WO2021200334A1 - 検出装置及び検出方法 - Google Patents

検出装置及び検出方法 Download PDF

Info

Publication number
WO2021200334A1
WO2021200334A1 PCT/JP2021/011691 JP2021011691W WO2021200334A1 WO 2021200334 A1 WO2021200334 A1 WO 2021200334A1 JP 2021011691 W JP2021011691 W JP 2021011691W WO 2021200334 A1 WO2021200334 A1 WO 2021200334A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
belt
axial direction
relative distance
displacement amount
Prior art date
Application number
PCT/JP2021/011691
Other languages
English (en)
French (fr)
Inventor
潤一 和田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202180023166.3A priority Critical patent/CN115335659A/zh
Publication of WO2021200334A1 publication Critical patent/WO2021200334A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present disclosure relates to a detection device and a detection method, and more particularly to a technique for detecting misalignment of an engine belt device.
  • this type of belt device has a drive pulley on the crankshaft and is provided on the driven pulley of auxiliary equipment such as an alternator and a radiator fan.
  • An endless belt (hereinafter, simply referred to as a belt) is wound around the drive pulley and the driven pulley.
  • Patent Document 1 discloses a technique in which a three-dimensional measuring device is installed in front of a pulley arranged on the front side of an engine and the three-dimensional measuring device detects misalignment of the pulley.
  • the technique of the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to effectively detect the inclination of the pulley with a simple configuration.
  • the detection device of the present disclosure includes a distance acquisition means having a detection unit for acquiring a relative distance from the pulley in the axial direction of the pulley in a belt device including a pulley around which the belt is wound, and the relative distance to be acquired.
  • a displacement amount calculating means for calculating the displacement amount in the axial direction of the pulley based on the above, and an inclination degree calculating means for calculating the inclination degree of the pulley with respect to the axial direction of the pulley based on the calculated displacement amount.
  • the detection unit may acquire the relative distance in the axial direction of the pulley from the central portion in the circumferential direction on the outer peripheral side of the pulley in contact with the belt.
  • the detection unit may be provided at a central position in the longitudinal direction of the region of the pulley in contact with the belt, and at a position away from the pulley in the axial direction of the pulley.
  • the belt device includes a plurality of the pulleys, and the detection unit may acquire the relative distance in the axial direction from the pulley having the smallest bending rigidity of the rotating shaft among the plurality of pulleys.
  • the detection device determines that misalignment in which the pulley is attached at an angle with respect to the rotation axis has occurred. Further, the determination means may be provided.
  • the detection method of the present disclosure is based on a step of acquiring a relative distance from the pulley in the axial direction of the pulley in a belt device including a pulley around which the belt is wound, which is executed by a computer, and the acquired relative distance. Based on the step of calculating the amount of displacement of the pulley in the axial direction and the calculated amount of displacement, the degree of inclination of the pulley with respect to the axial direction of the pulley is calculated.
  • the inclination of the pulley can be effectively detected with a simple configuration.
  • FIG. 1 It is a schematic front view which shows the internal combustion engine which concerns on this embodiment.
  • (A) is a schematic front view showing the arrangement of the displacement sensor according to the present embodiment
  • (B) is a schematic side view showing the arrangement of the displacement sensor according to the present embodiment.
  • FIG. 1 is a schematic front view of the internal combustion engine according to the present embodiment as viewed from the crankshaft direction.
  • the front side of the paper surface is referred to as the front side
  • the back direction of the paper surface is referred to as the rear side.
  • the arrow A indicates the direction of rotation of the belt.
  • the engine 10 as an internal combustion engine includes an engine main body 11 mainly composed of a cylinder block, a cylinder head, a crankcase, an oil pan, and the like.
  • a crankshaft 12 that outputs a rotational force transmitted from a piston (not shown) via a connecting rod or the like is rotatably supported by the engine body 11.
  • the belt device 1 includes a drive pulley 2, driven pulleys 3 and 4, a tension pulley 6, a holding portion 7 for holding the tension pulley 6, a drive pulley 2, driven pulleys 3 and 4, and a belt 5. ing.
  • the belt 5 is wound around the driven pulleys 3 and 4 and the tension pulley 6.
  • the belt 5 is, for example, a V-ribbed belt in which a plurality of V-shaped grooves (not shown) are formed on the inner peripheral surface portion.
  • the drive pulley 2 and the driven pulleys 3 and 4 are, for example, V-ribbed pulleys, and a plurality of grooves corresponding to the grooves on the inner peripheral surface portion of the belt 5 are formed on the outer peripheral surface portion.
  • the number of the driven pulleys 3 and 4 and the tension pulley 6 is not limited to the illustrated example, and may be an appropriate number.
  • the drive pulley 2 is fixed to the front end of the crankshaft 12 protruding forward from the front end surface 11A of the engine body 11 so as to be integrally rotatable with the crankshaft 12.
  • the driven pulley 3 is a pulley of the air conditioner compressor 30, and can rotate integrally with the rotating shaft 31 at the front end of the rotating shaft 31 protruding forward from the front end surface 30A of the air conditioner compressor 30. It is fixed.
  • the driven pulley 3 includes an electromagnetic clutch (not shown), and is rotationally driven by the power of the engine 10 when the electromagnetic clutch is engaged.
  • the driven pulley 4 is a pulley of the alternator 40, and is fixed to the front end of the rotating shaft 41 protruding forward from the front end surface 40A of the alternator 40 so as to be integrally rotatable with the rotating shaft 41.
  • the alternator 40 generates electricity by the power of the engine 10.
  • the electric power generated by the alternator 40 is stored in the electrically connected battery 70.
  • the tension pulley 6 is a rear flat pulley around which the outer peripheral surface of the belt 5 having no groove is wound, and is a rotating shaft around the front end of the rotating shaft 8 protruding forward from the front end surface 7A of the holding portion 7. It is rotatably fixed integrally with 8.
  • the tension pulley 6 reciprocates between a predetermined first position on the outer peripheral side of the belt 5 and a second position on the inner peripheral side of the belt 5 from the first position while contacting the outer peripheral surface of the belt 5. It is provided so that it can be moved.
  • the holding portion 7 holds the tension pulley 6 at a predetermined position between the first position and the second position by moving the rotating shaft 8 along the guide groove 7B. By holding the tension pulley 6 at a predetermined position by the holding portion 7, the tension of the belt 5 can be adjusted appropriately.
  • the detection device 20 includes a displacement sensor 9 and a control device 100.
  • a belt tension in the tangential direction connecting the outer circumference of the driven pulley 4 and the outer circumference of the drive pulley 2 acts on the driven pulley 4.
  • a belt tension in the tangential direction (hereinafter, referred to as a second tension Fb) connecting the outer circumference of the driven pulley 4 and the outer circumference of the driven pulley 3 acts on the driven pulley 4. That is, a resultant force Fa + Fb, which is a vector sum of the first tension Fa and the second tension Fb, acts on the driven pulley 4 by the belt 5.
  • the displacement sensor 9 is provided behind the driven pulley 4 at substantially the center in the circumferential direction (on the engine 10 side) on the outer side in the radial direction.
  • the rear side of the radial outer side of the driven pulley 4 in the circumferential direction acts on the rear side (engine 10 side) of the outer peripheral side of the driven pulley 4 in contact with the belt 5, that is, the driven pulley 4. It coincides with the vector direction of the resultant force Fa + Fb.
  • the displacement sensor 9 can effectively detect the amount of displacement in the axial direction of the driven pulley 4 (that is, the direction of the rotation axis of the driven pulley 4) at the position where the inclination of the driven pulley 4 is maximum. become.
  • the displacement amount of the driven pulley 4 is, for example, the displacement amount of the position in the driven pulley 4 in the axial direction at a predetermined position (for example, the central position of the region in contact with the belt 5).
  • the displacement sensor 9 (an example of the distance acquisition means of the present disclosure) is, for example, an optical sensor, which is provided on the front end surface 40A of the alternator 40 on the back side of the driven pulley 4 as shown in FIG. 2 (B). It is provided with a detection unit 9A including a light emitting unit and a light receiving unit.
  • the light projecting unit emits the laser beam toward the back surface side of the driven pulley 4 substantially parallel to the axis Y of the rotating shaft 41 of the driven pulley 4.
  • the light receiving unit receives the reflected light emitted by the light projecting unit and reflected by the detection target.
  • the displacement sensor 9 detects an axial relative distance (hereinafter, also referred to as an actual relative distance D) between the driven pulley 4 and the detection unit 9A.
  • the actual relative distance D detected by the displacement sensor 9 is transmitted to the electrically connected control device 100.
  • the displacement sensor 9 is provided on the engine 10 side of the driven pulley 4 and is configured to detect the actual relative distance D. That is, the displacement sensor 9 is arranged behind the driven pulley 4. As a result, the degree of freedom in layout is improved as compared with the conventional structure in which the misalignment detection device is arranged in front of the pulley.
  • the displacement sensor 9 includes a driven pulley 4 having the smallest bending rigidity of each of the rotating shafts 12, 31, 41, 8 among the plurality of pulleys 2, 3, 4, 6 shown in FIG. 1 and a detection unit 9A. It is configured to get the relative distance in the axial direction between them. This makes it possible to effectively detect the relative distance in the axial direction between the driven pulley 4 and the detection unit 9A, in which the rotating shaft 41 is easily bent by the tension of the belt 5.
  • FIG. 3 is a schematic functional block diagram showing the control device 100 according to the present embodiment and related peripheral configurations.
  • the control device 100 is, for example, a device that performs calculations such as a computer, and is a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, and an output port connected to each other by a bus or the like. Etc., and execute the program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • control device 100 functions as a device including a displacement amount calculation unit 110, a misalignment detection unit 120, a belt life estimation unit 130, and a notification unit 140 by executing a program.
  • a displacement amount calculation unit 110 a misalignment detection unit 120
  • a belt life estimation unit 130 a belt life estimation unit 130
  • a notification unit 140 by executing a program.
  • the displacement amount calculation unit 110 calculates the axial displacement amount L1 of the driven pulley 4 based on the actual relative distance D transmitted from the displacement sensor 9.
  • the calculation of the axial displacement amount L1 by the displacement amount calculation unit 110 will be described with reference to FIGS. 4 and 5.
  • FIG. 4 is a diagram schematically showing a time change of the actual relative distance D detected by the displacement sensor 9.
  • the actual relative distance D becomes the maximum value for each rotation of the driven pulley 4. It changes in a sinusoidal shape including the minimum value.
  • the displacement amount calculation unit 110 stores the maximum value of the actual relative distance D (the value of the inflection point when the change of the actual relative distance D changes from increasing to decreasing) in memory (storage means) each time the driven pulley 4 rotates once. ), And the average value of the maximum value in a predetermined cycle is calculated. This makes it possible to reduce the influence of the sensor abnormal value of the displacement sensor 9 when an extreme external force is applied.
  • the relative distance in the axial direction between the driven pulley 4 and the detection unit 9A when the driven pulley 4 is mounted perpendicular to the rotating shaft 41 is set as the reference relative distance LK. It is stored in advance.
  • the displacement amount calculation unit 110 calculates a value obtained by subtracting the reference relative distance LK from the average value of the maximum value of the actual relative distance D in a predetermined period as the axial displacement amount L1 of the driven pulley 4 (see FIG. 5).
  • the axial displacement amount L1 calculated by the displacement amount calculation unit 110 is transmitted to the misalignment detection unit 120 and the belt life estimation unit 130.
  • the misalignment detection unit 120 detects the misalignment of the driven pulley 4 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • the misalignment detection unit 120 is described from the radial distance L2 between the detection unit 9A and the axial center Y of the rotating shaft 41 stored in the memory of the control device 100 in advance and the displacement amount calculation unit 110. Based on the transmitted axial displacement amount L1, the degree of inclination ⁇ of the driven pulley 4 shown in FIG. 5 with respect to the rotation axis is calculated by the equation (1) using a trigonometric function.
  • the misalignment detection unit 120 causes misalignment in the driven pulley 4 when the inclination degree ⁇ of the driven pulley 4 exceeds a predetermined upper limit threshold value (for example, about 0.5 to 1.0 degree). Is determined. As a result, the control device 100 can detect the misalignment of the driven pulley 4.
  • a predetermined upper limit threshold value for example, about 0.5 to 1.0 degree.
  • the driven pulley 4 is tilted so that the reflected light is not received by the detection unit 9A of the displacement sensor 9, or is deviated from the rotating shaft 41. Is assumed. Further, when the axial displacement amount L1 transmitted from the displacement amount calculation unit 110 is smaller than the predetermined lower limit threshold value, for example, it is not shown between the driven pulley 4 and the detection unit 9A. It is assumed that a shield such as a bracket is intervening. In such a case, the misalignment detection unit 120 determines that the misalignment cannot be detected or that an abnormality has occurred.
  • the displacement amount calculation unit 110 calculates the axial displacement amount L1 based on the average value of the maximum values of the actual relative distance D in a predetermined period. This prevents the misalignment detection unit 120 from immediately determining the misalignment or abnormality of the driven pulley 4 when the sensor value of the displacement sensor 9 has an extremely abnormal value.
  • the determination result of the misalignment detection unit 120 is transmitted to the notification unit 140.
  • the belt life estimation unit 130 estimates the life of the belt 5 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • the memory of the control device 100 stores a map M1 showing the relationship between the axial displacement amount L1 and the elongation amount of the belt 5 obtained in advance by experiments or the like.
  • the map M1 shows the relationship between the axial displacement amount L1 and the elongation amount of the belt 5 obtained in advance by experiments or the like.
  • the bending rigidity of the rotating shaft 41 increases, the amount of inclination of the pulley 4 due to the tension of the belt 5 decreases, so that the amount of axial displacement L1 also decreases. Therefore, in the map M1, the smaller the bending rigidity of the rotating shaft 41 is, the larger the elongation amount of the belt 5 is set in the predetermined axial displacement amount L1.
  • a map M2 showing the relationship between the elongation amount of the belt 5 and the life of the belt 5 obtained in advance by an experiment or the like is stored.
  • the belt life estimation unit 130 estimates the elongation amount of the belt 5 by referring to the map M1 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • the belt life estimation unit 130 estimates the life of the belt 5 by referring to the map M2 based on the amount of elongation of the belt 5 obtained by referring to the map M1. When the life of the belt 5 is less than the predetermined lower limit life, the belt life estimation unit 130 determines that it is time to replace the belt.
  • the driven pulley 4 is tilted so that the reflected light is not received by the detection unit 9A of the displacement sensor 9, or is deviated from the rotating shaft 41. Is assumed. Further, when the axial displacement amount L1 transmitted from the displacement amount calculation unit 110 is smaller than the predetermined lower limit threshold value, for example, it is not shown between the driven pulley 4 and the detection unit 9A. It is assumed that a shield such as a bracket is intervening. In such a case, the belt life estimation unit 130 determines that the belt life cannot be estimated or that an abnormality has occurred.
  • the displacement amount calculation unit 110 calculates the axial displacement amount L1 based on the average value of the maximum values of the actual relative distance D in a predetermined period. This prevents the belt life estimation unit 130 from overestimating or underestimating the life of the belt 5 when the sensor value of the displacement sensor 9 has an extremely abnormal value.
  • the life of the belt 5 estimated by the belt life estimation unit 130 and the determination result are transmitted to the notification unit 140.
  • the notification unit 140 notifies the determination result transmitted from the misalignment detection unit 120 and the life and determination result of the belt 5 transmitted from the belt life estimation unit 130.
  • the notification unit 140 notifies the occurrence of misalignment or abnormality when the misalignment detection unit 120 transmits a determination result that a misalignment or abnormality has occurred in the driven pulley 4.
  • the notification unit 140 notifies the occurrence of misalignment or abnormality via, for example, the indicator lamp 50 or a screen (not shown). This makes it possible to appropriately notify the misalignment or abnormality of the driven pulley 4.
  • the notification unit 140 may store information on the occurrence of misalignment or abnormality in a server provided in the vehicle center 200 or the like via a communication device (not shown). This enables appropriate vehicle operation management.
  • the notification unit 140 notifies the life of the belt 5 and the determination result transmitted from the belt life estimation unit 130 via the indicator lamp 50 or a screen (not shown). This makes it possible to easily grasp the life of the belt 5. Further, it is possible to optimize the replacement frequency of the belt 5 to suppress the cost and prevent the belt device 1 from failing or malfunctioning. Further, the notification unit 140 may store information on the life of the belt 5 and the determination result in a server provided in the vehicle center 200 or the like via a communication device (not shown). This enables appropriate vehicle operation management.
  • step S110 the displacement amount calculation unit 110 calculates the axial displacement amount L1 of the driven pulley 4 based on the actual relative distance D transmitted from the displacement sensor 9.
  • step S120 the misalignment detection unit 120 determines whether or not an abnormality has occurred in the belt device 1 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • this control proceeds to step 140.
  • this control proceeds to step 130.
  • step S130 the notification unit 140 notifies the occurrence of an abnormality. After that, this control is returned.
  • step S140 the misalignment detection unit 120 calculates the degree of inclination ⁇ of the driven pulley 4 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • step S150 the misalignment detection unit 120 determines whether or not misalignment has occurred in the driven pulley 4 based on the inclination degree ⁇ of the driven pulley 4.
  • this control is returned.
  • this control proceeds to step 160.
  • step S160 the notification unit 140 notifies the occurrence of misalignment. After that, this control is returned.
  • step S210 the displacement amount calculation unit 110 calculates the axial displacement amount L1 of the driven pulley 4 based on the actual relative distance D transmitted from the displacement sensor 9.
  • step S220 the misalignment detection unit 120 determines whether or not an abnormality has occurred in the belt device 1 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • this control proceeds to step 240.
  • this control proceeds to step 230.
  • step S230 the notification unit 140 notifies the occurrence of an abnormality. After that, this control is returned.
  • step S240 the belt life estimation unit 130 estimates the life of the belt 5 based on the axial displacement amount L1 transmitted from the displacement amount calculation unit 110.
  • step S250 the belt life estimation unit 130 determines whether or not the life of the belt 5 is less than the lower limit life.
  • this control proceeds to step 260.
  • the belt life estimation unit 130 determines that the life of the belt 5 is equal to or longer than the lower limit life (No)
  • this control proceeds to step 270.
  • step S270 the notification unit 140 notifies the life of the belt 5 and the determination result that the belt replacement is unnecessary. After that, this control is returned.
  • step S260 the notification unit 140 notifies the life of the belt 5 and the determination result that the belt needs to be replaced. After that, this control is returned.
  • the displacement amount calculation unit 110 is axially relative to the driven pulley 4 and the detection unit 9A of the displacement sensor 9 provided on the engine 10 side of the driven pulley 4.
  • the axial displacement amount L1 is calculated based on the distance.
  • the misalignment detection unit 120 is configured to calculate the degree of inclination ⁇ of the driven pulley 4 based on the axial displacement amount L1.
  • the misalignment detection unit 120 can reliably calculate the inclination degree ⁇ of the driven pulley 4 with a simple configuration, and effectively detects the misalignment of the driven pulley 4 based on the inclination degree ⁇ . Will be possible.
  • the displacement amount calculation unit 110 calculates the axial displacement amount L1 of the driven pulley 4 based on the relative distance in the axial direction between the driven pulley 4 and the detection unit 9A of the displacement sensor 9, and the belt life estimation unit The 130 is configured to estimate the life of the belt 5 based on the axial displacement amount L1.
  • the belt life estimation unit 130 can effectively estimate the life of the belt 5 with a simple configuration, and can appropriately inform the appropriate belt replacement time.
  • the displacement sensor 9 has been described as detecting the relative distance in the axial direction between the driven pulley 4 and the detection unit 9A, but the other pulleys 2, 3 and 6 and the detection unit 9A have been described.
  • the relative distance in the axial direction from 9A may be detected.
  • a plurality of displacement sensors 9 may be provided to detect the relative distances in the axial direction between the plurality of pulleys 2, 3, 4, 6 and the detection unit 9A, respectively.
  • the belt winding method of the belt device 1 has been described as a so-called serpentine method in which one belt 5 is wound around a plurality of pulleys 2, 3, 4, and 6, but the drive pulley has been described. 2 and the driven pulley 3 and the drive pulley 2 and the driven pulley 4 may be wound with separate belts to transmit power.
  • Displacement sensor (distance acquisition means) 9A ⁇ ⁇ ⁇ Detection unit 10 ⁇ ⁇ ⁇ Engine 11 ⁇ ⁇ ⁇ Engine body 12 ⁇ ⁇ ⁇ Crankshaft 20 ⁇ ⁇ ⁇ Detection device 30 ⁇ ⁇ ⁇ Compressor for air conditioner 40 ⁇ ⁇ ⁇ Alternator 41 ⁇ ⁇ ⁇ Rotating shaft 50 ... Indicator lamp 100 ... Control device 110 ... Displacement amount calculation unit (displacement amount calculation means) 120 ... Misalignment detection unit (tilt degree calculation means, determination means) 130 ⁇ ⁇ ⁇ Belt life estimation unit 140 ⁇ ⁇ ⁇ Notification unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

ベルト5が巻き掛けられるプーリ4を備えるベルト装置1における、プーリ4の軸方向における、前記プーリからの相対距離を取得する検出部9Aを有する変位センサ9と、取得される相対距離に基づいて、プーリ4の軸方向における変位量を演算する変位量演算部110と、演算される変位量に基づいて、プーリ4の軸方向に対する傾き度合いを演算する傾き度合い演算部120と、を備える。

Description

検出装置及び検出方法
 本開示は、検出装置及び検出方法に関し、特に、エンジンのベルト装置のミスアライメントを検出する技術に関する。
 一般的に、この種のベルト装置は、クランクシャフトに駆動プーリを有するとともに、オルタネータやラジエータファン等の補助機器類に従動プーリに設けられている。そして、駆動プーリと従動プーリとに無端ベルト(以下、単にベルトという)を巻き掛られている。
 このようなベルト装置において、ミスアライメントによりプーリが回転軸に対して傾いていると、プーリ又はベルトに偏摩耗が生じる可能性がある。例えば、特許文献1には、エンジンの前側に配置されたプーリの前方に3次元測定装置を設置し、当該3次元測定装置によりプーリのミスアライメントを検出する技術が開示されている。
特開2004-184151号公報
 上記特許文献1に記載の技術のように、プーリよりも前方に大型の3次元測定装置等を設置すると、レイアウトに制約が生じる可能性がある。このため、装置のさらなる簡素化が望まれる。
 本開示の技術は、上記事情に鑑みてなされたものであり、簡素な構成でプーリの傾きを効果的に検出することを目的とする。
 本開示の検出装置は、ベルトが巻き掛けられるプーリを備えるベルト装置における、前記プーリの軸方向における、前記プーリからの相対距離を取得する検出部を有する距離取得手段と、取得される前記相対距離に基づいて、前記プーリの軸方向における変位量を演算する変位量演算手段と、演算される前記変位量に基づいて、前記プーリの軸方向に対する前記プーリの傾き度合いを演算する傾き度合い演算手段と、を備える。
 また、前記検出部は、前記ベルトと接触している前記プーリの外周側の周方向中央の部位からの前記プーリの軸方向における前記相対距離を取得してもよい。前記検出部は、前記プーリにおける、前記ベルトと接触している領域の長手方向における中央位置において、前記プーリの軸方向において前記プーリから離れた位置に設けられていてもよい。
 また、前記ベルト装置は、前記プーリを複数備えており、前記検出部は、前記複数のプーリのうち、回転軸の曲げ剛性が最も小さいプーリからの軸方向の相対距離を取得してもよい。
 また、前記検出装置は、前記演算手段が演算した前記傾き度合いが所定の閾値を超えている場合に、前記プーリが回転軸に対して傾いて取り付けられているミスアライメントが発生していると判定する判定手段をさらに備えてもよい。
 本開示の検出方法は、コンピュータが実行する、ベルトが巻き掛けられるプーリを備えるベルト装置における、前記プーリの軸方向における前記プーリからの相対距離を取得するステップと、取得した前記相対距離に基づいて前記プーリの軸方向への変位量を演算するステップと、演算した前記変位量に基づいて、前記プーリの軸方向に対する前記プーリの傾き度合いを演算する。
 本開示の技術によれば、簡素な構成でプーリの傾きを効果的に検出することができる。
本実施形態に係る内燃機関を示す模式的な正面図である。 (A)は、本実施形態に係る変位センサの配置を示す模式的な正面図であり、(B)は、本実施形態に係る変位センサの配置を示す模式的な側面図である。 本実施形態に係る制御装置及び、関連する周辺構成を示す模式的な機能ブロック図である。 本実施形態に係る変位センサの検出値を模式的に示す図である。 本実施形態に係る従動プーリの傾きを示す模式的な図である。 本実施形態に係る制御装置によるミスアライメント検出のフローを説明するチャート図である。 本実施形態に係る制御装置によるベルト寿命推定のフローを説明するチャート図である。
 以下、添付図面に基づいて、本実施形態に係る検出装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
[全体構成]
 図1は、本実施形態に係る内燃機関をクランク軸方向から視た模式的な正面図である。以下の説明では、図1において紙面の手前方向を前側、紙面の奥方向を後側という。なお、矢印Aはベルトの回転方向を示している。
 内燃機関としてのエンジン10は、主としてシリンダブロック、シリンダヘッド、クランクケース及びオイルパン等で構成されたエンジン本体部11を備えている。エンジン本体部11には、不図示のピストンからコネクティングロッド等を介して伝達される回転力を出力するクランクシャフト12が回転可能に軸で支持されている。
[ベルト装置]
 ベルト装置1は、駆動プーリ2と、従動プーリ3,4と、テンションプーリ6と、テンションプーリ6を保持する保持部7と、駆動プーリ2と、従動プーリ3,4と、ベルト5とを備えている。ベルト5は、従動プーリ3,4、及びテンションプーリ6に巻き掛けられる。ベルト5は、例えば、Vリブドベルトであって、内周面部に不図示のV字型の溝が複数形成されている。駆動プーリ2及び従動プーリ3,4は、例えば、Vリブドプーリであって、ベルト5の内周面部の溝と対応する溝が外周面部に複数形成されている。なお、従動プーリ3,4及びテンションプーリ6の個数は図示例に限定されず、適宜な個数とすることができる。
 駆動プーリ2は、エンジン本体部11の前側端面11Aから前側に突出するクランクシャフト12の前側端部に、クランクシャフト12と一体回転可能に固定されている。
 従動プーリ3は、エアコンディショナ用コンプレッサ30のプーリであって、エアコンディショナ用コンプレッサ30の前側端面30Aから前側に突出する回転軸31の前側端部に、回転軸31と一体に回転可能に固定されている。従動プーリ3は、不図示の電磁クラッチを備えており、電磁クラッチが締結されているときに、エンジン10の動力で回転駆動する。
 従動プーリ4は、オルタネータ40のプーリであって、オルタネータ40の前側端面40Aから前側に突出する回転軸41の前側端部に、回転軸41と一体回転可能に固定されている。オルタネータ40は、エンジン10の動力により発電する。オルタネータ40で発電された電力は、電気的に接続されたバッテリ70に蓄電される。
 テンションプーリ6は、溝の形成されていないベルト5の外周面が巻き掛けられる背面平プーリであって、保持部7の前側端面7Aから前側に突出する回転軸8の前側端部に、回転軸8と一体に回転可能に固定されている。テンションプーリ6は、ベルト5の外周面に接触しつつ、予め定められたベルト5の外周側の第1位置と、第1位置よりもベルト5の内周側の第2位置との間を往復移動可能に設けられている。
 保持部7は、ガイド溝7Bに沿って回転軸8を移動させることにより、第1位置と第2位置との間の所定位置にてテンションプーリ6を保持する。保持部7によりテンションプーリ6を所定位置にて保持することにより、ベルト5の張力を適宜に調整することができる。
[検出装置]
 検出装置20は、変位センサ9と、制御装置100とを備えている。
 以下、変位センサ9の具体的な配置の詳細について、図2(A)を参照して説明する。
 従動プーリ4には、従動プーリ4の外周と駆動プーリ2の外周とを結ぶ接線方向のベルト張力(以下、第1張力Faという)が作用する。また、従動プーリ4には、従動プーリ4の外周と従動プーリ3の外周とを結ぶ接線方向のベルト張力(以下、第2張力Fbという)が作用する。すなわち、従動プーリ4には、ベルト5によって第1張力Faと第2張力Fbのベクトル和である合力Fa+Fbが作用する。
 このため、従動プーリ4にミスアライメントが発生している場合には、従動プーリ4は合力Fa+Fbによって大きく傾けられることになる。本実施形態において、変位センサ9は、従動プーリ4の径方向外側の周方向略中央の後方(エンジン10側)に設けられている。従動プーリ4の径方向外側の周方向略中央の後方は、ベルト5と接触している従動プーリ4の外周側の周方向略中央の背面側(エンジン10側)、すなわち、従動プーリ4に作用する合力Fa+Fbのベクトル方向と一致する。これにより、変位センサ9は、従動プーリ4の傾きが最も大きくなる位置で、従動プーリ4の軸方向(すなわち、従動プーリ4の回転軸の方向)における変位量を効果的に検出することが可能になる。従動プーリ4の変位量は、例えば、従動プーリ4における所定の位置(例えばベルト5と接触している領域の中央位置)の軸方向における位置の変位量である。
 変位センサ9(本開示の距離取得手段の一例)は、例えば、光センサであって、図2(B)に示すように、従動プーリ4の背面側で、オルタネータ40の前側端面40Aに設けられており、投光部と受光部とを含む検出部9Aを備えている。投光部は、レーザ光を従動プーリ4の背面側に向けて従動プーリ4の回転軸41の軸心Yと略平行に出射する。受光部は、投光部により出射され検出対象で反射した反射光を受光する。変位センサ9は、従動プーリ4と検出部9Aとの間の軸方向の相対距離(以下、実相対距離Dともいう)を検出する。変位センサ9により検出される実相対距離Dは、電気的に接続された制御装置100へ送信される。
 本実施形態において、変位センサ9は、従動プーリ4よりもエンジン10側に設けられ、実相対距離Dを検出するように構成されている。すなわち、従動プーリ4よりも後方に変位センサ9が配されている。これにより、ミスアライメントの検出装置をプーリよりも前方に配置する従前の構造と比べて、レイアウト上の自由度が向上している。また、変位センサ9は、図1に示す複数のプーリ2,3,4,6のうち、それぞれの回転軸12,31,41,8の曲げ剛性が最も小さい従動プーリ4と検出部9Aとの間の軸方向の相対距離を取得するように構成されている。これにより、ベルト5の張力で回転軸41が曲がりやすい従動プーリ4と検出部9Aとの間の軸方向の相対距離を効果的に検出することが可能になる。
[制御装置]
 図3は、本実施形態に係る制御装置100及び、関連する周辺構成を示す模式的な機能ブロック図である。
 制御装置100は、例えば、コンピュータ等の演算を行う装置であり、互いにバス等で接続されたCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を備え、プログラムを実行する。
 また、制御装置100は、プログラムの実行により、変位量演算部110、ミスアライメント検出部120、ベルト寿命推定部130及び報知部140を備える装置として機能する。これら各機能要素は、本実施形態では一体のハードウェアである制御装置100に含まれるものとして説明するが、これらのいずれか一部が別体のハードウェアに設けられていてもよい。
 変位量演算部110(本開示の変位量演算手段の一例)は、変位センサ9から送信される実相対距離Dに基づいて、従動プーリ4の軸方向変位量L1を演算する。以下、変位量演算部110による軸方向変位量L1の演算について、図4及び図5を参照して説明する。
 図4は、変位センサ9が検出する実相対距離Dの時間変化を模式的に示す図である。
 従動プーリ4が回転軸41に対して所定の角度(0よりも大きい角度)で傾いて取り付けられている場合には、従動プーリ4が一回転するごとに、実相対距離Dは、最大値と最小値とを含む正弦波状に変化する。
 変位量演算部110は、従動プーリ4が一回転するごとに、実相対距離Dの最大値(実相対距離Dの変化が増加から減少に転じるときの変曲点の値)をメモリ(記憶手段)に逐次格納し、該最大値の所定周期における平均値を演算する。これにより、極端な外力が加わったときの変位センサ9のセンサ異常値の影響を低減することが可能となる。
 また、制御装置100のメモリには、従動プーリ4が回転軸41に対して垂直に取り付けられている場合の従動プーリ4と検出部9Aとの間の軸方向の相対距離が基準相対距離LKとして予め格納されている。変位量演算部110は、実相対距離Dの最大値の所定周期における平均値から、基準相対距離LKを減算した値を従動プーリ4の軸方向変位量L1として演算する(図5参照)。変位量演算部110により演算される軸方向変位量L1は、ミスアライメント検出部120、及び、ベルト寿命推定部130に送信される。
 ミスアライメント検出部120(本開示の傾き度合い演算手段、判定手段の一例)は、変位量演算部110から送信される軸方向変位量L1に基づいて、従動プーリ4のミスアライメントを検出する。
 具体的には、ミスアライメント検出部120は、予め制御装置100のメモリに格納された検出部9Aと回転軸41の軸心Yとの間の径方向の距離L2と、変位量演算部110から送信される軸方向変位量L1とに基づいて、三角関数を用いて(1)式により、図5に示す従動プーリ4の回転軸に対する傾き度合いθを演算する。
 arctan(L1/L2)=θ・・・・・・(1)
 ミスアライメント検出部120は、従動プーリ4の傾き度合いθが所定の上限閾値(例えば、0.5~1.0度位)を超えている場合に、従動プーリ4にミスアライメントが発生していると判定する。これにより、制御装置100は、従動プーリ4のミスアライメントを検出することが可能となる。
 なお、変位量演算部110から軸方向変位量L1が送信されない場合には、従動プーリ4が変位センサ9の検出部9Aにより反射光が受光されないほど傾いているか、又は回転軸41から外れていると想定される。また、変位量演算部110から送信される軸方向変位量L1が、所定の下限閾値よりも小さい場合には、従動プーリ4と検出部9Aとの間に、例えば、エンジン10から外れた不図示のブラケット等の遮蔽物が介在していると想定される。このような場合には、ミスアライメント検出部120は、ミスアライメントを検出不能である、又は異常が発生したと判定する。
 本実施形態においては、変位量演算部110が、実相対距離Dの最大値の所定周期における平均値に基づいて軸方向変位量L1を演算する。これにより、変位センサ9のセンサ値に極端な異常値があった場合に、ミスアライメント検出部120が、即座に従動プーリ4のミスアライメントや異常と判定することが防止されている。ミスアライメント検出部120の判定結果は、報知部140に送信される。
 ベルト寿命推定部130は、変位量演算部110から送信される軸方向変位量L1に基づいて、ベルト5の寿命を推定する。
 具体的には、制御装置100のメモリには、予め実験等により求めた軸方向変位量L1とベルト5の伸び量との関係を表すマップM1が格納されている。ここで、ベルト5の伸び量が大きいほど、ベルト5の張力が低下し、ベルト5の張力によりプーリ4が傾斜する量は減少するため、軸方向変位量L1も減少する。このため、マップM1においては、軸方向変位量L1が小さいほど、ベルト5の伸び量が大きく設定されている。また、回転軸41の曲げ剛性が大きいほど、ベルト5の張力によりプーリ4が傾斜する量は減少するため、軸方向変位量L1も減少する。このため、マップM1においては、所定の軸方向変位量L1において、回転軸41の曲げ剛性が小さいほど、ベルト5の伸び量が大きく設定されている。
 さらに、制御装置100のメモリには、予め実験等により求めた、ベルト5の伸び量とベルト5の寿命との関係を表すマップM2が格納されている。マップM2においては、ベルト5の伸び量が大きいほど、ベルト5の寿命が短く設定されている。
 まず、ベルト寿命推定部130は、変位量演算部110から送信される軸方向変位量L1に基づいて、マップM1を参照することにより、ベルト5の伸び量を推定する。
 次いで、ベルト寿命推定部130は、マップM1を参照することにより求められるベルト5の伸び量に基づいて、マップM2を参照することにより、ベルト5の寿命を推定する。ベルト寿命推定部130は、ベルト5の寿命が所定の下限寿命未満の場合には、ベルト交換時期であると判定する。
 なお、変位量演算部110から軸方向変位量L1が送信されない場合には、従動プーリ4が変位センサ9の検出部9Aにより反射光が受光されないほど傾いているか、又は回転軸41から外れていると想定される。また、変位量演算部110から送信される軸方向変位量L1が、所定の下限閾値よりも小さい場合には、従動プーリ4と検出部9Aとの間に、例えば、エンジン10から外れた不図示のブラケット等の遮蔽物が介在していると想定される。このような場合には、ベルト寿命推定部130は、ベルト寿命を推定不能である、又は異常が発生したと判定する。
 本実施形態においては、変位量演算部110が、実相対距離Dの最大値の所定周期における平均値に基づいて軸方向変位量L1を演算する。これにより、変位センサ9のセンサ値に極端な異常値があった場合に、ベルト寿命推定部130が、ベルト5の寿命を過大や過少に推定することが防止されている。ベルト寿命推定部130により推定されるベルト5の寿命と判定結果は、報知部140に送信される。
 報知部140は、ミスアライメント検出部120から送信される判定結果、及び、ベルト寿命推定部130から送信されるベルト5の寿命と判定結果を報知する。
 具体的には、報知部140は、ミスアライメント検出部120から従動プーリ4にミスアライメント又は異常が発生しているとの判定結果が送信された場合に、ミスアライメントや異常の発生を報知する。報知部140は、例えば、インジケータランプ50や不図示の画面を介してミスアライメント又は異常の発生を報知する。これにより、従動プーリ4のミスアライメント又は異常を適宜に知らせることが可能となる。
 また、従動プーリ4のミスアライメントや異常を適宜に知らせることにより、従動プーリ4の点検や交換を促すことで、ミスアライメントが発生した状態で従動プーリ4が回転し、従動プーリ4やベルト5に偏摩耗が生じることを抑止することが可能となる。また、報知部140は、不図示の通信装置を介して車両センタ200等に設けられるサーバにミスアライメントや異常の発生の情報を蓄積してもよい。これにより、適切な車両の運行管理が可能となる。
 また、報知部140は、ベルト寿命推定部130から送信されるベルト5の寿命と判定結果をインジケータランプ50や不図示の画面を介して報知する。これにより、ベルト5の寿命を容易に把握することが可能となる。また、ベルト5の交換頻度を適正化してコストを抑制すると共に、ベルト装置1の故障や不具合を未然に防止することが可能になる。また、報知部140は、不図示の通信装置を介して車両センタ200等に設けられるサーバにベルト5の寿命と判定結果の情報を蓄積してもよい。これにより、適切な車両の運行管理が可能となる。
 次に、図6に基づいて、本実施形態に係る制御装置100による従動プーリ4のミスアライメント検出制御の流れを説明する。本制御は、例えば、イグニッションスイッチのON操作と同時に開始される。
 ステップS110では、変位量演算部110が、変位センサ9から送信される実相対距離Dに基づいて、従動プーリ4の軸方向変位量L1を演算する。
 ステップS120では、ミスアライメント検出部120が、変位量演算部110から送信される軸方向変位量L1に基づいて、ベルト装置1に異常が発生しているか否かを判定する。ミスアライメント検出部120が、異常が発生していないと判定した場合(No)、本制御はステップ140に進む。一方、ミスアライメント検出部120が、異常が発生していると判定した場合(Yes)、本制御はステップ130に進む。
 ステップS130では、報知部140が異常の発生を報知する。その後、本制御はリターンされる。
 ステップS140では、ミスアライメント検出部120が、変位量演算部110から送信される軸方向変位量L1に基づいて、従動プーリ4の傾き度合いθを演算する。
 ステップS150では、ミスアライメント検出部120が、従動プーリ4の傾き度合いθに基づいて、従動プーリ4にミスアライメントが発生しているか否かを判定する。ミスアライメント検出部120が、ミスアライメントが発生していないと判定した場合(No)、本制御はリターンされる。一方、ミスアライメント検出部120が、ミスアライメントが発生していると判定した場合(Yes)、本制御はステップ160に進む。
 ステップS160では、報知部140がミスアライメントの発生を報知する。その後、本制御はリターンされる。
 次に、図7に基づいて、本実施形態に係る制御装置100によるベルト5の寿命推定制御の流れを説明する。本制御は、例えば、イグニッションスイッチのON操作と同時に開始される。
 ステップS210では、変位量演算部110が、変位センサ9から送信される実相対距離Dに基づいて、従動プーリ4の軸方向変位量L1を演算する。
 ステップS220では、ミスアライメント検出部120が、変位量演算部110から送信される軸方向変位量L1に基づいて、ベルト装置1に異常が発生しているか否かを判定する。ミスアライメント検出部120が、異常が発生していないと判定した場合(No)、本制御はステップ240に進む。一方、ミスアライメント検出部120が、異常が発生していると判定した場合(Yes)、本制御はステップ230に進む。
 ステップS230では、報知部140が異常の発生を報知する。その後、本制御はリターンされる。
 ステップS240では、ベルト寿命推定部130が、変位量演算部110から送信される軸方向変位量L1に基づいて、ベルト5の寿命を推定する。
 ステップS250では、ベルト寿命推定部130が、ベルト5の寿命が下限寿命未満か否かを判定する。ベルト5の寿命が下限寿命未満の場合であるとベルト寿命推定部130が判定した(Yes)、本制御はステップ260に進む。一方、ベルト5の寿命が下限寿命以上であるとベルト寿命推定部130が判定した場合(No)、本制御はステップ270に進む。
 ステップS270では、報知部140が、ベルト5の寿命とベルト交換が不要であるとの判定結果を報知する。その後、本制御はリターンされる。
 ステップS260では、報知部140が、ベルト5の寿命とベルト交換が必要であるとの判定結果を報知する。その後、本制御はリターンされる。
 以上、詳述した本実施形態によれば、変位量演算部110が、従動プーリ4と従動プーリ4よりもエンジン10側に設けられた変位センサ9の検出部9Aとの間の軸方向の相対距離に基づいて軸方向変位量L1を演算する。そして、ミスアライメント検出部120が、該軸方向変位量L1に基づいて、従動プーリ4の傾き度合いθを演算するように構成されている。これにより、ミスアライメント検出部120は、簡素な構成で従動プーリ4の傾き度合いθを確実に演算することができ、該傾き度合いθに基づいて、従動プーリ4のミスアライメントを効果的に検出することが可能になる。
 また、変位量演算部110が、従動プーリ4と変位センサ9の検出部9Aとの間の軸方向の相対距離に基づいて、従動プーリ4の軸方向変位量L1を演算し、ベルト寿命推定部130が、該軸方向変位量L1に基づいて、ベルト5の寿命を推定するように構成されている。これにより、ベルト寿命推定部130は、簡素な構成でベルト5の寿命を効果的に推定することができ、適切なベルト交換時期を適宜に知らせることが可能になる。
[その他]
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 例えば、上述の実施形態においては、変位センサ9は、従動プーリ4と検出部9Aとの間の軸方向の相対距離を検出するものとして説明したが、他のプーリ2,3,6と検出部9Aとの間の軸方向の相対距離を検出してもよい。また、変位センサ9を複数設けて、複数のプーリ2,3,4,6と検出部9Aとの間の軸方向の相対距離をそれぞれ検出してもよい。
 また、上述の実施形態においては、ベルト装置1のベルトの巻き掛け方式は、複数のプーリ2,3,4,6に一本のベルト5が巻き掛けられるいわゆるサーペンタイン方式として説明したが、駆動プーリ2と従動プーリ3及び駆動プーリ2と従動プーリ4にそれぞれ別体のベルトを巻き掛けて動力を伝達する方式であってもよい。
1・・・ベルト装置
2・・・駆動プーリ
3,4・・・従動プーリ
5・・・ベルト
6・・・テンションプーリ
9・・・変位センサ(距離取得手段)
9A・・・検出部
10・・・エンジン
11・・・エンジン本体部
12・・・クランクシャフト
20・・・検出装置
30・・・エアコンディショナ用コンプレッサ
40・・・オルタネータ
41・・・回転軸
50・・・インジケータランプ
100・・・制御装置
110・・・変位量演算部(変位量演算手段)
120・・・ミスアライメント検出部(傾き度合い演算手段、判定手段)
130・・・ベルト寿命推定部
140・・・報知部
 

Claims (6)

  1.  ベルトが巻き掛けられるプーリを備えるベルト装置における、前記プーリの軸方向における、前記プーリからの相対距離を取得する検出部を有する距離取得手段と、
     取得される前記相対距離に基づいて、前記プーリの軸方向における変位量を演算する変位量演算手段と、
     演算される前記変位量に基づいて、前記プーリの軸方向に対する前記プーリの傾き度合いを演算する傾き度合い演算手段と、
     を備える検出装置。
  2.  前記検出部は、前記ベルトと接触している前記プーリの外周側の周方向中央の部位からの前記プーリの軸方向における前記相対距離を取得する請求項1に記載の検出装置。
  3.  前記検出部は、前記プーリにおける、前記ベルトと接触している領域の長手方向における中央位置において、前記プーリの軸方向において前記プーリから離れた位置に設けられている、
     請求項1又は2に記載の推定装置。
  4.  前記ベルト装置は、前記プーリを複数備えており、
     前記検出部は、前記複数のプーリのうち、回転軸の曲げ剛性が最も小さいプーリからの軸方向の相対距離を取得する請求項1から3の何れか一項に記載の検出装置。
  5.  前記演算手段が演算した前記傾き度合いが所定の閾値を超えている場合に、前記プーリが回転軸に対して傾いて取り付けられているミスアライメントが発生していると判定する判定手段をさらに備える、
     請求項1から4の何れか一項に記載の検出装置。
  6.  コンピュータが実行する、
     ベルトが巻き掛けられるプーリを備えるベルト装置における、前記プーリの軸方向における前記プーリからの相対距離を取得するステップと、
     取得した前記相対距離に基づいて前記プーリの軸方向における変位量を演算するステップと、
     演算した前記変位量に基づいて、前記プーリの軸方向に対する前記プーリの傾き度合いを演算することを特徴とする検出方法。
     
PCT/JP2021/011691 2020-03-31 2021-03-22 検出装置及び検出方法 WO2021200334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180023166.3A CN115335659A (zh) 2020-03-31 2021-03-22 检测装置和检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064027A JP7318582B2 (ja) 2020-03-31 2020-03-31 内燃機関
JP2020-064027 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200334A1 true WO2021200334A1 (ja) 2021-10-07

Family

ID=77929566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011691 WO2021200334A1 (ja) 2020-03-31 2021-03-22 検出装置及び検出方法

Country Status (3)

Country Link
JP (1) JP7318582B2 (ja)
CN (1) CN115335659A (ja)
WO (1) WO2021200334A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348248A (ja) * 1991-05-27 1992-12-03 Sony Corp ディスクドライブ装置の回転テーブルの取付精度測定装置
JPH0729402U (ja) * 1993-11-02 1995-06-02 三ツ星ベルト株式会社 平行度測定装置
JP2004184151A (ja) * 2002-12-02 2004-07-02 Honda Motor Co Ltd 非接触式エンジン変位解析方法及び装置
JP2005207555A (ja) * 2004-01-26 2005-08-04 Mitsuboshi Belting Ltd プーリミスアラインメント設定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348248A (ja) * 1991-05-27 1992-12-03 Sony Corp ディスクドライブ装置の回転テーブルの取付精度測定装置
JPH0729402U (ja) * 1993-11-02 1995-06-02 三ツ星ベルト株式会社 平行度測定装置
JP2004184151A (ja) * 2002-12-02 2004-07-02 Honda Motor Co Ltd 非接触式エンジン変位解析方法及び装置
JP2005207555A (ja) * 2004-01-26 2005-08-04 Mitsuboshi Belting Ltd プーリミスアラインメント設定装置

Also Published As

Publication number Publication date
JP7318582B2 (ja) 2023-08-01
CN115335659A (zh) 2022-11-11
JP2021162462A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
CN109667681B (zh) 防止轴承卡死的方法以及利用该方法的车辆
US20170212008A1 (en) Rolling bearing apparatus and detection method for abnormality in rolling bearing
WO2021200334A1 (ja) 検出装置及び検出方法
EP2650571B1 (en) Belt-type continuously variable transmission having an abnormality determining device
WO2021200285A1 (ja) 推定装置及び推定方法
JP6527550B2 (ja) 補機駆動ベルトシステムに備わるオートテンショナ
JP2006194881A (ja) 張力手段伝動装置、エンドレス張力手段の摩耗の測定方法およびこのような張力手段伝動装置用エンドレス張力手段
JP2017214857A (ja) 失火検出装置及びビークル
KR101684143B1 (ko) 보기류 고장 진단장치 및 그 진단방법
JP2006170998A (ja) 張力手段伝動装置、エンドレス張力手段の摩耗の測定方法およびこのような張力手段伝動装置用エンドレス張力手段
JP2010036808A (ja) 車両
KR101671634B1 (ko) 동력전달 축계부품의 마모량 판별 방법
CN113439168B (zh) 轴承状态监视装置、涡轮增压器以及轴承状态监视方法
US11344982B2 (en) Screw fastening device and screw fastening method
US11105231B1 (en) Vehicle liquid monitoring system and method
JP2017120028A (ja) エンジン及びその制御方法
CN105716564A (zh) 曲轴位置感测系统
JP4760597B2 (ja) エンジンアッシのアンバランス測定方法及びアンバランス測定装置
JP6355192B2 (ja) 車両用内燃機関
JP6655059B2 (ja) 車両制御装置
JP2016089741A (ja) 内燃機関および内燃機関のシールハウジング
JP2012126189A (ja) 内燃機関の失火検出装置
JP7472547B2 (ja) 駆動伝達装置及び画像形成装置
JP6836978B2 (ja) クランクプーリ装置
JP6455323B2 (ja) 摩擦伝動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780791

Country of ref document: EP

Kind code of ref document: A1