WO2021200382A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2021200382A1
WO2021200382A1 PCT/JP2021/011912 JP2021011912W WO2021200382A1 WO 2021200382 A1 WO2021200382 A1 WO 2021200382A1 JP 2021011912 W JP2021011912 W JP 2021011912W WO 2021200382 A1 WO2021200382 A1 WO 2021200382A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
heat exchange
total heat
formula
exchange element
Prior art date
Application number
PCT/JP2021/011912
Other languages
English (en)
French (fr)
Inventor
直高 西尾
臣治 前谷
隆広 榊原
良典 家城
武馬 中澤
勝哉 葛西
敬久 末岡
Original Assignee
株式会社ダイセル
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020164298A external-priority patent/JP7142065B2/ja
Priority claimed from JP2020164275A external-priority patent/JP7146867B2/ja
Application filed by 株式会社ダイセル, ダイキン工業株式会社 filed Critical 株式会社ダイセル
Priority to CA3177362A priority Critical patent/CA3177362A1/en
Priority to EP21779861.0A priority patent/EP4129642A4/en
Priority to AU2021249589A priority patent/AU2021249589A1/en
Priority to US17/915,245 priority patent/US20230129711A1/en
Priority to CN202180026508.7A priority patent/CN115666924A/zh
Publication of WO2021200382A1 publication Critical patent/WO2021200382A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F220/68Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • This disclosure relates to a laminate. More specifically, the present invention relates to a laminate comprising a porous base material and a moisture permeable film provided on at least one surface of the porous base material.
  • the present application was filed in Japan on March 31, 2020, Japanese Patent Application No. 2020-61735, filed in Japan on March 31, 2020, Japanese Patent Application No. 2020-61833, and filed in Japan on September 30, 2020. Claim the priority of Japanese Patent Application No. 2020-164275 and Japanese Patent Application No. 2020-164298 filed in Japan on September 30, 2020, the contents of which are incorporated herein by reference.
  • a heat exchange type ventilation device that exchanges heat between supply air and exhaust air during ventilation is known.
  • a heat exchange sheet is used for heat exchange in the heat exchange type ventilator.
  • the heat exchange sheet is a partition member that physically separates air supply and exhaust, and has low air permeability (gas barrier property) to prevent air supply and exhaust from mixing, and air supply and exhaust. Heat transfer is required for heat exchange between them.
  • the heat exchange sheet (partition member for total heat exchange element) used in the total heat exchanger which exchanges humidity (latent heat) as well as temperature (sensible heat) between air supply and exhaust, has even higher transparency. It is also required to have wetness.
  • a moisture permeable film formed of a deliquescent low-molecular-weight compound such as calcium chloride, lithium chloride, sulfuric acid, or sodium hydroxide can be considered. Be done. Among them, a moisture permeable membrane formed of calcium chloride or lithium chloride is widely used from the viewpoint of safety. However, the hygroscopic membrane formed from a deliquescent compound or a low molecular weight compound has high solubility in water and is inferior in water resistance.
  • heat exchange sheets used in the total heat exchanger include a porous base material and a hydrophilic polymer compound provided on the surface and inside of the porous base material, and the above-mentioned hydrophilic polymer compound is ,
  • a partition member for a partition member for a total heat exchange element which is a polymer of a compound having a quaternary ammonium group and an amide group, is known (see Patent Document 1).
  • the hydrophilic polymer compound using the polymer of the compound having a quaternary ammonium group and an amide group described in Patent Document 1 has insufficient moisture permeability.
  • the moisture permeability in a low temperature and low humidity environment was insufficient.
  • an object of the present disclosure is to provide a laminate having low air permeability and excellent moisture permeability.
  • the inventors of the present disclosure are provided on at least one surface of the porous base material and the above-mentioned porous base material, and are provided with moisture permeability formed from a specific copolymer. It has been found that the laminate provided with the film has low air permeability and excellent moisture permeability. The present disclosure relates to what has been completed based on these findings.
  • the present disclosure comprises a porous substrate and a moisture permeable film provided on at least one surface of the porous substrate, and the moisture permeable film has a side chain containing a hydrophilic group as a functional group.
  • a laminate formed from a thermoplastic copolymer is provided.
  • the hydrophilic group is preferably a betaine group.
  • the above copolymer further has a hydrophobic functional group in the side chain.
  • the copolymer has a structural unit represented by the following formula (1) as a structural unit having a side chain containing the betaine group and a structural unit having the hydrophobic functional group in the side chain by the following formula (2). From a copolymer having a structural unit represented by the above formula (1) and a molar ratio of the structural unit represented by the above formula (2) to the structural unit represented by the above formula (2) of 1/100 to 100/1. It is preferably formed.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X represents a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • Y represents a divalent linear hydrocarbon group having 1 to 4 carbon atoms.
  • Z 1 represents O or NH.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 3 represents a hydrocarbon group having 2 or more carbon atoms
  • Z 2 represents O or NH.
  • the cation in the above formula (1) is preferably an ammonium ion.
  • the anion in the above formula (1) is preferably a phosphate ion, a sulfate ion, or a carbonate ion.
  • the above formula (1) may include a group represented by the following formula (1-1), a group represented by the following formula (1-2), or a group represented by the following formula (1-3). preferable.
  • X and Y are the same as above, and the bond on the left side of the carbonyl carbon atom is bonded to the carbon atom having R 1 in formula (1).
  • R 5 , R 6 , and R 7 represent the same or different alkyl groups having 1 to 4 carbon atoms.
  • R 8 and R 9 represent alkyl groups having 1 to 4 carbon atoms, which are the same or different.
  • the weight average molecular weight of the above copolymer is preferably 20,000 to 2 million.
  • the copolymer is a random copolymer of a monomer forming a structural unit represented by the above formula (1) and a monomer forming a structural unit represented by the above formula (2). Is preferable.
  • the surface of the porous substrate on the side provided with the moisture permeable membrane is hydrophilized.
  • the surface of the moisture permeable membrane has a structure in which a hydrophilic portion and a hydrophobic portion are phase-separated, and it is preferable that the maximum diameter of the hydrophilic portion is 50 nm or less on the surface of the moisture permeable membrane.
  • the present disclosure also provides a partition member for a total heat exchange element made of the above-mentioned laminated body.
  • the present disclosure also includes a plurality of partition members for the above-mentioned total heat exchange element, and also includes a plurality of partition members.
  • a space holding member is provided which is arranged between the laminated partition members for the total heat exchange element and holds the space between the adjacent partition members for the total heat exchange element.
  • a total heat exchange element in which a first air flow path and a second air flow path are alternately formed with the partition member for the total heat exchange element interposed therebetween.
  • the present disclosure also comprises the above total heat exchange element.
  • Ventilation device in which the air supply supplied from the outside to the room flows through the first air flow path of the total heat exchange element, and the exhaust gas discharged from the room to the outside flows through the second air flow path of the total heat exchange element. I will provide a.
  • the laminate of the present disclosure has low air permeability and excellent moisture permeability. It also has excellent moisture permeability in a low temperature and low humidity environment. Therefore, the laminate of the present disclosure can be particularly preferably used as a partition member for a total heat exchange element.
  • FIG. 8 is a perspective view showing a VIII-VIII cross section of FIG.
  • the laminate according to the embodiment of the present disclosure includes at least a porous base material and a moisture permeable film provided on at least one surface of the porous base material.
  • the moisture permeable membrane may be provided on one side of the porous base material, or may be provided on both sides.
  • the laminated body may have a structure in which the moisture permeable membrane is sandwiched between the two porous substrates. That is, the porous base material may be provided on both sides of the moisture permeable membrane.
  • the two porous substrates may be the same porous substrate, or may be porous substrates having different materials, thicknesses, and the like.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the laminate of the present disclosure.
  • the laminate (40) includes a porous base material (41) and a moisture permeable film (42) provided on one surface (41a) of the porous base material (41).
  • the moisture permeable membrane is formed from a thermoplastic copolymer having a side chain containing a hydrophilic group as a functional group.
  • the copolymer has a hydrophilic portion by having a side chain containing the hydrophilic group. Therefore, it is presumed that a hydrophilic portion is formed in the moisture permeable membrane formed from the copolymer, and the hydrophilic portion functions as a water conducting path to allow more water vapor to pass through, and is excellent in moisture permeability.
  • NS thermoplastic copolymer having a side chain containing a hydrophilic group as a functional group.
  • a moisture-permeable film formed of calcium chloride or potassium chloride tends to have an extremely low water absorption amount and inferior humidity permeability in a low-temperature and low-humidity environment, but is formed from the above-mentioned copolymer.
  • the moisture-permeable film is excellent in moisture permeability without extremely reducing the amount of water absorbed even in a low-temperature and low-humidity environment.
  • the hydrophilic group contained in the side chain include a betaine group, a urethane group, a hydroxyl group, a carboxyl group, a sulfonic acid group, an amino group and the like. Among them, they are amphoteric and have extremely high hydrophilicity. Therefore, a betaine group is preferable.
  • the side chain containing the hydrophilic group may have only one type, or may have two or more types.
  • thermoplastic copolymer means that the polymer main chain is a thermoplastic resin.
  • thermoplastic resin include acrylic resins, cellulose resins, polyester resins such as polybutylene terephthalate, polyether resins, polyurethane resins, polyvinyl chloride resins, polyethylene, polystyrene resins, and polyamide resins.
  • Polyacetal resin polycarbonate resin, polyphenylene sulfide resin, polyether ether ketone, polyimide resin, polytetrafluoroethylene resin, polycaprolactone, polylactic acid and the like.
  • the above copolymer preferably further has a hydrophobic functional group in the side chain.
  • the copolymer has a hydrophobic portion by having a side chain containing a hydrophobic functional group in addition to the side chain containing a betaine group.
  • a hydrophobic portion is formed together with the hydrophilic portion in the moisture permeable membrane formed from the copolymer. Therefore, in the moisture permeable membrane formed from the above-mentioned copolymer, the hydrophilic portion and the hydrophobic portion form a phase-separated structure, and the hydrophilic portion functions as a water conducting path to allow more water vapor to pass therethrough. It is presumed to have better moisture permeability.
  • the hydrophobic functional group include a hydrocarbon group having 2 or more carbon atoms.
  • the hydrophobic functional group may have only one kind, or may have two or more kinds.
  • the copolymer has a structural unit represented by the following formula (1) as a structural unit having a side chain containing the betaine group and a structural unit having the hydrophobic functional group in the side chain by the following formula (2). It is preferable to include the structural unit represented. Further, in the above-mentioned copolymer, the molar ratio of the structural unit represented by the above formula (1) to the structural unit represented by the above formula (2) is preferably 1/100 to 100/1.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X represents a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • Y represents a divalent linear hydrocarbon group having 1 to 4 carbon atoms.
  • Z 1 represents O or NH.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 3 represents a hydrocarbon group having 2 or more carbon atoms
  • Z 2 represents O or NH.
  • the above-mentioned copolymer has an amphoteric and extremely hydrophilic group derived from ⁇ and ⁇ , and has a hydrophilic portion. Further, the copolymer has an alkyl ester portion having 2 or more carbon atoms, which is a hydrophobic portion, by containing the structural unit represented by the above formula (2). When the molar ratio is within the above range, the hydrophilic portion and the hydrophobic portion are present in a well-balanced manner in the copolymer.
  • the hydrophilic portion and the hydrophobic portion form a phase-separated structure, and the hydrophilic portion functions as a water conducting path to allow more water vapor to pass therethrough. It is presumed to have excellent moisture permeability. Further, in general, a moisture-permeable film formed of calcium chloride or potassium chloride tends to have an extremely low water absorption amount and inferior humidity permeability in a low-temperature and low-humidity environment, but is formed from the above-mentioned copolymer.
  • the moisture-permeable film is excellent in moisture permeability without extremely reducing the amount of water absorbed even in a low-temperature and low-humidity environment. Further, when the ratio of the hydrophobic portion to the hydrophilic portion and the hydrophobic portion is large in these molar ratios, it is possible to obtain a moisture permeable membrane having excellent moisture permeability, which is difficult to dissolve in water, and which is also excellent in water resistance. Furthermore, since the pH of the aqueous solution of the copolymer is weakly acidic, metal corrosion is less likely to occur as compared with a conventional moisture-permeable film using a strongly acidic resin having an acidic functional group such as a sulfonyl group (). That is, it has excellent metal corrosion resistance).
  • Examples of the structural unit including the structural unit represented by the above formula (1) include the structural unit represented by the following formula (1').
  • R 4 represents a divalent hydrocarbon group.
  • R 1 , X, Y, Z 1 , ⁇ , and ⁇ are the same as above. ]
  • R 4 represents a divalent hydrocarbon group, and examples thereof include an alkylene group having 1 to 4 carbon atoms such as a methylene group and an ethylene group.
  • Examples of the structural unit represented by the above formula (1') when R 4 is a methylene group include a structural unit derived from an acrylic acid ester and a structural unit derived from a methacrylic acid ester.
  • the divalent hydrocarbon group may have a substituent.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • X represents a divalent hydrocarbon group having 1 to 4 carbon atoms, and examples thereof include an alkylene group, an alkaneylene group, and an alkynylene group.
  • alkylene group include a linear or branched C 1-4 alkylene group such as a methylene group, a dimethylene group, a trimethylene group, an isopropylene group and a tetramethylene group.
  • alkenylene group examples include a linear or branched C 2-4 alkenylene group such as an ethynylene group, a 1-propenylene group, an isopropenylene group, a 1-butenylene group, a 2-butenylene group, and a 3-butenylene group. Can be mentioned.
  • a linear or branched alkylene group is preferable, and a linear alkylene group is more preferable.
  • Y represents a divalent linear hydrocarbon group having 1 to 4 carbon atoms, and examples thereof include an alkylene group, an alkenylene group, and an alkynylene group.
  • the alkylene group include a methylene group, a dimethylene group, a trimethylene group and a tetramethylene group.
  • the alkenylene group include an ethynylene group, a 1-propenylene group, a 1-butenylene group and the like.
  • the divalent linear hydrocarbon group an alkylene group is preferable, and a linear alkylene group is more preferable.
  • Z 1 represents O or NH. That is, Z 1 which is a divalent bonding group is an -O- (ether bond) or an amino bond (-NH-), and is combined with an adjacent carbonyl carbon in the structural unit represented by the above formula (1). To form an ester bond or an amide bond.
  • ⁇ and ⁇ are combinations of cations and anions. That is, ⁇ is a cation and ⁇ is an anion, or ⁇ is an anion and ⁇ is a cation. Ammonium ion is preferable as the cation.
  • phosphate (-PO 4 -) (-SO 3 -), sulfate ion, or carbonate ion - is preferably (-CO 2).
  • the anion is a phosphate ion
  • the structural unit represented by the above formula (1) contains phosphobetaine
  • the anion is a sulfate ion
  • the structural unit represented by the above formula (1) is sulfobetaine.
  • the anion is a carbonate ion
  • the structural unit represented by the above formula (1) contains carbobetaine.
  • the anion may have a resonance structure in the copolymer.
  • the cation is an ammonium ion
  • the anion is phosphate ion (-PO 4 -), sulfate ion (-SO 3 -), or carbonate ions (-CO 2 -)
  • Examples of the structural unit include those having a group represented by the following formulas (1-1) to (1-3). [In formulas (1-1) to (1-3), X and Y are the same as above, and the bond on the left side of the carbonyl carbon atom (the carbonyl carbon atom on the left side in formula (1-3)) is the formula. (1) Bonds to the carbon atom having R 1 in.
  • R 5 , R 6 , and R 7 represent the same or different alkyl groups having 1 to 4 carbon atoms.
  • R 8 and R 9 represent alkyl groups having 1 to 4 carbon atoms, which are the same or different.
  • R 5 , R 6 , and R 7 represent the same or different alkyl groups having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group and the like. Of these, a methyl group is preferable.
  • X is a dimethylene group and Y is a dimethylene group.
  • Examples of the monomer forming the structural unit represented by the above formula (1-1) include 2-methacryloyloxyethyl phosphorylcholine.
  • Examples of the structural unit represented by the above formula (1') when the group represented by the above formula (1-1) is included include the structural unit represented by the following formula (1'-1). [In equation (1'-1), R 1 , R 5 , R 6 , R 7 , X, and Y are the same as above. ]
  • R 8 and R 9 represent alkyl groups having 1 to 4 carbon atoms, which are the same or different.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group and the like. Of these, a methyl group is preferable.
  • X is a trimethylene group and Y is a tetramethylene group.
  • R 8 and R 9 represent alkyl groups having 1 to 4 carbon atoms, which are the same or different.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group and the like. Of these, a methyl group is preferable.
  • X is a dimethylene group and Y is a methylene group.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • R 3 represents a hydrocarbon group having 2 or more carbon atoms.
  • the carbon number is preferably 4 to 26, more preferably 8 to 22, still more preferably 10 to 20, and particularly preferably 14 to 18 from the viewpoint that the hydrophobicity of the hydrophobic portion becomes more appropriate.
  • hydrocarbon group having 2 or more carbon atoms examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alkyl group include a linear or branched alkyl group such as an ethyl group, a propyl group, an isopropyl group, a butyl group, a hexyl group, an octyl group, an isooctyl group, a decyl group, a dodecyl group and a stearyl group.
  • alkenyl group examples include a vinyl group, an allyl group, a metalyl group, a 1-propenyl group, an isopropenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1-pentenyl group and a 2-pentenyl group.
  • alkynyl group examples include a linear or branched alkynyl group such as an ethynyl group and a propynyl group.
  • Examples of the alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and a cyclododecyl group; and a C 3-12 cycloalkenyl group such as a cyclohexenyl group.
  • Examples include C 4-15 crosslinked cyclic hydrocarbon groups such as a bicycloheptanyl group and a bicycloheptenyl group.
  • aromatic hydrocarbon group examples include a C 6-14 aryl group such as a phenyl group and a naphthyl group (particularly, a C 6-10 aryl group).
  • hydrocarbon group having 2 or more carbon atoms an aliphatic hydrocarbon group is preferable, a linear or branched alkyl group is more preferable, and a linear alkyl group is more preferable.
  • Z 2 represents O or NH. That is, Z 2 which is a divalent bonding group is an -O- (ether bond) or an amino bond (-NH-), and is combined with an adjacent carbonyl carbon in the structural unit represented by the above formula (1). To form an ester bond or an amide bond.
  • Examples of the monomer forming the structural unit represented by the above formula (2) include stearyl (meth) acrylate and the like.
  • the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) may have only one type or two or more types, respectively.
  • the molar ratio of the structural unit having the hydrophobic functional group in the side chain to the structural unit having the side chain containing the betaine group (preferably, the structural unit represented by the above formula (1) is represented by the above formula (2).
  • the molar ratio) [former / latter] is preferably 1/100 to 100/1 (that is, 0.01 to 100.0), more preferably 0.01 to 90, and even more preferably 0.01 to 90. It is 0.02 to 80, more preferably 0.1 to 20, and particularly preferably 0.5 to 5.
  • the molar ratio [former / latter] of the hydrophilic part to the hydrophobic part of the above copolymer is preferably 0.01 to 2.0, more preferably 0.01 to 1.5, and further preferably 0.01 to 1. It is 3.
  • the negative integrated value is the attractive force value for water
  • the positive integrated value is the positive integrated value.
  • the term indicated as the attractive force value when the repulsive force value with respect to water is used is defined as a hydrophilic portion, and the term indicated as the repulsive force value is defined as a hydrophobic portion.
  • the polymerization form of the structural unit having a side chain containing the betaine group and the structural unit having the hydrophobic functional group in the side chain (particularly, the structural unit represented by the above formula (1) and the above-mentioned formula).
  • the copolymerization form of the structural unit represented by (2) is not particularly limited, and may be any of block copolymerization, alternate copolymerization, and random copolymerization.
  • the copolymer is a copolymer of a monomer forming a structural unit represented by the above formula (1) and a monomer forming a structural unit represented by the above formula (2)
  • the polymer may be a block copolymer, an alternating copolymer, or a random copolymer.
  • the above-mentioned copolymer is preferably a random copolymer.
  • the copolymer may have a structural unit derived from another monomer other than the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2).
  • the total number of moles of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) is derived from all the monomers constituting the above-mentioned copolymer. It is preferably 50 mol% or more, more preferably 90 mol%, still more preferably 99 mol% or more, based on the total number of moles of the constituent units.
  • the weight average molecular weight of the copolymer is not particularly limited, but is preferably 20,000 to 2,000,000, more preferably 30,000 to 1,500,000, still more preferably 50,000 to 1,000,000, and particularly preferably 70,000 to 500,000. be.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) and calculated in terms of polystyrene.
  • the moisture permeable membrane is formed from the copolymer.
  • the moisture permeable membrane may contain other components other than the copolymer as long as the effect of the laminate of the present disclosure is not impaired.
  • the moisture permeable membrane preferably contains a preservative as the other component.
  • the preservative preferably has a diameter smaller than the thickness of the moisture permeable membrane from the viewpoint of being difficult to fall off from the moisture permeable membrane.
  • the diameter of the preservative refers to the maximum particle size of the preservative.
  • the thickness of the moisture permeable membrane is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 500 nm. When the thickness is 50 nm or more, the film-forming property is improved, which leads to the improvement of the gas barrier property. When the thickness is 1000 nm or less, the moisture permeability becomes better. In addition, the moisture permeable membrane can easily form a thin film at 1000 nm or less, and is excellent in economy.
  • the moisture permeable membrane has a structure in which the hydrophilic part and the hydrophobic part are phase-separated on the surface.
  • the maximum diameter of the hydrophilic portion on the surface of the moisture permeable membrane is preferably 50 nm or less, more preferably 20 nm or less.
  • the maximum diameter of the hydrophilic portion is 50 nm or less, a substance having a size exceeding 50 nm is difficult to permeate the moisture permeable membrane, and the moisture permeable membrane is used as a barrier film that does not allow a substance (for example, a virus) having a size of 50 nm or more to permeate. Can be used.
  • the diameter of the hydrophilic portion is evaluated by the following method.
  • SPM scanning probe microscope
  • the diameter of the hydrophilic portion can be calculated as the equivalent diameter of the circle.
  • the maximum diameter is the diameter having the largest diameter among the diameters (corresponding to circles) of the hydrophilic portion calculated as described above.
  • the porous base material is an element that serves as a support for the moisture permeable membrane, and is preferably one having excellent moisture permeability.
  • the material for forming the porous base material may be either a hydrophilic material or a hydrophobic material, but a hydrophobic material is preferable.
  • a hydrophobic material is used, when the aqueous composition for forming a moisture permeable film is applied, the aqueous composition does not soak into the porous substrate, so that the aqueous composition is a coating film forming surface on the porous substrate. There is no need for a lead substrate to prevent it from flowing down from the opposite surface.
  • the material for forming the porous substrate examples include polyolefin resins, cellulose resins, polycarbonate resins, polyamide resins, polyimide resins, polyamideimide resins, fluororesins, metals, glass, ceramics and other inorganic substances, and paper. Can be mentioned. Among them, the polyolefin-based resin is preferable because the moisture-permeable film can be formed on the porous substrate at a relatively low temperature, and from the viewpoint of excellent moisture permeability and water resistance.
  • the material may be in the form of fibers such as metal fibers and inorganic fibers.
  • the material forming the porous base material may be only one kind or two or more kinds.
  • porous substrate examples include a resin porous membrane, an inorganic porous membrane, a metal porous membrane, and a fibrous substrate.
  • the polyolefin-based resin is a polymer (including an olefin-based elastomer) composed of an olefin as an essential monomer component, that is, a weight containing at least a structural unit derived from the olefin in the molecule (in one molecule). It is a coalescence.
  • the olefin is not particularly limited, and examples thereof include ⁇ -olefins such as ethylene, propylene, 1-butene, and 4-methyl-1-pentene.
  • polystyrene resin examples include a polymer composed of ethylene as an essential monomer component (polyethylene resin), a polymer composed of propylene as an essential monomer component (polypropylene resin), and an ionomer. , Acrystalline cyclic olefin polymer and the like. Of these, polypropylene-based resins are preferable.
  • the porosity of the porous substrate is not particularly limited, but is preferably 30 to 90% by volume, more preferably 40 to 70% by volume. When the porosity is 30% by volume or more, the moisture permeability becomes better. When the porosity is 90% by volume or less, the supporting performance of the moisture permeable membrane becomes better.
  • the thickness of the porous substrate is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of being able to sufficiently support the moisture permeable membrane.
  • the thickness of the porous substrate is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, in consideration of excellent moisture permeability and economic efficiency.
  • the surface of the porous substrate on the side provided with the moisture permeable film may be hydrophilized from the viewpoint of easily forming the moisture permeable film.
  • a hydrophobic material is used as the material for forming the porous base material
  • the hydrophilic treatment is performed.
  • the hydrophilic treatment include corona discharge treatment and plasma treatment.
  • porous base material formed from the hydrophobic base material when stored as a wound body, one surface of the porous base material and the other surface of the wound body come into contact with each other in the wound body. Since one hydrophilic surface and the other hydrophobic surface come into contact with each other, blocking can be prevented.
  • the surface tension of the surface of the porous substrate on the side where the moisture permeable film is formed is preferably 35 to 55 dyn / cm, more preferably 37 to 50 dyn / cm.
  • the surface tension is 35 dyn / cm or more, it becomes easy to apply the aqueous composition for forming the moisture permeable film, and the formation of the moisture permeable film becomes easy.
  • the surface tension is 55 dyn / cm or less, the aqueous composition for forming the moisture permeable film does not spread too much, and the moisture permeable film can be easily formed on the surface of the porous substrate.
  • the surface of the porous base material is hydrophilized, the surface on the side where the moisture permeable film is formed is the surface that has been hydrophilized.
  • the surface tension inside the porous substrate (that is, inside the region where the moisture permeable film is not formed) is preferably less than 35 dyn / cm, more preferably 33 dyn / cm or less.
  • the surface tension is less than 35 dyn / cm, the aqueous composition for forming the moisture permeable film is suppressed from penetrating into the inside of the porous substrate, and the surface of the porous substrate can be easily described.
  • a moisture permeable membrane can be formed.
  • the inside of the porous base material is a region that has not been hydrophilized. Further, the internal surface tension can be obtained by measuring the cross section obtained by cutting the porous substrate.
  • the laminate has a moisture permeability of 1600 g / (m 2) under the conditions of a temperature of 20 ° C., a relative humidity of 65%, and a wind speed of 0.2 m / s or less based on the JIS Z0208-1976 moisture permeability test method (cup method). preferably 24h) or more, more preferably 1700g / (m 2 ⁇ 24h) or more, still more preferably 1800g / (m 2 ⁇ 24h) or more.
  • the laminate is excellent in moisture permeability, it is possible to adopt a configuration the moisture permeability is 1600g / (m 2 ⁇ 24h) or more.
  • the laminate has a moisture permeability of 300 g / (m 2 ⁇ ) under the conditions of a temperature of 5 ° C., a relative humidity of 45%, and a wind speed of 0.2 m / s or less based on the JIS Z0208-1976 moisture permeability test method (cup method). preferably 24h) or more, more preferably 400g / (m 2 ⁇ 24h) or more, still more preferably 500g / (m 2 ⁇ 24h) or more.
  • the laminate is excellent in moisture permeability in a low temperature low humidity environment, it is possible to adopt a configuration the moisture permeability is 300g / (m 2 ⁇ 24h) or more.
  • the laminated body preferably has an air permeation resistance based on the JIS P8117-2009 Garley method of 3000 seconds / 100 cc or more, more preferably 4000 seconds / 100 cc or more, and further preferably 5000 seconds / 100 cc or more. .. Since the laminated body has low air permeability, it is possible to configure the laminate to have an air permeability resistance of 3000 seconds / 100 cc or more.
  • the rate of decrease in air permeation resistance of the laminate according to the following water resistance test is preferably 50% or less, more preferably 20% or less, still more preferably 15% or less. When the reduction rate of the air permeation resistance is 50% or less, the water resistance is more excellent. Further, when the rate of decrease in the air permeation resistance is within the above range and the molar ratio of the hydrophobic portion in the copolymer is high, the water resistance is further excellent.
  • ⁇ Water resistance test> A test piece having a diameter of 7 cm is cut out from the laminated body, and the air permeability resistance is measured (initial air permeability resistance). Then, the test piece is immersed in 1 L of room temperature water for 15 minutes and then naturally dried at room temperature.
  • this immersion and drying are set as one cycle, and 50 cycles are repeated to obtain a test piece after the water resistance test. Then, the air permeation resistance of the obtained test piece after the water resistance test is measured (air permeation resistance after the water resistance test). Then, the rate of decrease in air permeation resistance is calculated from the following formula.
  • the laminated body preferably has an air permeation resistance of 3000 seconds / 100 cc or more after the water resistance test based on the JIS P8117-2009 Garley method, more preferably 4000 seconds / 100 cc or more, still more preferably. It is 5000 seconds / 100 cc or more. Since the laminate is excellent in water resistance and moisture permeability, it is possible to configure the laminate so that the air permeability resistance after the water resistance test is 3000 seconds / 100 cc or more.
  • the laminate can be produced by forming the moisture permeable film on at least one surface of the porous substrate by a known or conventional method.
  • the moisture permeable membrane may be formed directly on one surface of the porous substrate, or once the moisture permeable membrane is formed on another support, the surface of one surface of the porous substrate may be formed.
  • the moisture permeable film may be formed on the porous substrate by transferring (bonding) to. Above all, the former method is preferable from the viewpoint of excellent adhesion between the moisture permeable membrane and the porous substrate.
  • the surface of the porous substrate on the side where the moisture permeable film is provided may be subjected to a hydrophilic treatment.
  • a hydrophilic treatment examples include those described above.
  • a composition for forming the moisture permeable film is applied (coated) on the porous substrate or the other support, and the obtained coating film is desolvated by heating or the like. It can be formed by doing.
  • the above composition can be prepared by a known or conventional method. For example, it can be produced by dissolving or dispersing the above-mentioned copolymer in a solvent and mixing an additive such as a preservative if necessary.
  • a solvent water and / or a water-soluble solvent is preferable.
  • water or a water-soluble solvent it is presumed that the copolymer is dispersed in the composition in a core-shell shape having a hydrophobic portion on the inside and a hydrophilic portion on the outside.
  • the hydrophilic part and the hydrophobic part are phase-separated to form a moisture-permeable film having a water-conducting path, and the hydrophobic parts are firmly bonded to each other. It is presumed that the water resistance becomes better.
  • water-soluble solvent examples include aliphatic water-soluble alcohols such as methanol, ethanol, n-propanol, and i-propanol; ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. Glycol ether and the like can be mentioned.
  • water-soluble solvent only one kind may be used, or two or more kinds may be used.
  • the ratio (concentration) of the copolymer in the composition in which the copolymer is dissolved or dispersed is not particularly limited, but is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass, and further. It is preferably 1.5 to 3% by mass.
  • concentration is 5% by mass or less, the thickness of the coating layer becomes thick, so that the film thickness of the moisture-permeable film after drying becomes more uniform. As a result, it is possible to form a thinner moisture-permeable film while having excellent gas barrier properties, and as a result, the moisture permeability is further improved. Further, when the above concentration is within the above range, it is easy to form a moisture permeable film having excellent coatability and excellent moisture permeability and gas barrier property.
  • a known coating method may be used for coating (coating) the above composition.
  • a coater such as a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, a spray coater, a comma coater, or a direct coater may be used.
  • the heating temperature for desolving the coating film is preferably 35 to 90 ° C, more preferably 40 to 85 ° C, and even more preferably 45 to 80 ° C.
  • the heating time may be appropriately adopted, but is, for example, 5 seconds to 20 minutes, preferably 5 seconds to 10 minutes, and more preferably 10 seconds to 5 minutes. Since a moisture-permeable film can be formed at a low temperature of 90 ° C. or lower (particularly 80 ° C. or lower) using the above composition, the film can be easily formed, and a polyolefin-based resin having excellent moisture permeability as a porous base material. Can be used.
  • the laminate has low air permeability and excellent moisture permeability. Furthermore, it is also excellent in moisture permeability and water resistance in a low temperature and low humidity environment. Therefore, the above-mentioned laminate is used for products that require such a function, for example, a total heat exchange device, an inner of clothes, a disposable water-repellent / moisture-permeable material, and an application for dehydrating without being exposed to air or bacteria. It can be preferably used as a filter for storing aged meat, etc.).
  • the laminate for the total heat exchange device is, for example, a sheet capable of exchanging humidity (latent heat) as well as temperature (sensible heat) between supply air and exhaust gas.
  • the laminated body can also be used as a moisture-permeable barrier film when the hydrophilic portion and the hydrophobic portion have a phase-separated structure.
  • the moisture-permeable barrier film allows the hydrophilic small-sized substance (for example, water vapor) to pass through the hydrophilic part and does not allow the large-sized substance (for example, virus) to pass through. , Both can be separated.
  • the above laminated body is deformed into a corrugated shape as needed, and further laminated to form a total heat exchange device (partition member for total heat exchange element).
  • the total heat exchange device may be either a orthogonal flow type or a countercurrent type.
  • the total heat exchange device using the above-mentioned laminate has low air permeability, and is excellent in moisture permeability (particularly, moisture permeability in a low temperature and low humidity environment) and water resistance.
  • the total heat exchange device can be used as a total heat exchange device for an air conditioner. Since the above air conditioner uses a total heat exchange device having low air permeability, excellent moisture permeability, and also excellent moisture permeability and water resistance in a low temperature and low humidity environment, indoor heat retention and moisture retention are used. It has excellent properties and durability even in a low temperature and low humidity environment.
  • the total heat exchange element and the ventilation device according to the first embodiment of the present disclosure include the partition member for the total heat exchange element.
  • the total heat exchange element (30) is formed with a plurality of first air flow paths (36) and a plurality of second air flow paths (37). It is a orthogonal flow type heat exchanger.
  • the total heat exchange element (30) includes a plurality of partition members (40) for total heat exchange elements and a plurality of spacing members (32), and is formed in a square columnar shape as a whole.
  • the total heat exchange element (30) a plurality of partition members (40) and interval holding members (32) are alternately laminated. In the total heat exchange element (30), the distance between adjacent partition members (40) is kept substantially constant by the distance holding member (32).
  • first air flow path (36) and the second air flow path (37) are alternately formed in the stacking direction of the partition member (40) and the spacing member (32). ..
  • the adjacent first air flow path (36) and second air flow path (37) are partitioned by a partition member (40).
  • the partition member (40) constituting the total heat exchange element (30) of the present embodiment is formed in a substantially square shape in a plan view.
  • the moisture permeable membranes (42) of all the partition members (40) face the first air flow path (36) (see FIG. 3).
  • the interval holding member (32) is a corrugated plate-shaped member formed in a substantially square shape in a plan view.
  • the interval holding member (32) is formed with a plurality of peaks (32a) and valleys (32b) having linear ridges.
  • the ridges of the peaks (32a) and the valleys (32b) are substantially parallel to each other.
  • the interval holding member (32) is formed with peaks (32a) and valleys (32b) alternately.
  • the space-holding member (32) holds the space between the partition members (40) arranged on both sides thereof.
  • the spacing members (32) adjacent to each other across the partition member (40) are arranged in a posture in which the ridgeline directions of the respective waveforms are substantially orthogonal to each other.
  • the first air flow path (36) is opened on the pair of facing side surfaces of the total heat exchange element (30), and the second air flow is provided on the remaining pair of facing side surfaces.
  • the road (37) opens.
  • the total heat exchange element (30) different air flows through the first air flow path (36,121) and the second air flow path (37,151).
  • the outdoor air (supply air) supplied to the room flows through the first air flow path (36, 121) and is discharged to the outside (indoor air).
  • Exhaust) flows through the second air flow path (37, 151).
  • sensible heat and latent heat are generated between the air flowing through the first air flow path (36,121) and the air flowing through the second air flow path (37,151). Will be exchanged.
  • the total heat exchange element (30) of the present embodiment the first air flow path (36, 121) and the second air flow path (37, 151) are partitioned by the partition member (40). Therefore, the total heat exchange element (30) of the present embodiment has low air permeability between the first air flow path (36,121) and the second air flow path (37,151), and has a first air flow path.
  • the moisture permeability between (36,121) and the second air flow path (37,151) is high (particularly, the moisture permeability in a low temperature and low humidity environment). Further, the total heat exchange element (30) of the present embodiment has high water resistance.
  • the ventilator (10) includes a casing (15) that houses the total heat exchange element (30).
  • the casing (15) is provided with an outside air suction port (16), an air supply port (17), an inside air suction port (18), and an exhaust port (19).
  • an air supply side passage (21) and an exhaust side passage (22) are formed in the internal space of the casing (15).
  • the outside air suction port (16) is connected to one end of the air supply side passage (21), and the air supply port (17) is connected to the other end.
  • the exhaust side passage (22) has an inside air suction port (18) connected to one end thereof, and an exhaust port (19) connected to the other end.
  • the total heat exchange element (30) is arranged so as to cross the air supply side passage (21) and the exhaust side passage (22). Further, in the total heat exchange element (30), the first air flow path (36) communicates with the air supply side passage (21), and the second air flow path (37) communicates with the exhaust side passage (22). Then, it is installed in the casing (15).
  • the ventilation device (10) further includes an air supply fan (26) and an exhaust fan (27).
  • the air supply fan (26) is arranged on the downstream side (that is, the air supply port (17) side) of the total heat exchange element (30) in the air supply side passage (21).
  • the exhaust fan (27) is arranged on the downstream side (that is, the exhaust port (19) side) of the total heat exchange element (30) in the exhaust side passage (22).
  • the outdoor air flows toward the room through the air supply side passage (21), and the outdoor air flows toward the outside through the exhaust side passage (22).
  • the indoor air flowing through the air supply side passage (21) and the indoor air flowing through the exhaust side passage (22) exchange sensible heat and moisture (latent heat) in the total heat exchange element (30).
  • the total heat exchange element (30) of the present embodiment is provided in the ventilation device (10) of the first embodiment and is supplied in the same manner as the total heat exchange element (30) of the first embodiment.
  • the total heat exchange element (30) has a polygonal columnar end face.
  • the end face of the total heat exchange element (30) of the present embodiment has a horizontally long octagonal shape.
  • the total heat exchange element (30) is formed with one main heat exchange unit (111) and two sub heat exchange units (112a, 112b).
  • the main heat exchange unit (111) is located in the center of the total heat exchange element (30) in the left-right direction in FIG.
  • the main heat exchange portion (111) is a horizontally long rectangular portion.
  • the sub heat exchange units (112a, 112b) are located on the side of the main heat exchange unit (111) in the left-right direction of FIG. 6 of the total heat exchange elements (30).
  • one sub heat exchange unit (112a, 112b) is arranged on each side of the main heat exchange unit (111) in the left-right direction of FIG.
  • each sub-heat exchange portion (112a, 112b) is a trapezoidal portion.
  • the total heat exchange element (30) includes a plurality of first elements (120) and a plurality of second elements (150).
  • the first element (120) and the second element (150) are alternately overlapped.
  • the first element (120) forms the first air flow path (121).
  • the first air flow path (121) is a flow path through which supply air flows.
  • the second element (150) forms the second air flow path (151).
  • the second air flow path (151) is a flow path through which the exhaust gas flows.
  • the first air flow path (121) and the second air flow path (151) are alternately formed in the stacking direction of the first element (120) and the second element (150). ..
  • the first inflow port (122a) and the first outflow port (122b) are on the side surface of the total heat exchange element (30) (the surface along the stacking direction of the first element (120) and the second element (150)).
  • a second inflow port (152a) and a second inflow port (152b) are formed.
  • the first inflow port (122a) and the first outflow port (122b) are formed in the first element (120) and communicate with the first air flow path (121).
  • the second inflow port (152a) and the second outflow port (152b) are formed in the second element (150) and communicate with the second air flow path (151).
  • the first inflow port (122a), the first inflow port (122b), the second inflow port (152a), and the second inflow port (152b) are respectively. It is formed on different sides of the total heat exchange element (30). In one of the secondary heat exchange portions (112a) of the total heat exchange element (30), the first inflow port (122a) is opened on one side surface, and the second outflow port (152b) is opened on the other side surface. In the other sub-heat exchange section (112b) of the total heat exchange element (30), the first outlet (122b) opens on one side surface and the second inflow port (152a) opens on the other side surface.
  • the first element (120) includes a first frame (125) and a partition member (40)
  • the second element (150) includes a second frame (155) and a partition member (40).
  • Each of the first frame (125) and the second frame (155) is a flat member made of resin formed by injection molding.
  • the first frame (125) and the second frame (155) are spacing members that maintain the spacing between adjacent partitioning members (40).
  • Each of the first frame (125) and the second frame (155) is formed into a horizontally long octagonal shape in a plan view (see FIG. 7).
  • the outer shape of each frame (125, 155) in a plan view is substantially the same as the shape of the end face of the total heat exchange element (30).
  • the partition member (40) covers almost the entire one surface (lower surface in FIG. 8) of the first frame (125). In the first element (120), the partition member (40) is adhered to the first frame (125) with the moisture permeable membrane (42) facing the first frame (125) side. In the first element (120), the moisture permeable membrane (42) of the partition member (40) faces the first air flow path (121) formed by the first element (120).
  • the partition member (40) covers almost the entire one surface (lower surface in FIG. 8) of the second frame (155).
  • the partition member (40) is adhered to the second frame (155) with the second surface (41b) of the porous base material (41) facing the second frame (155) side. Will be done.
  • the moisture permeable membrane (42) of the partition member (40) is formed by the first element (120) adjacent to the second element (150). Facing.
  • the outdoor air OA flows into the first inflow port (122a), and the indoor air RA flows into the second inflow port (152a).
  • the outdoor air OA that has flowed into the first inflow port (122a) flows through the first air flow path (121) as air supply, and has one auxiliary heat exchange section (112a), a main heat exchange section (111), and the other. It passes through the secondary heat exchange section (112b) in order, and then flows out from the first outlet (122b) and is supplied into the room.
  • the air supply flowing through the first air flow path (121) and the exhaust gas flowing through the second air flow path (151) intersect each other. Flow in the direction.
  • the air supply flowing through the first air flow path (121) and the exhaust gas flowing through the second air flow path (151) flow in opposite directions to each other.
  • the total heat exchange element (30) sensible heat and latent heat (moisture) are exchanged between the supply air flowing through the first air flow path (121) and the exhaust gas flowing through the second air flow path (151). ..
  • heat is transferred from the higher temperature side to the lower temperature side of the supply air and the exhaust gas.
  • moisture moves from the higher humidity side to the lower humidity side of the supply air and the exhaust gas.
  • the air supply flowing through the first air flow path (121) and the exhaust flowing through the second air flow path (151) are mainly in the main heat exchange section (111). Exchange sensible heat and latent heat. Therefore, the total heat exchange element (30) of the present embodiment is a countercurrent type heat exchanger.
  • partition member (laminated body) for total heat exchange element and total heat exchange element ⁇ Modification example of partition member (laminated body) for total heat exchange element and total heat exchange element>
  • the structures of the partition member (laminate) for the total heat exchange element and the total heat exchange element are not limited to the structures of the second and third embodiments.
  • the partition member (laminated body) (40) shown in FIG. 9 includes one porous base material (41) and two moisture permeable membranes (42).
  • one moisture permeable film (42) covers the first surface (41a) of the partition member (laminated body) (40), and the other moisture permeable film (42) partitions. It covers the second surface (41b) of the member (laminated body) (40).
  • the partition member (laminated body) (40) shown in FIG. 10 a part of the moisture permeable membrane (42) has penetrated into the porous base material (41).
  • the aqueous composition for forming the moisture permeable film (42) is infiltrated into the inside of the porous base material (41).
  • a part of the moisture permeable membrane (42) covers the first surface (41a) of the porous base material (41), and the remaining part is the porous base material. It goes inside (41).
  • the entire moisture permeable membrane (42) has penetrated into the porous base material (41).
  • the partition member (laminate) (40) is manufactured, the aqueous composition for forming the moisture permeable membrane (42) is injected into the porous base material (41).
  • a moisture permeable film (42) is formed at the central portion of the porous base material (41) in the thickness direction.
  • the partition member (laminated body) (40) shown in FIG. 12 includes two porous base materials (41) and one moisture permeable membrane (42).
  • one porous base material (41) is provided on each side of the moisture permeable membrane (42) in the thickness direction.
  • One surface of the moisture permeable membrane (42) of the partition member (laminated body) (40) is in contact with the first surface (41a) of one porous base material (41), and the other surface is the other. It is in contact with the second surface (41b) of the porous substrate (41).
  • Total heat exchange element As shown in FIG. 13, in the total heat exchange element (30), the moisture permeable film (42) of all the partition members (laminates) (40) faces the second air flow path (37, 151). May be good. Note that FIG. 13 shows a modified example of the total heat exchange element (30) of the first embodiment applied.
  • the second surface (41b) of the porous base material (41) of the partition member (40) faces the first air flow path (36, 121) through which the air supply flows. Then, the moisture permeable film (42) of the partition member (40) faces the second air flow path (37, 151) through which the exhaust gas flows.
  • the partition member (40) facing (37, 151) may be mixed.
  • the partition member (40) in which the moisture permeable membrane (42) faces the first air flow path (36, 121) and the moisture permeable membrane (42) are the first.
  • the partition members (40) facing the two air flow paths (37, 151) are alternately arranged in the stacking direction of the partition member (40) and the spacing member (32125, 155).
  • FIG. 14 shows a modified example of the total heat exchange element (30) of the second embodiment applied.
  • Example 1 A random copolymer of 2-methacryloyloxyethyl phosphorylcholine and stearyl methacrylate (constituent unit ratio [former / latter]: 1/1, concentration: 4% by mass, weight average molecular weight: 100,000) and an antiseptic are mixed. A composition was obtained by diluting with distilled water to have a copolymer concentration of 2% by mass (the copolymer is a main component in the solid content). On the other hand, one surface of a porous base material made of a polyolefin resin (thickness: 20 ⁇ m, surface tension: 32 dyn) was subjected to corona treatment to form a hydrophilic surface having a surface tension of 46 dyn.
  • Example 1 the laminate of Example 1 was produced.
  • Example 2 A laminate of Example 2 was prepared in the same manner as in Example 1 except that a polyolefin-based resin porous base material (thickness: 12 ⁇ m, surface tension: 32 dyn) was used as the porous base material.
  • Example 3 A laminate of Example 3 was prepared in the same manner as in Example 1 except that a polyolefin-based resin porous base material (thickness: 25 ⁇ m, surface tension: 32 dyn) was used as the porous base material.
  • Example 4 A laminate of Example 4 was prepared in the same manner as in Example 1 except that a polyolefin-based resin porous base material (thickness: 5 ⁇ m, surface tension: 32 dyn) was used as the porous base material.
  • Example 5 A random copolymer of 2-methacryloyloxyethyl phosphorylcholine and stearyl methacrylate (composition of constituent units [former / latter]: 1/1, concentration: 4% by mass, weight average molecular weight: 100,000) and an antiseptic are mixed. A composition was obtained by diluting with distilled water to have a copolymer concentration of 1.5% by mass (the copolymer is a main component in the solid content). Then, a laminate of Example 5 was prepared in the same manner as in Example 1 except that a moisture permeable film was formed using the composition.
  • Example 6 Random copolymer of 3- [2- (methacryloyloxy) ethyl] dimethylammonium propionate and lauryl acrylate (composition of constituent units [former / latter]: 40/60, concentration: 10% by mass, weight average molecular weight: 80000) and an antiseptic were mixed and diluted with distilled water to obtain a composition having a copolymer concentration of 4% by mass (the copolymer is a main component in the solid content). Then, a laminate of Example 6 was prepared in the same manner as in Example 1 except that a moisture permeable film was formed using the composition.
  • Example 7 Random copolymer of 3-[(2-methacryloylamino) propyl] dimethyl-3-sulfobutylammonium hydroxide salt and N-dodecylmethacrylamide (ratio of constituent units [former / latter]: 30/70, concentration: 50 A composition obtained by mixing mass%, weight average molecular weight: 80,000) and a preservative and diluting with distilled water to give a copolymer concentration of 2% by mass (copolymer is a main component in the solid content). Then, a laminate of Example 7 was produced in the same manner as in Example 1 except that a moisture permeable film was formed using the composition.
  • Comparative Example 1 A partition member for a total heat exchange element included in a commercially available total heat exchanger was taken out and used as a laminate of Comparative Example 1.
  • the laminate is made of paper (thickness: 40 ⁇ m) as a porous base material, and the porous base material is impregnated with an inorganic salt having deliquescent property as a moisture permeability improving component.
  • Comparative Example 2 A polyurethane resin solution (trade name "Samplen H-600", manufactured by Sanyo Chemical Industries, Ltd., concentration: 8% by mass) is applied onto paper using an applicator and heated at 120 ° C. for 3 minutes to allow moisture to permeate. A film was formed. In this way, the laminate of Comparative Example 2 was produced.
  • a polyurethane resin solution (trade name "Samplen H-600", manufactured by Sanyo Chemical Industries, Ltd., concentration: 8% by mass) is applied onto paper using an applicator and heated at 120 ° C. for 3 minutes to allow moisture to permeate. A film was formed. In this way, the laminate of Comparative Example 2 was produced.
  • Air permeation resistance The air permeation resistance of the laminates obtained in Examples and Comparative Examples was measured based on the Garley method of JIS P8117-2009. Specifically, a 5 cm ⁇ 5 cm test piece was cut out from the laminates obtained in Examples and Comparative Examples, used in a Garley apparatus, and the number of seconds in which 100 cc of air flowed was measured with a stopwatch.
  • the laminate of the example was evaluated to have high air permeability resistance, that is, low air permeability and excellent moisture permeability.
  • the moisture permeability at a temperature 5 ° C. 45% relative humidity environment 500g / (m 2 ⁇ 24h) or more (Examples 1-3) were evaluated as excellent moisture permeability in a low temperature low humidity environment.
  • the laminate of Comparative Example 1 was evaluated to be inferior in moisture permeability.
  • the laminate of Comparative Example 2 was evaluated to have high air permeability and inferior moisture permeability.
  • Comparative Example 3 using only the porous base material was excellent in moisture permeability, but was highly air permeable.
  • a porous substrate and a moisture-permeable membrane provided on at least one surface of the porous substrate are provided, and the moisture-permeable membrane has a side chain containing a hydrophilic group as a functional group.
  • a laminate formed from a thermoplastic copolymer [Appendix 2] The laminate according to Appendix 1, wherein the hydrophilic group is a betaine group.
  • Appendix 3 The laminate according to Appendix 1 or 2, wherein a part of the moisture permeable membrane has penetrated into the porous substrate.
  • Appendix 4 The laminate according to Appendix 1 or 2, wherein all of the moisture permeable membrane has penetrated into the porous substrate.
  • [Appendix 5] The laminate according to Appendix 1 to 4, wherein the porous substrate is provided one by one on both sides of the moisture permeable membrane in the thickness direction.
  • [Appendix 6] The laminate according to Appendix 1 to 5, wherein the copolymer contains a structural unit represented by the formula (1) as a structural unit having a side chain containing the betaine group.
  • [Appendix 7] The laminate according to Appendix 1 to 6, wherein the copolymer further has a hydrophobic functional group in the side chain.
  • [Appendix 8] The laminate according to Appendix 7, wherein the copolymer contains a structural unit represented by the formula (2) as a structural unit having the hydrophobic functional group in the side chain.
  • X is a linear or branched alkylene group having 1 to 4 carbon atoms (preferably a linear alkylene group having 1 to 4 carbon atoms), Appendix 8 to 11.
  • Y is any one of Appendix 8 to 12, which is an alkylene group having 1 to 4 carbon atoms (preferably a linear alkylene group having 1 to 4 carbon atoms).
  • Appendix 14 The laminate according to any one of Appendix 8 to 13, wherein the cation in the formula (1) is an ammonium ion.
  • [Appendix 15] The laminate according to any one of Annex 8 to 14, wherein the anion in the formula (1) is a phosphate ion, a sulfate ion, or a carbonate ion.
  • the formula (1) is a group represented by the formula (1-1), a group represented by the formula (1-2), or a group represented by the formula (1-3).
  • the molar ratio [former / latter] of the hydrophilic part to the hydrophobic part of the copolymer is 0.01 to 2.0 (preferably 0.01 to 1.5, more preferably 0.01 to 1. 3) The laminate according to any one of Appendix 8 to 26.
  • the molar ratio [former / latter] of the structural unit represented by the formula (1) to the structural unit represented by the formula (2) is 0.01 to 90 (preferably 0.02 to 80). , More preferably 0.1 to 20, still more preferably 0.5 to 5), according to any one of Supplementary notes 8 to 27.
  • the total number of moles of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) is the structural unit derived from all the monomers constituting the copolymer.
  • the weight average molecular weight of the copolymer is 20,000 to 2 million (preferably 30,000 to 1.5 million, more preferably 50,000 to 1,000,000, still more preferably 70,000 to 500,000), Appendix 8.
  • the copolymer has a random common weight of a monomer forming a structural unit represented by the formula (1) and a monomer forming a structural unit represented by the formula (2).
  • the surface of the moisture-permeable membrane has a structure in which a hydrophilic portion and a hydrophobic portion are phase-separated, and the maximum diameter of the hydrophilic portion on the surface of the moisture-permeable membrane is 50 nm or less, any one of Supplements 1 to 31.
  • Supplementary Note 33 The laminate according to any one of Supplementary note 1 to 32, wherein the moisture permeable membrane contains a preservative having a diameter smaller than the thickness of the moisture permeable membrane.
  • [Supplementary Note 34] The laminate according to any one of Supplementary notes 1 to 33, wherein the material forming the porous substrate is a hydrophobic material (preferably a polyolefin-based resin, more preferably a polypropylene-based resin).
  • the porosity of the porous substrate is 30 to 90% by volume (preferably 40 to 70% by volume).
  • the porous base material is subjected to a hydrophilic treatment on the surface on the side provided with the moisture permeable film.
  • Supplementary Note 37 Any one of Supplementary notes 1 to 36, wherein the surface tension of the surface of the porous substrate on the side where the moisture permeable film is formed is 35 to 55 dyn / cm (preferably 37 to 50 dyn / cm). The laminate described in.
  • Supplementary Note 38 Any one of Supplementary notes 1 to 37, wherein the internal surface tension of the porous substrate, which is a region where the moisture permeable film is not formed, is less than 35 dyn / cm (preferably 33 dyn / cm or less). The laminate described in 1.
  • the moisture permeability test method of [Appendix 39] JIS Z0208-1976, temperature 20 ° C., 65% relative humidity, the moisture permeability the following conditions wind speed 0.2 m / sec 1600g / (m 2 ⁇ 24h) or more (preferably 1700g / (m 2 ⁇ 24h) or higher, more preferably 1800g / (m 2 ⁇ 24h) or higher) at which the laminate according to any one of appendices 1-38.
  • the moisture permeability test method of [Appendix 40] JIS Z0208-1976, temperature 5 ° C., 45% relative humidity the moisture permeability the following conditions wind speed 0.2 m / s is 300g / (m 2 ⁇ 24h) or more (preferably 400g / (m 2 ⁇ 24h) or more, more preferably from 500g / (m 2 ⁇ 24h) or higher), the laminate according to any one of appendices 1-39.
  • Appendix 41 Any of Appendix 1 to 40, wherein the air permeation resistance based on the Garley method of JIS P8117-2009 is 3000 seconds / 100 cc or more (preferably 4000 seconds / 100 cc or more, more preferably 5000 seconds / 100 cc or more).
  • the laminate according to one.
  • Appendix 42 Described in any one of Appendix 1 to 41, wherein the reduction rate of the air permeation resistance by the following water resistance test is 50% or less (preferably 20% or less, more preferably 15% or less).
  • Laminated body. ⁇ Water resistance test> A test piece having a diameter of 7 cm is cut out from the laminated body, and the air permeability resistance is measured (initial air permeability resistance).
  • the test piece is immersed in water at room temperature for 15 minutes and then naturally dried at room temperature. With respect to the above test piece, this immersion and drying are set as one cycle, and 50 cycles are repeated to obtain a test piece after the water resistance test. Then, the air permeation resistance of the obtained test piece after the water resistance test is measured (air permeation resistance after the water resistance test). Then, the rate of decrease in air permeation resistance is calculated from the following formula.
  • the initial air permeability resistance and the air permeability resistance after the water resistance test are both air permeability resistances based on the Garley method of JIS P8117-2009.
  • the air permeation resistance after the following water resistance test is 3000 seconds / 100 cc or more (preferably 4000 seconds / 100 cc or more, more preferably 5000 seconds / 100 cc or more).
  • a partition member for a total heat exchange element which comprises the laminate according to any one of Supplementary notes 1 to 43.
  • Appendix 45 Use of the partition member made of the laminate according to any one of Appendix 1 to 43 as a partition member for a total heat exchange element.
  • [Supplementary Note 46] A method for manufacturing a partition member for a total heat exchange element, wherein the laminated body according to any one of Supplementary notes 1 to 43 is deformed into a corrugated shape and further laminated.
  • a plurality of partition members for total heat exchange elements according to Appendix 44 are provided, and the partition members are provided.
  • a space holding member is provided which is arranged between the laminated partition members for the total heat exchange element and holds a distance between adjacent partition members for the total heat exchange element.
  • a total heat exchange element in which a first air flow path and a second air flow path are alternately formed with the partition member for the total heat exchange element interposed therebetween.
  • the total heat exchange element according to Appendix 47 is provided.
  • a ventilation device in which the supply air supplied from the outside to the room flows through the first air flow path of the total heat exchange element, and the exhaust gas discharged from the room to the outside flows through the second air flow path of the total heat exchange element. ..
  • the laminate of the present disclosure has low air permeability and excellent moisture permeability, and also has excellent moisture permeability in a low temperature and low humidity environment, so that it can be particularly preferably used as a partition member for a total heat exchange element. Therefore, the present disclosure has industrial applicability.
  • Ventilator 32 Spacing member 36 First air flow path 37 Second air flow path 40 Laminated body 41 Porous base material 41a One surface of porous base material 42 Moisture permeable membrane 121 First air flow path 125 First frame (Interval holding member) 151 Second air flow path 155 Second frame (interval holding member)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本開示は、透気性が低く、且つ透湿性に優れる積層体、並びに、前記積層体からなる全熱交換素子用仕切部材、前記全熱交換素子用仕切部材を複数備える全熱交換素子、及び、前記全熱交換素子を備える換気装置を提供する。 本開示の積層体は、多孔質基材と、前記多孔質基材の一方の面に設けられた透湿膜と、を備え、前記透湿膜は、多孔質基材と、前記多孔質基材の少なくとも一方の面に設けられた透湿膜と、を備え、前記透湿膜は、官能基として親水性基を含む側鎖を有する熱可塑性共重合体から形成されることを特徴とする。

Description

積層体
 本開示は、積層体に関する。より詳細には、多孔質基材と、当該多孔質基材の少なくとも一方の面に設けられた透湿膜とを備える積層体に関する。本願は、2020年3月31日に日本に出願した特願2020-061735号、2020年3月31日に日本に出願した特願2020-061833号、2020年9月30日に日本に出願した特願2020-164275号、及び、2020年9月30日に日本に出願した特願2020-164298号の優先権を主張し、その内容をここに援用する。
 従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う熱交換形換気装置が知られている。
 熱交換形換気装置には、熱交換を行うための熱交換シートが用いられている。熱交換シートは、給気と排気とを物理的に分離する仕切部材であり、給気と排気が交じり合わないようにするための透気性が低い性能(ガスバリア性)と、給気と排気の間で熱交換を行うための伝熱性が求められる。また、給気と排気との間で温度(顕熱)とともに湿度(潜熱)の交換も行う、全熱交換器で用いられる熱交換シート(全熱交換素子用仕切部材)は、さらに、高い透湿性を有することも求められる。
 全熱交換器に用いられている熱交換シートとしては、例えば、潮解性のある塩化カルシウムや塩化リチウムや硫酸、水酸化ナトリウムなどの低分子化合物から形成された透湿膜を利用したものが考えられる。中でも、安全性の点から塩化カルシウムや塩化リチウムから形成された透湿膜が広く使用されている。しかしながら、潮解性を有する化合物や低分子化合物から形成された透湿膜は水に対する溶解性が高く、耐水性に劣るものであった。
 全熱交換器に用いられている熱交換シートとしては、他に、多孔質基材と多孔質基材の表面及び内部に備える親水性高分子化合物とを有し、上記親水性高分子化合物は、第四級アンモニウム基とアミド基を有する化合物の重合体である全熱交換素子用仕切部材用仕切部材が知られている(特許文献1参照)。
特開2014-55683号公報
 しかしながら、上記特許文献1に記載の、第四級アンモニウム基とアミド基を有する化合物の重合体を用いた親水性高分子化合物では、透湿性が不充分であった。特に、低温低湿度環境下での透湿性が不充分であった。
 従って、本開示の目的は、透気性が低く、且つ透湿性に優れる積層体を提供することにある。
 本開示の発明者らは、上記目的を達成するため鋭意検討した結果、多孔質基材と、上記多孔質基材の少なくとも一方の面に設けられ、特定の共重合体から形成される透湿膜とを備えた積層体は、透気性が低く、且つ透湿性に優れることを見出した。本開示はこれらの知見に基づいて完成させたものに関する。
 本開示は、多孔質基材と、上記多孔質基材の少なくとも一方の面に設けられた透湿膜と、を備え、上記透湿膜は、官能基として親水性基を含む側鎖を有する熱可塑性共重合体から形成される、積層体を提供する。
 上記親水性基は、ベタイン基であることが好ましい。
 上記共重合体はさらに疎水性官能基を側鎖に有することが好ましい。
 上記共重合体は、上記ベタイン基を含む側鎖を有する構成単位として下記式(1)で表される構成単位と、上記疎水性官能基を側鎖に有する構成単位として下記式(2)で表される構成単位とを含み、上記式(1)で表される構成単位の、上記式(2)で表される構成単位に対するモル比が1/100~100/1である共重合体から形成されることが好ましい。
Figure JPOXMLDOC01-appb-C000004

[式(1)中、R1は、水素原子又は炭素数1~4のアルキル基を示す。Xは、炭素数1~4の二価の炭化水素基を示す。Yは、炭素数1~4の二価の直鎖状炭化水素基を示す。Z1は、O又はNHを示す。α及びβは、カチオン及びアニオンの組み合わせを示す。]
Figure JPOXMLDOC01-appb-C000005
[式(2)中、R2は、水素原子又は炭素数1~4のアルキル基を示し、R3は、炭素数2以上の炭化水素基を示す。Z2は、O又はNHを示す。]
 上記式(1)中のカチオンはアンモニウムイオンであることが好ましい。
 上記式(1)中のアニオンは、リン酸イオン、硫酸イオン、又は炭酸イオンであることが好ましい。
 上記式(1)は、下記式(1-1)で表される基、下記式(1-2)で表される基、又は下記式(1-3)で表される基を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
[式(1-1)~(1-3)中、X及びYは上記に同じであり、カルボニル炭素原子の左側の結合手は式(1)中のR1を有する炭素原子に結合する。式(1-1)中、R5、R6、及びR7は、同一又は異なって、炭素数1~4のアルキル基を示す。式(1-2)及び式(1-3)中、R8及びR9は、同一又は異なって、炭素数1~4のアルキル基を示す。]
 上記共重合体の重量平均分子量は2万~200万であることが好ましい。
 上記共重合体は、上記式(1)で表される構成単位を形成する単量体と上記式(2)で表される構成単位を形成する単量体とのランダム共重合体であることが好ましい。
 上記多孔質基材は、上記透湿膜を備える側の表面に親水化処理が施されていることが好ましい。
 JIS Z0208-1976の透湿度試験方法に基づく、温度20℃、相対湿度65%、風速0.2m/秒以下の条件における透湿度が1600g/(m2・24h)以上であることが好ましい。
 上記透湿膜表面は親水部と疎水部が相分離した構造を有し、上記透湿膜表面において、親水部の最大径が50nm以下であることが好ましい。
 本開示は、また、上記積層体からなる全熱交換素子用仕切部材を提供する。
 本開示は、また、上記全熱交換素子用仕切部材を複数備えると共に、
 積層された上記全熱交換素子用仕切部材の間に配置されて隣り合う上記全熱交換素子用仕切部材の間隔を保持する間隔保持部材を備え、
 第1空気流路と第2空気流路とが上記全熱交換素子用仕切部材を挟んで交互に形成される全熱交換素子を提供する。
 本開示は、また、上記全熱交換素子を備え、
 室外から室内へ供給される給気が上記全熱交換素子の上記第1空気流路を流れ、室内から室外へ排出される排気が上記全熱交換素子の上記第2空気流路を流れる換気装置を提供する。
 本開示の積層体は、透気性が低く、且つ透湿性に優れる。また、低温低湿度環境下での透湿性にも優れる。このため、本開示の積層体は、全熱交換素子用仕切部材として特に好ましく用いることができる。
本開示の積層体の一実施形態を示す断面模式図である。 本開示の実施形態1の全熱交換素子を示す概略斜視図である。 本開示の実施形態1の全熱交換素子の要部を示す断面図である。 本開示の実施形態1の換気装置を示す概略構成図である。 本開示の実施形態2の全熱交換素子を示す斜視図である。 本開示の実施形態2の全熱交換素子を示す平面図である。 本開示の実施形態2の全熱交換素子の一部を抜き出して示す平面図である。 図8は、図7のVIII-VIII断面と、その断面の周辺とを示す斜視図である。 本開示の全熱交換素子用仕切部材の変形例を示す概略断面図である。 本開示の全熱交換素子用仕切部材の変形例を示す概略断面図である。 本開示の全熱交換素子用仕切部材の変形例を示す概略断面図である。 本開示の全熱交換素子用仕切部材の変形例を示す概略断面図である。 本開示の全熱交換素子の変形例の図3に相当する断面図である。 本開示の全熱交換素子の変形例の図3に相当する断面図である。
<積層体>
 本開示の一実施形態に係る積層体は、多孔質基材と、上記多孔質基材の少なくとも一方の面に設けられた透湿膜と、を少なくとも備える。上記透湿膜は、上記多孔質基材の片面に設けられていてもよいし、両面に設けられていてもよい。また、上記積層体は、上記透湿膜が2つの上記多孔質基材に挟まれた構造であってもよい。すなわち上記多孔質基材は上記透湿膜の両面に設けられていてもよい。この場合の2つの上記多孔質基材は、同一の多孔質基材であってもよいし、材質や厚さなどが異なる多孔質基材であってもよい。
 図1は、本開示の積層体の一実施形態を表す断面模式図である。積層体(40)は、多孔質基材(41)と、多孔質基材(41)の一方の面(41a)に設けられた透湿膜(42)と、を備える。
 上記透湿膜は、官能基として親水性基を含む側鎖を有する熱可塑性の共重合体から形成される。上記共重合体は、上記親水性基を含む側鎖を有することにより、親水部を有する。このため、上記共重合体から形成される透湿膜中において親水部が形成され、上記親水部が導水パスとして機能して水蒸気をより多く通過させることができ、透湿性に優れるものと推測される。また、一般的に、塩化カルシウムや塩化カリウムから形成された透湿膜は、低温低湿度環境下では水分吸収量が極端に低下し、透湿度が劣る傾向にあるが、上記共重合体から形成された透湿膜は、低温低湿度環境下でも、水分吸収量は極端に低下せず透湿性に優れる。上記側鎖に含まれる親水性基としては、例えば、ベタイン基、ウレタン基、水酸基、カルボキシル基、スルホン酸基、アミノ基等が挙げられ、中でも、両イオン性であって親水性が極めて高いことから、ベタイン基が好ましい。上記親水性基を含む側鎖は、一種のみを有していてもよく、二種以上を有していてもよい。
 上記熱可塑性の共重合体は、ポリマー主鎖が熱可塑性樹脂であることを意味する。上記熱可塑性樹脂としては、例えば、アクリル系樹脂、セルロース系樹脂、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、ポリ塩化ビニル系樹脂、ポリエチレン、ポリスチレン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルエーテルケトン、ポリイミド系樹脂、ポリテトラフルオロエチレン系樹脂、ポリカプロラクトン、ポリ乳酸などが挙げられる。
 上記共重合体は、さらに疎水性官能基を側鎖に有することが好ましい。上記共重合体は、上記ベタイン基を含む側鎖に加えて、上記疎水性官能基を含む側鎖を有することにより疎水部を有する。これにより、上記共重合体から形成される透湿膜中において親水部とともに疎水部が形成される。このため、上記共重合体から形成される透湿膜中において、親水部と疎水部が相分離した構造を形成し、親水部が導水パスとして機能して水蒸気をより多く通過させることができ、より透湿性に優れるものと推測される。上記疎水性官能基としては、炭素数2以上の炭化水素基が挙げられる。上記疎水性官能基は、一種のみを有していてもよく、二種以上を有していてもよい。
 上記共重合体は、上記ベタイン基を含む側鎖を有する構成単位として下記式(1)で表される構成単位と、上記疎水性官能基を側鎖に有する構成単位として下記式(2)で表される構成単位とを含むことが好ましい。また、上記共重合体は、上記式(1)で表される構成単位の、上記式(2)で表される構成単位に対するモル比が1/100~100/1であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R1は、水素原子又は炭素数1~4のアルキル基を示す。Xは、炭素数1~4の二価の炭化水素基を示す。Yは、炭素数1~4の二価の直鎖状炭化水素基を示す。Z1は、O又はNHを示す。α及びβは、カチオン及びアニオンの組み合わせを示す。]
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R2は、水素原子又は炭素数1~4のアルキル基を示し、R3は、炭素数2以上の炭化水素基を示す。Z2は、O又はNHを示す。]
 上記共重合体は、上記式(1)で表される構成単位を含むことにより、α及びβに由来する両イオン性であり親水性が極めて高い基を有し、親水部を有する。また、上記共重合体は、上記式(2)で表される構成単位を含むことにより、疎水部である炭素数2以上のアルキルエステル部を有する。そして上記モル比が上記範囲内であることにより、上記共重合体中で親水部と疎水部がバランス良く存在することとなる。このため、上記共重合体から形成される透湿膜中において、親水部と疎水部が相分離した構造を形成し、親水部が導水パスとして機能して水蒸気をより多く通過させることができ、透湿性に優れるものと推測される。また、一般的に、塩化カルシウムや塩化カリウムから形成された透湿膜は、低温低湿度環境下では水分吸収量が極端に低下し、透湿度が劣る傾向にあるが、上記共重合体から形成された透湿膜は、低温低湿度環境下でも、水分吸収量は極端に低下せず透湿性に優れる。また、親水部と疎水部のうち、これらのモル比で疎水部の割合が多くなると、透湿性に優れながら、水に溶解しにくく、耐水性にも優れた透湿膜とすることもできる。さらに、上記共重合体の水溶液は、pHが弱酸性であるため、スルホニル基等の酸性官能基を有する従来の強酸性である樹脂を用いた透湿膜に比べて金属の腐食を起こしにくい(すなわち耐金属腐食性に優れる)。
 上記式(1)で表される構成単位を含む構成単位として、下記式(1’)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式(1’)中、R4は、二価の炭化水素基を示す。R1、X、Y、Z1、α、及びβは上記に同じである。]
 式(1’)中、R4は、二価の炭化水素基を示し、例えば、メチレン基、エチレン基などの炭素数1~4のアルキレン基が挙げられる。上記R4がメチレン基である場合の上記式(1’)で表される構成単位としては、アクリル酸エステルに由来する構成単位、メタクリル酸エステルに由来する構成単位が挙げられる。上記二価の炭化水素基は、置換基を有していてもよい。
 式(1)中、R1は、水素原子又は炭素数1~4のアルキル基を示し、好ましくは水素原子又はメチル基、より好ましくはメチル基である。
 式(1)中、Xは、炭素数1~4の二価の炭化水素基を示し、例えば、アルキレン基、アルケニレン基、アルキニレン基などが挙げられる。アルキレン基としては、例えば、メチレン基、ジメチレン基、トリメチレン基、イソプロピレン基、テトラメチレン基等の直鎖又は分岐鎖状C1-4アルキレン基が挙げられる。アルケニレン基としては、例えば、エチニレン基、1-プロペニレン基、イソプロペニレン基、1-ブテニレン基、2-ブテニレン基、3-ブテニレン基等の直鎖又は分岐鎖状C2-4アルケニレン基などが挙げられる。上記二価の炭化水素基としては、中でも、直鎖又は分岐鎖状アルキレン基が好ましく、より好ましくは直鎖状アルキレン基である。
 式(1)中、Yは、炭素数1~4の二価の直鎖状炭化水素基を示し、例えば、アルキレン基、アルケニレン基、アルキニレン基などが挙げられる。アルキレン基としては、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基が挙げられる。アルケニレン基としては、例えば、エチニレン基、1-プロペニレン基、1-ブテニレン基などが挙げられる。上記二価の直鎖状炭化水素基としては、中でも、アルキレン基が好ましく、より好ましくは直鎖状アルキレン基である。上記X及びYの炭素数を上記の範囲内に調整することにより、疎水性及び親水性のバランスが最適化される。
 式(1)中、Z1は、O又はNHを示す。すなわち、二価の結合基であるZ1は、-O-(エーテル結合)又はアミノ結合(-NH-)であり、上記式(1)で表される構成単位において、隣接するカルボニル炭素と併せてエステル結合又はアミド結合を形成する。
 式(1)中、α及びβは、カチオン及びアニオンの組み合わせである。すなわち、αがカチオンでありβがアニオンであるか、又は、αがアニオンでありβがカチオンである。上記カチオンとしてはアンモニウムイオンが好ましい。上記アニオンとしては、リン酸イオン(-PO4 -)、硫酸イオン(-SO3 -)、又は炭酸イオン(-CO2 -)であることが好ましい。上記アニオンがリン酸イオンである場合、上記式(1)で表される構成単位はホスホベタインを含み、上記アニオンが硫酸イオンである場合、上記式(1)で表される構成単位はスルホベタインを含み、上記アニオンが炭酸イオンである場合、上記式(1)で表される構成単位はカルボベタインを含むこととなる。上記アニオンは、上記共重合体において共鳴構造を有していてもよい。
 上記カチオンがアンモニウムイオンであり、上記アニオンがリン酸イオン(-PO4 -)、硫酸イオン(-SO3 -)、又は炭酸イオン(-CO2 -)である、上記式(1)で表される構成単位は、例えば、下記式(1-1)~(1-3)で表される基を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
[式(1-1)~(1-3)中、X及びYは上記に同じであり、カルボニル炭素原子(式(1-3)においては左側のカルボニル炭素原子)の左側の結合手は式(1)中のR1を有する炭素原子に結合する。式(1-1)中、R5、R6、及びR7は、同一又は異なって、炭素数1~4のアルキル基を示す。式(1-2)及び式(1-3)中、R8及びR9は、同一又は異なって、炭素数1~4のアルキル基を示す。]
 式(1-1)中、R5、R6、及びR7は、同一又は異なって、炭素数1~4のアルキル基を示す。上記炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基などが挙げられる。中でも、メチル基が好ましい。
 式(1-1)としては、中でも、Xがジメチレン基、Yがジメチレン基であることが好ましい。
 上記式(1-1)で表される構成単位を形成する単量体としては、2-メタクリロイルオキシエチルホスホリルコリンなどが挙げられる。
 上記式(1-1)で表される基を含む場合の上記式(1’)で表される構成単位としては、下記式(1’-1)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000011
[式(1’-1)中、R1、R5、R6、R7、X、及びYは上記に同じである。]
 式(1-2)中、R8及びR9は、同一又は異なって、炭素数1~4のアルキル基を示す。上記炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基などが挙げられる。中でも、メチル基が好ましい。
 式(1-2)としては、中でも、Xがトリメチレン基、Yがテトラメチレン基であることが好ましい。
 式(1-3)中、R8及びR9は、同一又は異なって、炭素数1~4のアルキル基を示す。上記炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基などが挙げられる。中でも、メチル基が好ましい。
 式(1-3)中、Xがジメチレン基、Yがメチレン基であることが好ましい。
 式(2)中、R2は、水素原子又は炭素数1~4のアルキル基を示し、好ましくは水素原子又はメチル基、より好ましくはメチル基である。
 式(2)中、R3は、炭素数2以上の炭化水素基を示す。上記炭素数は、疎水部の疎水性がより適度となる観点から、4~26が好ましく、より好ましくは8~22、さらに好ましくは10~20、特に好ましくは14~18である。
 上記炭素数2以上の炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基などが挙げられる。
 上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基などが挙げられる。アルキル基としては、例えば、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、ステアリル基等の直鎖又は分岐鎖状アルキル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等の直鎖状又は分岐鎖状アルケニル基が挙げられる。アルキニル基としては、例えば、エチニル基、プロピニル基等の直鎖状又は分岐鎖状アルキニル基が挙げられる。
 上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等のC3-12シクロアルキル基;シクロヘキセニル基等のC3-12シクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基等のC4-15架橋環式炭化水素基などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)などが挙げられる。
 上記炭素数2以上の炭化水素基としては、中でも、脂肪族炭化水素基が好ましく、より好ましくは直鎖又は分岐鎖状アルキル基、さらに好ましくは直鎖状アルキル基である。
 式(2)中、Z2は、O又はNHを示す。すなわち、二価の結合基であるZ2は、-O-(エーテル結合)又はアミノ結合(-NH-)であり、上記式(1)で表される構成単位において、隣接するカルボニル炭素と併せてエステル結合又はアミド結合を形成する。
 上記式(2)で表される構成単位を形成する単量体としては、例えば、(メタ)アクリル酸ステアリルなどが挙げられる。
 上記式(1)で表される構成単位及び上記式(2)で表される構成単位は、それぞれ、一種のみを有していてもよいし、二種以上を有していてもよい。
 上記ベタイン基を含む側鎖を有する構成単位に対する上記疎水性官能基を側鎖に有する構成単位のモル比(好ましくは、上記式(1)で表される構成単位の上記式(2)で表される構成単位に対するモル比)[前者/後者]は、1/100~100/1(すなわち0.01~100.0)であることが好ましく、より好ましくは0.01~90、さらに好ましくは0.02~80、さらに好ましくは0.1~20、特に好ましくは0.5~5である。
 上記共重合体における親水部の疎水部に対するモル比[前者/後者]は、0.01~2.0が好ましく、より好ましくは0.01~1.5、さらに好ましくは0.01~1.3である。なお、上記親水部及び疎水部は、エネルギー表示法に基づく自由エネルギーを算出するプロセスから得られる溶質-溶媒ペアのエネルギーヒストグラムにおいて、負側の積分値を水に対する引力値、正側の積分値を水に対する斥力値とした場合の上記引力値として示される項を親水部、上記斥力値として示される項を疎水部とする。
 上記共重合体において、上記ベタイン基を含む側鎖を有する構成単位と上記疎水性官能基を側鎖に有する構成単位の重合形態(特に、上記式(1)で表される構成単位と上記式(2)で表される構成単位の共重合形態)は特に限定されず、ブロック共重合、交互共重合、ランダム共重合のいずれであってもよい。上記共重合体が上記式(1)で表される構成単位を形成する単量体と上記式(2)で表される構成単位を形成する単量体の共重合体である場合、上記共重合体は、ブロック共重合体、交互共重合体、ランダム共重合体のいずれであってもよい。中でも、上記共重合体は、ランダム共重合体であることが好ましい。
 上記共重合体は、上記式(1)で表される構成単位及び上記式(2)で表される構成単位以外の、他の単量体由来の構成単位を有していてもよい。但し、上記共重合体は、上記式(1)で表される構成単位及び上記式(2)で表される構成単位の合計モル数は、上記共重合体を構成する全単量体に由来する構成単位の総モル数に対して、50モル%以上が好ましく、より好ましくは90モル%、さらに好ましくは99モル%以上である。
 上記共重合体の重量平均分子量は、特に限定されないが、2万~200万が好ましく、より好ましくは3万~150万、さらに好ましくは5万~100万、特に好ましくは7万~50万である。上記重量平均分子量は、ゲルパーミエーション・クロマトグラフィー(GPC)により測定し、ポリスチレン換算により算出された値をいうものとする。
 上記透湿膜は、上記共重合体より形成されたものである。上記透湿膜は、本開示の積層体における効果を損なわない範囲内で、上記共重合体以外のその他の成分を含んでいてもよい。
 上記透湿膜は、上記その他の成分として防腐剤を含むことが好ましい。上記防腐剤は、上記透湿膜から脱落しにくい観点から、上記透湿膜の厚さよりも小径であることが好ましい。なお、上記防腐剤の径は、上記防腐剤における最大粒径をいうものとする。
 上記透湿膜の厚さは、特に限定されないが、50~1000nmが好ましく、より好ましくは100~500nmである。上記厚さが50nm以上であると、製膜性が良好となり、ガスバリア性向上に繋がる。上記厚さが1000nm以下であると、透湿性がより良好となる。また、上記透湿膜は1000nm以下での薄膜形成が容易であり、経済性にも優れる。
 上記共重合体が親水部及び疎水部を有する場合、これに起因して、上記透湿膜は表面に親水部及び疎水部が相分離した構造を有する。上記透湿膜表面における親水部の最大径は50nm以下であることが好ましく、より好ましくは20nm以下である。上記親水部の最大径が50nm以下であると、サイズが50nmを超える物質が上記透湿膜を透過しにくく、上記透湿膜を、50nm以上の物質(例えばウイルスなど)を透過させないバリアフィルムとして使用することができる。上記親水部の径は次の方法によって評価される。走査型プローブ顕微鏡(SPM)の凝着力測定モードを用いて吸着力の高い部位(親水部)と吸着力の低い部位(疎水部)を凝着力によって数値化し、画像解析ソフトで処理することで、円相当径として親水部の径を算出することができる。そして、上記最大径は、上述のようにして算出された親水部の径(円相当径)のうち、最も径が大きい径である。
 上記多孔質基材は、上記透湿膜の支持体となる要素であり、透湿性に優れるものであることが好ましい。
 上記多孔質基材を形成する材料としては、親水性材料及び疎水性材料のいずれであってもよいが、疎水性材料であることが好ましい。上記疎水性材料を用いると、透湿膜を形成するための水性組成物を塗布した際、水性組成物が多孔質基材に染み込まないため、多孔質基材において水性組成物が塗膜形成面とは反対側の面から流れ落ちるのを防ぐためのリード基材が不要となる。
 上記多孔質基材を形成する材料としては、例えば、ポリオレフィン系樹脂、セルロース系樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素系樹脂、金属、ガラス、セラミック等の無機物、紙などが挙げられる。中でも、上記透湿膜は上記多孔質基材上に比較的低温で製膜可能であるため、また、透湿性及び耐水性に優れる観点から、ポリオレフィン系樹脂が好ましい。上記材料は、金属繊維、無機繊維などの繊維状であってもよい。上記多孔質基材を形成する材料は、一種のみであってもよいし、二種以上であってもよい。
 上記多孔質基材としては、例えば、樹脂多孔膜、無機多孔膜、金属多孔膜、繊維状基材などが挙げられる。
 上記ポリオレフィン系樹脂は、オレフィンを必須の単量体成分として構成される重合体(オレフィン系エラストマーを含む)であり、即ち、分子中(1分子中)にオレフィンに由来する構成単位を少なくとも含む重合体である。上記オレフィンとしては、特に限定されないが、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィンが挙げられる。
 上記ポリオレフィン系樹脂としては、例えば、エチレンを必須の単量体成分として構成される重合体(ポリエチレン系樹脂)、プロピレンを必須の単量体成分として構成される重合体(ポリプロピレン系樹脂)、アイオノマー、非晶性環状オレフィン系重合体などが挙げられる。中でも、ポリプロピレン系樹脂が好ましい。
 上記多孔質基材の空隙率は、特に限定されないが、30~90体積%が好ましく、より好ましくは40~70体積%である。上記空隙率が30体積%以上であると、透湿性がより良好となる。上記空隙率が90体積%以下であると、透湿膜の支持性能がより良好となる。
 上記多孔質基材の厚さは、特に限定されないが、上記透湿膜を充分に支持可能である観点から、5μm以上が好ましく、より好ましくは10μm以上である。また、上記多孔質基材の厚さは、透湿性に優れる観点や経済性を考慮して、50μm以下が好ましく、より好ましくは30μm以下である。
 上記多孔質基材の上記透湿膜を備える側の表面(例えば図1に示す面41a)は、上記透湿膜を容易に形成可能とする観点から、親水化処理が施されていることが好ましい。特に、上記多孔質基材を形成する材料として疎水性材料を用いた場合、上記親水化処理が施されていることが好ましい。上記親水化処理としては、コロナ放電処理、プラズマ処理などが挙げられる。これらの親水化処理により、多孔質基材表面にカルボキシ基、ヒドロキシ基、或いはカルボニル基を生じさせることができ、上記透湿膜を形成するための水性組成物が多孔質基材表面に濡れ広がりやすくなり、上記透湿膜の形成が容易となる。また、これにより、上記多孔質基材と上記透湿膜の密着性が向上する。また、疎水性基材から形成された上記多孔質基材を巻回体として保管する際、巻回体において上記多孔質基材の一方の面と他方の面とが接触する形態となるが、親水性の一方の面と疎水性の他方の面とが接触することとなるため、ブロッキングを防止することができる。
 上記多孔質基材の上記透湿膜を形成する側の面の表面張力は、35~55dyn/cmが好ましく、より好ましくは37~50dyn/cmである。上記表面張力が35dyn/cm以上であると、上記透湿膜を形成するための水性組成物を塗布することが容易となり、上記透湿膜の形成が容易となる。上記表面張力が55dyn/cm以下であると、上記透湿膜を形成するための水性組成物が濡れ広がりすぎず、上記多孔質基材表面に容易に上記透湿膜を形成することができる。なお、上記多孔質基材の表面が親水化処理されている場合、上記透湿膜を形成する側の面は、上記親水化処理が施された面である。
 上記多孔質基材の内部(すなわち、上記透湿膜が形成されていない領域である内部)の表面張力は、35dyn/cm未満が好ましく、より好ましくは33dyn/cm以下である。上記表面張力が35dyn/cm未満であると、上記透湿膜を形成するための水性組成物が上記多孔質基材の内部まで浸透するのを抑制され、上記多孔質基材表面に容易に上記透湿膜を形成することができる。なお、上記多孔質基材の表面が親水化処理されている場合、上記多孔質基材の内部は、親水化処理が施されていない領域である内部である。また、上記内部の表面張力は、上記多孔質基材を切断した断面について測定して得ることができる。
 上記積層体は、JIS Z0208-1976の透湿度試験方法(カップ法)に基づく、温度20℃、相対湿度65%、風速0.2m/s以下の条件における透湿度が、1600g/(m2・24h)以上であることが好ましく、より好ましくは1700g/(m2・24h)以上、さらに好ましくは1800g/(m2・24h)以上である。上記積層体は、透湿性に優れるため、上記透湿度が1600g/(m2・24h)以上である構成とすることが可能である。
 上記積層体は、JIS Z0208-1976の透湿度試験方法(カップ法)に基づく、温度5℃、相対湿度45%、風速0.2m/s以下の条件における透湿度が、300g/(m2・24h)以上であることが好ましく、より好ましくは400g/(m2・24h)以上、さらに好ましくは500g/(m2・24h)以上である。上記積層体は、低温低湿度環境下における透湿性に優れるため、上記透湿度が300g/(m2・24h)以上である構成とすることが可能である。
 上記積層体は、JIS P8117-2009のガーレー法に基づく透気抵抗度が、3000秒/100cc以上であることが好ましく、より好ましくは4000秒/100cc以上、さらに好ましくは5000秒/100cc以上である。上記積層体は、透気性が低いため、上記透気抵抗度が3000秒/100cc以上である構成とすることが可能である。
 上記積層体は、下記耐水性試験による透気抵抗度の低下率が50%以下であることが好ましく、より好ましくは20%以下、さらに好ましくは15%以下である。上記透気抵抗度の低下率が50%以下であると、耐水性により優れる。また、上記透気抵抗度の低下率が上記範囲内であり、且つ上記共重合体における疎水部のモル比が高い場合、さらに耐水性が優れる。
<耐水性試験>
 積層体からφ7cmの試験片を切り出し、透気抵抗度を測定する(初期の透気抵抗度)。その後、試験片を、1Lの常温水に15分間浸漬させたのち、常温で自然乾燥させる。上記試験片について、この浸漬、乾燥を1サイクルとして50サイクル繰り返し、耐水性試験後の試験片を得る。そして、得られた耐水性試験後の試験片について透気抵抗度を測定する(耐水性試験後の透気抵抗度)。そして、下記式より透気抵抗度の低下率を求める。なお、上記初期の透気抵抗度及び上記耐水性試験後の透気抵抗度はいずれもJIS P8117-2009のガーレー法に基づく透気抵抗度である。
 透気抵抗度の低下率(%)=[(初期の透気抵抗度)-(耐水性試験後の透気抵抗度)]/(初期の透気抵抗度)×100
 上記積層体は、JIS P8117-2009のガーレー法に基づく、上記耐水性試験後の透気抵抗度が、3000秒/100cc以上であることが好ましく、より好ましくは4000秒/100cc以上、さらに好ましくは5000秒/100cc以上である。上記積層体は、耐水性及び透湿性に優れるため、上記耐水性試験後の透気抵抗度が3000秒/100cc以上である構成とすることが可能である。
 上記積層体は、多孔質基材の少なくとも一方の表面上に、公知乃至慣用の方法により上記透湿膜を形成することで作製することができる。例えば、上記透湿膜を上記多孔質基材の一方の表面に直接形成してもよいし、いったん他の支持体上に上記透湿膜を形成した後、上記多孔質基材の一方の表面に転写する(貼り合わせる)ことにより、多孔質基材上に上記透湿膜を形成してもよい。中でも、上記透湿膜と上記多孔質基材の密着性に優れる観点から、前者の方法が好ましい。
 上記多孔質基材の上記透湿膜を設ける側の表面に親水性処理を施してもよい。上記親水性処理としては、上述のものが挙げられる。
 上記透湿膜は、上記多孔質基材又は上記他の支持体上に、上記透湿膜を形成するための組成物を塗布(塗工)し、得られた塗膜を加熱等により脱溶媒することで形成することができる。
 上記組成物は、公知乃至慣用の方法で作製することができる。例えば、上記共重合体を溶媒に溶解又は分散させ、必要に応じて防腐剤などの添加剤を混合することにより、作製することができる。上記溶媒としては、水及び/又は水溶性溶媒が好ましい。水や水溶性溶媒を用いると、上記共重合体は、内側を疎水部、外側を親水部とするコアシェル形状で組成物中に分散するものと推測される。このような組成物を用いることで、塗膜を乾燥した際に親水部と疎水部が相分離し導水パスを有する状態で透湿膜が形成され、また、疎水部同士が強固に結合した状態となるものと推測され、耐水性がより良好となる。
 上記水溶性溶媒としては、例えば、メタノール、エタノール、n-プロパノール、i-プロパノール等の脂肪族系の水溶性アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテルなどが挙げられる。上記水溶性溶媒は、一種のみを用いてもよいし、二種以上を用いてもよい。
 上記共重合体が溶解又は分散した上記組成物中の上記共重合体の割合(濃度)は、特に限定されないが、0.5~5質量%が好ましく、より好ましくは1~4質量%、さらに好ましくは1.5~3質量%である。上記濃度が5質量%以下であると、塗工層の厚みが厚くなるため、乾燥後の透湿膜の膜厚がより均一化される。これにより、ガスバリア性に優れつつ、より薄膜化された透湿膜を形成することができ、結果として透湿性がより向上する。また、上記濃度が上記範囲内であると、塗工性に優れ、また、透湿性及びガスバリア性に優れる透湿膜の形成が容易である。
 なお、上記組成物の塗布(塗工)には、公知のコーティング法を利用してもよい。例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーターなどのコーターが用いられてもよい。
 上記塗膜を脱溶媒する際の加熱温度は、35~90℃が好ましく、より好ましくは40~85℃、さらに好ましくは45~80℃である。加熱時間は、適宜、適切な時間が採用され得るが、例えば5秒~20分であり、好ましくは5秒~10分、より好ましくは10秒~5分である。上記組成物を用いて90℃以下(特に、80℃以下)の低温で透湿膜を形成可能であるため、製膜が容易であり、また、多孔質基材として透湿性に優れるポリオレフィン系樹脂を使用することができる。
 上記積層体は、透気性が低く、且つ、透湿性に優れる。さらに、低温低湿度環境下における透湿性及び耐水性にも優れる。このため、上記積層体は、このような機能が求められる製品、例えば、全熱交換装置、衣服のインナー、使い捨て用撥水・透湿材、空気や菌に曝されることなく脱水する用途(熟成肉の保存用フィルタ等)などに好ましく用いることができる。上記全熱交換装置用の積層体は、例えば、給気と排気との間で温度(顕熱)とともに湿度(潜熱)の交換を行うことができるシートである。また、上記積層体は、親水部と疎水部が相分離した構造を有する場合、透湿性を有するバリアフィルムとして用いることもできる。上記親水部の径が小さい場合、上記透湿性を有するバリアフィルムにより、親水性を有する小サイズの物質(例えば水蒸気)については親水部を通過させ、サイズの大きい物質(例えばウイルス)を通過させないで、両者を分離することができる。
 上記積層体を、必要に応じてコルゲート状に変形し、さらに積層することで、全熱交換装置(全熱交換素子用仕切部材)とすることができる。上記全熱交換装置は、直交流型、向流型のいずれであってもよい。上記積層体を用いた全熱交換装置は、透気性が低く、且つ透湿性(特に、低温低湿度環境下における透湿性)、及び耐水性に優れる。上記全熱交換装置は、空調機の全熱交換装置として用いることができる。上記空調機は、透気性が低く、且つ、透湿性に優れ、さらに、低温低湿度環境下における透湿性及び耐水性にも優れる全熱交換装置が用いられているため、室内の保温性及び保湿性に優れ、低温低湿度環境下においても耐久性に優れる。
<全熱交換素子及び換気装置(実施形態1)>
 本開示の実施形態1に係る全熱交換素子及び換気装置は、上記全熱交換素子用仕切部材を備える。
(全熱交換素子)
 本開示の実施形態1では、図2及び図3に示すように、全熱交換素子(30)は、第1空気流路(36)と第2空気流路(37)とが複数ずつ形成された直交流型の熱交換器である。全熱交換素子(30)は、全熱交換素子用仕切部材(40)と間隔保持部材(32)とを複数ずつ備え、全体として四角柱状に形成される。
 全熱交換素子(30)では、仕切部材(40)と間隔保持部材(32)とが交互に複数ずつ積層される。全熱交換素子(30)において、隣り合う仕切部材(40)同士の間隔は、間隔保持部材(32)によって実質的に一定に保持される。
 全熱交換素子(30)では、仕切部材(40)及び間隔保持部材(32)の積層方向に、第1空気流路(36)と第2空気流路(37)とが交互に形成される。隣り合う第1空気流路(36)と第2空気流路(37)は、仕切部材(40)によって仕切られる。
 本実施形態の全熱交換素子(30)を構成する仕切部材(40)は、平面視で概ね正方形状に形成される。本実施形態の全熱交換素子(30)では、全ての仕切部材(40)の透湿膜(42)が第1空気流路(36)に面する(図3を参照)。
 間隔保持部材(32)は、平面視で概ね正方形状に形成された波板状の部材である。間隔保持部材(32)には、それぞれの稜線が直線状の山部(32a)と谷部(32b)とが複数ずつ形成される。各山部(32a)と各谷部(32b)とは、それぞれの稜線が互いに実質的に平行である。また、間隔保持部材(32)には、山部(32a)と谷部(32b)が交互に形成される。間隔保持部材(32)は、その両側に配置された仕切部材(40)の間隔を保持する。
 全熱交換素子(30)において、仕切部材(40)を挟んで隣り合う間隔保持部材(32)は、それぞれの波形の稜線方向が互いに実質的に直交する姿勢で配置される。その結果、全熱交換素子(30)では、全熱交換素子(30)の対向する一対の側面に第1空気流路(36)が開口し、残りの対向する一対の側面に第2空気流路(37)が開口する。
 全熱交換素子(30)では、第1空気流路(36,121)と第2空気流路(37,151)とを異なる空気が流れる。例えば、換気装置に設けられた全熱交換素子(30)では、室内へ供給される室外空気(給気)が第1空気流路(36,121)を流れ、室外へ排出される室内空気(排気)が第2空気流路(37,151)を流れる。全熱交換素子(30)では、第1空気流路(36,121)を流れる空気と第2空気流路(37,151)を流れる空気との間で、顕熱と潜熱(水分)とが交換される。
 本実施形態の全熱交換素子(30)では、仕切部材(40)によって第1空気流路(36,121)と第2空気流路(37,151)が仕切られる。そのため、本実施形態の全熱交換素子(30)は、第1空気流路(36,121)と第2空気流路(37,151)の間における透気性が低いと共に、第1空気流路(36,121)と第2空気流路(37,151)の間における透湿性(特に、低温低湿度環境下における透湿性)が高い。また、本実施形態の全熱交換素子(30)は、その耐水性が高い。
(全熱交換素子)
 本開示の実施形態1では、図4に示すように、換気装置(10)は、全熱交換素子(30)を収容するケーシング(15)を備える。ケーシング(15)には、外気吸込口(16)と、給気口(17)と、内気吸込口(18)と、排気口(19)とが設けられる。また、ケーシング(15)の内部空間には、給気側通路(21)と、排気側通路(22)とが形成される。給気側通路(21)は、その一端に外気吸込口(16)が接続し、その他端に給気口(17)が接続する。排気側通路(22)は、その一端に内気吸込口(18)が接続し、その他端に排気口(19)が接続する。
 全熱交換素子(30)は、給気側通路(21)及び排気側通路(22)を横断するように配置される。また、全熱交換素子(30)は、第1空気流路(36)が給気側通路(21)と連通し、第2空気流路(37)が排気側通路(22)と連通する状態で、ケーシング(15)内に設置される。
 換気装置(10)は、給気ファン(26)と,排気ファン(27)とを更に備える。給気ファン(26)は、給気側通路(21)における全熱交換素子(30)の下流側(即ち、給気口(17)側)に配置される。排気ファン(27)は、排気側通路(22)における全熱交換素子(30)の下流側(即ち、排気口(19)側)に配置される。
 換気装置(10)では、室外空気が給気側通路(21)を室内へ向かって流れ、室外空気が排気側通路(22)を室外へ向かって流れる。給気側通路(21)を流れる室内空気と、排気側通路(22)を流れる室内空気とは、全熱交換素子(30)において顕熱と水分(潜熱)とを交換する。
<全熱交換素子及び換気装置(実施形態2)>
 本開示の実施形態2では、本実施形態の全熱交換素子(30)は、実施形態1の全熱交換素子(30)と同様に、実施形態1の換気装置(10)に設けられ、給気と排気の間で顕熱と潜熱(水分)とを交換させる。
(全熱交換素子の構成)
 図5に示すように、全熱交換素子(30)は、端面が多角形の柱状に形成される。本実施形態の全熱交換素子(30)の端面は、横長の八角形状である。図6にも示すように、全熱交換素子(30)には、一つの主熱交換部(111)と、二つの副熱交換部(112a,112b)とが形成される。
 主熱交換部(111)は、全熱交換素子(30)のうち図6の左右方向の中央に位置する。図6に示す全熱交換素子(30)の平面図において、主熱交換部(111)は、横長の長方形状の部分である。副熱交換部(112a,112b)は、全熱交換素子(30)のうち図6の左右方向における主熱交換部(111)の側方に位置する。全熱交換素子(30)では、図6の左右方向における主熱交換部(111)の両側に、副熱交換部(112a,112b)が一つずつ配置される。図6に示す全熱交換素子(30)の平面図において、各副熱交換部(112a,112b)は、台形状の部分である。
 全熱交換素子(30)は、第1エレメント(120)及び第2エレメント(150)を複数ずつ備える。全熱交換素子(30)において、第1エレメント(120)と第2エレメント(150)は、交互に重なり合っている。第1エレメント(120)は、第1空気流路(121)を形成する。第1空気流路(121)は、給気が流れる流路である。第2エレメント(150)は、第2空気流路(151)を形成する。第2空気流路(151)は、排気が流れる流路である。全熱交換素子(30)では、第1エレメント(120)及び第2エレメント(150)の積層方向に、第1空気流路(121)と第2空気流路(151)が交互に形成される。
 全熱交換素子(30)の側面(第1エレメント(120)及び第2エレメント(150)の積層方向に沿った面)には、第1流入口(122a)と、第1流出口(122b)と、第2流入口(152a)と、第2流出口(152b)とが形成される。第1流入口(122a)及び第1流出口(122b)は、第1エレメント(120)に形成されて第1空気流路(121)に連通する。第2流入口(152a)及び第2流出口(152b)は、第2エレメント(150)に形成されて第2空気流路(151)に連通する。
 図6及び図7にも示すように、第1流入口(122a)と、第1流出口(122b)と、第2流入口(152a)と、第2流出口(152b)とは、それぞれが全熱交換素子(30)の異なる側面に形成される。全熱交換素子(30)の一方の副熱交換部(112a)では、一つの側面に第1流入口(122a)が開口し、他の側面に第2流出口(152b)が開口する。全熱交換素子(30)の他方の副熱交換部(112b)では、一つの側面に第1流出口(122b)が開口し、他の側面に第2流入口(152a)が開口する。
 図8に示すように、第1エレメント(120)は、第1フレーム(125)と仕切部材(40)とを備え、第2エレメント(150)は、第2フレーム(155)と仕切部材(40)とを備える。
 第1フレーム(125)と第2フレーム(155)のそれぞれは、射出成形によって形成された樹脂製の扁平な部材である。第1フレーム(125)及び第2フレーム(155)は、隣り合う仕切部材(40)の間隔を保つ間隔保持部材である。第1フレーム(125)と第2フレーム(155)のそれぞれは、平面視で横長の八角形状に形成される(図7を参照)。平面視における各フレーム(125,155)の外形は、全熱交換素子(30)の端面の形状と実質的に同じである。
 第1エレメント(120)において、仕切部材(40)は、第1フレーム(125)の一方の面(図8における下面)のほぼ全体を覆う。第1エレメント(120)において、仕切部材(40)は、透湿膜(42)が第1フレーム(125)側を向く状態で、第1フレーム(125)に接着される。第1エレメント(120)において、仕切部材(40)の透湿膜(42)は、その第1エレメント(120)によって形成される第1空気流路(121)に面する。
 第2エレメント(150)において、仕切部材(40)は、第2フレーム(155)の一方の面(図8における下面)のほぼ全体を覆う。第2エレメント(150)において、仕切部材(40)は、多孔質基材(41)の第2面(41b)が第2フレーム(155)側を向く状態で、第2フレーム(155)に接着される。第2エレメント(150)において、仕切部材(40)の透湿膜(42)は、その第2エレメント(150)に隣接する第1エレメント(120)によって形成される第1空気流路(121)に面する。
(空気の流れと熱交換作用)
 図6に示すように、全熱交換素子(30)では、第1流入口(122a)へ室外空気OAが流入し、第2流入口(152a)に室内空気RAが流入する。第1流入口(122a)へ流入した室外空気OAは、給気として第1空気流路(121)を流れ、一方の副熱交換部(112a)と、主熱交換部(111)と、他方の副熱交換部(112b)とを順に通過し、その後に第1流出口(122b)から流出して室内へ供給される。第2流入口(152a)へ流入した室内空気RAは、排気として第2空気流路(151)を流れ、他方の副熱交換部(112b)と、主熱交換部(111)と、一方の副熱交換部(112a)とを順に通過し、その後に第2流出口(152b)から流出して室外へ排出される。
 全熱交換素子(30)の各副熱交換部(112a,112b)において、第1空気流路(121)を流れる給気と第2空気流路(151)を流れる排気とは、互いに交差する方向に流れる。全熱交換素子(30)の主熱交換部(111)において、第1空気流路(121)を流れる給気と第2空気流路(151)を流れる排気とは、互いに逆向きに流れる。
 全熱交換素子(30)では、第1空気流路(121)を流れる給気と第2空気流路(151)を流れる排気との間で、顕熱と潜熱(水分)の交換が行われる。全熱交換素子(30)では、給気と排気のうち温度が高い方から温度が低い方へ熱が移動する。また、全熱交換素子(30)では、給気と排気のうち湿度が高い方から湿度が低い方へ水分が移動する。
 本実施形態の全熱交換素子(30)において、第1空気流路(121)を流れる給気と第2空気流路(151)を流れる排気とは、主に主熱交換部(111)において顕熱と潜熱とを交換する。従って、本実施形態の全熱交換素子(30)は、対向流型の熱交換器である。
<全熱交換素子用仕切部材(積層体)及び全熱交換素子の変形例>
 全熱交換素子用仕切部材(積層体)及び全熱交換素子の構造は、実施形態2及び3の構造に限定されない。
(全熱交換素子用仕切部材(積層体))
 例えば、図9に示す仕切部材(積層体)(40)は、一つの多孔質基材(41)と二つの透湿膜(42)とを備える。この仕切部材(積層体)(40)では、一方の透湿膜(42)が仕切部材(積層体)(40)の第1面(41a)を覆い、他方の透湿膜(42)が仕切部材(積層体)(40)の第2面(41b)を覆う。
 また、図10に示す仕切部材(積層体)(40)では、透湿膜(42)の一部が多孔質基材(41)に入り込んでいる。この仕切部材(積層体)(40)を製造する際には、透湿膜(42)を形成するための水性組成物を、多孔質基材(41)の内部にまで浸透させる。そして、この仕切部材(積層体)(40)において、透湿膜(42)は、その一部分が多孔質基材(41)の第1面(41a)を覆い、残りの部分が多孔質基材(41)の内部に入り込む。
 また、図11に示す仕切部材(積層体)(40)では、透湿膜(42)の全体が多孔質基材(41)に入り込んでいる。この仕切部材(積層体)(40)を製造する際には、透湿膜(42)を形成するための水性組成物を、多孔質基材(41)の内部に注入する。この仕切部材(積層体)(40)では、多孔質基材(41)の厚さ方向の中央部に透湿膜(42)が形成される。
 また、図12に示す仕切部材(積層体)(40)は、二つの多孔質基材(41)と一つの透湿膜(42)とを備える。この仕切部材(積層体)(40)では、透湿膜(42)の厚さ方向の両側に多孔質基材(41)が一つずつ設けられる。この仕切部材(積層体)(40)の透湿膜(42)は、その一方の面が一方の多孔質基材(41)の第1面(41a)と接し、その他方の面が他方の多孔質基材(41)の第2面(41b)と接する。
(全熱交換素子)
 図13に示すように、全熱交換素子(30)は、全ての仕切部材(積層体)(40)の透湿膜(42)が第2空気流路(37,151)に面していてもよい。なお、図13は、実施形態1の全熱交換素子(30)に本変形例を適用したものを示す。
 本変形例の全熱交換素子(30)では、給気が流れる第1空気流路(36,121)に仕切部材(40)の多孔質基材(41)の第2面(41b)が面し、排気が流れる第2空気流路(37,151)に仕切部材(40)の透湿膜(42)が面する。
 また、全熱交換素子(30)では、透湿膜(42)が第1空気流路(36,121)に面する仕切部材(40)と、透湿膜(42)が第2空気流路(37,151)に面する仕切部材(40)とが、混在していてもよい。
 例えば、図14に示す全熱交換素子(30)では、透湿膜(42)が第1空気流路(36,121)に面する仕切部材(40)と、透湿膜(42)が第2空気流路(37,151)に面する仕切部材(40)とが、仕切部材(40)及び間隔保持部材(32125,155)の積層方向に交互に配置される。なお、図14は、実施形態2の全熱交換素子(30)に本変形例を適用したものを示す。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。また、本開示に係る各発明は、実施形態や以下の実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以下に、実施例に基づいて本開示の一実施形態をより詳細に説明する。
 実施例1
 2-メタクリロイルオキシエチルホスホリルコリンとメタクリル酸ステアリルのランダム共重合体(構成単位の比率[前者/後者]:1/1、濃度:4質量%、重量平均分子量:10万)及び防腐剤を混合し、蒸留水で希釈して共重合体濃度:2質量%(共重合体は固形分中の主成分)とする組成物を得た。一方、ポリオレフィン系樹脂製多孔質基材(厚さ:20μm表面張力:32dyn)の一方の表面のコロナ処理を行い、表面張力46dynの親水性表面を形成した。そして、上記多孔質基材の親水性表面に、アプリケーターを用いて上記組成物を塗工し、50℃で3分間加熱して、透湿膜(厚さ:100~500nm)を形成した。このようにして実施例1の積層体を作製した。
 実施例2
 多孔質基材として、ポリオレフィン系樹脂製多孔質基材(厚さ:12μm、表面張力:32dyn)を用いたこと以外は実施例1と同様にして実施例2の積層体を作製した。
 実施例3
 多孔質基材として、ポリオレフィン系樹脂製多孔質基材(厚さ:25μm、表面張力:32dyn)を用いたこと以外は実施例1と同様にして実施例3の積層体を作製した。
 実施例4
 多孔質基材として、ポリオレフィン系樹脂製多孔質基材(厚さ:5μm、表面張力:32dyn)を用いたこと以外は実施例1と同様にして実施例4の積層体を作製した。
 実施例5
 2-メタクリロイルオキシエチルホスホリルコリンとメタクリル酸ステアリルのランダム共重合体(構成単位の比率[前者/後者]:1/1、濃度:4質量%、重量平均分子量:10万)及び防腐剤を混合し、蒸留水で希釈して共重合体濃度:1.5質量%(共重合体は固形分中の主成分)とする組成物を得た。そして、当該組成物を用いて透湿膜を形成したこと以外は実施例1と同様にして実施例5の積層体を作製した。
 実施例6
 3-[2-(メタクリロイルオキシ)エチル]ジメチルアンモニウムプロピオン酸塩とアクリル酸ラウリルのランダム共重合体(構成単位の比率[前者/後者]:40/60、濃度:10質量%、重量平均分子量:80000)及び防腐剤を混合し、蒸留水で希釈して共重合体濃度:4質量%(共重合体は固形分中の主成分)とする組成物を得た。そして、当該組成物を用いて透湿膜を形成したこと以外は実施例1と同様にして実施例6の積層体を作製した。
 実施例7
 3-[(2-メタクリロイルアミノ)プロピル]ジメチル-3-スルホブチルアンモニウムヒドロキシド塩とN-ドデシルメタクリルアミドのランダム共重合体(構成単位の比率[前者/後者]:30/70、濃度:50質量%、重量平均分子量:80000)及び防腐剤を混合し、蒸留水で希釈して共重合体濃度:2質量%(共重合体は固形分中の主成分)とする組成物を得た。そして、当該組成物を用いて透湿膜を形成したこと以外は実施例1と同様にして実施例7の積層体を作製した。
 比較例1
 市販の全熱交換器に含まれる全熱交換素子用仕切部材を取り出し、比較例1の積層体として用いた。なお、当該積層体は、紙(厚さ:40μm)を多孔質基材とし、当該多孔質基材に透湿向上成分としての潮解性を有する無機塩が含浸されたものである。
 比較例2
 ポリウレタン系樹脂溶液(商品名「サンプレン H-600」、三洋化成工業株式会社製、濃度:8質量%)を、アプリケーターを用いて紙上に塗工し、120℃で3分間加熱して、透湿膜を形成した。このようにして比較例2の積層体を作製した。
(評価)
 実施例及び比較例で得られた各積層体について以下の通り評価した。評価結果は表に記載した。なお、表中の「-」は評価を行わなかったことを示す。また、透湿膜が形成されていないポリオレフィン系樹脂製多孔質基材そのものを比較例3として評価を行った。
(1)透気抵抗度
 実施例及び比較例で得られた積層体について、JIS P8117-2009のガーレー法に基づき、透気抵抗度を測定した。具体的には、実施例及び比較例で得られた積層体から、5cm×5cmの試験片を切り出し、ガーレー装置に供して、100ccの空気が流れる秒数をストップウォッチで計測した。
(2)透湿度
 実施例及び比較例で得られた積層体について、JIS Z0208-1976の透湿度試験方法(カップ法)に基づき、透湿度を測定した。具体的には、実施例及び比較例で得られた積層体を2時間以上測定環境に静置した後に透湿シートとして上記透湿カップを覆い、気密した。そして、実質上無風状態(風速0.2m/s以下)の環境下、1時間経過時における、塩化カルシウムと透湿カップの合計質量の増加分を試験片1m2・24時間あたりの質量に換算し、透湿度として計測した。なお、温度20℃相対湿度65%、及び、温度5℃相対湿度45%の2つの環境下においてそれぞれ計測を行った。
(3)親水部の最大径
 実施例で得られた積層体について、透湿膜表面の画像を走査型プローブ顕微鏡(SPM)(型番「Dimension Icon」、Bruker社製)で凝着力測定モードを用いて吸着力の高い部位(親水部)と吸着力の低い部位(疎水部)を凝着力によって数値化し、画像解析ソフトで処理することで、円相当径として親水部の大きさを算出し、親水部の最大径を算出した。
Figure JPOXMLDOC01-appb-T000012
 実施例の積層体は、透気抵抗度が高く、すなわち透気性が低く、且つ、透湿性にも優れると評価された。特に、温度5℃相対湿度45%の環境下における透湿度が500g/(m2・24h)以上であり(実施例1~3)、低温低湿度環境下における透湿性が優れると評価された。一方、比較例1の積層体は、透湿性が劣ると評価された。また、比較例2の積層体は、透気性が高く、透湿性にも劣ると評価された。また、多孔質基材のみを用いた比較例3は、透湿性に優れるものの、透気性が高かった。
 以下、本開示に係る発明のバリエーションを記載する。
[付記1]多孔質基材と、前記多孔質基材の少なくとも一方の面に設けられた透湿膜と、を備え、前記透湿膜は、官能基として親水性基を含む側鎖を有する熱可塑性共重合体から形成される、積層体。
[付記2]前記親水性基はベタイン基である、付記1に記載の積層体。
[付記3]前記透湿膜の一部が前記多孔質基材に入り込んでいる、付記1又は2に記載の積層体。
[付記4]前記透湿膜の全部が前記多孔質基材に入り込んでいる、付記1又は2に記載の積層体。
[付記5]前記透湿膜の厚さ方向の両側に前記多孔質基材が一つずつ設けられる、付記1~4に記載の積層体。
[付記6]前記共重合体は、前記ベタイン基を含む側鎖を有する構成単位として前記式(1)で表される構成単位を含む、付記1~5に記載の積層体。
[付記7]前記共重合体はさらに疎水性官能基を側鎖に有する、付記1~6に記載の積層体。
[付記8]前記共重合体は、前記疎水性官能基を側鎖に有する構成単位として前記式(2)で表される構成単位を含む、付記7に記載の積層体。
[付記9]前記共重合体における前記式(1)で表される構成単位の、前記式(2)で表される構成単位に対するモル比が1/100~100/1である、付記8に記載の積層体。
[付記10]前記式(1)中、R1は、水素原子又はメチル基(好ましくはメチル基)である、付記8又は9に記載の積層体。
[付記11]前記式(1)で表される構成単位は、アクリル酸エステル又はメタクリル酸エステルに由来する構成単位である、付記8~10のいずれか1つに記載の積層体。
[付記12]前記式(1)中、Xは、炭素数1~4の直鎖又は分岐鎖状アルキレン基(好ましくは炭素数1~4の直鎖状アルキレン基)である、付記8~11のいずれか1つに記載の積層体。
[付記13]前記式(1)中、Yは、炭素数1~4のアルキレン基(好ましくは炭素数1~4の直鎖状アルキレン基)である、付記8~12のいずれか1つに記載の積層体。
[付記14]前記式(1)中のカチオンはアンモニウムイオンである、付記8~13のいずれか1つに記載の積層体。
[付記15]前記式(1)中のアニオンは、リン酸イオン、硫酸イオン、又は炭酸イオンである、付記8~14のいずれか1つに記載の積層体。
[付記16]前記式(1)は、前記式(1-1)で表される基、前記式(1-2)で表される基、又は前記式(1-3)で表される基を含む、付記8~15のいずれか1つに記載の積層体。
[付記17]前記式(1-1)中、R5、R6、及びR7はメチル基である、付記16に記載の積層体。
[付記18]前記式(1-1)中、Xはジメチレン基であり、Yはジメチレン基である、付記16又は17に記載の積層体。
[付記19]前記式(1-1)で表される構成単位を形成する単量体が2-メタクリロイルオキシエチルホスホリルコリンである、付記16~18のいずれか1つに記載の積層体。
[付記20]前記式(1-2)中、R8及びR9はメチル基である、付記16に記載の積層体。
[付記21]前記式(1-2)中、Xはトリメチレン基であり、Yはテトラメチレン基である、付記16又は20に記載の積層体。
[付記22]前記式(1-3)中、R8及びR9はメチル基である、付記16に記載の積層体。
[付記23]前記式(1-3)中、Xはジメチレン基であり、Yはメチレン基である、付記16又は22に記載の積層体。
[付記24]前記式(2)中、R2は、水素原子又はメチル基(好ましくはメチル基)である、付記8~23のいずれか1つに記載の積層体。
[付記25]前記式(2)中、R3は、炭素数4~26(好ましくは8~22、より好ましくは10~20、さらに好ましくは14~18)の炭化水素基(好ましくは脂肪族炭化水素基、より好ましくは直鎖又は分岐鎖状アルキル基、さらに好ましくは直鎖状アルキル基)である、付記8~24のいずれか1つに記載の積層体。
[付記26]前記式(2)で表される構成単位を形成する単量体は(メタ)アクリル酸ステアリルである、付記8~25のいずれか1つに記載の積層体。
[付記27]前記共重合体における親水部の疎水部に対するモル比[前者/後者]は0.01~2.0(好ましくは0.01~1.5、より好ましくは0.01~1.3)である、付記8~26のいずれか1つに記載の積層体。
[付記28]前記式(1)で表される構成単位の前記式(2)で表される構成単位に対するモル比[前者/後者]は、0.01~90(好ましくは0.02~80、より好ましくは0.1~20、さらに好ましくは0.5~5)である、付記8~27のいずれか1つに記載の積層体。
[付記29]前記式(1)で表される構成単位及び前記式(2)で表される構成単位の合計モル数は、前記共重合体を構成する全単量体に由来する構成単位の総モル数に対して、50モル%以上(好ましくは90モル%、より好ましくは99モル%以上)である、付記8~28のいずれか1つに記載の積層体。
[付記30]前記共重合体の重量平均分子量は2万~200万(好ましくは3万~150万、より好ましくは5万~100万、さらに好ましくは7万~50万)である、付記8~29のいずれか1つに記載の積層体。
[付記31]前記共重合体は、前記式(1)で表される構成単位を形成する単量体と前記式(2)で表される構成単位を形成する単量体とのランダム共重合体である、付記8~30のいずれか1つに記載の積層体。
[付記32]前記透湿膜表面は親水部と疎水部が相分離した構造を有し、前記透湿膜表面において、親水部の最大径が50nm以下である、付記1~31のいずれか1つに記載の積層体。
[付記33]前記透湿膜は、前記透湿膜の厚さよりも小径の防腐剤を含む、付記1~32のいずれか1つに記載の積層体。
[付記34]前記多孔質基材を形成する材料は疎水性材料(好ましくはポリオレフィン系樹脂、より好ましくはポリプロピレン系樹脂)である、付記1~33のいずれか1つに記載の積層体。
[付記35]前記多孔質基材の空隙率は30~90体積%(好ましくは40~70体積%)である付記1~34のいずれか1つに記載の積層体。
[付記36]前記多孔質基材は、前記透湿膜を備える側の表面に親水化処理が施されている、付記1~35のいずれか1つに記載の積層体。
[付記37]前記多孔質基材の前記透湿膜を形成する側の面の表面張力は35~55dyn/cm(好ましくは37~50dyn/cm)である、付記1~36のいずれか1つに記載の積層体。
[付記38]前記多孔質基材の前記透湿膜が形成されていない領域である内部の表面張力は35dyn/cm未満(好ましくは33dyn/cm以下)である、付記1~37のいずれか1つに記載の積層体。
[付記39]JIS Z0208-1976の透湿度試験方法に基づく、温度20℃、相対湿度65%、風速0.2m/秒以下の条件における透湿度は1600g/(m2・24h)以上(好ましくは1700g/(m2・24h)以上、より好ましくは1800g/(m2・24h)以上)である付記1~38のいずれか1つに記載の積層体。
[付記40]JIS Z0208-1976の透湿度試験方法に基づく、温度5℃、相対湿度45%、風速0.2m/s以下の条件における透湿度は300g/(m2・24h)以上(好ましくは400g/(m2・24h)以上、より好ましくは500g/(m2・24h)以上)である、付記1~39のいずれか1つに記載の積層体。
[付記41]JIS P8117-2009のガーレー法に基づく透気抵抗度は3000秒/100cc以上(好ましくは4000秒/100cc以上、より好ましくは5000秒/100cc以上)である、付記1~40のいずれか1つに記載の積層体。
[付記42]下記耐水性試験による透気抵抗度の低下率が50%以下である(好ましくは20%以下、より好ましくは15%以下)である、付記1~41のいずれか1つに記載の積層体。
<耐水性試験>
 積層体からφ7cmの試験片を切り出し、透気抵抗度を測定する(初期の透気抵抗度)。その後、試験片を、常温の水に15分間浸漬させたのち、常温で自然乾燥させる。上記試験片について、この浸漬、乾燥を1サイクルとして50サイクル繰り返し、耐水性試験後の試験片を得る。そして、得られた耐水性試験後の試験片について透気抵抗度を測定する(耐水性試験後の透気抵抗度)。そして、下記式より透気抵抗度の低下率を求める。なお、前記初期の透気抵抗度及び前記耐水性試験後の透気抵抗度はいずれもJIS P8117-2009のガーレー法に基づく透気抵抗度である。
 透気抵抗度の低下率(%)=[(初期の透気抵抗度)-(耐水性試験後の透気抵抗度)]/(初期の透気抵抗度)×100
[付記43]JIS P8117-2009のガーレー法に基づく、下記耐水性試験後の透気抵抗度は3000秒/100cc以上(好ましくは4000秒/100cc以上、より好ましくは5000秒/100cc以上)である、付記1~42のいずれか1つに記載の積層体。
<耐水性試験>
 積層体からφ7cmの試験片を切り出し、常温の水に15分間浸漬させたのち、常温で自然乾燥させる。前記試験片について、この浸漬、乾燥を1サイクルとして50サイクル繰り返し、耐水性試験後の試験片を得る。そして、得られた耐水性試験後の試験片について透気抵抗度を測定する。
[付記44]付記1~43のいずれか1つに記載の積層体からなる、全熱交換素子用仕切部材。
[付記45]付記1~43のいずれか1つに記載の積層体からなる仕切部材の、全熱交換素子用仕切部材としての使用。
[付記46]付記1~43のいずれか1つに記載の積層体をコルゲート状に変形し、さらに積層する、全熱交換素子用仕切部材の製造方法。
[付記47]付記44に記載の全熱交換素子用仕切部材を複数備えると共に、
 積層された前記全熱交換素子用仕切部材の間に配置されて隣り合う前記全熱交換素子用仕切部材の間隔を保持する間隔保持部材を備え、
 第1空気流路と第2空気流路とが前記全熱交換素子用仕切部材を挟んで交互に形成される全熱交換素子。
[付記48]付記47に記載の全熱交換素子を備え、
 室外から室内へ供給される給気が前記全熱交換素子の前記第1空気流路を流れ、室内から室外へ排出される排気が前記全熱交換素子の前記第2空気流路を流れる換気装置。
 本開示の積層体は、透気性が低く、且つ透湿性に優れ、また、低温低湿度環境下での透湿性にもすぐれるので、全熱交換素子用仕切部材として特に好ましく用いることができる。従って、本開示は、産業上の利用可能性を有する。
10   換気装置
32   間隔保持部材
36   第1空気流路
37   第2空気流路
40   積層体
41   多孔質基材
41a  多孔質基材の一方の面
42   透湿膜
121  第1空気流路
125  第1フレーム(間隔保持部材)
151  第2空気流路
155  第2フレーム(間隔保持部材)

Claims (15)

  1.  多孔質基材と、前記多孔質基材の少なくとも一方の面に設けられた透湿膜と、を備え、
     前記透湿膜は、官能基として親水性基を含む側鎖を有する熱可塑性共重合体から形成される、積層体。
  2.  前記親水性基はベタイン基である、請求項1に記載の積層体。
  3.  前記共重合体はさらに疎水性官能基を側鎖に有する、請求項1又は2に記載の積層体。
  4.  前記共重合体は、前記ベタイン基を含む側鎖を有する構成単位として下記式(1)で表される構成単位と、前記疎水性官能基を側鎖に有する構成単位として下記式(2)で表される構成単位とを含み、前記式(1)で表される構成単位の、前記式(2)で表される構成単位に対するモル比が1/100~100/1である共重合体から形成される、請求項3に記載の積層体。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1は、水素原子又は炭素数1~4のアルキル基を示す。Xは、炭素数1~4の二価の炭化水素基を示す。Yは、炭素数1~4の二価の直鎖状炭化水素基を示す。Z1は、O又はNHを示す。α及びβは、カチオン及びアニオンの組み合わせを示す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R2は、水素原子又は炭素数1~4のアルキル基を示し、R3は、炭素数2以上の炭化水素基を示す。Z2は、O又はNHを示す。]
  5.  前記式(1)中のカチオンはアンモニウムイオンである請求項4に記載の積層体。
  6.  前記式(1)中のアニオンは、リン酸イオン、硫酸イオン、又は炭酸イオンである請求項4又は5に記載の積層体。
  7.  前記式(1)は、下記式(1-1)で表される基、下記式(1-2)で表される基、又は下記式(1-3)で表される基を含む、請求項4に記載の積層体。
    Figure JPOXMLDOC01-appb-C000003
    [式(1-1)~(1-3)中、X及びYは前記に同じであり、カルボニル炭素原子の左側の結合手は式(1)中のR1を有する炭素原子に結合する。式(1-1)中、R5、R6、及びR7は、同一又は異なって、炭素数1~4のアルキル基を示す。式(1-2)及び式(1-3)中、R8及びR9は、同一又は異なって、炭素数1~4のアルキル基を示す。]
  8.  前記共重合体の重量平均分子量は2万~200万である、請求項4~7のいずれか1項に記載の積層体。
  9.  前記共重合体は、前記式(1)で表される構成単位を形成する単量体と前記式(2)で表される構成単位を形成する単量体とのランダム共重合体である、請求項4~8のいずれか1項に記載の積層体。
  10.  前記多孔質基材は、前記透湿膜を備える側の表面に親水化処理が施されている、請求項1~9のいずれか1項に記載の積層体。
  11.  JIS Z0208-1976の透湿度試験方法に基づく、温度20℃、相対湿度65%、風速0.2m/秒以下の条件における透湿度が1600g/(m2・24h)以上である、請求項1~10のいずれか1項に記載の積層体。
  12.  前記透湿膜表面は親水部と疎水部が相分離した構造を有し、前記透湿膜表面において、親水部の最大径が50nm以下である、請求項1~11のいずれか1項に記載の積層体。
  13.  請求項1~12のいずれか1項に記載の積層体からなる全熱交換素子用仕切部材。
  14.  請求項13に記載の全熱交換素子用仕切部材を複数備えると共に、
     積層された前記全熱交換素子用仕切部材の間に配置されて隣り合う前記全熱交換素子用仕切部材の間隔を保持する間隔保持部材を備え、
     第1空気流路と第2空気流路とが前記全熱交換素子用仕切部材を挟んで交互に形成される全熱交換素子。
  15.  請求項14に記載の全熱交換素子を備え、
     室外から室内へ供給される給気が前記全熱交換素子の前記第1空気流路を流れ、室内から室外へ排出される排気が前記全熱交換素子の前記第2空気流路を流れる換気装置。
PCT/JP2021/011912 2020-03-31 2021-03-23 積層体 WO2021200382A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3177362A CA3177362A1 (en) 2020-03-31 2021-03-23 Laminate
EP21779861.0A EP4129642A4 (en) 2020-03-31 2021-03-23 LAMINATE BODY
AU2021249589A AU2021249589A1 (en) 2020-03-31 2021-03-23 Laminate body
US17/915,245 US20230129711A1 (en) 2020-03-31 2021-03-23 Laminate
CN202180026508.7A CN115666924A (zh) 2020-03-31 2021-03-23 层叠体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-061833 2020-03-31
JP2020061833 2020-03-31
JP2020061735 2020-03-31
JP2020-061735 2020-03-31
JP2020-164298 2020-09-30
JP2020-164275 2020-09-30
JP2020164298A JP7142065B2 (ja) 2020-03-31 2020-09-30 全熱交換素子用仕切部材、全熱交換素子、および換気装置
JP2020164275A JP7146867B2 (ja) 2020-03-31 2020-09-30 積層体

Publications (1)

Publication Number Publication Date
WO2021200382A1 true WO2021200382A1 (ja) 2021-10-07

Family

ID=77929998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011912 WO2021200382A1 (ja) 2020-03-31 2021-03-23 積層体

Country Status (6)

Country Link
US (1) US20230129711A1 (ja)
EP (1) EP4129642A4 (ja)
CN (1) CN115666924A (ja)
AU (1) AU2021249589A1 (ja)
CA (1) CA3177362A1 (ja)
WO (1) WO2021200382A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243596A1 (ja) * 2022-06-15 2023-12-21 株式会社ダイセル 加湿用積層体、および加湿器
WO2023243599A1 (ja) * 2022-06-15 2023-12-21 株式会社ダイセル 加湿用積層体、および加湿器
WO2023243600A1 (ja) * 2022-06-15 2023-12-21 株式会社ダイセル 加湿用積層体、および加湿器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205193A (ja) * 1984-03-28 1985-10-16 Mitsubishi Electric Corp 全熱交換器
JP2014055683A (ja) 2012-09-11 2014-03-27 Panasonic Corp 全熱交換素子用仕切部材およびその全熱交換素子用仕切部材を用いた全熱交換素子および熱交換形換気装置
JP2015186862A (ja) * 2014-03-26 2015-10-29 三菱樹脂株式会社 気体透過性フィルム
JP2018109492A (ja) * 2017-01-06 2018-07-12 東レ株式会社 熱交換用シート
WO2019045057A1 (ja) * 2017-08-31 2019-03-07 株式会社 東芝 全熱交換素子用シート、全熱交換素子、全熱交換器、及び水蒸気分離体
JP2020061833A (ja) 2018-10-05 2020-04-16 田淵電機株式会社 電力変換装置及び分散型電源システム
JP2020061735A (ja) 2018-10-04 2020-04-16 日本電産株式会社 導波路装置およびアンテナ装置
JP2020164298A (ja) 2019-03-29 2020-10-08 フジテック株式会社 乗客コンベア
JP2020164275A (ja) 2019-03-29 2020-10-08 株式会社フジクラ ボビン用ケース

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205193A (ja) * 1984-03-28 1985-10-16 Mitsubishi Electric Corp 全熱交換器
JP2014055683A (ja) 2012-09-11 2014-03-27 Panasonic Corp 全熱交換素子用仕切部材およびその全熱交換素子用仕切部材を用いた全熱交換素子および熱交換形換気装置
JP2015186862A (ja) * 2014-03-26 2015-10-29 三菱樹脂株式会社 気体透過性フィルム
JP2018109492A (ja) * 2017-01-06 2018-07-12 東レ株式会社 熱交換用シート
WO2019045057A1 (ja) * 2017-08-31 2019-03-07 株式会社 東芝 全熱交換素子用シート、全熱交換素子、全熱交換器、及び水蒸気分離体
JP2020061735A (ja) 2018-10-04 2020-04-16 日本電産株式会社 導波路装置およびアンテナ装置
JP2020061833A (ja) 2018-10-05 2020-04-16 田淵電機株式会社 電力変換装置及び分散型電源システム
JP2020164298A (ja) 2019-03-29 2020-10-08 フジテック株式会社 乗客コンベア
JP2020164275A (ja) 2019-03-29 2020-10-08 株式会社フジクラ ボビン用ケース

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129642A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243596A1 (ja) * 2022-06-15 2023-12-21 株式会社ダイセル 加湿用積層体、および加湿器
WO2023243599A1 (ja) * 2022-06-15 2023-12-21 株式会社ダイセル 加湿用積層体、および加湿器
WO2023243600A1 (ja) * 2022-06-15 2023-12-21 株式会社ダイセル 加湿用積層体、および加湿器

Also Published As

Publication number Publication date
CA3177362A1 (en) 2021-10-07
CN115666924A (zh) 2023-01-31
EP4129642A4 (en) 2024-05-01
EP4129642A1 (en) 2023-02-08
AU2021249589A1 (en) 2022-11-03
US20230129711A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021200382A1 (ja) 積層体
JP5506441B2 (ja) 全熱交換素子および全熱交換器
KR100621716B1 (ko) 전열교환 소자
JP6022669B2 (ja) スルホン化ブロック共重合体および粒状炭素のブレンドならびにこれを含む膜、フィルムおよび被膜
WO2007119843A1 (ja) 熱交換器
KR20120023132A (ko) 전열교환 소자
WO2022070948A1 (ja) 積層体
JP2008089199A (ja) 全熱交換器
JP7142065B2 (ja) 全熱交換素子用仕切部材、全熱交換素子、および換気装置
JP7146867B2 (ja) 積層体
WO2022071166A1 (ja) 全熱交換素子用仕切部材、全熱交換素子、および換気装置
WO2021200384A1 (ja) 積層体
JPS60205193A (ja) 全熱交換器
JP2018109492A (ja) 熱交換用シート
JP7089178B2 (ja) 全熱交換素子およびその製造方法
JPWO2009110494A1 (ja) 熱交換素子及びそれを用いた空気調和機または加熱・冷却装置
WO2020226047A1 (ja) 全熱交換素子
WO2023243599A1 (ja) 加湿用積層体、および加湿器
WO2023243600A1 (ja) 加湿用積層体、および加湿器
WO2023243596A1 (ja) 加湿用積層体、および加湿器
JP2008292061A (ja) 全熱交換器
KR20070122272A (ko) 적층 폴리머, 이를 구비하는 열교환기 및 적층 폴리머제조방법
JP2011002126A (ja) 加湿用気化フィルター、加湿用気化フィルター積層体及びそれらを用いた加湿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3177362

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202217061151

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021249589

Country of ref document: AU

Date of ref document: 20210323

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779861

Country of ref document: EP

Effective date: 20221031