WO2021200868A1 - 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 - Google Patents
窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 Download PDFInfo
- Publication number
- WO2021200868A1 WO2021200868A1 PCT/JP2021/013394 JP2021013394W WO2021200868A1 WO 2021200868 A1 WO2021200868 A1 WO 2021200868A1 JP 2021013394 W JP2021013394 W JP 2021013394W WO 2021200868 A1 WO2021200868 A1 WO 2021200868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon nitride
- nitride powder
- powder
- sintered body
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/068—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
Definitions
- the present disclosure relates to a method for producing silicon nitride powder and a silicon nitride sintered body.
- silicon nitride is a material having excellent strength, hardness, toughness, heat resistance, corrosion resistance, heat impact resistance, etc., it is used for various industrial parts such as die casting machines and melting furnaces, and automobile parts. .. Further, since silicon nitride is excellent in mechanical properties at high temperatures, it is being studied to apply it to gas turbine parts that require high temperature strength and high temperature creep characteristics.
- Patent Document 1 as a method for improving the high temperature characteristics of the silicon nitride sintered body, the total oxygen content of the silicon nitride powder is set to 1.5% by mass or less to reduce the grain boundary phase to be purified at the time of sintering. It has been studied to maintain a high melting point to improve high temperature characteristics.
- Patent Document 2 proposes using a silicon nitride substrate as an aluminum-ceramic bonding substrate. In such applications, it is required to have high insulation and heat dissipation.
- An object of the present disclosure is to provide a silicon nitride powder capable of producing a sintered body having sufficient bending strength and excellent thermal conductivity. It is also an object of the present disclosure to provide a method for producing a silicon nitride sintered body capable of exhibiting sufficient bending strength and excellent thermal conductivity.
- One aspect of the present disclosure provides a silicon nitride powder containing silicon nitride primary particles, wherein the primary particles have an oxide film on at least a part of the surface and the thickness of the oxide film is 20.0 nm or less. do.
- the silicon nitride powder has an oxide film having a predetermined thickness on at least a part of the surface of the primary particles, it is possible to produce a sintered body having sufficient bending strength and excellent thermal conductivity.
- the reason why such an effect can be obtained is considered as follows. First, when producing a sintered body of silicon nitride powder, the oxide film portion on the surface of the primary particles is preferentially melted to form a liquid phase. Then, silicon nitride is dissolved in the liquid phase, and then a dense structure is formed in the process of reprecipitation.
- the action is the same as that of the sintering aid, but in the case of the silicon nitride powder, by having an oxide film capable of exerting the same function on the surface of each primary particle, the silicon nitride is melted and re-melted more uniformly. Precipitation can be caused, excellent sinterability can be exhibited, and the obtained sintered body can exhibit excellent bending strength. Further, the liquid phase portion forms a grain boundary phase in the sintered body, but in the silicon nitride powder, the formation ratio of the grain boundary phase is also suppressed because the thickness of the oxide film is within a predetermined range. It is possible to provide a sintered body having better thermal conductivity than the conventional silicon nitride powder.
- the silicon nitride powder may have a 90% cumulative diameter of 2.00 ⁇ m or less in the volume-based cumulative particle size distribution.
- the silicon nitride powder may have a BET specific surface area of 8.0 m 2 / g or more.
- One aspect of the present disclosure provides a method for producing a silicon nitride sintered body, which comprises a step of molding and firing a sintered raw material containing the above-mentioned silicon nitride powder.
- the method for producing the silicon nitride sintered body uses the sintered raw material containing the silicon nitride powder described above, the sintered raw material has excellent sinterability, and the obtained sintered body has sufficient bending strength. Moreover, it can exhibit excellent thermal conductivity.
- a silicon nitride powder capable of producing a sintered body having sufficient bending strength and excellent thermal conductivity.
- FIG. 1 is a scanning transmission electron microscope (HAADF-STEM) photograph of the silicon nitride powder obtained in Example 1 by the high-angle scattering annular dark-field method.
- FIG. 2 is a partially enlarged view of the region R surrounded by the broken line in FIG.
- FIG. 3 is a distribution image showing the distribution of silicon on the same observation surface as in FIG.
- FIG. 4 is a distribution image showing the distribution of oxygen on the same observation surface as in FIG.
- each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component in the composition are present, unless otherwise specified. ..
- the "process" in the present specification may be a process independent of each other or a process performed at the same time.
- silicon nitride powder contains primary particles of silicon nitride.
- the primary particles have an oxide film on at least a part of the surface.
- the oxide film means an oxidized portion on the surface of the primary particles.
- the oxide film is a surface layer portion in which the abundance of oxygen atoms is larger than that inside the primary particles. It can be determined by using elemental analysis by dispersion X-ray analysis (EDX).
- EDX dispersion X-ray analysis
- the oxide film contains, for example, silicon dioxide.
- the thickness of the oxide film is 20.0 nm or less.
- the lower limit of the thickness of the oxide film may be, for example, 5.0 nm or more, 5.5 nm or more, 6.0 nm or more, or 6.5 nm or more.
- the sinterability can be further improved.
- the grain growth at the time of firing the silicon nitride can be promoted, and the bending strength of the silicon nitride sintered body can be further improved.
- the upper limit of the thickness of the oxide film may be, for example, 18.0 nm or less, 16.0 nm or less, 14.0 nm or less, 12.0 nm or less, or 10.0 nm or less.
- the thickness of the oxide film in the primary particles of silicon nitride does not necessarily have to be uniform, and the maximum value of the thickness of the oxide film may be within the above range.
- the thickness of the oxide film can be adjusted within the above range, and may be, for example, 5.0 to 20.0 nm, 5.5 to 14.0 nm, or 6.5 to 10.0 nm.
- the thickness of the oxide film can be controlled, for example, by adjusting the acid treatment conditions during the production of the silicon nitride powder.
- the upper limit of the 90% cumulative diameter in the volume-based cumulative particle size distribution may be, for example, 2.00 ⁇ m or less, 1.98 ⁇ m or less, 1.95 ⁇ m or less, or 1.90 ⁇ m or less.
- the lower limit of the 90% cumulative diameter in the volume-based cumulative particle size distribution is, for example, 1.40 ⁇ m or more, 1.50 ⁇ m or more, 1.52 ⁇ m or more, 1.55 ⁇ m or more, 1.60 ⁇ m or more, or 1.65 ⁇ m or more. You can.
- the 90% cumulative diameter in the volume-based cumulative particle size distribution can be adjusted within the above range and may be, for example, 1.40 to 2.00 ⁇ m or 1.50 to 1.90 ⁇ m.
- the 90% cumulative diameter in the volume-based cumulative particle size distribution of the silicon nitride powder can be controlled, for example, by adjusting the crushing conditions and the classification conditions at the time of producing the silicon nitride powder.
- the 90% cumulative diameter in the volume-based cumulative particle size distribution in the present specification is when the cumulative value in the volume-based cumulative particle size distribution when the particle size distribution is measured by the laser diffraction / scattering method for silicon nitride powder is 90%. It means the particle size (D90).
- the laser analysis scattering method can be measured according to the method described in JIS Z 8825: 2013 "Particle size analysis-laser diffraction / scattering method".
- a laser diffraction / scattering method particle size distribution measuring device manufactured by Beckman Coulter, trade name: LS-13 320
- the lower limit of the BET specific surface area of the silicon nitride powder may be, for example, 8.0 m 2 / g or more, 8.5 m 2 / g or more, or 8.7 m 2 / g or more.
- the upper limit of the BET specific surface area of the silicon nitride powder is, for example, 15.0 m 2 / g or less, 13.0 m 2 / g or less, 12.0 m 2 / g or less, 11.0 m 2 / g or less, 10.0 m 2 It may be less than / g, 9.5 m 2 / g or less, or 9.2 m 2 / g or less.
- the BET specific surface area of the silicon nitride powder can be adjusted within the above range, and may be, for example, 8.0 to 15.0 m 2 / g or 8.5 to 9.2 m 2 / g.
- the BET specific surface area of the silicon nitride powder can be controlled, for example, by adjusting the pulverization conditions during the production of the silicon nitride powder.
- the BET specific surface area in the present specification is measured by the BET one-point method using nitrogen gas in accordance with the method described in JIS Z 8830: 2013 “Method for measuring the specific surface area of powder (solid) by gas adsorption”. The value.
- the above-mentioned silicon nitride powder can be produced, for example, by the following method.
- One embodiment of the method for producing a silicon nitride powder is a step of calcining the silicon powder in an atmosphere containing nitrogen and at least one selected from the group consisting of hydrogen and ammonia to obtain a calcined product (hereinafter, calcining step). It also has a step of crushing the fired product to obtain a crushed product (hereinafter, also referred to as a crushing step), and a step of treating the crushed product with an acid (hereinafter, also referred to as an acid treatment step).
- the silicon powder use a silicon powder having an oxygen content of 0.40% by mass or less.
- the upper limit of the oxygen content of the silicon powder may be, for example, 0.30% by mass or less, or 0.20% by mass or less.
- the lower limit of the oxygen content of the silicon powder may be, for example, 0.10% by mass or more, or 0.15% by mass or more.
- the amount of oxygen in the silicon powder can be adjusted in the above range, and may be, for example, 0.10 to 0.40% by mass.
- the amount of oxygen in the silicon powder in the present specification means a value measured by an infrared absorption method.
- the silicon powder As the silicon powder, a commercially available product may be used, or a separately prepared one may be used.
- a pretreatment liquid containing hydrofluoric acid can be used to reduce the amount of oxygen bound to the silicon powder. That is, the above-mentioned method for producing silicon nitride powder further includes a pretreatment step of pretreating the silicon powder with a pretreatment liquid containing hydrofluoric acid to obtain a silicon powder having an oxygen content of 0.40% by mass or less. You may have.
- the pretreatment liquid contains hydrofluoric acid, but may be a mixed acid with an acid such as hydrochloric acid, or may consist only of hydrofluoric acid.
- the temperature of the pretreatment liquid in the pretreatment step may be, for example, 40 to 80 ° C.
- the time for contacting the pretreatment liquid with the silicon powder may be, for example, 1 to 10 hours.
- the silicon powder is fired in a mixed atmosphere containing nitrogen and at least one selected from the group consisting of hydrogen and ammonia to obtain a fired product containing silicon nitride.
- the total content of hydrogen and ammonia in the mixed atmosphere may be, for example, 10-40% by volume based on the entire mixed atmosphere.
- the firing temperature may be, for example, 1100 to 1450 ° C, or 1200 to 1400 ° C.
- the firing time may be, for example, 30 to 100 hours.
- the above-mentioned fired product obtained in the firing step is crushed to obtain a crushed product.
- the fired product and adjusting the particle size it becomes easy to control the surface treatment in the subsequent acid treatment step, and it becomes easy to control the thickness of the oxide film in the primary particles of silicon nitride.
- the fired product containing silicon nitride obtained in the firing step is in the form of a lump, an ingot, or the like, the effect of performing the crushing step is more remarkable.
- the lower limit of the crushing treatment time (crushing time) in the crushing step may be, for example, 5 hours or more, 6 hours or more, 7 hours or more, or 8 hours or more.
- the upper limit of the pulverization treatment time may be, for example, 15 hours or less, 14 hours or less, 13 hours or less, or 12 hours or less.
- the crushing time may be adjusted within the above range and may be, for example, 5 to 15 hours or 8 to 12 hours.
- the crushing may be performed in a plurality of stages such as coarse crushing and fine crushing.
- the pulverization may be either wet pulverization or dry pulverization.
- the pulverization is preferably wet pulverization from the viewpoint of facilitating the adjustment of the particle size.
- the medium used for wet grinding may be, for example, water or the like.
- the filling rate of the balls in the container can be adjusted according to the particle size of the silicon nitride powder of interest.
- the lower limit of the filling rate of the balls in the container may be, for example, 40% by volume or more, 45% by volume or more, or 50% by volume or more based on the volume of the container.
- the upper limit of the filling rate of the balls in the container may be, for example, 70% by volume or less, 65% by volume or less, or 60% by volume or less based on the volume of the container.
- the upper limit of the oxygen content of the pulverized product may be, for example, 7.5% by mass or less, 7.0% by mass or less, 6.5% by mass or less, or 6.0% by mass or less.
- the lower limit of the oxygen content of the pulverized product may be, for example, 1.5% by mass or more, 2.0% by mass or more, 2.5% by mass or more, or 3.0% by mass or more.
- the amount of oxygen in the pulverized product can be adjusted in the above range, and may be, for example, 1.5 to 7.5% by mass or 2.0 to 7.0% by mass.
- the amount of oxygen in the crushed product can be controlled by, for example, adjusting the amount of oxygen in the silicon powder, the components of the atmosphere in the firing step, the crushing time, and the like.
- the "oxygen amount” in the present specification means the total oxygen amount of the silicon nitride powder.
- the total amount of oxygen can be determined by the following procedure.
- the amount of oxygen and the amount of nitrogen in the silicon nitride powder are analyzed using an oxygen / nitrogen analyzer.
- the sample for measurement is heated from 20 ° C. to 2000 ° C. at a heating rate of 8 ° C./sec in an atmosphere of helium gas. Detects oxygen desorbed as the temperature rises. At the beginning of the temperature rise, oxygen bound to the surface of the silicon nitride powder is eliminated.
- the amount of surface oxygen can be obtained by quantifying the amount of oxygen desorbed.
- the silicon nitride begins to decompose.
- the start of decomposition of silicon nitride can be grasped by the start of detection of nitrogen.
- the oxygen inside the silicon nitride powder is eliminated.
- the amount of internal oxygen can be determined. The total value of the surface oxygen amount thus obtained and the internal oxygen amount is the total oxygen amount.
- the crushed product is treated by contacting it with an acid.
- the acid include hydrogen fluoride and hydrogen chloride.
- the acid may be a mixed acid of hydrogen fluoride and hydrogen chloride, or may be either hydrogen fluoride or hydrogen chloride alone, but preferably contains hydrogen fluoride.
- the acid may be an aqueous solution (eg, hydrofluoric acid or hydrochloric acid).
- an acid for example, hydrofluoric acid having a concentration of 10 to 40% by mass.
- the upper limit of the acid concentration may be, for example, 38% by mass or less, 35% by mass or less, or 30% by mass or less.
- the lower limit of the acid concentration may be, for example, 12% by mass or more, or 15% by mass or more. By setting the lower limit of the acid concentration within the above range, the thickness of the oxide film can be easily and sufficiently reduced.
- the acid concentration may be adjusted within the above range and may be, for example, 12-38% by mass or 15-35% by mass.
- the means of contact between the pulverized product and the acid may be, for example, a method of dispersing the pulverized product in the acid.
- the temperature of the acid (for example, an aqueous solution) in the acid treatment step is set to 40 to 80 ° C.
- the lower limit of the acid temperature in the acid treatment step may be, for example, 45 ° C. or higher, 50 ° C. or higher, or 60 ° C. or higher.
- the upper limit of the acid temperature in the acid treatment step may be 75 ° C. or lower, or 70 ° C. or lower.
- the temperature of the acid in the acid treatment step may be adjusted within the above range, for example, 45 to 75 ° C. or 50 to 70 ° C.
- the time for contacting the fired product or the ground product obtained by crushing the fired product with the acid is set to 1.0 to 10.0 hours.
- the lower limit of the acid treatment time may be, for example, 1.2 hours or more, 1.5 hours or more, or 2.0 hours or more.
- the acid treatment time may be, for example, 9.7 hours or less, 9.5 hours or less, 9.0 hours or less, 8.5 hours or less, or 8.0 hours or less.
- the acid treatment time may be adjusted within the above range, and may be, for example, 1.2 to 9.7 hours or 2.0 to 8.0 hours.
- the silicon nitride powder obtained by the above-mentioned manufacturing method has excellent sinterability. That is, the above-mentioned silicon nitride powder can be suitably used as a raw material for a sintered body.
- One embodiment of the method for producing a silicon nitride sintered body includes a step of molding and firing a sintered raw material containing the above-mentioned silicon nitride powder.
- the sintering raw material may contain an oxide-based sintering aid in addition to the silicon nitride powder.
- the oxide-based sintering aid for example, Y 2 O 3, MgO and Al 2 O 3 and the like.
- the content of the oxide-based sintering aid in the sintering raw material may be, for example, 3 to 10% by mass.
- the above-mentioned sintered raw material is pressed with a molding pressure of, for example, 3.0 to 30.0 MPa to obtain a molded product.
- the molded product may be produced by uniaxial pressure or by CIP. Alternatively, it may be fired while being molded by hot pressing.
- the molding may be fired in an atmosphere of an inert gas such as nitrogen gas or argon gas.
- the pressure at the time of firing may be 0.7 to 1.0 MPa.
- the firing temperature may be 1860 to 2100 ° C. and may be 1880 to 2000 ° C.
- the firing time at the firing temperature may be 6 to 20 hours and may be 8 to 16 hours.
- the rate of temperature rise to the firing temperature may be, for example, 1.0 to 10.0 ° C./hour.
- the obtained silicon nitride sintered body has a reduced grain boundary phase and has a dense structure, so that it can exhibit excellent bending strength and thermal conductivity.
- the bending strength of the silicon nitride sintered body can be, for example, 550 MPa or more, 570 MPa or more, 590 MPa or more, or 610 MPa or more.
- the bending strength of the silicon nitride sintered body in the present specification means a three-point bending strength measured at room temperature by preparing a test piece for strength measurement according to JIS R 1601: 2008.
- the thermal conductivity of the silicon nitride sintered body is, for example, 90 W / (m ⁇ K) or more, 95 W / (m ⁇ K) or more, 100 W / (m ⁇ K) or more, or 105 W / (m ⁇ K) or more. can do.
- the thermal conductivity of the silicon nitride sintered body in the present specification is the product of the thermal diffusivity, the thermal diffusivity and the specific heat capacity obtained by measuring the thermal diffusivity and the specific heat capacity by a laser flash method (based on JIS R 1611). Means the value obtained by calculating.
- Example 1 ⁇ Preparation of silicon nitride powder>
- Commercially available silicon powder (specific surface area: 3.0 m 2 / g) is immersed in a mixed acid containing hydrogen chloride and hydrogen fluoride whose temperature has been adjusted to 60 ° C., maintained at 60 ° C., and pretreated for 2 hours.
- the mixed acid a commercially available hydrochloric acid (concentration: 35% by mass) and hydrofluoric acid (concentration: 55% by mass) were mixed at a mass ratio of 10: 1.
- the silicon powder was taken out from the mixed acid, washed with water, and dried in a nitrogen atmosphere.
- the oxygen content of the silicon powder after drying was 0.3% by mass. This amount of oxygen was measured by the infrared absorption method.
- a molded product (bulk density: 1.4 g / cm 3 ) was prepared using the dried silicon powder.
- the obtained molded product was allowed to stand in an electric furnace and fired at 1400 ° C. for 60 hours to prepare a fired product containing silicon nitride.
- a mixed gas of nitrogen and hydrogen (a mixed gas in which N 2 and H 2 were mixed so that the volume ratio in the standard state was 80:20) was supplied.
- the obtained fired body was roughly pulverized and then wet pulverized with a ball mill. In the wet pulverization, the filling rate of the balls in the container was 60% by volume, water was used as a solvent, and the pulverization time was 8 hours.
- the amount of oxygen in the obtained pulverized product was 5.0% by mass.
- the pulverized product obtained by wet pulverization was immersed in hydrofluoric acid (hydrofluoric acid concentration: 30% by mass) at a temperature of 70 ° C. for 2 hours for acid treatment. Then, the pulverized product was taken out from hydrofluoric acid, washed with water, and dried in a nitrogen atmosphere. In this way, a silicon nitride powder was obtained.
- hydrofluoric acid hydrofluoric acid concentration: 30% by mass
- ⁇ Evaluation of silicon nitride powder Measurement of oxide film thickness> The thickness of the oxide film in the primary particles of silicon nitride was measured. First, the silicon nitride powder was mixed with an epoxy resin to cure the epoxy resin, and then a test piece was cut out by a microsampling device using a focused ion beam (FIB) process. A tungsten film (W film) was coated on the cut-out test piece, and the film thickness of the W film was thinned to a thickness capable of observing with a transmission electron microscope by FIB processing to prepare a measurement sample. Focused ion beam processing observation device (trade name: FB2000A) manufactured by Hitachi, Ltd. and Dual Beam device (FIB / SEM) system Nova200 manufactured by FEI are used for processing, and the acceleration voltage is set to 30 kV during rough processing for finishing. It was set to 10 kV at the time of processing.
- FIB focused ion beam
- HAADF-STEM scanning transmission electron microscope
- EDX energy dispersive X-ray analysis method
- an electro-emission type transmission electron microscope (trade name: JEM-2100F) manufactured by JEOL Ltd., a scanning image observation device (trade name: 24541SIOD) manufactured by JEOL Ltd., and Gatan Co., Ltd.
- a spectrum imaging system (trade name: 777 STEMPack) and an imaging filter manufactured by Gatan (trade name: 863 GIF Tridium) were used.
- An energy dispersive X-ray analyzer (trade name: JED-2300T) manufactured by JEOL Ltd. was used for the X-ray analysis.
- FIG. 3 is a distribution image showing the distribution of silicon on the observation surface, and it can be confirmed that the distribution of silicon is larger in the lower right of the field of view than in the upper left.
- the distribution of the silicon corresponds well to the position of the primary particles of silicon nitride in the HAADF-STEM photograph shown in FIG.
- FIG. 4 is a distribution image showing the distribution of oxygen on the observation surface, and it is confirmed that many oxygen atoms are localized in the region corresponding to the surface of the silicon nitride primary particles shown in FIGS. 2 and 3. can.
- the region where the oxygen atom is localized is regarded as an oxide film, and the thickness (for example, the length indicated by T in FIG. 2) is measured at 10 points having a large thickness in the visual field, and the maximum value thereof is measured.
- the oxide film is shown by two broken lines in FIG. The results are shown in Table 1.
- ⁇ Evaluation of silicon nitride powder Measurement of D90>
- the 90% cumulative diameter (D90) of the silicon nitride powder in the volume-based cumulative particle size distribution is measured by the laser analysis scattering method in accordance with the method described in JIS Z 8825: 2013 “Particle size analysis-laser diffraction / scattering method”. bottom.
- a laser diffraction / scattering method particle size distribution measuring device manufactured by Beckman Coulter, trade name: LS-13 320 was used for the measurement.
- an aqueous solution prepared by mixing 2 mL of a 20% aqueous solution of sodium hexametaphosphate with 200 cc of pure water was prepared, 60 mg of silicon nitride powder was added to the aqueous solution, and an ultrasonic homogenizer (manufactured by Nissei Tokyo Office, trade name: It was prepared by dispersing in US-300) for 3 minutes, and the obtained measurement sample was measured.
- Table 1 The results are shown in Table 1.
- the obtained molded product was set in a carbon crucible together with a stuffing powder composed of a mixed powder of silicon nitride powder and BN powder, and fired in a nitrogen-pressurized atmosphere of 1 MPa at a temperature of 1900 ° C. for 10 hours to obtain a silicon nitride sintered body. Manufactured.
- Example 2 A silicon nitride powder was prepared in the same manner as in Example 1 except that the oxygen content of the silicon powder and the acid treatment conditions of the pulverized product were changed as shown in Table 1. The prepared silicon nitride powder was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 3 A silicon nitride powder was prepared in the same manner as in Example 1 except that the oxygen content of the silicon powder and the acid treatment conditions of the pulverized product were changed as shown in Table 1. The prepared silicon nitride powder was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 1 A silicon nitride powder was prepared in the same manner as in Example 1 except that the oxygen content of the silicon powder and the acid treatment conditions of the pulverized product were changed as shown in Table 1. The prepared silicon nitride powder was evaluated in the same manner as in Example 1. The results are shown in Table 1.
- the silicon nitride sintered body prepared by using the silicon nitride powder obtained in the example is a silicon nitride sintered body prepared by using the silicon nitride powder obtained in the comparative example.
- both bending strength and thermal conductivity can be achieved at a higher level.
- a silicon nitride powder capable of producing a sintered body having sufficient bending strength and excellent thermal conductivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Ceramic Products (AREA)
Abstract
本開示の一側面は、窒化ケイ素の一次粒子を含み、上記一次粒子は、表面の少なくとも一部に酸化膜を有し、上記酸化膜の厚みが20.0nm以下である、窒化ケイ素粉末を提供する。
Description
本開示は、窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法に関する。
窒化ケイ素は、強度、硬度、靭性、耐熱性、耐食性、耐熱衝撃性等に優れた材料であることから、ダイカストマシン及び溶解炉等の各種産業用の部品、及び自動車部品等に利用されている。また、窒化ケイ素は、高温における機械的特性にも優れることから、高温強度、高温クリープ特性が求められるガスタービン部品に適用することが検討されている。例えば、特許文献1では、窒化ケイ素焼結体の高温特性を向上させる方法として、窒化ケイ素粉末の全酸素量を1.5質量%以下にして、焼結時に精製する粒界相を低減し、融点を高く維持して高温特性を向上することが検討されている。
窒化ケイ素基板は、自動車及び工作機械等のパワーモジュール等の絶縁基板としての利用も検討されている。例えば、特許文献2では、アルミニウム-セラミックス接合基板に窒化ケイ素基板を用いることが提案されている。このような用途では、高い絶縁性及び放熱性を有することが求められる。
本開示は、十分な曲げ強さを有し且つ熱伝導性に優れる焼結体を製造可能な窒化ケイ素粉末を提供することを目的とする。本開示はまた、十分な曲げ強さ、且つ優れた熱伝導性を発揮し得る窒化ケイ素焼結体の製造方法を提供することを目的とする。
本開示の一側面は、窒化ケイ素の一次粒子を含み、上記一次粒子は、表面の少なくとも一部に酸化膜を有し、上記酸化膜の厚みが20.0nm以下である、窒化ケイ素粉末を提供する。
上記窒化ケイ素粉末は、一次粒子の表面の少なくとも一部に所定の厚みの酸化膜を有することから、十分な曲げ強さを有し且つ熱伝導性に優れる焼結体を製造可能である。このような効果が得られる理由は以下のように考えられる。まず、窒化ケイ素粉末の焼結体を製造する際には、一次粒子の表面における酸化膜部分が優先的に溶融し液相を形成する。そして当該液相に窒化ケイ素が溶解し、その後再析出する過程で緻密な組織が形成される。当該作用は焼結助剤と同様であるが、上記窒化ケイ素粉末の場合、各一次粒子の表面に同様の機能を発揮し得る酸化膜を有することで、より一層均一に窒化ケイ素の溶融及び再析出を生じさせることができ、優れた焼結性を発揮し、得られる焼結体は優れた曲げ強さを発揮し得る。また、上記液相部分は焼結体においては粒界相を形成するが、上記窒化ケイ素粉末においては、酸化膜の厚みが所定範囲内であることによって、粒界相の形成割合も抑制され、従来の窒化ケイ素粉末よりも熱伝導性に優れた焼結体を提供し得る。
上記窒化ケイ素粉末は、体積基準の累積粒度分布における90%累積径が2.00μm以下であってよい。
上記窒化ケイ素粉末は、BET比表面積が8.0m2/g以上であってよい。
本開示の一側面は、上述の窒化ケイ素粉末を含む焼結原料を成形し焼成する工程を有する、窒化ケイ素焼結体の製造方法を提供する。
上記窒化ケイ素焼結体の製造方法は、上述の窒化ケイ素粉末を含む焼結原料を用いることから、焼結原料は焼結性に優れ、得られる焼結体は十分な曲げ強さを有し且つ優れた熱伝導性を発揮し得る。
本開示によれば、十分な曲げ強さを有し且つ熱伝導性に優れる焼結体を製造可能な窒化ケイ素粉末を提供できる。本開示によればまた、十分な曲げ強さ、且つ優れた熱伝導性を発揮し得る窒化ケイ素焼結体の製造方法を提供できる。
以下、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書における「工程」とは、互いに独立した工程であってもよく、同時に行われる工程であってもよい。
窒化ケイ素粉末の一実施形態は、窒化ケイ素の一次粒子を含む。上記一次粒子は、表面の少なくとも一部に酸化膜を有する。本明細書において、酸化膜とは上記一次粒子の表面における酸化された部分を意味する。上記酸化膜は、具体的には、上記一次粒子の内部よりも酸素原子の存在量が多い表層部分であり、広角散乱環状暗視野法による走査型透過電子顕微鏡法(HAADF-STEM)と、エネルギー分散型X線分析法(EDX)による元素分析とを用いることによって、決定することができる。酸化膜は、例えば、二酸化ケイ素を含む。
上記酸化膜の厚みは20.0nm以下である。上記酸化膜の厚みの下限値は、例えば、5.0nm以上、5.5nm以上、6.0nm以上、又は6.5nm以上であってよい。上記酸化膜の厚みの下限値が上記範囲内であると、焼結性をより向上させることができる。上記酸化膜の厚みの下限値が上記範囲内であるとまた、窒化ケイ素を焼成させる際の粒成長を促進させることができ、窒化ケイ素焼結体の曲げ強さをより向上させることができる。上記酸化膜の厚みの上限値は、例えば、18.0nm以下、16.0nm以下、14.0nm以下、12.0nm以下、又は10.0nm以下であってよい。酸化膜の厚みの上限値が上記範囲内であると、焼結体を製造した際の粒界相をより十分に低減することができ、熱伝導率をより向上させることができる。なお、窒化ケイ素の一次粒子における酸化膜の厚みは必ずしも均一でなくてよく、酸化膜の厚みの最大値が上述の範囲内であればよい。上記酸化膜の厚みは上述の範囲内で調整することができ、例えば、5.0~20.0nm、5.5~14.0nm、又は6.5~10.0nmであってよい。酸化膜の厚みは、例えば、窒化ケイ素粉末の製造時における酸処理条件等を調整することで制御できる。
窒化ケイ素粉末において、体積基準の累積粒度分布における90%累積径の上限値は、例えば、2.00μm以下、1.98μm以下、1.95μm以下、又は1.90μm以下であってよい。体積基準の累積粒度分布における90%累積径の下限値は、例えば、1.40μm以上、1.50μm以上、1.52μm以上、1.55μm以上、1.60μm以上、又は1.65μm以上であってよい。体積基準の累積粒度分布における90%累積径は上述の範囲内で調整でき、例えば、1.40~2.00μm、又は1.50~1.90μmであってよい。窒化ケイ素粉末の体積基準の累積粒度分布における90%累積径は、例えば、窒化ケイ素粉末の製造時における粉砕条件及び分級条件等を調整することで制御できる。
本明細書における体積基準の累積粒度分布における90%累積径は、窒化ケイ素粉末に対するレーザー回折散乱法で粒度分布を測定したときの体積基準の累積粒度分布における累積値が90%となったときの粒子径(D90)を意味する。レーザー解析散乱法は、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に準拠して測定できる。測定には、レーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、商品名:LS-13 320)等を使用することができる。
窒化ケイ素粉末のBET比表面積の下限値は、例えば、8.0m2/g以上、8.5m2/g以上、又は8.7m2/g以上であってよい。窒化ケイ素粉末のBET比表面積の上限値は、例えば、15.0m2/g以下、13.0m2/g以下、12.0m2/g以下、11.0m2/g以下、10.0m2/g以下、9.5m2/g以下、又は9.2m2/g以下であってよい。窒化ケイ素粉末のBET比表面積は上述の範囲内で調整することができ、例えば、8.0~15.0m2/g、又は8.5~9.2m2/gであってよい。窒化ケイ素粉末のBET比表面積は、例えば、窒化ケイ素粉末の製造時における粉砕条件等を調整することで制御できる。
本明細書におけるBET比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」に記載の方法に準拠し、窒素ガスを使用してBET一点法により測定される値である。
上述の窒化ケイ素粉末は、例えば、以下のような方法で製造することができる。窒化ケイ素粉末の製造方法の一実施形態は、ケイ素粉末を、窒素と、水素及びアンモニアからなる群より選択される少なくとも一種とを含む雰囲気下で焼成して焼成物を得る工程(以下、焼成工程ともいう)と、上記焼成物を粉砕して粉砕物を得る工程(以下、粉砕工程ともいう)と、上記粉砕物を酸で処理する工程(以下、酸処理工程ともいう)と、を有する。
ケイ素粉末は、酸素量が0.40質量%以下であるケイ素粉末を用いる。ケイ素粉末の酸素量の上限値は、例えば、0.30質量%以下、又は0.20質量%以下であってよい。ケイ素粉末の酸素量を上記範囲内とすることで、得られる窒化ケイ素粉末の内部における酸素量をより低減できる。ケイ素粉末の酸素量の下限値は、例えば、0.10質量%以上、又は0.15質量%以上であってよい。ケイ素粉末の酸素量は上述の範囲で調整することができ、例えば、0.10~0.40質量%であってよい。
本明細書におけるケイ素粉末の酸素量は、赤外線吸収法によって測定される値を意味する。
ケイ素粉末は、市販の物を用いることもでき、別途調製したものを用いてもよい。ケイ素粉末の酸素量が高い場合には、例えば、フッ化水素酸を含む前処理液を用いて、ケイ素粉末に結合する酸素量を低減することができる。つまり、上記窒化ケイ素粉末の製造方法は、フッ化水素酸を含む前処理液を用いてケイ素粉末を前処理し、酸素量が0.40質量%以下であるケイ素粉末を得る前処理工程を更に有していてもよい。
前処理液は、フッ化水素酸を含むが、例えば、塩酸等の酸との混酸であってもよく、フッ化水素酸のみからなってもよい。前処理工程における前処理液の温度は、例えば、40~80℃であってよい。また、前処理液とケイ素粉末とを接触させる時間は、例えば、1~10時間であってよい。
焼成工程では、ケイ素粉末を、窒素と、水素及びアンモニアからなる群より選択される少なくも一種と、を含む混合雰囲気下で焼成して窒化ケイ素を含む焼成物を得る。混合雰囲気における水素及びアンモニアの合計の含有量は、混合雰囲気全体を基準として、例えば、10~40体積%であってよい。焼成温度は、例えば、1100~1450℃、又は1200~1400℃であってよい。焼成時間は、例えば、30~100時間であってよい。
粉砕工程では、焼成工程で得られた上記焼成物を粉砕して粉砕物を得る。焼成物を粉砕し、粒度を調整することによって、後の酸処理工程における表面処理の制御が容易となり、窒化ケイ素の一次粒子における酸化膜の厚みの制御が容易なものとなる。焼成工程で得られる窒化ケイ素を含む焼成物が、塊状、インゴット状等になっている場合、粉砕工程を行う効果がより顕著である。
粉砕工程における粉砕処理の時間(粉砕時間)の下限値は、例えば、5時間以上、6時間以上、7時間以上、又は8時間以上であってよい。粉砕時間の下限値を上記範囲内とすることで、粉砕物を十分に細かくすることができ、酸処理工程での酸処理効率をより向上させることができる。上記粉砕処理の時間の上限値は、例えば、15時間以下、14時間以下、13時間以下、又は12時間以下であってよい。粉砕時間の上限値を上記範囲内とすることで、焼成物を十分に粉砕することができ、また過剰な粉砕を防ぐことで製造コストを抑えることができる。粉砕時間は上述の範囲内で調整してよく、例えば、5~15時間、又は8~12時間であってよい。
粉砕は、粗粉砕と微粉砕というように複数段階に分けて行ってもよい。粉砕は、湿式粉砕及び乾式粉砕のいずれでもよい。粉砕は、粒度の調整を容易とする観点から、好ましくは湿式粉砕である。湿式粉砕に使用される媒体は、例えば、水等であってよい。
粉砕には、例えば、ボールミル等を用いることができる。ボールミルを使用する場合、容器へのボールの充填率は、目的とする窒化ケイ素粉末の粒度に合わせて調整することができる。容器へのボールの充填率の下限値は、容器の容積を基準として、例えば、40体積%以上、45体積%以上、又は50体積%以上であってよい。容器へのボールの充填率の上限値は、容器の容積を基準として、例えば、70体積%以下、65体積%以下、又は60体積%以下であってよい。
粉砕物の酸素量は、1.0~8.0質量%に調整する。粉砕物の酸素量の上限値は、例えば、7.5質量%以下、7.0質量%以下、6.5質量%以下、又は6.0質量%以下であってよい。粉砕物の酸素量の上限値を上記範囲内とすることで、続く酸処理工程における酸処理時間を低減することができる。粉砕物の酸素量の下限値は、例えば、1.5質量%以上、2.0質量%以上、2.5質量%以上、又は3.0質量%以上であってよい。粉砕物の酸素量の下限値を上記範囲内とすることで、酸処理後の窒化ケイ素粉末における酸化膜の厚みの調整が容易となり得る。粉砕物の酸素量は上述の範囲で調整することができ、例えば、1.5~7.5質量%、又は2.0~7.0質量%であってよい。粉砕物の酸素量は、例えば、ケイ素粉末の酸素量、焼成工程における雰囲気の成分、並びに、粉砕時間等の調整によって制御できる。
本明細書における「酸素量」とは、窒化ケイ素粉末の全酸素量を意味する。全酸素量は以下の手順で求めることができる。窒化ケイ素粉末の酸素量及び窒素量は、酸素・窒素分析装置を用いて分析する。測定用の試料を、ヘリウムガスの雰囲気中、8℃/秒の昇温速度で20℃から2000℃まで昇温する。昇温に伴って脱離する酸素を検知する。昇温当初は、窒化ケイ素粉末の表面に結合している酸素が脱離する。脱離する酸素を定量することで表面酸素量が求められる。その後、温度が1400℃近傍に到達すると、窒化ケイ素が分解をし始める。窒化ケイ素の分解開始は、窒素が検出され始めることによって把握することができる。窒化ケイ素が分解をし始めると、窒化ケイ素粉末の内部にある酸素が脱離する。この段階で脱離する酸を定量することで、内部酸素量が求められる。このようにして得られた表面酸素量と、内部酸素量との合計値が全酸素量である。
酸処理工程では、粉砕物を酸と接触させて処理する。酸としては、例えば、フッ化水素、及び塩化水素等が挙げられる。酸は、フッ化水素と塩化水素との混酸であってもよく、フッ化水素又は塩化水素のいずれか単独であってもよいが、好ましくはフッ化水素を含む。酸は、水溶液(例えば、フッ化水素酸又は塩酸)であってよい。
酸(例えば、フッ化水素酸)は、10~40質量%の濃度であるものを用いる。酸の濃度の上限値は、例えば、38質量%以下、35質量%以下、又は30質量%以下であってよい。酸の濃度の上限値を上記範囲内とすることで、窒化ケイ素粉末における酸化膜の厚みの調整が容易となり得る。酸の濃度の下限値は、例えば、12質量%以上、又は15質量%以上であってよい。酸の濃度の下限値を上記範囲内とすることで、酸化膜の厚みを容易且つ十分に低減させることができる。酸の濃度は上述の範囲内で調整してよく、例えば、12~38質量%、又は15~35質量%であってよい。
粉砕物と酸との接触の手段は、例えば、酸中に粉砕物を分散させる方法であってよい。
酸処理工程における酸(例えば、水溶液)の温度は、40~80℃に設定する。酸処理工程における酸の温度の下限値は、例えば、45℃以上、50℃以上、又は60℃以上であってよい。酸処理工程における酸の温度の上限値は、75℃以下、又は70℃以下であってよい。酸処理工程における酸の温度は上述の範囲内で調整してよく、例えば、45~75℃、又は50~70℃であってよい。
酸処理工程において、焼成物又は焼成物を粉砕して得られる粉砕物と酸と接触させる時間(酸処理時間)は、1.0~10.0時間に設定する。上記酸処理時間の下限値は、例えば、1.2時間以上、1.5時間以上、又は2.0時間以上であってよい。酸処理時間の下限値を上記範囲内とすることで、酸化膜の厚みを容易且つ十分に低減させることができる。上記酸処理時間は、例えば、9.7時間以下、9.5時間以下、9.0時間以下、8.5時間以下、又は8.0時間以下であってよい。酸処理時間の上限値を上記範囲内とすることで、窒化ケイ素粉末における酸化膜の厚みの調整が容易となり得る。上記酸処理時間は上述の範囲内で調整してよく、例えば、1.2~9.7時間、又は2.0~8.0時間であってよい。
上述の製造方法によって得られる窒化ケイ素粉末は焼結性に優れる。すなわち、上述の窒化ケイ素粉末は焼結体原料に好適に用いることができる。
窒化ケイ素焼結体の製造方法の一実施形態は、上述の窒化ケイ素粉末を含む焼結原料を成形し焼成する工程を有する。
焼結原料は窒化ケイ素粉末の他に、酸化物系焼結助剤を含んでいてもよい。酸化物系焼結助剤としては、例えば、Y2O3、MgO及びAl2O3等が挙げられる。焼結原料における酸化物系焼結助剤の含有量は、例えば、3~10質量%であってよい。
上記工程では、上述の焼結原料を例えば3.0~30.0MPaの成形圧力で加圧して成形体を得る。成形体は一軸加圧して作製してもよいし、CIPによって作製してもよい。また、ホットプレスによって成形しながら焼成してもよい。成形体の焼成は、窒素ガス又はアルゴンガス等の不活性ガス雰囲気中で行ってよい。焼成時の圧力は、0.7~1.0MPaであってよい。焼成温度は1860~2100℃であってよく、1880~2000℃であってもよい。当該焼成温度における焼成時間は6~20時間であってよく、8~16時間であってよい。焼成温度までの昇温速度は、例えば1.0~10.0℃/時間であってよい。
得られる窒化ケイ素焼結体は、粒界相が低減されており、緻密な組織を有することから、優れた曲げ強さ及び熱伝導率を発揮し得る。
窒化ケイ素焼結体の曲げ強さは、例えば、550MPa以上、570MPa以上、590MPa以上、又は610MPa以上とすることができる。本明細書における窒化ケイ素焼結体の曲げ強さは、JIS R 1601:2008に準じて強度測定用の試験片を作製し、室温において測定される3点曲げ強さを意味する。
窒化ケイ素焼結体の熱伝導率は、例えば、90W/(m・K)以上、95W/(m・K)以上、100W/(m・K)以上、又は105W/(m・K)以上とすることができる。本明細書における窒化ケイ素焼結体の熱伝導率は、レーザーフラッシュ法(JIS R 1611に準拠)によって熱拡散率と比熱容量を測定し、焼結体の密度、熱拡散率及び比熱容量の積を算出して得られる値を意味する。
以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。
(実施例1)
<窒化ケイ素粉末の調製>
市販のケイ素粉末(比表面積:3.0m2/g)を、60℃に温度調整した、塩化水素及びフッ化水素を含む混酸中に浸漬して、60℃に維持し、2時間、前処理を施した。上記混酸は、市販の塩酸(濃度:35質量%)とフッ化水素酸(濃度:55質量%)とを、10:1の質量比で混合したものを用いた。その後、混酸からケイ素粉末を取り出して水で洗浄し、窒素雰囲気下で乾燥した。乾燥後のケイ素粉末の酸素量は、0.3質量%であった。この酸素量は、赤外線吸収法によって測定した。
<窒化ケイ素粉末の調製>
市販のケイ素粉末(比表面積:3.0m2/g)を、60℃に温度調整した、塩化水素及びフッ化水素を含む混酸中に浸漬して、60℃に維持し、2時間、前処理を施した。上記混酸は、市販の塩酸(濃度:35質量%)とフッ化水素酸(濃度:55質量%)とを、10:1の質量比で混合したものを用いた。その後、混酸からケイ素粉末を取り出して水で洗浄し、窒素雰囲気下で乾燥した。乾燥後のケイ素粉末の酸素量は、0.3質量%であった。この酸素量は、赤外線吸収法によって測定した。
乾燥後のケイ素粉末を用いて成形体(嵩密度:1.4g/cm3)を作製した。得られた成形体を電気炉内に静置し、1400℃で60時間かけて焼成し窒化ケイ素を含む焼成体を作製した。焼成時の雰囲気として、窒素と水素との混合ガス(N2とH2とを標準状態における体積比で80:20となるように混合した混合ガス)を供給した。得られた焼成体を粗粉砕した後、ボールミルで湿式粉砕した。湿式粉砕は、容器に対するボールの充填率を60体積%とし、溶媒として水を用い、粉砕時間を8時間とした。得られた粉砕物の酸素量は5.0質量%であった。
湿式粉砕して得られた上記粉砕物を、温度70℃のフッ化水素酸(フッ化水素酸濃度:30質量%)中に2時間浸漬して酸処理した。その後、フッ化水素酸から粉砕物を取り出して水で洗浄し、窒素雰囲気下で乾燥した。こうして窒化ケイ素粉末を得た。
<窒化ケイ素粉末の評価:酸化膜の厚みの測定>
窒化ケイ素の一次粒子における酸化膜の厚みを測定した。まず、窒化ケイ素粉末をエポキシ樹脂と混合し当該エポキシ樹脂を硬化させた後、収束イオンビーム(FIB)加工を利用するマイクロサンプリング装置にて、試験片を切り出した。切り出した試験片にタングステン膜(W膜)をコーティングし、FIB加工によってW膜の膜厚を透過型電子顕微鏡観察が可能な厚さまで薄膜化して測定サンプルを調製した。加工には、株式会社日立製作所製の収束イオンビーム加工観察装置(商品名:FB2000A)及びFEI社製のDualBeam装置(FIB/SEM)システムNova200を用い、加速電圧は、粗加工時に30kVとし、仕上げ加工時に10kVとした。
窒化ケイ素の一次粒子における酸化膜の厚みを測定した。まず、窒化ケイ素粉末をエポキシ樹脂と混合し当該エポキシ樹脂を硬化させた後、収束イオンビーム(FIB)加工を利用するマイクロサンプリング装置にて、試験片を切り出した。切り出した試験片にタングステン膜(W膜)をコーティングし、FIB加工によってW膜の膜厚を透過型電子顕微鏡観察が可能な厚さまで薄膜化して測定サンプルを調製した。加工には、株式会社日立製作所製の収束イオンビーム加工観察装置(商品名:FB2000A)及びFEI社製のDualBeam装置(FIB/SEM)システムNova200を用い、加速電圧は、粗加工時に30kVとし、仕上げ加工時に10kVとした。
上述のように調製した測定サンプルを対象として、高角散乱環状暗視野法による走査型透過電子顕微鏡(HAADF-STEM)観察を行った。HAADF-STEM写真を図1及び図2に示す。また、上記HAADF-STEM写真と同視野において、エネルギー分散型X線分析法(EDX)によって観察面におけるケイ素及び酸素の元素分布を確認した。エネルギー分散型X線分析の結果を図3及び図4に示す。図2、図3及び図4は同視野である。なお、電子顕微鏡観察には、日本電子株式会社製の電界放出形透過電子顕微鏡(商品名:JEM-2100F)、日本電子株式会社製の走査像観察装置(商品名:24541SIOD)、Gatan社製のスペクトルイメージングシステム(商品名:777 STEMPack)、Gatan社製のイメージングフィルター(商品名:863 GIF Tridiem)を用いた。X線分析には、日本電子株式会社製のエネルギー分散型X線分析装置(商品名:JED-2300T)を用いた。
図3は、観測面におけるケイ素の分布を示す分布像であり、視野右下の方が左上に比べてケイ素の分布が多いことが確認できる。当該ケイ素の分布は、図2に示したHAADF-STEM写真における窒化ケイ素の一次粒子の位置によく対応している。また図4は、観測面における酸素の分布を示す分布像であり、図2及び図3で示される窒化ケイ素の一次粒子の表面に相当する領域に酸素原子が多く局在化していることが確認できる。そして、この酸素原子が局在化している領域を酸化膜と捉え、視野中における厚みの大きな位置10点でその厚み(例えば、図2中、Tで示す長さ)を計測し、その最大値を酸化膜の厚みとした。参考のため、図2において、2本の破線で酸化膜を示した。結果を表1に示す。
<窒化ケイ素粉末の評価:D90の測定>
窒化ケイ素粉末の体積基準の累積粒度分布における90%累積径(D90)を、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に準拠してレーザー解析散乱法で測定した。測定には、レーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、商品名:LS-13 320)を用いた。また、測定サンプルは、純水200ccに、ヘキサメタリン酸ナトリウムの20%水溶液2mLを混ぜた水溶液を用意し、当該水溶液に窒化ケイ素粉末60mgを投入し、超音波ホモジナイザー(日本精機製作所製、商品名:US-300)で3分間分散させて調製し、得られた測定サンプルを対象として測定を行った。結果を表1に示す。
窒化ケイ素粉末の体積基準の累積粒度分布における90%累積径(D90)を、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に準拠してレーザー解析散乱法で測定した。測定には、レーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、商品名:LS-13 320)を用いた。また、測定サンプルは、純水200ccに、ヘキサメタリン酸ナトリウムの20%水溶液2mLを混ぜた水溶液を用意し、当該水溶液に窒化ケイ素粉末60mgを投入し、超音波ホモジナイザー(日本精機製作所製、商品名:US-300)で3分間分散させて調製し、得られた測定サンプルを対象として測定を行った。結果を表1に示す。
<窒化ケイ素粉末の評価:BET比表面積の測定>
BET比表面積は、JIS Z 8803:2013に準拠し、窒素ガスを使用してBET一点法によって測定した。結果を表1に示す。
BET比表面積は、JIS Z 8803:2013に準拠し、窒素ガスを使用してBET一点法によって測定した。結果を表1に示す。
<窒化ケイ素粉末の評価:焼結性>
[窒化ケイ素焼結体の製造]
容器に、調製した窒化ケイ素粉末を90質量部、平均粒径が1.5μmであるY2O3粉末を5質量部、及び、平均粒径が1.2μmであるYb2O3粉末を5質量部、測り取り、メタノールを加えて、4時間湿式混合した。その後、乾燥して得た混合粉末(焼成原料)を10MPaの圧力で金型成形し、その後、更に25MPaの圧力で冷間等方圧加圧(CIP)成形した。得られた成形体を、窒化ケイ素粉末及びBN粉末の混合粉末からなる詰め粉とともにカーボン製坩堝にセットし、1MPaの窒素加圧雰囲気下、温度1900℃で10時間焼成して窒化ケイ素焼結体を製造した。
[窒化ケイ素焼結体の製造]
容器に、調製した窒化ケイ素粉末を90質量部、平均粒径が1.5μmであるY2O3粉末を5質量部、及び、平均粒径が1.2μmであるYb2O3粉末を5質量部、測り取り、メタノールを加えて、4時間湿式混合した。その後、乾燥して得た混合粉末(焼成原料)を10MPaの圧力で金型成形し、その後、更に25MPaの圧力で冷間等方圧加圧(CIP)成形した。得られた成形体を、窒化ケイ素粉末及びBN粉末の混合粉末からなる詰め粉とともにカーボン製坩堝にセットし、1MPaの窒素加圧雰囲気下、温度1900℃で10時間焼成して窒化ケイ素焼結体を製造した。
<窒化ケイ素焼結体の評価:曲げ強さ>
窒化ケイ素焼結体から、JIS R 1601:2008に準じて強度測定用の試験片を作製し、室温における3点曲げ強さを測定した。結果を表1に示す。
窒化ケイ素焼結体から、JIS R 1601:2008に準じて強度測定用の試験片を作製し、室温における3点曲げ強さを測定した。結果を表1に示す。
<窒化ケイ素焼結体の評価:熱伝導率>
窒化ケイ素焼結体を研削加工して、熱伝導率測定用の10mmφ×3mmの円盤体を作製した。レーザーフラッシュ法(JIS R 1611に準拠)により熱拡散率と比熱容量を測定し、焼結体の密度、熱拡散率及び比熱容量の積を算出して、室温における熱伝導率とした。結果を表1に示す。
窒化ケイ素焼結体を研削加工して、熱伝導率測定用の10mmφ×3mmの円盤体を作製した。レーザーフラッシュ法(JIS R 1611に準拠)により熱拡散率と比熱容量を測定し、焼結体の密度、熱拡散率及び比熱容量の積を算出して、室温における熱伝導率とした。結果を表1に示す。
(実施例2)
ケイ素粉末の酸素量、粉砕物の酸処理条件を表1に示すとおりに変更したこと以外は、実施例1と同様にして、窒化ケイ素粉末を調製した。調製した窒化ケイ素粉末について実施例1と同様に評価を行った。結果を表1に示す。
ケイ素粉末の酸素量、粉砕物の酸処理条件を表1に示すとおりに変更したこと以外は、実施例1と同様にして、窒化ケイ素粉末を調製した。調製した窒化ケイ素粉末について実施例1と同様に評価を行った。結果を表1に示す。
(実施例3)
ケイ素粉末の酸素量、粉砕物の酸処理条件を表1に示すとおりに変更したこと以外は、実施例1と同様にして、窒化ケイ素粉末を調製した。調製した窒化ケイ素粉末について実施例1と同様に評価を行った。結果を表1に示す。
ケイ素粉末の酸素量、粉砕物の酸処理条件を表1に示すとおりに変更したこと以外は、実施例1と同様にして、窒化ケイ素粉末を調製した。調製した窒化ケイ素粉末について実施例1と同様に評価を行った。結果を表1に示す。
(比較例1)
ケイ素粉末の酸素量、粉砕物の酸処理条件を表1に示すとおりに変更したこと以外は、実施例1と同様にして、窒化ケイ素粉末を調製した。調製した窒化ケイ素粉末について実施例1と同様に評価を行った。結果を表1に示す。
ケイ素粉末の酸素量、粉砕物の酸処理条件を表1に示すとおりに変更したこと以外は、実施例1と同様にして、窒化ケイ素粉末を調製した。調製した窒化ケイ素粉末について実施例1と同様に評価を行った。結果を表1に示す。
表1に示されるとおり、実施例で得られた窒化ケイ素粉末を用いて調製された窒化ケイ素焼結体は、比較例で得られた窒化ケイ素粉末を用いて調製された窒化ケイ素焼結体に比べて、曲げ強さと熱伝導率とをより高水準で両立できることが確認された。
本開示によれば、十分な曲げ強さを有し且つ熱伝導性に優れる焼結体を製造可能な窒化ケイ素粉末を提供できる。本開示によればまた、十分な曲げ強さ、且つ優れた熱伝導性を発揮し得る窒化ケイ素焼結体の製造方法を提供できる。
Claims (4)
- 窒化ケイ素の一次粒子を含み、
前記一次粒子は、表面の少なくとも一部に酸化膜を有し、
前記酸化膜の厚みが20.0nm以下である、窒化ケイ素粉末。 - 体積基準の累積粒度分布における90%累積径が2.00μm以下である、請求項1に記載の窒化ケイ素粉末。
- BET比表面積が8.0m2/g以上である、請求項1に記載の窒化ケイ素粉末。
- 請求項1~3のいずれか一項に記載の窒化ケイ素粉末を含む焼結原料を成形し焼成する工程を有する、窒化ケイ素焼結体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022512242A JPWO2021200868A1 (ja) | 2020-03-30 | 2021-03-29 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-059901 | 2020-03-30 | ||
JP2020059901 | 2020-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021200868A1 true WO2021200868A1 (ja) | 2021-10-07 |
Family
ID=77929185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/013394 WO2021200868A1 (ja) | 2020-03-30 | 2021-03-29 | 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021200868A1 (ja) |
TW (1) | TW202142485A (ja) |
WO (1) | WO2021200868A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005501176A (ja) * | 2001-07-18 | 2005-01-13 | ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド | コンフォーマル超薄膜を有する金属含有微粒子の絶縁化及び機能化方法 |
WO2015005390A1 (ja) * | 2013-07-11 | 2015-01-15 | 宇部興産株式会社 | 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化珪素粉末およびその製造法、その窒化珪素粉末を含有したスラリー、多結晶シリコンインゴット鋳造用鋳型およびその製造方法、ならびにその鋳型を用いた多結晶シリコンインゴット鋳の製造方法 |
-
2021
- 2021-03-29 TW TW110111389A patent/TW202142485A/zh unknown
- 2021-03-29 JP JP2022512242A patent/JPWO2021200868A1/ja active Pending
- 2021-03-29 WO PCT/JP2021/013394 patent/WO2021200868A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005501176A (ja) * | 2001-07-18 | 2005-01-13 | ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド | コンフォーマル超薄膜を有する金属含有微粒子の絶縁化及び機能化方法 |
WO2015005390A1 (ja) * | 2013-07-11 | 2015-01-15 | 宇部興産株式会社 | 多結晶シリコンインゴット鋳造用鋳型の離型剤用窒化珪素粉末およびその製造法、その窒化珪素粉末を含有したスラリー、多結晶シリコンインゴット鋳造用鋳型およびその製造方法、ならびにその鋳型を用いた多結晶シリコンインゴット鋳の製造方法 |
Non-Patent Citations (2)
Title |
---|
"Introduction, Experimental, Results and discussion", MATERIALS CHEMISTRY AND PHYSICS, vol. 36, 1993, pages 112 - 118 * |
"INTRODUCTION, EXPERIMENTAL, RESULTS AND DISCUSSION", SURFACE AND INTERFACE ANALYSIS, vol. 12, 1988, pages 527 - 530 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021200868A1 (ja) | 2021-10-07 |
TW202142485A (zh) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kelly et al. | Mechanisms of pore formation in high-temperature carbides: Case study of TaC prepared by spark plasma sintering | |
JP6245602B2 (ja) | 窒化ケイ素フィラー、樹脂複合物、絶縁基板、半導体封止材、窒化ケイ素フィラーの製造方法 | |
JPWO2019167879A1 (ja) | 窒化ケイ素粉末の製造方法 | |
Hong et al. | Synthesis and consolidation of nanostructured W–10–40 wt.% Cu powders | |
WO2021200830A1 (ja) | 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 | |
US10541064B2 (en) | SiC powder, SiC sintered body, SiC slurry and manufacturing method of the same | |
TWI433826B (zh) | Aluminum nitride sintered body and its preparation method, and an electrostatic chuck using the same method | |
JP6342916B2 (ja) | Al/TiCナノコンポジット材料を製造する方法 | |
WO2021200868A1 (ja) | 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 | |
WO2018037846A1 (ja) | 炭窒化チタン粉末、及び炭窒化チタン粉末の製造方法 | |
JP2008031016A (ja) | 炭化タンタル粉末および炭化タンタル−ニオブ複合粉末とそれらの製造方法 | |
JP2008001536A (ja) | 窒化アルミニウム・窒化ホウ素複合粉末およびその製造方法 | |
KR102003193B1 (ko) | 고온 비저항이 개선된 AlN 소결체의 제조방법 | |
JP3438928B2 (ja) | 窒化珪素粉末の製造方法 | |
JP7140939B2 (ja) | 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法 | |
JP3698664B2 (ja) | 高純度窒化ケイ素粉末の製造方法 | |
WO2021200814A1 (ja) | 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 | |
JP2000277815A (ja) | 金属短細線分散熱電材料およびその作製方法 | |
JP6971110B2 (ja) | 被覆粒子粉体の製造方法、ならびに当該被覆粒子粉体および分散媒を含む分散体の製造方法 | |
JP2014141359A (ja) | サイアロン基焼結体 | |
JP7536747B2 (ja) | 窒化ケイ素粉末及びその製造方法、並びに窒化ケイ素焼結体の製造方法 | |
Jakubowicz et al. | Characterization of high-energy ball-milled and hot-pressed nanocrystalline tantalum | |
JP4958353B2 (ja) | 窒化アルミニウム粉末及びその製造方法 | |
WO2021200864A1 (ja) | 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 | |
JP7242972B2 (ja) | 窒化ケイ素粉末、及び窒化ケイ素焼結体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21781862 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022512242 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21781862 Country of ref document: EP Kind code of ref document: A1 |