WO2021203576A1 - 一种双目视力筛查仪及其控制方法 - Google Patents

一种双目视力筛查仪及其控制方法 Download PDF

Info

Publication number
WO2021203576A1
WO2021203576A1 PCT/CN2020/103184 CN2020103184W WO2021203576A1 WO 2021203576 A1 WO2021203576 A1 WO 2021203576A1 CN 2020103184 W CN2020103184 W CN 2020103184W WO 2021203576 A1 WO2021203576 A1 WO 2021203576A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
eye
path switching
switching mechanism
optical path
Prior art date
Application number
PCT/CN2020/103184
Other languages
English (en)
French (fr)
Inventor
李超宏
李磊
宋鄂
Original Assignee
苏州微清医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微清医疗器械有限公司 filed Critical 苏州微清医疗器械有限公司
Publication of WO2021203576A1 publication Critical patent/WO2021203576A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/111Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring interpupillary distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes

Definitions

  • the invention relates to a binocular vision screening instrument and a control method thereof.
  • the handheld vision screener is an instrument specially designed and produced for infant vision screening in recent years. It uses an infrared light source to project to the retina, and the light reflected by the retina presents different patterns in different refractive states.
  • the camera records pupil patterns and calculates data such as spherical lens, cylindrical lens and axial position. Its characteristic is: the detection can be carried out while keeping a certain distance from the examinee, and the examinee does not need to have a high degree of cooperation. This feature makes the handheld vision screener not only suitable for people with strong coordination, but also for infants and young children and people with poor coordination. However, the accuracy of vision detected by this method is low.
  • the purpose of the present invention is to provide a binocular vision screening instrument, which can quickly perform high-precision vision screening on both eyes, and has a simple structure and low production cost.
  • the present invention provides a binocular vision screener, comprising: a light source, the light source emitting illumination light to the first eye or the second eye of the subject; a light path switching mechanism, the light path switching mechanism It has a first state and a second state; a first optical element group, the first optical element group guiding the fundus reflected light of the first eye to the optical path switching mechanism; a second optical element group, the second optical element The group guides the fundus reflected light of the second eye to the optical path switching mechanism; the Hartmann sensor is used to detect the fundus reflected light of the first eye or the fundus reflected light of the second eye When the optical path switching mechanism is in the first state, the optical path switching mechanism guides the reflected light from the fundus of the first eye to the Hartmann sensor; when the optical path switching mechanism is in the second state In the state, the optical path switching mechanism guides the reflected light from the fundus of the second eye to the Hartmann sensor.
  • the optical path switching mechanism includes a flat mirror, and the reflected light from the fundus of the first eye or the fundus reflected light of the second eye enters the Hartmann sensor after being reflected by the flat mirror.
  • the optical path switching mechanism further includes a main driving device that drives the flat mirror to rotate, so that the flat mirror is switched between the first state and the second state.
  • the optical path switching mechanism further includes a first flat mirror and a second flat mirror; when the optical path switching mechanism is in the first state, the first flat mirror will The reflected light of the fundus of the eye is guided to the Hartmann sensor; when the optical path switching mechanism is in the second state, the second plane mirror guides the reflected light of the fundus of the second eye to the Hartmann sensor.
  • the optical path switching mechanism further includes a main driving device that drives the first flat mirror and the second flat mirror to move or rotate, so that the optical path switching mechanism is in the first state and the second state. Switch between states.
  • the optical path switching mechanism is located in the middle of the first optical element group and the second optical element group, so that the distance from the optical path switching mechanism to the first optical element group and the optical path The distance between the switching mechanism and the second optical element group is equal.
  • the first optical element group includes a first beam splitter and a first mirror element;
  • the second optical element group includes a second beam splitter and a second mirror element;
  • the first eye After passing through the first beam splitter, the reflected light from the fundus of the second eye is reflected by the first mirror element to the optical path switching mechanism; after passing through the second beam splitter, the reflected light from the second eye is The second mirror element is reflected to the optical path switching mechanism.
  • the first optical element group includes a first beam splitter and a first mirror element
  • the second optical element group includes a second beam splitter; the second beam splitter, an optical path switching mechanism, and Hartmann sensors are collinear.
  • the first beam splitter is parallel to the second beam splitter, and the light source, the first beam splitter, and the second beam splitter are collinear.
  • the first beam splitter and the second beam splitter are arranged in such a way that the intensity of the light reflected by the first beam splitter to the first eye and the light reflected by the second beam splitter to the second eye are The intensity is equal.
  • the first beam splitter and the second beam splitter are arranged such that the intensity of the fundus reflection light of the first eye passing through the first beam splitter and the fundus reflection of the second eye The intensity of light passing through the second beam splitter is equal.
  • the first beam splitter is located between the light source and the second beam splitter;
  • the first optical element group further includes a first driving device that drives the first beam splitter to rotate or move, So that the first beam splitter is switched between the first state and the second state; when the first beam splitter is in the first state, the first beam splitter is located between the light source and the second beam splitter When the first beam splitter is in the second state, the light emitted by the light source is directly emitted to the second beam splitter.
  • the light source includes a first light source and a second light source; the light emitted by the first light source enters the first eye after being reflected by the first beam splitter, and the fundus of the first eye The reflected light passes through the first beam splitter and is reflected by the first reflector element to the optical path switching mechanism; the light emitted by the second light source is reflected by the second beam splitter and enters the second eye Reflected light from the fundus of the second eye passes through the second beam splitter and is reflected by the second reflector element to the optical path switching mechanism.
  • the binocular vision screener further includes a distance adjustment mechanism for adjusting the distance between the first optical element group and the second optical element group.
  • the binocular vision screener further includes an interpupillary distance detection mechanism; the interpupillary distance detection mechanism detects the interpupillary distance value of the detected person, and the processing module controls the adjustment distance according to the interpupillary distance value The mechanism adjusts the distance between the first optical element group and the second optical element group.
  • the first mirror element, the second mirror element, and the optical path switching mechanism are not collinear, and the optical path switching mechanism is located where the first mirror element and the second mirror element are away from each other. State the side of the Hartmann sensor.
  • the first mirror element, the second mirror element, and the optical path switching mechanism are not collinear, and the optical path switching mechanism is located where the first and second mirror elements are away from each other. Describe the side of the first eye and the second eye.
  • the present invention also provides a control method of a binocular vision screener, which includes the steps of: emitting illumination light to the eyes of the subject; The wavefront information of the reflected light from the fundus of the eye; the light path switching mechanism is controlled to be in the second state, so that the Hartmann sensor obtains the wavefront information of the reflected light from the fundus of the second eye.
  • the binocular vision screening instrument of the present invention can quickly perform high-precision vision screening on both eyes, and has a simple structure and low production cost.
  • Fig. 1 is a schematic structural diagram of a first embodiment of the binocular vision screening instrument of the present invention.
  • Fig. 2 is a schematic structural diagram of a second embodiment of the binocular vision screening instrument of the present invention.
  • Fig. 3 is a schematic structural diagram of a third embodiment of the binocular vision screening instrument of the present invention.
  • Fig. 4 is a schematic structural diagram of a fourth embodiment of the binocular vision screening instrument of the present invention.
  • Fig. 5 is a schematic structural diagram of a fifth embodiment of the binocular vision screening instrument of the present invention.
  • Fig. 6 is a schematic structural diagram of a sixth embodiment of the binocular vision screening instrument of the present invention.
  • the present invention discloses a binocular vision screener 100, which includes a light source 110, a light path switching mechanism 120, a first optical element group 130, a second optical element group 140, and a Hartmann sensor (Shack -Hartmann wavefront sensor) 150 and processing module (not shown).
  • a binocular vision screener 100 which includes a light source 110, a light path switching mechanism 120, a first optical element group 130, a second optical element group 140, and a Hartmann sensor (Shack -Hartmann wavefront sensor) 150 and processing module (not shown).
  • the laser source 110 emits laser light to emit illumination light to the first eye 71 or the second eye 72 of the subject.
  • the light source 110 may use an infrared laser.
  • the optical path switching mechanism 120 includes a flat mirror 121 and a main driving device (not shown) that drives the flat mirror 121 to move.
  • the plane mirror 121 has a first state and a second state, and the main driving device drives the plane mirror 121 to move, so that the plane mirror 121 is switched between the first state and the second state.
  • the first optical element group 130 is used to guide the reflected light from the fundus of the first eye 71 to the optical path switching mechanism 120, and includes a first beam splitter 131 and a first beam splitter 131 matched with the first beam splitter 131.
  • the second optical element group 140 is used to guide the fundus reflected light of the second eye 72 to the optical path switching mechanism 120, and includes a second beam splitter 141 and a second beam splitter 141 matched with the second beam splitter 141.
  • Mirror element 142 is used to guide the fundus reflected light of the second eye 72 to the optical path switching mechanism 120, and includes a second beam splitter 141 and a second beam splitter 141 matched with the second beam splitter 141.
  • the optical path switching mechanism 120 When the optical path switching mechanism 120 is in the first state, the optical path switching mechanism 120 guides the reflected light of the fundus of the first eye 71 guided by the first optical element group 130 to the Hartmann sensor 150; when When the optical path switching mechanism 120 is in the second state, the optical path switching mechanism 120 guides the reflected light from the fundus of the second eye 72 guided by the second optical element 140 to the Hartmann sensor 150.
  • the Hartmann sensor 150 is used to detect the wavefront information of the light reflected from the fundus of the first eye 71 or the second eye 72.
  • the processing module calculates the refractive power of the first eye 71 or the second eye 72 according to the wavefront information detected by the Hartmann sensor 150.
  • the processing module and the binocular vision screener 100 can be integrated or separated. When the processing module and the binocular vision screener 100 are set as separate bodies, the processing module and the binocular vision screener 100 can communicate in a wired or wireless manner, such as a USB data cable, a WIFI module, etc.
  • the binocular vision screener 100 is provided with the optical path switching mechanism 120, so that the first optical element group 130 and the second optical element group 140 can share the Portman
  • the sensor 150 and the corresponding relay lens group 160 reduce the production cost.
  • this setting can also effectively avoid the relative error caused by the parameter difference of different Portman sensors.
  • the light path switching mechanism 120 is set to the first state, and the laser light emitted by the light source 110 is reflected by the first beam splitter 131 and enters the first eye 71 , Then the fundus reflected light of the first eye 71 passes through the first beam splitter 131 and is reflected by the first mirror element 132 to the optical path switching mechanism 120, and then the optical path switching mechanism 120 The reflection of the fundus reflected light of the first eye 71 is guided to the Hartmann sensor 150 so that the Hartmann sensor 150 detects the wavefront information of the fundus reflected light of the first eye 71.
  • the light path switching mechanism 120 is set to the second state, and the laser light emitted by the light source 110 passes through the first beam splitter 131, and then is reflected by the second beam splitter 141 and enters the second eye 72. , Then the fundus reflected light of the second eye 72 passes through the second beam splitter 141 and is reflected by the second mirror element 142 to the optical path switching mechanism 120, and then the optical path switching mechanism 120 The fundus reflected light of the second eye 72 is guided to the Hartmann sensor 150 so that the Hartmann sensor 150 detects the wavefront information of the fundus reflected light of the second eye 72.
  • the main driving device is a rotating mechanism to drive the plane mirror 121 to rotate.
  • the main driving device drives the plane mirror 121 to rotate 90 degrees counterclockwise, so that the plane mirror 121 and the second reflection
  • the mirror element 142 cooperates.
  • the main driving device drives the plane mirror 121 to rotate 90 degrees clockwise, so that the plane mirror 121 and the first reflection
  • the mirror element 132 cooperates.
  • the optical path switching mechanism 120 is located in the middle of the first optical element group 130 and the second optical element group 140, so that the distance from the optical path switching mechanism 120 to the first optical element group 130, the The distance between the optical path switching mechanism 120 and the second optical element group 140 is equal.
  • This arrangement can effectively avoid the relative error caused by the difference in optical path between the fundus reflected light of the first eye 71 and the fundus reflected light of the second eye 72.
  • the first beam splitter 131 and the second beam splitter 141 are arranged such that the intensity of the light reflected by the first beam splitter 131 to the first eye 71 and the light intensity reflected by the second beam splitter 141 to the The light intensity of the second eye 72 is equal.
  • the first beam splitter 131 and the second beam splitter 141 may also be set to make the light intensity of the fundus reflected light of the first eye 71 after passing through the first beam splitter 131
  • the intensity of the light reflected from the fundus of the second eye 72 after passing through the second beam splitter 141 is equal.
  • the first beam splitter 131 is parallel to the second beam splitter 141, and the light source 110, the first beam splitter 131, and the second beam splitter 141 are collinear.
  • the light source 110 may also be configured to include a first light source and a second light source.
  • the light emitted by the first light source is reflected by the first beam splitter 131 and then enters the first eye 71, and the light emitted by the second light source is reflected by the second beam splitter 141 and then enters the second eye 72.
  • the first light source and the second light source provide illumination light for the first beam splitter 131 and the second beam splitter 141 respectively.
  • the binocular vision screener 100 further includes a distance adjustment mechanism (not shown) for adjusting the distance between the first optical element group 130 and the second optical element group 140, so that the first optical element group 130 and the second optical element group 140 The distance between an optical element group 130 and the second optical element group 140 matches the interpupillary distance of the first eye 71 and the second eye 72.
  • the user adjusts the distance between the first optical element group 130 and the second optical element group 140 through the distance adjustment mechanism, so that the examinee can see the first beam splitter 131 and the second optical element group at the same time. Laser light reflected by the beam splitter 141.
  • the binocular vision screener 100 may also be provided with a distance measuring mechanism for measuring the distance between the first optical element group 130 and the second optical element group 140.
  • a distance measuring mechanism for measuring the distance between the first optical element group 130 and the second optical element group 140.
  • the distance measuring mechanism measures the distance between the first optical element group 130 and the second optical element group 140 The distance, at this time, the distance is equal to the interpupillary distance, and the interpupillary distance value can be displayed on the binocular vision screener 100.
  • the binocular vision screener 100 further includes an interpupillary distance detection mechanism (not shown).
  • the interpupillary distance detection mechanism detects the interpupillary distance value of the subject.
  • the processing module controls the distance adjustment mechanism to adjust the distance between the first optical element group 130 and the second optical element group 140 according to the interpupillary distance value, so that the first optical element group 130 and the second optical element group The spacing between the groups 140 automatically matches the interpupillary distance of the subject.
  • Fig. 2 shows a binocular vision screener 200 according to the second embodiment of the present invention.
  • the structure of the binocular vision screener 200 is substantially the same as the structure of the binocular vision screener 100.
  • the optical path switching mechanism 220 includes a first plane that cooperates with the first mirror element 232 The reflecting mirror 221, the second flat reflecting mirror 222 matched with the second reflecting mirror element 242, the connecting arm 223 connecting the first flat reflecting mirror 221 and the second flat reflecting mirror 222, and the connecting arm 223 driving the rotation of the connecting arm 223 Main driving device 224.
  • the optical path switching mechanism 220 When the optical path switching mechanism 220 is in the first state, the first flat mirror 221 is located in the optical path, and the second flat mirror 222 is located outside the optical path (as shown in FIG.
  • the main driving device 224 drives the connecting arm 223 to rotate 180 degrees, so that the second plane mirror 222 is located in the optical path, and the first plane mirror 221 is located outside the light path.
  • This arrangement can reduce the difficulty of controlling the main driving device 224, that is, the main driving device 224 only needs to drive the connecting arm 223 to rotate 180 degrees each time to complete the state switching.
  • the main driving device 224 may also be configured to drive the first flat mirror 221 and the second flat mirror 222 to make a reciprocating linear motion.
  • the main driving device 224 drives the first planar mirror 221, the The two-plane mirror 222 makes a reciprocating linear motion.
  • Fig. 3 shows a binocular vision screener 300 according to the third embodiment of the present invention.
  • the structure of the binocular vision screener 300 is substantially the same as the structure of the binocular vision screener 100.
  • the first optical element group 330 includes a first spectroscope 331, and drives the first optical element group 330.
  • a first driving device (not shown) for moving or rotating the beam splitter 331 and a first mirror element 332 matched with the first beam splitter 331.
  • the first beam splitter 331 has a first state and a second state, and the first driving device drives the first beam splitter 331 to move or rotate so that the first beam splitter 331 is in the first state and the second state. Switch between.
  • the first beam splitter 331 When the first beam splitter 331 is in the first state, the first beam splitter 331 is located between the light source 330 and the second beam splitter 341 (as shown in FIG. 3); when the first beam splitter 331 is in the first state In the second state, the first beam splitter 331 is located outside the connection line between the light source 310 and the second beam splitter 341. At this time, the laser light emitted by the light source 310 does not need to pass through the first beam splitter 331 to be passed through the second beam splitter 341. Reflection, that is, the light emitted by the light source 310 is directly emitted to the second beam splitter 341.
  • FIG. 4 shows a binocular vision screener 400 according to the fourth embodiment of the present invention.
  • the structure of the binocular vision screener 400 is substantially the same as the structure of the binocular vision screener 100. The difference lies in: a first mirror element 432, a second mirror element 442, and an optical path switching mechanism 420
  • the optical path switching mechanism 420 is not collinear, and the optical path switching mechanism 420 is located on the side of the first mirror element 432 and the second mirror element 442 away from the Hartmann sensor 450.
  • This arrangement can not only effectively shorten the minimum distance between the first mirror element 432 and the second mirror element 442, but also shorten the binocular vision screener 400 in the AA direction (as shown in FIG. 4) length.
  • FIG. 5 shows a binocular vision screener 500 according to the fifth embodiment of the present invention.
  • the structure of the binocular vision screener 500 is substantially the same as the structure of the binocular vision screener 100.
  • the difference is that the second optical element group 540 includes a second beam splitter 541, and the second beam splitter 541.
  • the plane mirror 521 and the Hartmann sensor 550 are collinear.
  • the plane mirror 521 has a first state and a second state; when the plane mirror 521 is in the first state, the plane mirror 521 cooperates with the first mirror element 532 to make the first eye 71
  • the reflected light from the fundus is guided to the Hartmann sensor 550; when the flat mirror 521 is in the second state, the flat mirror 521 is connected to the second beam splitter 541 and the Hartmann sensor 550 In addition, so that the reflected light from the fundus of the second eye 72 passes through the second beam splitter 541 and then directly enters the Hartmann sensor 550.
  • the light path switching mechanism 520 When in use, the light path switching mechanism 520 is set to the first state, the laser light emitted by the light source 510 is reflected by the first beam splitter 531 and then enters the fundus of the first eye 71, and the reflected light of the fundus of the first eye 71 passes through the first eye 71 A beam splitter 531 is reflected by the first mirror element 532 to the optical path switching mechanism 520, and then the optical path switching mechanism 520 guides the reflected light from the fundus of the first eye 71 to the Hartmann sensor 550; then, the optical path is switched
  • the mechanism 520 is set to the second state, the laser light emitted by the light source 510 passes through the first beam splitter 531 and is reflected by the second beam splitter 541 to the fundus of the second eye 72, and then the reflected light from the fundus of the second eye 72 passes through the first beam splitter 531.
  • the light source 510 is located on the side of the first beam splitter 531 away from the second beam splitter 541, but in other embodiments, the light source 510 may also be provided on the second beam splitter 541. The side of the mirror 541 facing away from the first beam splitter 531.
  • Fig. 6 shows a binocular vision screen 600 according to the sixth embodiment of the present invention.
  • the structure of the binocular vision screener 600 is substantially the same as the structure of the binocular vision screener 400, and the difference lies in: a first mirror element 632, a second mirror element 642, and an optical path switching mechanism 620
  • the optical path switching mechanism 620 is not collinear, and the optical path switching mechanism 620 is located on the side of the first mirror element 632 and the second mirror element 642 away from the first eye 71 and the second eye 72. With this arrangement, the minimum distance between the first mirror element 632 and the second mirror element 642 can be effectively shortened.
  • the invention also discloses a control method of the binocular vision screening instrument, which includes the following steps:
  • the binocular vision screening instrument of the present invention can quickly perform high-precision vision screening on both eyes, and has a simple structure and low production cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种双目视力筛查仪及其控制方法,双目视力筛查仪(100)包括:光源(110),光源(110)向被检测者的第一眼或者第二眼发射照明光;光路切换机构(120),光路切换机构(120)具有第一状态以及第二状态;第一光学元件组(130),第一光学元件组(130)将第一眼的眼底反射光引导至光路切换机构(120);第二光学元件组(140),第二光学元件组(140)将第二眼的眼底反射光引导至光路切换机构(120);哈特曼传感器(150),哈特曼传感器(150)用以检测第一眼的眼底反射光或第二眼的眼底反射光的波前信息。相较于现有技术,本双目视力筛查仪(100)能够快速对双眼进行高精度视力筛查,并且结构简单、生产成本低。

Description

一种双目视力筛查仪及其控制方法
本申请要求了申请日为2020年04月06日,申请号为202010262358.7,发明名称为“一种双目视力筛查仪及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种双目视力筛查仪及其控制方法。
背景技术
检影验光是屈光不正检查的金标准,精确度可达±0.25D。但是,该视力检测方法繁琐,不利于进行大量的视力筛查。尤其对于配合度较低的儿童来说,检影验光有其应用的局限性。手持式视力筛查仪是近些年来专门针对婴幼儿视力筛查而设计生产的仪器,它是利用红外光源投射到视网膜,通过视网膜反射回来的光在不同的屈光状态下呈现不同的图案,摄像机记录瞳孔图案并通过计算得出球镜、柱镜和轴位等数据。其特点是:可在与被检者保持一定距离的情况下进行检测,不需要被检者具有很高的配合性。该特点使得手持式视力筛查仪不仅适用于配合力强的人群,而且适用于婴幼儿以及配合度差的人群。但是,该方法检测的视力精度偏低。
鉴于上述问题,有必要提供一种新的双目视力筛查仪,以解决上述问题。
发明内容
本发明的目的在于提供一种双目视力筛查仪,该双目视力筛查仪能够快速对双眼进行高精度视力筛查,并且结构简单、生产成本低。
为实现上述目的,本发明提供了一种双目视力筛查仪,包括:光源,所述光源向被检测者的第一眼或者第二眼发射照明光;光路切换机构,所述光路切换机构具有第一状态以及第二状态;第一光学元件组,所述第一光学元件组将第一眼的眼底反射光引导至所述光路切换机构;第二光学元件组,所述第二光学元件组将第二眼的眼底反射光引导至所述光路切换机构;哈特曼传感器,所述哈特曼传 感器用以检测所述第一眼的眼底反射光或所述第二眼的眼底反射光的波前信息;当所述光路切换机构处于第一状态时,所述光路切换机构将所述第一眼的眼底反射光引导至所述哈特曼传感器;当所述光路切换机构处于第二状态时,所述光路切换机构将所述第二眼的眼底反射光引导至所述哈特曼传感器。
作为本发明的进一步改进,所述光路切换机构包括平面反射镜,所述第一眼的眼底反射光或第二眼的眼底反射光经所述平面反射镜反射后进入所述哈特曼传感器。
作为本发明的进一步改进,所述光路切换机构还包括驱动所述平面镜旋转的主驱动装置,以使得所述平面镜在所述第一状态、第二状态之间切换。
作为本发明的进一步改进,所述光路切换机构还包括第一平面反射镜以及第二平面反射镜;当所述光路切换机构处于第一状态时,所述第一平面反射镜将所述第一眼的眼底反射光引导至所述哈特曼传感器;当所述光路切换机构处于第二状态时,所述第二平面反射镜将所述第二眼的眼底反射光引导至所述哈特曼传感器。
作为本发明的进一步改进,所述光路切换机构还包括驱动所述第一平面反射镜、第二平面反射镜移动或转动的主驱动装置,以使得所述光路切换机构在第一状态、第二状态之间切换。
作为本发明的进一步改进,所述光路切换机构位于所述第一光学元件组、第二光学元件组的中间,以使得所述光路切换机构至所述第一光学元件组的距离、所述光路切换机构至所述第二光学元件组的距离相等。
作为本发明的进一步改进,所述第一光学元件组包括第一分光镜以及第一反射镜元件;所述第二光学元件组包括第二分光镜以及第二反射镜元件;所述第一眼的眼底反射光穿过所述第一分光镜后,被所述第一反射镜元件反射至所述光路切换机构;所述第二眼的眼底反射光穿过所述第二分光镜后,被所述第二反射镜元件反射至所述光路切换机构。
作为本发明的进一步改进,所述第一光学元件组包括第一分光镜以及第一反射镜元件,所述第二光学元件组包括第二分光镜;所述第二分光镜、光路切换机构以及哈特曼传感器共线。
作为本发明的进一步改进,所述第一分光镜平行于所述第二分光镜,并且所述光源、第一分光镜、第二分光镜共线。
作为本发明的进一步改进,所述第一分光镜、第二分光镜如此设置,使得所述第一分光镜反射至第一眼的光强度与所述第二分光镜反射至第二眼的光强度相等。
作为本发明的进一步改进,所述第一分光镜、第二分光镜如此设置,使得所述第一眼的眼底反射光穿过所述第一分光镜的强度和所述第二眼的眼底反射光穿过所述第二分光镜的强度相等。
作为本发明的进一步改进,所述第一分光镜位于所述光源、第二分光镜之间;所述第一光学元件组还包括驱动所述第一分光镜转动或移动的第一驱动装置,以使得所述第一分光镜在第一状态、第二状态之间切换;当所述第一分光镜处于第一状态时,所述第一分光镜位于所述光源和第二分光镜之间;当所述第一分光镜处于第二状态时,所述光源发出的光直接发射至所述第二分光镜。
作为本发明的进一步改进,所述光源包括第一光源以及第二光源;所述第一光源发出的光经所述第一分光镜反射后进入所述第一眼,所述第一眼的眼底反射光穿过所述第一分光镜后被所述第一反射镜元件反射至所述光路切换机构;所述第二光源发出的光经所述第二分光镜反射后进入所述第二眼,所述第二眼的眼底反射光穿过所述第二分光镜后被所述第二反射镜元件反射至所述光路切换机构。
作为本发明的进一步改进,所述双目视力筛查仪还包括调节所述第一光学元件组和第二光学元件组之间距离的调距机构。
作为本发明的进一步改进,所述双目视力筛查仪还包括瞳距检测机构;所述 瞳距检测机构检测被检测者的瞳距值,所述处理模块根据瞳距值控制所述调距机构调节所述第一光学元件组、第二光学元件组之间的距离。
作为本发明的进一步改进,所述第一反射镜元件、第二反射镜元件以及光路切换机构不共线,且所述光路切换机构位于所述第一反射镜元件、第二反射镜元件背离所述哈特曼传感器的一侧。
作为本发明的进一步改进,所述第一反射镜元件、第二反射镜元件以及光路切换机构不共线,且所述光路切换机构位于所述第一反射镜元件、第二反射镜元件背离所述第一眼、第二眼的一侧。
本发明还提供了一种双目视力筛查仪的控制方法,包括如下步骤:向被检测者的眼睛发射照明光;控制光路切换机构处于第一状态,以使得哈特曼传感器获取第一眼的眼底反射光的波前信息;控制光路切换机构处于第二状态,以使得哈特曼传感器获取第二眼的眼底反射光的波前信息。
本发明的有益效果是:本发明双目视力筛查仪能够快速对双眼进行高精度视力筛查,并且结构简单、生产成本低。
附图说明
图1是本发明双目视力筛查仪的第一实施例的结构示意图。
图2是本发明双目视力筛查仪的第二实施例的结构示意图。
图3是本发明双目视力筛查仪的第三实施例的结构示意图。
图4是本发明双目视力筛查仪的第四实施例的结构示意图。
图5是本发明双目视力筛查仪的第五实施例的结构示意图。
图6是本发明双目视力筛查仪的第六实施例的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
请参阅图1所示,本发明揭示了一种双目视力筛查仪100,包括光源110、 光路切换机构120、第一光学元件组130、第二光学元件组140、哈特曼传感器(Shack-Hartmann波前传感器)150以及处理模块(未图示)。
请参阅图1所示,所述激光源110发出激光,以向被检测者的第一眼71或第二眼72发射照明光。为了避免引起被检测者不适,降低对被检测者的刺激,所述光源110可以使用红外激光。所述光路切换机构120包括平面反射镜121以及驱动所述平面反射镜121运动的主驱动装置(未图示)。所述平面反射镜121具有第一状态以及第二状态,所述主驱动装置驱动所述平面反射镜121运动,以使得所述平面反射镜121在第一状态、第二状态之间切换。所述第一光学元件组130用以将所述第一眼71的眼底反射光引导至所述光路切换机构120,包括第一分光镜131以及与所述第一分光镜131相配合的第一反射镜元件132。所述第二光学元件组140用以将所述第二眼72的眼底反射光引导至所述光路切换机构120,包括第二分光镜141以及与所述第二分光镜141相配合的第二反射镜元件142。当所述光路切换机构120处于第一状态时,所述光路切换机构120将由所述第一光学元件组130引导过来的第一眼71的眼底反射光引导至所述哈特曼传感器150;当所述光路切换机构120处于第二状态时,所述光路切换机构120将所述第二光学元件140引导过来的第二眼72的眼底反射光引导至所述哈特曼传感器150。所述哈特曼传感器150用以检测所述第一眼71或第二眼72的眼底反射光的波前信息。所述处理模块根据所述哈特曼传感器150检测的波前信息计算出第一眼71或第二眼72的屈光度。所述处理模块与所述双目视力筛查仪100可以设置为一体,也可以设置为分体。当所述处理模块、双目视力筛查仪100设置为分体时,所述处理模块、双目视力筛查仪100可以通过有线或无线的方式进行通信,例如:USB数据线、WIFI模块等等。
相较于现有技术,所述双目视力筛查仪100由于设置有所述光路切换机构120,从而使得所述第一光学元件组130、第二光学元件组140可以共用所述波特曼传感器150以及相应的中继透镜组160,从而降低了生产成本。同时,如此 设置,也可以有效避免因不同波特曼传感器的参数差异而带来的相对误差。
当使用所述双目视力筛查仪100时,将所述光路切换机构120设置为第一状态,所述光源110发出的激光经所述第一分光镜131反射后进入所述第一眼71,然后所述第一眼71的眼底反射光穿过所述第一分光镜131后被所述第一反射镜元件132反射至所述光路切换机构120,然后所述光路切换机构120将所述第一眼71的眼底反射光反射引导至所述哈特曼传感器150,以便所述哈特曼传感器150检测所述第一眼71的眼底反射光的波前信息。接着,将所述光路切换机构120设置为第二状态,所述光源110发出的激光穿过所述第一分光镜131,再经所述第二分光镜141反射后进入所述第二眼72,然后所述第二眼72的眼底反射光穿过所述第二分光镜141后被所述第二反射镜元件142反射至所述光路切换机构120,然后所述光路切换机构120将所述第二眼72的眼底反射光引导至所述哈特曼传感器150,以便所述哈特曼传感器150检测所述第二眼72的眼底反射光的波前信息。
在本实施例中,所述主驱动装置为旋转机构,以驱动所述平面反射镜121旋转。当所述平面反射镜121由第一状态切换至第二状态时,所述主驱动装置驱动所述平面反射镜121逆时针旋转90度,以使得所述平面反射镜121与所述第二反射镜元件142相配合。当所述平面反射镜121由第二状态切换至第一状态时,所述主驱动装置驱动所述平面反射镜121顺时针旋转90度,以使得所述平面反射镜121与所述第一反射镜元件132相配合。
优选地,所述光路切换机构120位于所述第一光学元件组130、第二光学元件组140的中间,以使得所述光路切换机构120至所述第一光学元件组130的距离、所述光路切换机构120至所述第二光学元件组140的距离相等。如此设置,可以有效避免因第一眼71的眼底反射光和第二眼72的眼底反射光具有光程差而带来的相对误差。
优选地,所述第一分光镜131、第二分光镜141如此设置,使得所述第一分 光镜131反射至所述第一眼71的光强度与所述第二分光镜141反射至所述第二眼72的光强度相等。当然,在其它实施例中,所述第一分光镜131、第二分光镜141还可以被设置为使得所述第一眼71的眼底反射光穿过所述第一分光镜131后的光强度与所述第二眼72的眼底反射光穿过所述第二分光镜141后的光强度相等。在本实施例中,所述第一分光镜131平行于所述第二分光镜141,并且所述光源110、第一分光镜131、第二分光镜141共线。
在其它实施例中,所述光源110还可以设置为包括第一光源以及第二光源。所述第一光源发出的光经所述第一分光镜131反射后进入所述第一眼71,所述第二光源发出的光经所述第二分光镜141反射后进入所述第二眼72。在该实施例中,所述第一光源、第二光源分别为所述第一分光镜131、第二分光镜141提供照明光。
优选地,所述双目视力筛查仪100还包括调节所述第一光学元件组130和所述第二光学元件组140之间距离的调距机构(未图示),以使得所述第一光学元件组130和所述第二光学元件组140之间的间距与所述第一眼71和第二眼72的瞳距相匹配。使用时,用户通过所述调距机构调节所述第一光学元件组130和第二光学元件组140之间的间距,以使得被检测者能够同时看到所述第一分光镜131、第二分光镜141反射的激光。在其它实施例中,所述双目视力筛查仪100还可设置测量所述第一光学元件组130和所述第二光学元件组140之间间距的测距机构。当被检测者同时看到所述第一分光镜131、第二分光镜141反射的激光时,所述测距机构测量所述第一光学元件组130和所述第二光学元件组140之间间距,此时该间距与瞳距相等,并可在所述双目视力筛查仪100上显示瞳距值。
优选地,所述双目视力筛查仪100还包括瞳距检测机构(未图示)。所述瞳距检测机构检测被检测者的瞳距值。所述处理模块根据瞳距值控制所述调距机构调节所述第一光学元件组130、第二光学元件组140之间的距离,以使得所述 第一光学元件组130、第二光学元件组140之间的间距自动与被检测者的瞳距相匹配。
图2所示为本发明第二实施例的双目视力筛查仪200。所述双目视力筛查仪200的结构与所述双目视力筛查仪100的结构大体相同,其不同之处在于:光路切换机构220包括与第一反射镜元件232相配合的第一平面反射镜221、与第二反射镜元件242相配合的第二平面反射镜222、连接所述第一平面反射镜221和第二平面反射镜222的连接臂223以及驱动所述连接臂223旋转的主驱动装置224。当所述光路切换机构220处于第一状态时,所述第一平面反射镜221位于光路中,所述第二平面反射镜222位于光路之外(如图2所示);当所述光路切换机构220由第一状态切换至第二状态时,所述主驱动装置224驱动所述连接臂223旋转180度,以使得所述第二平面反射镜222位于光路中,所述第一平面反射镜221位于光路之外。如此设置,可以降低所述主驱动装置224的控制难度,即:所述主驱动装置224每次只需驱动所述连接臂223转动180度即可完成状态切换。当然,在其它实施例中,所述主驱动装置224还可以被设置为驱动所述第一平面反射镜221、第二平面反射镜222做往复直线运动。例如,在垂直于所述第一反射镜元件232、第二反射镜元件242、哈特曼传感器250构成的平面的方向上,所述主驱动装置224驱动所述第一平面反射镜221、第二平面反射镜222做往复直线运动。
图3所示为本发明第三实施例的双目视力筛查仪300。所述双目视力筛查仪300的结构与所述双目视力筛查仪100的结构大体相同,其不同之处在于:第一光学元件组330包括第一分光镜331、驱动所述第一分光镜331移动或旋转的第一驱动装置(未图示)以及与所述第一分光镜331相配合的第一反射镜元件332。所述第一分光镜331具有第一状态以及第二状态,所述第一驱动装置驱动所述第一分光镜331移动或旋转以使得所述第一分光镜331在第一状态、第二状态之间切换。当所述第一分光镜331处于第一状态时,所述第一分光镜331位于 光源330和第二分光镜341之间(如图3所示);当所述第一分光镜331处于第二状态时,所述第一分光镜331位于光源310和第二分光镜341连线之外,此时光源310发出的激光无需穿过第一分光镜331即可被所述第二分光镜341反射,即:所述光源310发出的光直接发射至所述第二分光镜341。
图4所示为本发明第四实施例的双目视力筛查仪400。所述双目视力筛查仪400的结构与所述双目视力筛查仪100的结构大体相同,其不同之处在于:第一反射镜元件432、第二反射镜元件442以及光路切换机构420不共线,且所述光路切换机构420位于所述第一反射镜元件432、第二反射镜元件442背离哈特曼传感器450的一侧。如此设置,不仅可以有效缩短所述第一反射镜元件432、第二反射镜元件442之间的最小间距,而且可以缩短所述双目视力筛查仪400在AA方向(如图4所示)的长度。
图5所示为本发明第五实施例的双目视力筛查仪500。所述双目视力筛查仪500的结构与所述双目视力筛查仪100的结构大体相同,其不同之处在于:第二光学元件组540包括第二分光镜541,并且第二分光镜541、平面反射镜521、哈特曼传感器550共线。所述平面反射镜521具有第一状态以及第二状态;当所述平面反射镜521处于第一状态时,所述平面反射镜521与第一反射镜元件532相配合,以将第一眼71的眼底反射光引导至哈特曼传感器550;当所述平面反射镜521处于第二状态时,所述平面反射镜521在所述第二分光镜541和所述哈特曼传感器550的连线之外,以使得第二眼72的眼底反射光穿过所述第二分光镜541后直接进入所述哈特曼传感器550。使用时,将光路切换机构520设置为第一状态,光源510发出的激光经第一分光镜531反射后进入第一眼71的眼底,所述第一眼71的眼底反射光穿过所述第一分光镜531后被第一反射镜元件532反射至光路切换机构520,然后所述光路切换机构520将所述第一眼71的眼底反射光引导至哈特曼传感器550;接着,将光路切换机构520设置为第二状态,光源510发出的激光穿过第一分光镜531后被第二分光镜541反射 至第二眼72的眼底,然后所述第二眼72的眼底反射光穿过第二分光镜541后直接进入哈特曼传感器550。在本实施例中,所述光源510位于所述第一分光镜531背离所述第二分光镜541的一侧,但是在其它实施例中,所述光源510亦可以设置于所述第二分光镜541背离所述第一分光镜531的一侧。
图6所示为本发明第六实施例的双目视力筛查仪600。所述双目视力筛查仪600的结构与所述双目视力筛查仪400的结构大体相同,其不同之处在于:第一反射镜元件632、第二反射镜元件642以及光路切换机构620不共线,且所述光路切换机构620位于所述第一反射镜元件632、第二反射镜元件642背离第一眼71、第二眼72的一侧。如此设置,可以有效缩短所述第一反射镜元件632、第二反射镜元件642之间的最小间距。
本发明还揭示了一种双目视力筛查仪的控制方法,包括如下步骤:
S1:向被检测者的眼睛发射照明光;
S2:控制光路切换机构处于第一状态,以使得哈特曼传感器获取第一眼的眼底反射光的波前信息;
S3:控制光路切换机构处于第二状态,以使得哈特曼传感器获取第二眼的眼底反射光的波前信息。
相较于现有技术,本发明双目视力筛查仪能够快速对双眼进行高精度视力筛查,并且结构简单、生产成本低。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (15)

  1. 一种双目视力筛查仪,其特征在于,包括:
    光源,所述光源向被检测者的第一眼或者第二眼发射照明光;
    光路切换机构,所述光路切换机构具有第一状态以及第二状态;
    第一光学元件组,所述第一光学元件组将第一眼的眼底反射光引导至所述光路切换机构;
    第二光学元件组,所述第二光学元件组将第二眼的眼底反射光引导至所述光路切换机构;以及
    哈特曼传感器,所述哈特曼传感器用以检测所述第一眼的眼底反射光或所述第二眼的眼底反射光的波前信息;
    当所述光路切换机构处于第一状态时,所述光路切换机构将所述第一眼的眼底反射光引导至所述哈特曼传感器;当所述光路切换机构处于第二状态时,所述光路切换机构将所述第二眼的眼底反射光引导至所述哈特曼传感器。
  2. 如权利要求1所述的双目视力筛查仪,其特征在于:所述光路切换机构包括平面反射镜,所述第一眼的眼底反射光或第二眼的眼底反射光经所述平面反射镜反射后进入所述哈特曼传感器;所述光路切换机构还包括驱动所述平面镜旋转的主驱动装置,以使得所述平面镜在所述第一状态、第二状态之间切换。
  3. 如权利要求1所述的双目视力筛查仪,其特征在于:所述光路切换机构还包括第一平面反射镜以及第二平面反射镜;当所述光路切换机构处于第一状态时,所述第一平面反射镜将所述第一眼的眼底反射光引导至所述哈特曼传感器;当所述光路切换机构处于第二状态时,所述第二平面反射镜将所述第二眼的眼底反射光引导至所述哈特曼传感器;所述光路切换机构还包括驱动所述第一平面反射镜、第二平面反射镜移动或转动的主驱动装置,以使得所述光路切换机构在第一状态、第二状态之间切换。
  4. 如权利要求1所述的双目视力筛查仪,其特征在于:所述光路切换机构 位于所述第一光学元件组、第二光学元件组的中间,以使得所述光路切换机构至所述第一光学元件组的距离、所述光路切换机构至所述第二光学元件组的距离相等。
  5. 如权利要求1所述的双目视力筛查仪,其特征在于:所述第一光学元件组包括第一分光镜以及第一反射镜元件;所述第二光学元件组包括第二分光镜以及第二反射镜元件;所述第一眼的眼底反射光穿过所述第一分光镜后,被所述第一反射镜元件反射至所述光路切换机构;所述第二眼的眼底反射光穿过所述第二分光镜后,被所述第二反射镜元件反射至所述光路切换机构。
  6. 如权利要求1所述的双目视力筛查仪,其特征在于:所述第一光学元件组包括第一分光镜以及第一反射镜元件,所述第二光学元件组包括第二分光镜;所述第二分光镜、光路切换机构以及哈特曼传感器共线。
  7. 如权利要求5或6所述的双目视力筛查仪,其特征在于:所述第一分光镜平行于所述第二分光镜,并且所述光源、第一分光镜、第二分光镜共线。
  8. 如权利要求7所述的双目视力筛查仪,其特征在于:所述第一分光镜、第二分光镜如此设置,使得所述第一分光镜反射至第一眼的光强度与所述第二分光镜反射至第二眼的光强度相等。
  9. 如权利要求7所述的双目视力筛查仪,其特征在于:所述第一分光镜、第二分光镜如此设置,使得所述第一眼的眼底反射光穿过所述第一分光镜的强度和所述第二眼的眼底反射光穿过所述第二分光镜的强度相等。
  10. 如权利要求5或6所述的双目视力筛查仪,其特征在于:所述第一分光镜位于所述光源、第二分光镜之间;所述第一光学元件组还包括驱动所述第一分光镜转动或移动的第一驱动装置,以使得所述第一分光镜在第一状态、第二状态之间切换;当所述第一分光镜处于第一状态时,所述第一分光镜位于所述光源和第二分光镜之间;当所述第一分光镜处于第二状态时,所述光源发出的光直接发射至所述第二分光镜。
  11. 如权利要求5所述的双目视力筛查仪,其特征在于:所述光源包括第一光源以及第二光源;所述第一光源发出的光经所述第一分光镜反射后进入所述第一眼,所述第一眼的眼底反射光穿过所述第一分光镜后被所述第一反射镜元件反射至所述光路切换机构;所述第二光源发出的光经所述第二分光镜反射后进入所述第二眼,所述第二眼的眼底反射光穿过所述第二分光镜后被所述第二反射镜元件反射至所述光路切换机构。
  12. 如权利要求1所述的双目视力筛查仪,其特征在于:所述双目视力筛查仪还包括调节所述第一光学元件组和第二光学元件组之间距离的调距机构;所述双目视力筛查仪还包括瞳距检测机构;所述瞳距检测机构检测被检测者的瞳距值,所述处理模块根据瞳距值控制所述调距机构调节所述第一光学元件组、第二光学元件组之间的距离。
  13. 如权利要求5所述的双目视力筛查仪,其特征在于:所述第一反射镜元件、第二反射镜元件以及光路切换机构不共线,且所述光路切换机构位于所述第一反射镜元件、第二反射镜元件背离所述哈特曼传感器的一侧。
  14. 如权利要求5所述的双目视力筛查仪,其特征在于:所述第一反射镜元件、第二反射镜元件以及光路切换机构不共线,且所述光路切换机构位于所述第一反射镜元件、第二反射镜元件背离所述第一眼、第二眼的一侧。
  15. 一种如权利要求1所述的双目视力筛查仪的控制方法,其特征在于,包括如下步骤:
    向被检测者的眼睛发射照明光;
    控制光路切换机构处于第一状态,以使得哈特曼传感器获取第一眼的眼底反射光的波前信息;
    控制光路切换机构处于第二状态,以使得哈特曼传感器获取第二眼的眼底反射光的波前信息。
PCT/CN2020/103184 2020-04-06 2020-07-21 一种双目视力筛查仪及其控制方法 WO2021203576A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010262358.7 2020-04-06
CN202010262358.7A CN111419170A (zh) 2020-04-06 2020-04-06 一种双目视力筛查仪及其控制方法

Publications (1)

Publication Number Publication Date
WO2021203576A1 true WO2021203576A1 (zh) 2021-10-14

Family

ID=71555865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103184 WO2021203576A1 (zh) 2020-04-06 2020-07-21 一种双目视力筛查仪及其控制方法

Country Status (2)

Country Link
CN (1) CN111419170A (zh)
WO (1) WO2021203576A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153421A (zh) * 2022-07-27 2022-10-11 宁波明星科技发展有限公司 一种一体式验光光路系统以及验光设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111419170A (zh) * 2020-04-06 2020-07-17 苏州微清医疗器械有限公司 一种双目视力筛查仪及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024060A1 (en) * 2000-09-21 2002-03-28 Carl Zeiss Wavefront refractor simultaneously recording two hartmann-shack images
CN2614626Y (zh) * 2003-05-18 2004-05-12 黄长征 多功能屈光手术术间眼屈光状态检测装置
CN2751745Y (zh) * 2003-11-13 2006-01-18 中国科学院长春光学精密机械与物理研究所 用于人眼测量的混合变焦距光学系统结构
CN103431837A (zh) * 2013-08-23 2013-12-11 饶丰 基于哈特曼传感器的人眼轴向色差和横向色差测量装置及其方法
CN105030190A (zh) * 2015-08-27 2015-11-11 上海莫视智能科技有限公司 一种双目视力检测仪
CN107184178A (zh) * 2017-06-26 2017-09-22 廖亮举 一种智能便携式手持视力筛查仪及验光方法
CN109199320A (zh) * 2018-07-27 2019-01-15 上海贝高医疗科技有限公司 一种便携式视力筛选仪及其光路结构
US20190254517A1 (en) * 2011-03-15 2019-08-22 Adventus Technologies, Inc. Ophthalmic Refractor and Method of Ophthalmic Refractor Signal Analysis
CN111419170A (zh) * 2020-04-06 2020-07-17 苏州微清医疗器械有限公司 一种双目视力筛查仪及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788081A (ja) * 1993-09-21 1995-04-04 Canon Inc 検眼装置
CN105496351B (zh) * 2015-12-30 2017-11-14 深圳市莫廷影像技术有限公司 一种双目验光装置
CN108324239B (zh) * 2018-02-06 2023-11-28 深圳视力棒医疗科技有限公司 便携式智能验光仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024060A1 (en) * 2000-09-21 2002-03-28 Carl Zeiss Wavefront refractor simultaneously recording two hartmann-shack images
CN2614626Y (zh) * 2003-05-18 2004-05-12 黄长征 多功能屈光手术术间眼屈光状态检测装置
CN2751745Y (zh) * 2003-11-13 2006-01-18 中国科学院长春光学精密机械与物理研究所 用于人眼测量的混合变焦距光学系统结构
US20190254517A1 (en) * 2011-03-15 2019-08-22 Adventus Technologies, Inc. Ophthalmic Refractor and Method of Ophthalmic Refractor Signal Analysis
CN103431837A (zh) * 2013-08-23 2013-12-11 饶丰 基于哈特曼传感器的人眼轴向色差和横向色差测量装置及其方法
CN105030190A (zh) * 2015-08-27 2015-11-11 上海莫视智能科技有限公司 一种双目视力检测仪
CN107184178A (zh) * 2017-06-26 2017-09-22 廖亮举 一种智能便携式手持视力筛查仪及验光方法
CN109199320A (zh) * 2018-07-27 2019-01-15 上海贝高医疗科技有限公司 一种便携式视力筛选仪及其光路结构
CN111419170A (zh) * 2020-04-06 2020-07-17 苏州微清医疗器械有限公司 一种双目视力筛查仪及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153421A (zh) * 2022-07-27 2022-10-11 宁波明星科技发展有限公司 一种一体式验光光路系统以及验光设备

Also Published As

Publication number Publication date
CN111419170A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
US8908917B2 (en) Eye tracking apparatus including indication of eye direction
WO2016202311A2 (zh) 手持式自主视力测量装置及视力测量方法
WO2021203576A1 (zh) 一种双目视力筛查仪及其控制方法
WO2004086962A1 (ja) 屈折測定装置
FI125445B (fi) Katseenohjausjärjestely
US11642020B2 (en) Refraction devices
US7237897B2 (en) Optometric apparatus
US7280191B2 (en) Lens meter
US20130271727A1 (en) Ophthalmic apparatus
CN102429636A (zh) 大视场液晶自适应光学眼底成像的系统
CN113440099B (zh) 一种人眼视光综合检查装置和方法
US6540356B1 (en) Instrument and a method for measuring aberration of human eyes
JP6798287B2 (ja) 自覚式検眼装置
JP5252423B2 (ja) 眼科装置
US7241013B2 (en) Optometric apparatus
JP6407442B2 (ja) 脳機能の特定および/または追跡を行うための、固視、アライメント、および/または衝動性の測定方法および装置
CN210931345U (zh) 一种验光仪
JP2004033276A (ja) 屈折力測定装置
JP2624516B2 (ja) 眼屈折度測定装置
JP6926494B2 (ja) 自覚式検眼装置
JPH07236612A (ja) 視力検査装置
CN110558931A (zh) 一种验光仪
CN204033314U (zh) 自动追踪系统
ITVI20130087A1 (it) Apparato di ispezione del fondo oculare
JP2020048788A (ja) 検眼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930333

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20930333

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20930333

Country of ref document: EP

Kind code of ref document: A1