WO2021201258A1 - 核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法 - Google Patents

核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法 Download PDF

Info

Publication number
WO2021201258A1
WO2021201258A1 PCT/JP2021/014243 JP2021014243W WO2021201258A1 WO 2021201258 A1 WO2021201258 A1 WO 2021201258A1 JP 2021014243 W JP2021014243 W JP 2021014243W WO 2021201258 A1 WO2021201258 A1 WO 2021201258A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
containing composition
powder
composition according
cells
Prior art date
Application number
PCT/JP2021/014243
Other languages
English (en)
French (fr)
Inventor
岡本 浩一
知将 奥田
Original Assignee
株式会社StateArt
学校法人名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社StateArt, 学校法人名城大学 filed Critical 株式会社StateArt
Priority to JP2022511146A priority Critical patent/JPWO2021201258A1/ja
Publication of WO2021201258A1 publication Critical patent/WO2021201258A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • the present disclosure relates to a nucleic acid-containing composition, a method for producing a nucleic acid-containing composition, and a method for introducing a nucleic acid.
  • the lungs are attracting attention as a route of administration that can be expected to have systemic effects with low gastrointestinal absorption as well as topical agents.
  • Inhalants that can deliver drugs directly to the lungs and non-invasively have the advantages of being able to reduce systemic side effects because they can be expected to have a rapid onset of action and the dose is smaller than that of oral administration.
  • Patent Document 1 Therefore, it is expected to be used for diseases such as lung cancer and pulmonary hypertension in the future.
  • Inhalants are classified into three types: inhalation aerosol (METERED-DOSE INHALER; MDI), inhalation solution (INHALATION SOLUTION), and inhalation powder (DRY POWDER INHALER; DPI).
  • inhalation aerosol METERED-DOSE INHALER; MDI
  • inhalation solution IHALATION SOLUTION
  • inhalation powder DPI
  • DPI drug powder is generally disintegrated and dispersed in the air by the patient's inhalation effort and delivered to the respiratory treatment area, so it is easy to synchronize powder spray and inhalation, no propellant is required, and the inhalation procedure is simple.
  • research and development have been actively carried out because of a certain point and the fact that the inhaler is relatively small and has excellent portability.
  • DPI requires a certain level of inhalation ability to disperse powder fine particles, so there is a problem that there are restrictions on the patients who can use it.
  • the drug since it is recommended to inhale strongly, as a result, the drug often adheres to the oral cavity and pharynx. If we aim to adapt to diseases such as lung cancer and pulmonary hypertension, it is necessary to design a formulation to improve these problems.
  • an object of the present invention is to provide a nucleic acid-containing composition that realizes high dispersibility, pulmonary delivery property, and deposition property.
  • nucleic acid-containing composition containing a nucleic acid and an anionic polymer or an anionic component which is a salt thereof can be obtained.
  • nucleic acid-containing composition that functions as a gene therapy drug or a nucleic acid drug, which realizes high dispersibility, pulmonary delivery property, and deposition property.
  • the contents of the embodiments of the present invention will be described in a list.
  • the present invention has the following configurations.
  • [Item 1] A nucleic acid-containing composition containing a nucleic acid as a solid substance and an anionic polymer or an anionic component which is a salt thereof.
  • [Item 2] The nucleic acid-containing composition according to item 1, wherein the nucleic acid is a naked nucleic acid.
  • [Item 3] The nucleic acid-containing composition according to item 1 or 2, which does not contain a cationic carrier.
  • nucleic acid-containing composition according to any one of Items 1 to 4, wherein the anionic component is hyaluronic acid or a salt thereof.
  • the nucleic acid-containing composition according to item 5 wherein the weight average molecular weight of the hyaluronic acid or a salt thereof is 30,000 or more and 70,000 or less.
  • the hydrophobic amino acid is selected from the group consisting of leucine, phenylalanine and isoleucine.
  • Hyaluronic acid or a salt thereof having a weight average molecular weight of 30,000 or more and 70,000 or less and phenylalanine are contained, and the hyaluronic acid or a salt thereof is 40% by mass or more and 85% by mass or less with respect to the total mass of these two components.
  • nucleic acid-containing composition according to any one of items 1 to 11, which is used for gene transfer into mammalian cells.
  • nucleic acid-containing composition according to any one of Items 1 to 13 which is a porous hollow spherical particle that can be dispersed and crushed by inhalation and can be swollen when absorbing moisture.
  • nucleic acid-containing composition according to item 14 wherein the peak particle size of the geometric particle size distribution of the spherical particles is 1 ⁇ m or more and 100 ⁇ m or less.
  • nucleic acid introduction method comprising.
  • the disclosure herein relates to nucleic acid-containing compositions.
  • the nucleic acid-containing composition disclosed in the present specification it is dispersed and crushed by inhalation, so that it has excellent dispersibility and reachability to the lungs, and it absorbs and swells in a high humidity environment and adheres and aggregates in the lungs. It can exert its function as a gene therapy drug and a nucleic acid drug, including an anticancer effect.
  • a nucleic acid-containing composition having excellent dispersibility, pulmonary reachability and adhesiveness can be evaluated and its characteristics can be controlled.
  • nucleic acid-containing composition disclosed in the present specification, it is possible to provide a pharmaceutical composition useful for the prevention and treatment of diseases and disorders in the lung by targeting the lung and its peripheral organs.
  • nucleic acid-containing composition The nucleic acid-containing composition disclosed in the present specification (hereinafter, also simply referred to as the present powder) is a porous hollow shape that can be dispersed and crushed by inhalation and can be swollen when absorbing moisture. At least a part of the spherical particles can contain a nucleic acid or an active ingredient that functions as a gene therapy drug or a nucleic acid drug.
  • the present powder various properties of the present powder and its evaluation method will be described, and then a method for producing the present powder will be described.
  • the particle size of this powder can be measured by a dry laser diffraction method.
  • the 50% particle size (D50) can be calculated from the cumulative particle size distribution curve. For example, it can be measured using a laser micron sizer (LMS-2000E) or an equivalent device thereof.
  • LMS-2000E laser micron sizer
  • the 50% particle size of this powder is not particularly limited, but in consideration of scattering property and dispersibility, it should be, for example, 1 ⁇ m or more and 100 ⁇ m or less, and for example, 2 ⁇ m or more and 50 ⁇ m or less, 5 ⁇ m or more and 20 ⁇ m or less. Can be done. Further, for example, it can be 5 ⁇ m or more and 20 ⁇ m or less, and for example, 5 ⁇ m or more and 15 ⁇ m or less.
  • the particle shape of this powder can be observed with a scanning electron microscope.
  • platinum coating is applied as necessary for observation so as to be suitable for SEM observation.
  • the powder dispersion addition device and the spraying method for example, those used in the examples described later can be adopted, but the powder dispersion addition device and the spraying method are not limited thereto.
  • the particle size shape of this powder is not particularly limited, but it is preferably spherical in consideration of scattering property, dispersibility, and the like. Further, it is preferably porous in consideration of scattering property, swelling property and the like. Further, it preferably has a hollow structure.
  • the powder is a large number of pores in which a large number of pores (hollow portions) caused by sublimation of water are partitioned by a partition wall composed of an active ingredient of the powder and a constituent component such as an excipient. It can be a porous spherical particle having (hollow portion) or the like.
  • This powder is delivered to the respiratory tract by inspiration (gas flow during inhalation from the oral cavity to the bronchi), but by evaluation by the Andersen Cascade Impactor (ACI) method, the characteristics in that case (inhalation characteristics), That is, the dispersibility, deliverability and disintegration property of this powder can be evaluated. Dispersibility, delivery and disintegration are independent properties but are interrelated.
  • the ACI method is the measurement described in the 17th revised Japanese Pharmacopoeia 1st Supplementary General Test Method 6.15 Aerodynamic Grain Measurement Method for Inhalants 5.2 Andersen Cascade Impactor Method (Device 2). Use the device.
  • a pre-separator can be used as appropriate. Examples of the measuring device include a low volume air sampler, an Andersen type, an AN-200 type, and a device manufactured by Shibata Scientific Technology Co., Ltd.
  • FIG. 16 shows an outline of the measuring device and an example of the measuring method. As shown in FIG. 16, it is provided with a measuring device, a device as an introduction part, a throat, eight stages from stage 0 to stage 7, and a filter at the bottom. Each stage has a filter structure and is configured to be able to classify and capture particles of smaller aerodynamic particle size downward. As the particle size ( ⁇ m) of the particles classified in each stage, for example, the diameter shown in FIG. 16 can be adopted as the cutoff diameter when the suction amount is 28.3 L / min. FIG. 16 also shows the respiratory organ sites corresponding to each stage.
  • the evaluation of this powder by the ACI method can follow the measurement procedure of the 5.2.2 inhalation powder of the Andersen Cascade Impactor Method (Equipment 2) of the above general test method 5.2. That is, it can be carried out with a flow rate of 28.3 L / min and an air volume of 4 L.
  • the suction resistance is also appropriately selected depending on the suction device.
  • the mass of the powder (particles or active ingredient) on the capsule, device, throat, each stage and filter used for introduction After the measurement, measure the mass of the powder (particles or active ingredient) on the capsule, device, throat, each stage and filter used for introduction.
  • the amount of the present powder may be measured not only by quantitatively detecting the active ingredient, but also by, for example, adding an appropriate label to the particles for evaluation purposes and measuring the label. Quantification of the active ingredient can be performed by those skilled in the art as needed, and the use and detection of such labels are well known to those skilled in the art.
  • stage 3 or later is defined as an intrapulmonary delivery region effective for inhalant application
  • stage 5 or later is defined as a deep lung delivery region where action can be expected in the peripheral lung.
  • OE (OUTPUT EFFICIENCY:%), which is the emission rate from the device, is calculated by the following formula (1).
  • FPFSTAGE3 and FPFSTAGE5 (FINE PARTICLE FRACTION:%), which indicate the proportions of the powders released from the device that have reached stage 3 and stage 5 or later, can be calculated from the formulas (2) and (3), respectively.
  • OE ⁇ FPFSTAGE 5 (%) indicating the proportion of the total recovered amount that has reached stage 5 or later can be calculated from the equation (4).
  • FPFSTAGE 3 (%) (FPF3) Recovery amount from stage 3 onward ( ⁇ G) / Recovery amount T ( ⁇ G) x 100 (2)
  • FPFSTAGE5 (%) (FPF5) Recovery amount from stage 5 onward ( ⁇ G) / Recovery amount T ( ⁇ G) x 100 (3)
  • OE x FPFSTAGE5 (%) Recovery amount from stage 5 onward ( ⁇ G) / Total recovery amount ( ⁇ G) x 100 (4)
  • OE is an index of dispersibility
  • FPF3 is an index of intrapulmonary delivery
  • FPF5 is an index of deep lung delivery.
  • each stage can correspond to the respiratory part
  • the ratio (recovery rate%) of the recovery amount of this powder in each part and each stage in the device to the total recovery amount from the measuring device is different. It can be used as an indicator of delivery rate to the corresponding respiratory site.
  • This powder has an OE of 80% or more in the inhalation characteristic evaluation by the ACI method, for example. This is because it can be said that the release rate is good when it is 80% or more.
  • the OE is also, for example, 85% or more, 90% or more, and 95% or more, for example.
  • the FPF3 of this powder can be, for example, 20% or more, and can be, for example, 30% or more, or 40% or more, for example. For example, if it is 40% or more, it can be said that the lung delivery rate is extremely good. Further, for example, it is 50% or more, for example, 60% or more, 70% or more, 80% or more, and 90% or more, for example. Depending on the active ingredient and application of this powder, an FPF3 of 20% or more may be sufficient.
  • this powder has an FPF5 of, for example, 10% or more, for example, 15% or more, for example, 20% or more, for example, 25% or more, and for example, the same. It can be 30% or more. This is because it can be said that the deep lung delivery rate is extremely good when the content is 30% or more.
  • FPF5 is also, for example, 40% or more, and is, for example, 50% or more, and is, for example, 55% or more, and is, for example, 60% or more, and is, for example, 65% or more.
  • an FPF5 of 10% or more may be sufficient.
  • This powder can have a peak recovery rate at any of stages 2 to 4 and the filter in the inhalation characteristic evaluation by the ACI method. This is because it can be said that this powder has excellent crushability or disintegration property, excellent hygroscopicity and swelling property, and excellent deep lung delivery property by having such a recovery rate characteristic.
  • the stage 3 and the filter can be provided with a recovery peak.
  • the peak recovery rate in the filter is greater than the other peak, for example, 30% or more, and for example 40% or more.
  • the disintegration property of the present powder can be evaluated by the ACI method.
  • the disintegration property of this powder can be determined from the disintegration rate of this powder and the median aerodynamic mass.
  • the particle size distribution of the powder empirically follows a lognormal distribution, and when the integrated value of the recovery rate for each stage is plotted against the logarithmic value of the cutoff diameter, a straight line is obtained, and the 50% particle size is MMAD, (84.3). % Particle size) / (50% particle size) can be the geometric standard deviation (GSD). It can be said that this powder has a characteristic that the lognormal plot does not become a straight line but becomes a curved line.
  • a powder having a large particle size having an aerodynamic mass median diameter MMAD c and its geometric standard deviation GSD c
  • a powder having a small particle size (aerodynamic mass median diameter MMAD f and a geometric standard) are used. It is considered that the deviation GSD f ) exists in the ratio (1-R): R (collapse rate), and the collapse rate R and the aerodynamic mass median diameter MMAD f , c and their geometric standard deviations GSD f , c are calculated.
  • A The integrated value (%) of the recovery rate for each stage is determined by NORM.
  • B NORM converted by the INV function.
  • C NORM.
  • Integrated value of the recovery rate of the powder DIST function small particles of a particle size calculated by (MMAD f and GSD f)
  • D B ⁇ ( 1-R) + C ⁇ NORM values of R.
  • E converted by INV function total value of (DA) 2 obtained for each stage
  • this powdered agent has the aerodynamic mass medium diameter MMAD c (first aerodynamic mass medium diameter) calculated under the above conditions and the first aerodynamic mass median diameter calculated under the above conditions in the inhalation characteristic evaluation by the ACI method. It can be said that it is possible to have a second aerodynamic mass median diameter MMAD f (second aerodynamic mass median diameter) smaller than the aerodynamic mass median diameter of.
  • this powder agent is based on the total mass of the powder having the second aerodynamic mass median diameter (the powders having the first and second aerodynamic mass median diameters).
  • the ratio (%) (collapse rate) can be, for example, 40% or more. This is because it is said that the deep lung delivery rate is high when it is 40% or more.
  • the disintegration rate is also, for example, 44% or more, and is, for example, 50% or more, and is, for example, 55% or more, and is, for example, 60% or more.
  • This powder can also have a mass change rate of 2% or less at 70% RH, for example, when changed from 50% RH to 95% RH at 37 ° C. in the dynamic moisture adsorption measurement method. .. This is because if it is 2% or less, it can be said that it has sufficient moisture resistance before inhalation. Further, for example, the mass change rate is 1.5% or less, and for example, 1% or less.
  • the mass change rate at 95% RH can be 8% or more. This is because if it is 8% or more, it easily absorbs moisture. Such mass change rate is also, for example, 9% or more, for example, 10% or more, and for example, 11% or more.
  • the dynamic moisture adsorption measuring method is a dynamic moisture adsorption measuring device (DVS: DYNAMIC VAPOR SORPTION; DVS ADVANTAGE, which monitors the mass change of a sample on a balance due to the adsorption and desorption of moisture in a set temperature and humidity environment on a second scale. It is a method using SURFACE MEASUREMENT SYSTEMS). It is possible to evaluate hygroscopicity and hygroscopic growth from inhalation to the respiratory tract and deep lungs with high humidity.
  • the environment before inhalation is "temperature 37 ° C., relative humidity (RH) 50% (absolute humidity: 6.903 G / m 3 )", and the environment in the lung after inhalation is "temperature 37 ° C., 95%”.
  • RH absolute humidity: 41.62 G / m 3 )
  • hygroscopicity and swelling after evaluation by the ACI method under normal conditions (that is, drying conditions, about 40% RH or less), particles on each stage are collected as drying particles, and then humidified air (for example, about 40% RH or less) is collected. 90% RH or more) is sucked in, and then the particles on each stage are collected as particles during humidification, and the hygroscopicity and swelling property can be evaluated by observing the particle shape of each of these particles with SEM or the like.
  • the ACI method is carried out under the same conditions except that a box for adjusting the dry / wet condition is placed between the device and the throat and the box is set to the drying condition and the humidifying condition.
  • This powdery agent can have advantageous properties in one or more indicators of the properties described above. These powders are excellent in dispersibility, pulmonary delivery and deposition, and are useful as nucleic acid-containing compositions that function as gene therapy agents and nucleic acid medicines.
  • the powders are generally intended for pharmaceutical use and may contain pharmaceutically acceptable excipients.
  • the excipient is not particularly limited, but may contain, for example, one or more selected from leucine, mannitol and trehalose. Preferably, three types are used. Each of these three excipients can contribute to the above-mentioned advantageous properties of the powder.
  • the leucine, mannitol and trehalose are not particularly limited, but all of them can be natural types, that is, L-leucine, D- (-)-mannitol and D- (+)-trehalose.
  • leucine can contribute to moisture absorption resistance and high dispersibility.
  • the present inventors have already reported this (CHEM. PHARM. BULL. 64, 239-245 (2016)).
  • Mannitol can contribute to disintegration.
  • Trehalose can contribute to hygroscopicity and swelling.
  • Mannitol and trehalose can contribute to hygroscopicity and swelling under high humidity. Therefore, by appropriately combining these three, it is excellent in moisture absorption resistance during storage, good dispersibility and disintegration during suction, and excellent moisture absorption and swelling property in a high humidity environment corresponding to the lung.
  • the formulation can be provided.
  • the contents of leucine, mannitol and trehalose in this powder are not particularly limited, but for example, the mass ratio of mannitol: trehalose: leucine is 0 or more and 10 or less: 0 or more and 5 or less: 85 or more and 100 or less. can do. Preferably, it is 0 or more and 10 or less: 0 or more and 5 or less: 85 or more and 100 or less, and preferably 5 or more and 10 or less: 1 or more and 5 or less: 85 or more and 94 or less.
  • known excipients can be appropriately used as the present powder.
  • the powdered preparation may also have an anionic component as an excipient, which is an anionic polymer or a salt thereof.
  • an anionic component is not always clear, it is inferred that the efficiency of introducing the nucleic acid into cells can be enhanced by coexisting with the nucleic acid as an active ingredient which is a solid substance. In addition, it is inferred that the coexistence of this powder containing nucleic acid when it is dried by spray freeze-drying or the like contributes to the maintenance of the biological activity of the nucleic acid.
  • anionic components and their usefulness are disclosed in Japanese Patent Application Laid-Open No. 2018-11588 by the present inventors.
  • the anionic polymer is not particularly limited, and examples thereof include a negatively charged, naturally derived or synthetic polymer having a molecular weight of about 5 to 4 million, which contains an anionic group in the molecule.
  • the anionic group is not particularly limited, but a polymer having a plurality of, preferably 5 or more in one molecule can be used, and examples of such a functional group include a carboxyl group, an -OSO3H group, and an -SO3H group. Phosphate groups can be mentioned.
  • such anionic polymer also includes an amphoteric polymer.
  • the anionic polymer includes a polysaccharide having an anionic group or a derivative thereof; a polypeptide containing an amino acid residue having an anionic group in the side chain; a PEG derivative having a carboxyl side chain; an anionic group.
  • examples thereof include synthetic polymers having.
  • Glycosaminoglycan is mentioned as a polysaccharide having an anionic group or a derivative thereof.
  • the molecular weight of such a glucosaminoglycan is preferably 10 to 4 million, more preferably 40 to 3 million.
  • Specific examples of glucosaminoglycans include hyaluronic acid, chondroitin, chondroitin sulfate, carboxymethyl cellulose, keratan sulfate, heparin, and dermatan sulfate. Among them, hyaluronic acid is presumed to have an excellent contribution to nucleic acid introduction and protection.
  • Derivatives of various glucosaminoglycans such as hyaluronic acid include those obtained by introducing polyethylene glycol, peptides, sugars, proteins, iodines, antibodies or a part thereof, as well as spermine and spermidine. Etc., and examples thereof include an amphoteric derivative having a positively charged moiety.
  • the average molecular weight (typically, weight average molecular weight) of hyaluronic acid may be 5,000 or less (less than), and the average molecular weight may be 10,000 or more, 20,000 or more. It may be 30,000 or more. Moreover, the average molecular weight may be 40,000 or more. Further, the upper limit is not particularly limited, but for example, the average molecular weight may be 200,000 or less, or 150,000 or less. Further, for example, even if the average molecular weight is 50,000 or more and 110,000 or less, it can be preferably used.
  • hyaluronic acid or a salt thereof examples include FCH-SU (molecular weight 50,000 to 110,000) and microhyaluronic acid FCH (molecular weight 5000 or less (or less)) (both manufactured by Kikkoman Biochemifa). ) Etc. can be used as appropriate.
  • the weight average molecular weight of hyaluronic acid is 15,000 or more and 40,000 or less.
  • hyaluronic acid or a salt thereof it may be possible to increase the efficiency of introducing a naked nucleic acid such as siRNA.
  • the weight average molecular weight of hyaluronic acid may be 30,000 or more and 70,000 or less, or 40,000 or more and 60,000 or less.
  • the average molecular weight of hyaluronic acid is, for example, a method of combining size exclusion chromatography and a multi-angle light scattering detector (SEC / MALS, for example, "National Institute of Health Sciences Report", 2003, Vol. 121, P.30- It can be obtained by 33) or a combination of the MORGAN-ELSON method and the CARBAZOL sulfuric acid method (see Patent Document Japanese Patent Application Laid-Open No. 2009-155486).
  • SEC / MALS is used.
  • polypeptide containing an amino acid residue having an anionic group in the side chain examples include a peptide having a molecular weight of 5 to 1 million. Specific examples of such a polypeptide include polyglutamic acid and polyaspartic acid.
  • the PEG derivative having a carboxyl side chain has a plurality of, preferably 5 or more carboxyl side chains per PEG molecule, and has a molecular weight of 500 or more, preferably 2,000 or more, and more preferably 4,000 to 40,000. PEG derivatives can be mentioned.
  • the synthetic polymer having an anionic group is a polymer or a copolymer having a plurality of, preferably 5 or more anionic groups per molecule, and preferably a polymer or a copolymer having a molecular weight of 5 to 4 million.
  • Specific examples of such polymers or copolymers include polymers or copolymers of acrylic acid or methacrylic acid having a molecular weight of 10 to 3 million, sulfate esters of polyvinyl alcohol, succinimidylated poly-L-lysine, and the like.
  • anionic polymer salt examples include alkali metal salts such as potassium and sodium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts.
  • the salt is appropriately selected according to the anionic polymer used.
  • one or a combination of two or more anionic components of various aspects can be used as excipients.
  • the anionic component used in this powder can improve the stabilization of nucleic acid as a solid substance, introduction into cells, expression of nucleic acid-specific functions such as gene expression or suppression in cells, and the like. If so, it can be obtained commercially as appropriate, artificially synthesized as needed, or used in combination as appropriate.
  • the blending ratio of the nucleic acid and the anionic component in this powder is not particularly limited, and depends on the type of the anionic component and the presence or absence of an excipient acting as a dispersion aid described later, for example. , 5 parts by mass or more and 100 parts by mass or less with respect to 1 part by mass of nucleic acid. More preferably, it is 5 parts by mass or more and 50 parts by mass or less. Further, for example, it is 25 parts by mass or more and 45 parts by mass or less, and for example, 30 parts by mass or more and 43 parts by mass or less, and for example, 25 parts by mass or more and 40 parts by mass or less, and for example, 30 parts by mass or less. It is 43 parts by mass or less.
  • the powder may further contain one or more hydrophobic amino acids as excipients. It is considered that the inclusion of such amino acids can improve the dispersibility when the powdered preparation is supplied to cells, the inhalation characteristics at the time of inhalation administration, and the like. Such hydrophobic amino acids and their usefulness are disclosed in Japanese Patent Application Laid-Open No. 2018-11588 by the present inventors.
  • hydrophobic amino acid examples include leucine, isoleucine, valine, glycine, proline, alanine, tryptophan, phenylalanine and methionine. Of these, it is preferable to use leucine and phenylalanine. It is considered that the dispersibility of active ingredients such as nucleic acids and anionic components existing as a solid phase with suitable hydrophobicity can be improved. For example, phenylalanine is believed to contribute to the preferred cell transfer efficiency of active ingredients such as nucleic acids. Phenylalanine can also be used in place of leucine.
  • the compounding ratio of the hydrophobic amino acid to the active ingredient such as nucleic acid is not particularly limited, but is appropriately set as long as the dispersibility of the nucleic acid can be improved.
  • it can be 5 parts by mass or more and 100 parts by mass or less with respect to 1 part by mass of nucleic acid. More preferably, it is 5 parts by mass or more and 50 parts by mass or less. Further, for example, it is 4 parts by mass or more and 24 parts by mass or less, 6 parts by mass or more and 19 parts by mass or less, and for example, 9 parts by mass or more and 19 parts by mass or less, and for example, 9 parts by mass or more and 24 parts by mass or less. It is less than a part by mass.
  • composition of this powder as an excipient which is a component other than the active ingredient, hyaluronic acid having a weight average molecular weight of 30,000 or more and 70,000 or less, preferably 40,000 or more and 60,000 or less, or The salt and hydrophobic amino acids such as phenylalanine can be contained.
  • hyaluronic acid having a weight average molecular weight of 30,000 or more and 70,000 or less, preferably 40,000 or more and 60,000 or less, or The salt and hydrophobic amino acids such as phenylalanine can be contained.
  • the hyaluronic acid or a salt thereof is added to, for example, 40% by mass or more and 90% by mass or less, and for example, 50% by mass or more and 90% by mass or less, 60% by mass, based on the total mass of the excipients of these two components. It can be contained in an amount of 90% by mass or less and 60% by mass or more and 85% by mass or less. Hydrophobic amino acids such as phenylalanine can be this residue. By setting such a ratio, it is possible to easily achieve both the biological activity of nucleic acid and the inhalation property.
  • Cationic carrier When the powdered preparation contains nucleic acid, it is preferable that it does not contain a cationic carrier. Cationic carriers are generally useful for introducing nucleic acids and the like into cells, but even if the cationic carriers are non-viral such as cationic polymers, the cationic carriers express cytotoxicity and the like. It is preferable that it does not contain cationic carriers because of the possibility. Examples of such a cationic carrier include, but are not limited to, a cationic polymer having a cationic group and a cationic lipid. Examples of the cationic polymer include polysaccharides having a cationic group, polypeptides having a cationic group in the side chain, artificial polymers having a cationic group, salts thereof and the like.
  • cationic carriers examples include DC-CHOL (3 ⁇ - (N- (N', N'-dimethylaminoethane) carbamoyl) cholesterol) and DDAB (as cationic lipids (including cationic cholesterol derivatives)).
  • this powder may contain excipients in addition to the active ingredient.
  • excipient in addition to at least one selected from leucine, trehalose and mannitol, an anionic component and, if necessary, a hydrophobic amino acid can be taken.
  • the present powder does not preclude the inclusion of additives commonly used in compositions containing DNA, RNA, etc. intended for gene expression or suppression thereof.
  • This powder can contain an active ingredient.
  • the content of the active ingredient is not particularly limited, but can be, for example, about 0.2% or more and 15% or less with respect to the total mass.
  • the active ingredient is not particularly limited as long as it can be used in the spray freeze-drying method described later.
  • it is an organic compound and includes, for example, nucleic acid.
  • the nucleic acid includes a naturally occurring nucleic acid which is a polymer of naturally occurring deoxyribonucleotides and / or ribonucleotides, and an unnatural nucleic acid which is a polymer containing deoxyribonucleotides and / or ribonucleotides having an unnatural structure at least in part. Can be done. Natural deoxyribonucleotides and ribonucleotides have natural bases. Natural bases are bases in natural DNA and RNA and include adenine, thymine, guanine, cytosine and uracil.
  • the phosphoric acid at the 5-position of 2-deoxyribose and / or ribose and the 3'hydroxyl group of adjacent deoxyribose and / or ribose are phosphoric acid di-steel bonds. It has a skeleton connected by.
  • the natural nucleic acid may be a chimera of DNA, RNA and deoxyribonucleotides and ribonucleotides (hereinafter, also referred to as DNA / RNA chimera).
  • DNA and RNA may each be single-stranded, may be double-stranded of the same type, or may be a hybrid in which DNA and RNA are hybridized.
  • DNA / RNA chimera may be a DNA, RNA or a hybrid hybridized with the DNA / RNA chimera.
  • An unnatural nucleic acid is a nucleic acid having an unnatural structure at least in a part of either a base or a skeleton (sugar portion and phosphoric acid portion).
  • a base or a skeleton as the unnatural base, various unnatural bases are known.
  • various skeletons that replace the natural ribose-phosphate skeleton are also provided.
  • glycol nucleic acid, peptide nucleic acid and the like having carbon having about 3 carbon atoms instead of the sugar-ribose skeleton can be mentioned.
  • the natural nucleic acid is L-DNA or L-RNA, but a nucleic acid having at least a part of the structure of D-DNA and D-RNA is included in the unnatural nucleic acid.
  • Non-natural nucleic acids also include various aspects such as single-stranded, double-stranded, hybrid and chimeric.
  • This type of unnatural nucleic acid is generally not the coding or template strand that encodes the protein, but interacts with, for example, other functions, such as certain nucleic acids in the cell, to alter the function of that nucleic acid. It is used for such purposes. Typically, it is used for function expression such as expression inhibition or function inhibition of a target protein.
  • nucleic acids that act directly on nucleic acids in vivo without mediated gene expression can be mentioned, and specific examples thereof include antisense nucleic acids, sense nucleic acids, shRNA, siRNA, decoy nucleic acids, aptamers, miRNAs, cpg oligos, and the like. ..
  • This type of unnatural nucleic acid is often, but is not limited to, an oligonucleotide in which about ten to several tens of nucleotides are polymerized.
  • This composition is preferably in the state of a naked nucleic acid as a nucleic acid.
  • Naked nucleic acid is, that is, naked nucleic acid.
  • a nucleic acid construct non-viral vector
  • non-viral vectors such as plasmid DNA, antisense nucleic acid (antisense DNA or antisense RNA), shRNA, siRNA, decoy nucleic acid, aptamer, microRNA, etc.
  • the naked nucleic acid may be a nucleic acid containing a nucleic acid element for therapeutic purposes as a main component or consisting only of the nucleic acid and not containing a nucleic acid element as a vehicle only for introducing the nucleic acid into a cell.
  • the form of the naked nucleic acid is not particularly limited, and may be linear, circular (ring-closed or ring-opened), or supercoiled. A form suitable for the purpose can be appropriately provided.
  • the naked nucleic acid preferably does not have a viral carrier having a virus-derived element or a cationic non-viral carrier such as a liposome or a cationic polymer. In addition to the risk of viral carriers, such non-viral carriers are not always sufficient in terms of cytotoxicity, targeting performance, and expression efficiency.
  • This powder is a solid phase that has the appearance of a powder by itself when dried, and contains nucleic acid as an active ingredient in a part of the spherical particles constituting the powder.
  • the nucleic acid can have a crystalline or amorphous state and a solid phase is formed.
  • This powder can be preferably produced by the freeze-drying method, and more preferably by the spray freeze-drying method.
  • the present powder preparation which is hollow porous spherical particles, can be easily obtained.
  • nucleic acid-containing composition containing an active ingredient which are selected from the group consisting of leucine, mannitol and trehalose as excipients.
  • a method comprising a step of drying a liquid containing an active ingredient by a spray freeze-drying method is provided.
  • the characteristics of the spherical particles of the present powder agent described above that is, the liquid in which the active ingredient and at least one kind of excipient are dissolved can be dispersed and crushed by intake air, and , A drying step of spray freeze-drying may be carried out so as to obtain porous hollow spherical particles that can be swollen at the time of moisture absorption. Excipients and other conditions for obtaining such spherical particles are disclosed herein.
  • a step of preparing the liquid by selecting the excipient so that 100 is 80% or more can also be provided.
  • the liquid can be prepared by selecting the excipient so that the inhalation characteristic evaluation of the spherical particles by ACI has an FPF5 (%) of 30% or more.
  • the excipient is selected and the liquid is prepared so that spherical particles having a peak recovery rate in any one of the filter and stages 2 to 4 can be obtained. You can also do it.
  • evaluation method of this powder According to the present specification, a method for evaluating the powdered preparation is also provided. That is, this evaluation method is smaller than the first aerodynamic mass median diameter and the first aerodynamic mass median diameter calculated under the conditions already described in the suction characteristic evaluation by the ACI method. A method is provided to obtain the aerodynamic mass median diameter of. According to such a method, not only the reachability, which is a characteristic of the present powder, can be evaluated, but also the disintegration property can be evaluated.
  • the present specification there is also provided a method of obtaining the ratio (mass) of the powder having the second aerodynamic mass medium diameter to the total powder.
  • a ratio disintegration rate
  • the decay rate may be obtained together with the first and second aerodynamic mass median diameters described above.
  • the mass change rate at least 70% RH and the mass change at 95% RH A method of measuring the rate is also provided. According to this measurement method, the moisture resistance, hygroscopicity and swelling property of this powder can be evaluated.
  • this powder When the active ingredient is nucleic acid, this powder can be used for introducing nucleic acid into cells. Furthermore, this powder preparation is intended to introduce a nucleic acid into cells and to suppress various effects of the nucleic acid, such as gene expression (protein synthesis) and gene expression suppression.
  • the nucleic acid contained in this powder can take various forms depending on the purpose of this powder.
  • the nucleic acid when a nucleic acid contains a coding region encoding a protein or the like, the nucleic acid can simultaneously contain an expression control region such as a promoter or a terminator so that the protein can be expressed.
  • such nucleic acids include expression cassettes, plasmid vectors containing expression cassettes, and artificial chromosomes. Control regions such as promoters and terminators and other elements can be appropriately selected and used by those skilled in the art as necessary.
  • a plasmid vector or an artificial chromosome is appropriately selected in consideration of the type of cell to be introduced, the size of the nucleic acid to be introduced, and the like.
  • nucleic acids aspects such as sense nucleic acid, antisense nucleic acid (DNA or RNA, etc.), shRNA, siRNA, miRNA, decoy nucleic acid, aptamer and the like can be used. Can be mentioned. Further, the nucleic acid may be DNA formed by transcription of such RNA or the like.
  • the gene contained in this powder is not particularly limited and can be appropriately selected according to the purpose of use.
  • cancer cells can be selectively killed by selecting a tumor suppressor gene.
  • p16 gene, p53 gene, Rb gene, BRCA1 gene, apc gene, PTEN gene, VHL gene, TGF- ⁇ gene, Smad4 gene and the like can be used as the cancer suppressor gene.
  • the cells to which this powder is applied are not particularly limited, but are preferably animal cells or microbial cells.
  • animal cells include mammals including humans and various non-mammalian cells.
  • microorganism include yeast, bacteria, fungi and the like, but the microorganism is not particularly limited.
  • This powder can be suitably used for gene therapy, nucleic acid medicine, immunotherapy, embryo production, etc. for humans and animals, and various gene-related studies. That is, it can be used not only for so-called in vivo gene therapy but also for ex vivo gene therapy. In particular, it is useful as a powder for preventing or treating diseases in which the action on genes is effective, such as tumors in the bronchi and lungs caused by inhalation through the nasal cavity and oral cavity.
  • This powder can be a composition for supplying cells with substantially no use of an aqueous medium.
  • “Substantially not using an aqueous medium” means that the powder is dissolved or dispersed in a water-based medium (referred to as an aqueous medium in the present specification) such as a buffer solution when applied to cells. It means without. Dissolution of nucleic acids and the like by the water (moisture) to which this powder is applied does not contradict “substantially not using an aqueous medium”.
  • the present powder containing nucleic acid as a solid substance maintains the nucleic acid of the solid substance as it is, and more preferably, the solid phase powder is applied to cells in vivo. It is considered that by applying the present powder containing nucleic acid as a solid substance or the solid phase present powder to cells, an environment advantageous for introducing nucleic acid is formed on the cell surface. For example, it is considered that the powdered preparation of such an embodiment acts by mediating the water on the cell surface existing as a gas-liquid interface in the living body, and the nucleic acid is taken up into the cell.
  • organs that can be reached from the outside non-invasively or almost non-invasively by using a catheter or the like for example, nasal cavity, eye, oral cavity, respiratory tract, lung, stomach, duodenum, small intestine, large intestine,
  • this powder can be injected through an appropriate gas to allow nucleic acid as a solid substance to reach the target site.
  • the supply of powdered preparations and the like to the lung mucosa and the nasal mucosa is well known as an inhalation method and the like.
  • the powder may be directly supplied to the inside of the animal by laparotomy, incision, or the like, for example, to a lesion such as subcutaneous, muscle, abdominal cavity, or tumor.
  • a lesion such as subcutaneous, muscle, abdominal cavity, or tumor.
  • the powdery agent can be supported and placed on the surface of a gel-like substance, a porous body such as a sponge, or a non-woven fabric.
  • this powder By supplying this powder to the target site or cell in the form of containing nucleic acid as a solid substance in this way, it is supplied to the target site at a high concentration without being diluted with an aqueous medium as in the conventional case. You can continue to stay in the area. That is, the present powder is essentially capable of reaching the target cells at a high concentration. As a result, it is considered that high uptake ability and function expression by nucleic acid are possible.
  • This powder agent exerts a sufficient effect even if it is dissolved at the time of use.
  • it is also possible to prepare and apply a redissolved product by suspending or dissolving this powder in an aqueous medium such as water, physiological saline, a buffer solution, a glucose solution, or a medium solution at the time of use. ..
  • an aqueous medium such as water, physiological saline, a buffer solution, a glucose solution, or a medium solution at the time of use. ..
  • the powder is suspended or diluted with, for example, a solvent 100 to 10000 times (weight ratio) of nucleic acid. Since different amounts and different types of solvents can be used as before freeze-drying, it is easy to prepare relatively high-concentration suspensions and solutions (for example, a solution containing 1 mg of DNA in 1 mL), which was difficult in the past. Can be done.
  • This powder may be in a state in which nucleic acid is contained as a solid substance in a non-aqueous medium at the time of use.
  • the powder may be suspended in a non-aqueous medium at the time of use.
  • nucleic acids can be applied based on a non-aqueous medium, which has been difficult in the past.
  • the present powder prepared by dissolving or suspending in an appropriate liquid medium can use any method usually used for introducing nucleic acid or its derivative into living cells.
  • the amount of this powder applied to cells varies depending on the introduction method, the type of disease, the purpose, etc. described above.
  • the amount of nucleic acid varies greatly depending on the administration site, but for local administration to a tumor, for example, 5 to 1000 mg. / Cm 3.
  • nucleic acid-containing composition containing various anionic components preparation of nucleic acid-containing composition containing various anionic components
  • various nucleic acid-containing compositions were prepared in order to examine various anionic components used as excipients for nucleic acids as solid substances.
  • a pDNA (pCPG- ⁇ Luc) encoding firefly luciferase was used as a nucleic acid reporter gene.
  • HHA high molecular weight hyaluronic acid
  • MW 50 to 110 kDa
  • hyaluronic acid FCH-SU hereinafter also referred to as HHA
  • MW low molecular weight hyaluronic acid
  • Microhyaluronic acid FCH hereinafter also referred to as LHA
  • LHA Microhyaluronic acid FCH sodium salts
  • CMC carboxymethyl cellulose
  • CS chondroitin sodium sulfate
  • HPC hydroxy Propropylcellulose
  • ⁇ -Cyclodextrin ⁇ -CYD, Wako Pure Chemical Industries, Ltd.
  • INU Inulin
  • FROMCHICORY Inulin
  • INU Methyl Cellulose
  • MC Methyl Cellulose
  • D (- ) -Mannitol Man, Wako Pure Chemical Industries, Ltd.
  • sample solution A pDNA aqueous solution and various anionic component aqueous solutions were mixed to prepare a sample solution.
  • Ultrapure water (ULTRAPURETM DNASE / RNASE-FREEDISTILLED WATER, INVITROGENTM) was used as the solvent.
  • the final concentration of the sample solution was 200 ⁇ g / mL as the pDNA concentration.
  • the composition of each sample solution is shown below.
  • composition by spray freeze-drying (SFD) method The nucleic acid-containing composition was prepared by the SFD method. Using the two-fluid spray nozzle attached to the spray dryer (SD-1000, Tokyo Rika Kikai Co., Ltd.), the sample solution was rapidly frozen by spraying it into liquid nitrogen (500 mL) 15 cm below the tip of the nozzle at 150 kPa. .. The detailed conditions are shown below. The sample solution was delivered at 5 mL / min and spraying was continued for 1.5 min.
  • SFD spray freeze-drying
  • the obtained ice droplets are placed in a square dry chamber (DRC-1100 Tokyo Rika Kikai Co., Ltd.) connected to a freeze dryer (FDU-2110 Tokyo Rika Kikai Co., Ltd.) and dried under vacuum conditions for 24 hours. Composition was obtained.
  • a black double-sided tape was attached by compressing and releasing 0.25 mL of air in a 1 mL syringe (TERUMO) connected via a three-way activity to a disposable chip for 100 mL filled with a small amount of the prepared nucleic acid-containing composition with a microspatula. It was sprayed on the sample table. Then, 30MA, 90sec platinum coating treatment (JFC-1600, JEOL Ltd.) was performed, and the particle shape was observed using a scanning electron microscope (SEM; JSM-6060, JEOL Ltd.). The results are shown in FIGS. 1, 2 and 3.
  • nucleic acid-containing compositions have a hollow porous structure peculiar to the SFD preparation with a particle size of 5 to 10 ⁇ m, and are fine particles suitable for an inhalant. all right.
  • the formulation containing HPC is not hollow and porous, and that the type of excipient may affect the shape of the particles. It is considered that the viscosity of the sample solution has an influence on the cause of such a difference. HPC has a higher viscosity than other excipients. Therefore, it was considered that HPC could not form spherical fine particles in the process of spraying by the SFD method at a certain viscosity, and a non-hollow porous preparation was formed.
  • each composition prepared in Example 1 was administered into mouse lung to evaluate the gene expression effect.
  • Administration and evaluation to mice were performed as follows.
  • mice As a pretreatment, under anesthesia of pentobarbital (50 mg / kg, IP), the anterior teeth of female ICR mice (5 weeks old) were placed on a self-made fixing plate, and the chest was placed vertically. bottom. Using a light (MEGALIGHT 100 TM, Schott Japan Co., Ltd.), the mouth of the mouse was opened and the tongue was pulled out with tweezers while locally shining light on the chest. After confirming the trachea that appears as a white hole in the mouth, a cannula for intrapulmonary administration of mice (PE- 60 polyethylene tube) was inserted into the 3.0 cm trachea.
  • Luminescence based on luciferase activity was evaluated by detection and analysis using IVIS TM.
  • the LUCIFERIN used at the time of measurement was adjusted to 30 mg / mL with PBS and stored at -80 ° C.
  • Ten minutes after LUCIFERIN administration luminescence was detected with EXPOSURETIME 1 min under ISOFLURANE anesthesia.
  • a REGIONOFINTEREST (ROI; length 1 cm, width 3 cm) corresponding to the lung was prepared, the luminescence intensity (TOTALFLUX (PHOTON / sec)) was determined as the gene expression level, and the gene expression level-time pattern was analyzed. From the obtained gene expression level-time pattern, the area under the gene expression level-time curve (AUC) and the maximum gene expression level (Luc (MAX)) were determined, respectively. These results are shown in FIGS. 4 and 5, respectively.
  • HA, CMC and CS could be administered without clogging the cannula.
  • all of these are anionic polymers, and can be expected to be taken up into cells via specific receptors in the body and promote transcriptional activity. From these factors, it was considered that HA, CMC, and CS were more advantageous for uptake into cells than other excipients, and a relatively high gene expression effect was observed.
  • nucleic acid-containing composition containing LHA and HHA prepared in Example 1 each sample solution used for SFD of each of these nucleic acid-containing compositions, and a redissolved solution in which each composition is redissolved. was administered to each mouse, and the gene expression level-time pattern, AUC, and Luc (MAX) were compared.
  • Intrapulmonary administration of each nucleic acid-containing composition to mice was carried out in the same manner as in Example 2.
  • a spray tip of a liquid sprayer LIQUIDMICROSPRAYERMICROSPRAY (trademark, PENNCENTURY, INC) was inserted into a cannula, and 100 mL (10 mg as pDNA) of each solution was intrapulmonaryly administered to the mouse.
  • the gene expression level was analyzed in the same manner as in Example 2. The results are shown in FIGS. 6 and 7.
  • the causes of these results are as follows: (1) The nucleic acid-containing composition dissolves in a small amount of water on respiratory epithelial cells to cause high-concentration exposure conditions, and intracellular uptake through active intracellular uptake. Since the uptake was improved, there are two possibilities: (2) the addition of mucosal adhesion by the nucleic acid-containing composition avoids the mucosal ciliary clearance in the bronchi and prolongs the contact time with respiratory epithelial cells. rice field. That is, while the powdered nucleic acid-containing composition is dissolved in a small amount of water in the lungs, when the solution preparation is administered, it is administered after being diluted with ultrapure water, so that the amount of solvent is relatively large (1).
  • nucleic acid-containing composition prepared in Example 1 does not use a vector, it is considered that a complex due to electrostatic interaction generated by using a cationic vector is not formed. Therefore, it is not necessary to consider the effect of gene expression effect on the stability of the complex (binding affinity).
  • the effects of addition of excipients and dispersion aids, and SFD on the structure of nucleic acids contained in the nucleic acid-containing composition were investigated.
  • LHA sodium salt
  • various nucleic acid-containing compositions are prepared in combination with a dispersion auxiliary agent to improve the structural stability of the nucleic acids of the excipient and the dispersion auxiliary agent. The impact was examined.
  • pDNA pCPG- ⁇ Luc
  • Excipients the sodium salts of HHA and LHA used in Example 1 were used.
  • Dispersion aid As the dispersion aid, L-phenylalanine (SIGMA-ALDRICH: Phe), L-leucine (SIGMA-ALDRICH: Leu) and L-isoleucine (SIGMA-ALDRICH: Ile) were used.
  • SIGMA-ALDRICH L-phenylalanine
  • SIGMA-ALDRICH L-leucine
  • SIGMA-ALDRICH L-isoleucine
  • nucleic acid contained in the nucleic acid-containing composition was artificially supercoiled into S.
  • C-type nucleic acid also open circular O.
  • C-type nucleic acids and linearized linear nucleic acids were also electrophoresed, respectively.
  • ⁇ / HindIII DIGEST LOADINGQUICK (R) DNASIZEMARKERS, TOYOBOLIFESCIENCE was used as the size marker.
  • the gene expression is significantly higher than that of HHA alone, especially in the composition of HHA 49% / Ph 49%. It showed an effect.
  • the maximum values of AUC and Luc (MAX) of HHA49% / Ph49% showed the highest gene expression effect in the studies so far using HHA as an excipient.
  • nucleic acid-containing composition having the highest gene expression effect of LHA 73% / Ph 25% was prepared according to Example 1, and the nucleic acid-containing composition in powder form, the sample solution for the nucleic acid-containing composition, and the nucleic acid-containing composition were prepared.
  • the redissolved solution in which the nucleic acid-containing composition was redissolved in water so as to have a concentration equivalent to that of the sample solution was administered into the mouse lung according to Example 2, and AUC and Luc (MAX) were measured. The results are shown in FIG.
  • the powdered nucleic acid-containing composition showed a remarkably high gene expression effect on the sample solution and the redissolved solution, which are both solution compositions. From this result, it was considered that the high gene expression effect of the naked nucleic acid was due to the naked nucleic acid reaching the cells as a solid substance.
  • nucleic acid-containing composition for evaluation a powdered nucleic acid-containing composition of LHA 73% / Phe 25%, which had a high gene expression effect in Example 4, was prepared according to Example 1.
  • a nucleic acid-containing composition containing only LHA was similarly prepared according to Example 2. The specific compositions shown in the table below are shown.
  • An Andersen type cascade impactor (ACI; low volume air sampler, AN-200 type, Shibata Scientific Technology Co., Ltd.) was used for the evaluation. After filling 1.0 mg (FLNa equivalent amount; 20 mg) of each powdered nucleic acid-containing composition into No. 2 HPMC capsule (Qualicaps Co., Ltd.), the capsule was filled with a DPI inhaler (JETHALER TM; REVERSETYPE: Hitachi Automotive Systems). ), And 5 SEC suction was performed at a suction speed of 28.3 L / min. Glycerin was thinly applied to the collection plate of each stage.
  • ACI Andersen type cascade impactor
  • the recovery rate of the nucleic acid-containing composition was calculated by dissolving 250 mL of the solution, dividing it into a light-shielded 96-WELL microplate, and quantifying FLNa using a fluorescent plate reader (SPECTRAMAX AXGEMINIM, Nippon Molecular Device Co., Ltd.).
  • SPECTRAMAX AXGEMINIM fluorescent plate reader
  • OE value (OUTPUTFFICIENCY,%), which is the ratio of the nucleic acid-containing composition released from the CAP section and the DEV section, and from S3 (cutoff value as aerodynamic particle size; 4.7 ⁇ m) to FIL.
  • the FPF value (FINEPARTICLE FRACION,%), which is the ratio of the amount of the recovered nucleic acid-containing composition divided by the amount of the nucleic acid-containing composition released from CAP and DEV, was calculated, respectively.
  • the FPF value is generally used as an index of the proportion of the released powder preparation that reaches the lung therapeutic range.
  • OE ⁇ FPF value which is the ratio of the nucleic acid-containing composition that has reached the lung therapeutic range in the total recovered amount
  • MMAD aerodynamic particle size
  • the LHA73% / Ph25% nucleic acid-containing composition to which Phe was added had a larger amount of deposition at a stage with a smaller cutoff diameter (including FILTER) than the LHA98% single composition. It became clear that it was excellent in lung delivery.
  • the OE value is about 80% to 90%
  • the FPF3 value is about 40% to 50%
  • the OE ⁇ FPF3 value is about 30%.
  • nucleic acid-containing compositions Preparation and evaluation of nucleic acid-containing compositions using various excipients
  • sodium hyaluronate having different weight average molecular weights (weight average molecular weight less than 5,000 (LHA), weight average molecular weight 15,000 to 40,000) (MHA), weight average molecular weight 50,000 to 110,000 (HHA). )
  • Chondroitin sulfate (CS) (glucosaminoglycan similar to hyaluronic acid) is used as an excipient
  • a nucleic acid-containing composition was prepared by appropriately using L-phenylalanine (Phe) as a dispersion aid, and the gene expression effect in vivo was evaluated using ICR mice.
  • the nucleic acid-containing composition was prepared in the same manner as in Example 1 except that the solution having the composition shown in the table below was spray-lyophilized.
  • the particle shape of the obtained nucleic acid-containing composition was observed by SEM. The results are shown in FIG.
  • the gene expression effect in mouse embryos was evaluated by intrapulmonary administration using female ICR mice in the same manner as in Example 2 except that the obtained nucleic acid-containing composition was used. The results are shown in FIG.
  • the gene expression effect could be confirmed regardless of which excipient was used, but it was also found that a suitable ratio with the dispersion aid could exist depending on the excipient used.
  • rice field In general, it was found that a dispersion aid such as phenylalanine is useful for increasing the expression level.
  • a sodium salt of hyaluronic acid having a weight average molecular weight of 15,000 to 40,000 and a medium molecular weight may exhibit a suitable expression level.
  • siRNA siGL3 targeting the firefly luciferase gene (Luc +) was used as a naked nucleic acid, and the gene expression inhibitory effect of siRNA was evaluated in vitro.
  • This siRNA has a molecular weight of about 1/300 of the plasmid DNA used in Example 1.
  • a solution of sodium hyaluronate (LHA) having a weight average molecular weight of 5,000 or less and indocyanine green (ICG) as a fluorescent probe as excipients in the formulation shown in the table below. was prepared and operated in the same manner as in Example 1 to prepare a nucleic acid-containing composition of this example.
  • the solution itself was also used as a comparative example composition.
  • a negative control composition was prepared in the same manner from a solution containing only the above-mentioned sodium hyaluronate and D- (-) mannitol (Man) and ICG without containing siRNA.
  • a positive control composition was prepared in the same manner from a solution using branched polyethyleneimine (B-PEI) instead of the above-mentioned sodium hyaluronate.
  • the inhibitory effect on gene expression is as follows: after seeding Transwell (trade name) with human-derived lung cancer cells (A549-Luc) 2 ⁇ 10 5 cells / well that constitutively express luciferase, and then using D-MEM medium, it becomes confluent. After culturing until the cells were cultured, each well was uniformly filled with 0.5 mg of various nucleic acid-containing compositions or 0.5 mg of the solution as a powder on the gas phase-exposed side of the cell layer. The luminescence intensity of luciferase was measured 6 hours, 12 hours, 24 hours and 48 hours after filling the nucleic acid-containing composition. The gene expression inhibitory effect of various nucleic acid-containing compositions was evaluated with the luminescence intensity of the negative control using sodium hyaluronate as 100%. The results are shown in FIG.
  • lung metastatic cancer mice were prepared using mouse colon cancer cells (COLON26-Luc) that constitutively express luciferase, and the same procedure as in Example 2 was performed to express the gene of the nucleic acid-containing composition of this example.
  • the inhibitory effect was evaluated. That is, the nucleic acid-containing composition of this example was administered to lung metastatic cancer mice, and the same amount was further administered 36 hours later, and the luminescence intensity of luciferase was examined.
  • the negative control composition was also administered in the same manner, and the luciferase emission intensity was measured. The results are shown in FIG.
  • the nucleic acid-containing composition containing siRNA showed a high gene expression inhibitory effect from 6 hours after the addition to the cells.
  • the comparative example composition in the solution form did not exhibit a remarkable gene expression inhibitory effect.
  • the positive control composition exerted the gene expression inhibitory effect 12 hours after the addition.
  • the nucleic acid-containing composition containing siRNA exerted an effective effect of suppressing gene expression even in vivo.
  • the nucleic acid-containing composition since it is a solid substance and contains an anionic component such as sodium hyaluronate, it is introduced into cells and rapidly and effectively suppresses gene expression. I found that I could do it.
  • the nucleic acid-containing composition was found to be useful for the introduction and action expression of a wide range of naked nucleic acids, from relatively large molecules such as plasmid DNA having an expression cassette to small molecules such as siRNA. ..
  • Powder fine particles were prepared by SFD (spray freeze-drying method).
  • the SFD method consists of two steps, a spraying step and a freeze-drying step.
  • the sample solution was delivered at 5 mL / min and spraying was continued for 1.5 min.
  • the obtained ice droplets are placed in a square dry chamber (DRC-1100 Tokyo Rika Kikai Co., Ltd.) connected to a freeze dryer (FDU-2110 Tokyo Rika Kikai Co., Ltd.) and dried under vacuum conditions for 24 hours. The preparation of was obtained.
  • hollow porous spherical particles were obtained regardless of the mixing ratio of the excipient. No hollow porous particles could be observed with respect to trehalose alone and sodium fluorescein alone.
  • the evaluation method is as follows: Approximately 1.0 mg of the sample is filled in No. 2 HPMC capsule (Qualicaps Co., Ltd.), and the flow rate (PFR) is 28.3 L / by Hitachi Rotary Babycon (Bevicon, 200RC-20C5, Hitachi Industrial Equipment Systems Co., Ltd.). Suction was performed at min. The suction time was 10 SEC. As the suction device, single, dual, and reverse with different suction resistances of Jethaler (JETHALER (registered trademark), Hitachi Automotive Systems Measurement Co., Ltd.) were used.
  • Jethaler JETHALER (registered trademark), Hitachi Automotive Systems Measurement Co., Ltd.
  • FIG. 21 shows an example of the analysis result of the powder before and after the particle decay.
  • A The integrated value (%) of the recovery rate for each stage is determined by NORM.
  • Random variable B NORM converted by the INV function.
  • Integrated value of powder recovery rate of MMAD c and GSD c calculated by DIST function C NORM.
  • the integrated value D B ⁇ (1-R) + C ⁇ R of the powder recovery rate of MMAD f and GSD f calculated by the DIST function is set to NORM.
  • E converted by INV function total value of (DA) 2 obtained for each stage
  • the largest amount of pharmaceutical deposits deposited on the filter was 20% or more.
  • the highest recovery rate for each stage was stage 3 for all formulations.
  • a good index (OE, FPF) tends to be obtained particularly in the preparation containing mannitol.
  • the disintegration rate R analyzed by the solver function was about 45% at a Man content of 0% and about 50 to 60% at 5 to 10%, and increased with the addition of Man.
  • the addition of Man reduced MMAD c and MMAD f (Man 0%: about 4.3 ⁇ m, Man 5 to 10%: 3.5 to 4.0 ⁇ m) (Man 0%: about 0.35 ⁇ m, Man 5 to 10%: 0.2 ⁇ m level). From the above, it was found that mannitol greatly contributes to the disintegration property.
  • the DVS can fill one side of the balance-type measuring unit and monitor the mass change of the sample due to the adsorption / desorption of water in the set temperature / humidity environment on a second scale.
  • the measurement conditions for evaluation are shown in the table below.
  • the environment before inhalation was set to "temperature 37 ° C, relative humidity (RH) 50% (absolute humidity: 6). .903 G / m 3 ) ”and the environment in the lung after inhalation was“ temperature 37 ° C., 95% RH (absolute humidity: 41.62 G / m 3 ) ”.
  • the results are shown in FIG.
  • plasmid DNA encoding firefly luciferase was used as a model drug (sodium fluorescein (FLNa), which is a fluorescent dye, was used for inhalation characteristics), and L-leucine (hereinafter, also referred to as Leu) as an excipient. ) And hyaluronic acid (sodium salt, weight average molecular weight 50,000, hereinafter also referred to as LHA) were used to prepare a spray freeze-drying solution having the following composition, and spray freeze-drying was performed.
  • FLNa sodium fluorescein
  • LHA hyaluronic acid
  • LHA hyaluronic acid
  • Sample 1 (pDNA / LHA / Leu) Aqueous solution containing 1 mg of pDNA, 12.5 mg of LHA and 36.5 mg of Leu (50 mg in total)
  • Sample 2 (pDNA / LHA), Aqueous solution containing 1 mg of pDNA and 49 mg of LHA (50 mg in total)
  • the spray freeze-drying was carried out according to Example 9 at a spray air pressure of 150 kPa, a sample solution flow rate of 5 mL / min, a spray nozzle diameter of 0.4 mm, a drying time of 24 hours, a final vacuum degree of 5 PA or less, and a final shelf temperature of 10 ° C. rice field.
  • the obtained nucleic acid-containing composition was stored under three conditions of 5 ° C./dry (silica gel), 25 ° C./dry (silica gel), and 25 ° C./75% RH for up to 12 months to obtain SEM, inhalation characteristics and gene expression. Both were evaluated.
  • Example 12 The inhalation characteristics were evaluated according to Example 12. A powder containing FLNa was used for the evaluation of inhalation characteristics. The results are shown in FIGS. 24 and 25. As shown in FIG. 24, sample 1 did not observe a significant decrease in inhalation characteristics under dry conditions, but under humidified conditions, FPF3 decreased and MMAD increased after 4 months. This indicates that the initial spherical particles are agglomerated due to moisture absorption. Further, as shown in FIG. 25, in the sample 2, under the drying conditions, the inhalation characteristics did not change depending on the storage period, but the FPF3 was low and the MMAD was as large as about 5 to 8 ⁇ m. Further, under humidifying conditions, it was impossible to measure due to moisture absorption.
  • mice As a pretreatment, under anesthesia of pentobarbital (50 mg / kg, IP), the anterior teeth of female ICR mice (5 weeks old) were placed on a self-made fixing plate, and the chest was placed vertically. bottom. Using a light (MEGALIGHT 100 TM, Schott Japan Co., Ltd.), the mouth of the mouse was opened and the tongue was pulled out with tweezers while locally shining light on the chest. After confirming the trachea that appears as a white hole in the mouth, a cannula for intrapulmonary administration of mice (PE- 60 polyethylene tube) was inserted into the 3.0 cm trachea.
  • Luminescence based on luciferase activity was evaluated by detection and analysis using IVIS TM.
  • the LUCIFERIN used at the time of measurement was adjusted to 30 mg / mL with PBS and stored at -80 ° C.
  • a REGIONOFINTEREST (ROI; length 1 cm, width 3 cm) corresponding to the lung was prepared, the luminescence intensity (TOTALFLUX (PHOTON / SEC)) was determined as the gene expression level, and the gene expression level-time pattern was analyzed. From the obtained gene expression level-time pattern, the area under the gene expression level-time curve (AUC) and the maximum gene expression level (Luc (MAX)) were determined, respectively. The results are shown in FIG.
  • sample 1 and sample 2 generally maintained their initial gene expression even after 12 months, but under humidified conditions, they decreased significantly at 4 months. In addition, the expression level of sample 2 was higher than that of sample 1.
  • nucleic acid-containing composition can maintain its inhalation characteristics and gene expression characteristics under dry conditions.
  • hyaluronic acid weight average molecular weights of 2000, 5000, 50000, 80000 and 350,000 (each referred to as HA2, etc.) were used, pDNA (plasmid DNA encoding firefly luciferase) 1 mg (2% by mass), and each hyaluronic acid 12.5 mg.
  • a spray freeze-drying solution containing a total of 50 mg of (25% by mass) and 36.5 mg (73% by mass) of phenylalanine was prepared.
  • hyaluronic acid a solution prepared by NAOH to pH 7.0 ⁇ 0.5 was used. This solution was spray-lyophilized by the same method as in Example 14 to prepare a nucleic acid-containing composition.
  • A549 cells which are human-derived alveolar cancer cells, were seeded at 2 ⁇ 10 2 cells / well (gas-liquid interfacial culture system Transwell®) for 4 to 9 days. After culturing, a constant amount was added to these wells from a powder dispersion addition device packed with 0.4-0.6 mg. After 48 hours, the cells in the well were frozen and thawed to destroy them, and then Pickagene was added and the fluorescence was measured with a luminometer. The results are shown in FIG. As shown in FIG. 27, HA50 having a weight average molecular weight of 50,000 showed the highest gene expression.
  • HA50 having a weight average molecular weight of 50,000
  • 1 mg (2% by mass) of pDNA was fixed, and the amount of HA was 12.5 mg (25% by mass), 24.5 mg (49% by mass), 36.5 mg (73% by mass).
  • Four kinds of spray freeze-drying liquids were prepared. This solution was spray-lyophilized by the same method as in Example 14 to produce a nucleic acid-containing composition, and gene expression was evaluated in the same manner as described above. The results are shown in FIG.
  • the nucleic acid-containing composition containing 73% by mass of HA50 and 12.5% by mass of phenylalanine showed the highest gene expression effect. From the above results, it was found that HA50 is suitable from the viewpoint of gene expression, and that it is useful to use phenylalanine in combination. From the viewpoint of gene expression, HA50 is preferably contained in 50% by mass or more, for example, 50% by mass or more, for example, 60% by mass or more, and for example, 70% by mass or more in all excipients.
  • the excipients such as HA50 and phenylalanine have a lower limit value of, for example, 10 parts by mass or more, for example, 15 parts by mass, and for example, 20 parts by mass or more, for example, 40 parts by mass, with respect to 100 parts by mass of HA50.
  • HA50 and phenylalanine have a lower limit value of, for example, 10 parts by mass or more, for example, 15 parts by mass, and for example, 20 parts by mass or more, for example, 40 parts by mass, with respect to 100 parts by mass of HA50.
  • Sample 3 A 5 mL solution containing 2% by weight of FLNa, 98% by weight of HA50, and 0% by weight of Ph (50 mg in total).
  • Sample 4 5 mL solution containing 2% by mass of FLNa, 73% by mass of HA50, and 25% by mass of Ph (50 mg in total)
  • Sample 5 A 5 mL solution containing 2% by weight of FLNa, 49% by weight of HA50, and 49% by weight of Ph (50 mg in total).
  • Sample 6 5 mL solution containing 2% by weight of FLNa, 25% by weight of HA50, and 73% by weight of Ph (50 mg in total).
  • Example 14 The spray freeze-drying was carried out according to Example 14, a nucleic acid-containing composition was obtained, and the inhalation characteristics were evaluated according to Example 12. The results are shown in FIG. As shown in FIG. 29, the lower the mass% of HA50 and the higher the mass% of Ph, the higher the lung reachability. In addition, all the formulations showed good MMAD, but the lower the mass% of HA50 and the higher the mass% of Ph, the smaller the MMAD.
  • FIG. 30 shows the effectiveness of the nucleic acid-containing composition containing HA50 and phenylalanine as excipients, which can be estimated from the results of the gene expression effect in vitro shown in FIG. 29 and the inhalation characteristics shown in FIG. 29, as an inhalation powder. show.
  • HA50 and phenylalanine contain 40% by mass or more and 90% by mass or less, and for example, 50% by mass or more and 90% by mass or less, 60% by mass or more, based on the total mass of these two components. It was found that high effectiveness as an inhalation powder is expected by setting the content to 90% by mass or less, 60% by mass or more and 85% by mass or less, and further 60% by mass or more and 80% by mass or less.
  • the intrapulmonary arrival rates of "FPF3" and “OE x FPF3" are 20% or more for all the formulations, and the HA25% formulation, that is, the formulation with a higher Ph content, the more. High inhalation characteristics were obtained.
  • the MMAD of 1-6 ⁇ m suggests that any nucleic acid-containing composition is suitable for inhalant application.
  • HA is decomposed into HA having various molecular weights in a physiological situation in the living body, and the physiological activity differs depending on each molecular weight. Gender is also fully conceivable. Therefore, gene expression was evaluated by a gas-liquid interface cell culture system (ALI) using A549 cells with the aim of searching for the optimum HA molecular weight in the nucleic acid-containing composition and optimizing the composition ratio of HA and the dispersion aid. rice field.
  • ALI gas-liquid interface cell culture system
  • the HA composition ratio is unified to 25%, and 73% of the dispersion aid L-Phennylaranine (Phe) is added, so that the molecular weight of HA affects gene expression in a state where the dispersibility of the powder is equalized. The impact was assessed.
  • Sample 7 As a reporter gene, pDNA (pCAG-Luc) encoding firefly luciferase was used.
  • Sample 8 (model drug) A fluorescent substance, Fluorescein sodium salt (FLNa; SIGMA-ALDRICH Co.), was used as a model drug for the powder fine particle preparation.
  • Sample 9 As excipients, 5 different molecular weights of HA (MW; 2 kDa (HA2 kDa; hyaluronan®)), ⁇ 5 kDa (HA5 kDa; microhyaluronic acid FCH), ⁇ 50 kDa (HA50 kDa; hyaluronic acid HA-LF5-A) ), 50 to 110 kDa (HA80 kDa; hyaluronic acid FCH-SU), 200 to 500 kDa (HA350 kDa; Hyabest® (S) LF-P)). HA of Kewpie Co., Ltd.
  • Sample 10 (dispersion aid) L-Phenylalanine (Phe; SIGMA-ALDRICH Co.) was used as a dispersion aid.
  • HA 50 kDa solvent Optimization of HA 50 kDa solvent
  • PBS Phosphate Buffered Saline
  • UPW UltraPure (registered trademark) DNase / RNase-Free Distilled Water
  • invitrogen registered trademark
  • the nucleic acid-containing composition was prepared by the SFD method shown in FIG. 31 as an example.
  • the sample solution was rapidly frozen by spraying it into liquid nitrogen (500 mL) 15 cm below the tip of the nozzle at 150 kPa. ..
  • the sample solution was continuously sprayed at 5 mL / min.
  • the obtained ice droplets are placed in a square dry chamber (DRC-1100 Tokyo Rika Kikai Co., Ltd.) connected to a freeze dryer (FDU-2110 Tokyo Rika Kikai Co., Ltd.) and dried under vacuum conditions for 24 hours.
  • the preparation of was obtained.
  • FIG. 32 shows the results of observing the particle shape of each nucleic acid-containing composition prepared under the above conditions by SEM.
  • pDNA / HA (UPW) and pDNA / HA (UPW + NaOH) were observed to have a hollow porous structure having a particle size of 5 to 10 ⁇ m, which is peculiar to the nucleic acid-containing composition prepared by SFD, but pDNA / HA (PBS). ), The moisture-absorbed particle structure was observed. From this result, it was judged that the conditions of pDNA / HA (UPW) and pDNA / HA (UPW + NaOH) were good.
  • the inventors have investigated changes in physicochemical properties of nucleic acid-containing compositions due to the addition of excipients and dispersion aids.
  • the pDNA structure after powder preparation was destroyed.
  • the pH of the solution in which HA50 kDa was dissolved in UPW was measured and found to be pH 2.6. Therefore, considering that the pDNA structure is unstable under acidic conditions of the HA solution, the solvent of the HA50 kDa solution of the nucleic acid-containing composition was (1) dissolved in PBS, (2) dissolved in UPW, and (3).
  • the sample solution prepared in three ways was pulverized, and then the redissolved solution was subjected to agarose gel electrophoresis to examine the structural stability of pDNA ( FIG. 34).
  • Agarose gel electrophoresis was performed on the redissolved solution of the nucleic acid-containing composition prepared by the SFD method (the nucleic acid-containing composition was redissolved by UPW so as to have the same concentration as the sample solution before SFD).
  • 6 ⁇ L (0.1 ⁇ g as pDNA) per sample was electrophoresed on a 0.6% agarose gel at 100 V and 30 mA for 120 minutes (electrophoresis tank AE-6530, power supply AE-8155, Atto Co., Ltd.).
  • a tris-acetylate-EDTA (TAE) buffer was used as the running buffer.
  • ⁇ / HindIIIdigest Loading Quick (registered trademark) DNA Size Markers, TOYOBO Life Science
  • EtBr Fuji Film Wako Pure Chemical Industries, Ltd.
  • Typhoon9000 variable image analyzer Typhoon9000
  • HA molecular weight dependence evaluation As a sample used in this example, a sample solution containing pDNA, HA and Ph of each molecular weight in the composition ratios shown in Table 13 was prepared. Further, as the sample used in this example, the pDNA aqueous solution in Table 13 was replaced with the FLNa aqueous solution, and the HA aqueous solution and Phe were mixed to prepare a sample solution (Table 14). Composition of sample solution (in 5.0 mL) for pDNA nucleic acid-containing composition (nucleic acid-containing composition) Composition of sample solution for FLNa-containing composition (in 5.0 mL)
  • agarose gel electrophoresis was performed on redissolved solutions of various nucleic acid-containing compositions having different HA molecular weights (FIG. 36).
  • S. C. And O. C. A band was detected at the position of, suggesting that the structure of pDNA is retained even after SFD pulverization, regardless of the molecular weight of HA.
  • Inhalation characterization was performed using ACI (Low volume air sampler, Andersen type, AN-200 type, Sibata Scientific Technology Co., Ltd.) (Fig. 37). ACI has multiple stages and allows detailed inhalation characterization.
  • the evaluation method is as follows: Approximately 1.0 mg of the sample is filled in No. 2 HPMC capsule (Qualicaps Co., Ltd.), and the flow rate (PFR) is 28.3 L / by Hitachi Rotary Babycon (Bevicon, 200RC-20C5, Hitachi Industrial Equipment Systems Co., Ltd.). Suction was performed at min. The suction time was 5 sec. As the suction device, a reverse with high suction resistance of Jethaler (registered trademark, Hitachi Automotive Systems Measurement Co., Ltd.) was used. The reverse pressure loss is 8.7 kPa, and the internal structure is shown in FIG. 38.
  • Stage 3 or later is defined as an intrapulmonary delivery region effective for inhalant application, and Stage 5 or later is defined as a deep lung delivery region where systemic action can be expected.
  • OE Output Efficiency:%
  • FPF3 and FPF5 Fine
  • the Particle Fraction:%) is expressed as OE ⁇ FPF3 (%) and OE ⁇ FPF5 (%), which indicate the proportion of the total recovered amount that reaches Stage 3 and Stage 5 or later, respectively.
  • MMAD was calculated using analysis software (AEROSOL particle density analogy system, Shibata Scientific Technology Co., Ltd.) based on the amount collected at each site from Stage 0 to Filter.
  • the HA composition ratio was unified to 25%, and a powder containing 73% of Ph, which is a dispersion aid, was added. Using.
  • the composition of the FLNa-containing composition shown in Table 14 has relatively high inhalation characteristics.
  • ACI was performed with two preparations using a molecular weight of 2 kDa and a molecular weight of 350 kDa, and it was confirmed that there was no difference in inhalation characteristics.
  • the nucleic acid-containing composition containing HA350 kDa had significantly lower FPF5 and larger MMAD than the nucleic acid-containing composition containing HA2kDa, but there was no significant difference between OE and FPF3 (FIGS. 39-41). ..
  • HA350 kDa had significantly lower FPF5 and larger MMAD than the nucleic acid-containing composition containing HA2kDa, but there was no significant difference between OE and FPF3 (FIGS. 39-41). ..
  • MW molecular weights
  • Integrated value of powder recovery rate of MMAD c and GSD c calculated by DIST function C NORM.
  • the integrated value D B ⁇ (1-R) + C ⁇ R of the powder recovery rate of MMAD f and GSD f calculated by the DIST function is defined as NORM.
  • S. Random variable E converted by INV function total value of (DA) 2 obtained for each stage
  • Buffer TE Endotoxin-free TE buffer, QIAGEN-filled nucleic acid composition 150
  • the nucleic acid-containing composition was dispersed and added onto Transwell® by releasing 0.25 mL of compressed air in the syringe at once from a height of 1 cm from the surface of the substance. Dispersion addition was performed after removing static electricity with a static eliminator. The nucleic acid-containing composition dissolved in Buffer TE on the surface of the Transwell® semipermeable membrane was recovered and then co-washed with 150 ⁇ L of Buffer TE again.
  • the total amount was adjusted to 1000 ⁇ L with Buffer TE, and the amount of pDNA was quantified by absorptiometry (detection wavelength; 258 nm) using GeneQuant100 (Central Scientific Trading Co., Ltd.) to calculate the recovery rate of the nucleic acid-containing composition. Since there is a possibility that Ph may be absorbed in measuring the absorbance, a calibration curve of each nucleic acid-containing composition was prepared to obtain a recovery rate.
  • A549 cells which are human-derived lung epithelial cancer cells, were purchased from CELL BANK (Research Institute of Physical and Chemical Research) and used. Roswell Park Memorial Institute (RPMI) 1640 medium was used as the A549 cell culture medium, and fetal bovine serum (FBS; 10% equivalent to the medium, Thermo Fisher Scientific Inc.), Pencillin- , 100 ⁇ g / mL streptomycin) was added respectively.
  • RPMI medium, Penicillin-Streptomycin, and Trypsin-EDTA used for passage are all described in SIGMA-ALDRICH Co., Ltd. I bought from. The cells were cultured in an incubator (37 ° C., relative humidity: 90%, CO 2 concentration: 5%) and passaged about twice a week.
  • A549 cells were seeded in Transwell® at a cell number / medium amount of 2 ⁇ 10 5 cells / 500 ⁇ L / well, and the medium on the mucosal side was removed from the 2nd day and cultured, and 4 to 10 days after seeding. Used in the experiment.
  • the nucleic acid-containing composition was dispersed and added to the mucosal side of Transwell (registered trademark) using a powder dispersion addition device in a clean bench in the same manner as in A above. Then, it was incubated at 37 ° C. in 5% CO 2 for 48 hours. After completion of the incubation, the medium was removed, the cells were lysed with 200 ⁇ L of Lysis buffer (0.05% Triton X-100, 2 mM EDTA, 0.1 M Tris, pH 7.8), frozen in liquid nitrogen and set at 37 ° C. Melting in a constant temperature bath was repeated alternately for 3 minutes each 3 times, and centrifuged at 13,000 ⁇ g for 7 minutes at 4 ° C.
  • Lysis buffer 0.05% Triton X-100, 2 mM EDTA, 0.1 M Tris, pH 7.8
  • RLU Relative Light Unit
  • the Bradford method was used to measure the amount of protein.
  • Bovine serum albumin (BSA, Fuji Film Wako Pure Chemical Industries, Ltd.) was used as a standard protein solution.
  • a sample solution obtained by diluting the above supernatant 10-fold and a standard protein were placed on a transparent 96-well plate (MICROTEST (registered trademark) Tissue Culture Plate, 96 Well, Flat Bottom with Low Exposure Lid, BD Falcon USA) 10 ⁇ m.
  • MICROTEST registered trademark
  • Tissue Culture Plate 96 Well, Flat Bottom with Low Exposure Lid, BD Falcon USA
  • the F-test is performed for the significant difference test between the two groups, and then the two-sided t-test is performed. Analyzed. It was assumed that a significant difference was observed when the p value was less than 0.05.
  • FIGS. 34 and 36 it was confirmed that there was no difference in the amount of nucleic acid-containing composition added to Transwell® in FIGS. 39-41 while maintaining the structure of pDNA stably even after pulverization by SFD.
  • Gene expression was compared due to the difference in the molecular weight of HA.
  • the gene expression was remarkably higher than that of HA having other molecular weights (Fig. 45).
  • a nucleic acid-containing composition was continuously prepared by SFD with the composition ratio shown in Table 15 using HA50 kDa. Then, the particle shape of each nucleic acid-containing composition was observed by SEM (Fig. 46). As a result, a hollow porous structure having a particle size of 5 to 10 ⁇ m, which is peculiar to the SFD preparation, was observed.
  • the FLNa-containing compositions shown in Table 16 were evaluated for inhalation properties by ACI. As a result, it was confirmed that all of the nucleic acid-containing compositions adhered to Throat in a large amount (Fig. 47). Further, the FLNa-containing compositions under the HA25% condition have significantly higher FPF3, OE ⁇ FPF3, FPF5 and OE ⁇ FPF5 than the FLNa-containing compositions having other composition ratios, and the higher the Ph content, the higher the dispersibility. The particle size became smaller and tended to reach deeper in the lung.
  • Each FLNa-containing composition had an OE of 80% or more, and FPF3 and OE ⁇ FPF3 maintained 20% (FIG. 48).
  • the MMAD of each FLNa-containing composition was 1 to 6 ⁇ m, suggesting that it has inhalation characteristics suitable for an inhaled nucleic acid-containing composition (FIG. 49).
  • the amount of various nucleic acid-containing compositions added was measured. As a result, as shown in FIG. 50, the recovery rate of each nucleic acid-containing composition was higher as the nucleic acid-containing composition contained more Phe. Therefore, the result of gene expression shall be corrected by the recovery rate of each nucleic acid-containing composition.
  • Gene expression was evaluated at different composition ratios in nucleic acid-containing compositions using HA having a molecular weight of 50 kDa as an excipient and Ph as a dispersion aid.
  • the recovery rate obtained in FIG. 39 was corrected as the gene expression level per 1 ⁇ g of pDNA of the nucleic acid-containing composition.
  • the nucleic acid-containing composition containing 73% of HA50 kDa showed significantly higher gene expression as compared with other composition ratios (Fig. 51).
  • the difference between the nucleic acid-containing composition containing 73% HA and the nucleic acid-containing composition containing 98% became smaller, but the nucleic acid-containing composition containing 73% was significantly more significant. It showed high gene expression (Fig. 52).
  • a nucleic acid-containing composition (SFD powder preparation) containing a plurality of tumor suppressor genes is prepared under the condition of containing 73% of HA50 kDa, and the presence or absence of a tumor suppressor effect is examined by introducing the tumor suppressor gene into cells. bottom.
  • Sample 11 As the tumor suppressor gene, pDNA (pCMV-p16INK4a) encoding the p16 gene and pDNA (pCMV-p53) encoding the p53 gene were used.
  • Sample 12 excipient
  • HA having a molecular weight of 50 kDa was used as an excipient.
  • Sample 13 (dispersion aid) L-Phenylalanine (Phe; SIGMA-ALDRICH Co.) was used as a dispersion aid.
  • ICG indocyanine green
  • FlNa fluorescein sodium salt
  • the SFD powder preparation was prepared by the SFD method. Using the two-fluid spray nozzle attached to the spray dryer (SD-1000, Tokyo Rika Kikai Co., Ltd.), the sample solution was rapidly frozen by spraying it into liquid nitrogen (500 mL) 15 cm below the tip of the nozzle at 150 kPa. .. The sample solution was continuously sprayed at 5 mL / min. The obtained ice droplets are placed in a square dry chamber (DRC-1100 Tokyo Rika Kikai Co., Ltd.) connected to a freeze dryer (FDU-2110 Tokyo Rika Kikai Co., Ltd.) and dried under vacuum conditions for 24 hours. SFD preparation of.
  • DRC-1100 Tokyo Rika Kikai Co., Ltd. connected to a freeze dryer (FDU-2110 Tokyo Rika Kikai Co., Ltd.) and dried under vacuum conditions for 24 hours.
  • a device for adding powder was prepared by connecting a 1 mL syringe (Terumo) and a three-way stopcock (L-type L-1, top).
  • the SFD powder preparation of 0.2 mg or less was packed in a P100 dispenser chip (Watson) and connected to the powder preparation addition device.
  • Double-sided tape was attached to the SEM sample table (horizontal 600154297, JEOL) and placed in a skirt made by making a hole in the bottom of a 5 mL tube (BIO-BIK).
  • the P100 dispenser tip of the device for adding the powder preparation was inserted into the hole of the skirt, 0.25 mL of air was compressed in the syringe, the three-way stopper was opened, and the SFD powder preparation containing ICG was sprayed on the sample table.
  • the SFD powder preparation sprayed on the sample table was coated with platinum (JFC-1600, JEOL) under the conditions of 30 mA and 90 sec, and observed using a scanning electron microscope (JSM-6060, JEOL).
  • the SFD powder preparation containing the gene showed a hollow porous particle morphology (Fig. 53).
  • Capsules (2S-LOK, Qualicaps) were filled with 1.0 mg of SFD powder formulation containing FlNa and set in a reverse inhaler (Jethaler Revase, Tokiko System Solutions).
  • the inhaler was connected to the ACI (AN-200, SIBATA SCIENTIFIC TECHNOLOGY) Throat and aspirated at 28.3 L / min for 5 seconds.
  • the SFD powder preparation deposited on each of the capsule, inhalation device, ACI wavelength and each Stage was washed and recovered with PBS, and the fluorescence intensity derived from FlNa of each recovered solution was measured using a multi-plate reader (Enspire®, Perkin Elmer).
  • the measurement was performed at an excitation wavelength of 490 nm / fluorescence wavelength of 515 nm, and the FlNa concentration was calculated.
  • the stage 3 and later are defined as the intrapulmonary delivery region effective for inhalant application, and the stage 5 and subsequent stages are defined as the deep lung delivery region where the action in peripheral lungs can be expected.
  • [SFD + p16] it was confirmed that particles having a size effective for inhalant application after stage 3 were included (FIG. 54).
  • the FPF3 calculated by the amount recovered from stage 3 or later (mg) / the amount recovered from Throat or later (mg) x100 was good, exceeding 20% (Fig. 55).
  • Transwell were seeded (R .Permeable Supports 12 mm Insert, 12 well plate 0.4 ⁇ m Polyester Membrane Tissue Culture Treated, Polystyrene, Corning) A549 cells or H2052 cells apical side of 2.0 x 10 5 cells / well .. After culturing for 2 days after sowing, only the medium on the apical side was removed and gas-liquid interfacial culture was started. 0.5 mg of the SFD powder formulation was packed in a P100 dispenser tip (Watson) and connected to a powder formulation addition device prepared by connecting a 1 mL syringe (Terumo) and a three-way active stopper (L-type L-1, top).
  • a P100 dispenser tip containing a powder formulation [SFD placebo], [SFD + p16] was inserted into the hole of the skirt, 0.25 mL of air was compressed in the syringe, the three-way stopcock was opened, and the cells on the apical side were sprayed.
  • the cells were subjected to gas-liquid interfacial culture for 24 hours, the cell surface was washed with PBS, the cells were detached and collected with trypsin / EDTA (Sigma), and the cells were counted by the following method.
  • the cells were washed twice with 2% FBS / PBS, and Goat anti-Labbit IgG Pacific Blue-labeled antibody (Invitrogen) diluted 500-fold with 2% FBS / PBS was added to the cells and reacted at room temperature in the dark for 30 minutes. After washing twice with PBS, cells were passed through a nylon mesh (3-3069 mesh opening 38 ⁇ m, AS ONE) and then analyzed with a cell analyzer (LSRFortessaX®-20, BD Biosciences). The results are shown in FIG. From this result, as a result of administering [SFD + p16] to A549 cells, the expression of p16 could be confirmed at the protein level.
  • SEQ ID NO: 1 is a Forward primer of p16 and SEQ ID NO: 2 is a Reverse primer of p16, which are separately described in the sequence listing.
  • SEQ ID NO: 3 is the Forward primer of HPRT1
  • SEQ ID NO: 4 is the Reverse primer of HPRT1.
  • the result using A549 cells is shown in FIG. 59, and the result using H2052 cells is shown in FIG. 60.
  • the HPRT1 gene was used as an endogenous control of expression.
  • p16 expression was hardly observed in the untreated group due to gene mutation.
  • the expression in the [SFD + p16] -administered group was confirmed to be about 70 times higher in 549 cells and about 120 times higher in H2052 cells than in the untreated group.
  • FBS final concentration 10%
  • penicillin final concentration 100 U / mL
  • streptomycin final concentration 100 ⁇ g / mL
  • BALB / c nude / nude mice 6 weeks old male (Japan SLC) were anesthetized with isoflurane, such that the 5 x 10 6 cells / 100 ⁇ L PBS / mouse, with 29G needle A549Luc cells from right orbital vein sac of mice It was injected with a syringe. Luciferin was nasally administered intrapulmonaryly 4 days after the cancer-bearing, and the luminescence intensity of the region of interest (ROI: length 1 cm, width 3 cm) corresponding to the lung was 2.5 x 10 5 p / sec / cm 2. A mouse showing / sr or more was used as a cancer-bearing model mouse. A 6-week-old male BALB / c nude / nude mouse (Japan SLC) that has not been treated is hereinafter referred to as a non-cancer-bearing mouse.
  • A549Luc cells Four days after the injection of A549Luc cells, three types of mixed anesthesia (medetomidin hydrochloride 0.3 mg / kg, midazolam 4 mg / kg, butorphanol tartrate 5 mg / kg mixed anesthesia) were given to mice that met the conditions for cancer-bearing model mice.
  • a cannula Polyethylen Tubing PE60 427416, BD
  • cut into a length of 4 cm was orally intratracheally intubated by intraperitoneal injection at mg / kg.
  • Luciferase-derived luminescence of mouse lungs was obtained by nasally administering 50 ⁇ L of Luciferin (Promega) 30 mg / mL PBS solution to mice nasally, and 10 minutes later in vivo under anesthesia with isoflurane (Fujifilm Wako Pure Chemical Industries). Detection and analysis were performed using an imaging system (IVIS (registered trademark): IVIS-SPECTRUM, Caliper Life Sciences) with an exposure time of 1 minute. Fluorescence derived from ICG in mouse lung was detected and analyzed using IVIS® using an excitation wavelength of 720 nm / fluorescence wavelength of 850 nm and an exposure time of 1 second.
  • IVIS registered trademark
  • lung sections were prepared for the cancer-bearing model mice (untreated and [SFD + p16] administered) and the non-cancer-bearing mice shown in FIG. 62 for IVIS measurement. , Immunostaining was performed. Frozen sections were prepared by the following method. After bleeding the mouse from the inferior vena cava, 20 mL of PBS and 20 mL of 4% PFA / PBS were injected from the left atrial appendage using a 26 G needle (Terumo) and a 20 mL syringe (Terumo) to perform perfusion fixation. ..
  • the removed lung was immersed in 4% PFA / PBS for 16 hours, followed by 30% sucrose replacement for 48 hours. O. C. T.
  • Each lung lobe was immersed in an embedding dish (Tissue-Tech Cliomold 3, SFJ) filled with a compound (Tissue-Tec (registered trademark), Sakura Finetech) and frozen at ⁇ 80 ° C.
  • a section having a thickness of 20 ⁇ m was prepared using a frozen section preparation device (Cliostar NX70, Thermo Fisher), adhered to a slide glass (MAS-02, Matsunami), and air-dried for 20 minutes or more.
  • the air-dried frozen sections were immersed in 10 mM citrate buffer (pH 6.0) and microwaved for 5 minutes to activate the antigen. After washing with PBS 3 times for 5 minutes, the slide was immersed in quenching buffer (0.2% hydrogen peroxide / methanol) at room temperature for 30 minutes. The slides were washed 3 times with PBS for 5 minutes, 1% bovine serum albumin / PBS was added dropwise to the sections, and the slides were allowed to stand in a light-shielded wet box at room temperature for 30 minutes for blocking.
  • quenching buffer (0.2% hydrogen peroxide / methanol
  • DPX Mountain for histology 06522, Sigma an en
  • FIG. 64 shows the entire lung at a reduced magnification. Similar to the data in FIG.
  • A549 lung cells (1.5 ⁇ 10 7 cells) were subcutaneously administered to nude mice (BALB / c-nu). Then, after confirming the growth of the tumor (about 7 days), the skin of the mouse was incised, and the tumor was sprayed with about 0.5 mg of SFD powder preparation ([SFD placebo], [SFD + p16]). Then, the skin was closed, the excision size was measured about 7 days later, and the tumor was weighed after being fixed with 4% PFA for 3 days.
  • the growth inhibitory effect when lung cancer cells after SFD spraying were transplanted into nude mice was examined.
  • the cultured A549 was collected and sprayed with about 0.5 mg each of [SFD placebo] and [SFD + p16].
  • the lung into cells 1.5 ⁇ 10 7 cells in nude mice were implanted subcutaneously. After 1 week, the tumor was removed, the size was measured, and the weight (g) of the tumor measured after fixing with 4% PFA for 3 days was evaluated.
  • the results are shown in FIG.
  • the amount of the tumor sprayed with [SFD placebo] was 0.055 g, whereas the weight of the tumor sprayed with [SFD + p16] was 0.044 g, and the average weight of the tumor sprayed with [SFD + p16] was lighter. There was a marked decrease in tumors.
  • Transwell were seeded (R .Permeable Supports 12 mm Insert, 12 well plate 0.4 ⁇ m Polyester Membrane Tissue Culture Treated, Polystyrene, Corning) 2.0 Cells apical side of x 10 5 cells / well. After culturing for 1 to 2 days after sowing, only the medium on the apical side was removed and gas-liquid interfacial culture was started. Powder prepared by filling 0.5 mg of SFD powder preparation ([SFD placebo], [SFD + p53]) in a P100 dispenser tip (Watson) and connecting a 1 mL syringe (Terumo) and a three-way stopper (L-type L-1, top).
  • SFD powder preparation [SFD placebo], [SFD + p53]
  • the primers shown in the table below were used for real-time PCR.
  • SEQ ID NO: 5 is a Forward primer of p53
  • SEQ ID NO: 6 is a Reverse primer of p53, which are separately described in the sequence listing.
  • SEQ ID NO: 7 is the Forward primer of PPIA
  • SEQ ID NO: 8 is the Reverse primer of PPIA.
  • Fig. 70 The results are shown in Fig. 70.
  • the PPIA gene was used as an endogenous control of expression.
  • p53 expression was hardly observed in the untreated group due to the gene mutation.
  • the expression in the [SFD + p53] -administered group was confirmed to be about 78 times higher than that in the untreated group.
  • nucleic acid-containing composition obtained by powder-forming HA as an excipient, Ph as a dispersion aid, and a tumor suppressor gene by SFD has an effect of suppressing the growth of cancer cells. bottom.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

分散性、肺送達性及び沈着性に優れる核酸含有組成物として、吸気によって分散・解砕可能であって、かつ、吸湿時に膨潤可能である、多孔質中空状の球状粒子の少なくとも一部に有効成分を含有する核酸含有組成物を提供する。

Description

核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法
 本開示は核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法に関する。
 肺は、局所作用薬のみならず消化管吸収性の低い全身作用が期待できる投与経路として注目されている。肺に直接かつ非侵襲的に薬物送達可能な吸入剤は、速やかな作用発現が期待でき、経口投与に比べて投与量も少ないため、全身性の副作用を軽減できるなどの長所を持っている(特許文献1)。そのため、今後は肺癌、肺高血圧症などの疾患への使用も期待されている。
 吸入剤は吸入エアゾール剤(METERED-DOSE INHALER;MDI)、吸入液剤(INHALATION SOLUTION)、吸入粉末剤(DRY POWDER INHALER;DPI)の3種に分類され、それぞれの吸入器により吸入方法は異なり、良好な治療効果を達成するためには適正に使用することが重要である。DPIでは一般に薬物粉末が患者の吸入努力により気中に崩壊・分散され、呼吸器系治療域へ送達されるため、粉末噴霧と吸入との同調が容易かつ噴射剤が不要で吸入手技が簡便である点及び吸入器が比較的小さく携帯性に優れる点から、近年研究開発が盛んに行われている。
特表2007-522246号公報
 DPIでは、粉末微粒子の分散に一定以上の吸入能力が必要となるため、使用可能な患者に制約があることが問題となる。また、強く吸引することが推奨されるために、結果として、口腔・咽頭などへの薬剤の付着が多い。肺癌、肺高血圧症などの疾患への適応を目指すならば、それらの問題を改善するための製剤設計が必要となる。
 そこで、本発明では、高い分散性、肺送達性及び沈着性を実現する核酸含有組成物を提供することを目的とする。
 本発明によれば、核酸と、アニオン性ポリマー又はそれらの塩であるアニオン性成分と、を含有する核酸含有組成物が得られる。
 本発明によれば、高い分散性、肺送達性及び沈着性を実現する、遺伝子治療薬や核酸医薬として機能する核酸含有組成物を提供することができる。
各種の組成物における粒子形状を示す図である。 各種の組成物における粒子形状を示す図である。 各種の組成物における粒子形状を示す図である。 各種アニオン性成分を含む核酸含有組成物による遺伝子発現量を示す図である。 各種アニオン性成分を含む核酸含有組成物による遺伝子発現量を示す図である。 粉末状の核酸含有組成物と液状の核酸含有組成物(いずれも低分子量ヒアルロン酸含有)とによる遺伝子発現レベルの比較結果を示す図である。 粉末状の核酸含有組成物と液状の核酸含有組成物(いずれも高分子量ヒアルロン酸含有)とによる遺伝子発現レベルの比較結果を示す図である。 低分子量ヒアルロン酸と疎水性アミノ酸との組合せと遺伝子発現量との関係を示す図である。上段及び下段は、それぞれAUC及びLUCに基づく結果を示す。 高分子量ヒアルロン酸と疎水性アミノ酸との組合せと遺伝子発現レベルとの関係を示す図である。上段及び下段は、それぞれAUC及びLUCに基づく結果を示す。 核酸含有組成物と溶液組成物とによる遺伝子発現量の比較結果を示す図である。 疎水性アミノ酸の吸入特性に及ぼす影響を示す図である。 各種態様の核酸含有組成物のSEM観察結果を示す図である。 各種態様の核酸含有組成物によるin vivoにおける遺伝子発現効果を示す図である。 siRNAを含む核酸含有組成物によるin vitroにおける遺伝子発現抑制効果を示す図である。 siRNAを含む核酸含有組成物によるin vivoにおける遺伝子発現抑制効果を示す図である。 アンダーセンカスケードインパクター(ACI)による吸入特性評価の概要を示す図である。 実施例9で調製した核酸含有組成物の電子顕微鏡(SEM)観察結果を示す図である。 実施例9で調製した核酸含有組成物の粒度分布とD50径を示す図である。 実施例9で調製した核酸含有組成物のACI法による各部位での回収率を示す図である。 実施例9で調製した核酸含有組成物の吸入特性の指標を示す図である。 実施例9で調製した核酸含有組成物の空気力学的質量中位径(MMAD)、幾何標準偏差(GSD)、崩壊率(R)を示す図である。 動的水分吸着測定装置による耐湿性及び吸湿性の測定結果を示す図である。 核酸含有組成物の作用態様の概要を示す図である。 賦形剤としてヒアルロン酸/ロイシンを用いた核酸含有組成物の保存条件と吸入特性評価との関係を示す図である。 賦形剤としてヒアルロン酸のみを用いた核酸含有組成物の保存条件と吸入特性評価との関係を示す図である。 賦形剤としてヒアルロン酸/ロイシン及びヒアルロン酸のみを用いた核酸含有組成物の保存条件と有効性(マウスに吸引投与時の遺伝子発現)との関係を示す図である。 賦形剤としてヒアルロン酸/フェニルアラニンを用いた核酸含有組成物の遺伝子発現(in vitro)に及ぼすヒアルロン酸の分子量の影響を示す図である。 賦形剤として重量平均分子量50000のヒアルロン酸(ナトリウム塩)とフェニルアラニンとを各種の比率で用いた核酸含有組成物の遺伝子発現(インビトロ)の評価結果を示す図である。 賦形剤として重量平均分子量50000のヒアルロン酸(ナトリウム塩)とフェニルアラニンを用いたときの核酸含有組成物の沈着率、吸引特性及びMMADの評価結果を示す図である。 賦形剤として重量平均分子量50000のヒアルロン酸(ナトリウム塩)とフェニルアラニンを用いたときの有効性を推測する図である。 SFD法の概略図と装置操作条件を示す図である。 各核酸含有組成物のSEM画像である。 pDNAの構造変化を示す図である。 アガロースゲル電気泳動の結果を示す図である。 各核酸含有組成物のSEM画像である。 アガロースゲル電気泳動の結果を示す他の図である。 ACIの概略図である。 吸入デバイス (Jethaler(登録商標))リバース型の内部構造を示す図である。 各ステージ沈着パターンを示す図である。 吸入特性評価の指標を示す図である。 MMAD算出の結果を示す図である。 対数正規プロットに基づく崩壊性評価概念図を示す図である。 粉末分散添加デバイスを示す図である。 Transwell(登録商標)からの核酸含有組成物の回収率の評価の結果を示す図である。 A549細胞を用いたin vitro遺伝子発現評価の結果を示す図である。 各核酸含有組成物のSEM画像を示すその他の図である。 吸入特性評価の結果を示す図である。 吸入特性評価の指標を示す他の図である。 MMAD算出の結果を示す他の図である。 Transwell(登録商標)からの核酸含有組成物の回収率の評価の結果を示す他の図である。 A549細胞を用いたin vitro遺伝子発現評価の結果を示す他の図である。 A549細胞を用いたin vitro遺伝子発現評価の結果を示す他の図である。 実施例18の条件で製造した核酸含有組成物の、SEM観察結果を示す図である。 実施例18の条件で製造した核酸含有組成物の、ACIにおける各ステージ沈着パターンを示す図である。 実施例18の条件で製造した核酸含有組成物の、ACIにおけるステージ3以降からの回収量を示す図である。 実施例18のA549細胞を用いた細胞生存率の結果を示す図である。 実施例18のH2052細胞を用いた細胞生存率の結果を示す図である。 p16の発現の結果を示す図である。 p16の発現の結果を示す他の図である。 p16の発現の結果を示す他の図である。 核酸含有組成物を用いた、肺Luciferase発光強度の変化を示す図である。 核酸含有組成物を用いた、肺Luciferase発光強度を示す図である。 核酸含有組成物の、がん細胞の増殖抑制効果を示すin vivo試験の図である。 核酸含有組成物の、がん細胞の増殖抑制効果を示すin vivo試験の他の図である。 核酸含有組成物の、がん細胞の増殖抑制効果を示すin vivo試験の他の図である。 核酸含有組成物の、がん細胞の増殖抑制効果を示すin vivo試験の他の図である。 実施例18のH1299細胞を用いた細胞生存率の結果を示す図である。 実施例18のT24細胞を用いた細胞生存率の結果を示す図である。 実施例18のUMUC3細胞を用いた細胞生存率の結果を示す図である。 p53の発現の結果を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、実施形態に示される構成要素のすべてが、本発明の必須の構成要素であるとは限らない。
 本発明の実施形態の内容を列記して説明する。本発明は、以下のような構成を備える。
 [項目1]
 固体物質としての核酸と、アニオン性ポリマー又はそれらの塩であるアニオン性成分と、を含有する核酸含有組成物。
 [項目2]
 前記核酸は、ネイキッド核酸である、項目1に記載の核酸含有組成物。
 [項目3]
 カチオン性キャリアを含有しない、項目1又は2に記載の核酸含有組成物。
 [項目4]
 前記核酸と前記アニオン性成分を含む多孔質粒子を含む、項目1~3のいずれかに記載の核酸含有組成物。
 [項目5]
 前記アニオン性成分は、ヒアルロン酸又はその塩である、項目1~4のいずれかに記載の核酸含有組成物。
 [項目6]
 前記ヒアルロン酸又はその塩の重量平均分子量は、30,000以上70,000以下である、項目5に記載の核酸含有組成物。
 [項目7]
 さらに、1又は2以上の疎水性アミノ酸を含有する、項目1~6のいずれかに記載の核酸含有組成物。
 [項目8]
 前記疎水性アミノ酸は、ロイシン、フェニルアラニン及びイソロイシンからなる群から選択される、項目7に記載の核酸含有組成物。
 [項目9]
 重量平均分子量が30,000以上70,000以下のヒアルロン酸又はその塩とフェニルアラニンを含有し、これら2成分の総質量に対して、前記ヒアルロン酸又はその塩を、40質量%以上85質量%以下含有する、項目5~8のいずれかに記載の核酸含有組成物。
 [項目10]
 実質的に水を利用しないで細胞に供給するための組成物である、項目1~9のいずれかに記載の核酸含有組成物。
 [項目11]
 固相である、項目1~10のいずれかに記載の核酸含有組成物。
 [項目12]
 哺乳類細胞に対する遺伝子導入用である、項目1~11のいずれかに記載の核酸含有組成物。
 [項目13]
 マンニトール及びトレハロースを含有する、項目1~12のいずれかに記載の核酸含有組成物。
 [項目14]
 吸気によって分散・解砕可能であって、かつ、吸湿時に膨潤可能である、多孔質中空状の球状粒子である、項目1~13のいずれかに記載の核酸含有組成物。
 [項目15]
 前記球状粒子の幾何学的粒子径分布のピーク粒子径は、1μm以上100μm以下である、項目14に記載の核酸含有組成物。
 [項目16]
 哺乳類に対する遺伝子発現用である、項目1~15のいずれかに記載の核酸含有組成物。
 [項目17]
 哺乳類における遺伝子抑制用である、項目1~15のいずれかに記載の核酸含有組成物。
 [項目18]
 抗がん効果を持つ、項目1~17のいずれかに記載の核酸含有組成物。
 [項目19]
 核酸含有組成物の製造方法であって、
 核酸と、アニオン性ポリマー又はその塩であるアニオン性成分と、を含有する溶液を、凍結乾燥する乾燥工程、
を備える、製造方法。
 [項目20]
 前記乾燥工程は、噴霧凍結乾燥による工程である、項目19に記載の製造方法。
 [項目21]
 前記乾燥工程において、ロイシン、マンニトール及びトレハロースを用いる、項目19又は20に記載の方法。
 [項目22]
 生体外の細胞に対して、項目1~18のいずれかに記載の核酸含有組成物を用いて、前記核酸を導入する工程、
を備える、核酸導入方法。
 本明細書の開示は、核酸含有組成物に関する。本明細書に開示される核酸含有組成物によれば、吸気によって、分散し解砕するため分散性及び肺到達性に優れ、しかも、高湿度環境下で吸湿膨潤して、肺において付着凝集性と抗がん効果を含む、遺伝子治療薬や核酸医薬としての機能を発揮できる。
 また、本明細書に開示される核酸含有組成物の評価方法によれば、分散性、肺到達性及び付着性に優れる核酸含有組成物を評価し、その特性を管理することができる。
 また、本明細書に開示される核酸含有組成物によれば、肺及びその周辺器官を標的として、肺における疾患、障害の予防及び治療に有用な医薬組成物を提供できる。
 以下、本開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された「核酸含有組成物及びその評価方法」等を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
(核酸含有組成物)
 本明細書に開示される核酸含有組成物(以下、単に、本粉末剤ともいう。)は、吸気によって分散・解砕可能であって、かつ、吸湿時に膨潤可能である、多孔質中空状の球状粒子の少なくとも一部に遺伝子治療薬や核酸医薬として機能する核酸、有効成分を含有することができる。以下、こうした本粉末剤の、各種特性及びその評価方法について説明し、次いで、本粉末剤の製造方法について説明する。
(本粉末剤の粒子径)
 本粉末剤の粒子径は、乾式レーザー回折法にて測定することができる。累積粒度分布曲線から、50%粒子径(D50)を算出することができる。例えば、レーザーマイクロンサイザー(LMS-2000E)又はその同等装置を用いて測定することができる。本粉末剤の50%粒子径は、特に限定するものではないが、飛散性や分散性を考慮すると、例えば、1μm以上100μm以下、また例えば、2μm以上50μm以下、5μm以上20μm以下などとすることができる。また例えば、5μm以上20μm以下、また例えば、5μm以上15μm以下などとすることができる。
(本粉末剤の粒子形状)
 本粉末剤の粒子形状は、走査型電子顕微鏡で観察することができる。観察にあたっては、例えば、本粉末剤の分散添加に用いられる粉末分散添加デバイスを用いて試料台上に噴霧後、SEM観察に適するように、プラチナコーティングを必要に応じて行い、観察する。粉末分散添加デバイス及び噴霧方法としては、例えば、後述する実施例において用いるものを採用することができるが、これに限定されない。
 本粉末剤の粒子径形状は、特に限定するものではないが、飛散性や分散性等を考慮すると、球状であることが好ましい。また、飛散性や膨潤性等を考慮すると多孔質であることが好ましい。さらに、中空構造を有していることが好ましい。典型的には、本粉末剤は、本粉末剤の有効成分や賦形剤などの構成成分からなる隔壁によって水の昇華によって生じる多数の孔部(中空部)が区画される、多数の孔部(中空部)を有する多孔質球状粒子などとすることができる。
(吸入特性)
 本粉末剤は、吸気(口腔から気管支への吸引時のガス流)によって呼吸器に送達されるが、アンダーセンカスケードインパクター(ACI)法により評価することで、その場合の特性(吸入特性)、すなわち、本粉末剤の分散性、送達性や崩壊性を評価できる。分散性、送達性及び崩壊性はそれぞれ独立の特性であるが相互に関連している。
(アンダーセンカスケードインパクター(ACI)法による評価方法)
 本明細書において、ACI法とは、第17改正日本薬局方第一追補一般試験法6.15吸入剤の空気力学的粒度測定法 5.2 アンダーセンカスケードインパクター法(装置2)に記載の測定装置を用いる。プレセパレーターを適宜用いることができる。測定装置としては、例えば、ローボリウム・エアーサンプラー、アンダーセンタイプ、AN-200型、柴田科学株式会社製の装置が挙げられる。
 測定装置の概要及び測定方法の一例を図16に示す。図16に示すように、測定装置、導入部分であるデバイス、スロート、ステージ0からステージ7の8段階のステージと最下段のフィルターを備えている。各ステージは、フィルター構造を有し、下方に向かってより小さい空気力学的粒子径の粒子を分級し捕捉できるように構成されている。各ステージで分級される粒子の粒子径(μm)は、吸引量が28.3L/minのときのカットオフ径として、例えば、図16に示す径を採用することができる。図16には、各ステージに対応する呼吸器官部位も併せて記載する。
 ACI法による本粉末剤の評価は、上記一般試験法5.2 アンダーセンカスケードインパクター法(装置2)の5.2.2吸入粉末剤の測定手順に準ずることができる。すなわち、毎分28.3Lの流量で、空気量4L、として実施することができる。なお、吸入デバイスにより、吸入抵抗も適宜選択される。
 測定後に、導入に用いたカプセル、デバイス、スロート、各ステージ及びフィルター上の本粉末剤(粒子又は有効成分)の質量を測定する。本粉末剤量の測定は、有効成分を定量的に検出するほか、例えば、評価目的のために粒子に適当な標識を付与してその標識を測定することによっても実施できる。有効成分の定量は当業者であれば必要に応じて実施できるし、こうした標識の利用及び検出についても当業者において周知である。
(分散性及び送達特性)
 本粉末剤の分散性及び送達性について、以下の式を用いて得られる数値等を指標として評価することができる。なお、本明細書においては、ステージ3以降を吸入剤応用に有効な肺内送達領域とし、ステージ5以降を肺末梢での作用が期待できる肺深部送達領域とする。
 デバイスからの放出率であるOE(OUTPUT EFFICIENCY:%)を、以下の式(1)で算出する。
 また、デバイスから放出された本粉末剤のうちステージ3及びステージ5以降に到達した割合を示すFPFSTAGE3及びFPFSTAGE5(FINE PARTICLE FRACTION:%)をそれぞれ式(2)、(3)より算出できる。また、全回収量のうちステージ5以降に到達した割合を示すOE×FPFSTAGE5(%)を式(4)より算出できる。
OE(%)=回収量T(ΜG)/全回収量(ΜG)×100       (1)
(ただし、回収量Tは、スロート以降からの回収量である。)
FPFSTAGE 3(%)(FPF3)
=ステージ3以降からの回収量(ΜG)/回収量T(ΜG)×100   (2)
FPFSTAGE5(%)(FPF5)
=ステージ5以降からの回収量(ΜG)/回収量T(ΜG)×100   (3)
OE×FPFSTAGE5(%)
=ステージ5以降からの回収量(ΜG)/全回収量(ΜG)×100   (4)
 OEは分散性の指標となり、FPF3は、肺内送達性の指標、FPF5は肺深部送達性の指標値となる。
 また、各ステージは、呼吸器部位に対応させることができることから、測定装置からの全回収量に対する装置における各部位や各ステージにおける本粉末剤の回収量の割合(回収率%)は、それぞれに対応する呼吸器の部位への送達率の指標として用いることができる。
 本粉末剤は、ACI法による吸入特性評価において、例えば、OEが80%以上とすることができる。80%以上であると、放出率が良好であるといえるからである。OEは、また例えば同85%以上であり、また例えば同90%以上であり、また例えば同95%以上である。
 また、本粉末剤は、ACI法による吸入特性評価において、例えば、FPF3が20%以上とすることができ、また例えば、同30%以上、また例えば、同40%以上とすることができる。例えば、40%以上であると肺送達率が極めて良好であるといえるからである。また例えば、同50%以上であり、また例えば、同60%以上であり、また例えば、同70%以上であり、また例えば、同80%以上であり、また例えば、同90%以上である。なお、本粉末剤の有効成分や用途によっては、FPF3が20%以上でも十分である場合もある。
 また、本粉末剤は、ACI法における吸入特性評価において、FPF5が、例えば、10%以上、また例えば、同15%以上、また例えば、20%以上、また例えば、同25%以上、また例えば同30%以上とすることができる。30%以上であると肺深部送達率が極めて良好であるといえるからである。FPF5は、また例えば、40%以上であり、また例えば、50%以上であり、また例えば、55%以上であり、また例えば、60%以上であり、また例えば、65%以上である。なお、本粉末剤の有効成分や用途によっては、FPF5が10%以上でも十分である場合もある。
 本粉末剤は、ACI法による吸入特性評価において、ステージ2~4のいずれかとフィルターとにおいて回収率のピークを備えることができる。かかる回収率特性を有することで、本粉末剤が解砕性ないし崩壊性に優れているほか、吸湿膨潤性に優れており、肺深部送達性に優れているといえるからである。典型的には、ステージ3とフィルターに回収率のピークを備えることができる。また、典型的には、フィルターにおける回収率のピークが他方のピークよりも大きく、例えば、30%以上大きく、また例えば40%以上大きい。
(崩壊性)
 本発明者らによれば、ACI法によって本粉末剤の崩壊性を評価することができる。本粉末剤の崩壊性は、本粉末剤の崩壊率と空気力学的質量中位径とから求めることができる。
 こうした特性評価が本粉末剤において有用なのは、本粉末剤は、吸引によって、その一部が崩壊し、当初の大きさの粒子の一部が崩壊した粒子が生じ、当初の大きさの粒子と崩壊粒子とが混在することになるからと推論される。この推論の概要を図23に示す。図23に示すように、当初の大きさの粒子が吸入気流によって一部が崩壊し、比較的大きなままの粒子は、例えば、肺の気管支近傍に付着し、崩壊した小さい粒径の粒子はさらに肺の深部にまで流入することとなる。
 粉体の粒度分布は経験的に対数正規分布に従い、ステージごとの回収率の積算値をカットオフ径の対数値に対してプロットすると直線が得られ、50%粒子径をMMAD、(84.3%粒子径)/(50%粒子径)を幾何標準偏差(GSD)とすることができる。本粉末剤は、対数正規プロットが直線とならず、曲線となるという特性を有しているといえる。
 本明細書においては、粒子径が大きい粉体(空気力学的質量中位径MMAD及びその幾何標準偏差GSDを有する。)と小さい粉体(空気力学的質量中位径MMAD及び幾何標準偏差GSDを有する。)が比率(1-R):R(崩壊率)で存在すると考え、崩壊率R及び空気力学的質量中位径MMAD及びその幾何標準偏差GSDを求める。
(崩壊率及び空気力学的質量中位径)
 ACI法によって得られた、8つの測定点(ステージ1~フィルター)の回収率(放出量に対する%)の積算値から、各ステージつき、下記A~Dの値を求め,Eが最小になるような、R、MMAD、GSD、MMAD、GSDを求める(表1参照)。なお、A~D及びEが最小となるような各数値の算出には、例えば表計算ソフトであるEXCEL(マイクロソフト株式会社)の下記関数及びソルバー機能などを用いることができる。なお、カットオフ値としては、図16に示す数値を用いた。
Figure JPOXMLDOC01-appb-T000001
A=ステージごとの回収率の積算値(%)をNORM.S.INV関数により変換した確率変数
B=NORM.DIST関数により算出した粒径の大きい粒子(MMAD及びGSD)の回収率の積算値
C=NORM.DIST関数により算出した粒径の小さい粒子(MMAD及びGSD)の粉体の回収率の積算値
D=B×(1-R)+C×Rの値をNORM.S.INV関数により変換した確率変数
E=ステージごとに求めた(D-A)2の合計値
 以上のことから、本粉末剤は、ACI法による吸入特性評価において、上記の条件で算出される空気力学的質量中位径MMAD(第1の空気力学的質量中位径)及び前記第1の空気力学的質量中位径よりも小さい第2の空気力学的質量中位径MMAD(第2の空気力学的質量中位径)を有することができるといえる。
 また、本粉末剤は、第2の空気力学的質量中位径を有する粉体の質量の全粉体(第1及び第2の空気力学的質量中位径を有する粉体)の総質量に対する比率(%)(崩壊率)が、例えば40%以上とすることができる。40%以上であると肺深部送達率が高いといるからである。崩壊率は、また例えば、44%以上であり、また例えば、50%以上であり、また例えば、55%以上であり、また例えば、60%以上である。
(吸湿性・膨潤性)
 本粉末剤は、また、動的水分吸着測定法において、37℃で50%RH~95%RHまで変化させたとき、例えば、70%RHでの質量変化率が2%以下とすることができる。2%以下であると、吸入前において十分な耐湿性を備えるといえるからである。また例えば、質量変化率は1.5%以下であり、また例えば、同1%以下である。
 また例えば、95%RHでの質量変化率が8%以上とすることができる。8%以上であると吸湿しやすいからである。かかる質量変化率は、また例えば、9%以上であり、また例えば、10%以上であり、また例えば、11%以上である。
 動的水分吸着測定法とは、設定した温湿度環境における水分の吸脱着に伴う天秤上の試料の質量変化を秒スケールでモニタリングする動的水分吸着測定装置(DVS:DYNAMIC VAPOR SORPTION;DVS ADVANTAGE、SURFACE MEASUREMENT SYSTEMS)を用いる方法である。吸入から気道内、そして高湿度の肺深部での耐吸湿性及び吸湿成長の評価が可能である。本明細書においては、吸入前の環境を『温度37℃、相対湿度(RH)50%(絶対湿度:6.903G/m)』、吸入後の肺内環境を『温度37℃、95%RH(絶対湿度:41.62G/m)』として、評価することができる。
 なお、吸湿・膨潤性については、通常の条件(すなわち、乾燥条件、40%RH以下程度)で、ACI法で評価後、各ステージ上の粒子を乾燥時粒子として採取、その後、加湿空気(例えば90%RH以上)を吸引し、その後、各ステージ上の粒子を加湿時粒子として採取、これらの粒子をそれぞれSEM等で粒子形状を観察することにより、吸湿性及び膨潤性を評価できる。
 あるいは、ACI法において、デバイスとスロートとの間に、乾湿条件調節のためのボックスを配置し、かかるボックスを乾燥条件及び加湿条件に設定する以外は、同一条件でACI法を実施する。この結果得られる各ステージの回収率を評価することで、粒子の吸湿性及び膨張性を評価できる。
 さらにまた、走査型電子顕微鏡の試料台に本粉末剤を散布後、37℃の水浴上に短時間(例えば数秒~数十秒以内)曝露し、SEM観察する。水蒸気曝露前後の粒子形状の変化から吸湿性及び膨張性を評価できる。
 図8に示すように、適切な吸湿・膨潤性を備えることにより、崩壊性を確保できるとともに、吸入時に崩壊後に、気道等において吸湿・膨潤することで肺深部に沈着することができる。
 本粉末剤は、以上説明した特性の1又は2以上の指標において、有利な特性を備えることができる。こうした本粉末剤は分散性、肺送達性及び沈着性に優れ、遺伝子治療薬や核酸医薬として機能する核酸含有組成物として有用である。
(本粉末剤の組成及びその製造方法)
 本粉末剤は、概して、医薬用を意図しており、薬学上許容される賦形剤を含有することができる。かかる賦形剤として特に限定するものではないが、例えば、ロイシン、マンニトール及びトレハロースから選択される1種又は2種以上を含有することができる。好ましくは、3種類を用いる。これら3種の賦形剤は、それぞれ、本粉末剤の、上記した有利な特性に貢献することができる。ロイシン、マンニトール及びトレハロースは、特に限定するものではないが、いずれも天然型、すなわち、L-ロイシン、D-(-)-マンニトール、D-(+)-トレハロースを用いることができる。
 例えば、ロイシンは、耐吸湿性及び高分散性に貢献することができる。これについては、本発明者らは、既に報告している(CHEM. PHARM. BULL. 64, 239-245(2016))。マンニトールは、崩壊性に貢献することができる。トレハロースは、吸湿・膨潤性に貢献することができる。マンニトールとトレハロースは、高湿度下での吸湿・膨潤性に貢献することができる。したがって、これらの3者を適宜組み合わせることにより、保存時においては耐吸湿性に優れ、吸引時の分散性及び崩壊性が良好で、肺内に相当する高湿度環境下では、吸湿膨潤性に優れる製剤を提供することができる。
 ロイシン、マンニトール及びトレハロースの本粉末剤における含有量は、特に限定するものではないが、例えば、マンニトール:トレハロース:ロイシンの質量比が、0以上10以下:0以上5以下:85以上100以下などとすることができる。好ましくは、0超10以下:0超5以下:85以上100以下であり、また好ましくは、5以上10以下:1以上5以下:85以上94以下などとすることができる。なお、本粉末剤は、上記した賦形剤のほか、公知の賦形剤を適宜用いることができる。
(アニオン性成分)
 本粉末剤は、また、賦形剤として、アニオン性ポリマー又はその塩であるアニオン性成分を有していてもよい。ア二オン性成分は、必ずしも明らかではないが、固体物質である有効成分として核酸と併存させることで、核酸の細胞への導入効率を高めることができると推論される。また、核酸を含む本粉末剤を噴霧凍結乾燥などで乾燥するときにおいて併存させることで、核酸の生物活性の維持に寄与することが推論される。こうしたアニオン成分及びその有用性については、本発明者らによる特開2018-11588号公報に開示されている。
 アニオン性ポリマーとしては、特に限定するものではないが、分子中にアニオン性基を含む、負に荷電された、分子量が500~400万程度の天然由来又は合成ポリマーが挙げられる。アニオン性基は、特に限定しないが、1分子中に複数、好ましくは5個以上有するポリマーを使用することができ、このような官能基としては、例えばカルボキシル基、-OSO3H基、-SO3H基、リン酸基が挙げられる。なお、このようなアニオン性ポリマーとしては、両イオン性ポリマーも含まれる。
 アニオン性ポリマーとしては、より具体的には、アニオン性基を有する多糖類又はその誘導体;アニオン性基を側鎖に有するアミノ酸残基を含むポリペプチド;カルボキシル側鎖を持つPEG誘導体;アニオン性基を有する合成ポリマー等が挙げられる。
 アニオン性基を有する多糖類又はその誘導体としては、グルコサミノグリカンが挙げられる。かかるグルコサミノグリカンの分子量は、好ましくは1000~400万、より好ましくは4000~300万である。グルコサミノグリカンは、具体的には、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、カルボキシメチルセルロース、ケラタン硫酸、ヘパリン、デルマタン硫酸等が挙げられる。なかでも、ヒアルロン酸は、核酸導入や保護に優れた寄与が推測される。ヒアルロン酸を始めとする各種グルコサミノグリカンの誘導体としては、ポリエチレングリコール、ペプチド、糖、蛋白質、ヨウ酸、抗体又はその一部などを導入することによって得られるものが挙げられるほか、スペルミン、スペルミジン等を導入し、プラスに荷電した部分を持つ両イオン性の誘導体等が挙げられる。
 ヒアルロン酸又はその塩は、特にその由来を問わないで、広い範囲の分子量のヒアルロン酸又はその塩を用いることができる。例えば、ヒアルロン酸の平均分子量(典型的には、重量平均分子量)が5,000以下(未満)であっても好適であり、平均分子量が10,000以上であってもよく、20,000以上であってもよく、さらには、30,000以上であってもよい。また、平均分子量は、40,000以上であってもよい。また、上限も特に限定するものではないが、例えば、平均分子量は、200,000以下であってもよく、150,000以下であってもよい。また、例えば、平均分子量が50,000以上110,000以下であっても好適に用いることができる。こうしたヒアルロン酸又はその塩(例えば、ナトリウム塩)としては、例えば、FCH-SU(分子量5万から11万)やマイクロヒアルロン酸FCH(分子量5000以下(又は未満)(いずれも、キッコーマンバイオケミファ社製)等を適宜用いることができる。
 ヒアルロン酸の重量平均分子量が、15,000以上40,000以下であることが好適である。こうしたヒアルロン酸又はその塩を用いることで、siRNAなどのネイキッド核酸の導入効率を高めることができる場合がある。
 ヒアルロン酸の重量平均分子量は、30,000以上70,000以下であってもよく、また、40,000以上60,000以下であってもよい。かかるヒアルロン酸又はその塩を用いることで、有効成分としての核酸の生物活性(例えば、核酸が発現カセットの場合にはその発現量等)を十分に高く発揮できるとともに、適切な吸入特性を発揮することができる。
 ヒアルロン酸の平均分子量は、例えば、サイズ排除クロマトグラフィーと多角度光散乱検出器を組み合わせる方法(SEC/MALS、例えば、「国立医薬品食品衛生研究所報告」,2003年,121巻,P.30-33)やMORGAN-ELSON法とCARBAZOL硫酸法の組み合わせ等により求めることができる(特許文献  特開2009-155486号公報参照)。好ましくは、SEC/MALSを用いる。
 アニオン性基を側鎖に有するアミノ酸残基を含むポリペプチドとしては、好ましくは500~100万の分子量を有するペプチドが挙げられる。このようなポリペプチドとしては、具体的にはポリグルタミン酸、ポリアスパラギン酸などを例示することができる。
 カルボキシル側鎖を持つPEG誘導体としては、PEG1分子当たりカルボキシル側鎖を複数、好ましくは5個以上有する、500以上、好ましくは2,000以上、より好ましくは4,000~40,000の分子量を有するPEG誘導体が挙げられる。
 アニオン性基を有する合成ポリマーとしては、1分子当たり複数、好ましくは5個以上のアニオン性基を有するポリマー又はコポリマーであって、好ましくは500~400万の分子量を有するポリマー又はコポリマーである。このようなポリマー又はコポリマーとしては、具体的には分子量1000~300万のアクリル酸又はメタクリル酸のポリマー又はコポリマー、あるいはポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ-L-リジン等が挙げられる。
 アニオン性ポリマーの塩としては、例えば、カリウム、ナトリウムなどのアルカリ金属の塩のほか、カルシウム、マグネシウム等のアルカリ土類金属の塩、アンモニウム塩等が挙げられる。用いるアニオン性ポリマーに応じて適宜その塩が選択される。
 本粉末剤においては、賦形剤として、各種態様(すなわち、ポリマーの種類、分子量、塩の種類等)のアニオン性成分を1種又は2種以上を適宜組み合わせて使用することができる。本粉末剤に用いるアニオン性成分は、後述するように、固体物質としての核酸の安定化、細胞への導入、細胞における遺伝子発現又は抑制などの核酸固有の機能発現等を向上させることができるものであれば適宜商業的に入手し、あるいは必要に応じて人工的に合成し、あるいは適宜組み合わせて用いることができる。
 本粉末剤における、核酸とアニオン性成分との配合比率は、特に限定するものではなく、アニオン性成分の種類や後述する分散補助剤的に作用する賦形剤の存否等にもよるが、例えば、核酸1質量部に対して、5質量部以上100質量部以下とすることができる。より好ましくは同5質量部以上50質量部以下である。また例えば、同25質量部以上45質量部以下であり、また例えば、同30質量部以上43質量部以下であり、また例えば、25質量部以上40質量部以下であり、また例えば、同30質量部以上43質量部以下である。
(疎水性アミノ酸)
 本粉末剤は、さらに、賦形剤として、1又は2以上の疎水性アミノ酸を含有していてもよい。かかるアミノ酸を含有していると、本粉末剤を細胞に供給する際の、分散性、吸入投与に際しての吸入特性などを向上させることができると考えられる。かかる疎水性アミノ酸及びその有用性については、本発明者らによる特開2018-11588に開示されている。
 疎水性アミノ酸としては、ロイシン、イソロイシン、バリン、グリシン、プロリン、アラニン、トリプトファン、フェニルアラニン及びメチオニン等が挙げられる。なかでも、ロイシン及びフェニルアラニンを用いることが好ましい。好適な疎水性で固相として存在する核酸などの有効成分及びアニオン性成分の分散性等を向上させることができると考えられる。例えば、フェニルアラニンは、核酸などの有効成分の好適な細胞導入効率に寄与しているものと考えられる。フェニルアラニンは、ロイシンに替えて用いることもできる。
 疎水性アミノ酸の、核酸などの有効成分に対する配合比率は特に限定するものではないが、核酸の分散性等を向上させることができる範囲で適宜設定される。例えば、核酸1質量部に対して、5質量部以上100質量部以下とすることができる。より好ましくは同5質量部以上50質量部以下である。また例えば、同4質量部以上24質量部以下であり、同6質量部以上19質量部以下であり、また例えば、同9質量部以上19質量部以下であり、また例えば、9質量部以上24質量部以下である。
 本粉末剤の組成の一例として、有効成分以外の成分である賦形剤として、重量平均分子量が30,000以上70,000以下、好ましくは、同40,000以上60,000以下のヒアルロン酸又はその塩とフェニルアラニンなどの疎水性アミノ酸とを含有することができる。この組成であると、有効成分としての核酸の生物活性(遺伝子発現や遺伝子発現抑制など)と本粉末剤の吸入特性の両立性に優れている。さらに、これら2成分の賦形剤の総質量に対して、前記ヒアルロン酸又はその塩を、例えば、40質量%以上90質量%以下、また例えば、50質量%以上90質量%以下、60質量%以上90質量%以下、60質量%以上85質量%以下含有することができる。フェニルアラニンなどの疎水性アミノ酸は、この残分とすることができる。こうした比率とすることで、核酸の生物活性と吸入特性との両立を図りやすくすることができる。
(カチオン性キャリア)
 本粉末剤が核酸を含むとき、カチオン性キャリアを含有していないことが好適である。カチオン性キャリアは、一般に、核酸などの細胞への導入に有用であるが、カチオン性キャリアは、カチオン性ポリマーなどの非ウイルス性であっても、カチオン性キャリアは、細胞障害性等を発現する可能性があるため、カチオン性キャリアを含有しないことが好ましい。かかるカチオン性キャリアとしては、特に限定するものではないが、カチオン性基を有するカチオン性ポリマーやカチオン性脂質が挙げられる。カチオン性ポリマーとしては、カチオン性基を有する多糖類、カチオン性基を側鎖に有するポリペプチド、カチオン性基を有する人工ポリマー若しくはこれらの塩等が挙げられる。
 こうしたカチオン性キャリアとしては、例えば、カチオン性脂質(カチオン性コレステロール誘導体を含む)としては、DC-CHOL(3Β-(N-(N′,N′-ジメチルアミノエタン)カルバモイル)コレステロール)、DDAB(N,N-ジステアリル-N,N-ジメチルアンモニウムブロミド)、DMRI(N-(1,2-ジミリスチルオキシプロパ-3-イル)-N,N-ジメチル-N-ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N-ジオレイル-N,N-ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N-(1-(2,3-ジオレオイルオキシ)プロピル)-N-(2-(スペルミンカルボキサミド)エチル)-N,N-ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N-(1-(2,3-ジオレオイルオキシ)プロピル)-N,N,N-トリメチルアンモニウムクロリド)、又はDOTMA(N-(1-(2,3-ジオレイルオキシ)プロピル)-N,N,N-トリメチルアンモニウムクロリド)、並びにそれらの組み合わせが挙げられる。
 以上説明したように、本粉末剤は、有効成分の他、賦形剤を含むことができる。賦形剤としては、ロイシン、トレハロース及びマンニトールから選択される少なくとも1種のほか、アニオン性成分、さらには、必要に応じて、疎水性アミノ酸を含む態様を採ることができる。さらに、本粉末剤は、遺伝子発現やその抑制を意図したDNAやRNA等を含む組成物に一般的に使用される添加剤を含むことを排除するものではない。
 本粉末剤には、有効成分を含有することができる。有効成分の含有量は特に限定するものではないが、例えば、全質量に対して0.2%以上15%以下程度とすることができる。
 有効成分として、特に限定するものではないが、後述する噴霧凍結乾燥法に用いられうるものであればよい。一般的には、有機化合物であり、例えば、核酸も含まれる。
 核酸は、天然に存在するデオキシリボヌクレオチド及び/又はリボヌクレオチドの重合体である天然核酸及び少なくとも一部に非天然構造を有するデオキシリボヌクレオチド及び/又はリボヌクレオチドを含む重合体である非天然核酸を含むことができる。天然のデオキシリボヌクレオチド及びリボヌクレオチドは天然塩基を備えている。天然塩基は、天然のDNA及びRNAにおける塩基であって、アデ二ン、チミン、グアニン、シトシン及びウラシルが挙げられる。また、天然のデオキシリボヌクレオチド及び/又はリボヌクレオチドは、その2-デオキシリボース及び/又はリボースの5位のリン酸と隣接するデオキシリボース及び/又はリボースの3’の水酸基とがリン酸ジ工ステル結合で連結した骨格を有している。本明細書において、天然核酸としては、DNA、RNA及びデオキシリボヌクレオチドとリボヌクレオチドとのキメラ(以下、DNA/RNAキメラともいう。)であってもよい。また、DNA、RNAはそれぞれ一本鎖であってもよいし、同種の二本鎖であってもよいし、DNAとRNAとがハイブリダイズしたハイブリッドであってもよい。さらには、DNA/RNAキメラが、DNA、RNA又はDNA/RNAキメラとハイブリダイズしたハイブリッドであってもよい。
 非天然の核酸は、塩基、骨格(糖部分及びリン酸部分)のいずれかにおいて、少なくとも一部に非天然構造を有する核酸をいう。非天然塩基としては、種々の非天然塩基が知られている。また、天然のリボースーリン酸骨格を代替する各種の骨格も提供されている。例えば、糖-リボース骨格に替えて炭素数が3個程度の炭素を有するグリコール核酸、ペプチド核酸等が挙げられる。また、天然の核酸はL-DNA又はL-RNAであるが、D-DNA及びD-RNAの構造を少なくとも一部に備える核酸は非天然核酸に含まれる。非天然の核酸においても、一本鎖、二本鎖、ハイブリッド及びキメラ等の各種態様が含まれる。
 この種の非天然核酸は、概して、タンパク質をコードするコード鎖や鋳型鎖でなく、例えば、他の機能、例えば、細胞内である種の核酸と相互作用させて、その核酸の機能を変化させるなどに用いられる。典型的には、標的タンパク質の発現阻害や機能阻害という機能発現のために用いられる。例えば、遺伝子発現を介することなく、生体内核酸に直接作用する核酸が挙げられ、具体的には、アンチセンス核酸、センス核酸、shRNA、siRNA、デコイ核酸、アプタマー、miRNA、cpgオリゴ等が挙げられる。この種の非天然核酸は、ヌクレオチドが十数個から数十個程度が重合したオリゴヌクレオチドである場合が多いが、それに限定されない。
 本組成物は、核酸として、ネイキッド核酸の状態であることが好ましい。ネイキッド核酸(NAKED 核酸)とは、すなわち、裸の核酸である。より具体的には、例えば、遺伝子発現を意図する場合には、プラスミドを用いた核酸コンストラクト(非ウイルス性ベクター)が挙げられる。また、例えば、遺伝子発現の抑制を意図する場合には、プラスミドDNAなどの非ウイルス性ベクターほか、アンチセンス核酸(アンチセンスDNA又はアンチセンスRNA)、shRNA、siRNA、デコイ核酸、アプタマー、マイクロRNA等が挙げられる。ネイキッド核酸としては、治療目的のための核酸要素を主体とし、あるいは当該核酸のみからなり、細胞への核酸の導入のためだけのビヒクルとしての核酸要素を含まない核酸であってもよい。
 ネイキッド核酸の形態は、特に限定するものではなく、リニアであってもよいし、サーキュラー(閉環又は開環)であってもよい、また、スーパーコイル状であってもよい。目的に応じた形態を適宜備えることができる。ネイキッド核酸としては、ウイルス由来の要素を有するウイルス性キャリア、リポソームやカチオン性ポリマーなどのカチオン性の非ウイルス性キャリアを有していないことが好ましい。ウイルス性キャリアの危険性のほか、かかる非ウイルス性キャリアについても細胞障害、標的性能、発現効率に関して必ずしも十分でないからである。
 本粉末剤は、乾燥によりそれ自体粉末の外観を呈した固相であるとともに、粉末を構成する球状粒子の一部に有効成分としての核酸を含有している。本粉末剤において、核酸は、結晶又は非結晶の状態であって固相を形成している状態を有することができる。
 本粉末剤は、好ましくは、凍結乾燥法によって製造することができ、より好ましくは、噴霧凍結乾燥法によって製造することができる。かかる製造法を採用することで、中空多孔質の球状粒子である本粉末剤を容易に取得できる。
 以上のことから、本明細書によれば、有効成分を含む核酸含有組成物の製造方法であって、賦形剤としてロイシン、マンニトール及びトレハロースからなる群から選択される1種又は2種以上と、有効成分を含有する液体を、噴霧凍結乾燥法にて乾燥する工程、を備える、方法が提供される。
 また、本明細書によれば、上記した本粉末剤の球状粒子の特性、すなわち、有効成分と少なくとも一種の賦形剤とを溶解した液体を、吸気によって分散・解砕可能であって、かつ、吸湿時に膨潤可能である、多孔質中空状の球状粒子が得られるように噴霧凍結乾燥する乾燥工程を実施してもよい。こうした球状粒子が得られる賦形剤その他の条件は本明細書に開示されている。
 また、かかる乾燥工程のために、さらに、前記球状粒子のアンダーセンカスケードインパクター(ACI)による吸入特性評価が、OE(%)=スロート以降からの回収量(mg)/全回収量(mg)×100が、80%以上となるように前記賦形剤を選択して前記液体を調製する工程を備えることもできる。さらにまた、前記球状粒子のACIによる吸入特性評価が、FPF5(%)が30%以上となるように前記賦形剤を選択して前記液体を調製するにすることもできる。また、前記球状粒子のACIによる吸入特性評価において、フィルター及びステージ2~4のいずれか1つにおいて回収率のピークを有する球状粒子が得られるように前記賦形剤を選択して前記液体を調製することもできる。
(本粉末剤の評価方法)
 本明細書によれば、本粉末剤の評価方法も提供される。すなわち、本評価方法は、ACI法による吸入特性評価において、既に説明した条件で算出される第1の空気力学的質量中位径及び前記第1の空気力学的質量中位径よりも小さい第2の空気力学的質量中位径を取得する、方法が提供される。かかる方法によれば、本粉末剤の特性である到達性が評価できるほか、併せて崩壊性も評価することができる。
 また、本明細書によれば、第2の空気力学的質量中位径を有する粉体の全粉体に対する比率(質量)を取得する方法も提供される。かかる比率(崩壊率)を取得することで、本粉末剤の到達性及び崩壊性も評価することができる。崩壊率は、上記した第1及び第2の空気力学的質量中位径とともに取得してもよい。
 また、本明細書によれば、動的水分吸着測定法において、37℃で50%RH~95%RHまで変化させたとき、少なくとも70%RHでの質量変化率及び95%RHでの質量変化率を測定する方法も提供される。本測定法によれば、本粉末剤の耐湿性並びに吸湿性及び膨潤性を評価することができる。
(本粉末剤の用途)
 本粉末剤は、有効成分が核酸であるとき、核酸の細胞への導入用として用いることができる。さらには、本粉末剤は、核酸を細胞に導入して当該核酸による種々の効果、例えば、遺伝子発現(タンパク質の合成)や遺伝子の発現抑制を意図するものである。
 本粉末剤に含まれる核酸は、本粉末剤の目的に応じて種々の態様を採ることができる。例えば、核酸が、タンパク質などをコードするコード領域を含む場合には、核酸には、当該タンパク質を発現可能に、プロモーター、ターミネーター等の発現制御領域を同時に含むことができる。例えば、こうした核酸としては、発現カセット、あるいは発現カセットを含むプラスミドベクターや人工染色体が挙げられる。プロモーターやターミネーターを始めとする制御領域やその他の要素は、当業者であれば適宜必要に応じて選択して用いることができる。また、プラスミドベクターや人工染色体は、導入する細胞の種類や導入しようとする核酸のサイズ等を考慮して適宜選択される。
 また、例えば、遺伝子の発現を抑制する場合には、既述のように、核酸として、センス核酸、アンチセンス核酸(DNA又はRNA等)、shRNA、siRNA、miRNA、デコイ核酸、アプタマー等の態様が挙げられる。また、核酸は、こうしたRNA等を転写によって形成するDNAであってもよい。
 さらに、例えば、本粉末剤に含まれる遺伝子は特に限定されず、使用目的に応じて適宜選択することができる。また、特に限定されないが、がん抑制遺伝子を選択することにより、がん細胞を選択的に死滅させることができる。さらに、特に限定されないが、がん抑制遺伝子としてp16遺伝子、p53遺伝子、Rb遺伝子、BRCA1遺伝子、apc遺伝子、PTEN遺伝子、VHL遺伝子、TGF-β遺伝子、Smad4遺伝子等を使用することができる。
 本粉末剤を適用する細胞は、特に限定するものではないが、動物細胞や微生物細胞であることが好ましい。動物細胞としては、ヒトを含む哺乳類のほか、各種非哺乳類細胞が挙げられる。微生物としては、酵母、細菌、真菌等が挙げられるが、特に限定するものではない。
 本粉末剤は、ヒトや動物に対する遺伝子治療、核酸医薬、免疫治療、胚作製等及び各種の遺伝子関連研究に好適に用いることができる。すなわち、いわゆるin vivo遺伝子治療のほか、ex vivo遺伝子治療に用いることができる。特に、鼻腔や口腔からの吸入による気管支及び肺における腫瘍など、遺伝子に対する作用が効果的な疾患を予防又は治療するための粉末剤として有用である。
 本粉末剤は、実質的に水系媒体を利用しないで細胞に供給するための組成物とすることができる。「実質的に水系媒体を利用しない」とは、細胞への適用に際して、本粉末剤を緩衝液などの水を主体とする媒体(本明細書において、水系媒体という。)で溶解又は分散等することなく、という意味である。本粉末剤を適用した先の水(水分)によって、核酸等が溶解することは、「実質的に水系媒体を利用しない」に反しない。
 固体物質としての核酸を含む本粉末剤は、そのままの状態で、固体物質の核酸を維持して、より好ましくは固相の粉末剤を、インビボの細胞に適用することが好適である。固体物質としての核酸を含む本粉末剤又は固相の本粉末剤を細胞に適用することにより、細胞表面において、核酸の導入に有利な環境が形成されるものと考えられる。例えば、こうした態様の本粉末剤は、生体内における気液界面として存在する細胞表面の水分を媒介して作用し、核酸が細胞内に取り込まれるものと考えられる。
 また、ヒトを含む動物等において、外部から非侵襲的又はおおよそ非侵襲的にカテーテル等を用いて到達可能な臓器、例えば、鼻腔、眼、口腔、気道、肺、胃、十二指腸、小腸、大腸、直腸、膀胱、膣、子宮、心臓、血管等の内表面(粘膜)に対しては、本粉末剤を、適当なガスを介したインジェクションにより、固体物質としての核酸を標的箇所に到達させることができる。例えば、肺粘膜や鼻腔粘膜に対する粉末製剤等の供給は、吸入法等として周知である。また、開腹や切開等によって動物の内部、例えば、皮下、筋肉、腹腔、腫瘍等の病変部に、直接本粉末剤を供給してもよい。なお、本粉末剤の適用にあたっては、標的組織内部、その表面又はその近傍に移殖するなどの手段を採ることもできる。また、ゲル状物、スポンジなどの多孔体、不織布などの表面に本粉末剤を担持させて留置することもできる。
 本粉末剤が、このように固体物質としての核酸を含む形態で標的箇所又は細胞に供給されることにより、従来のように水系媒体で希釈されることもなく高濃度に標的部位に供給され、当該部位に継続して留まることができる。すなわち、本粉末剤は、本質的に、高濃度に標的細胞に到達させることが可能となっている。その結果、高い取り込み能と核酸による機能発現が可能となっていると考えられる。
 本粉末剤は、用時に溶解して用いても十分な効果を発揮する。例えば、用時に、本粉末剤を、水、生理食塩水、緩衝液、ブドウ糖溶液、培地液などの水系媒体に懸濁又は溶解することにより再溶解物を調製して適用することも可能である。再溶解については、本粉末剤を、例えば、例えば、核酸の100~10000倍(重量比)の溶媒を用いて懸濁又は稀釈する。凍結乾燥前と異なる量、異なる種類の溶媒を用いることができるため、従来困難であった比較的高濃度の懸濁液や溶液(たとえば1mL中にDNAを1mg含む液)も容易に調製することができる。
 本粉末剤は、用時に非水系媒体に核酸を固体物質として含有させた状態であってもよい。例えば、用時に、本粉末剤を、非水系媒体に懸濁してもよい。例えば、凍結乾燥前と異なる量、異なる種類の溶媒を用いることができるため、従来困難であった非水系媒体をベースとして核酸を適用することができるようになる。
 このように、適当な液性媒体で溶解又は懸濁した本粉末剤は、生体細胞への核酸、又はその誘導体の導入に通常用いられる任意の方法を用いることができる。
 本粉末剤の細胞への適用量は、上述した導入方法、疾患の種類、目的などによって異なるが、例えば核酸の量にして、投与部位によって大きく異なるが、腫瘍への局所投与では例えば5~1000mg/cm・腫瘍、膀胱などの臓器への投与では例えば0.1mg~100mg/臓器、全身投与では例えば0.1mg~10mg/kg・体重とすることができる。
 以下、本明細書の開示をより具体的に説明するために具体例としての実施例を記載する。以下の実施例は、本明細書の開示を説明するためのものであって、その範囲を限定するものではない。
(各種のアニオン性成分を含む核酸含有組成物の調製)
 本実施例では、固体物質としての核酸に対して賦形剤として用いる各種のアニオン成分について検討するために、各種核酸含有組成物を調製した。
(1)核酸
 レポーター遺伝子としてホタルルシフェラーゼをコードするpDNA(pCPG-△ Luc)を用いた。
(2)賦形剤
 賦形剤として高分子量ヒアルロン酸(M.W.;50~110kDa、ヒアルロン酸FCH-SU:以下、HHAともいう。)及び低分子量ヒアルロン酸(M.W.;<5kDa、マイクロヒアルロン酸FCH:以下、LHAともいう。)の各ナトリウム塩(ともにキッコーマンバイオケミファ株式会社)、カルボキシメチルセルロースのナトリウム塩(CMC、シグマアルドリッチ)、コンドロイチン硫酸ナトリウム塩(CS、シグマアルドリッチ)、ヒドロキシプロピルセルロース(HPC、シグマアルドリッチ)、Β-シクロデキストリン(Β-CYD、和光純薬工業株式会社)、イヌリン(INU、(FROMCHICORY;INU、シグマアルドリッチ)、メチルセルロース(MC、シグマアルドリッチ)、D(-)-マンニトール(Man、和光純薬工業株式会社)を使用した。
(3)試料溶液の調製
 pDNA水溶液と各種アニオン性成分水溶液を混合して試料溶液とした。溶媒には全て超純水(ULTRAPURETMDNASE/RNASE-FREEDISTILLEDWATER、INVITROGENTM)を用いた。試料溶液の最終濃度はpDNA濃度として200μg/mLとした。各試料溶液の組成を以下に示す。
Figure JPOXMLDOC01-appb-T000002
(4)噴霧凍結乾燥(SFD)法による組成物の調製
 核酸含有組成物は、SFD法により調製した。噴霧乾燥機(SD-1000、東京理化器械株式会社)に付属の2流体噴霧ノズルを用いて、試料溶液をノズル先端から15cm下の液体窒素(500mL)中に150kPaで噴霧することにより急速凍結した。詳細な条件を以下に示す。試料溶液は5mL/minで送液し、1.5min噴霧を続けた。得られた氷滴を、凍結乾燥機(FDU-2110東京理化器械株式会社)を接続した角形ドライチャンバー(DRC-1100東京理化器械株式会社)に入れ、真空条件下で24時間乾燥することにより目的の組成物を得た。
Figure JPOXMLDOC01-appb-T000003
 調製した核酸含有組成物をマイクロスパーテルで少量充填した100mL用ディスポーザブルチップに三方活性を介して接続した1mLシリンジ(TERUMO)内の空気0.25mLを圧縮・開放することで、黒色両面テープを貼った試料台上に噴霧した。その後、30MA、90secプラチナコーティング処理(JFC-1600、日本電子データム株式会社)を行い、粒子形状を走査型電子顕微鏡(SEM;JSM-6060、日本電子株式会社)を用いて観察した。結果を図1、図2、図3に示す。
 図1、図2、図3に示すように、各核酸含有組成物のほとんどは、粒子径5~10μmでSFD製剤特有の中空多孔性構造が観察され、吸入剤に適した微粒子であることがわかった。HPCを含有する製剤は中空多孔ではなく、賦形剤の種類が粒子の形状に影響を及ぼす可能性が示唆された。このような違いが生じた原因としては、試料溶液の粘度が影響していると考えられる。HPCは他の賦形剤と比較し、粘度が高い。そのため、ある一定の粘度を境にHPCはSFD法による噴霧の過程で球形の微粒子を形成できず、非中空多孔な製剤ができたと考えられた。
(核酸含有組成物のin vivoにおける遺伝子発現効果の評価)
 本実施例では、実施例1で調製した各組成物をマウス肺内に投与して、遺伝子発現効果を評価した。マウスへの投与及び評価は以下のようにして行った。
(1)マウス肺内への投与
 前処置としてペントバルビタール(50mg/kg、I.P.)麻酔下、雌性ICRマウス(5週齢)の前歯を自作の固定板に設置し、胸部を垂直にした。ライト(MEGALIGHT100(商標)、ショット日本株式会社)を用いて、胸部に局所的に光を当てながら、マウスの口を開放してピンセットで舌を引き出した。口内で白色の穴として見える気管を確認し、挿管補助器具(LIQUIDMICROSPRAYER(商品名、PENNCENTURY,INC))のスプレーチップ部分を使用)に装着したマウス肺内投与用カニューレ(総長4.0cmのPE-60ポリエチレンチューブ)を3.0cm気管に挿入した。
 カニューレを気管に残しつつ挿管補助器具だけを引き抜いた後、カニューレから呼気が通ることを確認し、その後、肺内投与用デバイスのチップ先端をカニューレに挿入して、マウスの吸気に合わせて0.25mLの圧縮空気を開放することで予めチップに充填しておいた各組成物0.5mg(pDNAとして10μg)を肺内投与した。
(2)肺内遺伝子発現効果の評価
 ルシフェラーゼ活性に基づく発光を、IVIS(商標)を用いて検出・解析することにより評価した。測定時に用いたLUCIFERINはPBSを用いて30mg/mLに調整し、-80℃で保存したものを使用した。ISOFLURANE(イソフル、商標、アボットラボラトリーズ)により麻酔し、マウス肺内投与6、12、24、48時間後に、発光基質であるLUCIFERIN(30mg/mL、0.05mL/mouse;300mg/kg)を経鼻投与した。LUCIFERIN投与10分後にISOFLURANE麻酔下、EXPOSURETIME1minで発光を検出した。肺に相当するREGIONOFINTEREST(ROI;縦1cm、横3cm)を作成して、その発光強度(TOTALFLUX(PHOTON/sec))を遺伝子発現量として求め、遺伝子発現量-時間パターンを解析した。得られた遺伝子発現量-時間パターンより、遺伝子発現量-時間曲線下面積(AUC)及び最大遺伝子発現量(Luc(MAX))をそれぞれ求めた。これらの結果を、それぞれ図4及び図5に示す。
 図4及び図5に示すように、LHA、HHAのほか、CMCやCSを含む組成物によっても遺伝子発現が確認された。特にLHAを含む組成物を投与した群において、AUC、Luc(MAX)ともに他の賦形剤を含む核酸含有組成物を投与した群よりも優れた遺伝子発現効果を示した。
 HA、CMC及びCSは、カニューレに詰まることなく投与ができた。また、これらは、いずれも、アニオン性ポリマーであり、体内の特異的な受容体を介して細胞内への取り込み、転写活性の促進を期待できる。これらの要因からHAやCMC、CSは他の賦形剤よりも細胞への取り込みが有利であり、比較的高い遺伝子発現効果がみられたと考えた。
(粉末状の核酸含有組成物と液状の核酸含有組成物との比較)
 本実施例では、実施例1で調製したLHA及びHHAを含有する核酸含有組成物、これらの各核酸含有組成物のSFD用に用いられた各試料溶液及び各組成物を再溶解した再溶解液を、それぞれマウスに投与して、遺伝子発現量-時間パターン、AUC、Luc(MAX)を比較した。
 各核酸含有組成物のマウス肺内投与は実施例2と同様に行った。また、試料溶液及び再溶解液については、液体噴霧器LIQUIDMICROSPRAYERMICROSPRAY(商標、PENNCENTURY,INC)のスプレーチップをカニューレに挿入して、各液剤100mL(pDNAとして10mg)をマウス肺内投与した。遺伝子発現量の解析は、実施例2と同様に行った。結果を図6及び図7に示す。
 図6及び図7に示すように、LHA、HHAともに、試料溶液及び再溶解液でも遺伝子発現を確認することができたが、これらの溶液よりも、粉末状の核酸含有組成物が最も高い遺伝子発現効果を示した。このことから、naked pDNA製剤が肺内で高い遺伝子発現を示すのは剤形が粉末剤であることがわかった。
 このような結果になった原因として、(1)核酸含有組成物は呼吸器上皮細胞上の少量の水分に溶解することで高濃度曝露条件を生じ、能動的な細胞内取り込みを介した細胞内取り込みが向上したため、(2)核酸含有組成物による粘膜付着性の付与により、気管支内の粘膜繊毛クリアランスを回避して呼吸器系上皮細胞との接触時間を延長したためという二つの可能性が考えられた。すなわち、粉末状核酸含有組成物が肺内の少量の水分に溶解されるのに対し、溶液製剤を投与する場合、超純水で希釈後投与されるため、比較的溶媒量が多く、(1)や(2)のような環境を作ることができないことから、肺上皮細胞膜上の負電荷とpDNAの持つ負電荷による静電的な反発で、効率的な取り込みがされなかったことが考えられた。また、遺伝子発現の時間を比較すると、溶液、粉末再溶解液ともに投与後48H後においてほぼ遺伝子発現がみられなかったのに対し、粉末状核酸含有組成物投与群においては48H後でも遺伝子発現が確認された。このことから、粉末剤投与による遺伝子発現の持続性も示唆された。この結果も粉末状核酸含有組成物投与による高濃度曝露条件によるpDNA製剤の長期滞留が原因と考えられた。
(ネイキッド核酸を含む核酸含有組成物におけるネイキッド核酸の安定性の検討)
 核酸の粉末化における最重要課題の1つとして、その工程で生じる熱、凍結、せん断などの種々のストレスに対して遺伝子の構造・機能を十分に保持することが挙げられる。pDNAは通常Supercoiled(S.C.)型の状態で存在しているが、外部からのストレスによりDNA鎖の切断等が生じてOpen-circular(O.C.)型、LINEAR型へと構造が段階的に変化し、特にLINEAR型では遺伝子発現効果が著しく低下する。一般的に、S.C.及びO.C.の位置にバンドが検出されれば、pDNAの構造安定性が維持されたと考えられる。
 実施例1で調製した核酸含有組成物はベクターを用いていないため、カチオン性ベクターを用いることで生じる、静電的相互作用による複合体は形成しないと考えられる。そのため、複合体の安定性(結合親和性)による、遺伝子発現効果の影響は考慮する必要がない。本実施例では、賦形剤や分散補助剤の添加、さらには、SFDが、核酸含有組成物に含まれる核酸の構造に対する影響を検討することとした。
 本実施例では、LHA(ナトリウム塩)を核酸の賦形剤として用いるとともに、分散補助剤との組合せについて各種核酸含有組成物を調製し、賦形剤及び分散補助剤の核酸の構造安定性に与える影響を検討した。
(1)核酸
 レポーター遺伝子としてホタルルシフェラーゼをコードするpDNA(pCPG-△Luc)を用いた。
(2)賦形剤
 賦形剤としては、実施例1で用いたHHA及びLHAの各ナトリウム塩を用いた。
(3)分散補助剤
 分散補助剤としては、L-フェニルアラニン(SIGMA-ALDRICH:Phe)、L-ロイシン(SIGMA-ALDRICH:Leu)及びL-イソロイシン(SIGMA-ALDRICH:Ile)を用いた。
 (4)試料溶液の調製
 以下の表に示す組成に基づき、実施例に準じて、核酸と賦形剤を含む溶液に分散補助剤の溶液を添加して、各試料溶液を調製した。なお、賦形剤を含まない場合には、核酸溶液に分散補助剤溶液を添加して、SFDに用いる各試料溶液を調製した。
Figure JPOXMLDOC01-appb-T000004
(5)粉末状核酸含有組成物及び再溶解液の調製
 各試料溶液を、実施例1と同様の方法で噴霧凍結乾燥して各核酸含有組成物を調製した。これらの組成物に、含有される各成分がSFD前と同じ濃度になるように超純水を添加し溶解して再溶解液を調製した。
(6)アガロースゲル電気泳動による構造安定性評価
 SFD前の試料溶液及びSFD後の再溶解液について、アガロースゲル電気泳動に行って、構造安定性を評価した。すなわち、一検体あたり6mL(pDNAとして0.1mg)を、0.6%アガロースゲルを用いて100V、30MAで120分電気泳動(泳動槽AE-6530、電源AE-8270及びAE-8155、アトー株式会社)を行った。泳動緩衝液にはTRIS-ACETATE-EDTA(TAE)BUFFERを用いた。
 また、同時に、核酸含有組成物に含まれる核酸を人工的にスーパーコイルにしたS.C型の核酸、同じくオ-プンサーキュラーとしたO.C型核酸及び線状化したリニア型核酸もそれぞれ電気泳動した。また、サイズマーカーにはΛ/HindIII DIGEST(LOADINGQUICK(R)DNASIZEMARKERS,TOYOBOLIFESCIENCE)を用いた。
 電気泳動後、0.5mg/mL ETHIDIUMBROMIDE(Etbr)/精製水で5分染色し、TAEBUFFERで脱色した後、バリアブルイメージアナライザーTyphoon9000(GEIMAGINATIONATWORK)を用いてETBR由来の蛍光(EX;518nm、EM;603nm)を検出した。検出したバンドの位置と濃さから、pDNAの構造安定性を評価した。
 電気泳動結果によれば、LHA又はHHAが含まれる溶液において、Supercoiled/Open-circular型を示すバンドが確認された。LHA、HHAともに、組成比の違いによるバンドの明らかな違いは確認されなかった。しかし、LHAが含まれる製剤においてはSupercoiled/Open-circular型以外のバンドが確認された。一方、HAを含まず疎水性アミノ酸のみを含む製剤においてはSupercoiled/Open-circular型を示す位置にバンドが確認されなかった。このことから疎水性アミノ酸のみの添加ではpDNAを物理的ストレスから保護できないことがわかった。
(ネイキッド核酸を含む核酸含有組成物による遺伝子発現効果の評価)
 実施例4で調製した各種賦形剤を含む粉末の核酸含有組成物を、実施例2の手順に準じてマウス肺内に投与し、得られた遺伝子発現量-時間パターンを測定し、AUC、Luc(MAX)について比較した。結果を、図8及び図9に示す。
 図8に示すように、LHAと疎水性アミノ酸が含まれる核酸含有組成物において、疎水性アミノ酸を加えることにより、LHA単独と比較して有意な遺伝子発現増加効果はみられなかったものの、AUC、Luc(MAX)の最大値はLHA73%/Phe25%の組成で上昇傾向がみられた。しかし、LHAの組成比が減少し、疎水性アミノ酸の組成比が増加するに従い、LHA単独と比較して遺伝子発現効果は有意に低下した。
 図9に示すように、HHAと疎水性アミノ酸が含まれる核酸含有組成物においては、疎水性アミノ酸を加えることにより、特にHHA49%/Phe49%の組成においてHHA単独と比較して有意に高い遺伝子発現効果を示した。HHA49%/Phe49%のAUC、Luc(MAX)の最大値はHHAを賦形剤とするこれまでの検討の中で最も高い遺伝子発現効果を示した。
 以上の結果から、疎水性アミノの添加により吸入特性を向上させ、遺伝子発現が上昇する可能性が示唆されたものの、過剰な分散補助剤の添加は遺伝子発現効果を低下させることがわかった。
 さらに、最も遺伝子発現効果が高かったLHA73%/Phe25%の核酸含有組成物を実施例1に準じて調製し、粉末状の当該核酸含有組成物、当該核酸含有組成物のための試料溶液及び当該核酸含有組成物を試料溶液と同等の濃度になるように水に再溶解した再溶解液について、実施例2に準じてマウス肺内に投与して、AUC及びLuc(MAX)を測定した。結果を、図10に示す。
 図10に示すように、粉末状の核酸含有組成物が、いずれも溶液組成物である試料溶液及び再溶解液に対して顕著に高い遺伝子発現効果を示した。この結果から、ネイキッド核酸の高い遺伝子発現効果は、固体物質としてネイキッド核酸が細胞に到達しているためと考えられた。
(核酸含有組成物の吸入特性評価)
 本実施例では、核酸含有組成物と吸入特性との関係について評価した。なお、評価の定量用ラベル剤としてFLUORESCEINSODIUM(SIGMA-ALDRICH、FLNa)を使用した。吸入特性の評価は以下のようにして行った。
 評価用の核酸含有組成物は、実施例4において高い遺伝子発現効果があったLHA73%/Phe25%の粉末状核酸含有組成物を、実施例1に準じて調製した。また、LHAのみの核酸含有組成物を、同様に実施例2に準じて調製した。以下の表に示す具体的組成を示す。
Figure JPOXMLDOC01-appb-T000005
 評価には、アンダーセン型カスケードインパクター(ACI;ローボリウム・エアーサンプラー、AN-200型、柴田科学株式会社)を用いた。各粉末状の核酸含有組成物を2号HPMCカプセル(クオリカプス株式会社)に1.0mg(FLNa換算量;20mg)充填した後、カプセルをDPI用吸入器(JETHALER(商標);REVERSETYPE:日立オートモティブシステムズ)に装着して、吸引速度28.3L/minで5SEC吸引した。各ステージの捕集板(プレート)にはグリセリンを薄く塗布した。カプセル(CAP)、デバイス(DEV)、スロート(THR)、各ステージ(S0~7)、フィルター(FIL)に付着した核酸含有組成物をリン酸緩衝生理食塩水(PBS;pH7.4)10mLで溶解し、その溶液250mLを遮光96-WELLマイクロプレートに分取し、蛍光プレートリーダー(SPECTRAMAXGEMINIEM、日本モレキュラーデバイス株式会社)を用いてFLNaを定量することで核酸含有組成物の回収率を算出した。FLNaの定量には、各粉末状組成物の再溶解液により作成した検量線を用いた。
 CAPセクション及びDEVセクションから放出された核酸含有組成物の割合であるOE値(OUTPUTEFFICIENCY、%)、またS3(空気力学的粒子径としてのカットオフ値;4.7μm)からFILまでの各セクションで回収された核酸含有組成物量をCAP及びDEVから放出された核酸含有組成物量で除した割合であるFPF値(FINEPARTICLEFRACTION、%)をそれぞれ算出した。FPF値は一般に、放出された粉末製剤のうち肺治療域に到達する割合の指標として用いられる。また、全回収量のうち肺治療域に到達した核酸含有組成物の割合であるOE×FPF値、空気中での粒子の運動性の指標である空気力学的粒子径(MMAD;MASSMEDIANAERODYNAMICDIAMETER)も併せて算出した。MMADは、S0からFILまでの各部の核酸含有組成物の回収量を基にして解析ソフト(AEROSOLPARTICLEDENSITYANALYSISSYSTEM、柴田科学株式会社)を用いて解析・算出した。結果を、図11に示す。
 図11(a)に示すように、LHA98%単独組成物と比較し、Pheを添加したLHA73%/Phe25%核酸含有組成物はカットオフ径の小さいステージ(FILTERを含む)で沈着量が多い結果となり、肺送達性に優れていることが明らかとなった。図11(b)及び図11(c)に示すように、具体的な数値として、OE値は約80%から90%、FPF3値は約40%から50%、OE×FPF3値は約30%から45%、MMADで約4.5μmから3μmの変化が得られ、LHAのみでも吸入粉末剤として適した吸入特性は示すものの、分散補助剤である疎水性アミノ酸の添加により吸入特性の有意な向上が認められた。
(各種賦形剤を用いた核酸含有組成物の調製及び評価)
 本実施例では、重量平均分子量が異なるヒアルロン酸ナトリウム(重量平均分子量5000未満(LHA)、重量平均分子量15,000~40,000)(MHA)、重量平均分子量50,000~110,000(HHA))、コンドロイチン硫酸(CS)(ヒ
アルロン酸に類似するグルコサミノグリカンである。)を賦形剤として用いるとともに、
分散助剤としてのL-フェニルアラニン(Phe)を適宜用いて、核酸含有組成物を調製し、ICRマウスを用いin vivoでの遺伝子発現効果を評価した。核酸含有組成物は、以下に示す表の組成の溶液を用いて噴霧凍結乾燥する以外は、実施例1と同様にして行って調製した。
Figure JPOXMLDOC01-appb-T000006
 得られた核酸含有組成物における粒子形状をSEM観察した。結果を図12に示す。また、得られた核酸含有組成物を用いる以外は、実施例2と同様にして、雌性ICRマウスを用いて肺内投与して、マウス胚内での遺伝子発現効果を評価した。結果を、図13に示す。
 図12に示すように、いずれも5μm~10μm程度の概して球状で多孔質な微粒子を観察された。また、フェニルアラニンを添加した核酸含有組成物の粒子形状は、安定して球状を呈し、また粒子の分散状態も良好であった。したがって、フェニルアラニン等は、分散補助剤として有用であることがわかった。
 また、図13に示すように、いずれの賦形剤を用いた場合においても、遺伝子発現効果を確認できたが、用いる賦形剤によって分散助剤との好適な比率が存在しうることもわかった。また、概して、フェニルアラニンなどの分散補助剤が発現量の増大に有用であることがわかった。さらに、ヒアルロン酸のなかでは、例えば、重量平均分子量が15,000~40,000の中程度の分子量のヒアルロン酸のナトリウム塩が、好適な発現量を呈しうる場合があることがわかった。
(各種賦形剤を用いたsiRNA導入用核酸含有組成物の調製及び評価)
 本実施例では、ネイキッド核酸として、ホタルルシフェラーゼ遺伝子(Luc+)をターゲットとするsiRNA(siGL3)を用いて、in vitroでsiRNAの遺伝子発現抑制効果を評価した。なお、このsiRNAは、実施例1で用いたプラスミドDNAのおおよそ300分の1程度の分子量である。
 本実施例では、siRNAのほか、賦形剤として、重量平均分子量が5,000以下のヒアルロン酸ナトリウム(LHA)と蛍光プローブとしてのインドシアニングリーン(ICG)とを以下の表に示す配合で溶液を調製して、実施例1と同様に操作して本実施例の核酸含有組成物を調製した。なお、溶液自体も比較例組成物として用いた。
 また、ネガティブコントロールとして、siRNAを含まないで、既述のヒアルロン酸ナトリウム及びD-(-)マンニトール(Man)をそれぞれとICGとをのみからなる溶液から同様にしてネガティブコントロール組成物を調製した。さらに、ポジティブコントロールとして、既述のヒアルロン酸ナトリウムに替えて分岐型ポリエチレンイミン(B-PEI)を用いた溶液から同様にしてポジティブコントロール組成物を調製した。
Figure JPOXMLDOC01-appb-T000007
 遺伝子発現の抑制効果は、ルシフェラーゼを恒常的に発現するヒト由来肺がん細胞(A549-Luc)2×10cells/ウェルでTranswell(商品名)に播種後、D-MEM培地を用いて、コンフルエントになるまで培養後、細胞層の気相曝露側に各種核酸含有組成物0.5mg又は溶液も粉末として0.5mg相当量を各ウェルに均一に充填した。核酸含有組成物を充填後、6時間、12時間、24時間及び48時間経過後に、ルシフェラーゼの発光強度を測定した。なお、ヒアルロン酸ナトリウムを用いたネガティブコントロールの発光強度を100%として各種核酸含有組成物の遺伝子発現抑制効果を評価した。結果を図14に示す。
 また、ルシフェラーゼを恒常的に発現するマウス大腸がん細胞(COLON26-Luc)を用いて肺転移癌マウスを作製し、実施例2と同様に操作して本実施例の核酸含有組成物の遺伝子発現抑制効果を評価した。すなわち、肺転移癌マウスに、本実施例の核酸含有組成物を投与し、その後36時間経過後に同量をさらに投与して、ルシフェラーゼの発光強度を調べた。なお、ネガティブコントロール組成物についても同様に投与してルシフェラーゼ発光強度を測定した。結果を図15に示す。
 図14に示すように、siRNAを含む核酸含有組成物は、細胞に添加後6時間から高い遺伝子発現抑制効果を示した。これに対して、溶液形態の比較例組成物は、顕著な遺伝子発現抑制効果を呈することはなかった。また、ポジティブコントロール組成物は、遺伝子発現抑制効果を添加から12時間経過後から発揮した。
 また、図15に示すように、siRNAを含む核酸含有組成物は、in vivoにおいても、有効な遺伝子発現の抑制効果を発揮した。
 以上のことから、核酸含有組成物によれば、固体物質であることのほか、ヒアルロン酸ナトリウムなどのアニオン性成分を含むことから、細胞へ導入されて遺伝子の発現を速やかにかつ効果的に抑制できることがわかった。また、核酸含有組成物によれば、発現カセットを有するプラスミドDNAのような比較的大きな分子から、siRNAのように小さい分子まで広い範囲のネイキッド核酸の導入及び作用発現に有用であることがわかった。
(核酸含有組成物の調製)
 本実施例では、モデル薬物として蛍光色素であるフルオレセインナトリウム(FLNa)、賦形剤として以下に示すロイシン、マンニトール及びトレハロースを、以下の表に示す組みあわせで用いた。
Figure JPOXMLDOC01-appb-T000008
 粉末微粒子はSFD(噴霧凍結乾燥法)により調製した。SFD法は、噴霧工程と凍結乾燥工程の2工程からなる。まず、噴霧乾燥機(SD-1000、東京理化器械株式会社)に付属する2流体噴霧ノズルを用いて、試料溶液をノズル先端から15cm下の液体窒素(500mL)中に150kPaで噴霧することにより急速凍結した。試料溶液は5mL/minで送液し、1.5min噴霧を続けた。得られた氷滴を、凍結乾燥機(FDU-2110東京理化器械株式会社)を接続した角形ドライチャンバー(DRC-1100東京理化器械株式会社)に入れ、真空条件下で24時間乾燥することにより目的の製剤を得た。
 SFD法操作条件
Figure JPOXMLDOC01-appb-T000009
(粉末剤の走査型電子顕微鏡による粒子形状の評価)
調製した粉末微粒子の粒子形状を走査型電子顕微鏡(SEM:JSM-IT100LA、日本電子株式会社)で観察した。図17に示す分散添加のための粉末分散添加デバイスを用いて、噴霧した。噴霧方法としては、調製した粉末組成物を少量充填した100μLチップに三方活性を介して接続した1mLシリンジ(TERUMO)内で0.25mLの空気を圧縮し、三方活栓を開放した。黒色両面テープを貼付した試料台上に粉末微粒子を分散添加後、30MV、90SECの条件でプラチナコーティング(JFC-1600、日本電子データム株式会社)し、SEM観察した。結果を図17に示す。
 図17に示すように、賦形剤の混合比にかかわらず、中空多孔な球状粒子が得られた。なお、トレハロース単体及びフルオレセインナトリウム単体については、中空多孔粒子を観察できなかった。
(粉末剤のレーザー回折・散乱式粒度分布測定装置(LMS)ニよる粒度分布評価)
 実施例9で調製した製剤の幾何学的粒子径・粒度分布は、レーザー回折・散乱式粒度分布測定器(LMS:LMS-2000E、SEISHIN ENTERPRISE CO.,LTD.)を使用した。乾式ワンショット測定法で行い、0.4MPAにエアー供給圧を設定して測定を行った。得られた累積粒度分布から50%粒子径(D50)を算出し、粒度分布評価を行った。結果を図18に示す。算出したD50を併せて図18に示す。
 図18に示すように、調製した粉末剤は混合比にかかわらず単一な粒度分布が観測された。一部の製剤(M0T0、M5T0、M0T1、M5T1、M10T3、M5T3、M0T5)に関しては、100~1000μm付近の製剤が観測された。また、D50は全ての製剤で10μm前後の類似した値が算出された。
(粉末剤のACIによる吸入特性の評価)
 吸入特性の詳細なデータを得るため、ACI(ローボリウム・エアーサンプラー、アンダーセンタイプ、AN-200型、柴田科学株式会社)を用いて吸入特性評価を行った。
 評価方法は、試料約1.0mgを2号HPMCカプセル(クオリカプス株式会社)に充填し、日立ロータリーベビコン(ベビコン、200RC-20C5、日立産機システム株式会社)によって、流量(PFR)28.3L/minにて吸引を行った。吸引時間は10SECとした。吸入デバイスにはジェットヘラー(JETHALER(登録商標)、日立オートモティブシステムズメジャメント株式会社)の吸入抵抗の異なるシングル、デュアル、リバースを用いた。
(粉末剤の回収率の算出)
 デバイス、カプセル、スロート、フィルター、各ステージに沈着した試料をリン酸緩衝液(PBS)50mL又は10mLに溶解した後、FLNaの濃度をマルチプレートリーダー(ENSPIRE、株式会社パーキンエルマージャパン)にて定量(励起波長:490nm、蛍光波長:515nm)し、各パーツにおける回収量及び回収率を算出した。必要に応じて希釈定量を行った。各ステージでの回収率を図19に示す。
(粉末剤の各指標の算出)
 本実験結果から、OE、FPFSTAGE 3、FPFSTAGE 5及びOE×FPFSTAGE 5を既述の式(1)~(4)から算出した。種々の製剤についてのこれらの指標を図20に示す。
(粉末剤の空気力学的質量中位径の算出)
 実施例9で調製した粉末剤は、対数正規プロットが曲線となる傾向があったため、粉体の一部が崩壊し,粒子径が大きい粉体(MMAD及びGSDをMMAD及びGSDとする)と小さい粉体(MMAD及びGSD)が比率(1-R):Rで生じたと考えた。そこでACI解析で得られた8つの測定点(回収率の積算値)から、EXCELの関数を用いて各ステージに下記A~Dの値を求め,Eが最小になるようなR、MMAD、MMAD、GSDをEXCELのソルバー機能により求めた。これらの結果を図21に示す。なお、図21には、あわせて、粒子崩壊前後の粉体の解析結果の一例を示す。
A=ステージごとの回収率の積算値(%)をNORM.S.INV関数により変換した確率変数
B=NORM.DIST関数により算出したMMAD及びGSDの粉体の回収率の積算値
C=NORM.DIST関数により算出したMMAD及びGSDの粉体の回収率の積算値
D=B×(1-R)+C×Rの値をNORM.S.INV関数により変換した確率変数
E=ステージごとに求めた(D-A)2の合計値
 図19及び図20に示すように、フィルターへの製剤沈着が一番多く20%以上という結果となった。各ステージの回収率で一番高くなったものは、どの製剤でもステージ3であった。また、図20に示すように、特に、マンニトールを含む製剤において、良好な指標(OE、FPF)が得られる傾向があった。
 図21に示すように、ソルバー機能にて解析した崩壊率RはMan含有率0%で45%程度、5~10%で約50~60%となり、Man添加で増加した。一方、Man添加によりMMADとMMADは小さくなった(Man0%:4.3μm程度、Man5~10%:3.5~4.0μm)(Man0%:0.35μm程度、Man5~10%:0.2μm台)。以上のことから、マンニトールが崩壊性に大きく貢献することがわかった。
(粉末剤の耐吸湿性・吸湿性評価)
 実施例9で調製した各SFD製剤及び組成の各原末(Leu、Man、Tre、FLNa)について、動的水分吸着測定装置(DVS:DYNAMIC VAPOR SORPTION;DVS ADVANTAGE、SURFACE MEASUREMENT SYSTEMS)を使用して、吸入から気道内、そして高湿度の肺深部での耐吸湿性及び吸湿成長の評価を行った。
 DVSは、試料を天秤型の測定部の片側に充填し、設定した温湿度環境における水分の吸着・脱着に伴った試料の質量変化を秒スケールでモニターすることができる。評価の測定条件を以下の表に示す。吸湿成長評価の条件設定に関して、粉末微粒子が肺深部に到達するまでの温湿度環境変化の再現に向けて、吸入前の環境を『温度37℃、相対湿度(RH)50%(絶対湿度:6.903G/m)』とし、吸入後の肺内環境を『温度37℃、95%RH(絶対湿度:41.62G/m)』とした。結果を、図22に示す。
DVS測定条件
Figure JPOXMLDOC01-appb-T000010
 図22に示すように、SFD製剤同士を比較するとManとTreの割合が多いほど相対湿度が高くなるにつれて吸湿し、質量変化率が高くなる結果となった。また、Leuの割合が多いほど高湿度においても耐吸湿性を示した。また、Leu、Man及びTre単独の質量変化率は原末(約0.08、0.29、22%)とSFD製剤(約0.14、2.40、41%)とを比較すると、SFD製剤の質量変化率がより高くなる結果となった。
 (核酸含有組成物の長期保存試験(耐吸湿性・吸湿性))
 本実施例では、モデル薬物としてホタルルシフェラーゼをコードするプラスミドDNA(吸入特性については蛍光色素であるフルオレセインナトリウム(FLNa)を用いた。)、賦形剤としてL-ロイシン(以下、Leuとも表記する。)及びヒアルロン酸(ナトリウム塩、重量平均分子量50000、以下、LHAとも表記する。)を用いて、以下の組成で、噴霧凍結乾燥用液を調製し、噴霧凍結乾燥した。
[1]試料1(pDNA/LHA/Leu)
pDNA1mg、LHA12.5mg及びLeu36.5mg(合計50mg)を含む水溶液
[2]試料2(pDNA/LHA)、
pDNA1mg、LHA49mg(合計50mg)を含む水溶液
 なお、噴霧凍結乾燥は、実施例9に準じて、噴霧空気圧150kPa、試料溶液流速5mL/分、噴霧ノズル径0.4mm、乾燥時間24時間、最終真空度5PA以下、最終棚温度10℃で行った。得られた核酸含有組成物を、5℃/乾燥(シリカゲル)、25℃/乾燥(シリカゲル)及び、25℃/75%RHの3条件で12ヶ月まで保存し、SEM、吸入特性と遺伝子発現との双方を評価した。
(SEM観察)
 試料1及び試料2のいずれにおいても、乾燥条件下では、12ヶ月後も中空多孔構造を維持したが、加湿条件(75%RH)では、試料1では、保存開始から1ヶ月、試料2では保存直後~1週間で吸湿し、それ以降は中空多孔構造を実質的に構成できなかった。SEM観察によれば、耐吸湿性は、試料1が試料2よりも優れていた。
(吸入特性)
 吸入特性については、実施例12に準じて評価した。吸入特性評価にはFLNaを含む粉末剤を用いた。結果を図24及び図25に示す。図24に示すように、試料1は、乾燥条件下では、大きな吸入特性の低下を観察しなかったが、加湿条件では、4ヶ月以降FPF3は低下し、MMADは増大した。このことは、吸湿により、初期の球状粒子が凝集していることを示す。また、図25に示すように、試料2では、乾燥条件では、保存期間による吸入特性の変化はなかったが、FPF3も低く、MMADも約5~8μmと大きかった。また、加湿条件では、吸湿により測定不可能であった。
(遺伝子発現)
 試料1及び試料2の核酸含有組成物をマウス肺内に投与して、遺伝子発現効果を評価した。マウスへの投与及び評価は以下のようにして行った。
(1)マウス肺内への投与
 前処置としてペントバルビタール(50mg/kg、I.P.)麻酔下、雌性ICRマウス(5週齢)の前歯を自作の固定板に設置し、胸部を垂直にした。ライト(MEGALIGHT100(商標)、ショット日本株式会社)を用いて、胸部に局所的に光を当てながら、マウスの口を開放してピンセットで舌を引き出した。口内で白色の穴として見える気管を確認し、挿管補助器具(LIQUIDMICROSPRAYER(商品名、PENNCENTURY,INC))のスプレーチップ部分を使用)に装着したマウス肺内投与用カニューレ(総長4.0cmのPE-60ポリエチレンチューブ)を3.0cm気管に挿入した。
 カニューレを気管に残しつつ挿管補助器具だけを引き抜いた後、カニューレから呼気が通ることを確認し、その後、肺内投与用デバイスのチップ先端をカニューレに挿入して、マウスの吸気に合わせて0.25mLの圧縮空気を開放することで予めチップに充填しておいた各核酸含有組成物0.5mg(pDNAとして10mg)を肺内投与した。
(2)肺内遺伝子発現効果の評価
 ルシフェラーゼ活性に基づく発光を、IVIS(商標)を用いて検出・解析することにより評価した。測定時に用いたLUCIFERINはPBSを用いて30mg/mLに調整し、-80℃で保存したものを使用した。ISOFLURANE(イソフル、商標、アボットラボラトリーズ)により麻酔し、マウス肺内投与6、12、24、48時間後に、発光基質であるLUCIFERIN(30mg/mL、0.05mL/MOUSE;300mg/kg)を経鼻投与した。LUCIFERIN投与10分後にISOFLURANE麻酔下、EXPOSURETIME1分で発光を検出した。肺に相当するREGIONOFINTEREST(ROI;縦1cm、横3cm)を作成して、その発光強度(TOTALFLUX(PHOTON/SEC))を遺伝子発現量として求め、遺伝子発現量-時間パターンを解析した。得られた遺伝子発現量-時間パターンより、遺伝子発現量-時間曲線下面積(AUC)及び最大遺伝子発現量(Luc(MAX))をそれぞれ求めた。結果を、図26に示す。
 図26に示すように、試料1及び試料2は、乾燥条件下では、初期の遺伝子発現を12ヶ月後も概ね維持したが、加湿条件下では、4ヶ月で顕著に低下した。また、試料2の発現量が試料1に比較して高かった。
 以上のことから、本核酸含有組成物が、乾燥条件下であれば、その吸入特性及び遺伝子発現特性を維持できることがわかった。
(ヒアルロン酸の分子量と遺伝子発現)
 本実施例では、種々の分子量のヒアルロン酸(ナトリウム塩)を用いた核酸含有組成物の遺伝子発現に及ぼす影響を調べた。
 ヒアルロン酸として、重量平均分子量2000、5000,50000、80000及び350000(それぞれ、HA2などという。)を用い、pDNA(ホタルルシフェラーゼをコードするプラスミドDNA)1mg(2質量%)、各ヒアルロン酸12.5mg(25質量%)、フェニルアラニン36.5mg(73質量%)の合計50mgを含む噴霧凍結乾燥用液を調製した。ヒアルロン酸は、NAOHによりpH7.0±0.5に調製した溶液を用いた。この溶液を、実施例14と同様の方法により噴霧凍結乾燥して、核酸含有組成物を製造した。
 製造した各核酸含有組成物につき、ヒト由来肺胞がん細胞であるA549細胞を、細胞播種数を2×10cells/ウェル(気液界面培養系Transwell(登録商標))として4~9日培養後、これらのウェルに対して、0.4~0.6mgを充填した粉末分散添加デバイスから一定量を添加した。48時間経過後、ウェル内の細胞を凍結融解して破壊後、ピッカジーンを添加しルミノメータで蛍光を測定した。結果を図27に示す。図27に示すように、重量平均分子量が50000のHA50が最も高い遺伝子発現を示した。
 次いで、重量平均分子量50000のHA50につき、pDNA1mg(2質量%)を固定し、HA量を12.5mg(25質量%)、24.5mg(49質量%)、36.5mg(73質量%)、49mg(98質量%)とし、フェニルアラニンをそれぞれ36.5mg(73質量%)、24.5mg(49質量%)、12.5mg(35質量%)、0mg(0質量%)をそれぞれ含んだ各5mLの4種類の噴霧凍結乾燥用液を調製した。この溶液を、実施例14と同様の方法により噴霧凍結乾燥して、核酸含有組成物を製造し、上記と同様に遺伝子発現を評価した。結果を図28に示す。
 図28に示すように、HA50を73質量%含み、フェニルアラニンを12.5質量%含む核酸含有組成物が、最も高い遺伝子発現効果を示した。以上の結果から、遺伝子発現の観点からは、HA50が好適であり、また、フェニルアラニンを併用することが有用であることがわかった。また、遺伝子発現の観点からは、HA50は、全賦形剤中、50質量%以上、また例えば、50質量%以上、また例えば、60質量%以上、また例えば、70質量%以上含むことが好適であり、例えば、90質量%以下、また例えば、85質量%以下、また例えば、80質量%以下含むことが好適であり、これらの下限値及び上限値から選択される組み合わせにより規定される範囲もまた好適である。また、HA50とフェニルアラニンなどの賦形剤とは、HA50 100質量部に対して、例えば10質量部以上、また例えば、15質量部、また例えば、20質量部以上の下限値、例えば、40質量部以下、また例えば、35質量部以下、また例えば、30質量部以下の上限値から、それぞれ選択される下限値及び上限値で規定される範囲において有用であることがわかった。
(ヒアルロン酸とフェニルアラニンを含む核酸含有組成物の吸入特性)
 実施例15において良好な遺伝子発現が確認されたヒアルロン酸(重量平均分子量50000)とフェニルアラニンを含む核酸含有組成物の吸入特性を確認した。本実施例では、蛍光色素であるフルオレセインナトリウム(FLNa)を用い、賦形剤としてL-フェニルアラニン(以下、Pheとも表記する。)及びヒアルロン酸ナトリウム(重量平均分子量50000、以下、HA50とも表記する。)を用いて、以下の組成で、噴霧凍結乾燥用液を調製し、噴霧凍結乾燥した。なお、HA50は、NAOHによりpH7に調製した溶液として用いた。
[1]試料3
FLNa2質量%、HA50 98質量%、及びPhe 0質量%(合計50mg)を含む5mLの溶液。
[2]試料4
FLNa2質量%、HA50 73質量%、及びPhe 25質量%(合計50mg)を含む5mLの溶液
[3]試料5
FLNa2質量%、HA50 49質量%、及びPhe 49質量%(合計50mg)を含む5mLの溶液。
[4]試料6
FLNa2質量%、HA50 25質量%、及びPhe 73質量%(合計50mg)を含む5mLの溶液
 なお、噴霧凍結乾燥は、実施例14に準じて行い、核酸含有組成物を得て、実施例12に準じて吸入特性を評価した。結果を図29に示す。図29に示すように、HA50の質量%が低くPheの質量%が高いほど、高い肺到達性を示した。また、いずれの製剤も良好なMMADも示したが、HA50の質量%が低くPheの質量%が高いほどMMADは小さくなった。
 なお、こうした吸入特性評価の結果、いずれの製剤も、肺内到達率である「FPF3」や「OE×FPF3」は、20%以上であることがわかった。また、HA25%製剤すなわち、Phe含有量が多い製剤ほど、高い吸入特性が得られることもわかった。また、いずれの製剤も、MMADが1~6μmであることから、吸入剤に適していることもわかった。このように、本実施例によれば、HA50とフェニルアラニンの組み合わせが良好であることがわかった。
 また、図29に示すインビトロにおける遺伝子発現効果と図29に示す吸入特性の結果から推定できる、HA50とフェニルアラニンとを賦形剤とする核酸含有組成物の吸引粉末剤としての有効性を図30に示す。
 図15に示すように、HA50とフェニルアラニンとは、これら2成分の総質量に対して、HA50が40質量%以上90質量%以下、また例えば、50質量%以上90質量%以下、60質量%以上90質量%以下、60質量%以上85質量%以下、さらに、60質量%以上80質量%以下などとすることで、吸入粉末剤としての高い有効性が見込まれることがわかった。
 ACIより吸入特性評価を行った結果、肺内到達率である「FPF3」や「OE×FPF3」は、いずれの製剤も20%以上であり、HA25%製剤すなわち、Phe含有量が多い製剤ほど、高い吸入特性が得られた。しかし、MMADが1~6μmであることから、いずれの核酸含有組成物も吸入剤応用に適していることが示唆された。
(ヒアルロン酸の分子量の違いによる影響評価)
 これまでに発明者らは核酸含有組成物を検討し、HAを賦形剤にすることで、マウス肺内において高い遺伝子発現を示すことを発見した。
 HAは、生体内の生理学的状況において様々な分子量のHAに分解され、各分子量により生理活性が異なることが報告されており、核酸含有組成物の遺伝子発現において、HA分子量が何らかの影響を及ぼす可能性も十分考えられる。そこで、核酸含有組成物において最適なHA分子量を探索するとともにHAと分散補助剤の組成比の最適化を目標に、A549細胞を用いた気液界面細胞培養系(ALI)による遺伝子発現評価を行った。
 予備実験において、HAのUPW溶解液のpHが、HAの分子量により異なることが判明し、粉末化後の核酸含有組成物のpDNA構造に影響することが見いだされた。そこで各分子量のHA溶液を中性にした後、遺伝子発現評価を行った。また、HA溶液は分子量が大きいほど粘性が大きくなることから、SFD法における核酸含有組成物製造過程において噴霧が困難となり、吸入特性が低下する傾向にあるため、ALIへの分散添加において添加量に差ができる可能性がある。
 本実施例では、HA組成比を25%に統一し、分散補助剤であるL-Phenylaranine (Phe)を73%添加することで粉末の分散性を等しくした状態でHAの分子量が遺伝子発現に及ぼす影響を評価した。
[1]試料7(pDNA)
 レポーター遺伝子としてホタルルシフェラーゼをコードするpDNA (pCAG-Luc)を使用した。
Figure JPOXMLDOC01-appb-T000011
[2]試料8(モデル薬物)
 粉末微粒子製剤のモデル薬物として蛍光物質であるFluorescein sodium salt (FLNa; SIGMA-ALDRICH Co.)を用いた。
[3]試料9(賦形剤)
 賦形剤として5種の異なる分子量のHA(M.W.;2kDa(HA2kDa;ヒアロナノ(登録商標))、<5kDa(HA5kDa;マイクロヒアルロン酸 FCH)、<50kDa(HA50kDa;ヒアルロンサン HA-LF5-A)、50~110kDa(HA80kDa;ヒアルロン酸 FCH-SU)、200~500kDa(HA350kDa;ヒアベスト(登録商標) (S)LF-P))を用いた。2kDa、50kDa、350kDaはキューピー株式会社、5kDa、80kDaはキッコーマンバイオケミファ株式会社のHAを用いた。
[4]試料10(分散補助剤)
 分散補助剤としてL-Phenylaranine (Phe; SIGMA-ALDRICH Co.)を用いた。
(HA 50kDaの溶媒の最適化)
 本実施例で用いる試料として、pDNA水溶液と分子量50kDaのHA溶液及びPheを混合し、試料溶液とした。HA溶液は、(1)リン酸緩衝生理食塩水 (PBS; GIBCO(登録商標) Dulbecco‘s Phosphate-Buffered Saline、Thermo Fisher Scientific K.K.)を溶媒としたもの、(2)超純水 (UPW; UltraPure(登録商標)DNase/RNase-Free Distilled Water、invitrogen(登録商標))を溶媒としたもの、及び(3)UPWで溶解しpHメーター (SevenEasy S20、METTER TOLEDO)を用いてNaOHでpH7.0±0.5に調整したものの3通りで調製した(表12)。pHを調整するため用いたNaOH量はごく微量であったため、組成への影響は考慮しなかった。pDNA及びPheの溶媒には全てUPWを用いた。
Figure JPOXMLDOC01-appb-T000012
 試料溶液 (5.0 mL中)の組成
 核酸含有組成物は、図31に一例を示すSFD法により調製した。噴霧乾燥機(SD-1000、東京理化器械株式会社)に付属の2流体噴霧ノズルを用いて、試料溶液をノズル先端から15cm下の液体窒素(500mL)中に150kPaで噴霧することにより急速凍結した。試料溶液は5mL/minで噴霧を続けた。得られた氷滴を、凍結乾燥機(FDU-2110東京理化器械株式会社)を接続した角形ドライチャンバー(DRC-1100東京理化器械株式会社)に入れ、真空条件下で24時間乾燥することにより目的の製剤を得た。
 調製した核酸含有組成物を少量充填した100μLチップに三方活栓を介して接続した1mLシリンジ(TERUMO)内の空気0.25mLを圧縮・開放することで、黒色両面テープを貼った試料台上に噴霧した。その後、30mA、90secプラチナコーティング処理(JEC-3000FC、日本電子株式会社)を行い、粒子形状を走査型電子顕微鏡(SEM; JSM-IT100LA、日本電子株式会社)を用いて観察した。
 前記条件で調製した各核酸含有組成物の粒子形状をSEMにより観察した結果を図32に示す。その結果、pDNA/HA(UPW)とpDNA/HA(UPW+NaOH)はSFDで作成した核酸含有組成物特有の、粒子径が5~10μmの中空多孔性構造が観察されたものの、pDNA/HA(PBS)の条件においては吸湿した粒子構造が観察された。本結果より、pDNA/HA(UPW)とpDNA/HA(UPW+NaOH)の条件が良いと判断した。
(核酸含有組成物中のpDNAの構造安定性評価)
 SFD法による遺伝子の粉末化における最重要課題の1つとして、その工程で生じる熱、凍結、せん断などの種々のストレスに対して遺伝子の構造・機能を十分に保持することが挙げられる。pDNAは通常Supercoiled(S.C.)型の状態で存在しているが、外部からのストレスによりOpen-circular(O.C.)型、Linear型へと構造が段階的に変化し(図33)、特にLinear型では遺伝子発現が著しく低下することが知られている。一般的に、S.C.及びO.C.の位置にバンドが検出されれば、pDNAの構造安定性が維持されたと考えられる。
 これまでに発明者らでは、核酸含有組成物において賦形剤や分散補助剤の添加による物理化学的性質の変化を検討してきた。しかし、HA50kDaを用いた核酸含有組成物において、粉末調製後のpDNA構造が破壊されていることを発見した。HA50kDaをUPWで溶解した溶液のpHを測定したところpH2.6であった。そこで、pDNA構造がHA溶液の酸性条件下で不安定であると考え、核酸含有組成物のHA50kDa溶液の溶媒を(1)PBSで溶解したもの、(2)UPWで溶解したもの、(3)UPWで溶解した後NaOHでpH7.0±0.5に調整したものの3通りで調製した試料溶液を粉末化後、再溶解液についてアガロースゲル電気泳動を行い、pDNAの構造安定性を検討した(図34)。
 SFD法によって調製した核酸含有組成物の再溶解液(SFD前の試料溶液の濃度と同じになるように核酸含有組成物をUPWで再溶解したもの)について、アガロースゲル電気泳動を行った。一検体あたり6μL(pDNAとして0.1μg)を、0.6%アガロースゲルを用いて100V、30mAで120分間電気泳動(泳動槽AE-6530、電源AE-8155、アトー株式会社)を行った。泳動緩衝液にはtris-acetate-EDTA(TAE)bufferを用いた。サイズマーカーにはλ/HindIIIdigest(Loading Quick(登録商標) DNA Size Markers、TOYOBO Life Science)を用いた。電気泳動後、0.5μg/mLのethidium bromide(EtBr、富士フィルム和光純薬株式会社)で5分間染色し、TAE bufferで脱色した後、バリアブルイメージアナライザーTyphoon9000(GE Health Life Science)を用いてEtBr由来の蛍光(Ex;518nm、Em;603nm)を検出した。検出したバンドの位置と濃さから、pDNAの構造安定性を評価した。
 その結果を図34に示す。pHが中性付近で粉末化されたと考えられるpDNA/HA (PBS)とpDNA/HA(UPW+NaOH)の条件ではO.C.の位置にバンドが検出され、SFD粉末化後もpDNAの構造が保持されていたものの、pDNA/HA(UPW)の条件においてはバンドが検出されなかった。このことから、HA溶液において溶媒のpHを中性に調整することでpDNAの構造が保持されることが分かった。
 以上の結果から、UPWで溶解した後NaOHでpH7.0±0.5にしたHA溶液が最適溶媒であると判断し、以下の核酸含有組成物はpDNA/HA(UPW+NaOH)の条件で検討した。
(HA分子量依存性評価)
 本実施例に用いる試料として、pDNA、各分子量のHA及びPheを表13に示した組成比で含む試料溶液を調製した。また、本実施例で用いる試料として、表13のpDNA水溶液をFLNa水溶液に置き換え、HA水溶液及びPheを混合し、試料溶液とした(表14)。
Figure JPOXMLDOC01-appb-T000013
 pDNA核酸含有組成物(核酸含有組成物)用試料溶液 (5.0mL中)の組成
Figure JPOXMLDOC01-appb-T000014
 FLNa含有組成物用試料溶液 (5.0 mL中)の組成
 表13に示したpCAG-Lucを含む核酸含有組成物の組成で、賦形剤を5種の異なる分子量のHAを用いて調製した各核酸含有組成物の粒子形状をSEMにより観察した(図35)。その結果、SFD製剤特有の、粒子径が5~10μmの中空多孔性構造が観察された。
 核酸含有組成物の構造安定性評価を目的として、HAの分子量が異なる各種核酸含有組成物の再溶解液についてアガロースゲル電気泳動を行った(図36)。その結果、すべての核酸含有組成物においてS.C.及びO.C.の位置にバンドが検出され、HAの分子量に依らず、SFD粉末化後もpDNAの構造が保持されていることが示唆された。
(ACIによる吸入特性評価)
 ACI(ローボリウム・エアーサンプラー、アンダーセンタイプ、AN-200型、柴田科学株式会社)を用いて吸入特性評価を行った(図37)。ACIは多段階のステージを有しており、詳細な吸入特性評価が可能である。
 評価方法は、試料約1.0mgを2号HPMCカプセル(クオリカプス株式会社)に充填し、日立ロータリーベビコン(ベビコン、200RC-20C5、日立産機システム株式会社)によって、流量(PFR)28.3L/minにて吸引を行った。吸引時間は5secとした。吸入デバイスにはジェットヘラー(Jethaler(登録商標)、日立オートモティブシステムズメジャメント株式会社)の吸入抵抗の高いリバースを用いた。リバースの圧力損失は8.7kPaであり、内部構造を図38に示す。
 Capsule、Device、Throat、各Stage、Filterに沈着した試料をPBS10mLに溶解した後、FLNaの濃度をマルチプレートリーダー(Enspire、株式会社パーキンエルマージャパン)にて定量(励起波長;490nm、蛍光波長;515nm)し、回収量を算出した。必要に応じて希釈定量を行った。本実施例では、Stage3以降を吸入剤応用に有効な肺内送達領域、Stage5以降を全身作用が期待できる肺深部送達領域とした。吸入特性指標値として、デバイスからの放出率であるOE(Output Efficiency:%)を式(1)より、デバイスから放出された薬物のうちStage3及びStage5以降に到達した割合を示すFPF3、FPF5(Fine Particle Fraction:%)をそれぞれ式(2)、式(3)より、全回収量のうちStage3及びStage5以降に到達した割合を示すOE×FPF3(%)、OE×FPF5(%)を式(4)、式(5)より算出した。
(式1)
OE(%)=Throat以降からの回収量(μg)/全回収量(μg)×100
(式2)
FPF3(%)=Stage3以降からの回収量(μg)/Throat以降からの回収量 (μg)×100
(式3)
FPF5(%)=Stage5以降からの回収量(μg)/Throat以降からの回収量 (μg)×100
(式4)
OE×FPF3(%)=Stage3以降からの回収量(μg)/全回収量(μg)×100
(式5)
OE×FPF5(%)=Stage5以降からの回収量(μg)/全回収量(μg)×100
 また、Stage0からFilterまでの各部位での回収量を基に解析ソフト (AEROSOL particle density analysis system、柴田科学株式会社)を用いてMMADの算出を行った。
 HA溶液は分子量が大きいほど粘性が大きくなることから、SFD法における核酸含有組成物過程において噴霧が困難となり、吸入特性が低下する傾向にあるため、ALIへの分散添加において添加量に差ができる可能性がある。そこで本実施例では、分散性を等しくした状態でHAの分子量が遺伝子発現に及ぼす影響を評価するため、HA組成比を25%に統一し、分散補助剤であるPheを73%添加した粉末を用いた。比較的低分子であるHA2kDaのSFD法で作成した核酸含有組成物は、比較的吸入特性が高いと考えられることから、表14に示したFLNa含有組成物の組成で、比較的吸入特性が高いと考えられる分子量2kDaと分子量350kDaを用いた2製剤でACIを行い、吸入特性に差がないことを確認した。
 その結果、HA350kDaを含む核酸含有組成物はHA2kDaを含む核酸含有組成物と比較して、有意にFPF5が低くMMADは大きかったものの、OE、FPF3は有意な差が無かった(図39-41)。以上の結果、HAの含有率を25%にすることで高分子HAを賦形剤に用いた製剤でも低分子HAと同等の吸入特性が得られると考え、他の分子量(M.W.;5,50,80kDa)のHAを賦形剤とした核酸含有組成物においても吸入特性が同等であると見なした。
(新規の吸入時崩壊性核酸含有組成物のMMADの算出)
 粉体の粒度分布は経験的に対数正規分布に従い、ACI解析で得られるステージごとの回収率の積算値をカットオフ径の対数値に対してプロットすると直線が得られ、50%粒子径をMMAD、(84.3%粒子径)/(50%粒子径)を幾何標準偏差(GSD)とする(図42(a))。今回調製したFLNaHA25%核酸含有組成物では、対数正規プロットが曲線となった(図42(b)左)。これは吸引した粉体の一部が崩壊し,粒子径が大きい粉体(MMAD及びGSDをMMAD及びGSDとする)と小さい粉体(MMAD及びGSD)が比率(1-R):Rで生じたと考えた。そこでACI解析で得られた8つの測定点(回収率の積算値)から、Excelの関数を用いて各ステージに下記A~Dの値を求め,Eが最小になるようなR、MMAD、GSD、MMAD、GSDをExcelのソルバー機能により求めた。
A=回収率の積算値(%)をNORM.S.INV関数により変換した確率変数
B=NORM.DIST関数により算出したMMAD及びGSDの粉体の回収率の積算値
C=NORM.DIST関数により算出したMMAD及びGSDの粉体の回収率の積算値
D= B×(1-R)+C×Rの値をNORM.S.INV関数により変換した確率変数
E=ステージごとに求めた (D-A)の合計値
(Transwell(登録商標)からの核酸含有組成物の回収率測定)―A
 図43に示した粉末分散添加デバイスのチップ内に、図31に一例を示す方法で調製した核酸含有組成物0.5mgをマイクロスパーテルにより充填し、透過実験で汎用されるTranswell(登録商標)(12 mm Transwell(登録商標) with 0.4 μm Pore Polyester Membrane Insert, Sterile、CORNING Co.)半透膜表面にBuffer TE(Endotoxin-free TE buffer、QIAGEN)150μLをあらかじめ添加し、充填した核酸含有組成物を表面から1cmの高さから、シリンジ内の0.25mLの圧縮空気を一気に開放することでTranswell(登録商標)上に核酸含有組成物を分散添加した。分散添加は、除電器で静電気を除去してから行った。Transwell(登録商標)半透膜表面のBuffer TEで溶解した核酸含有組成物を回収したのち、再度Buffer TE 150μLで共洗いした。回収後Buffer TEで全量を1000μLにし、GeneQuant100(株式会社セントラル科学貿易)を用いて吸光光度法(検出波長;258nm)によりpDNA量を定量することで、核酸含有組成物の回収率を算出した。吸光度を測定するうえで、Pheが吸収する可能性があることから、各核酸含有組成物の検量線を作成し回収率を得た。
 粉末をALIに噴霧する際、静電気の影響や粉末の物理化学的性質が原因で、粉末分散添加デバイスやALIの粘膜側のinsert側面に付着するため、充填した試料が全て細胞に曝露されるわけではない。図41に示した結果において、HA組成比を25%に統一することでHA2kDaと350kDaの製剤の吸入特性(OE及びFPF3)に有意な差がないことが確認された。そこで本検討では、in vitro遺伝子発現評価において細胞曝露する核酸含有組成物量が一定であるか確認するため、各核酸含有組成物添加後の回収率を測定した。
 その結果、各核酸含有組成物の回収率には有意な差が無いことが明らかになった(図44)。以上の結果から、HA分子量の違いによって曝露量に差は無いと判断し、全ての製剤の充填量を0.5mgとした。
(核酸含有組成物分散添加によるin vitro遺伝子発現の評価)
 気液界面細胞培養系の培養細胞としてヒト由来肺上皮癌細胞であるA549細胞をCELL BANK(理化学研究所)より購入して用いた。A549細胞培養液にはRoswell Park Memorial Institute(RPMI) 1640培地を用い、fetal bovine serum(FBS;培地に対して10%相当量、Thermo Fisher Scientific Inc.)、Penicillin-Streptomycin(最終濃度100U/mL penicillin,100μg/mL streptomycin)をそれぞれ添加した。RPMI培地、Penicillin-Streptomycin、継代に用いるTrypsin-EDTAはいずれもSIGMA-ALDRICH Co.から購入した。細胞はインキュベータ(37℃、相対湿度: 90%、CO濃度: 5%)内で培養し、一週間に2回程度の頻度で継代を行った。
 Transwell(登録商標)にA549細胞を2×10cells/500μL/wellの細胞数/培地量で播種し、2日目から粘膜側の培地を取り除いて培養し、播種後4~10日目に実験に用いた。
 核酸含有組成物を上記Aと同様にクリーンベンチ内で粉末分散添加デバイスを用いてTranswell(登録商標)の粘膜側に分散添加した。その後、37℃、5%CO中で48時間インキュベートした。インキュベーション終了後、培地を取り除き、200μLのLysis buffer(0.05% Triton X-100、2mM EDTA、0.1M Tris、pH7.8)で細胞を溶解し、液体窒素による凍結と37℃に設定した恒温槽による融解を交互に各3min、3回ずつ繰り返し13,000×g、7分、4℃で遠心分離した。20μLの上清をピッカジーン(登録商標)(東洋インキ製造株式会社)100μLに加えた後、直ちにルミノメータ(Lumat LB9507、EG&G Berthold、Bad Wildbad、Germany)でRelative Light Unit (RLU)を測定した。
 またタンパク質量の測定にはBradford法を用いた。標準タンパク質溶液としてウシ血清アルブミン(BSA、富士フィルム和光純薬株式会社)を使用した。上記の上清を10倍希釈した試料溶液及び標準タンパク質を透明96-wellプレート (MICROTEST(登録商標) Tissue Culture Plate, 96 Well、Flat Bottom with Low Evaporation Lid、BD Falcon U.S.A)に10μLずつ取り、Coomassie Brilliant Blue試薬(0.025%クーマシーブリリアントブルーG250、5%(v/v)95%エタノール、10%(v/v)リン酸)を200μLずつ加え撹拌し、室温で5分放置した後、マルチモードプレートリーダーを用いて595nmの吸光度を測定した。
 統計学的有意差は、2群間の有意差検定にはF検定を行った後に、両側t検定を行い、3群間以上の有意差検定には一元配置分散分析(ANOVA)のScheffe法により解析した。p値が0.05未満のとき有意に差がみられるとした。
 図34、図36においてSFDによる粉末化後もpDNAの構造を安定に維持しつつ、図39-41においてTranswell(登録商標)に添加される核酸含有組成物量に差がないことが確認されたため、HAの分子量の違いによる遺伝子発現を比較した。その結果、HA50kDaを賦形剤とした核酸含有組成物において、他の分子量のHAより顕著に高い遺伝子発現を示した(図45)。
(HAを含む核酸含有組成物の組成比評価)
 本実施例に用いる試料として、pDNA水溶液を用いてHA50kDa水溶液の組成比を変化させて混合し、試料溶液とした(表15)。また、本実施例で用いる試料として、表15のpDNA水溶液をFLNa水溶液に置き換え、HA水溶液及びPheを混合し、試料溶液とした(表16)。
Figure JPOXMLDOC01-appb-T000015
 pDNA核酸含有組成物用試料溶液(5.0 mL中)の組成
Figure JPOXMLDOC01-appb-T000016
 FLNa含有組成物用試料溶液(5.0 mL中)の組成
 図45において分子量50kDaのHAを賦形剤として用いることで顕著に高い遺伝子発現を示すことが明らかになったため、引き続きHA50kDaを用いて表15に示した組成比でSFDにより核酸含有組成物を調製し、各核酸含有組成物の粒子形状をSEMにより観察した(図46)。その結果、SFD製剤特有の、粒子径が5~10μmの中空多孔性構造が観察された。
(ACIによる核酸含有組成物の吸入特性評価)
 表16のFLNa含有組成物を、ACIにより吸入特性を評価した。その結果、いずれの核酸含有組成物もThroatに多く付着することが確認された(図47)。また、HA25%条件のFLNa含有組成物のFPF3、OE×FPF3、FPF5及びOE×FPF5が他の組成比のFLNa含有組成物よりも有意に高く、Pheの含有量が多い製剤ほど分散性が高く粒子径がより小さくなり肺深部まで到達する傾向を示した。いずれのFLNa含有組成物もOEが80%以上あり、FPF3及びOE×FPF3は20%を維持していた(図48)。また、MMADはいずれのFLNa含有組成物も1~6μmであり、吸入核酸含有組成物として適した吸入特性を持つことが示唆された(図49)。HA25%条件の核酸含有組成物のMMADに関しては、粒子径が大きい粉体と小さい粉体の二極化が生じたため、新規のMMAD算出法により解析した結果を表17に示した。
Figure JPOXMLDOC01-appb-T000017
 HA25%条件の核酸含有組成物の新規MMAD算出(mean±S.D.,n=3)
 各種核酸含有組成物が添加されている量を測定した。その結果、各核酸含有組成物の回収率は図50に示した通り、Pheを多く含む核酸含有組成物ほど回収率が高くなった。したがって、遺伝子発現の結果を各核酸含有組成物の回収率で、補正するものとする。
 分子量50kDaのHAを賦形剤、Pheを分散補助剤とした核酸含有組成物において、異なる組成比での遺伝子発現評価を行った。また、図39で得られた回収率から、核酸含有組成物のpDNA1μg当たりの遺伝子発現量として補正した。
 その結果、HA50 kDaが73%含まれる核酸含有組成物が、他の組成比と比較して有意に高い遺伝子発現を示した(図51)。また、遺伝子発現量を回収率で補正した結果、HAを73%含む核酸含有組成物と98%含む核酸含有組成物の差は小さくなったものの、73%含む核酸含有組成物の方が有意に高い遺伝子発現を示した(図52)。
(複数のがん抑制遺伝子を用いた、がん抑制効果の検討)
 HA50kDaを73%含む条件において、複数のがん抑制遺伝子を含む核酸含有組成物(SFD粉末製剤)を作製し、がん抑制遺伝子を細胞内に導入することにより、がん抑制効果の有無を検討した。
 本実施例に用いる試料として、以下を使用した。
[1]試料11(pDNA)
 がん抑制遺伝子としてp16遺伝子をコードするpDNA(pCMV-p16INK4a)と、p53遺伝子をコードするpDNA(pCMV-p53)を使用した。
Figure JPOXMLDOC01-appb-T000018
[2]試料12(賦形剤)
 賦形剤として分子量50kDaのHAを用いた。
[3]試料13(分散補助剤)
 分散補助剤としてL-Phenylaranine (Phe; SIGMA-ALDRICH Co.)を用いた。
 なお、以下実験の種類に応じて、結果に影響がない、蛍光プローブとしてインドシアニングリーン(ICG)を0.5mg、または、評価の定量用ラベル剤としてfluorescein sodium salt (FlNa; Sigma)を1.0mg追加し、用いた。
 以下に組成を示す。なお、本実施例に用いたSFD粉末製剤は以下、[SFD placebo]、[SFD+p16]、[SFD+p53]と記す。
Figure JPOXMLDOC01-appb-T000019
 SFD粉末製剤は、SFD法により調製した。噴霧乾燥機(SD-1000、東京理化器械株式会社)に付属の2流体噴霧ノズルを用いて、試料溶液をノズル先端から15cm下の液体窒素(500mL)中に150kPaで噴霧することにより急速凍結した。試料溶液は5mL/minで噴霧を続けた。得られた氷滴を、凍結乾燥機(FDU-2110東京理化器械株式会社)を接続した角形ドライチャンバー(DRC-1100東京理化器械株式会社)に入れ、真空条件下で24時間乾燥することにより目的のSFD製剤を得た。
 1 mL シリンジ(テルモ)と三方活栓(L型 L-1, トップ)を接続し、粉末剤添加用デバイスを作製した。0.2 mg以下のSFD粉末製剤をP100ディスペンサーチップ(Watson)に詰め、粉末製剤添加用デバイスに接続した。SEM試料台(水平 600154297, JEOL)に両面テープを貼りつけ、5 mL チューブ(BIO-BIK)の底に穴を開けて作製したスカート内に置いた。粉末製剤添加用デバイスのP100ディスペンサーチップをスカートの穴に差し込み、0.25 mLの空気をシリンジ内で圧縮してから三方活栓を開いて試料台に、ICGを含むSFD粉末製剤を噴霧した。試料台に噴霧したSFD粉末製剤は30 mA, 90 secの条件で白金コーティング(JFC-1600, JEOL)を施し、走査型電子顕微鏡(JSM-6060, JEOL)を用いて観察を行った。遺伝子を含んだSFD粉末製剤は、中空多孔の粒子形態を示した(図53)。
 カプセル(2S-LOK, Qualicaps)にFlNaを含むSFD粉末製剤1.0 mgを詰め、リバース型吸入器(Jethaler Reverse, トキコシステムソリューションズ)にセットした。吸入器をACI(AN-200, SIBATA SCIENTIFIC TECHNOLOGY)のThroatに接続して28.3 L/minで5秒間吸引した。カプセル、吸入デバイス、ACIのThroatと各Stageそれぞれに沈着したSFD粉末製剤をPBSで洗浄回収し、各回収液のFlNa由来の蛍光強度をマルチプレートリーダー (Enspire(登録商標), Perkin Elmer)を用いて励起波長 490 nm/蛍光波長 515 nmで測定し、FlNa濃度を算出した。なお、ステージ3以降を吸入剤応用に有効な肺内送達領域とし、ステージ5以降を肺抹消での作用が期待できる肺深部送達領域とする。[SFD+p16]において、ステージ3以降の、吸入剤応用に有効なサイズの粒子が含まれることが確認された(図54)。また、ステージ3以降からの回収量(mg)/Throat以降からの回収量(mg) x100で算定するFPF3は、20%を超えており良好であった(図55)。
 (がん抑制遺伝子p16粉末製剤によるがん抑制効果)
 がん抑制遺伝子p16INK4aを含有するSFD粉末製剤[SFD+p16]のがん細胞への効果を検討するため、p16遺伝子変異株ヒト非小細胞肺がんA549細胞、ヒト悪性中皮腫H2052細胞をインキュベータ(37℃、相対湿度:90%、CO濃度:5%)内で培養し、一週間に2回程度の頻度で継代を行った。培養液にはFBS(最終濃度10%)、Penicillin-Streptomycin(最終濃度100U/mL Penicillin,100μg/mL streptomycin)を添加したRPMI1640を使用した。
 Transwell(登録商標。Permeable Supports 12 mm Insert, 12 well plate 0.4 μm Polyester Membrane Tissue Culture Treated, Polystyrene, Corning) のapical側にA549細胞またはH2052細胞を2.0 x 10cells/wellで播種した。播種後2日間培養した後、apical側のメディウムのみを除去して気液界面培養を開始した。SFD粉末製剤0.5 mgをP100ディスペンサーチップ(Watson)に詰め、1mLシリンジ(テルモ)と三方活栓(L型 L-1, トップ)をつなげて作製した粉末製剤添加用デバイスに接続した。1.5mLチューブの底面に穴を開けてスカートを作製しTranswell(登録商標)のapical側にセットした。スカートの穴に粉末製剤([SFD placebo]、[SFD+p16])入りP100ディスペンサーチップを差し込み0.25 mLの空気をシリンジ内で圧縮してから三方活栓を開放してapical側の細胞に噴霧した。24時間気液界面培養し、PBSで細胞表面を洗浄してからトリプシン/EDTA(Sigma)により細胞を剥離・回収し、以下の方法で細胞カウントを行った。細胞を0.4%トリパンブルー/PBS(Sigma)を用いて生細胞を血球計算盤でカウントした。A549細胞において、[SFD+p16]投与群は未処置群と比べて有意な細胞数減少が見られた(図56)。また、H2052細胞においても、[SFD+p16]投与群は未処置群と比べて有意な細胞数減少が見られた(図57)。なお、統計学的有意差は、2群間の有意差検定でF検定を行った後に、両側t検定を行い、p値が0.05未満のとき有意に差がみられるとし、本実施例において以下同様に実施した。
 A549細胞を用いたin vitro評価系にて、SFD粉末製剤([SFD placebo]、[SFD+p16])噴霧・細胞回収後、PBSで1回細胞洗浄してから固定膜透過処理液(Invitrogen)を細胞に添加し室温下10分間静置した。細胞を2%FBS/PBSで2回洗浄してから、2%FBS/PBSで50倍希釈したanti-human p16-INK4a (Rabbit IgG)抗体(Proteintech)を細胞に添加し室温で30分間反応させた。2%FBS/PBSで2回洗浄し、2%FBS/PBSで500倍に希釈したGoat anti-Rabbit IgG Pacific Blue標識抗体(Invitrogen)を細胞に添加して室温遮光下30分間反応させた。PBSで2回洗浄後、ナイロンメッシュ(3-3069目開き38 μm、 アズワン)に細胞を通してからセルアナライザー(LSRFortessaX(登録商標)-20, BD Biosciences)にて解析を行った。結果を図58に示す。この結果から、A549細胞において、[SFD+p16]を投与した結果、p16の発現がタンパクレベルで確認できた。
 前述したIn vitro 細胞生存率評価の実験で回収した細胞を、250μLのPBSと750μLのRNAiso Blood(タカラバイオ)で溶解した。溶解した細胞からRNAを抽出し、逆転写反応によりcDNAを得た後、リアルタイムPCRで遺伝子発現解析を行った。なお、コントロールとして未処理の細胞、pDNA(pCMV-p16INK4a)のみを処理した細胞、p16を含まないSFD粉末製剤(SFD placebo)を処理した細胞のそれぞれから抽出したRNAをもとに、同様にリアルタイムPCRを行った。なお、リアルタイムPCRには以下の表に示すプライマーを用いた。なお、別途配列表に記載した、配列番号1はp16のForward primerであり、配列番号2はp16のReverse primerである。配列番号3はHPRT1のForward primerであり、配列番号4はHPRT1のReverse primerである。
Figure JPOXMLDOC01-appb-T000020
 A549細胞を用いた結果を図59に、H2052細胞を用いた結果を図60に示す。発現の内在性コントロールとして、HPRT1遺伝子を用いた。A549細胞、H2052細胞は遺伝子変異により未処置群ではp16の発現はほぼ見られない。pDNA(p16)単体群でも大きな発現変化は見られないが、[SFD+p16]投与群は、未処置群と比べて549細胞では約70倍、H2052細胞では約120倍の発現が確認できた。
 In vitroで発現の確認と、細胞増殖抑制効果が認められたため、次にin vivoでの検討を行った。A549細胞にLuciferase遺伝子を導入して樹立したA549Luc細胞をFBS(最終濃度10%)(10437-028, Gibco)とペニシリン(最終濃度100 U/mL)/ストレプトマイシン(最終濃度100 μg/mL)(P0781, Sigma)を添加したRPMI1640 (R-8758, Sigma)で5% CO、37℃ 条件下で培養した。
 BALB/c nude/nude マウス6週齢 オス(日本SLC)をイソフルランで麻酔し、5 x 10個/100 μL PBS/mouseとなるように、A549Luc細胞をマウスの右眼窩静脈嚢から29G針付きシリンジで注入した。担癌4日後にLuciferinを経鼻的に肺内投与し、肺に相当するregion of interest (ROI: 縦1 cm , 横3 cm)の発光強度が2.5 x 10 p/sec/cm/sr以上を示すマウスを担癌モデルマウスとして使用した。なお、何も処置をしなかったBALB/c nude/nude マウス6週齢 オス(日本SLC)を、以下非担癌マウスと記す。
 A549Luc細胞注入から4日後に、担癌モデルマウスの条件を満たしたマウスについて3種混合麻酔(塩酸メデトミジン0.3 mg/kg, ミダゾラム 4 mg/kg, 酒石酸ブトルファノール 5 mg/kg混合麻酔)を5 mg/kgで腹腔内注射し、4 cmの長さにカットしたカニューレ (Polyethylen Tubing PE60 427416, BD) を経口的に気管内挿管した。カニューレに接続した粉末製剤添加用デバイス内の0.25 mLの圧縮空気を開放することで、ICG含有SFD粉末製剤([SFD placebo]、[SFD+p16])0.5 mgをマウス肺内に投与した。噴霧10分経過後にIVISを用いてICGシグナルを検出し、肺内への粉末製剤送達を確認した。肺内へ送達できたマウスについて、肺に相当するROIの発光強度測定を製剤投与12日後まで毎日継続的に実施、また、14日後、22日後に発光強度を調べた。
 マウス肺のLuciferase由来の発光は、Luciferin (Promega) 30 mg/mL PBS溶解液50 μLをマウスに経鼻的に肺内投与し、10分後にイソフルラン(富士フィルム和光純薬)麻酔下でin vivo  imaging system(IVIS(登録商標):IVIS-SPECTRUM、 Caliper Life Sciences)を用いて露光時間1分で検出・解析した。マウス肺のICG由来の蛍光は、IVIS(登録商標)を用いて励起波長720 nm/蛍光波長 850 nm、露光時間1秒で検出・解析した。[SFD+p16]の投与群は、製剤投与後4日目から、未処置群、及び[SFD placebo]の投与群の結果と比較して優位にLuciferase発光強度が下がり、その後もSFD製剤投与後14日後まで、その傾向は継続した(図61)。なお、図62にはSFD製剤投与後6日後の肺のLuciferase発光の様子を示したが、[SFD+p16]は、他の群と比較して、Luciferase発光の程度が低いことが分かる。これらの結果から、[SFD+p16]はin vivoでもがん細胞の増殖抑制効果があることが示された。
 更に、SFD粉末製剤のがん抑制効果を裏付けるため、図62にIVIS測定の図を示した担癌モデルマウス(未処理と[SFD+p16]投与)及び、非担癌マウスについて、肺切片を作製し、免疫染色を行った。凍結切片は以下の手法で作成した。マウスを下大静脈から脱血させた後、左心耳から26G針(テルモ)と20 mLシリンジ(テルモ)を用いてPBS 20 mLと4% PFA/PBS 20 mLを注入して灌流固定を行った。摘出した肺は4% PFA/PBSに16時間浸漬し、その後30% スクロース置換を48時間行った。O.C.T.コンパウンド(Tissue-Tec(登録商標), サクラファインテック)で満たした包埋皿(ティッシューテック クリオモルド3号,  SFJ)に各肺葉を浸漬し、-80℃で凍結した。凍結切片作製装置(クリオスター NX70, Thermo Fisher)を用いて20 μm厚で切片を作製し、スライドガラス(MAS-02, 松浪)に接着させ20分以上風乾した。
 風乾した凍結切片を10 mM クエン酸緩衝液(pH 6.0)に浸し、マイクロウェーブ処理を5分間行って抗原を賦活化した。PBSで5分間3回洗浄したのち、クエンチングバッファー(0.2% 過酸化水素/メタノール)に室温で30分間スライドを浸した。スライドをPBSで5分間3回洗浄し、1%ウシ血清アルブミン/PBSを切片に滴下して遮光湿潤箱中で室温下30分間静置しブロッキングを行った。1%ウシ血清アルブミン/PBSで50倍に希釈したanti-Luciferase (C-12) HRP標識抗体(SC-74548HRP, サンタクルズ)を滴下し、遮光湿潤箱中で室温下1時間反応させた。スライドをPBSで5分間3回洗浄してからDAB発色キット(Histostar 8469, MBL)を用いて発色反応を行い、蒸留水に漬けて発色反応を停止させた。カウンター染色としてマイヤーヘマトキシリン液(131-09665, 和光純薬工業)に2分間浸した後、15分間水道水で洗浄した。95%エタノール、次いで100%エタノールで脱水後キシレンにて透徹し、封入剤(DPX Mountant for histology 06522, Sigma)を用いて病理解析スライドを作製した。
 Keyence オールインワン BZ-9000を用いて病理解析スライドを観察した。図63に示すように、左右の肺において、非担癌マウスでは黒く染まる細胞はなく、がん細胞がないことが裏付けられた。また、担癌モデルマウスの肺(左右)に対し、未処理の場合は、黒く染まるがん細胞が多く存在し、[SFD+p16]を投与した場合には、がん細胞の数が少なくなることが分かった。倍率を下げ、肺全体を見たのが図64である。図63のデータと同様に、担癌モデルマウスの肺(左右)に対し、未処理の場合は、黒く染まるがん細胞が肺全体に広く分布しているが、[SFD+p16]を投与した場合には、肺全体からがん細胞の数が少なくなることが分かった。
 A549肺がん細胞(1.5×10cells)をヌードマウス群(BALB/c-nu)に皮下投与した。その後、腫瘍の成育を確認(約7日)後に、マウスの皮膚を切開し、腫瘍にSFD粉末製剤([SFD placebo]、[SFD+p16])を約0.5mg噴霧した。その後、皮膚を閉じ、更に約7日後に摘出しサイズを測定し、4%PFAで3日固定した後、腫瘍の重量を測定した。
 この結果を図65に示す。[SFD placebo]を噴霧したものの重量が0.099gであったのに対し、[SFD+p16]を噴霧したものは0.068gであった。腫瘍の顕著な減少傾向が見られた。
 更に、SFD噴霧後の肺がん細胞をヌードマウスに移植した場合の増殖抑制効果を検討した。まず培養したA549を回収し、[SFD placebo]及び[SFD+p16]をそれぞれ約0.5mg噴霧した。その後ヌードマウスの肺へ細胞1.5×10cellsを皮下移植した。1週間後、腫瘍を取り出しサイズを測定し、4%PFAで3日固定した後で測定した腫瘍の重量(g)を評価した。
 結果を図66に示す。[SFD placebo]を噴霧したものが0.055gであったのに対し、[SFD+p16]を噴霧したものは0.044gであり、[SFD+p16]を噴霧した腫瘍の平均重量の方が軽くなった。腫瘍の顕著な減少傾向が見られた。
 (がん抑制遺伝子p53粉末製剤によるがん抑制効果)
 がん抑制遺伝子p53を含有するSFD粉末製剤[SFD+p53]の、がん細胞への効果を検討するため、p53遺伝子変異株ヒト非小細胞肺がんH1299細胞、ヒト膀胱がん細胞T24細胞、UMUC3細胞をインキュベータ(37℃、相対湿度:90%、CO濃度:5%)内で培養し、一週間に2回程度の頻度で継代を行った。培養液にはFBS(最終濃度10%)、Penicillin-Streptomycin(最終濃度100U/mL Penicillin,100μg/mL streptomycin)を添加したDMEMを使用した。
 Transwell(登録商標。Permeable Supports 12 mm Insert, 12 well plate 0.4 μm Polyester Membrane Tissue Culture Treated, Polystyrene, Corning) のapical側に細胞を2.0 x 10cells/wellで播種した。播種後1~2日間培養した後、apical側のメディウムのみを除去して気液界面培養を開始した。SFD粉末製剤([SFD placebo]、[SFD+p53])0.5 mgをP100ディスペンサーチップ(Watson)に詰め、1mLシリンジ(テルモ)と三方活栓(L型 L-1, トップ)をつなげて作製した粉末製剤添加用デバイスに接続した。1.5mLチューブの底面に穴を開けてスカートを作製しTranswell(登録商標)のapical側にセットした。スカートの穴に粉末製剤入りP100ディスペンサーチップを差し込み0.25 mLの空気をシリンジ内で圧縮してから三方活栓を開放してapical側の細胞に噴霧した。24時間気液界面培養し、1×PBSで細胞表面を洗浄してからトリプシン/EDTA(Sigma)により細胞を剥離・回収し、以下の方法で細胞カウントを行った。細胞を0.4%トリパンブルー/PBS(Sigma)を用いて生細胞を血球計算盤でカウントした。H1299細胞において、[SFD+p53]投与群は未処置群と比べて有意な細胞数減少が見られた(図67)。また、T24細胞においても、[SFD+p53]投与群は未処置群と比べて有意な細胞数減少が見られた(図68)。更に、UMUC3細胞においても、[SFD+p53]投与群は未処置群と比べて有意な細胞数減少が見られた(図69)。
 In vitro 細胞生存率評価で回収した細胞を250μLのPBSと750μLのRNAiso Blood(タカラバイオ)で溶解した。溶解した細胞からRNAを抽出し、逆転写反応によりcDNAを得た後、リアルタイムPCRで遺伝子発現解析を行った。リアルタイムPCRには以下の表に示すプライマーを用いた。なお、別途配列表に記載した、配列番号5はp53のForward primerであり、配列番号6はp53のReverse primerである。配列番号7はPPIAのForward primerであり、配列番号8はPPIAのReverse primerである。
Figure JPOXMLDOC01-appb-T000021
 結果を図70に示す。発現の内在性コントロールとして、PPIA遺伝子を用いた。この結果、H1299細胞は遺伝子変異により未処置群ではp53の発現はほぼ見られない。また、pDNA(p53)単体群でも大きな発現変化は見られないが、[SFD+p53]投与群は未処置群と比べて約78倍の発現が確認できた。
 これまでの[SFD+p53]を用いた実験結果から、実施例18において[SFD+p16]を用いて検討したSFD粉末製剤の特性や、がん細胞の増殖抑制効果は、[SFD+p53]を用いた場合にも、同様の結果が得られることが予測される。
 本実施例の結果より、賦形剤としてHAと、分散補助剤としてPheと、がん抑制遺伝子をSFDにより粉末製剤化した核酸含有組成物は、がん細胞の増殖抑制効果を有することが判明した。

Claims (22)

  1.  固体物質としての核酸と、アニオン性ポリマー又はそれらの塩であるアニオン性成分と、を含有する核酸含有組成物。
  2.  前記核酸は、ネイキッド核酸である、請求項1に記載の核酸含有組成物。
  3.  カチオン性キャリアを含有しない、請求項1又は2に記載の核酸含有組成物。
  4.  前記核酸と前記アニオン性成分を含む多孔質粒子を含む、請求項1~3のいずれかに記載の核酸含有組成物。
  5.  前記アニオン性成分は、ヒアルロン酸又はその塩である、請求項1~4のいずれかに記載の核酸含有組成物。
  6.  前記ヒアルロン酸又はその塩の重量平均分子量は、30,000以上70,000以下である、請求項5に記載の核酸含有組成物。
  7.  さらに、1又は2以上の疎水性アミノ酸を含有する、請求項1~6のいずれかに記載の核酸含有組成物。
  8.  前記疎水性アミノ酸は、ロイシン、フェニルアラニン及びイソロイシンからなる群から選択される、請求項7に記載の核酸含有組成物。
  9.  重量平均分子量が30,000以上70,000以下のヒアルロン酸又はその塩とフェニルアラニンを含有し、これら2成分の総質量に対して、前記ヒアルロン酸又はその塩を、40質量%以上85質量%以下含有する、請求項5~8のいずれかに記載の核酸含有組成物。
  10.  実質的に水を利用しないで細胞に供給するための組成物である、請求項1~9のいずれかに記載の核酸含有組成物。
  11.  固相である、請求項1~10のいずれかに記載の核酸含有組成物。
  12.  哺乳類細胞に対する遺伝子導入用である、請求項1~11のいずれかに記載の核酸含有組成物。
  13.  マンニトール及びトレハロースを含有する、請求項1~12のいずれかに記載の核酸含有組成物。
  14.  吸気によって分散・解砕可能であって、かつ、吸湿時に膨潤可能である、多孔質中空状の球状粒子である、請求項1~13のいずれかに記載の核酸含有組成物。
  15.  前記球状粒子の幾何学的粒子径分布のピーク粒子径は、1μm以上100μm以下である、請求項14に記載の核酸含有組成物。
  16.  哺乳類に対する遺伝子発現用である、請求項1~15のいずれかに記載の核酸含有組成物。
  17.  哺乳類における遺伝子抑制用である、請求項1~15のいずれかに記載の核酸含有組成物。
  18.  抗がん効果を持つ、請求項1~17のいずれかに記載の核酸含有組成物。
  19.  核酸含有組成物の製造方法であって、
     核酸と、アニオン性ポリマー又はその塩であるアニオン性成分と、を含有する溶液を、凍結乾燥する乾燥工程、
    を備える、製造方法。
  20.  前記乾燥工程は、噴霧凍結乾燥による工程である、請求項19に記載の製造方法。
  21.  前記乾燥工程において、ロイシン、マンニトール及びトレハロースを用いる、請求項19又は20に記載の方法。
  22.  生体外の細胞に対して、請求項1~18のいずれかに記載の核酸含有組成物を用いて、前記核酸を導入する工程、
    を備える、核酸導入方法。

     
PCT/JP2021/014243 2020-04-01 2021-04-01 核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法 WO2021201258A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511146A JPWO2021201258A1 (ja) 2020-04-01 2021-04-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020066331 2020-04-01
JP2020-066331 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021201258A1 true WO2021201258A1 (ja) 2021-10-07

Family

ID=77929183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014243 WO2021201258A1 (ja) 2020-04-01 2021-04-01 核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法

Country Status (2)

Country Link
JP (1) JPWO2021201258A1 (ja)
WO (1) WO2021201258A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534153A (ja) * 2013-10-11 2016-11-04 ローレンス エス. ジスマン, 噴霧乾燥製剤
WO2017103600A1 (en) * 2015-12-15 2017-06-22 Hovione Scientia Limited Preparation of respirable zafirlukast particles
JP2018011588A (ja) * 2016-07-08 2018-01-25 学校法人 名城大学 核酸導入用組成物及びその利用
JP2019524648A (ja) * 2016-06-30 2019-09-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ニコチン粒子および組成物
WO2020071448A1 (ja) * 2018-10-02 2020-04-09 学校法人名城大学 吸入粉末剤、その評価方法及びその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534153A (ja) * 2013-10-11 2016-11-04 ローレンス エス. ジスマン, 噴霧乾燥製剤
WO2017103600A1 (en) * 2015-12-15 2017-06-22 Hovione Scientia Limited Preparation of respirable zafirlukast particles
JP2019524648A (ja) * 2016-06-30 2019-09-05 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ニコチン粒子および組成物
JP2018011588A (ja) * 2016-07-08 2018-01-25 学校法人 名城大学 核酸導入用組成物及びその利用
WO2020071448A1 (ja) * 2018-10-02 2020-04-09 学校法人名城大学 吸入粉末剤、その評価方法及びその用途

Also Published As

Publication number Publication date
JPWO2021201258A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
Okuda et al. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity
Gu et al. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery
Li et al. The use of amino acids to enhance the aerosolisation of spray‐dried powders for pulmonary gene therapy
Merkel et al. siRNA delivery to the lung: what's new?
Ruigrok et al. Pulmonary administration of small interfering RNA: The route to go?
Liu et al. The use of antibody modified liposomes loaded with AMO-1 to deliver oligonucleotides to ischemic myocardium for arrhythmia therapy
Yu et al. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles
Evans et al. Formulation and evaluation of anisamide-targeted amphiphilic cyclodextrin nanoparticles to promote therapeutic gene silencing in a 3D prostate cancer bone metastases model
Wu et al. Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes
Islam et al. Accelerated gene transfer through a polysorbitol-based transporter mechanism
Qiu et al. From pulmonary surfactant, synthetic KL4 peptide as effective siRNA delivery vector for pulmonary delivery
Wan et al. Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders
JP2022120034A (ja) 吸入粉末剤、その評価方法及びその用途
Tang et al. Apoptosis of A549 cells by small interfering RNA targeting survivin delivery using poly-β-amino ester/guanidinylated O-carboxymethyl chitosan nanoparticles
Wang et al. Dual‐targeting heparin‐based nanoparticles that re‐assemble in blood for glioma therapy through both anti‐proliferation and anti‐angiogenesis
JP7126287B2 (ja) 核酸導入用組成物及びその利用
Baldassi et al. Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes
Yeo et al. Safety profile of dextran-spermine gene delivery vector in mouse lungs
Yi et al. Sequentially targeting cancer‐associated fibroblast and mitochondria alleviates tumor hypoxia and inhibits cancer metastasis by preventing “soil” formation and “seed” dissemination
CN113905724A (zh) 包含线粒体的雾化组合物及其使用方法
Luo et al. Preventing acute lung injury from progressing to pulmonary fibrosis by maintaining ERS homeostasis through a multistage targeting nanomicelle
Zhang et al. Combined intramyocardial injectable hydrogel and pericardial adhesive hydrogel patch therapy strategy to achieve gene/ion/gas delivery for improving cardiac function
WO2021201258A1 (ja) 核酸含有組成物、核酸含有組成物の製造方法及び核酸導入方法
Ghanem et al. Gene transfection using branched cationic amphiphilic compounds for an aerosol administration in cystic fibrosis context
WO2023036345A1 (zh) 一种雾化吸入的载药纳米颗粒以及用于治疗肺纤维化的siRNA序列组及其设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781091

Country of ref document: EP

Kind code of ref document: A1