WO2021200794A1 - Active energy ray–curable polyurethane resin, curable resin composition, and production method for active energy ray–curable polyurethane resin - Google Patents

Active energy ray–curable polyurethane resin, curable resin composition, and production method for active energy ray–curable polyurethane resin Download PDF

Info

Publication number
WO2021200794A1
WO2021200794A1 PCT/JP2021/013216 JP2021013216W WO2021200794A1 WO 2021200794 A1 WO2021200794 A1 WO 2021200794A1 JP 2021013216 W JP2021013216 W JP 2021013216W WO 2021200794 A1 WO2021200794 A1 WO 2021200794A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
polyurethane resin
meth
curable polyurethane
Prior art date
Application number
PCT/JP2021/013216
Other languages
French (fr)
Japanese (ja)
Inventor
理紗 中原
正和 景岡
山崎 聡
士朗 山田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US17/799,145 priority Critical patent/US20230078175A1/en
Priority to EP21781193.4A priority patent/EP4130085A1/en
Priority to JP2022512191A priority patent/JP7324939B2/en
Publication of WO2021200794A1 publication Critical patent/WO2021200794A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/6795Unsaturated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring

Definitions

  • the present invention relates to an active energy ray-curable polyurethane resin, a curable resin composition, and an active energy ray-curable polyurethane resin.
  • Polyurethane resin that is cured by irradiation with active energy rays (hereinafter referred to as active energy ray-curable polyurethane resin) is a polyurethane resin containing an ethylenically unsaturated group, and is used in various industrial fields such as adhesives, coating agents, and elastomers. , Widely used.
  • the molding resin for a 3D printer is required to have a relatively low viscosity before curing, and is required to have excellent mechanical strength, weather resistance and hysteresis characteristics after curing.
  • the above polyurethane (meth) acrylate oligomers may not fully satisfy these requirements.
  • an active energy ray-curable polyurethane resin a curable resin composition, and an active energy ray-curable polyurethane having a relatively low viscosity before curing and excellent mechanical strength, weather resistance, and hysteresis characteristics after curing. It is a resin.
  • the present invention [1] is an active energy ray-curable polyurethane resin containing a reaction product of a resin raw material containing an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound, and the isocyanate group-terminated prepolymer is xyl.
  • the active energy ray contains a reaction product of a prepolymer raw material containing a polyisocyanate component containing a range isocyanate and / or a hydrogenated xylylene diisocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight of 6000 or more and 12000 or less.
  • It contains an active energy ray-curable polyurethane resin having a viscosity of the curable polyurethane resin at 25 ° C. of 20,000 mPa ⁇ s or more and 40,000 mPa ⁇ s or less.
  • the present invention [2] includes a curable resin composition containing the active energy ray-curable polyurethane resin according to the above [1] and a radically reactive diluent.
  • the present invention [3] contains the curable resin composition according to the above [2], wherein the radical reactive diluent contains a (meth) acrylate having an alicyclic ether skeleton.
  • a prepolymer raw material containing a polyisocyanate component containing xylylene diisocyanate and / or hydrogenated xylylene diisocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight of 6000 or more and 12000 or less is reacted.
  • an active energy ray-curable polyurethane resin which comprises a step of obtaining an active energy ray-curable polyurethane resin having a viscosity at 25 ° C. of 20,000 mPa ⁇ s or more and 40,000 mPa ⁇ s or less.
  • the active energy ray-curable polyurethane resin of the present invention contains a reaction product of an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound, and the isocyanate group-terminated prepolymer contains xylylene diisocyanate and / or hydrogenated xylylene.
  • a reaction product of a polyisocyanate component containing isocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight in a predetermined range is contained, and the viscosity of an active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa ⁇ s. It is 40,000 mPa ⁇ s or less.
  • the active energy ray-curable polyurethane resin of the present invention has a relatively low viscosity before curing, and is excellent in mechanical strength, weather resistance, and hysteresis characteristics after curing.
  • the curable resin composition of the present invention contains the above-mentioned active energy ray-curable polyurethane resin, the viscosity before curing is relatively low, and the mechanical strength, weather resistance and hysteresis characteristics after curing are excellent.
  • an active energy ray-curable polyurethane resin having a relatively low viscosity before curing and excellent mechanical strength, weather resistance and hysteresis characteristics after curing can be used efficiently. Can be manufactured well.
  • the active energy ray-curable polyurethane resin of the present invention is a polyurethane resin that is cured by irradiation with active energy rays (described later).
  • the active energy ray-curable polyurethane resin contains a reaction product of a resin raw material.
  • the resin raw material contains an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound.
  • the isocyanate group-terminated prepolymer is a polyurethane prepolymer having two or more free isocyanate groups at the molecular ends, and contains a reaction product of a prepolymer raw material.
  • the prepolymer raw material contains a polyisocyanate component and a polyol component.
  • the polyisocyanate component contains xylylene diisocyanate and / or hydrogenated xylylene diisocyanate as essential components.
  • xylylene diisocyanate 1,2-xylylene diisocyanate (o-XDI), 1,3-xylylene diisocyanate (m-XDI), and 1,4-xylylene diisocyanate (p-XDI) have a structure. Listed as an isomer.
  • xylylene diisocyanates can be used alone or in combination of two or more.
  • examples of the xylylene diisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, and more preferably 1,3-xylylene diisocyanate.
  • hydrogenated xylylene diisocyanate also known as bis (isocyanatomethyl) cyclohexane) (H 6 XDI)
  • 1,2-hydrogenated xylylene diisocyanate (1,2-bis (isocyanatomethyl) cyclohexane, 1,2- H 6 XDI)
  • 1,3-hydrogenated xylylene diisocyanate (1,3-bis (isocyanatomethyl) cyclohexane, 1,3-H 6 XDI)
  • 1,4-hydrogenated xylylene diisocyanate 1,4- Bis (isocyanatomethyl) cyclohexane, 1,4-H 6 XDI) can be mentioned as structural isomers.
  • hydrogenated xylylene diisocyanates can be used alone or in combination of two or more.
  • examples of the hydrogenated xylylene diisocyanate include 1,3-hydrogenated xylylene diisocyanate, 1,4-hydrogenated xylylene diisocyanate, and more preferably 1,3-hydrogenated xylylene diisocyanate.
  • the xylylene diisocyanate and / or hydrogenated xylylene diisocyanate includes derivatives of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate in addition to the above-mentioned monomers.
  • Examples of the xylylene diisocyanate and / or a derivative of the hydrogenated xylylene diisocyanate include a multimer (for example, a dimer and / or a trimer of an isocyanurate) of the xylylene diisocyanate and / or a hydrogenated xylylene diisocyanate.
  • Iminooxadiazinedione modified product pentameric, heptameric, etc.
  • allophanate modified product for example, xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, known monovalent alcohol and / or known divalent Alofanate modified product produced by reaction with alcohol
  • polyol modified product for example, polyol modified product produced by reaction of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate with known trivalent or higher valent alcohol (alcohol addition) Body), etc.
  • biuret modified products eg, xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, biuret modified products produced by reaction with water or amines
  • urea modified products eg, xylylene diisocyanate and / Or a urea modified product produced by the reaction of hydrogenated xylylene diisocyanate with diamine
  • carbodiimide modified product (carbodiimide modified product produced by decarbonation condensation reaction of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, etc.), uretdione modified product, uretonimine modified product, and the like.
  • Examples of the xylylene diisocyanate and / or hydrogenated xylylene diisocyanate preferably include a monomer of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, and more preferably hydrogenated xylylene diisocyanate.
  • Examples include 1,3-hydrogenated xylylene diisocyanate.
  • polyisocyanate component can contain other polyisocyanates (polyisocyanate excluding xylylene diisocyanate and hydrogenated xylylene diisocyanate) as an optional component.
  • polyisocyanates polyisocyanate excluding xylylene diisocyanate and hydrogenated xylylene diisocyanate
  • polyisocyanates examples include aromatic polyisocyanates, aromatic aliphatic polyisocyanates (excluding xylylene diisocyanates), aliphatic polyisocyanates, and alicyclic polyisocyanates (excluding hydrogenated xylylene diisocyanates). Examples include polyisocyanate.
  • aromatic polyisocyanate examples include tolylene diisocyanate (2,4- or 2,6-toluene diisocyanate or a mixture thereof) (TDI), phenylenediisocyanate (m-, p-phenylenediisocyanate or a mixture thereof), 4, 4'-Diphenyldiisocyanate, 1,5-naphthalenediocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-or 2,2'-diphenylmethane diisocyanate or a mixture thereof) (MDI), Examples thereof include aromatic diisocyanates such as 4,4'-toluene diisocyanate (TODI) and 4,4'-diphenyl ether diisocyanate.
  • TODI 4,4'-toluene diisocyanate
  • TDDI 4,4'-diphenyl ether diisocyanate
  • aromatic aliphatic polyisocyanate examples include tetramethylxylene diisocyanate (1,3- or 1,4-tetramethylxylene diisocyanate or a mixture thereof) (TMXDI), ⁇ , ⁇ '. -Diisocyanate-1,4-diisocyanate and other aromatic aliphatic diisocyanates can be mentioned.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), and 1 , 5-Pentamethylene diisocyanate (PDI), 1,6-hexamethylene diisocyanate (also known as hexamethylene diisocyanate) (HDI), 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6- Examples thereof include aliphatic diisocyanates such as diisocyanate methyl caproate.
  • Examples of the alicyclic polyisocyanate include 1,3-cyclopentanediisocyanate, 1,3-cyclopentenediisocyanate, and cyclohexanediisocyanate (1,4-cyclohexanediisocyanate, 1,3-cyclohexane).
  • Diisocyanate 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate (also known as isophorone diisocyanate) (IPDI), methylenebis (cyclohexylisocyanate) (also known as bis (isocyanatocyclohexyl) methane) (4,4'- , 2,4'-or 2,2'-methylenebis (cyclohexylisocyanate)
  • Trans, Trans-form, Trans, Cis-form, Cis, Cis-form, or a mixture thereof) H 12 MDI
  • Methylcyclohexanediisocyanate examples thereof include alicyclic diisocyanates such as (methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), norbornandiisocyanate (various isomers or mixtures thereof) (NBDI).
  • 4,4'-methylenebis
  • polyisocyanates include derivatives of the same type as above.
  • polyisocyanates can be used alone or in combination of two or more.
  • polyisocyanates polyisocyanates excluding xylylene diisocyanate and hydrogenated xylylene diisocyanate
  • the blending ratio thereof is appropriately selected as long as the excellent effects of the present invention are not impaired.
  • the content ratio of xylylene diisocyanate and hydrogenated xylylene diisocyanate is, for example, 50% by mass or more, preferably 50% by mass or more, based on the total amount of the polyisocyanate component. It is 60% by mass or more, more preferably 80% by mass or more, and usually 100% by mass or less.
  • the polyisocyanate component is preferably composed of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, and more preferably hydrogenated xylylene diisocyanate.
  • the polyol component contains a polyoxyalkylene polyol as an essential component.
  • the polyoxyalkylene polyol is, for example, an addition polymer of alkylene oxide using a low molecular weight polyol or a low molecular weight polyamine as an initiator.
  • the low molecular weight polyol is a compound having two or more hydroxy groups and having a number average molecular weight of 40 or more and less than 300, and is, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1, 3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethylpentanediol , 3,3-Dimethylol heptane, alcohol (C7-20) diol, 1,3- or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanediol and mixtures thereof, Dihydric alcohols such as hydride bisphenol A, 1,4-dihydroxy-2-butene, 2,6-dimethyl
  • Trihydric alcohols such as glycerin, trimethylolpropane, triisopropanolamine, eg tetrahydric alcohols such as tetramethylolmethane (pentaerythritol), diglycerin, eg pentahydric alcohols such as xylitol, eg sorbitol, mannitol, alitol , Hexyl alcohols such as iditol, darsitol, altritor, inositol, dipentaerythritol, for example, heptahydric alcohols such as propylene glycol, for example, octahydric alcohols such as sucrose.
  • Trihydric alcohols such as glycerin, trimethylolpropane, triisopropanolamine, eg tetrahydric alcohols such as tetramethylolmethane (pentaerythritol),
  • low molecular weight polyamines examples include ethylenediamine, 1,3-propanediamine, 1,3- or 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-cyclohexanediamine, and 3-aminomethyl-3.
  • initiators can be used alone or in combination of two or more.
  • Preferred examples of the initiator include low molecular weight polyols.
  • alkylene oxide examples include ethylene oxide (IUPAC name: oxylan), propylene oxide (1,2-propylene oxide (IUPAC name: methyloxylan)), triethylene oxide (1,3-propylene oxide), butylene oxide (1). , 2-butylene oxide (IUPAC name: ethyloxylane), 2,3-butylene oxide (IUPAC name: 2,3-dimethyloxylan)) and the like.
  • these alkylene oxides can be used alone or in combination of two or more. Of these, ethylene oxide and propylene oxide are preferable, and propylene oxide is more preferable.
  • polyoxyalkylene polyols include average functionalities such as polyoxyethylene glycol, polyoxypropylene glycol, polyoxytriethylene glycol, and polyoxyethylene / polyoxypropylene glycol (random or block copolymers).
  • Polyalkylene oxides having 2 groups for example, polyalkylenes having 3 average functional groups such as polyoxyethylene triol, polyoxypropylene triol, polyoxytriethylene triol, and polyoxyethylene / polyoxypropylene triol (random or block copolymer). Examples include oxides.
  • polyoxyalkylene polyols can be used alone or in combination of two or more.
  • polyoxyalkylene polyol preferably, a polyoxypropylene polyol can be mentioned, and more preferably, a polyoxypropylene glycol can be mentioned.
  • the number average molecular weight of the polyoxyalkylene polyol is 6000 or more, preferably 7000 or more, more preferably 8000 or more, still more preferably 9000 or more, and particularly preferably 10000, from the viewpoint of mechanical strength, weather resistance and hysteresis characteristics.
  • the above is 12000 or less, preferably 11500 or less, more preferably 11000 or less, still more preferably 10500 or less.
  • the average number of functional groups of the polyoxyalkylene polyol is, for example, 1.5 or more, preferably 2 or more, for example, 3 or less, preferably 2.5 or less, and more preferably 2.0.
  • the polyoxyalkylene polyol is produced by a known method using, for example, a hydroxide catalyst, a phosphazene catalyst, a compound metal cyanide complex catalyst, or the like. From the viewpoint of suppressing side reactions, the polyoxyalkylene polyol is preferably produced using a catalyst capable of suppressing side reactions such as a phosphazene catalyst and a compound metal cyanide complex catalyst.
  • the degree of unsaturation (unit: meq./g) of the polyoxyalkylene polyol preferably satisfies the following formula (1).
  • Mn indicates the number average molecular weight of the polyoxyalkylene polyol
  • f indicates the average number of functional groups (average number of hydroxyl groups) of the polyoxyalkylene polyol.
  • Mn and f can be measured by a known method, and can also be calculated from, for example, the hydroxyl value measured according to JIS K1557-1 (2007) (the same applies hereinafter).
  • the degree of unsaturation (unit: meq./g) of the polyoxyalkylene polyol is, for example, 0.001 or more, for example, 0.07 or less, preferably 0.05 or less, more preferably. Is 0.03 or less, more preferably 0.025 or less.
  • the hydroxyl value of the polyoxyalkylene polyol is, for example, 9 mgKOH / g or more, preferably 10 mgKOH / g or more, and for example, 20 mgKOH / g or less, preferably 15 mgKOH / g or less.
  • the polyol component can include other high molecular weight polyols (high molecular weight polyols excluding polyoxyethylene glycol) as optional components.
  • high-molecular-weight polyols are compounds having two or more hydroxy groups and having a number average molecular weight of 300 or more and 20000 or less, and are, for example, polyether polyols (excluding polyoxyalkylene polyols), polyester polyols, polycarbonate polyols, and polyurethanes. Examples thereof include polyols, epoxy polyols, vegetable oil polyols, polyolefin polyols, silicone polyols, and fluorine polyols. These can be used alone or in combination of two or more.
  • Other high-molecular-weight polyols preferably include polyether polyols (excluding polyoxyalkylene polyols), polyester polyols, polycarbonate polyols, and polyurethane polyols.
  • polyol component can contain a low molecular weight polyol as an optional component.
  • Examples of the low molecular weight polyol include the above-mentioned low molecular weight polyol.
  • the content ratio thereof is appropriately set as long as the excellent effect of the present invention is not impaired.
  • the polyol component does not contain a low molecular weight polyol, but contains only a high molecular weight polyol. More preferably, the polyol component contains only a polyoxyalkylene polyol.
  • the number average molecular weight of the polyol component (total amount) is, for example, 6000 or more, preferably 7000 or more, more preferably 8000 or more, still more preferably 9000 or more, particularly preferably 10000 or more, for example, 12000 or less. It is preferably 11500 or less, more preferably 11000 or less, and even more preferably 10500 or less.
  • the average number of functional groups of the polyol component is, for example, 1.5 or more, preferably 2 or more, for example, 3 or less, preferably 2.5 or less, and more preferably 2.0. Is.
  • the hydroxyl value of the polyol component is, for example, 9 mgKOH / g or more, preferably 10 mgKOH / g or more, and for example, 20 mgKOH / g or less, preferably 15 mgKOH / g or less.
  • the isocyanate group-terminated prepolymer can be obtained by reacting the prepolymer raw material containing the above polyisocyanate component and the above polyol component by a known method.
  • the prepolymer raw material is blended at a ratio of more than 1 in the equivalent ratio (isocyanate group / hydroxy group) of the isocyanate group of the polyisocyanate component to the hydroxy group of the polyol component.
  • the equivalent ratio (isocyanate group / hydroxy group) in the prepolymer raw material is preferably 1.1 or more, more preferably 3 or more, still more preferably 6 or more, preferably 20, more preferably 15. Hereinafter, it is more preferably 10 or less.
  • the above-mentioned prepolymer raw material is reacted by a known polymerization method such as bulk polymerization or solution polymerization.
  • a known polymerization method such as bulk polymerization or solution polymerization.
  • the above prepolymer raw materials are reacted by bulk polymerization.
  • the above prepolymer raw materials are blended in a nitrogen atmosphere and reacted at a reaction temperature of 75 to 85 ° C. for about 1 to 20 hours.
  • the above prepolymer raw material is mixed with a known organic solvent and reacted at a reaction temperature of 20 to 80 ° C. for about 1 to 20 hours.
  • the addition ratio of the urethanization catalyst is appropriately set according to the purpose and application.
  • an isocyanate group-terminated prepolymer can be obtained, and as a result, a composition containing an isocyanate group-terminated prepolymer and an unreacted polyisocyanate component (hereinafter referred to as a crude prepolymer product) can be obtained.
  • the average number of functional groups of the isocyanate group of the isocyanate group-terminated prepolymer is, for example, 1.5 or more, preferably 2.0 or more, and for example, 3.0 or less, preferably 2.5 or less.
  • the isocyanate group concentration of the prepolymer crude product (including the isocyanate group-terminated prepolymer and the unreacted polyisocyanate component) is, for example, 0. 3% by mass or more, preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and for example, 15% by mass or less, preferably 12% by mass or less, more preferably 10% by mass or more. It is less than or equal to mass%.
  • the prepolymer crude product (including the isocyanate group-terminated prepolymer and the unreacted polyisocyanate component) adjusts the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. to the range described below, and is easy to handle and mold. From the viewpoint of improving the properties, it is preferably purified by distillation.
  • the temperature of the active energy ray-curable polyurethane resin is 25 ° C.
  • the viscosity of the above can be adjusted within the range described below. However, in such a case, the handleability and moldability may not be sufficient.
  • the prepolymer crude product is preferably purified by distillation, and the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is adjusted to the range described below.
  • the distillation method is not particularly limited, and examples thereof include a batch distillation method and a continuous distillation method, and examples of the continuous distillation method include a thin film distillation method (Smith type thin film distillation method).
  • a thin film distillation method (Smith type thin film distillation method) is preferable.
  • the distillation conditions include, for example, 120 ° C. or higher, preferably 150 ° C. or higher, and for example, 250 ° C. or lower, preferably 200 ° C. or lower.
  • the distillation pressure absolute pressure
  • the distillation pressure is, for example, 1 Pa or more, preferably 10 Pa or more, more preferably 50 Pa or more, and for example, 300 Pa or less, preferably 200 Pa or less, more preferably 100 Pa or less.
  • the feed amount of the isocyanate group-terminated prepolymer is, for example, 0.1 g / min or more, preferably 1.0 g / min or more, more preferably 2.0 g / min or more, and for example, 100 g / min.
  • it is preferably 50 g / min or less, and more preferably 10 g / min or less.
  • the unreacted polyisocyanate component is removed from the crude prepolymer product, and a purified product of the isocyanate group-terminated prepolymer (hereinafter referred to as the purified prepolymer) is obtained.
  • the prepolymer purified product is composed of an isocyanate group-terminated prepolymer, or contains an isocyanate group-terminated prepolymer and a very small amount (10000 ppm or less) of an unreacted polyisocyanate component.
  • the content ratio of the isocyanate group-terminated prepolymer is, for example, 99.5% by mass or more, preferably 99.9% by mass or more, based on the total amount of the prepolymer purified product, for example, 100. It is less than or equal to mass%.
  • the isocyanate group concentration of the prepolymer purified product is, for example, 0.0001% by mass or more, preferably 0.0005% by mass or more, based on the total amount (solid content equivalent) of the prepolymer purified product. For example, it is 0.020% by mass or less, preferably 0.013% by mass or less, and more preferably 0.010% by mass or less.
  • an active energy ray-curable polyurethane resin is obtained by reacting the above-mentioned isocyanate group-terminated prepolymer (preferably a purified prepolymer) with a hydroxy group-containing unsaturated compound.
  • a hydroxy group-containing unsaturated compound is a compound having one or more ethylenically unsaturated groups and one or more hydroxy groups.
  • the hydroxy group-containing unsaturated compound includes, for example, one or more ethylenically unsaturated group-containing groups such as a (meth) acryloyl group, a vinylphenyl group, a propenyl ether group, an allyl ether group, and a vinyl ether group. , It also has one or more hydroxy groups.
  • (meth) acryloyl means acryloyl and / or methacrylic acid
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate. show.
  • the ethylenically unsaturated group-containing group preferably includes a (meth) acryloyl group, and more preferably an acryloyl group.
  • examples of the hydroxy group-containing unsaturated compound include hydroxy group-containing (meth) acrylate.
  • hydroxy group-containing (meth) acrylate for example, a monohydroxymono (meth) acrylate having one hydroxy group in one molecule and one (meth) acryloyl group, for example, a hydroxy group in one molecule.
  • Polyhydroxyl mono (meth) acrylate having a plurality of (meth) acryloyl groups for example, monohydroxyl poly (meth) having one hydroxy group in one molecule and having a plurality of (meth) acryloyl groups.
  • Acrylic for example, polyhydroxyl poly (meth) acrylate having a plurality of hydroxy groups and a plurality of (meth) acryloyl groups in one molecule.
  • Examples of the monohydroxyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-.
  • Hydroxyalkyl (meth) acrylates such as phenoxypropyl (meth) acrylate and 4-hydroxycyclohexyl (meth) acrylate, such as 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth).
  • polyhydroxyl mono (meth) acrylate examples include trimethylolpropane mono (meth) acrylate, glycerin mono (meth) acrylate, and pentaerythritol mono (meth) acrylate.
  • Examples of the monohydroxyl poly (meth) acrylate include trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and 2-hydroxy-3.
  • -(Meta) acryloyloxypropyl (meth) acrylate for example, 2-hydroxy-3-acryloyloxypropyl methacrylate (trade name: NK ester 701A, manufactured by Shin-Nakamura Chemical Co., Ltd.)) can be mentioned.
  • polyhydroxyl poly (meth) acrylate examples include pentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, and dipentaerythritol tetra (meth) acrylate.
  • examples of the hydroxy group-containing unsaturated compound include 4-vinylphenol, 2-hydroxyethyl-4-vinylphenyl ether, and (2-hydroxypropyl). Examples thereof include -4-vinylphenyl ether, (2,3-dihydroxypropyl) -4-vinylphenyl ether, 4- (2-hydroxyethyl) styrene and the like.
  • the ethylenically unsaturated group-containing group is a propenyl ether group
  • examples of the hydroxy group-containing unsaturated compound include propenyl alcohol, 2-hydroxyethyl propenyl ether, and 2,3-dihydroxypropyl pro. Nenyl ether and the like can be mentioned.
  • examples of the hydroxy group-containing unsaturated compound include allyl alcohol, 2-hydroxyethyl allyl ether, and 2-hydroxypropyl allyl alcohol. And so on.
  • examples of the hydroxy group-containing unsaturated compound include 2-hydroxyethyl vinyl ether and 2-hydroxypropyl vinyl ether. ..
  • hydroxy group-containing unsaturated compounds can be used alone or in combination of two or more.
  • the hydroxy group-containing unsaturated compound is preferably a hydroxy group-containing (meth) acrylicate, more preferably a monohydroxyl mono (meth) acrylicate, a monohydroxyl poly (meth) acrylate, and even more preferably a monohydroxyl mono.
  • the isocyanate group-terminated prepolymer preferably the purified isocyanate group-terminated prepolymer
  • the hydroxy group-containing unsaturated compound for example, in an inert gas atmosphere, the above-mentioned isocyanate group-terminated prepolymer is used.
  • the hydroxy group-containing unsaturated compound is blended so as to have a predetermined equivalent ratio, and a urethanization reaction is carried out.
  • the equivalent ratio (isocyanate group / hydroxy group) of the isocyanate group in the isocyanate group-terminated prepolymer to the hydroxy group in the hydroxy group-containing unsaturated compound is, for example, 0.7 or more, preferably 0.9 or more. For example, it is 1.5 or less, preferably 1.2 or less.
  • the reaction conditions are not particularly limited, but the reaction temperature is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and for example, 120 ° C. or lower, preferably 100 ° C. or lower. , More preferably 80 ° C. or lower.
  • the reaction time is, for example, 0.5 hours or more, preferably 1.0 hours or more, and for example, 24 hours or less, preferably 10 hours or less.
  • a known urethanization catalyst may be added if necessary.
  • the addition ratio of the urethanization catalyst is appropriately set according to the purpose and application.
  • an active energy ray-curable polyurethane resin containing a reaction product of an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound can be obtained.
  • the active energy ray-curable polyurethane resin is obtained by subjecting the isocyanate group of the isocyanate group-terminated prepolymer and the hydroxy group of the hydroxy group-containing unsaturated compound to a urethanization reaction, and the hydroxy group-containing unsaturated compound. It is a polyurethane resin having an unsaturated bond derived from.
  • the active energy ray-curable polyurethane resin may further include a plasticizer, a blocking inhibitor, a heat-resistant stabilizer, an active energy ray-stabilizing agent (light-resistant stabilizer, etc.), an antioxidant, a mold release agent, and the like.
  • a plasticizer such as acrylic acid, acrylic acid, styrene, polystyrene, polystyrene, polystyrene, polystymer, polystymer, etc.
  • a heat-resistant stabilizer such as a heat-resistant stabilizer, an active energy ray-stabilizing agent (light-resistant stabilizer, etc.), an antioxidant, a mold release agent, and the like.
  • an active energy ray-stabilizing agent light-resistant stabilizer, etc.
  • an antioxidant such as antioxidant, etc.
  • a mold release agent such as antioxidant, etc.
  • additives such as catalysts, pigments, dyes, lubricants, fillers, and antioxidants can be contained in appropriate proportions. The amount of these additive
  • the number average molecular weight of the active energy ray-curable polyurethane resin is, for example, 5000 or more, preferably 7000 or more, for example, 12000 or less, preferably 11000 or less.
  • the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa ⁇ s or more, preferably 22,000 mPa ⁇ s or more, more preferably 22,000 mPa ⁇ s or more, from the viewpoint of the tensile strength of the obtained cured product.
  • the handleability during molding can be improved.
  • the viscosity of the active energy ray-curable polyurethane resin is adjusted by purifying the isocyanate group-terminated prepolymer.
  • the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is measured by an E-type viscometer according to an example described later.
  • an active energy ray-curable polyurethane resin having a relatively low viscosity before curing and excellent mechanical strength, weather resistance and hysteresis characteristics after curing can be obtained. , Can be manufactured efficiently.
  • the above-mentioned active energy ray-curable polyurethane resin contains a reaction product of an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound, and the isocyanate group-terminated prepolymer contains xylylene diisocyanate and / or hydrogenated xyl.
  • a reaction product of a polyisocyanate component containing a range isocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight in a predetermined range is contained, and the viscosity of an active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa. It is s or more and 40,000 mPa ⁇ s or less.
  • the above-mentioned active energy ray-curable polyurethane resin has a relatively low viscosity before curing, and is excellent in mechanical strength, weather resistance, and hysteresis characteristics after curing.
  • Such an active energy ray-curable polyurethane resin can be used in various industrial fields. More specifically, the active energy ray-curable polyurethane resin can be used as, for example, an adhesive, a coating agent, an elastomer, a molding material, or the like. The active energy ray-curable polyurethane resin is preferably used as a molding material.
  • the active energy ray-curable polyurethane resin when used as a molding material, it is preferably used as a mixture (curable resin composition) with a radical-reactive diluent.
  • the active energy ray-curable polyurethane resin may be circulated alone and then mixed with a radical-reactive diluent, or the active energy ray-curable polyurethane resin and the radical-reactive diluent may be mixed. It may be distributed as a mixture.
  • the curable resin composition contains the above-mentioned active energy ray-curable polyurethane resin and a radically reactive diluent.
  • the radical reactive diluent is a compound that undergoes radical polymerization by irradiation with active energy rays (described later), and is a diluent for diluting the above-mentioned active energy ray-curable polyurethane resin.
  • radical reactive diluent examples include a reactive compound having an aromatic hydrocarbon skeleton, a reactive compound having an alicyclic hydrocarbon skeleton, a reactive compound having a chain ether skeleton, and an alicyclic ether skeleton.
  • Examples of the reactive compound having an aromatic hydrocarbon skeleton include (meth) acrylates having an aromatic hydrocarbon skeleton such as 3-phenoxybenzyl (meth) acrylate, such as styrene, vinyltoluene, divinylbenzene, and ⁇ -methyl. Examples include styrene.
  • Examples of the reactive compound having an alicyclic hydrocarbon skeleton include isobornyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, and dicyclopentanyl. Examples thereof include (meth) acrylate having an alicyclic hydrocarbon skeleton such as (meth) acrylate.
  • Examples of the reactive compound having a chain ether skeleton include 2-ethylhexyl-diglucol (meth) acrylate.
  • Examples of the reactive compound having an alicyclic ether skeleton include cyclic trimethylolpropane formal (meth) acrylate and (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate.
  • Examples of (meth) acrylates having an alicyclic ether skeleton include 4- (meth) acryloylmorpholine.
  • Examples of the reactive compound having an amide skeleton include N, N-diethyl (meth) acrylamide and the like.
  • Examples of the reactive compound having an oxyalkylene skeleton include 2-ethylhexyl-diglycol (meth) acrylate.
  • Examples of the compound having a (meth) acryloyl group and a vinyl group include methyl 2- (allyloxymethyl) acrylate, 2-vinyloxyethyl (meth) acrylate, 3-vinyloxypropyl (meth) acrylate, and (meth).
  • polyol poly (meth) acrylate examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, pentanediol di (meth) acrylate, and neopentyl glycol di (meth).
  • Polyol di (meth) acrylates such as acrylates, hexanediol di (meth) acrylates, nonanediol di (meth) acrylates, oligoethylene glycol di (meth) acrylates, such as trimethylolpropanthry (meth) acrylates, glycerintri (meth).
  • Polypolymer tri (meth) acrylate such as acrylate, for example, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like can be mentioned.
  • Examples of the unsaturated carboxylic acid allyl ester include allyl (meth) acrylate, diallyl maleate, diallyl fumarate, and diallyl itaconate.
  • radical reactive diluents can be used alone or in combination of two or more.
  • the radical reactive diluent preferably includes a reactive compound having an alicyclic ether skeleton, and more preferably has an alicyclic ether skeleton, from the viewpoint of improving mechanical strength, weather resistance and hysteresis characteristics.
  • (Meta) acrylates are mentioned, more preferably cyclic trimethylolpropane formal (meth) acrylates and (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylates, among others.
  • Preferred are (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylates.
  • the blending ratio of the active energy ray-curable polyurethane resin and the radically reactive diluent is not particularly limited, and can be used according to the purpose and application as long as the excellent effects of the present invention are not impaired. It is set as appropriate.
  • the active energy ray-curable polyurethane resin is, for example, 40 parts by mass or more, preferably 45 parts by mass, based on 100 parts by mass of the total amount of the active energy ray-curable polyurethane resin and the radical reactive diluent. It is at least 70 parts by mass, for example, 70 parts by mass or less, preferably 65 parts by mass or less.
  • the radical reactive diluent is, for example, 30 parts by mass or more, preferably 35 parts by mass or more, and for example, 60 parts by mass or less, preferably 55 parts by mass or less.
  • the radical reactive diluent preferably, a reactive compound having an alicyclic ether skeleton and a compound having a (meth) acryloyl group and a vinyl group are used in combination.
  • it is 40 parts by mass or more, preferably 45 parts by mass or more, and for example, 99 parts by mass or less, preferably 95 parts by mass or less.
  • the compound containing a (meth) acryloyl group and a vinyl group is, for example, 1 part by mass or more, preferably 5 parts by mass or more, and for example, 60 parts by mass or less, preferably 55 parts by mass or less.
  • the method of blending the active energy ray-curable polyurethane resin and the radical reactive diluent is not particularly limited, and a known method is adopted. As a result, a curable resin composition is obtained.
  • the curable resin composition can contain a photopolymerization initiator, if necessary.
  • photopolymerization initiator examples include known photopolymerization initiators, for example, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-.
  • the photopolymerization initiator is available as a commercially available product.
  • commercially available products include TPO (trade name, manufactured by Tokyo Kasei Kogyo), Irgacure819 (BAPO, trade name, manufactured by BASF), Irgacure369 (Omnirad369, trade name, manufactured by BASF), and IrgacureOXE01 (trade name, manufactured by BASF).
  • IrgacureOXE02 (trade name, manufactured by BASF), IrgacureOXE03 (trade name, manufactured by BASF), IrgacureOXE04 (trade name, manufactured by BASF), Irgacure184 (trade name, product name, manufactured by BASF), Omnirad 184, trade name, manufactured by BASF , NCI-831 (trade name, manufactured by ADEKA), NCI-930 (trade name, manufactured by ADEKA) and the like. These can be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator added is not particularly limited, and is appropriately set according to the purpose and application.
  • the curable resin composition may contain a known sensitizer or the like, if necessary, in order to promote the photopolymerization reaction by the photopolymerization initiator.
  • sensitizer examples include 9,10-bis (octanoyloxy) anthracene, 9,10-dibutoxyanthracene, and 1,4-diethoxynaphthalene. These can be used alone or in combination of two or more.
  • the sensitizer is also available as a commercial product.
  • Examples of such commercially available products include Antracure UVS-581 (trade name, manufactured by Kawasaki Kasei Chemicals), Antracure UVS-1331 (trade name, manufactured by Kawasaki Kasei Chemicals), and Antracure UVS-2171 (trade name, manufactured by Kawasaki Kasei Chemicals). (Made by Kasei Chemicals), etc.
  • the curable resin composition is an antioxidant, an ultraviolet absorber, a fluorescent whitening agent, and further, for example, a plasticizer, a blocking inhibitor, a heat stabilizer, an active energy ray stabilizer.
  • Known additives such as (light-resistant stabilizers and the like), mold release agents, catalysts, pigments, dyes, lubricants, fillers, antioxidants and the like can be contained in an appropriate ratio. The amount of these additives added and the timing of addition are appropriately set according to the purpose and application.
  • antioxidants examples include hindered phenol compounds (specifically, Irganox 1135, Irganox 245, Irganox 1076, Irganox 1726, Irganox 1520L, all manufactured by BASF, specifically ADEKA.
  • ADEKA STAB AO-80 manufactured by BASF Corporation, organic phosphorus compounds (specifically, JP-302, JP-308, JP-308E, JP-310, JP-312L, JP-333E, JP-318O, JPS-312, JPP-13R, JP-318E, all manufactured by Johoku Chemical Co., Ltd., specifically IRGAFOS38, IRGAFOS P-EPQ, all manufactured by BASF, specifically, ADEKA STAB PEP-4C, ADEKA STAB PEP-8, ADEKA STAB 1500 , ADEKA STAB 3010, all manufactured by ADEKA), thioether compounds (specifically, IRGANOX PS800FL, IRGANOX PS802FL, all manufactured by BASF, specifically ADEKA STAB AO-412S, ADEKA STAB AO-503, all ADEKA Examples thereof include Yoshitomi DLTP, Yoshitomi DSTP, Yoshitomi DMTP, all manufactured by API Corporation, and hydroxy
  • UV absorber examples include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2,2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl, and 2- (2'-). Hydroxy-5'-methyl-phenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-di-t-butyl-phenyl) benzotriazole, 2- (2'-hydroxy-3'-t- Butyl-5'-methyl-phenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-t-butyl-phenyl) -5-chlorobenzotriazole, 2-( 2'-Hydroxy-4'-n-octoxy-phenyl) Benzotriazole-based UV absorbers such as benzotriazole, such as 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2,2'- Dihydroxy-4-methoxybenz
  • Tinuvin328 TinuvinPS (manufactured by Ciba Geigy), SEESORB709 (manufactured by Shiraishi Calcium), Uvinul490 (manufactured by GAF), Permyl B-100 (manufactured by Ferro), Uvinul3035, Uvinul3039, Uvinul3030 (manufactured by Ferro). (Made by BASF) and the like. These can be used alone or in combination of two or more. The amount and timing of addition of the ultraviolet absorber are appropriately set according to the purpose and application.
  • fluorescent whitening agent examples include 7- (dimethylamino) -4-methylcoumarin, 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene, and 4,4'-bis (2). -Benzoxazolyl) Stilbene and the like. Further, as a commercially available product, for example, "TINOPAL OB" (manufactured by BASF) and the like can be mentioned. These can be used alone or in combination of two or more. The amount of the fluorescent whitening agent added and the timing of the addition are appropriately set according to the purpose and application.
  • curable resin composition contains the above-mentioned active energy ray-curable polyurethane resin, the viscosity before curing is relatively low, and the mechanical strength, weather resistance and hysteresis characteristics after curing are excellent.
  • the above-mentioned active energy ray-curable polyurethane resin and curable resin composition are suitably used in various industrial fields as, for example, adhesives, coating agents, elastomers, molding materials, and the like.
  • the above-mentioned active energy ray-curable polyurethane resin and curable resin composition are suitably used as a molding material, more specifically, as a molding material in a 3D printer.
  • the curable resin composition is molded into a desired shape and then irradiated with active energy rays to cure the curable resin composition.
  • the active energy ray examples include ultraviolet rays and electron beams.
  • the irradiation amount (integrated light amount) of the active energy ray is, for example, 10 ⁇ 10 -3 J / cm 2 or more, preferably 15 ⁇ 10 -3 J / cm 2 or more, and for example, 6 J / cm 2 or less, preferably. Is 5 J / cm 2 or less.
  • the curing by the active energy ray may be a batch curing or a divisional curing. That is, the curable resin composition may be cured by irradiating the active energy ray once, or the curable resin composition may be cured by irradiating the curable resin composition twice or more.
  • a molded product (cured product) made of a curable resin composition can be obtained.
  • the curing conditions are not particularly limited, but the temperature conditions are, for example, 10 to 150 ° C, preferably 10 to 100 ° C.
  • the humidity condition is, for example, 20 to 80%, preferably 30 to 70%.
  • the curing time is, for example, 0.5 to 10 days, preferably 1 to 7 days.
  • a molded product (cured product) made of a curable resin composition can be obtained.
  • the obtained molded product (cured product) is obtained by using the above-mentioned active energy ray-curable polyurethane resin having a relatively low viscosity before curing, it is excellent in productivity, and also has mechanical strength, weather resistance and hysteresis. Excellent characteristics.
  • the isocyanate group-terminated prepolymer was synthesized according to the formulations shown in Tables 1 to 5.
  • the polyol component was put into a glass separable flask under a nitrogen atmosphere, and then the polyisocyanate component was added to Tables 1 to 5.
  • the mixture was charged at an equivalent ratio (NCO / OH), and then the temperature was raised to 80 ° C.
  • stannoct tin (II ethylcaproate)
  • a urethanization catalyst was added to the mixture at a ratio of 10 ppm and reacted for 4 hours, whereby the isocyanate group-terminated prepolymer and unreacted poly were added.
  • a crude product containing an isocyanate component was obtained.
  • the crude product containing the isocyanate group-terminated prepolymer is set in a Smith-type thin film distillation apparatus, and the isocyanate group-terminated prepolymer and the unreacted polyisocyanate component are separated under the following conditions to purify the isocyanate group-terminated prepolymer. bottom.
  • Purified isocyanate group-terminated prepolymers (prepolymer purified products) are placed in separable flasks in the air (under dry air) according to the formulations shown in Tables 1 to 5, and then hydroxy group-containing unsaturated compounds are added.
  • the equivalent ratio (NCO / OH) of the isocyanate group of the isocyanate group-terminated prepolymer to the hydroxy group of the hydroxy group-containing unsaturated compound was 1.0, and the temperature was raised to 70 ° C.
  • stanoct tin (II ethylhexanoate) as a urethanization catalyst was added to the isocyanate group-terminated prepolymer at a ratio of 200 ppm, and the reaction was carried out for 4 hours until the isocyanate group concentration became 0.01% or less. I let you.
  • the viscosity of the obtained active energy ray-curable polyurethane resin at 25 ° C. was measured on an E-type viscometer (TV25 type viscometer manufactured by Toki Sangyo Co., Ltd., rotor angle: 1 ° 34', rotor radius 2.4 cm). was measured.
  • the active energy ray-curable polyurethane resin, the radical reactive diluent, the photopolymerization initiator, and the additive were put into a brown bottle so as to have a total weight of 100 g.
  • the mixture was stirred at 60 ° C.
  • the viscosity of the obtained curable resin composition at 25 ° C. was measured with an E-type viscometer (TV25 type viscometer manufactured by Toki Sangyo Co., Ltd., rotor angle: 1 ° 34', rotor radius 2.4 cm). bottom.
  • the active energy ray-curable polyurethane resins of Comparative Examples 3, 4 and 6 had high viscosities, they could not be mixed with the radical reactive diluent, and the curable resin composition could not be prepared.
  • the curable resin composition was cured by the methods shown in Tables 1 to 5 to obtain a molded product (cured product).
  • 26 g of the curable resin composition was poured into a polypropylene mold (100 ⁇ 100 ⁇ 20 mm). Then, under a nitrogen atmosphere, one surface of the curable resin composition was irradiated with UV for 3 minutes with a UV irradiator (M UVBA-0.3 ⁇ 0.4 ⁇ 0.5 UV405-J manufactured by Aitec System Co., Ltd.). Then, the cured product of the curable resin composition was taken out from the mold, and the other surface was further irradiated with UV for 3 minutes.
  • a UV irradiator M UVBA-0.3 ⁇ 0.4 ⁇ 0.5 UV405-J manufactured by Aitec System Co., Ltd.
  • ⁇ 26 g of the curable resin composition was poured into a polypropylene mold (100 ⁇ 100 ⁇ 20 mm). Then, with a high-pressure mercury lamp (high-pressure mercury lamp manufactured by Heleus (custom product)), only one surface of the curable resin composition was irradiated with active energy rays.
  • a high-pressure mercury lamp high-pressure mercury lamp manufactured by Heleus (custom product)
  • the illuminance was set to 630 mW / cm 2 (measured with an illuminance meter (UVICURE Plus II (UVA 320 to 390 nm) manufactured by EIT), and the irradiation time was adjusted so that the integrated light intensity was 4 J / cm 2.
  • UVICURE Plus II UVA 320 to 390 nm
  • the curable resin composition is cured by irradiation with active energy rays (first curing (precure)), and layers having a film thickness of 100 ⁇ m are laminated to 100.
  • a plate of ⁇ 50 ⁇ 20 mm was obtained.
  • the output of the active energy ray is 0.6 mW / cm 2 (measured with a luminometer (measured with a 3664 optical power meter manufactured by Hioki Electric Co., Ltd. (measurement wavelength 405 nm)), and the irradiation time is 90 for the first 10 layers. Seconds, 40 seconds for subsequent layers.
  • a high-pressure mercury lamp (high-pressure mercury lamp manufactured by Heleus (custom product)) was used to irradiate only one surface of the above plate with active energy rays.
  • the illuminance was set to 630 mW / cm 2 (measured with an illuminance meter (UVICURE Plus II (UVA 320 to 390 nm) manufactured by EIT), and the irradiation time was adjusted so that the integrated light intensity was 4 J / cm 2.
  • UVICURE Plus II UVA 320 to 390 nm
  • the tensile strength (MPa) and elongation at break (%) of the molded product were measured according to the description of JIS K-6251 (2010).
  • the tear strength (N / mm) of the molded product was measured according to the description of JIS K-6252 (2007).
  • the molded product was subjected to a light resistance test under the following conditions, and the b value difference ( ⁇ b value) before and after the test was measured with a color difference meter (Color Ace MODEL TC-1 manufactured by Tokyo Denshoku Co., Ltd.).
  • Hysteresis (%) of the molded product was measured according to JIS K7312 (1996). The measurement conditions are shown below.
  • Test piece shape JIS K73121 (1996) No. 3 type
  • 1,3-H6XDI 1,3-Hydrogenated xylylene diisocyanate, manufactured by Mitsui Chemicals
  • IPDI Isophorone diisocyanate, trade name VESTANAT IPDI, made by Evonik
  • H12MDI 4,4'- methylene bis (cyclohexyl isocyanate), the trade name VESTANAT H 12 MDI, manufactured by Evonik
  • TDI Mixture of 2,4-tolylene diisocyanate (80%) and 2,6-toluene diisocyanate (20%), trade name TDI-80, manufactured by Mitsui Chemicals
  • ED-37A Polyoxyethylene / polyoxypropylene copolymer, average number of functional groups 2, number average molecular weight 3000, degree of unsaturation 0.06 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • D2000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 2000, degree of unsaturation 0.03 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • D3000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 3000, degree of unsaturation 0.05 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • DL4000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 4000, degree of unsaturation 0.01 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • DL6000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 6000, degree of unsaturation 0.01 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • DL10000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 10000, degree of unsaturation 0.01 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • DL12000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 12000, degree of unsaturation 0.02 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • DL13000 Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 13000, degree of unsaturation 0.02 meq. / G, made of Mitsui Chemicals SKC polyurethane
  • IBXA Radical reactive diluent, isobornyl acrylate, reactive compound with alicyclic hydrocarbon skeleton, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Viscoat 200 Radical reactive diluent, cyclic trimethylolpropane formal acrylate (also known as (5-ethyl-1,3-dioxane-5-yl) methylacrylate), reactive compound with alicyclic ether skeleton, Osaka Organic Made by Chemical Industry
  • AOMA Radical reactive diluent, methyl 2- (allyloxymethyl) acrylate, compound with (meth) acryloyl group and vinyl group, manufactured by Nippon Shokubai
  • FA-513AS Radical reactive diluent, dicyclopentanyl acrylate, reactive compound having an alicyclic hydrocarbon skeleton, manufactured by Hitachi Kasei
  • TBCHA Radical-reactive diluent, 4-tert-butylcyclohexyl acrylate, reactive compound with alicyclic hydrocarbon skeleton, manufactured by KJ Chemicals
  • DEAA Radical reactive diluent, N, N-diethylacrylamide, reactive compound with amide skeleton, manufactured by KJ Chemicals
  • TMPTA Radical reactive diluent, trimethylolpropane triacrylate, poly (meth) acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • TPO Photopolymerization initiator, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Irgacure819 Photopolymerization initiator, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, made by BASF
  • Irganox 245 Hindered phenolic antioxidant: Ethylene bis (oxyethylene) bis- (3- (5-tert-butyl-4-hydroxy-m-trill) propionate, made by BASF
  • Example 17 In Example 8, instead of the biscoat 200 in the above table, MEDOL-10 (radical reactive diluent, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate, alicyclic ether A reactive compound having a skeleton, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was blended. As a result, the ⁇ b value of the molded product was improved to 0.7.
  • MEDOL-10 radical reactive diluent, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate, alicyclic ether A reactive compound having a skeleton, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Example 18 In Example 1, AOMA was blended in place of the biscoat 200 in the above table. Further, instead of AOMA in the above table, MEDOL-10 was blended. As a result, the breaking strength of the molded product was improved to 9.6 MPa.
  • Example 19 In Example 1, AOMA was blended in place of the biscoat 200 in the above table. Further, instead of AOMA in the above table, 4HBA (radical reactive diluent, 4-hydroxybutyl acrylate, hydroxy group-containing (meth) acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was blended. As a result, the tear strength of the molded product was improved to 36 N / mm.
  • 4HBA radio reactive diluent, 4-hydroxybutyl acrylate, hydroxy group-containing (meth) acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Example 20 In Example 8, instead of the biscoat 200 in the above table, ACMO-LI (radical reactive diluent, acryloylmorpholine, reactive compound having an alicyclic ether skeleton, manufactured by KJ Chemicals).
  • ACMO-LI radical reactive diluent, acryloylmorpholine, reactive compound having an alicyclic ether skeleton, manufactured by KJ Chemicals.
  • the active energy ray-curable polyurethane resin, the curable resin composition, and the active energy ray-curable polyurethane resin of the present invention are preferably used in, for example, adhesives, coating agents, elastomers and molding materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

An active energy ray–curable polyurethane resin that includes a reaction product of a resin raw material that includes an isocyanate group–terminated prepolymer and a hydroxy group–containing unsaturated compound, the isocyanate group–terminated prepolymer including a reaction product of a prepolymer raw material that includes a polyisocyanate component that includes a xylylene diisocyanate and/or a hydrogenated xylylene diisocyanate and a polyol component that includes a polyoxyalkylene polyol that has a number average molecular weight of 6000–12000, and the viscosity of the active energy ray–curable polyurethane resin at 25°C being 20000–40000 mPa·s.

Description

活性エネルギー線硬化性ポリウレタン樹脂、硬化性樹脂組成物、および、活性エネルギー線硬化性ポリウレタン樹脂の製造方法A method for producing an active energy ray-curable polyurethane resin, a curable resin composition, and an active energy ray-curable polyurethane resin.
 本発明は、活性エネルギー線硬化性ポリウレタン樹脂、硬化性樹脂組成物、および、活性エネルギー線硬化性ポリウレタン樹脂に関する。 The present invention relates to an active energy ray-curable polyurethane resin, a curable resin composition, and an active energy ray-curable polyurethane resin.
 活性エネルギー線の照射により硬化するポリウレタン樹脂(以下、活性エネルギー線硬化性ポリウレタン樹脂)は、エチレン性不飽和基を含有するポリウレタン樹脂であって、接着剤、コーティング剤、エラストマーなどの各種産業分野において、広範に用いられている。 Polyurethane resin that is cured by irradiation with active energy rays (hereinafter referred to as active energy ray-curable polyurethane resin) is a polyurethane resin containing an ethylenically unsaturated group, and is used in various industrial fields such as adhesives, coating agents, and elastomers. , Widely used.
 活性エネルギー線硬化性ポリウレタン樹脂として、より具体的には、2,4-トリレンジイソシアネートと、数平均分子量1000のポリオキシプロピレングリコールとを反応させ、次いで、得られた反応液に、2,4-トリレンジイソシアネートおよび2-ヒドロキシエチルアクリレートとを添加し、さらに反応させて得られるポリウレタン(メタ)アクリレートオリゴマーが、提案されている。また、得られたポリウレタン(メタ)アクリレートを、ビスフェノールA・エチレンオキシド付加体のジアクリレートなどのエチレン性不飽和化合物と混合して用いることも、提案されている(例えば、特許文献1(合成例1および実施例1)参照。)。 More specifically, as the active energy ray-curable polyurethane resin, 2,4-tolylene diisocyanate is reacted with polyoxypropylene glycol having a number average molecular weight of 1000, and then 2,4 is added to the obtained reaction solution. -A polyurethane (meth) acrylate oligomer obtained by adding tolylene diisocyanate and 2-hydroxyethyl acrylate and further reacting them has been proposed. It has also been proposed to mix the obtained polyurethane (meth) acrylate with an ethylenically unsaturated compound such as a diacrylate of a bisphenol A / ethylene oxide adduct (for example, Patent Document 1 (Synthesis Example 1)). And Example 1).).
特開平11-315265号公報Japanese Unexamined Patent Publication No. 11-315265
 一方、活性エネルギー線硬化性ポリウレタン樹脂としては、硬化後の機械強度、耐候性およびヒステリシス特性のさらなる向上が要求されている。 On the other hand, as an active energy ray-curable polyurethane resin, further improvement in mechanical strength, weather resistance and hysteresis characteristics after curing is required.
 さらに、近年では、活性エネルギー線硬化性ポリウレタン樹脂を、3Dプリンターにおける成形樹脂として使用することが検討されている。 Furthermore, in recent years, it has been studied to use an active energy ray-curable polyurethane resin as a molding resin in a 3D printer.
 3Dプリンター用の成形樹脂には、硬化前の粘度が比較的低いことが要求され、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れることが要求される。しかし、上記のポリウレタン(メタ)アクリレートオリゴマーでは、これらの要求を充分に満足できない場合がある。 The molding resin for a 3D printer is required to have a relatively low viscosity before curing, and is required to have excellent mechanical strength, weather resistance and hysteresis characteristics after curing. However, the above polyurethane (meth) acrylate oligomers may not fully satisfy these requirements.
 本発明は、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる活性エネルギー線硬化性ポリウレタン樹脂、硬化性樹脂組成物、および、活性エネルギー線硬化性ポリウレタン樹脂である。 According to the present invention, an active energy ray-curable polyurethane resin, a curable resin composition, and an active energy ray-curable polyurethane having a relatively low viscosity before curing and excellent mechanical strength, weather resistance, and hysteresis characteristics after curing. It is a resin.
 本発明[1]は、イソシアネート基末端プレポリマーと、ヒドロキシ基含有不飽和化合物とを含む樹脂原料の反応生成物を含む活性エネルギー線硬化性ポリウレタン樹脂であり、前記イソシアネート基末端プレポリマーは、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含むポリイソシアネート成分と、数平均分子量6000以上12000以下のポリオキシアルキレンポリオールを含むポリオール成分とを含むプレポリマー原料の反応生成物を含み、前記活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度が、2万mPa・s以上4万mPa・s以下である、活性エネルギー線硬化性ポリウレタン樹脂を含んでいる。 The present invention [1] is an active energy ray-curable polyurethane resin containing a reaction product of a resin raw material containing an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound, and the isocyanate group-terminated prepolymer is xyl. The active energy ray contains a reaction product of a prepolymer raw material containing a polyisocyanate component containing a range isocyanate and / or a hydrogenated xylylene diisocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight of 6000 or more and 12000 or less. It contains an active energy ray-curable polyurethane resin having a viscosity of the curable polyurethane resin at 25 ° C. of 20,000 mPa · s or more and 40,000 mPa · s or less.
 本発明[2]は、上記[1]に記載の活性エネルギー線硬化性ポリウレタン樹脂と、ラジカル反応性希釈剤とを含有する、硬化性樹脂組成物を含んでいる。 The present invention [2] includes a curable resin composition containing the active energy ray-curable polyurethane resin according to the above [1] and a radically reactive diluent.
 本発明[3]は、前記ラジカル反応性希釈剤が、脂環式エーテル骨格を有する(メタ)アクリレートを含有する、上記[2]に記載の硬化性樹脂組成物を含んでいる。 The present invention [3] contains the curable resin composition according to the above [2], wherein the radical reactive diluent contains a (meth) acrylate having an alicyclic ether skeleton.
 本発明[4]は、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含むポリイソシアネート成分と、数平均分子量6000以上12000以下のポリオキシアルキレンポリオールを含むポリオール成分とを含むプレポリマー原料を反応させ、イソシアネート基末端プレポリマーを得る工程と、前記イソシアネート基末端プレポリマーを、蒸留により精製する工程と、精製された前記イソシアネート基末端プレポリマーとヒドロキシ基含有不飽和化合物とを含む樹脂原料を反応させ、25℃における粘度が2万mPa・s以上4万mPa・s以下の活性エネルギー線硬化性ポリウレタン樹脂を得る工程とを備える、活性エネルギー線硬化性ポリウレタン樹脂の製造方法を含んでいる。 In the present invention [4], a prepolymer raw material containing a polyisocyanate component containing xylylene diisocyanate and / or hydrogenated xylylene diisocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight of 6000 or more and 12000 or less is reacted. , The step of obtaining the isocyanate group-terminated prepolymer, the step of purifying the isocyanate group-terminated prepolymer by distillation, and reacting the purified isocyanate group-terminated prepolymer with a resin raw material containing a hydroxy group-containing unsaturated compound. Includes a method for producing an active energy ray-curable polyurethane resin, which comprises a step of obtaining an active energy ray-curable polyurethane resin having a viscosity at 25 ° C. of 20,000 mPa · s or more and 40,000 mPa · s or less.
 本発明の活性エネルギー線硬化性ポリウレタン樹脂は、イソシアネート基末端プレポリマーと、ヒドロキシ基含有不飽和化合物との反応生成物を含み、イソシアネート基末端プレポリマーが、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含むポリイソシアネート成分と、数平均分子量が所定範囲のポリオキシアルキレンポリオールを含むポリオール成分との反応生成物を含み、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度が、2万mPa・s以上4万mPa・s以下である。 The active energy ray-curable polyurethane resin of the present invention contains a reaction product of an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound, and the isocyanate group-terminated prepolymer contains xylylene diisocyanate and / or hydrogenated xylylene. A reaction product of a polyisocyanate component containing isocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight in a predetermined range is contained, and the viscosity of an active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa · s. It is 40,000 mPa · s or less.
 そのため、本発明の活性エネルギー線硬化性ポリウレタン樹脂は、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる。 Therefore, the active energy ray-curable polyurethane resin of the present invention has a relatively low viscosity before curing, and is excellent in mechanical strength, weather resistance, and hysteresis characteristics after curing.
 また、本発明の硬化性樹脂組成物は、上記の活性エネルギー線硬化性ポリウレタン樹脂を含むため、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる。 Further, since the curable resin composition of the present invention contains the above-mentioned active energy ray-curable polyurethane resin, the viscosity before curing is relatively low, and the mechanical strength, weather resistance and hysteresis characteristics after curing are excellent.
 また、本発明の活性エネルギー線硬化性ポリウレタン樹脂によれば、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる活性エネルギー線硬化性ポリウレタン樹脂を、効率よく製造できる。 Further, according to the active energy ray-curable polyurethane resin of the present invention, an active energy ray-curable polyurethane resin having a relatively low viscosity before curing and excellent mechanical strength, weather resistance and hysteresis characteristics after curing can be used efficiently. Can be manufactured well.
 本発明の活性エネルギー線硬化性ポリウレタン樹脂は、活性エネルギー線(後述)の照射により硬化するポリウレタン樹脂である。 The active energy ray-curable polyurethane resin of the present invention is a polyurethane resin that is cured by irradiation with active energy rays (described later).
 活性エネルギー線硬化性ポリウレタン樹脂は、樹脂原料の反応生成物を含む。 The active energy ray-curable polyurethane resin contains a reaction product of a resin raw material.
 樹脂原料は、イソシアネート基末端プレポリマーと、ヒドロキシ基含有不飽和化合物とを含んでいる。 The resin raw material contains an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound.
 イソシアネート基末端プレポリマーは、分子末端に2つ以上の遊離のイソシアネート基を有するポリウレタンプレポリマーであり、プレポリマー原料の反応生成物を含む。 The isocyanate group-terminated prepolymer is a polyurethane prepolymer having two or more free isocyanate groups at the molecular ends, and contains a reaction product of a prepolymer raw material.
 プレポリマー原料は、ポリイソシアネート成分と、ポリオール成分とを含んでいる。 The prepolymer raw material contains a polyisocyanate component and a polyol component.
 ポリイソシアネート成分は、必須成分として、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含んでいる。 The polyisocyanate component contains xylylene diisocyanate and / or hydrogenated xylylene diisocyanate as essential components.
 キシリレンジイソシアネート(XDI)としては、1,2-キシリレンジイソシアネート(o-XDI)、1,3-キシリレンジイソシアネート(m-XDI)、1,4-キシリレンジイソシアネート(p-XDI)が、構造異性体として挙げられる。 As the xylylene diisocyanate (XDI), 1,2-xylylene diisocyanate (o-XDI), 1,3-xylylene diisocyanate (m-XDI), and 1,4-xylylene diisocyanate (p-XDI) have a structure. Listed as an isomer.
 これらキシリレンジイソシアネートは、単独使用または2種類以上併用することができる。キシリレンジイソシアネートとして、好ましくは、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、より好ましくは、1,3-キシリレンジイソシアネートが挙げられる。 These xylylene diisocyanates can be used alone or in combination of two or more. Examples of the xylylene diisocyanate include 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, and more preferably 1,3-xylylene diisocyanate.
 水添キシリレンジイソシアネート(別名:ビス(イソシアナトメチル)シクロヘキサン)(HXDI)としては、1,2-水添キシリレンジイソシアネート(1,2-ビス(イソシアナトメチル)シクロヘキサン、1,2-HXDI)、1,3-水添キシリレンジイソシアネート(1,3-ビス(イソシアナトメチル)シクロヘキサン、1,3-HXDI)、1,4-水添キシリレンジイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサン、1,4-HXDI)が、構造異性体として挙げられる。 As hydrogenated xylylene diisocyanate (also known as bis (isocyanatomethyl) cyclohexane) (H 6 XDI), 1,2-hydrogenated xylylene diisocyanate (1,2-bis (isocyanatomethyl) cyclohexane, 1,2- H 6 XDI), 1,3-hydrogenated xylylene diisocyanate (1,3-bis (isocyanatomethyl) cyclohexane, 1,3-H 6 XDI), 1,4-hydrogenated xylylene diisocyanate (1,4- Bis (isocyanatomethyl) cyclohexane, 1,4-H 6 XDI) can be mentioned as structural isomers.
 これら水添キシリレンジイソシアネートは、単独使用または2種類以上併用することができる。水添キシリレンジイソシアネートとして、好ましくは、1,3-水添キシリレンジイソシアネート、1,4-水添キシリレンジイソシアネート、より好ましくは、1,3-水添キシリレンジイソシアネートが挙げられる。 These hydrogenated xylylene diisocyanates can be used alone or in combination of two or more. Examples of the hydrogenated xylylene diisocyanate include 1,3-hydrogenated xylylene diisocyanate, 1,4-hydrogenated xylylene diisocyanate, and more preferably 1,3-hydrogenated xylylene diisocyanate.
 また、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートとしては、上記した単量体の他、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートの誘導体が含まれる。 The xylylene diisocyanate and / or hydrogenated xylylene diisocyanate includes derivatives of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate in addition to the above-mentioned monomers.
 キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートの誘導体としては、例えば、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートの多量体(例えば、2量体、3量体(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体)、5量体、7量体など)、アロファネート変性体(例えば、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートと、公知の1価アルコールおよび/または公知の2価アルコールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートと公知の3価以上のアルコールとの反応より生成するポリオール変性体(アルコール付加体)など)、ビウレット変性体(例えば、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートと、水やアミン類との反応により生成するビウレット変性体など)、ウレア変性体(例えば、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートとジアミンとの反応により生成するウレア変性体など)、オキサジアジントリオン変性体(例えば、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体など)、ウレトジオン変性体、ウレトンイミン変性体などが挙げられる。 Examples of the xylylene diisocyanate and / or a derivative of the hydrogenated xylylene diisocyanate include a multimer (for example, a dimer and / or a trimer of an isocyanurate) of the xylylene diisocyanate and / or a hydrogenated xylylene diisocyanate. Iminooxadiazinedione modified product), pentameric, heptameric, etc.), allophanate modified product (for example, xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, known monovalent alcohol and / or known divalent Alofanate modified product produced by reaction with alcohol), polyol modified product (for example, polyol modified product produced by reaction of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate with known trivalent or higher valent alcohol (alcohol addition) Body), etc.), biuret modified products (eg, xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, biuret modified products produced by reaction with water or amines), urea modified products (eg, xylylene diisocyanate and / Or a urea modified product produced by the reaction of hydrogenated xylylene diisocyanate with diamine), an oxadiazine trione modified product (for example, produced by the reaction of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate with carbon dioxide gas). Oxadiazine trione, etc.), carbodiimide modified product (carbodiimide modified product produced by decarbonation condensation reaction of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, etc.), uretdione modified product, uretonimine modified product, and the like.
 これら誘導体は、単独使用または2種類以上併用することができる。 These derivatives can be used alone or in combination of two or more.
 キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートとして、好ましくは、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートの単量体が挙げられ、より好ましくは、水添キシリレンジイソシアネートが挙げられ、さらに好ましくは、1,3-水添キシリレンジイソシアネートが挙げられる。 Examples of the xylylene diisocyanate and / or hydrogenated xylylene diisocyanate preferably include a monomer of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, and more preferably hydrogenated xylylene diisocyanate. Examples include 1,3-hydrogenated xylylene diisocyanate.
 また、ポリイソシアネート成分は、任意成分として、その他のポリイソシアネート(キシリレンジイソシアネートおよび水添キシリレンジイソシアネートを除くポリイソシアネート)を含有することができる。 Further, the polyisocyanate component can contain other polyisocyanates (polyisocyanate excluding xylylene diisocyanate and hydrogenated xylylene diisocyanate) as an optional component.
 その他のポリイソシアネートとしては、例えば、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート(キシリレンジイソシアネートを除く。)、脂肪族ポリイソシアネート、脂環族ポリイソシアネート(水添キシリレンジイソシアネートを除く。)などのポリイソシアネートなどが挙げられる。 Examples of other polyisocyanates include aromatic polyisocyanates, aromatic aliphatic polyisocyanates (excluding xylylene diisocyanates), aliphatic polyisocyanates, and alicyclic polyisocyanates (excluding hydrogenated xylylene diisocyanates). Examples include polyisocyanate.
 芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4’-、2,4’-または2,2’-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4’-トルイジンジイソシアネート(TODI)、4,4’-ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネートなどが挙げられる。 Examples of the aromatic polyisocyanate include tolylene diisocyanate (2,4- or 2,6-toluene diisocyanate or a mixture thereof) (TDI), phenylenediisocyanate (m-, p-phenylenediisocyanate or a mixture thereof), 4, 4'-Diphenyldiisocyanate, 1,5-naphthalenediocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-or 2,2'-diphenylmethane diisocyanate or a mixture thereof) (MDI), Examples thereof include aromatic diisocyanates such as 4,4'-toluene diisocyanate (TODI) and 4,4'-diphenyl ether diisocyanate.
 芳香脂肪族ポリイソシアネート(キシリレンジイソシアネートを除く。)としては、例えば、テトラメチルキシリレンジイソシアネート(1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼンなどの芳香脂肪族ジイソシアネートなどが挙げられる。 Examples of the aromatic aliphatic polyisocyanate (excluding xylylene diisocyanate) include tetramethylxylene diisocyanate (1,3- or 1,4-tetramethylxylene diisocyanate or a mixture thereof) (TMXDI), ω, ω'. -Diisocyanate-1,4-diisocyanate and other aromatic aliphatic diisocyanates can be mentioned.
 脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、1,5-ペンタメチレンジイソシアネート(PDI)、1,6-ヘキサメチレンジイソシアネート(別名:ヘキサメチレンジイソシアネート)(HDI)、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプロエートなどの脂肪族ジイソシアネートなどが挙げられる。 Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), and 1 , 5-Pentamethylene diisocyanate (PDI), 1,6-hexamethylene diisocyanate (also known as hexamethylene diisocyanate) (HDI), 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6- Examples thereof include aliphatic diisocyanates such as diisocyanate methyl caproate.
 脂環族ポリイソシアネート(水添キシリレンジイソシアネートを除く。)としては、例えば、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(別名:イソホロンジイソシアネート)(IPDI)、メチレンビス(シクロヘキシルイソシアネート)(別名:ビス(イソシアナトシクロヘキシル)メタン)(4,4’-、2,4’-または2,2’-メチレンビス(シクロヘキシルイソシアネート)これらのTrans,Trans-体、Trans,Cis-体、Cis,Cis-体、もしくはその混合物)(H12MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート)、ノルボルナンジイソシアネート(各種異性体もしくはその混合物)(NBDI)、などの脂環族ジイソシアネートなどが挙げられる。好ましくは、4,4’-メチレンビス(シクロヘキシルイソシアネート)が挙げられる。 Examples of the alicyclic polyisocyanate (excluding hydrogenated xylylene diisocyanate) include 1,3-cyclopentanediisocyanate, 1,3-cyclopentenediisocyanate, and cyclohexanediisocyanate (1,4-cyclohexanediisocyanate, 1,3-cyclohexane). Diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanate (also known as isophorone diisocyanate) (IPDI), methylenebis (cyclohexylisocyanate) (also known as bis (isocyanatocyclohexyl) methane) (4,4'- , 2,4'-or 2,2'-methylenebis (cyclohexylisocyanate) These Trans, Trans-form, Trans, Cis-form, Cis, Cis-form, or a mixture thereof) (H 12 MDI), Methylcyclohexanediisocyanate Examples thereof include alicyclic diisocyanates such as (methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), norbornandiisocyanate (various isomers or mixtures thereof) (NBDI). Preferably, 4,4'-methylenebis (cyclohexylisocyanate) is used.
 その他のポリイソシアネートには、上記と同種の誘導体が含まれる。 Other polyisocyanates include derivatives of the same type as above.
 その他のポリイソシアネートは、単独使用または2種類以上併用することができる。 Other polyisocyanates can be used alone or in combination of two or more.
 なお、その他のポリイソシアネート(キシリレンジイソシアネートおよび水添キシリレンジイソシアネートを除くポリイソシアネート)が配合される場合、その配合割合は、本発明の優れた効果を損なわない範囲において、適宜選択される。 When other polyisocyanates (polyisocyanates excluding xylylene diisocyanate and hydrogenated xylylene diisocyanate) are blended, the blending ratio thereof is appropriately selected as long as the excellent effects of the present invention are not impaired.
 より具体的には、キシリレンジイソシアネートおよび水添キシリレンジイソシアネート(併用される場合にはそれらの総量)の含有割合が、ポリイソシアネート成分の総量に対して、例えば、50質量%以上、好ましくは、60質量%以上、より好ましくは、80質量%以上であり、通常、100質量%以下である。 More specifically, the content ratio of xylylene diisocyanate and hydrogenated xylylene diisocyanate (the total amount thereof when used in combination) is, for example, 50% by mass or more, preferably 50% by mass or more, based on the total amount of the polyisocyanate component. It is 60% by mass or more, more preferably 80% by mass or more, and usually 100% by mass or less.
 ポリイソシアネート成分は、好ましくは、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートからなり、より好ましくは、水添キシリレンジイソシアネートからなる。 The polyisocyanate component is preferably composed of xylylene diisocyanate and / or hydrogenated xylylene diisocyanate, and more preferably hydrogenated xylylene diisocyanate.
 ポリオール成分は、必須成分として、ポリオキシアルキレンポリオールを含有する。 The polyol component contains a polyoxyalkylene polyol as an essential component.
 ポリオキシアルキレンポリオールは、例えば、低分子量ポリオールまたは低分子量ポリアミンを開始剤とする、アルキレンオキサイドの付加重合物である。 The polyoxyalkylene polyol is, for example, an addition polymer of alkylene oxide using a low molecular weight polyol or a low molecular weight polyamine as an initiator.
 低分子量ポリオールは、ヒドロキシ基を2つ以上有する数平均分子量40以上、300未満の化合物であって、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどが挙げられる。 The low molecular weight polyol is a compound having two or more hydroxy groups and having a number average molecular weight of 40 or more and less than 300, and is, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1, 3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethylpentanediol , 3,3-Dimethylol heptane, alcohol (C7-20) diol, 1,3- or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanediol and mixtures thereof, Dihydric alcohols such as hydride bisphenol A, 1,4-dihydroxy-2-butene, 2,6-dimethyl-1-octene-3,8-diol, bisphenol A, diethylene glycol, triethylene glycol, dipropylene glycol, for example. , Trihydric alcohols such as glycerin, trimethylolpropane, triisopropanolamine, eg tetrahydric alcohols such as tetramethylolmethane (pentaerythritol), diglycerin, eg pentahydric alcohols such as xylitol, eg sorbitol, mannitol, alitol , Hexyl alcohols such as iditol, darsitol, altritor, inositol, dipentaerythritol, for example, heptahydric alcohols such as propylene glycol, for example, octahydric alcohols such as sucrose.
 低分子量ポリアミンとしては、例えば、エチレンジアミン、1,3-プロパンジアミン、1,3-または1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、1,4-シクロヘキサンジアミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン(イソホロンジアミン)、4,4’-ジシクロヘキシルメタンジアミン、2,5(2,6)-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、1,3-ビス(アミノメチル)シクロヘキサン、ヒドラジン、o、mまたはp-トリレンジアミン(TDA、OTD)などの低分子量ジアミン、例えば、ジエチレントリアミンなどの低分子量トリアミン、例えば、トリエチレンテトラミン、テトラエチレンペンタミンなどのアミノ基を4個以上有する低分子量ポリアミンなどが挙げられる。 Examples of low molecular weight polyamines include ethylenediamine, 1,3-propanediamine, 1,3- or 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-cyclohexanediamine, and 3-aminomethyl-3. , 5,5-trimethylcyclohexylamine (isophoronediamine), 4,4'-dicyclohexylmethanediamine, 2,5 (2,6) -bis (aminomethyl) bicyclo [2.2.1] heptane, 1,3- Low molecular weight diamines such as bis (aminomethyl) cyclohexane, hydrazine, o, m or p-tolylene diamine (TDA, OTD), such as low molecular weight triamines such as diethylenetriamine, such as triethylenetetramine, tetraethylenepentamine, etc. Examples thereof include low molecular weight polyamines having 4 or more amino groups.
 これら開始剤は、単独使用または2種類以上併用することができる。開始剤として、好ましくは、低分子量ポリオールが挙げられる。 These initiators can be used alone or in combination of two or more. Preferred examples of the initiator include low molecular weight polyols.
 アルキレンオキサイドとしては、例えば、エチレンオキサイド(IUPAC名:オキシラン)、プロピレンオキサイド(1,2-プロピレンオキサイド(IUPAC名:メチルオキシラン))、トリエチレンオキサイド(1,3-プロピレンオキサイド)、ブチレンオキサイド(1,2-ブチレンオキサイド(IUPAC名:エチルオキシラン)、2,3-ブチレンオキサイド(IUPAC名:2,3-ジメチルオキシラン))などが挙げられる。また、これらアルキレンオキサイドは、単独使用または2種類以上併用することができる。また、これらのうち、好ましくは、エチレンオキサイド、プロピレンオキサイドが挙げられ、より好ましくは、プロピレンオキサイドが挙げられる。 Examples of the alkylene oxide include ethylene oxide (IUPAC name: oxylan), propylene oxide (1,2-propylene oxide (IUPAC name: methyloxylan)), triethylene oxide (1,3-propylene oxide), butylene oxide (1). , 2-butylene oxide (IUPAC name: ethyloxylane), 2,3-butylene oxide (IUPAC name: 2,3-dimethyloxylan)) and the like. In addition, these alkylene oxides can be used alone or in combination of two or more. Of these, ethylene oxide and propylene oxide are preferable, and propylene oxide is more preferable.
 このようなポリオキシアルキレンポリオールとして、具体的には、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシトリエチレングリコール、ポリオキシエチレン・ポリオキシプロピレングリコール(ランダムまたはブロック共重合体)などの平均官能基数2のポリアルキレンオキサイド、例えば、ポリオキシエチレントリオール、ポリオキシプロピレントリオール、ポリオキシトリエチレントリオール、ポリオキシエチレン・ポリオキシプロピレントリオール(ランダムまたはブロック共重合体)などの平均官能基数3のポリアルキレンオキサイドなどが挙げられる。 Specific examples of such polyoxyalkylene polyols include average functionalities such as polyoxyethylene glycol, polyoxypropylene glycol, polyoxytriethylene glycol, and polyoxyethylene / polyoxypropylene glycol (random or block copolymers). Polyalkylene oxides having 2 groups, for example, polyalkylenes having 3 average functional groups such as polyoxyethylene triol, polyoxypropylene triol, polyoxytriethylene triol, and polyoxyethylene / polyoxypropylene triol (random or block copolymer). Examples include oxides.
 これらポリオキシアルキレンポリオールは、単独使用または2種類以上併用することができる。 These polyoxyalkylene polyols can be used alone or in combination of two or more.
 ポリオキシアルキレンポリオールとして、好ましくは、ポリオキシプロピレンポリオールが挙げられ、より好ましくは、ポリオキシプロピレングリコールが挙げられる。 As the polyoxyalkylene polyol, preferably, a polyoxypropylene polyol can be mentioned, and more preferably, a polyoxypropylene glycol can be mentioned.
 ポリオキシアルキレンポリオールの数平均分子量は、機械強度、耐候性およびヒステリシス特性の観点から、6000以上、好ましくは、7000以上、より好ましくは、8000以上、さらに好ましくは、9000以上、とりわけ好ましくは、10000以上であり、12000以下、好ましくは、11500以下、より好ましくは、11000以下、さらに好ましくは、10500以下である。 The number average molecular weight of the polyoxyalkylene polyol is 6000 or more, preferably 7000 or more, more preferably 8000 or more, still more preferably 9000 or more, and particularly preferably 10000, from the viewpoint of mechanical strength, weather resistance and hysteresis characteristics. The above is 12000 or less, preferably 11500 or less, more preferably 11000 or less, still more preferably 10500 or less.
 ポリオキシアルキレンポリオールの平均官能基数は、例えば、1.5以上、好ましくは、2以上であり、例えば、3以下、好ましくは、2.5以下であり、さらに好ましくは、2.0である。 The average number of functional groups of the polyoxyalkylene polyol is, for example, 1.5 or more, preferably 2 or more, for example, 3 or less, preferably 2.5 or less, and more preferably 2.0.
 また、ポリオキシアルキレンポリオールは、例えば、水酸化物触媒、ホスファゼン触媒、複金属シアン化錯体触媒などを用いて、公知の方法で製造される。ポリオキシアルキレンポリオールは、副反応を抑制する観点から、好ましくは、ホスファゼン触媒、複金属シアン化錯体触媒などの副反応を抑制可能な触媒を用いて製造される。 Further, the polyoxyalkylene polyol is produced by a known method using, for example, a hydroxide catalyst, a phosphazene catalyst, a compound metal cyanide complex catalyst, or the like. From the viewpoint of suppressing side reactions, the polyoxyalkylene polyol is preferably produced using a catalyst capable of suppressing side reactions such as a phosphazene catalyst and a compound metal cyanide complex catalyst.
 なお、ポリオキシアルキレンポリオールの製造における副反応では、不飽和結合を有するモノオールが生成する。そのため、ポリオキシアルキレンポリオールの不飽和度(単位:meq./g)を算出することによって、副反応の抑制の度合いを評価できる。 In the side reaction in the production of polyoxyalkylene polyol, monool having an unsaturated bond is produced. Therefore, the degree of suppression of side reactions can be evaluated by calculating the degree of unsaturation (unit: meq./g) of the polyoxyalkylene polyol.
 ポリオキシアルキレンポリオールの不飽和度(単位:meq./g)は、好ましくは、下記式(1)を満たす。 The degree of unsaturation (unit: meq./g) of the polyoxyalkylene polyol preferably satisfies the following formula (1).
 不飽和度≦4×10-5×(Mn/f)0.83+0.011 Degree of unsaturation ≤ 4 × 10 -5 × (Mn / f) 0.83 + 0.011
 なお、上記式(1)において、Mnは、ポリオキシアルキレンポリオールの数平均分子量を示し、fは、ポリオキシアルキレンポリオールの平均官能基数(平均水酸基数)を示す。Mnおよびfは、公知の方法で測定でき、また、例えば、JIS K1557-1(2007)に準拠して測定される水酸基価から算出することもできる(以下同じ)。 In the above formula (1), Mn indicates the number average molecular weight of the polyoxyalkylene polyol, and f indicates the average number of functional groups (average number of hydroxyl groups) of the polyoxyalkylene polyol. Mn and f can be measured by a known method, and can also be calculated from, for example, the hydroxyl value measured according to JIS K1557-1 (2007) (the same applies hereinafter).
 ポリオキシアルキレンポリオールの不飽和度(単位:meq./g)は、より具体的には、例えば、0.001以上であり、例えば、0.07以下、好ましくは、0.05以下、より好ましくは、0.03以下、さらに好ましくは、0.025以下である。 More specifically, the degree of unsaturation (unit: meq./g) of the polyoxyalkylene polyol is, for example, 0.001 or more, for example, 0.07 or less, preferably 0.05 or less, more preferably. Is 0.03 or less, more preferably 0.025 or less.
 ポリオキシアルキレンポリオールの水酸基価は、例えば、9mgKOH/g以上、好ましくは、10mgKOH/g以上であり、例えば、20mgKOH/g以下、好ましくは、15mgKOH/g以下である。 The hydroxyl value of the polyoxyalkylene polyol is, for example, 9 mgKOH / g or more, preferably 10 mgKOH / g or more, and for example, 20 mgKOH / g or less, preferably 15 mgKOH / g or less.
 ポリオール成分は、任意成分として、その他の高分子量ポリオール(ポリオキシエチレングリコールを除く高分子量ポリオール)を含むことができる。 The polyol component can include other high molecular weight polyols (high molecular weight polyols excluding polyoxyethylene glycol) as optional components.
 その他の高分子量ポリオールは、ヒドロキシ基を2つ以上有する数平均分子量300以上、20000以下の化合物であって、例えば、ポリエーテルポリオール(ポリオキシアルキレンポリオールを除く。)、ポリエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、シリコーンポリオール、フッ素ポリオールなどが挙げられる。これらは、単独使用または2種類以上併用することができる。その他の高分子量ポリオールとして、好ましくは、ポリエーテルポリオール(ポリオキシアルキレンポリオールを除く。)、ポリエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオールが挙げられる。 Other high-molecular-weight polyols are compounds having two or more hydroxy groups and having a number average molecular weight of 300 or more and 20000 or less, and are, for example, polyether polyols (excluding polyoxyalkylene polyols), polyester polyols, polycarbonate polyols, and polyurethanes. Examples thereof include polyols, epoxy polyols, vegetable oil polyols, polyolefin polyols, silicone polyols, and fluorine polyols. These can be used alone or in combination of two or more. Other high-molecular-weight polyols preferably include polyether polyols (excluding polyoxyalkylene polyols), polyester polyols, polycarbonate polyols, and polyurethane polyols.
 また、ポリオール成分は、任意成分として、低分子量ポリオールを含有することができる。 Further, the polyol component can contain a low molecular weight polyol as an optional component.
 低分子量ポリオールとしては、上記した低分子量ポリオールが挙げられる。 Examples of the low molecular weight polyol include the above-mentioned low molecular weight polyol.
 ポリオール成分が低分子量ポリオールを含有する場合、その含有割合は、本発明の優れた効果を損なわない範囲において、適宜設定される。 When the polyol component contains a low molecular weight polyol, the content ratio thereof is appropriately set as long as the excellent effect of the present invention is not impaired.
 好ましくは、ポリオール成分は、低分子量ポリオールを含有せず、高分子量ポリオールのみを含有する。より好ましくは、ポリオール成分は、ポリオキシアルキレンポリオールのみを含有する。 Preferably, the polyol component does not contain a low molecular weight polyol, but contains only a high molecular weight polyol. More preferably, the polyol component contains only a polyoxyalkylene polyol.
 ポリオール成分(総量)の数平均分子量は、例えば、6000以上、好ましくは、7000以上、より好ましくは、8000以上、さらに好ましくは、9000以上、とりわけ好ましくは、10000以上であり、例えば、12000以下、好ましくは、11500以下、より好ましくは、11000以下、さらに好ましくは、10500以下である。 The number average molecular weight of the polyol component (total amount) is, for example, 6000 or more, preferably 7000 or more, more preferably 8000 or more, still more preferably 9000 or more, particularly preferably 10000 or more, for example, 12000 or less. It is preferably 11500 or less, more preferably 11000 or less, and even more preferably 10500 or less.
 また、ポリオール成分(総量)の平均官能基数は、例えば、1.5以上、好ましくは、2以上であり、例えば、3以下、好ましくは、2.5以下であり、さらに好ましくは、2.0である。 The average number of functional groups of the polyol component (total amount) is, for example, 1.5 or more, preferably 2 or more, for example, 3 or less, preferably 2.5 or less, and more preferably 2.0. Is.
 また、ポリオール成分(総量)の水酸基価は、例えば、9mgKOH/g以上、好ましくは、10mgKOH/g以上であり、例えば、20mgKOH/g以下、好ましくは、15mgKOH/g以下である。 The hydroxyl value of the polyol component (total amount) is, for example, 9 mgKOH / g or more, preferably 10 mgKOH / g or more, and for example, 20 mgKOH / g or less, preferably 15 mgKOH / g or less.
 イソシアネート基末端プレポリマーは、上記のポリイソシアネート成分および上記のポリオール成分を含むプレポリマー原料を、公知の方法で反応させることにより、得ることができる。 The isocyanate group-terminated prepolymer can be obtained by reacting the prepolymer raw material containing the above polyisocyanate component and the above polyol component by a known method.
 より具体的には、この方法では、ポリオール成分のヒドロキシ基に対するポリイソシアネート成分のイソシアネート基の当量比(イソシアネート基/ヒドロキシ基)において、1を超える割合で、プレポリマー原料を配合する。プレポリマー原料中の当量比(イソシアネート基/ヒドロキシ基)は、好ましくは、1.1以上、より好ましくは、3以上、さらに好ましくは、6以上であり、好ましくは、20、より好ましくは、15以下、さらに好ましくは、10以下である。 More specifically, in this method, the prepolymer raw material is blended at a ratio of more than 1 in the equivalent ratio (isocyanate group / hydroxy group) of the isocyanate group of the polyisocyanate component to the hydroxy group of the polyol component. The equivalent ratio (isocyanate group / hydroxy group) in the prepolymer raw material is preferably 1.1 or more, more preferably 3 or more, still more preferably 6 or more, preferably 20, more preferably 15. Hereinafter, it is more preferably 10 or less.
 そして、上記のプレポリマー原料を、バルク重合や溶液重合などの公知の重合方法で反応させる。好ましくは、上記のプレポリマー原料を、バルク重合によって反応させる。 Then, the above-mentioned prepolymer raw material is reacted by a known polymerization method such as bulk polymerization or solution polymerization. Preferably, the above prepolymer raw materials are reacted by bulk polymerization.
 バルク重合では、例えば、窒素雰囲気下、上記のプレポリマー原料を配合して、反応温度75~85℃で、1~20時間程度反応させる。 In bulk polymerization, for example, the above prepolymer raw materials are blended in a nitrogen atmosphere and reacted at a reaction temperature of 75 to 85 ° C. for about 1 to 20 hours.
 溶液重合では、例えば、窒素雰囲気下、公知の有機溶媒に、上記のプレポリマー原料を配合して、反応温度20~80℃で、1~20時間程度反応させる。 In solution polymerization, for example, in a nitrogen atmosphere, the above prepolymer raw material is mixed with a known organic solvent and reacted at a reaction temperature of 20 to 80 ° C. for about 1 to 20 hours.
 また、上記重合では、必要に応じて、公知のウレタン化触媒を添加することができる。 Further, in the above polymerization, a known urethanization catalyst can be added if necessary.
 ウレタン化触媒の添加割合は、目的および用途に応じて、適宜設定される。 The addition ratio of the urethanization catalyst is appropriately set according to the purpose and application.
 これにより、イソシアネート基末端プレポリマーを得ることができる、また、その結果、イソシアネート基末端プレポリマーと未反応のポリイソシアネート成分とを含む組成物(以下、プレポリマー粗生成物)が得られる。 Thereby, an isocyanate group-terminated prepolymer can be obtained, and as a result, a composition containing an isocyanate group-terminated prepolymer and an unreacted polyisocyanate component (hereinafter referred to as a crude prepolymer product) can be obtained.
 イソシアネート基末端プレポリマーのイソシアネート基の平均官能基数は、例えば、1.5以上、好ましくは、2.0以上であり、また、例えば、3.0以下、好ましくは、2.5以下である。 The average number of functional groups of the isocyanate group of the isocyanate group-terminated prepolymer is, for example, 1.5 or more, preferably 2.0 or more, and for example, 3.0 or less, preferably 2.5 or less.
 また、プレポリマー粗生成物(イソシアネート基末端プレポリマーおよび未反応のポリイソシアネート成分を含む。)のイソシアネート基濃度は、プレポリマー粗生成物の総量(固形分換算)に対して、例えば、0.3質量%以上、好ましくは、0.5質量%以上、より好ましくは、1.0質量%以上であり、また、例えば、15質量%以下、好ましくは、12質量%以下、より好ましくは、10質量%以下である。 The isocyanate group concentration of the prepolymer crude product (including the isocyanate group-terminated prepolymer and the unreacted polyisocyanate component) is, for example, 0. 3% by mass or more, preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and for example, 15% by mass or less, preferably 12% by mass or less, more preferably 10% by mass or more. It is less than or equal to mass%.
 また、プレポリマー粗生成物(イソシアネート基末端プレポリマーおよび未反応のポリイソシアネート成分を含む。)は、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度を後述の範囲に調整し、ハンドリング性および成形性の向上を図る観点から、好ましくは、蒸留により精製される。 In addition, the prepolymer crude product (including the isocyanate group-terminated prepolymer and the unreacted polyisocyanate component) adjusts the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. to the range described below, and is easy to handle and mold. From the viewpoint of improving the properties, it is preferably purified by distillation.
 なお、プレポリマー粗生成物を精製することなく、例えば、プレポリマー原料中の当量比(イソシアネート基/ヒドロキシ基)を、比較的低く設定することによっても、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度を後述の範囲に調整することができる。しかし、このような場合には、ハンドリング性および成形性が充分ではない場合がある。 It should be noted that, for example, by setting the equivalent ratio (isocyanate group / hydroxy group) in the prepolymer raw material to a relatively low value without purifying the crude prepolymer product, the temperature of the active energy ray-curable polyurethane resin is 25 ° C. The viscosity of the above can be adjusted within the range described below. However, in such a case, the handleability and moldability may not be sufficient.
 そのため、ハンドリング性および成形性の向上を図る観点から、好ましくは、蒸留によりプレポリマー粗生成物を精製し、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度を後述の範囲に調整する。 Therefore, from the viewpoint of improving handleability and moldability, the prepolymer crude product is preferably purified by distillation, and the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is adjusted to the range described below.
 蒸留方法としては、特に制限されないが、例えば、バッチ式蒸留法、連続式蒸留法などが挙げられ、連続式蒸留法としては、例えば、薄膜蒸留法(スミス式薄膜蒸留法)などが挙げられる。蒸留方法として、好ましくは、薄膜蒸留法(スミス式薄膜蒸留法)が挙げられる。 The distillation method is not particularly limited, and examples thereof include a batch distillation method and a continuous distillation method, and examples of the continuous distillation method include a thin film distillation method (Smith type thin film distillation method). As the distillation method, a thin film distillation method (Smith type thin film distillation method) is preferable.
 薄膜蒸留法が採用される場合、蒸留条件としては、蒸留温度が、例えば、120℃以上、好ましくは、150℃以上であり、例えば、250℃以下、好ましくは、200℃以下である。また、蒸留圧力(絶対圧力)が、例えば、1Pa以上、好ましくは、10Pa以上、より好ましくは、50Pa以上であり、例えば、300Pa以下、好ましくは、200Pa以下、より好ましくは、100Pa以下である。 When the thin film distillation method is adopted, the distillation conditions include, for example, 120 ° C. or higher, preferably 150 ° C. or higher, and for example, 250 ° C. or lower, preferably 200 ° C. or lower. The distillation pressure (absolute pressure) is, for example, 1 Pa or more, preferably 10 Pa or more, more preferably 50 Pa or more, and for example, 300 Pa or less, preferably 200 Pa or less, more preferably 100 Pa or less.
 また、イソシアネート基末端プレポリマーのフィード量が、例えば、0.1g/min以上、好ましくは、1.0g/min以上、より、好ましくは、2.0g/min以上であり、例えば、100g/min以下、好ましくは、50g/min以下、より好ましくは、10g/min以下である。 The feed amount of the isocyanate group-terminated prepolymer is, for example, 0.1 g / min or more, preferably 1.0 g / min or more, more preferably 2.0 g / min or more, and for example, 100 g / min. Hereinafter, it is preferably 50 g / min or less, and more preferably 10 g / min or less.
 これにより、プレポリマー粗生成物から、未反応のポリイソシアネート成分が除去され、イソシアネート基末端プレポリマーの精製物(以下、プレポリマー精製物)が得られる。 As a result, the unreacted polyisocyanate component is removed from the crude prepolymer product, and a purified product of the isocyanate group-terminated prepolymer (hereinafter referred to as the purified prepolymer) is obtained.
 プレポリマー精製物は、イソシアネート基末端プレポリマーからなるか、または、イソシアネート基末端プレポリマーと、極微量(10000ppm以下)の未反応のポリイソシアネート成分とを含有する。 The prepolymer purified product is composed of an isocyanate group-terminated prepolymer, or contains an isocyanate group-terminated prepolymer and a very small amount (10000 ppm or less) of an unreacted polyisocyanate component.
 プレポリマー精製物において、イソシアネート基末端プレポリマーの含有割合は、プレポリマー精製物の総量に対して、例えば、99.5質量%以上、好ましくは、99.9質量%以上であり、例えば、100質量%以下である。 In the prepolymer purified product, the content ratio of the isocyanate group-terminated prepolymer is, for example, 99.5% by mass or more, preferably 99.9% by mass or more, based on the total amount of the prepolymer purified product, for example, 100. It is less than or equal to mass%.
 また、プレポリマー精製物のイソシアネート基濃度は、プレポリマー精製物の総量(固形分換算)に対して、例えば、0.0001質量%以上、好ましくは、0.0005質量%以上であり、また、例えば、0.020質量%以下、好ましくは、0.013質量%以下、より好ましくは、0.010質量%以下である。 The isocyanate group concentration of the prepolymer purified product is, for example, 0.0001% by mass or more, preferably 0.0005% by mass or more, based on the total amount (solid content equivalent) of the prepolymer purified product. For example, it is 0.020% by mass or less, preferably 0.013% by mass or less, and more preferably 0.010% by mass or less.
 そして、上記のイソシアネート基末端プレポリマー(好ましくは、プレポリマー精製物)と、ヒドロキシ基含有不飽和化合物との反応により、活性エネルギー線硬化性ポリウレタン樹脂が得られる。 Then, an active energy ray-curable polyurethane resin is obtained by reacting the above-mentioned isocyanate group-terminated prepolymer (preferably a purified prepolymer) with a hydroxy group-containing unsaturated compound.
 ヒドロキシ基含有不飽和化合物は、1つ以上のエチレン性不飽和基、および、1つ以上のヒドロキシ基を併有する化合物である。 A hydroxy group-containing unsaturated compound is a compound having one or more ethylenically unsaturated groups and one or more hydroxy groups.
 より具体的には、ヒドロキシ基含有不飽和化合物は、例えば、(メタ)アクリロイル基、ビニルフェニル基、プロペニルエーテル基、アリルエーテル基、ビニルエーテル基などのエチレン性不飽和基含有基を1つ以上と、ヒドロキシ基を1つ以上とを、併有している。 More specifically, the hydroxy group-containing unsaturated compound includes, for example, one or more ethylenically unsaturated group-containing groups such as a (meth) acryloyl group, a vinylphenyl group, a propenyl ether group, an allyl ether group, and a vinyl ether group. , It also has one or more hydroxy groups.
 なお、(メタ)アクリロイルとは、アクリロイルおよび/またはメタクリロイルを示し、また、同様に、(メタ)アクリルとは、アクリルおよび/またはメタクリルを示し、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを示す。 In addition, (meth) acryloyl means acryloyl and / or methacrylic acid, similarly, (meth) acrylic means acrylic and / or methacrylic, and (meth) acrylate means acrylate and / or methacrylate. show.
 エチレン性不飽和基含有基として、好ましくは、(メタ)アクリロイル基が挙げられ、より好ましくは、アクリロイル基が挙げられる。 The ethylenically unsaturated group-containing group preferably includes a (meth) acryloyl group, and more preferably an acryloyl group.
 エチレン性不飽和基含有基が(メタ)アクリロイル基である場合、ヒドロキシ基含有不飽和化合物としては、例えば、ヒドロキシ基含有(メタ)アクリレートが挙げられる。 When the ethylenically unsaturated group-containing group is a (meth) acryloyl group, examples of the hydroxy group-containing unsaturated compound include hydroxy group-containing (meth) acrylate.
 ヒドロキシ基含有(メタ)アクリレートとしては、例えば、1分子中に、ヒドロキシ基を1つ有し(メタ)アクリロイル基を1つ有するモノヒドロキシルモノ(メタ)アクリレート、例えば、1分子中に、ヒドロキシ基を複数有し、(メタ)アクリロイル基を1つ有するポリヒドロキシルモノ(メタ)アクリレート、例えば、1分子中に、ヒドロキシ基を1つ有し、(メタ)アクリロイル基を複数有するモノヒドロキシルポリ(メタ)アクリレート、例えば、1分子中に、ヒドロキシ基を複数有し、(メタ)アクリロイル基を複数有するポリヒドロキシルポリ(メタ)アクリレートなどが挙げられる。 As the hydroxy group-containing (meth) acrylate, for example, a monohydroxymono (meth) acrylate having one hydroxy group in one molecule and one (meth) acryloyl group, for example, a hydroxy group in one molecule. Polyhydroxyl mono (meth) acrylate having a plurality of (meth) acryloyl groups, for example, monohydroxyl poly (meth) having one hydroxy group in one molecule and having a plurality of (meth) acryloyl groups. ) Acrylic, for example, polyhydroxyl poly (meth) acrylate having a plurality of hydroxy groups and a plurality of (meth) acryloyl groups in one molecule.
 モノヒドロキシルモノ(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシプロピル(メタ)アクリレート、4-ヒドロキシシクロヘキシル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、例えば、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタル酸、2-ヒドロキシアルキル(メタ)アクリロイルフォスフェート、ペンタンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。 Examples of the monohydroxyl mono (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-. Hydroxyalkyl (meth) acrylates such as phenoxypropyl (meth) acrylate and 4-hydroxycyclohexyl (meth) acrylate, such as 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth). ) Acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethylphthalic acid, 2-hydroxyalkyl (meth) acryloyl phosphate, pentanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, polyethylene glycol mono Examples thereof include (meth) acrylate and polypropylene glycol mono (meth) acrylate.
 ポリヒドロキシルモノ(メタ)アクリレートとしては、トリメチロールプロパンモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレートなどが挙げられる。 Examples of the polyhydroxyl mono (meth) acrylate include trimethylolpropane mono (meth) acrylate, glycerin mono (meth) acrylate, and pentaerythritol mono (meth) acrylate.
 モノヒドロキシルポリ(メタ)アクリレートとしては、例えば、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート(例えば、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート(商品名:NKエステル701A、新中村化学製))が挙げられる。 Examples of the monohydroxyl poly (meth) acrylate include trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and 2-hydroxy-3. -(Meta) acryloyloxypropyl (meth) acrylate (for example, 2-hydroxy-3-acryloyloxypropyl methacrylate (trade name: NK ester 701A, manufactured by Shin-Nakamura Chemical Co., Ltd.)) can be mentioned.
 ポリヒドロキシルポリ(メタ)アクリレートとしては、例えば、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。 Examples of the polyhydroxyl poly (meth) acrylate include pentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, and dipentaerythritol tetra (meth) acrylate.
 また、エチレン性不飽和基含有基がビニルフェニル基である場合、ヒドロキシ基含有不飽和化合物としては、例えば、4-ビニルフェノール、2-ヒドロキシエチル-4-ビニルフェニルエーテル、(2-ヒドロキシプロピル)-4-ビニルフェニルエ-テル、(2,3-ジヒドロキシプロピル)-4-ビニルフェニルエ-テル、4-(2-ヒドロキシエチル)スチレンなどが挙げられる。 When the ethylenically unsaturated group-containing group is a vinylphenyl group, examples of the hydroxy group-containing unsaturated compound include 4-vinylphenol, 2-hydroxyethyl-4-vinylphenyl ether, and (2-hydroxypropyl). Examples thereof include -4-vinylphenyl ether, (2,3-dihydroxypropyl) -4-vinylphenyl ether, 4- (2-hydroxyethyl) styrene and the like.
 また、エチレン性不飽和基含有基がプロペニルエ-テル基である場合、ヒドロキシ基含有不飽和化合物としては、例えば、プロペニルアルコ-ル、2-ヒドロキシエチルプロペニルエ-テル、2,3-ジヒドロキシプロピルプロネニルエ-テルなどが挙げられる。 When the ethylenically unsaturated group-containing group is a propenyl ether group, examples of the hydroxy group-containing unsaturated compound include propenyl alcohol, 2-hydroxyethyl propenyl ether, and 2,3-dihydroxypropyl pro. Nenyl ether and the like can be mentioned.
 また、エチレン性不飽和基含有基がアリルエ-テル基である場合、ヒドロキシ基含有不飽和化合物としては、例えば、アリルアルコ-ル、2-ヒドロキシエチルアリルエ-テル、2-ヒドロキシプロピルアリルアルコ-ルなどが挙げられる。 When the ethylenically unsaturated group-containing group is an allyl ether group, examples of the hydroxy group-containing unsaturated compound include allyl alcohol, 2-hydroxyethyl allyl ether, and 2-hydroxypropyl allyl alcohol. And so on.
 また、エチレン性不飽和基含有基がビニルエ-テル基である場合、ヒドロキシ基含有不飽和化合物としては、例えば、2-ヒドロキシエチルビニルエ-テル、2-ヒドロキシプロピルビニルエ-テルなどが挙げられる。 When the ethylenically unsaturated group-containing group is a vinyl ether group, examples of the hydroxy group-containing unsaturated compound include 2-hydroxyethyl vinyl ether and 2-hydroxypropyl vinyl ether. ..
 これらヒドロキシ基含有不飽和化合物は、単独使用または2種類以上併用することができる。 These hydroxy group-containing unsaturated compounds can be used alone or in combination of two or more.
 ヒドロキシ基含有不飽和化合物として、好ましくは、ヒドロキシ基含有(メタ)アクリレ-ト、より好ましくは、モノヒドロキシルモノ(メタ)アクリレ-ト、モノヒドロキシルポリ(メタ)アクリレート、さらに好ましくは、モノヒドロキシルモノ(メタ)アクリレート、さらに好ましくは、ヒドロキシアルキル(メタ)アクリレート、とりわけ好ましくは、2-ヒドロキシエチル(メタ)アクリレートが挙げられる。 The hydroxy group-containing unsaturated compound is preferably a hydroxy group-containing (meth) acrylicate, more preferably a monohydroxyl mono (meth) acrylicate, a monohydroxyl poly (meth) acrylate, and even more preferably a monohydroxyl mono. (Meta) acrylates, more preferably hydroxyalkyl (meth) acrylates, and particularly preferably 2-hydroxyethyl (meth) acrylates.
 そして、イソシアネート基末端プレポリマー(好ましくは、精製されたイソシアネート基末端プレポリマー)と、ヒドロキシ基含有不飽和化合物との反応では、例えば、不活性ガス雰囲気下、上記のイソシアネート基末端プレポリマーと、ヒドロキシ基含有不飽和化合物とを、所定の当量比となるように配合し、ウレタン化反応させる。 Then, in the reaction between the isocyanate group-terminated prepolymer (preferably the purified isocyanate group-terminated prepolymer) and the hydroxy group-containing unsaturated compound, for example, in an inert gas atmosphere, the above-mentioned isocyanate group-terminated prepolymer is used. The hydroxy group-containing unsaturated compound is blended so as to have a predetermined equivalent ratio, and a urethanization reaction is carried out.
 ヒドロキシ基含有不飽和化合物中のヒドロキシ基に対する、イソシアネート基末端プレポリマー中のイソシアネート基の当量比(イソシアネート基/ヒドロキシ基)は、例えば、0.7以上、好ましくは、0.9以上であり、例えば、1.5以下、好ましくは、1.2以下である。 The equivalent ratio (isocyanate group / hydroxy group) of the isocyanate group in the isocyanate group-terminated prepolymer to the hydroxy group in the hydroxy group-containing unsaturated compound is, for example, 0.7 or more, preferably 0.9 or more. For example, it is 1.5 or less, preferably 1.2 or less.
 また、反応条件は、特に制限されないが、反応温度が、例えば、40℃以上、好ましくは、50℃以上、より好ましくは、60℃以上であり、例えば、120℃以下、好ましくは、100℃以下、より好ましくは、80℃以下である。また、反応時間は、例えば、0.5時間以上、好ましくは、1.0時間以上であり、例えば、24時間以下、好ましくは、10時間以下である。 The reaction conditions are not particularly limited, but the reaction temperature is, for example, 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and for example, 120 ° C. or lower, preferably 100 ° C. or lower. , More preferably 80 ° C. or lower. The reaction time is, for example, 0.5 hours or more, preferably 1.0 hours or more, and for example, 24 hours or less, preferably 10 hours or less.
 また、上記反応では、必要に応じて、公知のウレタン化触媒を添加してもよい。ウレタン化触媒の添加割合は、目的および用途に応じて、適宜設定される。 Further, in the above reaction, a known urethanization catalyst may be added if necessary. The addition ratio of the urethanization catalyst is appropriately set according to the purpose and application.
 これにより、イソシアネート基末端プレポリマーおよびヒドロキシ基含有不飽和化合物の反応生成物を含む、活性エネルギー線硬化性ポリウレタン樹脂が得られる。 As a result, an active energy ray-curable polyurethane resin containing a reaction product of an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound can be obtained.
 より具体的には、活性エネルギー線硬化性ポリウレタン樹脂は、イソシアネート基末端プレポリマーのイソシアネート基と、ヒドロキシ基含有不飽和化合物のヒドロキシ基とがウレタン化反応して得られ、ヒドロキシ基含有不飽和化合物に由来する不飽和結合を有するポリウレタン樹脂である。 More specifically, the active energy ray-curable polyurethane resin is obtained by subjecting the isocyanate group of the isocyanate group-terminated prepolymer and the hydroxy group of the hydroxy group-containing unsaturated compound to a urethanization reaction, and the hydroxy group-containing unsaturated compound. It is a polyurethane resin having an unsaturated bond derived from.
 なお、活性エネルギー線硬化性ポリウレタン樹脂は、必要に応じて、さらに、可塑剤、ブロッキング防止剤、耐熱安定剤、耐活性エネルギー線安定剤(耐光安定剤など)、酸化防止剤、離型剤、触媒、顔料、染料、滑剤、フィラ-、加水分解防止剤などの公知の添加剤を、適宜の割合で含有することができる。これら添加剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。 If necessary, the active energy ray-curable polyurethane resin may further include a plasticizer, a blocking inhibitor, a heat-resistant stabilizer, an active energy ray-stabilizing agent (light-resistant stabilizer, etc.), an antioxidant, a mold release agent, and the like. Known additives such as catalysts, pigments, dyes, lubricants, fillers, and antioxidants can be contained in appropriate proportions. The amount of these additives added and the timing of addition are appropriately set according to the purpose and application.
 そして、活性エネルギー線硬化性ポリウレタン樹脂の数平均分子量(GPC測定による標準ポリスチレン換算分子量)は、例えば、5000以上、好ましくは、7000以上であり、例えば、12000以下、好ましくは、11000以下である。 The number average molecular weight of the active energy ray-curable polyurethane resin (standard polystyrene-equivalent molecular weight measured by GPC) is, for example, 5000 or more, preferably 7000 or more, for example, 12000 or less, preferably 11000 or less.
 また、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度は、得られる硬化物の引張強度の観点から、2万mPa・s以上、好ましくは、2.2万mPa・s以上、より好ましくは、2.4万mPa・s以上、さらに好ましくは、2.6万mPa・s以上であり、ハンドリング性の観点から、4万mPa・s以下、好ましくは、3.8万mPa・s以下、より好ましくは、3.6万mPa・s以下、さらに好ましくは、3.4万mPa・s以下、とりわけ好ましくは、3.2万mPa・s以下である。 The viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa · s or more, preferably 22,000 mPa · s or more, more preferably 22,000 mPa · s or more, from the viewpoint of the tensile strength of the obtained cured product. 24,000 mPa · s or more, more preferably 26,000 mPa · s or more, and from the viewpoint of handleability, 40,000 mPa · s or less, preferably 38,000 mPa · s or less. It is preferably 36,000 mPa · s or less, more preferably 34,000 mPa · s or less, and particularly preferably 32,000 mPa · s or less.
 粘度が上記範囲であれば、成形時のハンドリング性の向上を図ることができる。 If the viscosity is within the above range, the handleability during molding can be improved.
 なお、活性エネルギー線硬化性ポリウレタン樹脂の粘度は、イソシアネート基末端プレポリマーの精製などによって、調整される。 The viscosity of the active energy ray-curable polyurethane resin is adjusted by purifying the isocyanate group-terminated prepolymer.
 また、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度は、E型粘度計により、後述する実施例に準拠して測定される。 Further, the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is measured by an E-type viscometer according to an example described later.
 そして、上記の活性エネルギー線硬化性ポリウレタン樹脂の製造方法によれば、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる活性エネルギー線硬化性ポリウレタン樹脂を、効率よく製造できる。 According to the above-mentioned method for producing an active energy ray-curable polyurethane resin, an active energy ray-curable polyurethane resin having a relatively low viscosity before curing and excellent mechanical strength, weather resistance and hysteresis characteristics after curing can be obtained. , Can be manufactured efficiently.
 すなわち、上記の活性エネルギー線硬化性ポリウレタン樹脂は、イソシアネート基末端プレポリマーと、ヒドロキシ基含有不飽和化合物との反応生成物を含み、イソシアネート基末端プレポリマーが、キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含むポリイソシアネート成分と、数平均分子量が所定範囲のポリオキシアルキレンポリオールを含むポリオール成分との反応生成物を含み、活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度が、2万mPa・s以上4万mPa・s以下である。 That is, the above-mentioned active energy ray-curable polyurethane resin contains a reaction product of an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound, and the isocyanate group-terminated prepolymer contains xylylene diisocyanate and / or hydrogenated xyl. A reaction product of a polyisocyanate component containing a range isocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight in a predetermined range is contained, and the viscosity of an active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa. It is s or more and 40,000 mPa · s or less.
 そのため、上記の活性エネルギー線硬化性ポリウレタン樹脂は、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる。 Therefore, the above-mentioned active energy ray-curable polyurethane resin has a relatively low viscosity before curing, and is excellent in mechanical strength, weather resistance, and hysteresis characteristics after curing.
 このような活性エネルギー線硬化性ポリウレタン樹脂は、各種産業分野において、用いることができる。より具体的には、活性エネルギー線硬化性ポリウレタン樹脂は、例えば、接着剤、コーティング剤、エラストマー、成形材料などとして用いることができる。活性エネルギー線硬化性ポリウレタン樹脂は、好ましくは、成形材料として用いられる。 Such an active energy ray-curable polyurethane resin can be used in various industrial fields. More specifically, the active energy ray-curable polyurethane resin can be used as, for example, an adhesive, a coating agent, an elastomer, a molding material, or the like. The active energy ray-curable polyurethane resin is preferably used as a molding material.
 また、活性エネルギー線硬化性ポリウレタン樹脂は、成形材料として用いられる場合、好ましくは、ラジカル反応性希釈剤との混合物(硬化性樹脂組成物)として、使用される。このような場合、活性エネルギー線硬化性ポリウレタン樹脂は、単独で流通し、その後、ラジカル反応性希釈剤と混合されてもよく、また、活性エネルギー線硬化性ポリウレタン樹脂とラジカル反応性希釈剤との混合物として、流通してもよい。 Further, when the active energy ray-curable polyurethane resin is used as a molding material, it is preferably used as a mixture (curable resin composition) with a radical-reactive diluent. In such a case, the active energy ray-curable polyurethane resin may be circulated alone and then mixed with a radical-reactive diluent, or the active energy ray-curable polyurethane resin and the radical-reactive diluent may be mixed. It may be distributed as a mixture.
 本発明において、硬化性樹脂組成物は、上記の活性エネルギー線硬化性ポリウレタン樹脂と、ラジカル反応性希釈剤とを含有する。 In the present invention, the curable resin composition contains the above-mentioned active energy ray-curable polyurethane resin and a radically reactive diluent.
 ラジカル反応性希釈剤は、活性エネルギー線(後述)の照射によりラジカル重合する化合物であり、かつ、上記の活性エネルギー線硬化性ポリウレタン樹脂を希釈するための希釈剤である。 The radical reactive diluent is a compound that undergoes radical polymerization by irradiation with active energy rays (described later), and is a diluent for diluting the above-mentioned active energy ray-curable polyurethane resin.
 ラジカル反応性希釈剤としては、例えば、芳香族炭化水素骨格を有する反応性化合物、脂環式炭化水素骨格を有する反応性化合物、鎖状エーテル骨格を有する反応性化合物、脂環式エーテル骨格を有する反応性化合物、アミド骨格を有する反応性化合物、オキシアルキレン骨格を有する反応性化合物、(メタ)アクリロイル基およびビニル基併有化合物、ポリ(メタ)アクリレート、不飽和カルボン酸アリルエステル、上記のヒドロキシ基含有(メタ)アクリレートなどが挙げられる。 Examples of the radical reactive diluent include a reactive compound having an aromatic hydrocarbon skeleton, a reactive compound having an alicyclic hydrocarbon skeleton, a reactive compound having a chain ether skeleton, and an alicyclic ether skeleton. Reactive compounds, reactive compounds with an amide skeleton, reactive compounds with an oxyalkylene skeleton, compounds with (meth) acryloyl groups and vinyl groups, poly (meth) acrylates, unsaturated carboxylic acid allyl esters, the above hydroxy groups. Examples include contained (meth) acrylate.
 芳香族炭化水素骨格を有する反応性化合物としては、例えば、3-フェノキシベンジル(メタ)アクリレートなどの芳香族炭化水素骨格を有する(メタ)アクリレート、例えば、スチレン、ビニルトルエン、ジビニルベンゼン、α-メチルスチレンなどが挙げられる。 Examples of the reactive compound having an aromatic hydrocarbon skeleton include (meth) acrylates having an aromatic hydrocarbon skeleton such as 3-phenoxybenzyl (meth) acrylate, such as styrene, vinyltoluene, divinylbenzene, and α-methyl. Examples include styrene.
 脂環式炭化水素骨格を有する反応性化合物としては、例えば、イソボルニル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートなどの脂環式炭化水素骨格を有する(メタ)アクリレートなどが挙げられる。 Examples of the reactive compound having an alicyclic hydrocarbon skeleton include isobornyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, and dicyclopentanyl. Examples thereof include (meth) acrylate having an alicyclic hydrocarbon skeleton such as (meth) acrylate.
 鎖状エーテル骨格を有する反応性化合物としては、例えば、2-エチルヘキシル-ジグルコール(メタ)アクリレートなどが挙げられる。 Examples of the reactive compound having a chain ether skeleton include 2-ethylhexyl-diglucol (meth) acrylate.
 脂環式エーテル骨格を有する反応性化合物としては、例えば、環状トリメチロールプロパンホルマール(メタ)アクリレート、(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレートなどの脂環式エーテル骨格を有する(メタ)アクリレート、例えば、4-(メタ)アクリロイルモルフォリンなどが挙げられる。 Examples of the reactive compound having an alicyclic ether skeleton include cyclic trimethylolpropane formal (meth) acrylate and (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate. Examples of (meth) acrylates having an alicyclic ether skeleton include 4- (meth) acryloylmorpholine.
 アミド骨格を有する反応性化合物としては、例えば、N,N-ジエチル(メタ)アクリルアミドなどが挙げられる。 Examples of the reactive compound having an amide skeleton include N, N-diethyl (meth) acrylamide and the like.
 オキシアルキレン骨格を有する反応性化合物としては、例えば、2-エチルヘキシル-ジグリコール(メタ)アクリレートなどが挙げられる。 Examples of the reactive compound having an oxyalkylene skeleton include 2-ethylhexyl-diglycol (meth) acrylate.
 (メタ)アクリロイル基およびビニル基併有化合物としては、例えば、2-(アリルオキシメチル)アクリル酸メチル、(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸5-ビニロキシペンチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチルなどが挙げられる。 Examples of the compound having a (meth) acryloyl group and a vinyl group include methyl 2- (allyloxymethyl) acrylate, 2-vinyloxyethyl (meth) acrylate, 3-vinyloxypropyl (meth) acrylate, and (meth). 1-Methyl-2-vinyloxyethyl acrylate, 2-vinyloxypropyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 4-vinyloxycyclohexyl (meth) acrylate, 5-vinyloxy (meth) acrylate Pentyl, (meth) acrylate 6-vinyloxyhexyl, (meth) acrylate 4-vinyloxymethylcyclohexylmethyl, (meth) acrylate p-vinyloxymethylphenylmethyl, (meth) acrylate 2- (vinyloxyethoxy) ) Ethyl, 2- (vinyloxyethoxyethoxyethoxy) ethyl (meth) acrylate and the like.
 ポリオールポリ(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレートなどのポリオールジ(メタ)アクリレート、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレートなどのポリオールトリ(メタ)アクリレート、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。 Examples of the polyol poly (meth) acrylate include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, pentanediol di (meth) acrylate, and neopentyl glycol di (meth). Polyol di (meth) acrylates such as acrylates, hexanediol di (meth) acrylates, nonanediol di (meth) acrylates, oligoethylene glycol di (meth) acrylates, such as trimethylolpropanthry (meth) acrylates, glycerintri (meth). ) Polypolymer tri (meth) acrylate such as acrylate, for example, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like can be mentioned.
 不飽和カルボン酸アリルエステルとしては、例えば、アリル(メタ)アクリレート、ジアリルマレエート、ジアリルフマレート、ジアリルイタコネートなどが挙げられる。 Examples of the unsaturated carboxylic acid allyl ester include allyl (meth) acrylate, diallyl maleate, diallyl fumarate, and diallyl itaconate.
 これらラジカル反応性希釈剤は、単独使用または2種類以上併用することができる。 These radical reactive diluents can be used alone or in combination of two or more.
 ラジカル反応性希釈剤として、機械強度、耐候性およびヒステリシス特性の向上を図る観点から、好ましくは、脂環式エーテル骨格を有する反応性化合物が挙げられ、より好ましくは、脂環式エーテル骨格を有する(メタ)アクリレートが挙げられ、さらに好ましくは、環状トリメチロールプロパンホルマール(メタ)アクリレートおよび(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレートが挙げられ、とりわけ好ましくは、(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレートが挙げられる。 The radical reactive diluent preferably includes a reactive compound having an alicyclic ether skeleton, and more preferably has an alicyclic ether skeleton, from the viewpoint of improving mechanical strength, weather resistance and hysteresis characteristics. (Meta) acrylates are mentioned, more preferably cyclic trimethylolpropane formal (meth) acrylates and (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylates, among others. Preferred are (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylates.
 硬化性樹脂組成物において、活性エネルギー線硬化性ポリウレタン樹脂とラジカル反応性希釈剤との配合割合は、特に制限されず、本発明の優れた効果を阻害しない範囲において、目的および用途に応じて、適宜設定される。 In the curable resin composition, the blending ratio of the active energy ray-curable polyurethane resin and the radically reactive diluent is not particularly limited, and can be used according to the purpose and application as long as the excellent effects of the present invention are not impaired. It is set as appropriate.
 より具体的には、活性エネルギー線硬化性ポリウレタン樹脂と、ラジカル反応性希釈剤との総量100質量部に対して、活性エネルギー線硬化性ポリウレタン樹脂が、例えば、40質量部以上、好ましくは、45質量部以上であり、例えば、70質量部以下、好ましくは、65質量部以下である。また、ラジカル反応性希釈剤が、例えば、30質量部以上、好ましくは、35質量部以上であり、例えば、60質量部以下、好ましくは、55質量部以下である。 More specifically, the active energy ray-curable polyurethane resin is, for example, 40 parts by mass or more, preferably 45 parts by mass, based on 100 parts by mass of the total amount of the active energy ray-curable polyurethane resin and the radical reactive diluent. It is at least 70 parts by mass, for example, 70 parts by mass or less, preferably 65 parts by mass or less. The radical reactive diluent is, for example, 30 parts by mass or more, preferably 35 parts by mass or more, and for example, 60 parts by mass or less, preferably 55 parts by mass or less.
 また、ラジカル反応性希釈剤として、好ましくは、脂環式エーテル骨格を有する反応性化合物と、(メタ)アクリロイル基およびビニル基併有化合物との併用が挙げられる。これらが併用される場合、脂環式エーテル骨格を有する反応性化合物と、(メタ)アクリロイル基およびビニル基併有化合物との総量100質量部に対して、脂環式エーテル骨格を有する反応性化合物が、例えば、40質量部以上、好ましくは、45質量部以上であり、例えば、99質量部以下、好ましくは、95質量部以下である。また、(メタ)アクリロイル基およびビニル基併有化合物が、例えば、1質量部以上、好ましくは、5質量部以上であり、例えば、60質量部以下、好ましくは、55質量部以下である。 Further, as the radical reactive diluent, preferably, a reactive compound having an alicyclic ether skeleton and a compound having a (meth) acryloyl group and a vinyl group are used in combination. When these are used in combination, the reactive compound having an alicyclic ether skeleton with respect to a total amount of 100 parts by mass of the reactive compound having an alicyclic ether skeleton and the compound having a (meth) acryloyl group and a vinyl group. However, for example, it is 40 parts by mass or more, preferably 45 parts by mass or more, and for example, 99 parts by mass or less, preferably 95 parts by mass or less. The compound containing a (meth) acryloyl group and a vinyl group is, for example, 1 part by mass or more, preferably 5 parts by mass or more, and for example, 60 parts by mass or less, preferably 55 parts by mass or less.
 なお、活性エネルギー線硬化性ポリウレタン樹脂とラジカル反応性希釈剤との配合方法は、特に制限されず、公知の方法が採用される。これにより、硬化性樹脂組成物が得られる。 The method of blending the active energy ray-curable polyurethane resin and the radical reactive diluent is not particularly limited, and a known method is adopted. As a result, a curable resin composition is obtained.
 また、硬化性樹脂組成物は、必要に応じて、光重合開始剤を含有できる。 Further, the curable resin composition can contain a photopolymerization initiator, if necessary.
 光重合開始剤としては、公知の光重合開始剤が挙げられ、例えば、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2-ベンジル-2-(ジメチルアミノ)-4’-モルフォリノブチロフェノン、1,2-オクタンジオン1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、1-ヒドロキシチクロヘキシル-フェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパノンなどが挙げられる。 Examples of the photopolymerization initiator include known photopolymerization initiators, for example, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-. Benzyl-2- (dimethylamino) -4'-morpholinobtyrophenone, 1,2-octanedione 1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime), etanone-1- [9-ethyl -6- (2-Methylbenzoyl) -9H-Carbazole-3-yl] -1- (O-acetyloxime), 1-hydroxyticlohexyl-phenylketone, 2-hydroxy-2-methyl-1-phenylpropanone And so on.
 また、光重合開始剤は、市販品として入手可能である。そのような市販品としては、例えば、TPO(商品名、東京化成工業製)、Irgacure819(BAPO、商品名、BASF製)、Irgacure369(Omnirad369、商品名、BASF製)、IrgacureOXE01(商品名、BASF製)、IrgacureOXE02(商品名、BASF製)、IrgacureOXE03(商品名、BASF製)、IrgacureOXE04(商品名、BASF製)、Irgacure184(Omnirad184、商品名、BASF製)、Omnirad1173(Darocur1173、商品名、BASF製)、NCI-831(商品名、ADEKA製)、NCI-930(商品名、ADEKA製)などが挙げられる。これらは、単独使用または2種類以上併用することができる。 In addition, the photopolymerization initiator is available as a commercially available product. Examples of such commercially available products include TPO (trade name, manufactured by Tokyo Kasei Kogyo), Irgacure819 (BAPO, trade name, manufactured by BASF), Irgacure369 (Omnirad369, trade name, manufactured by BASF), and IrgacureOXE01 (trade name, manufactured by BASF). ), IrgacureOXE02 (trade name, manufactured by BASF), IrgacureOXE03 (trade name, manufactured by BASF), IrgacureOXE04 (trade name, manufactured by BASF), Irgacure184 (trade name, product name, manufactured by BASF), Omnirad 184, trade name, manufactured by BASF , NCI-831 (trade name, manufactured by ADEKA), NCI-930 (trade name, manufactured by ADEKA) and the like. These can be used alone or in combination of two or more.
 なお、光重合開始剤の添加量は、特に制限されず、目的および用途に応じて、適宜設定される。 The amount of the photopolymerization initiator added is not particularly limited, and is appropriately set according to the purpose and application.
 さらに、硬化性樹脂組成物は、光重合開始剤による光重合反応を促進するために、必要に応じて、公知の増感剤などを含有することもできる。 Further, the curable resin composition may contain a known sensitizer or the like, if necessary, in order to promote the photopolymerization reaction by the photopolymerization initiator.
 増感剤としては、例えば、9,10-ビス(オクタノイルオキシ)アントラセン、9,10-ジブトキシアントラセン、1,4-ジエトキシナフタレンなどが挙げられる。これらは、単独使用または2種類以上併用することができる。 Examples of the sensitizer include 9,10-bis (octanoyloxy) anthracene, 9,10-dibutoxyanthracene, and 1,4-diethoxynaphthalene. These can be used alone or in combination of two or more.
 また、増感剤は、市販品としても入手可能である。そのような市販品としては、例えば、アントラキュアーUVS-581(商品名、川崎化成工業製)、アントラキュアーUVS-1331(商品名、川崎化成工業製)、アントラキュアーUVS-2171(商品名、川崎化成工業製)などが挙げられる。 The sensitizer is also available as a commercial product. Examples of such commercially available products include Antracure UVS-581 (trade name, manufactured by Kawasaki Kasei Chemicals), Antracure UVS-1331 (trade name, manufactured by Kawasaki Kasei Chemicals), and Antracure UVS-2171 (trade name, manufactured by Kawasaki Kasei Chemicals). (Made by Kasei Chemicals), etc.
 加えて、硬化性樹脂組成物は、必要に応じて、酸化防止剤、紫外線吸収剤、蛍光増白剤、さらには、例えば、可塑剤、ブロッキング防止剤、耐熱安定剤、耐活性エネルギー線安定剤(耐光安定剤など)、離型剤、触媒、顔料、染料、滑剤、フィラ-、加水分解防止剤などの公知の添加剤を、適宜の割合で含有することができる。これら添加剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。 In addition, the curable resin composition, if necessary, is an antioxidant, an ultraviolet absorber, a fluorescent whitening agent, and further, for example, a plasticizer, a blocking inhibitor, a heat stabilizer, an active energy ray stabilizer. Known additives such as (light-resistant stabilizers and the like), mold release agents, catalysts, pigments, dyes, lubricants, fillers, antioxidants and the like can be contained in an appropriate ratio. The amount of these additives added and the timing of addition are appropriately set according to the purpose and application.
 酸化防止剤としては、例えば、ヒンダードフェノール化合物(具体的には、イルガノックス1135、イルガノックス245、イルガノックス1076、イルガノックス1726、イルガノックス1520L、いずれもBASF社製、具体的には、ADEKA社製のアデカスタブAO-80)、有機リン化合物(具体的には、JP-302、JP-308、JP-308E、JP-310、JP-312L、JP-333E、JP-318O、JPS-312、JPP-13R、JP-318E、いずれも城北化学社製、具体的には、IRGAFOS38、IRGAFOS P-EPQ、いずれもBASF社製、具体的には、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブ1500、アデカスタブ3010、いずれもADEKA社製)、チオエーテル系化合物(具体的には、IRGANOX PS800FL、IRGANOX PS802FL、いずれもBASF社製、具体的には、アデカスタブAO-412S、アデカスタブAO-503、いずれもADEKA社製、具体的には、ヨシトミDLTP、ヨシトミDSTP、ヨシトミDMTP、いずれもAPIコーポレーション社製)、ヒドロキシルアミン系化合物(具体的には、BASF社製のIRGASTAB FS042)などが挙げられる。これらは、単独使用または2種類以上併用することができる。なお、酸化防止剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。 Examples of the antioxidant include hindered phenol compounds (specifically, Irganox 1135, Irganox 245, Irganox 1076, Irganox 1726, Irganox 1520L, all manufactured by BASF, specifically ADEKA. ADEKA STAB AO-80 manufactured by BASF Corporation, organic phosphorus compounds (specifically, JP-302, JP-308, JP-308E, JP-310, JP-312L, JP-333E, JP-318O, JPS-312, JPP-13R, JP-318E, all manufactured by Johoku Chemical Co., Ltd., specifically IRGAFOS38, IRGAFOS P-EPQ, all manufactured by BASF, specifically, ADEKA STAB PEP-4C, ADEKA STAB PEP-8, ADEKA STAB 1500 , ADEKA STAB 3010, all manufactured by ADEKA), thioether compounds (specifically, IRGANOX PS800FL, IRGANOX PS802FL, all manufactured by BASF, specifically ADEKA STAB AO-412S, ADEKA STAB AO-503, all ADEKA Examples thereof include Yoshitomi DLTP, Yoshitomi DSTP, Yoshitomi DMTP, all manufactured by API Corporation, and hydroxylamine compounds (specifically, IRGASTAB FS042 manufactured by BASF). These can be used alone or in combination of two or more. The amount and timing of addition of the antioxidant are appropriately set according to the purpose and application.
 紫外線吸収剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2,2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル、2-(2´-ヒドロキシ-5´-メチル-フェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-3´,5´-ジ-t-ブチル-フェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-3´-t-ブチル-5´-メチル-フェニル)-5-クロロ・ベンゾトリアゾール、2-(2´-ヒドロキシ-3´,5´-ジ-t-ブチル-フェニル)-5-クロロ・ベンゾトリアゾール、2-(2´-ヒドロキシ-4´-n-オクトキシ・フェニル)ベンゾトリアゾールなどのベンゾトリアゾール系紫外線吸収剤、例えば、2,4-ジヒドロキシ・ベンゾフェノン、2-ヒドロキシ-4-メトキシ・ベンゾフェノン、2,2´-ジヒドロキシ-4-メトキシ・ベンゾフェノン、2,2´-ジヒドロキシ-4,4´-ジメトキシ・ベンゾフェノン、2,2´-ジヒドロキシ-4,4´-ジメトキシ-5-スルフォベンゾフェノン、2-ヒドロキシ-4-メトキシ-2´-カルボキシ・ベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルフォベンゾフェノン・トリヒドレート、2-ヒドロキシ-4-n-オクトキシ・ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ・ベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシ・ベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2,2´,4,4´-テトラヒドロキシ・ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-(2-ヒドロキシ-3-メタクリロキシ)プロポキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、例えば、2´-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、エチル-2-シアノ-3-(3´,4´-メチレンジオキシフェニル)-アクリレートなどのシアノアクリレート系紫外線吸収剤などが挙げられる。また、市販品として、例えば、Tinuvin328、TinuvinPS(チバ・ガイギー社製)、SEESORB709(白石カルシウム社製)、Uvinul490(GAF社製)、Permyl B-100(Ferro社製)、Uvinul3035、Uvinul3039、Uvinul3030(BASF製)などが挙げられる。これらは、単独使用または2種類以上併用することができる。なお、紫外線吸収剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。 Examples of the ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2,2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl, and 2- (2'-). Hydroxy-5'-methyl-phenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-di-t-butyl-phenyl) benzotriazole, 2- (2'-hydroxy-3'-t- Butyl-5'-methyl-phenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-t-butyl-phenyl) -5-chlorobenzotriazole, 2-( 2'-Hydroxy-4'-n-octoxy-phenyl) Benzotriazole-based UV absorbers such as benzotriazole, such as 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2,2'- Dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sulfobenzophenone, 2-hydroxy-4- Methoxy-2'-carboxy benzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone trihydrate, 2-hydroxy-4-n-octoxy benzophenone, 2-hydroxy-4-octadesiloxy benzophenone, 2 -Hydroxy-4-n-dodecyloxy-benzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2,2', 4,4'-tetrahydroxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2-hydroxy- Benzophenone-based UV absorbers such as 4- (2-hydroxy-3-methacryloxy) propoxybenzophenone, such as 2'-ethylhexyl-2-cyano-3,3-diphenylacrylate, ethyl-2-cyano-3-(3'). , 4'-Methylenedioxyphenyl) -acrylate and the like, cyanoacrylate-based ultraviolet absorbers and the like can be mentioned. As commercially available products, for example, Tinuvin328, TinuvinPS (manufactured by Ciba Geigy), SEESORB709 (manufactured by Shiraishi Calcium), Uvinul490 (manufactured by GAF), Permyl B-100 (manufactured by Ferro), Uvinul3035, Uvinul3039, Uvinul3030 (manufactured by Ferro). (Made by BASF) and the like. These can be used alone or in combination of two or more. The amount and timing of addition of the ultraviolet absorber are appropriately set according to the purpose and application.
 蛍光増白剤としては、例えば、7-(ジメチルアミノ)-4-メチルクマリン、2,5-ビス(5-tert-ブチル-2-ベンゾオキサゾリル)チオフェン、4,4´-ビス(2-ベンゾオキサゾリル)スチルベンなどが挙げられる。また、市販品として、例えば、TINOPAL OB」(BASF製)などが挙げられる。これらは、単独使用または2種類以上併用することができる。なお、蛍光増白剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。 Examples of the fluorescent whitening agent include 7- (dimethylamino) -4-methylcoumarin, 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene, and 4,4'-bis (2). -Benzoxazolyl) Stilbene and the like. Further, as a commercially available product, for example, "TINOPAL OB" (manufactured by BASF) and the like can be mentioned. These can be used alone or in combination of two or more. The amount of the fluorescent whitening agent added and the timing of the addition are appropriately set according to the purpose and application.
 そして、このような硬化性樹脂組成物は、上記の活性エネルギー線硬化性ポリウレタン樹脂を含むため、硬化前の粘度が比較的低く、また、硬化後の機械強度、耐候性およびヒステリシス特性に優れる。 Since such a curable resin composition contains the above-mentioned active energy ray-curable polyurethane resin, the viscosity before curing is relatively low, and the mechanical strength, weather resistance and hysteresis characteristics after curing are excellent.
 そのため、上記の活性エネルギー線硬化性ポリウレタン樹脂および硬化性樹脂組成物は、例えば、接着剤、コーティング剤、エラストマー、成形材料などとして、各種産業分野において、好適に用いられる。とりわけ、上記の活性エネルギー線硬化性ポリウレタン樹脂および硬化性樹脂組成物は、成形材料、より具体的には、3Dプリンターにおける成形材料として、好適に用いられる。 Therefore, the above-mentioned active energy ray-curable polyurethane resin and curable resin composition are suitably used in various industrial fields as, for example, adhesives, coating agents, elastomers, molding materials, and the like. In particular, the above-mentioned active energy ray-curable polyurethane resin and curable resin composition are suitably used as a molding material, more specifically, as a molding material in a 3D printer.
 硬化性樹脂組成物の成形物(硬化物)を得るには、例えば、硬化性樹脂組成物を所望形状に成形した後、活性エネルギー線を照射し、硬化性樹脂組成物を硬化させる。 To obtain a molded product (cured product) of the curable resin composition, for example, the curable resin composition is molded into a desired shape and then irradiated with active energy rays to cure the curable resin composition.
 活性エネルギー線としては、例えば、紫外線、電子線などが挙げられる。活性エネルギー線の照射量(積算光量)は、例えば、10×10-3J/cm以上、好ましくは、15×10-3J/cm以上であり、例えば、6J/cm以下、好ましくは、5J/cm以下である。 Examples of the active energy ray include ultraviolet rays and electron beams. The irradiation amount (integrated light amount) of the active energy ray is, for example, 10 × 10 -3 J / cm 2 or more, preferably 15 × 10 -3 J / cm 2 or more, and for example, 6 J / cm 2 or less, preferably. Is 5 J / cm 2 or less.
 なお、活性エネルギー線による硬化は、一括硬化であってもよく、分割硬化であってもよい。すなわち、1回の活性エネルギー線の照射により、硬化性樹脂組成物を硬化させてもよく、2回以上の活性エネルギー線の照射により、硬化性樹脂組成物を硬化させてもよい。 Note that the curing by the active energy ray may be a batch curing or a divisional curing. That is, the curable resin composition may be cured by irradiating the active energy ray once, or the curable resin composition may be cured by irradiating the curable resin composition twice or more.
 これにより、硬化性樹脂組成物からなる成形物(硬化物)が得られる。 As a result, a molded product (cured product) made of a curable resin composition can be obtained.
 また、活性エネルギー線の照射後、必要により、養生することができる。 Also, after irradiation with active energy rays, it can be cured if necessary.
 養生条件としては、特に制限されないが、温度条件が、例えば、10~150℃、好ましくは、10~100℃である。また、湿度条件が、例えば、20~80%、好ましくは、30~70%である。また、養生時間は、例えば、0.5~10日間、好ましくは、1~7日間である。 The curing conditions are not particularly limited, but the temperature conditions are, for example, 10 to 150 ° C, preferably 10 to 100 ° C. The humidity condition is, for example, 20 to 80%, preferably 30 to 70%. The curing time is, for example, 0.5 to 10 days, preferably 1 to 7 days.
 これにより、硬化性樹脂組成物からなる成形物(硬化物)が得られる。 As a result, a molded product (cured product) made of a curable resin composition can be obtained.
 得られる成形物(硬化物)は、硬化前の粘度が比較的低い上記の活性エネルギー線硬化性ポリウレタン樹脂を用いて得られるため、生産性に優れており、また、機械強度、耐候性およびヒステリシス特性に優れる。 Since the obtained molded product (cured product) is obtained by using the above-mentioned active energy ray-curable polyurethane resin having a relatively low viscosity before curing, it is excellent in productivity, and also has mechanical strength, weather resistance and hysteresis. Excellent characteristics.
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメ-タなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメ-タなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Next, the present invention will be described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. In addition, "part" and "%" are based on mass unless otherwise specified. In addition, specific numerical values such as a compounding ratio (content ratio), a physical property value, and a parameter used in the following description are described in the above-mentioned "mode for carrying out the invention", and the corresponding compounding. Percentage (content ratio), physical property value, parameter, etc. The upper limit value (value defined as "less than" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess") ) Can be substituted.
 実施例1~15および比較例1~11 Examples 1 to 15 and Comparative Examples 1 to 11
 (1)イソシアネート基末端プレポリマーの合成 (1) Synthesis of isocyanate group-terminated prepolymer
 表1~表5に記載の処方に従って、イソシアネート基末端プレポリマーを合成した。 The isocyanate group-terminated prepolymer was synthesized according to the formulations shown in Tables 1 to 5.
 より具体的には、表1~表5に記載の処方に従って、窒素雰囲気下、ガラス製のセパラブルフラスコに、ポリオール成分を投入し、次いで、ポリイソシアネート成分を、表1~表5に記載の当量比(NCO/OH)となる割合で投入し、その後、80℃に昇温した。 More specifically, according to the formulations shown in Tables 1 to 5, the polyol component was put into a glass separable flask under a nitrogen atmosphere, and then the polyisocyanate component was added to Tables 1 to 5. The mixture was charged at an equivalent ratio (NCO / OH), and then the temperature was raised to 80 ° C.
 その後、ウレタン化触媒としてのスタノクト(エチルヘキサン酸スズ(II)を、混合物に対して10ppmとなる割合で投入し、4時間反応させた。これにより、イソシアネート基末端プレポリマーと、未反応のポリイソシアネート成分とを含む粗生成物を得た。 Then, stannoct (tin (II ethylcaproate)) as a urethanization catalyst was added to the mixture at a ratio of 10 ppm and reacted for 4 hours, whereby the isocyanate group-terminated prepolymer and unreacted poly were added. A crude product containing an isocyanate component was obtained.
 (2)イソシアネート基末端プレポリマーの精製 (2) Purification of isocyanate group-terminated prepolymer
 イソシアネート基末端プレポリマーを含む粗生成物をスミス式薄膜蒸留装置にセットし、以下の条件で、イソシアネート基末端プレポリマーと、未反応のポリイソシアネート成分とを分離し、イソシアネート基末端プレポリマーを精製した。 The crude product containing the isocyanate group-terminated prepolymer is set in a Smith-type thin film distillation apparatus, and the isocyanate group-terminated prepolymer and the unreacted polyisocyanate component are separated under the following conditions to purify the isocyanate group-terminated prepolymer. bottom.
 温度条件:160~170℃ Temperature condition: 160-170 ° C
 圧力条件:70~100Pa Pressure condition: 70-100Pa
 供給流量:3.5-4g/min Supply flow rate: 3.5-4 g / min
 なお、比較例4では、薄膜蒸留しなかった。 In Comparative Example 4, thin film distillation was not performed.
 (3)活性エネルギー線硬化性ポリウレタン樹脂の合成 (3) Synthesis of active energy ray-curable polyurethane resin
 表1~表5に記載の処方に従って、大気下(ドライエアー下)、セパラブルフラスコに、精製したイソシアネート基末端プレポリマー(プレポリマー精製物)を投入し、次いで、ヒドロキシ基含有不飽和化合物を、ヒドロキシ基含有不飽和化合物のヒドロキシ基に対するイソシアネート基末端プレポリマーのイソシアネート基の当量比(NCO/OH)が1.0となる割合で投入し、70℃に昇温した。 Purified isocyanate group-terminated prepolymers (prepolymer purified products) are placed in separable flasks in the air (under dry air) according to the formulations shown in Tables 1 to 5, and then hydroxy group-containing unsaturated compounds are added. , The equivalent ratio (NCO / OH) of the isocyanate group of the isocyanate group-terminated prepolymer to the hydroxy group of the hydroxy group-containing unsaturated compound was 1.0, and the temperature was raised to 70 ° C.
 その後、ウレタン化触媒としてのスタノクト(エチルヘキサン酸スズ(II)を、イソシアネート基末端プレポリマーに対して200ppmとなる割合で投入し、イソシアネート基濃度が0.01%以下になるまで、4時間反応させた。 Then, stanoct (tin (II ethylhexanoate) as a urethanization catalyst was added to the isocyanate group-terminated prepolymer at a ratio of 200 ppm, and the reaction was carried out for 4 hours until the isocyanate group concentration became 0.01% or less. I let you.
 これにより、活性エネルギー線硬化性ポリウレタン樹脂を得た。 As a result, an active energy ray-curable polyurethane resin was obtained.
 また、得られた活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度を、E型粘度計(東機産業社製、TV25形粘度計、ローター角度:1°34’、ローター半径2.4cm)にて測定した。 Further, the viscosity of the obtained active energy ray-curable polyurethane resin at 25 ° C. was measured on an E-type viscometer (TV25 type viscometer manufactured by Toki Sangyo Co., Ltd., rotor angle: 1 ° 34', rotor radius 2.4 cm). Was measured.
 (4)硬化性樹脂組成物の調製 (4) Preparation of curable resin composition
 表1~表5に記載の処方に従って、活性エネルギー線硬化性ポリウレタン樹脂と、ラジカル反応性希釈剤と、光重合開始剤と、添加剤とを、合計100gとなるように褐色瓶に投入し、60℃で撹拌した。 According to the formulations shown in Tables 1 to 5, the active energy ray-curable polyurethane resin, the radical reactive diluent, the photopolymerization initiator, and the additive were put into a brown bottle so as to have a total weight of 100 g. The mixture was stirred at 60 ° C.
 これにより、硬化性樹脂組成物を得た。 As a result, a curable resin composition was obtained.
 また、得られた硬化性樹脂組成物の25℃における粘度を、E型粘度計(東機産業社製、TV25形粘度計、ローター角度:1°34’、ローター半径2.4cm)にて測定した。 Further, the viscosity of the obtained curable resin composition at 25 ° C. was measured with an E-type viscometer (TV25 type viscometer manufactured by Toki Sangyo Co., Ltd., rotor angle: 1 ° 34', rotor radius 2.4 cm). bottom.
 なお、比較例3、比較例4および比較例6の活性エネルギー線硬化性ポリウレタン樹脂は、高粘度であるため、ラジカル反応性希釈剤と混合できず、硬化性樹脂組成物を調製できなかった。 Since the active energy ray-curable polyurethane resins of Comparative Examples 3, 4 and 6 had high viscosities, they could not be mixed with the radical reactive diluent, and the curable resin composition could not be prepared.
 (5)硬化性樹脂組成物の硬化 (5) Curing of curable resin composition
 表1~表5に記載の方法で、硬化性樹脂組成物を硬化させ、成形物(硬化物)を得た。 The curable resin composition was cured by the methods shown in Tables 1 to 5 to obtain a molded product (cured product).
 なお、各方法における硬化条件を、以下に示す。 The curing conditions for each method are shown below.
 (a)UV (A) UV
 ポリプロピレン製の型(100×100×20mm)に硬化性樹脂組成物26gを流し込んだ。そして、窒素雰囲気下、UV照射機(アイテックシステム社製M UVBA-0.3×0.4×0.5UV405-J)にて、硬化性樹脂組成物の一方面にUVを3分照射した。その後、硬化性樹脂組成物の硬化物を型から取り出し、さらに、他方面にUVを3分照射した。 26 g of the curable resin composition was poured into a polypropylene mold (100 × 100 × 20 mm). Then, under a nitrogen atmosphere, one surface of the curable resin composition was irradiated with UV for 3 minutes with a UV irradiator (M UVBA-0.3 × 0.4 × 0.5 UV405-J manufactured by Aitec System Co., Ltd.). Then, the cured product of the curable resin composition was taken out from the mold, and the other surface was further irradiated with UV for 3 minutes.
 (b)高圧水銀灯 (B) High-pressure mercury lamp
 ・ポリプロピレン製の型(100×100×20mm)に硬化性樹脂組成物26gを流し込んだ。そして、高圧水銀灯(へレウス社製高圧水銀灯(カスタム品))にて、硬化性樹脂組成物の一方面のみに、活性エネルギー線を照射した。 ・ 26 g of the curable resin composition was poured into a polypropylene mold (100 × 100 × 20 mm). Then, with a high-pressure mercury lamp (high-pressure mercury lamp manufactured by Heleus (custom product)), only one surface of the curable resin composition was irradiated with active energy rays.
 なお、照度を630mW/cm(照度計(EIT社製UVICURE Plus II(UVA320~390nm)にて測定)とした。また、積算光量が4J/cmになるように照射時間を調整した。 The illuminance was set to 630 mW / cm 2 (measured with an illuminance meter (UVICURE Plus II (UVA 320 to 390 nm) manufactured by EIT), and the irradiation time was adjusted so that the integrated light intensity was 4 J / cm 2.
 (c)3Dプリンター (C) 3D printer
 市販の3Dプリンター(Phrozen社製Phrozen shuffle4K)を用いて、硬化性樹脂組成物を活性エネルギー線の照射により硬化(1回目の硬化(プレキュア))させ、膜厚100μmの層を積層させて、100×50×20mmの板を得た。なお、活性エネルギー線の出力は、0.6mW/cm(照度計(日置電機社製3664光パワーメータ(測定波長405nm)にて測定)とし、照射時間は、最初の10層に対して90秒、その後の層に対して40秒とした。 Using a commercially available 3D printer (Phrosen shuffle 4K manufactured by Phrozen), the curable resin composition is cured by irradiation with active energy rays (first curing (precure)), and layers having a film thickness of 100 μm are laminated to 100. A plate of × 50 × 20 mm was obtained. The output of the active energy ray is 0.6 mW / cm 2 (measured with a luminometer (measured with a 3664 optical power meter manufactured by Hioki Electric Co., Ltd. (measurement wavelength 405 nm)), and the irradiation time is 90 for the first 10 layers. Seconds, 40 seconds for subsequent layers.
 その後、得られた板を、さらに、硬化させた。 After that, the obtained plate was further cured.
 2回目の硬化(ポストキュア)では、高圧水銀灯(へレウス社製高圧水銀灯(カスタム品))にて、上記の板の一方面のみに、活性エネルギー線を照射した。 In the second curing (post-cure), a high-pressure mercury lamp (high-pressure mercury lamp manufactured by Heleus (custom product)) was used to irradiate only one surface of the above plate with active energy rays.
 なお、照度を630mW/cm(照度計(EIT社製UVICURE Plus II(UVA320~390nm)にて測定)とした。また、積算光量が4J/cmになるように照射時間を調整した。 The illuminance was set to 630 mW / cm 2 (measured with an illuminance meter (UVICURE Plus II (UVA 320 to 390 nm) manufactured by EIT), and the irradiation time was adjusted so that the integrated light intensity was 4 J / cm 2.
<評価>
 (1)機械物性
<Evaluation>
(1) Mechanical properties
 成形物の引張強度(MPa)および破断伸び(%)を、JIS K-6251(2010)の記載に準拠して測定した。 The tensile strength (MPa) and elongation at break (%) of the molded product were measured according to the description of JIS K-6251 (2010).
 また、成形物の引裂き強度(N/mm)を、JIS K-6252(2007)の記載に準拠して測定した。 Further, the tear strength (N / mm) of the molded product was measured according to the description of JIS K-6252 (2007).
 (2)耐光性(耐候性) (2) Light resistance (weather resistance)
 成形物を、以下の条件で耐光試験し、試験前後のb値差(Δb値)を色差計(東京電色社製、カラーエースMODEL TC-1)にて測定した。 The molded product was subjected to a light resistance test under the following conditions, and the b value difference (Δb value) before and after the test was measured with a color difference meter (Color Ace MODEL TC-1 manufactured by Tokyo Denshoku Co., Ltd.).
 試験機:Atlas社Ci4000 Testing machine: Atlas Ci4000
 放射照度:44W/m Irradiance: 44 W / m 2
 波長範囲:300-400nm Wavelength range: 300-400 nm
 ブラックパネル温度:57℃ Black panel temperature: 57 ° C
 降雨条件:なし Rain condition: None
 試験湿度:制御なし Test humidity: no control
 フィルター(内/外):ディライトフィルター Filter (inside / outside): Delight filter
 試験時間:40h Test time: 40h
 (3)ヒステリシス損失 (3) Hysteresis loss
 成形物のヒステリシス(%)を、JIS K7312(1996)に準拠して測定した。なお、測定条件を以下に示す。 Hysteresis (%) of the molded product was measured according to JIS K7312 (1996). The measurement conditions are shown below.
 温度:23℃ Temperature: 23 ° C
 速度:0.83mm/s Speed: 0.83 mm / s
 試験片形状:JIS K73121(1996)の3号形 Test piece shape: JIS K73121 (1996) No. 3 type
 つかみ具距離:55mm Grab tool distance: 55 mm
 標線間距離:20mm Distance between marked lines: 20 mm
 伸び:100% Growth: 100%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、表中の略号の詳細を下記する。 The details of the abbreviations in the table are shown below.
 1,3-H6XDI:1,3-水添キシリレンジイソシアネート、三井化学製 1,3-H6XDI: 1,3-Hydrogenated xylylene diisocyanate, manufactured by Mitsui Chemicals
 IPDI:イソホロンジイソシアネート、商品名VESTANAT IPDI、Evonik製 IPDI: Isophorone diisocyanate, trade name VESTANAT IPDI, made by Evonik
 H12MDI:4,4’-メチレンビス(シクロヘキシルイソシアネート)、商品名VESTANAT H12MDI、Evonik製 H12MDI: 4,4'- methylene bis (cyclohexyl isocyanate), the trade name VESTANAT H 12 MDI, manufactured by Evonik
 TDI:2,4-トリレンジイソシアネート(80%)および2,6-トリレンジイソシアネート(20%)の混合物、商品名TDI-80、三井化学製 TDI: Mixture of 2,4-tolylene diisocyanate (80%) and 2,6-toluene diisocyanate (20%), trade name TDI-80, manufactured by Mitsui Chemicals
 ED-37A:ポリオキシエチレン・ポリオキシプロピレン共重合体、平均官能基数2、数平均分子量3000、不飽和度0.06meq./g、三井化学SKCポリウレタン製 ED-37A: Polyoxyethylene / polyoxypropylene copolymer, average number of functional groups 2, number average molecular weight 3000, degree of unsaturation 0.06 meq. / G, made of Mitsui Chemicals SKC polyurethane
 D2000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量2000、不飽和度0.03meq./g、三井化学SKCポリウレタン製 D2000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 2000, degree of unsaturation 0.03 meq. / G, made of Mitsui Chemicals SKC polyurethane
 D3000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量3000、不飽和度0.05meq./g、三井化学SKCポリウレタン製 D3000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 3000, degree of unsaturation 0.05 meq. / G, made of Mitsui Chemicals SKC polyurethane
 DL4000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量4000、不飽和度0.01meq./g、三井化学SKCポリウレタン製 DL4000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 4000, degree of unsaturation 0.01 meq. / G, made of Mitsui Chemicals SKC polyurethane
 DL6000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量6000、不飽和度0.01meq./g、三井化学SKCポリウレタン製 DL6000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 6000, degree of unsaturation 0.01 meq. / G, made of Mitsui Chemicals SKC polyurethane
 DL10000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量10000、不飽和度0.01meq./g、三井化学SKCポリウレタン製 DL10000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 10000, degree of unsaturation 0.01 meq. / G, made of Mitsui Chemicals SKC polyurethane
 DL12000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量12000、不飽和度0.02meq./g、三井化学SKCポリウレタン製 DL12000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 12000, degree of unsaturation 0.02 meq. / G, made of Mitsui Chemicals SKC polyurethane
 DL13000:ポリオキシプロピレンポリオール、平均官能基数2、数平均分子量13000、不飽和度0.02meq./g、三井化学SKCポリウレタン製 DL13000: Polyoxypropylene polyol, average number of functional groups 2, number average molecular weight 13000, degree of unsaturation 0.02 meq. / G, made of Mitsui Chemicals SKC polyurethane
 HEA:ヒドロキシエチルアクリレート HEA: Hydroxyethyl acrylate
 IBXA:ラジカル反応性希釈剤、イソボルニルアクリレート、脂環式炭化水素骨格を有する反応性化合物、大阪有機化学工業製 IBXA: Radical reactive diluent, isobornyl acrylate, reactive compound with alicyclic hydrocarbon skeleton, manufactured by Osaka Organic Chemical Industry Co., Ltd.
 ビスコート200:ラジカル反応性希釈剤、環状トリメチロールプロパンホルマールアクリレート(別名(5-エチル-1,3-ジオキサン-5-イル)メチルアクリラート)、脂環式エーテル骨格を有する反応性化合物、大阪有機化学工業製 Viscoat 200: Radical reactive diluent, cyclic trimethylolpropane formal acrylate (also known as (5-ethyl-1,3-dioxane-5-yl) methylacrylate), reactive compound with alicyclic ether skeleton, Osaka Organic Made by Chemical Industry
 AOMA:ラジカル反応性希釈剤、2-(アリルオキシメチル)アクリル酸メチル、(メタ)アクリロイル基およびビニル基併有化合物、日本触媒製 AOMA: Radical reactive diluent, methyl 2- (allyloxymethyl) acrylate, compound with (meth) acryloyl group and vinyl group, manufactured by Nippon Shokubai
 FA-513AS:ラジカル反応性希釈剤、ジシクロペンタニルアクリレート、脂環式炭化水素骨格を有する反応性化合物、日立化成製 FA-513AS: Radical reactive diluent, dicyclopentanyl acrylate, reactive compound having an alicyclic hydrocarbon skeleton, manufactured by Hitachi Kasei
 TBCHA:ラジカル反応性希釈剤、4-tert-ブチルシクロヘキシルアクリレート、脂環式炭化水素骨格を有する反応性化合物、KJケミカルズ製 TBCHA: Radical-reactive diluent, 4-tert-butylcyclohexyl acrylate, reactive compound with alicyclic hydrocarbon skeleton, manufactured by KJ Chemicals
 DEAA:ラジカル反応性希釈剤、N,N-ジエチルアクリルアミド、アミド骨格を有する反応性化合物、KJケミカルズ製 DEAA: Radical reactive diluent, N, N-diethylacrylamide, reactive compound with amide skeleton, manufactured by KJ Chemicals
 TMPTA:ラジカル反応性希釈剤、トリメチロールプロパントリアクリレート、ポリ(メタ)アクリレート、大阪有機化学工業製 TMPTA: Radical reactive diluent, trimethylolpropane triacrylate, poly (meth) acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.
 TPO:光重合開始剤、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、東京化成工業社製 TPO: Photopolymerization initiator, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, manufactured by Tokyo Chemical Industry Co., Ltd.
 Irgacure819:光重合開始剤、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、BASF製 Irgacure819: Photopolymerization initiator, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, made by BASF
 Irganox245:ヒンダードフェノール系酸化防止剤:エチレンビス(オキシエティレン)ビス-(3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート、BASF製 Irganox 245: Hindered phenolic antioxidant: Ethylene bis (oxyethylene) bis- (3- (5-tert-butyl-4-hydroxy-m-trill) propionate, made by BASF
  実施例17
 実施例8において、上記表中のビスコート200に代えて、MEDOL-10(ラジカル反応性希釈剤、(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、脂環式エーテル骨格を有する反応性化合物、大阪有機化学工業社製)を配合した。その結果、成形物のΔb値が、0.7に向上した。
Example 17
In Example 8, instead of the biscoat 200 in the above table, MEDOL-10 (radical reactive diluent, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate, alicyclic ether A reactive compound having a skeleton, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was blended. As a result, the Δb value of the molded product was improved to 0.7.
  実施例18
 実施例1において、上記表中のビスコート200に代えて、AOMAを配合した。また、上記表中のAOMAに代えて、MEDOL-10を配合した。その結果、成形物の破断強度が、9.6MPaに向上した。
Example 18
In Example 1, AOMA was blended in place of the biscoat 200 in the above table. Further, instead of AOMA in the above table, MEDOL-10 was blended. As a result, the breaking strength of the molded product was improved to 9.6 MPa.
  実施例19
 実施例1において、上記表中のビスコート200に代えて、AOMAを配合した。また、上記表中のAOMAに代えて、4HBA(ラジカル反応性希釈剤、4-ヒドロキシブチルアクリレート、ヒドロキシ基含有(メタ)アクリレート、大阪有機化学工業社製)を配合した。その結果、成形物の引裂き強度が36N/mmに向上した。
Example 19
In Example 1, AOMA was blended in place of the biscoat 200 in the above table. Further, instead of AOMA in the above table, 4HBA (radical reactive diluent, 4-hydroxybutyl acrylate, hydroxy group-containing (meth) acrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was blended. As a result, the tear strength of the molded product was improved to 36 N / mm.
  実施例20
 実施例8において、上記表中のビスコート200に代えて、ACMO-LI(ラジカル反応性希釈剤、アクリロイルモルフォリン、脂環式エーテル骨格を有する反応性化合物、KJケミカルズ社製)
Example 20
In Example 8, instead of the biscoat 200 in the above table, ACMO-LI (radical reactive diluent, acryloylmorpholine, reactive compound having an alicyclic ether skeleton, manufactured by KJ Chemicals).
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims described below.
 本発明の活性エネルギー線硬化性ポリウレタン樹脂、硬化性樹脂組成物、および、活性エネルギー線硬化性ポリウレタン樹脂は、例えば、接着剤、コーティング剤、エラストマーおよび成形材料において、好適に用いられる。
 
The active energy ray-curable polyurethane resin, the curable resin composition, and the active energy ray-curable polyurethane resin of the present invention are preferably used in, for example, adhesives, coating agents, elastomers and molding materials.

Claims (4)

  1.  イソシアネート基末端プレポリマーと、ヒドロキシ基含有不飽和化合物とを含む樹脂原料の反応生成物を含む活性エネルギー線硬化性ポリウレタン樹脂であり、
     前記イソシアネート基末端プレポリマーは、
     キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含むポリイソシアネート成分と、
     数平均分子量6000以上12000以下のポリオキシアルキレンポリオールを含むポリオール成分と
     を含むプレポリマー原料の反応生成物を含み、
     前記活性エネルギー線硬化性ポリウレタン樹脂の25℃における粘度が、2万mPa・s以上4万mPa・s以下である
     ことを特徴とする、活性エネルギー線硬化性ポリウレタン樹脂。
    An active energy ray-curable polyurethane resin containing a reaction product of a resin raw material containing an isocyanate group-terminated prepolymer and a hydroxy group-containing unsaturated compound.
    The isocyanate group-terminated prepolymer is
    Polyisocyanate components, including xylylene diisocyanates and / or hydrogenated xylylene diisocyanates,
    It contains a reaction product of a prepolymer raw material containing a polyol component containing a polyoxyalkylene polyol having a number average molecular weight of 6000 or more and 12000 or less.
    An active energy ray-curable polyurethane resin characterized in that the viscosity of the active energy ray-curable polyurethane resin at 25 ° C. is 20,000 mPa · s or more and 40,000 mPa · s or less.
  2.  請求項1に記載の活性エネルギー線硬化性ポリウレタン樹脂と、
     ラジカル反応性希釈剤と
     を含有することを特徴とする、硬化性樹脂組成物。
    The active energy ray-curable polyurethane resin according to claim 1 and
    A curable resin composition comprising a radical reactive diluent.
  3.  前記ラジカル反応性希釈剤が、脂環式エーテル骨格を有する(メタ)アクリレートを含有する
     ことを特徴とする、請求項2に記載の硬化性樹脂組成物。
    The curable resin composition according to claim 2, wherein the radical-reactive diluent contains a (meth) acrylate having an alicyclic ether skeleton.
  4.  キシリレンジイソシアネートおよび/または水添キシリレンジイソシアネートを含むポリイソシアネート成分と、数平均分子量6000以上12000以下のポリオキシアルキレンポリオールを含むポリオール成分とを含むプレポリマー原料を反応させ、イソシアネート基末端プレポリマーを得る工程と、
     前記イソシアネート基末端プレポリマーを、蒸留により精製する工程と、
     精製された前記イソシアネート基末端プレポリマーとヒドロキシ基含有不飽和化合物とを含む樹脂原料を反応させ、25℃における粘度が2万mPa・s以上4万mPa・s以下の活性エネルギー線硬化性ポリウレタン樹脂を得る工程と
     を備えることを特徴とする、活性エネルギー線硬化性ポリウレタン樹脂の製造方法。 
    A prepolymer raw material containing a polyisocyanate component containing xylylene diisocyanate and / or hydrogenated xylylene diisocyanate and a polyol component containing a polyoxyalkylene polyol having a number average molecular weight of 6000 or more and 12000 or less is reacted to obtain an isocyanate group-terminated prepolymer. The process of obtaining and
    A step of purifying the isocyanate group-terminated prepolymer by distillation, and
    An active energy ray-curable polyurethane resin having a viscosity at 25 ° C. of 20,000 mPa · s or more and 40,000 mPa · s or less by reacting a resin raw material containing the purified isocyanate group-terminated prepolymer with a hydroxy group-containing unsaturated compound. A method for producing an active energy ray-curable polyurethane resin, which comprises a step of obtaining an active energy ray-curable polyurethane resin.
PCT/JP2021/013216 2020-03-30 2021-03-29 Active energy ray–curable polyurethane resin, curable resin composition, and production method for active energy ray–curable polyurethane resin WO2021200794A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/799,145 US20230078175A1 (en) 2020-03-30 2021-03-29 Active energy ray-curable polyurethane resin, curable resin composition, and production method for active energy ray-curable polyurethane resin
EP21781193.4A EP4130085A1 (en) 2020-03-30 2021-03-29 Active energy ray-curable polyurethane resin, curable resin composition, and production method for active energy ray-curable polyurethane resin
JP2022512191A JP7324939B2 (en) 2020-03-30 2021-03-29 Active energy ray-curable polyurethane resin, curable resin composition, and method for producing active energy ray-curable polyurethane resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060857 2020-03-30
JP2020-060857 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200794A1 true WO2021200794A1 (en) 2021-10-07

Family

ID=77929427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013216 WO2021200794A1 (en) 2020-03-30 2021-03-29 Active energy ray–curable polyurethane resin, curable resin composition, and production method for active energy ray–curable polyurethane resin

Country Status (5)

Country Link
US (1) US20230078175A1 (en)
EP (1) EP4130085A1 (en)
JP (1) JP7324939B2 (en)
TW (1) TW202204463A (en)
WO (1) WO2021200794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063130A1 (en) * 2022-09-22 2024-03-28 三井化学株式会社 Resin composition, cured resin product and manufacturing method of cured resin product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324135A (en) * 1996-06-05 1997-12-16 Japan Synthetic Rubber Co Ltd Composition for forming coating film
JPH11315265A (en) 1997-12-24 1999-11-16 Takeda Chem Ind Ltd Photocurable pseudoadhesive and information laminate prepared by using the same
JP2006104296A (en) * 2004-10-04 2006-04-20 Nitto Denko Corp Adhesive composition, adhesive layer and adhesive sheet manufactured using the adhesive composition
JP2010275470A (en) * 2009-05-29 2010-12-09 Mitsui Chemicals Inc Curable polyurethane resin composition and cured material
JP2018135479A (en) * 2017-02-23 2018-08-30 ジャパンコンポジット株式会社 Radical curable resin composition, protective layer, and building construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324135A (en) * 1996-06-05 1997-12-16 Japan Synthetic Rubber Co Ltd Composition for forming coating film
JPH11315265A (en) 1997-12-24 1999-11-16 Takeda Chem Ind Ltd Photocurable pseudoadhesive and information laminate prepared by using the same
JP2006104296A (en) * 2004-10-04 2006-04-20 Nitto Denko Corp Adhesive composition, adhesive layer and adhesive sheet manufactured using the adhesive composition
JP2010275470A (en) * 2009-05-29 2010-12-09 Mitsui Chemicals Inc Curable polyurethane resin composition and cured material
JP2018135479A (en) * 2017-02-23 2018-08-30 ジャパンコンポジット株式会社 Radical curable resin composition, protective layer, and building construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063130A1 (en) * 2022-09-22 2024-03-28 三井化学株式会社 Resin composition, cured resin product and manufacturing method of cured resin product

Also Published As

Publication number Publication date
JPWO2021200794A1 (en) 2021-10-07
TW202204463A (en) 2022-02-01
JP7324939B2 (en) 2023-08-10
EP4130085A1 (en) 2023-02-08
US20230078175A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR101798089B1 (en) Radical-curable hot-melt urethane resin composition and moldings for optical use
JP6381474B2 (en) Curable polyurethane resin composition and cured product
KR101575698B1 (en) Method for manufacturing cured coating film, optical film, and method for manufacturing thin-film formed body
KR20150009605A (en) Ultraviolet curable urethane acrylate composition, thin film molded body, optical film and method for manufacturing thin film molded body
US20090306240A1 (en) Process for synthesis of telechelic urethane acrylate uv curable pre-polymeric materials
US11407910B2 (en) Rubber composition for additive manufacturing
KR20180121545A (en) Curable urethane acrylate composition
US20120004351A1 (en) Crosslinked Thermoplastic Polyurethane Elastomers
JP5335559B2 (en) Curable polyurethane resin composition and cured product
JP2014024880A (en) Uv-curable urethane acrylate resin composition, thin film molded article, optical film, and production method of thin film molded article
JP7324939B2 (en) Active energy ray-curable polyurethane resin, curable resin composition, and method for producing active energy ray-curable polyurethane resin
JP7461774B2 (en) Curable resin composition
JP2020084093A (en) Highly safe urethane acrylate and method for producing the same
JP7276118B2 (en) Adhesive composition and laminate
KR102124853B1 (en) UV-curable urethane acrylate polymer using mixture of polyester polyols and process for the preparation thereof
JP2006063144A (en) Liquid curable resin composition
EP0284964B1 (en) Polyisocyanate composition
JP2007084820A (en) Radiation-curable polyurethane resin composition having controlled structure
US11421066B2 (en) Polymer composition for stereolithography
JP2012246410A (en) Light guiding polyurethane resin and light guide member
KR102568091B1 (en) Acrylic-polyurethane compound for 3D printing and UV curing liquid composition comprising the same
KR20240003278A (en) Composition for Preparing Stretchable Film with High Strength and Stretchable Film Prepared Using Same
KR20170105664A (en) Uv curable coating composition with excellent yellowing resistance and the deco sheet and method for manufacturing the same
WO2023204068A1 (en) Adhesive composition, cured product of said adhesive composition, and method for producing said adhesive composition
WO2024033289A1 (en) A photocurable oligomer containing uretdione groups, method of preparing the oligomer and dual-cure resin composition containing the oligomer thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021781193

Country of ref document: EP

Effective date: 20221031