尘系统 技术领域
本发明属于特种除尘技术,具体涉及一种地埋式除尘系统。
背景技术
随着我国新能源技术的不断进步,风力发电作为一种潜力巨大的绿色环保能源技术,已经在全球范围内得到了广泛的应用。风力叶片是风力发电的核心部件,现在最大的风力叶片直径已经超过70米了,相当于一架波音飞机的翼展。风力叶片在制作的过程进行打磨、抛光会产生许多细小粉尘,这些粉尘难以重力沉降,长期漂浮于车间里,且吸入肺部后不容易排出,对作业人员的健康造成巨大的影响。
目前有两种粉尘治理技术用于风力叶片打磨产生的粉尘治理。一是打磨机上装载高负压吸气除尘装置,在打磨片上均匀设置一定尺寸的气孔,这些气孔通过打磨机与高负压管路连接,打磨时产生的部分粉尘被高负压吸走,并经过滤单元过滤分离,这种方法只能捕捉部分粉尘,对打磨片圆周高速飞出逃逸的粉尘难以捕捉;另一种方式是对车间进行整体换气,并对空气中粉尘进行过滤拦截,这种方法虽然能有效控制车间整体粉尘含量,但因风力叶片作业车间空间狭长、局域打磨分散且需要恒温恒湿,导致系统运行成本非常高,企业难以承受,在行业中很难进行推广。
技术问题
本发明解决的技术问题是:针对风力叶片打磨抛光过程中产生的粉尘捕捉存在的效率低、成本高的问题,提供一种地埋式除尘系统。
技术解决方案
本发明采用如下技术方案实现。
地埋式除尘系统,包括集尘过滤模组和隐藏在地下并可升至地面以上的半密闭结构,所述半密闭结构具有用于覆盖打磨工位的集尘通道,该集尘通道设有进风端开口和负压端开口,所述负压端开口封闭,并与所述集尘过滤模组的负压进风口连通,通过集尘通道将打磨工位覆盖后,利用集尘过滤模组的负压将集尘通道内形成的粉尘空气进行负压抽吸捕集。
上述地埋式除尘系统的技术方案中,进一步的,所述半密闭结构包括若干骨架以及敷设在骨架之间的膜结构,所述骨架和膜结构形成连续的拱形集尘通道,通过骨架结构和膜结构形成的拱形集尘通道整体结构更加轻便。
上述地埋式除尘系统的技术方案中,进一步的,所述骨架包括地埋机座和升降拱架,所述地埋机座固定埋设在工位两侧的地面,所述升降拱架为圆弧形拱架,所述升降拱架在地面以上分别架设在工位两侧的地埋机座上,并相互抵接形成圆弧拱形骨架,所述地埋机座上设有将升降拱架导入地下的升降驱动装置,所述工位两侧的地埋机座在地面以下设有容纳升降拱架导入的导轨,升降拱架从工位的两侧进行升降合拢,不受到工位上工件的影响。
上述地埋式除尘系统的技术方案中,进一步的,所述升降驱动装置采用齿轮齿条机构,包括安装在地埋机座上的主动齿轮以及沿升降拱架固定的弧形齿条,所述主动齿轮由地埋机座上的电机驱动,所述弧形齿条与主动齿轮啮合传动,由电机驱动,利用齿轮和齿条传递动力驱动升降拱架升降。
上述地埋式除尘系统的技术方案中,进一步的,所述膜结构包括骨架上的卷轴和卷绕在卷轴上的伸缩膜,相邻骨架上的伸缩膜从卷轴上牵拉对接形成骨架之间集尘通道壁,膜结构在骨架升降过程中收回,避免因为骨架之间的升降不同步造成膜结构的拉扯损坏。
上述地埋式除尘系统的技术方案中,进一步的,所述伸缩膜的对接端设有相互磁吸的凹凸密封结构,保证伸缩膜之间可靠对接。
上述地埋式除尘系统的技术方案中,进一步的,所述伸缩膜上嵌设有提高膜结构支撑强度的内筋,提高整个通道拱壁的强度。
上述地埋式除尘系统的技术方案中,进一步的,所述内筋通过若干电磁铁拼接而成,所有相邻的电磁铁通电相互吸引,形成具有刚性的条状支撑结构。
上述地埋式除尘系统的技术方案中,进一步的,所述卷轴与电机传动连接,实现伸缩膜和内筋自动收卷,膜结构和骨架结构均能够进行自动操作。
在本发明的地埋式除尘系统中,所述集尘过滤模组设置在集尘通道的负压端开口,并采用地埋升降结构隐藏在地下,随半密闭结构一同升降至地面以上将半密闭结构的负压端开口封闭,集尘过滤模组同样采用地埋结构可降低对地面的占用,提高车间内部空间利用率。
有益效果
本发明具有如下有益效果。
1、本发明采用的地埋式除尘系统,在不使用时降至地面以下,在不工作时不占车间面积,不影响工件和设备搬运,不会对车间地面其他作业造成影响。
2、本发明地埋式除尘系统采用全面覆盖打磨工位的半密闭集尘通道,升至地面以上后形成完全覆盖工位上对工件打磨区域的集尘通道,打磨作业时,不仅粉尘得到有效控制,打磨产生的噪音也被隔绝,不会对非打磨工位造成造影响。
3、本发明地埋式除尘系统中的半密闭集尘通道能够将风力叶片等打磨工件控制在尽可能小的范围,除尘系统能耗可降低至车间整体换气的1%以下。
4、本发明地埋式除尘系统的半密闭集尘通道长度可以通过控制升降的骨架数量来进行调整,进而适应不同大小的工件控制,有效提高车间场地利用效率。
5、本发明仅仅针对打磨工位进行覆盖,对车间整体的恒温恒湿不产生影响。
综上所述,本发明的地埋式除尘系统能够很好地适应风力叶片或者其他狭长工件的打磨除尘处理,具备有控制灵活、设备隐蔽且除尘效果明显、能耗低的优点,可广泛推广应用。
以下结合附图和具体实施方式对本发明作进一步说明。
附图说明
图1为实施例的地埋式除尘系统俯视图。
图2为实施例的地埋式除尘系统其中一组骨架升至地面以上的侧视图。
图3为实施例的地埋式除尘系统其中一组骨架降至地面以下的侧视图。
图4为实施例的地埋式除尘系统的伸缩膜在卷轴上的卷绕示意图。
图5为实施例的地埋式除尘系统中相邻骨架之间的伸缩膜对接示意图。
图6为实施例中的伸缩膜端部对接结构侧视图,主要展示伸缩膜上的凹凸密封结构示意。
图7为实施例中的伸缩膜端部对接结构俯视图。
图8为实施例中的内筋结构示意图。
图中标号:1-风力叶片,100-集尘通道,101-进风端开口,102-负压端开口,2-骨架,21-地埋机座,22-升降拱架,23-导轨,3-伸缩膜,31-凹凸密封结构,32-卷轴,33-内筋,34-电磁铁,4-地埋式集尘过滤模组,5-地面。
本发明的实施方式
实施例。
参见图1和图2,图示中的地埋式除尘系统为本发明的一种具体实施方案,某企业风力叶片生产制造车间长450m、宽38.5m、高14m,车间分成等距无阻隔的3段:成型、打磨、喷漆。其中,打磨段完全暴露于车间中,由工人手持打磨设备按需打磨,打磨产生的粉尘四处逸散。本实施例针对该车间的打磨工位在对风力叶片1打磨过程进行除尘,风力叶片1的打磨主要是围绕风力叶片进行,因此该风力叶片1的打磨工位为围绕风力叶片的长条工位,本实施例的地埋式除尘系统对整个工位进行全面覆盖,整个系统采用地埋式结构,不打磨时整个系统可以降至地面以下隐藏,对风力叶片1进行打磨时,整个系统升至地面以上,对打磨工位区域覆盖形成一个半封闭的集尘通道100,实现风力叶片1打磨进行高效除尘。
整个除尘系统包括半密闭结构和集尘过滤模组,通过半密闭结构形成对打磨工位进行集尘的集尘通道,该半密闭结构在不工作时隐藏在地面5以下,其形成的集尘通道在打磨工作时可升至地面5以上,内部形成的集尘通道100将打磨工位全面覆盖,整个集尘通道100两端分别设置为进风端开口101和负压端开口102,集尘过滤模组对集尘通道内部的粉尘空气进行抽吸,并对空气中的粉尘进行过滤捕集,集尘过滤模组的负压进风口与集尘通道的负压进风口102连通,通过集尘通道将打磨工位覆盖后,利用集尘过滤模组的负压将集尘通道内形成的粉尘空气进行负压抽吸捕集。
集尘过滤模组可以采用固定式的除尘设备,将其负压进风口通过管道与集尘通道100的负压进风口对接连接。在本实施例中,集尘过滤模组为图1中的地埋式集尘过滤模组4,内部包括有风机以及除尘器等过滤单元,具体的除尘方案可参考现有的除尘技术手段,本实施例在此不做赘述。地埋式集尘过滤模组4采用地埋结构,整个模组框架设置在集尘通道100的负压端开口102,并采用地埋升降结构隐藏在地下,可以通过电机驱动的剪叉升降平台实现地埋升降。地埋式集尘过滤模组4与半密闭结构一同升降至地面以上后将半密闭结构的负压端开口102封闭,其风机的负压进风口直接朝向集尘通道的负压端开口102设置。通过将集尘过滤模组采用地埋结构可降低对地面的占用,提高车间内部空间利用率。
以下详细说明本实施例中的半密闭结构的具体方案。
本实施例的半密闭结构包括若干组骨架2以及敷设在骨架之间的膜结构,骨架2和膜结构形成一个跨设在打磨工位上的连续拱形集尘通道,其中骨架2作为集尘通道100的支撑结构,膜结构作为集尘通道100的集尘通道壁。
骨架2包括地埋机座21和升降拱架22,其中两对地埋机座21和两对升降拱架22构成一组骨架2,地埋机座21固定埋设在打磨工位两侧的地面,并且在打磨工位两侧的对称均匀布置,升降拱架22为圆弧形拱架,至少为1/4圆弧拱,这样两对升降拱架22在地面以上分别架设在工位两侧的地埋机座21上,相互之间抵接后形成集尘通道其中的一组1/2圆弧拱形骨架,整个集尘通道的骨架通过沿打磨工位长度方向布置的多组拱形骨架排列构成。地埋机座21上设有将对应升降拱架22导入地下的升降驱动装置(图中未示出)。位于打磨工位两侧的地埋机座21在地面以下设有容纳升降拱架22导入地面以下的导轨23,该导轨为与升降拱架22在地面以上形成的圆弧拱架连续的圆弧导轨,地埋机座21上的升降驱动装置将升降拱架22沿其本身圆弧轨迹降到地面以下的过程进入到导轨23内,如图3所示。收起除尘系统时,升降拱架22构成的集尘通道100从两侧打开后降入到地面以下,升起除尘系统时,升降拱架22从工位的两侧升起至打磨工位顶部合拢成集尘通道,不受到工位上叶片工件的影响。
地埋机座21上驱动升降拱架22的升降驱动装置可采用齿轮齿条机构,包括安装在地埋机座21上的主动齿轮以及沿升降拱架固定的弧形齿条,主动齿轮由地埋机座上的电机驱动,弧形齿条与主动齿轮啮合传动,弧形齿条固定在升降拱架22上,可以看作内齿圈的一段,在传动过程中通过容纳升降拱架22的导轨导向限位,电机驱动主动齿轮,利用齿轮和齿条传递动力驱动升降拱架22沿其本身的弧线轨迹移动,实现升降拱架22的升降动作。齿轮齿条的传动结构为常规传动机构,本是实施例在此不对其具体的安装方式进行赘述。
结合参见图4-6,本实施例中的膜结构包括卷轴32和卷绕在卷轴32上的伸缩膜3,卷轴32转动安装在骨架2的升降拱架22上,采用万向软轴沿升降拱架22的弧形轨迹安装,伸缩膜3在除尘系统不使用时卷绕在卷轴32上,如图4中所示,整个膜结构依附安装在升降拱架22上,随升降拱架一同升降,膜结构在骨架升降过程中收回可以避免因为骨架之间的升降不同步造成膜结构的拉扯损坏。除尘系统使用时将相邻骨架上的伸缩膜3从卷轴32上牵拉出来并沿垂直于骨架所在竖直平面的方向对接形成骨架之间的通道拱壁,如图5中所示。伸缩膜3的对接端设有相互磁吸的凹凸密封结构31,如图6中所示,凹凸密封结构31包括分别设置在伸缩膜3对接侧边的磁性条,对接的两组磁性条分别设置成相互嵌合的凹槽和凸条,并且相互之间形成相互吸引的磁吸力,保证伸缩膜之间形成密封可靠的对接结构。
实际应用中伸缩膜3通过手动从卷轴32上牵拉展开进行对接,将卷轴32设置回位卷簧(图中未示出),解除伸缩膜3之间的凹凸密封结构31之后,伸缩膜3可以在回位卷簧的作用下自动卷绕到卷轴32上。
本实施例还提供一种伸缩膜的自动收卷方案,结合图7和图8所示,本实施例在伸缩膜3上还嵌设有若干提高膜结构支撑强度的内筋33,内筋33之间平行并且垂直于拱形支架所在的竖直平面,内筋33一来可以提高整个通道拱壁的强度,内筋33布置在伸缩膜3两侧边缘,还能在两侧升降拱架之间的伸缩膜以及伸缩膜与地面之间形成刚性的对接密封,避免形成伸缩膜之间的柔性缝隙造成打磨粉尘逃逸;二来作为伸缩膜3自动收卷的传动结构,内筋33通过若干电磁铁34在同一条形集尘通道内依次拼接而成,电磁铁34在未通电状态下为离散自由状态,可以随伸缩膜自由卷绕在卷轴32上,所有相邻的电磁铁34之间在通电之后相互吸引在一起,使得整个内筋33形成一根具有刚性的条状支撑结构,利用内筋33该特性,本实施例将卷轴32与升降拱架内部安装的收卷电机传动连接,驱动卷轴32将伸缩膜3和内筋33卷出,内筋33通电后自动形成刚性的条状支撑结构将整个伸缩膜3向前平伸,为了提高对内筋伸出后的平稳,在升降拱架一侧还可以设置对内筋提供支撑的支撑筋位,以保证内筋33和伸缩膜3平稳向前平伸,收卷电机反转将伸缩膜3和内筋33拉回卷绕到卷轴32上,实现伸缩膜和内筋自动收卷。
实际应用中,升降拱架22可采用轻质铝合金材质,整体结构更加轻便。伸缩膜3采用透光膜提高打磨集尘通道内部的光照透明性,以降低照明能耗,为了便于工人作业,在升降拱架22形成的拱形骨架上配有与作业相关的配套设施,包括但不限于电源、正(负)压空(其他)气、紧急报警、照明、语音通讯、视频通讯、红外扫描、定位等。
以下对本实施例的具体工作方式进行说明。
当风力叶片1吊装抵达打磨工位时,骨架2的升降拱架22、地埋式集尘过滤模组4逐步升起,可以根据风力叶片1的长度选择需要升起的骨架2数量,保证将风力叶片全部覆盖即可,打磨工位两侧的升降拱架22升至相互抵接形成半圆弧的拱形骨架后,将升降拱架22的卷轴32上卷绕的伸缩膜3牵拉展开,并将相邻拱形骨架之间的伸缩膜3对接固定形成通道拱壁,该拱壁与地埋式集尘过滤模组4以及地面5形成半密闭结构,该半封闭结构内部的半封闭集尘通道有且仅有进风端开口是敞开的,其他面被已经伸缩膜3形成的通道拱壁以及升起来的地埋式集尘过滤模组4封闭。
骨架2和伸缩膜3形成的集尘通道覆盖风力叶片1的同时在周围留出供工人操作的空间,工人进入打磨集尘通道内部开始打磨风力叶片1前,将升起的地埋式集尘过滤模组4开启,风力叶片1打磨产生的粉尘全部集中在集尘通道内部,打磨集尘通道内部的空气在地埋式集尘过滤模组4的风机作用下从集尘通道的进风端开口101以一定流速灌入打磨集尘通道内部,集尘通道内部形成负压,将集尘通道内部打磨产生的粉尘带至地埋式集尘过滤模组4内部进行捕集分离,同时过滤粉尘后的洁净空气排入车间以避免热与湿度的损耗。本实施例针对风力叶片打磨作业的特点,不仅可以完全捕集打磨过程中产生的粉尘,同时系统运行能耗可降低至车间整体换气的1%以内。
打磨完毕后,首先将相邻拱形骨架之间的伸缩膜分开后,重新卷绕到升降拱架的卷轴上,然后控制拱形骨架的升降拱架22向两侧打开降入地面以下,将地埋式集尘过滤模块4降入到地面以下,即可对打磨完毕的风力叶片进行吊装。
以上实施例描述了本发明的基本原理和主要特征及本发明的优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的具体工作原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 地埋式除尘系统,其特征在于:包括集尘过滤模组和隐藏在地下并可升至地面以上的半密闭结构,所述半密闭结构具有用于覆盖打磨工位的集尘通道,该集尘通道设有进风端开口和负压端开口,所述负压端开口封闭,并与所述集尘过滤模组的负压进风口连通。
  2. 根据权利要求1所述的地埋式除尘系统,所述半密闭结构包括若干组沿打磨工位长度方向布置的骨架以及敷设在骨架之间的膜结构,所述骨架和膜结构形成连续的拱形集尘通道。
  3. 根据权利要求2所述的地埋式除尘系统,所述骨架包括地埋机座和升降拱架,所述地埋机座固定埋设在工位两侧的地面,所述升降拱架为圆弧形拱架,所述升降拱架在地面以上分别架设在工位两侧的地埋机座上,并相互抵接形成圆弧拱形骨架,所述地埋机座上设有将升降拱架导入地下的升降驱动装置,所述工位两侧的地埋机座在地面以下设有容纳升降拱架导入的导轨。
  4. 根据权利要求3所述的地埋式除尘系统,所述升降驱动装置采用齿轮齿条机构,包括安装在地埋机座上的主动齿轮以及沿升降拱架固定的弧形齿条,所述主动齿轮由地埋机座上的电机驱动,所述弧形齿条与主动齿轮啮合传动。
  5. 根据权利要求2所述的地埋式除尘系统,所述膜结构包括骨架上的卷轴和卷绕在卷轴上的伸缩膜,相邻骨架上的伸缩膜从卷轴上牵拉对接形成骨架之间集尘通道壁。
  6. 根据权利要求5所述的地埋式除尘系统,所述伸缩膜的对接端设有相互磁吸的凹凸密封结构。
  7. 根据权利要求5所述的地埋式除尘系统,所述伸缩膜上嵌设有提高膜结构支撑强度的内筋。
  8. 根据权利要求7所述的地埋式除尘系统,所述内筋通过若干电磁铁拼接而成,所有相邻的电磁铁通电相互吸引,形成具有刚性的条状支撑结构。
  9. 根据权利要求8所述的地埋式除尘系统,所述卷轴与电机传动连接,实现伸缩膜和内筋自动收卷。
  10. 根据权利要求1-9中任一项所述的地埋式除尘系统,所述集尘过滤模组设置在集尘通道的负压端开口,并采用地埋升降结构隐藏在地下,随半密闭结构一同升降至地面以上将半密闭结构的负压端开口封闭。
PCT/CN2020/117763 2020-04-09 2020-09-25 地埋式除尘系统 WO2021203637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010275316.7A CN111467887B (zh) 2020-04-09 2020-04-09 地埋式除尘系统
CN202010275316.7 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021203637A1 true WO2021203637A1 (zh) 2021-10-14

Family

ID=71751428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117763 WO2021203637A1 (zh) 2020-04-09 2020-09-25 地埋式除尘系统

Country Status (2)

Country Link
CN (1) CN111467887B (zh)
WO (1) WO2021203637A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113974479A (zh) * 2021-10-25 2022-01-28 金陵科技学院 一种工厂地埋式空气净化系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111467887B (zh) * 2020-04-09 2023-11-21 航天凯天环保科技股份有限公司 地埋式除尘系统
CN113732895B (zh) * 2021-08-13 2023-01-24 东台市杰顺机械制造有限公司 一种飞轮外壳加工生产用弹性升降精磨机构
CN116352888B (zh) * 2021-12-28 2023-10-20 广州市长泽新型建筑材料有限公司 一种混凝土搅拌站用节能环保除尘回收系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985574A (ja) * 1995-09-25 1997-03-31 Masuda Clean Tec Kk 粉塵発生切削機・研磨機用空気浄化装置
CN104661766A (zh) * 2012-07-03 2015-05-27 G.A.P.股份公司 用于抽吸并处理烟气和/或粉尘和/或气体混合物的移动车间
CN205000686U (zh) * 2015-10-08 2016-01-27 中钢集团天澄环保科技股份有限公司 料场膜封闭综合防尘系统
CN107030079A (zh) * 2017-05-26 2017-08-11 大连兆和环境科技股份有限公司 一种大跨距移动伸缩折叠式集尘罩
CN208132727U (zh) * 2018-04-26 2018-11-23 合肥精创科技有限公司 一种磨削除尘装置
US20190015861A1 (en) * 2017-07-13 2019-01-17 Bart J. Mariani Portable Variable Volume Paint Spray Enclosure and Air Scrubber
CN109692865A (zh) * 2019-01-29 2019-04-30 湖州先净环保科技有限公司 一种铸件精整工位除尘装置
CN110948393A (zh) * 2019-12-31 2020-04-03 南京海风环保科技有限公司 一种密封罩可伸缩的移动式打磨房
CN111467887A (zh) * 2020-04-09 2020-07-31 航天凯天环保科技股份有限公司 地埋式除尘系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303298C (zh) * 2005-04-25 2007-03-07 齐兵 自动折叠式隐形车库
CN201125094Y (zh) * 2007-12-14 2008-10-01 武汉钢铁(集团)公司 拼装式双层密封吸尘罩
CN206811756U (zh) * 2017-05-08 2017-12-29 国电联合动力技术(保定)有限公司 一种叶根打磨集尘装置
KR101984651B1 (ko) * 2018-10-05 2019-05-31 주식회사 제이엔텍 미세먼지·유해물질 저감형 이동식 매립폐기물 적층매립장치
CN110706592B (zh) * 2019-09-10 2020-12-08 惠州市华星光电技术有限公司 一种柔性显示器及其显示方法
CN212417281U (zh) * 2020-04-09 2021-01-29 航天凯天环保科技股份有限公司 一种地埋式除尘系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985574A (ja) * 1995-09-25 1997-03-31 Masuda Clean Tec Kk 粉塵発生切削機・研磨機用空気浄化装置
CN104661766A (zh) * 2012-07-03 2015-05-27 G.A.P.股份公司 用于抽吸并处理烟气和/或粉尘和/或气体混合物的移动车间
CN205000686U (zh) * 2015-10-08 2016-01-27 中钢集团天澄环保科技股份有限公司 料场膜封闭综合防尘系统
CN107030079A (zh) * 2017-05-26 2017-08-11 大连兆和环境科技股份有限公司 一种大跨距移动伸缩折叠式集尘罩
US20190015861A1 (en) * 2017-07-13 2019-01-17 Bart J. Mariani Portable Variable Volume Paint Spray Enclosure and Air Scrubber
CN208132727U (zh) * 2018-04-26 2018-11-23 合肥精创科技有限公司 一种磨削除尘装置
CN109692865A (zh) * 2019-01-29 2019-04-30 湖州先净环保科技有限公司 一种铸件精整工位除尘装置
CN110948393A (zh) * 2019-12-31 2020-04-03 南京海风环保科技有限公司 一种密封罩可伸缩的移动式打磨房
CN111467887A (zh) * 2020-04-09 2020-07-31 航天凯天环保科技股份有限公司 地埋式除尘系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113974479A (zh) * 2021-10-25 2022-01-28 金陵科技学院 一种工厂地埋式空气净化系统
CN113974479B (zh) * 2021-10-25 2022-08-02 金陵科技学院 一种工厂地埋式空气净化系统

Also Published As

Publication number Publication date
CN111467887A (zh) 2020-07-31
CN111467887B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2021203637A1 (zh) 地埋式除尘系统
CN106491052A (zh) 一种具有清洁功能的智能机器人
CN212417281U (zh) 一种地埋式除尘系统
CN110721961A (zh) 一种除尘装置
CN113941944A (zh) 一种基于汽车车盖维修用的快速抛光装置
CN210568932U (zh) 一种手术室净化空调系统
CN107350948A (zh) 带吸尘装置的抛光机
CN201960206U (zh) 带材切割锯
CN115493279A (zh) 实验室用除尘新风系统安装结构及其安装方法
CN108789012A (zh) 一种表面毛刺高效旋转式去除装置
CN217410118U (zh) 一种可快速清洁内部污垢的空气过滤装置
CN213942998U (zh) 防锈剂生产用上料槽的除异味装置
CN116967903B (zh) 一种无尘打磨设备及其使用方法
CN212265543U (zh) 一种分段式除尘系统
CN211913162U (zh) 一种现场负压卫生系统
CN215508295U (zh) 一种板材加工用可调节型除尘装置
CN219072452U (zh) 一种粉尘吸收机构
CN116181099A (zh) 一种室内装修墙皮铲除装置及铲除方法
CN213912505U (zh) 一种用于板框压滤机的强制抽风装置
CN220361719U (zh) 一种防喷器除尘装置
CN215809032U (zh) 一种排风设备
CN217966438U (zh) 一种钢板表面除锈装置
CN111571449A (zh) 分段式除尘系统
CN220635613U (zh) 一种钢网清洁装置
CN218841319U (zh) 一种电缆加工用电缆快速卷绕设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930341

Country of ref document: EP

Kind code of ref document: A1