WO2021199663A1 - 海底機器、海底機器の構成方法、及び海底ケーブルシステム - Google Patents

海底機器、海底機器の構成方法、及び海底ケーブルシステム Download PDF

Info

Publication number
WO2021199663A1
WO2021199663A1 PCT/JP2021/003978 JP2021003978W WO2021199663A1 WO 2021199663 A1 WO2021199663 A1 WO 2021199663A1 JP 2021003978 W JP2021003978 W JP 2021003978W WO 2021199663 A1 WO2021199663 A1 WO 2021199663A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
cable
submarine
tail cable
tail
Prior art date
Application number
PCT/JP2021/003978
Other languages
English (en)
French (fr)
Inventor
長沢 敏秀
田中 章裕
Original Assignee
日本電気株式会社
Necプラットフォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necプラットフォームズ株式会社 filed Critical 日本電気株式会社
Priority to JP2022511598A priority Critical patent/JPWO2021199663A1/ja
Priority to US17/912,234 priority patent/US11762160B2/en
Publication of WO2021199663A1 publication Critical patent/WO2021199663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4431Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
    • G02B6/3878Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules comprising a plurality of ferrules, branching and break-out means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/506Underwater installation

Definitions

  • This disclosure relates to submarine equipment, a method of configuring submarine equipment, and a submarine cable system.
  • Patent Document 1 discloses a submarine relay device which is a submarine device that amplifies an optical signal of a submarine cable attenuated during long-distance transmission.
  • seafloor equipment in addition to the seafloor relay device, a seafloor branching device, an earthquake and tsunami observation device, and the like are known.
  • the structure of the tail cable connecting the submarine cable and the main body of the submarine device is the same.
  • the submarine device disclosed in Patent Document 1 is provided with one introduction portion for introducing the tail cable connected to the submarine cable into the device body.
  • the number of optical fibers that can be introduced into the main body of the device from one introduction unit is limited for various reasons. Therefore, in order to increase the number of optical fibers, it is conceivable to provide a plurality of introduction portions in the main body of the device. However, it has been difficult to branch one tail cable connected to the submarine cable into a plurality of cables.
  • the present disclosure aims to provide a submarine device capable of responding to an increase in the transmission capacity of a submarine cable.
  • the submarine equipment is One main tail cable that connects to the submarine cable, A first branch tail cable including the first group of a plurality of optical fibers included in the main tail cable, and a first branch tail cable.
  • a second branch tail cable containing the second group of the plurality of optical fibers, and A through hole for connecting the main tail cable and the first and second branch tail cables and branching the plurality of optical fibers included in the main tail cable into the first group and the second group is provided inside.
  • branch members It includes a first introduction section for introducing the first branch tail cable, and a device main body having a second introduction section for introducing the second branch tail cable.
  • One main tail cable connected to the submarine cable includes a first branch tail cable including a first group of a plurality of optical fibers included in the main tail cable and a second group via a branch member.
  • the step of branching to the second branch tail cable A step of introducing the first branch tail cable into the device main body via the first introduction portion and introducing the second branch tail cable into the device main body through the second introduction portion. Is.
  • the submarine cable system is Submarine cable and With a submarine device connected to the submarine cable, The submarine equipment One main tail cable to connect to the submarine cable, A first branch tail cable including the first group of a plurality of optical fibers included in the main tail cable, and a first branch tail cable. A second branch tail cable containing the second group of the plurality of optical fibers, and A through hole for connecting the main tail cable and the first and second branch tail cables and branching the plurality of optical fibers included in the main tail cable into the first group and the second group is provided inside.
  • branch members It includes a first introduction section for introducing the first branch tail cable, and a device main body having a second introduction section for introducing the second branch tail cable.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the seabed equipment according to the first embodiment.
  • the submarine equipment according to the first embodiment includes an equipment main body 10, a branch member 20, a main tail cable MTC, and branch tail cables BTC1 and BTC2.
  • the device main body 10 is the main body of the submarine device. As shown in FIG. 1, the device main body 10 has an introduction section (first introduction section) 131 for introducing the branch tail cable BTC1 and an introduction section (second introduction section) 132 for introducing the branch tail cable BTC2. ..
  • the main tail cable MTC includes all optical fibers, that is, optical fiber groups FG1 and FG2. In FIG. 1, the optical fiber groups FG1 and FG2 inside the cable are shown by thick solid lines for ease of understanding.
  • branch tail cable BTC1 As shown in FIG. 1, one end of the branch tail cable (first branch tail cable) BTC1 is connected to the main tail cable MTC via a branch member 20. The other end of the branch tail cable BTC1 is introduced into the device main body 10 via the introduction portion 131.
  • the branch tail cable BTC1 includes an optical fiber group (the first group of optical fibers) FG1.
  • branch tail cable BTC2 As shown in FIG. 1, one end of the branch tail cable (second branch tail cable) BTC2 is connected to the main tail cable MTC via a branch member 20. The other end of the branch tail cable BTC2 is introduced into the device main body 10 via the introduction portion 132.
  • the branch tail cable BTC2 includes an optical fiber group (second group optical fiber) FG2.
  • the branch member 20 connects the main tail cable MTC and the branch tail cables BTC1 and BTC2. Further, the branch member 20 is internally provided with a through hole 21 for branching a plurality of optical fibers included in the main tail cable MTC into the optical fiber groups FG1 and FG2.
  • the branch member 20, the main tail cable MTC, and the branch tail cables BTC1 and BTC2 constitute the tail cable.
  • one main tail cable MTC connected to the submarine cable is connected to the branch tail cable BTC1 including the optical fiber group FG1 and the optical fiber group via the branch member 20.
  • the branch tail cable BTC1 is introduced into the device main body 10 via the introduction section 131
  • the branch tail cable BTC 2 is introduced into the device main body 10 via the introduction section 132. That is, the optical fiber can be introduced into the device main body 10 via the plurality of introduction units 131 and 132, and the transmission capacity of the submarine cable can be increased.
  • a plurality of optical fibers included in the main tail cable MTC are branched into two groups, but may be branched into three or more groups. In that case, three or more introduction portions may be provided in the device main body 10 according to the number of branches.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the submarine equipment and the submarine cable system according to the second embodiment.
  • the seafloor equipment includes, for example, a seafloor relay device, a seafloor branching device, an earthquake and tsunami observation device, and the like.
  • the submarine cable system according to the second embodiment includes a submarine cable SC and submarine equipment.
  • the submarine equipment according to the second embodiment includes a joint box JB and a joint cover 30 in addition to the equipment main body 10, the branch member 20, the main tail cable MTC, and the branch tail cables BTC1 and BTC2 shown in FIG. ..
  • the submarine equipment according to the second embodiment has a branch member 20, a main tail cable MTC, a branch tail cable BTC1, BTC2, a joint box JB, and a joint box JB, respectively, at both ends in the longitudinal direction of the equipment body 10.
  • a joint cover 30 is provided. As shown in FIG. 2, since the configurations of both ends of the device main body 10 in the longitudinal direction are the same, the configuration of one end side will be described.
  • the device main body 10 is the main body of the submarine device. As shown in FIG. 2, the device main body 10 has a configuration in which the internal unit 11 is housed in a cylindrical pressure-resistant housing 12. In the case of the submarine relay device, the internal unit 11 includes a circuit for amplifying the optical signal of the submarine cable SC attenuated during long-distance transmission.
  • the pressure-resistant housing 12 is provided with an introduction unit 131 for introducing the branch tail cable BTC 1 into the internal unit 11 and an introduction unit 132 for introducing the branch tail cable BTC 2 into the internal unit 11.
  • the pressure-resistant housing 12 has a strength to withstand water pressure at a water depth of 8000 m, and is made of, for example, a beryllium copper alloy. Further, the pressure-resistant housing 12, the introduction portions 131, 132 have an airtight structure so that seawater does not enter the inside of the pressure-resistant housing 12 from the introduction portions 131, 132 and the like.
  • one end of the main tail cable MTC is connected to the submarine cable SC via the joint box JB.
  • the other end of the main tail cable MTC is connected to the branch tail cables BTC1 and BTC2 via the branch member 20.
  • the main tail cable MTC has a configuration in which all the optical fibers (that is, the optical fiber groups FG1 and FG2 shown in FIG. 2) are housed in the copper tube.
  • the copper tube protects the optical fiber groups FG1 and FG2 and also functions as a feeder line.
  • the feeder lines of the submarine cable SC and the main tail cable MTC and the optical fibers are connected to each other.
  • the optical fiber groups FG1 and FG2 inside the cable are shown by thick solid lines.
  • branch tail cable BTC1 is connected to the main tail cable MTC via a branch member 20.
  • the other end of the branch tail cable BTC1 is introduced into the device main body 10 via the introduction portion 131 and is connected to the internal unit 11.
  • the branch tail cable BTC1 includes an optical fiber group FG1.
  • branch tail cable BTC2 is connected to the main tail cable MTC via a branch member 20.
  • the other end of the branch tail cable BTC2 is introduced into the device main body 10 via the introduction portion 132 and connected to the internal unit 11.
  • the branch tail cable BTC2 includes an optical fiber group FG2.
  • the branch member 20 connects the main tail cable MTC and the branch tail cables BTC1 and BTC2. Further, the branch member 20 is internally provided with a through hole 21 for branching a plurality of optical fibers included in the main tail cable MTC into the optical fiber groups FG1 and FG2.
  • the tail cable is composed of the branch member 20, the main tail cable MTC, and the branch tail cables BTC1 and BTC2. Details of the branch member 20 will be described later.
  • the joint cover 30 is a hollow member including a branch member 20, a main tail cable MTC, a cylindrical portion accommodating the branch tail cables BTC1 and BTC2, and a conical portion accommodating the joint box JB.
  • the diameter of the conical portion decreases toward the submarine cable SC side.
  • One end of the joint cover 30 (that is, one end of the cylindrical portion) is fitted or screwed to the pressure-resistant housing 12 of the device main body 10 and fixed.
  • the other end of the joint cover 30 (that is, the tip of the conical portion) is opened for introducing the submarine cable SC. Seawater infiltrates the inside of the joint cover 30.
  • the submarine equipment according to the second embodiment also includes a branch member 20 for branching a plurality of optical fibers included in the main tail cable MTC into the optical fiber groups FG1 and FG2. Therefore, the optical fiber can be introduced into the device main body 10 via the plurality of introduction units 131 and 132, and the transmission capacity of the submarine cable can be increased.
  • FIG. 3 is an external perspective view of the branch member 20.
  • FIG. 4 is a cross-sectional perspective view of the branch member 20. As shown in FIG. 4, a Y-shaped through hole 21 in a plan view is formed inside the branch member 20. Counterbore holes 22, 221 and 222 having an inner diameter larger than that of the through hole 21 are formed at the three open ends of the Y-shaped through hole 21.
  • one end of the copper tube CP constituting the main tail cable MTC is fitted into the counterbore hole 22 at a depth of, for example, about several mm. Further, as shown in FIG. 3, a tapered portion 22a is formed at the open end of the counterbore hole 22 so as to increase the diameter from the inner peripheral surface of the counterbore hole 22 toward the outside.
  • a ring-shaped brazed portion is formed by filling the gap between the tapered portion 22a and the copper tube CP with a brazing material.
  • one ends of the copper tubes CP1 and CP2 constituting the branch tail cables BTC1 and BTC2 are fitted into the counterbore holes 221, 222, respectively, to a depth of, for example, about several mm.
  • tapered portions 221a and 222a are formed at the open ends of the counterbore holes 221 and 222 so as to increase the diameter from the inner peripheral surface toward the outside.
  • a ring-shaped brazed portion is also formed in the tapered portions 221a and 222a of the counterbore holes 221 and 222, similarly to the tapered portion 22a of the counterbore hole 22.
  • the optical fiber group FG1 is inserted into the copper tube CP of the main tail cable MTC via the copper tube CP1 of the branch tail cable BTC1 and the through hole 21 of the branch member 20.
  • the optical fiber group FG2 is inserted into the copper tube CP of the main tail cable MTC via the copper tube CP2 of the branch tail cable BTC2 and the through hole 21 of the branch member 20.
  • the paths connecting the copper tubes CP1 and CP2 and the copper tube CP are smoothly formed so as to draw an arc in a plan view. With such a configuration, bending of the optical fiber groups FG1 and FG2 can be suppressed.
  • the diameter of the through hole 21 is formed larger than the inner diameter of the copper tubes CP1 and CP2, and the inner diameter of the copper tube CP is formed larger than the diameter of the through hole 21. .. Therefore, when the optical fiber groups FG1 and FG2 are inserted, the optical fiber group is formed at a step between the inner peripheral surface of the copper tubes CP1 and CP2 and the through hole 21, or a step between the through hole 21 and the inner peripheral surface of the copper tube CP. It is possible to prevent the tips of FG1 and FG2 from being caught.
  • the branch member 20 has a strength to withstand water pressure at a water depth of 8000 m, and is made of, for example, a steel material, copper, a copper alloy (for example, beryllium copper alloy), or the like. Further, in order to ensure airtightness, as described above, the branch member 20 is brazed to the copper pipe CP of the main tail cable MTC and the copper pipes CP1 and CP2 of the branch tail cables BTC1 and BTC2. Further, the branch member 20 protects the optical fiber groups FG1 and FG2 and also functions as a feeder line, similarly to the copper tubes CP, CP1 and CP2.
  • the material of the branch member 20 is selected in consideration of strength, brazing property with the copper tube, electrical resistance, and the like. Since the electric resistance of the copper tube is dominant as the electric resistance of the entire feeder line, the priority of the electric resistance is low in selecting the material of the branch member 20. Further, in the manufacture of the branch member 20, since it is difficult to machine the through hole 21 branched in a Y shape, the branch member 20 is manufactured by, for example, laminated molding using metal powder (so-called metal 3D printer) or the like.
  • the branch member 20 is manufactured by laminated molding using maraging steel powder.
  • the branch member 20 can be made thinner (that is, smaller and lighter).
  • heat removal during brazing is suppressed, the brazing material is easily melted, and weldability is improved.
  • the steel material has higher strength than copper or copper alloy, it can be thinned, and since it has low thermal conductivity, heat removal during brazing can be suppressed.
  • the wall thickness of the portion where the counterbore hole 22 to be brazed to the copper tube CP is formed can be 2 mm or less (for example, 1.2 mm).
  • the branch member 20 has a smooth outer shape corresponding to the Y-shaped through hole 21.
  • the portion between the pair of counterbore holes 221, 222 into which the copper tubes CP1 and CP2 are inserted projects outward.
  • the branch member 20 is insulated and molded. If a recess is formed between the counterbore holes 221 and 222 during the insulation mold, a gap is likely to occur. In the branch member 20 shown in FIGS. 3 and 4, since the portion between the counterbore holes 221, 222 projects outward, the gap at the time of the insulation mold is suppressed and the withstand voltage is improved.
  • the corner portion of the branch member 20 located at the boundary between the outer peripheral surface and the end surface is chamfered. If corners are formed on the branch member 20 during the insulation mold, voids are likely to occur at the corners. In the branch member 20 shown in FIGS. 3 and 4, since the corners are chamfered, voids at the time of insulation molding are suppressed and the withstand voltage is improved. In addition, the electric field strength itself at the corners is suppressed, and the withstand voltage is improved.
  • FIG. 5 is a plan view showing a method of manufacturing a tail cable.
  • FIG. 4 will also be referred to as appropriate.
  • the tail cable is composed of a branch member 20, a main tail cable MTC, and branch tail cables BTC1 and BTC2.
  • the main tail cable MTC includes a copper tube CP whose outer peripheral surface is coated with an insulating coating layer ICL.
  • the branch tail cable BTC1 includes a copper tube CP1 whose outer peripheral surface is coated with an insulating coating layer ICL1.
  • the branch tail cable BTC2 includes a copper tube CP2 whose outer peripheral surface is coated with an insulating coating layer ICL2.
  • the insulating coating layers ICL, ICL1 and ICL2 are made of, for example, polyethylene.
  • the insulating coating layer ICL at one end of the main tail cable MTC to be inserted into the branch member 20 is removed to expose the copper tube CP. Further, the insulating coating layer ICL1 at one end of the branch tail cable BTC1 to be inserted into the branch member 20 is removed to expose the copper tube CP1. Similarly, the insulating coating layer ICL2 at one end of the branch tail cable BTC2 to be inserted into the branch member 20 is removed to expose the copper tube CP2. Further, in the example shown in FIG. 5, after inserting the copper tubes CP1 and CP2 into the branch member 20, the exposed copper tubes CP1 and CP2 are pre-curved so that the branch tail cables BTC1 and BTC2 are parallel to each other. back.
  • the branch member 20 and the exposed copper tubes CP, CP1 and CP2 are insulatingly molded and covered with the insulating coating layer ICL3.
  • the insulation coating layer ICL3 is integrated with the insulation coating layers ICL, ICL1 and ICL2. Similar to the insulating coating layer ICL3, the insulating coating layer ICL, ICL1 and ICL2, it is made of, for example, polyethylene.
  • the optical fiber group FG1 is inserted into the copper tube CP of the main tail cable MTC via the copper tube CP1 of the branch tail cable BTC1 and the through hole 21 of the branch member 20.
  • the optical fiber group FG2 is inserted into the copper tube CP of the main tail cable MTC via the copper tube CP2 of the branch tail cable BTC2 and the through hole 21 of the branch member 20.
  • the tail cable has a withstand voltage of, for example, 15 kV or more depending on the insulating coating layer ICL, ICL1 to ICL3. Further, the insulating coating layers ICL and ICL1 to ICL3 can suppress corrosion of the metal copper tubes CP, CP1, CP2 and the branch member 20.
  • (Appendix 1) One main tail cable that connects to the submarine cable, A first branch tail cable including the first group of a plurality of optical fibers included in the main tail cable, and a first branch tail cable.
  • a second branch tail cable containing the second group of the plurality of optical fibers, and A through hole for connecting the main tail cable and the first and second branch tail cables and branching the plurality of optical fibers included in the main tail cable into the first group and the second group is provided inside.
  • branch members A device main body having a first introduction section for introducing the first branch tail cable and a second introduction section for introducing the second branch tail cable. Submarine equipment.
  • the main tail cable includes a copper tube that covers the plurality of optical fibers.
  • the first branch tail cable comprises a copper tube covering the first group of optical fibers.
  • the second branch tail cable comprises a copper tube covering the second group of optical fibers.
  • One end of each copper tube of the main tail cable and the first and second branch tail cables is brazed to each open end of the through hole of the branch member.
  • Submarine equipment according to Appendix 1. (Appendix 3) A counterbore hole is provided at each open end of the through hole of the branch member. One end of each copper tube of the main tail cable and the first and second branch tail cables is inserted and brazed into each of the counterbore holes. Submarine equipment described in Appendix 2.
  • One main tail cable connected to the submarine cable includes a first branch tail cable including a first group of a plurality of optical fibers included in the main tail cable and a second group via a branch member. The step of branching to the second branch tail cable, The first branch tail cable is introduced into the device main body via the first introduction portion, and the second branch tail cable is introduced into the device main body through the second introduction portion. How to configure submarine equipment.
  • the submarine equipment One main tail cable to connect to the submarine cable, A first branch tail cable including the first group of a plurality of optical fibers included in the main tail cable, and a first branch tail cable.
  • a second branch tail cable containing the second group of the plurality of optical fibers, and A through hole for connecting the main tail cable and the first and second branch tail cables and branching the plurality of optical fibers included in the main tail cable into the first group and the second group is provided inside.
  • branch members A device main body having a first introduction section for introducing the first branch tail cable and a second introduction section for introducing the second branch tail cable. Submarine cable system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

本開示の一態様に係る海底機器は、海底ケーブルに接続する1本の主テールケーブル(MTC)と、主テールケーブル(MTC)が含む複数本の光ファイバのうちの第1群(FG1)を含む第1の分岐テールケーブル(BTC1)と、複数本の光ファイバのうちの第2群(FG2)を含む第2の分岐テールケーブル(BTC2)と、主テールケーブル(MTC)と第1及び第2の分岐テールケーブル(BTC1)、(BTC2)とを連結すると共に、主テールケーブル(MTC)が含む複数本の光ファイバを第1群(FG1)及び第2群(FG2)に分岐させる貫通孔(21)を内部に備える分岐部材(20)と、第1の分岐テールケーブル(BTC1)を導入する第1の導入部(131)、及び第2の分岐テールケーブル(BTC2)を導入する第2の導入部(132)を有する機器本体(10)と、を備える。

Description

海底機器、海底機器の構成方法、及び海底ケーブルシステム
 本開示は海底機器、海底機器の構成方法、及び海底ケーブルシステムに関する。
 海底ケーブルに接続され、海底に設置される海底機器が知られている。特許文献1には、長距離伝送中に減衰した海底ケーブルの光信号を増幅する海底機器である海底中継装置が開示されている。海底機器としては、海底中継装置の他に、海底分岐装置や地震津波観測装置などが知られている。いずれの海底機器においても、海底ケーブルと海底機器本体とを接続するテールケーブルの構造は同様である。
特開平8-205375号公報
 海底ケーブルの伝送容量増加に伴い、海底ケーブルが含む光ファイバの本数を増加させる必要がある。特許文献1に開示された海底機器では、海底ケーブルに接続されたテールケーブルを機器本体に導入する導入部が1箇所設けられている。
 ここで、1つの導入部から機器本体に導入できる光ファイバの本数には、種々の理由から制限がある。そのため、光ファイバの本数を増加させるには、機器本体に導入部を複数設けることが考えられる。
 しかしながら、海底ケーブルに接続された1本のテールケーブルを複数本に分岐させるのが難しかった。
 本開示は、このような課題に鑑み、海底ケーブルの伝送容量増加に対応可能な海底機器を提供することを目的とする。
 本開示の一態様に係る海底機器は、
 海底ケーブルに接続する1本の主テールケーブルと、
 前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと、
 前記複数本の光ファイバのうちの第2群を含む第2の分岐テールケーブルと、
 前記主テールケーブルと前記第1及び第2の分岐テールケーブルとを連結すると共に、前記主テールケーブルが含む前記複数本の光ファイバを前記第1群及び第2群に分岐させる貫通孔を内部に備える分岐部材と、
 前記第1の分岐テールケーブルを導入する第1の導入部、及び前記第2の分岐テールケーブルを導入する第2の導入部を有する機器本体と、を備えるものである。
 本開示の一態様に係る海底機器の構成方法は、
 海底ケーブルに接続する1本の主テールケーブルを、分岐部材を介して、前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと第2群を含む第2の分岐テールケーブルとに分岐させるステップと、
 前記第1の分岐テールケーブルを第1の導入部を介して機器本体に導入すると共に、前記第2の分岐テールケーブルを第2の導入部を介して機器本体に導入するステップと、を備えるものである。
 本開示の一態様に係る海底ケーブルシステムは、
 海底ケーブルと、
 前記海底ケーブルに接続された海底機器と、を備え、
 前記海底機器は、
 前記海底ケーブルに接続する1本の主テールケーブルと、
 前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと、
 前記複数本の光ファイバのうちの第2群を含む第2の分岐テールケーブルと、
 前記主テールケーブルと前記第1及び第2の分岐テールケーブルとを連結すると共に、前記主テールケーブルが含む前記複数本の光ファイバを前記第1群及び第2群に分岐させる貫通孔を内部に備える分岐部材と、
 前記第1の分岐テールケーブルを導入する第1の導入部、及び前記第2の分岐テールケーブルを導入する第2の導入部を有する機器本体と、を備えるものである。
 本開示によれば、海底ケーブルの伝送容量増加に対応可能な海底機器を提供できる。
第1の実施形態に係る海底機器の構成を示す模式断面図である。 第2の実施形態に係る海底機器及び海底ケーブルシステムの構成を示す模式断面図である。 分岐部材20の外観斜視図である。 分岐部材20の断面斜視図である。 テールケーブルの製造方法を示す平面図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
(第1の実施形態)
<海底機器の構成>
 まず、図1を参照して、第1の実施形態に係る海底機器の構成について説明する。図1は、第1の実施形態に係る海底機器の構成を示す模式断面図である。
 図1に示すように、第1の実施形態に係る海底機器は、機器本体10、分岐部材20、主テールケーブルMTC、及び分岐テールケーブルBTC1、BTC2を備えている。
 機器本体10は、海底機器の本体部である。図1に示すように、機器本体10は、分岐テールケーブルBTC1を導入する導入部(第1の導入部)131、及び分岐テールケーブルBTC2を導入する導入部(第2の導入部)132を有する。
 主テールケーブルMTCの一端は、海底ケーブル(図1では不図示)に接続する。主テールケーブルMTCの他端は、分岐部材20を介して分岐テールケーブルBTC1、BTC2に連結されている。主テールケーブルMTCは、全ての光ファイバすなわち光ファイバ群FG1、FG2を含んでいる。
 なお、図1では、理解を容易にするため、ケーブル内部の光ファイバ群FG1、FG2が、太い実線で示されている。
 図1に示すように、分岐テールケーブル(第1の分岐テールケーブル)BTC1の一端は、分岐部材20を介して主テールケーブルMTCに連結されている。分岐テールケーブルBTC1の他端は、導入部131を介して機器本体10に導入されている。分岐テールケーブルBTC1は、光ファイバ群(第1群の光ファイバ)FG1を含んでいる。
 図1に示すように、分岐テールケーブル(第2の分岐テールケーブル)BTC2の一端は、分岐部材20を介して主テールケーブルMTCに連結されている。分岐テールケーブルBTC2の他端は、導入部132を介して機器本体10に導入されている。分岐テールケーブルBTC2は、光ファイバ群(第2群の光ファイバ)FG2を含んでいる。
 図1に示すように、分岐部材20は、主テールケーブルMTCと分岐テールケーブルBTC1、BTC2とを連結している。さらに、分岐部材20は、主テールケーブルMTCが含む複数本の光ファイバを光ファイバ群FG1、FG2に分岐させる貫通孔21を内部に備えている。
 分岐部材20、主テールケーブルMTC、及び分岐テールケーブルBTC1、BTC2がテールケーブルを構成している。
 以上の通り、第1の実施形態に係る海底機器では、海底ケーブルに接続する1本の主テールケーブルMTCを、分岐部材20を介して、光ファイバ群FG1を含む分岐テールケーブルBTC1と光ファイバ群FG2を含む分岐テールケーブルBTC2とに分岐させる。そして、導入部131を介して分岐テールケーブルBTC1を機器本体10に導入すると共に、導入部132を介して分岐テールケーブルBTC2を機器本体10に導入する。すなわち、複数の導入部131、132を介して機器本体10に光ファイバを導入でき、海底ケーブルの伝送容量増加に対応できる。
 なお、図1に示した分岐部材20では、主テールケーブルMTCが含む複数本の光ファイバを2つの群に分岐させているが、3つ以上の群に分岐させてもよい。その場合、分岐させた数に合わせて、機器本体10に導入部も3つ以上設ければよい。
(第2の実施形態)
<海底機器及び海底ケーブルシステムの構成>
 次に、図2を参照して、第2の実施形態に係る海底機器及び海底ケーブルシステムの構成について説明する。図2は、第2の実施形態に係る海底機器及び海底ケーブルシステムの構成を示す模式断面図である。海底機器は、例えば、海底中継装置、海底分岐装置、地震津波観測装置などである。
 図2に示すように、第2の実施形態に係る海底ケーブルシステムは、海底ケーブルSC及び海底機器を備えている。第2の実施形態に係る海底機器は、図1に示した機器本体10、分岐部材20、主テールケーブルMTC、及び分岐テールケーブルBTC1、BTC2に加え、ジョイントボックスJB及びジョイントカバー30を備えている。
 図2に示すように、第2の実施形態に係る海底機器は、機器本体10の長手方向両端のそれぞれに、分岐部材20、主テールケーブルMTC、分岐テールケーブルBTC1、BTC2、ジョイントボックスJB、及びジョイントカバー30を備えている。図2に示すように、機器本体10の長手方向両端の構成は同様であるため、一端側の構成について説明する。
 機器本体10は、海底機器の本体部である。図2に示すように、機器本体10は、内部ユニット11が、円筒状の耐圧筐体12に収容された構成を有している。海底中継装置の場合、内部ユニット11は、長距離伝送中に減衰した海底ケーブルSCの光信号を増幅する回路等を含む。
 耐圧筐体12には、分岐テールケーブルBTC1を内部ユニット11に導入する導入部131、及び分岐テールケーブルBTC2を内部ユニット11に導入する導入部132が設けられている。耐圧筐体12は、水深8000mの水圧に耐える強度を有しており、例えばベリリウム銅合金等からなる。また、導入部131、132などから耐圧筐体12の内部に海水が入り込まないように、耐圧筐体12、導入部131、132は気密構造を有している。
 図2に示すように、主テールケーブルMTCの一端は、ジョイントボックスJBを介して、海底ケーブルSCに接続されている。主テールケーブルMTCの他端は、分岐部材20を介して分岐テールケーブルBTC1、BTC2に連結されている。
 ここで、主テールケーブルMTCは、銅管内に全ての光ファイバ(すなわち図2に示した光ファイバ群FG1、FG2)を収容する構成を有している。銅管は、光ファイバ群FG1、FG2を保護すると共に、給電線として機能している。ジョイントボックスJBでは、海底ケーブルSC及び主テールケーブルMTCの給電線同士及び光ファイバ同士が互いに接続されている。
 なお、図2でも、理解を容易にするため、ケーブル内部の光ファイバ群FG1、FG2が、太い実線で示されている。
 図2に示すように、分岐テールケーブルBTC1の一端は、分岐部材20を介して主テールケーブルMTCに連結されている。分岐テールケーブルBTC1の他端は、導入部131を介して機器本体10に導入され、内部ユニット11に接続されている。分岐テールケーブルBTC1は、光ファイバ群FG1を含んでいる。
 図2に示すように、分岐テールケーブルBTC2の一端は、分岐部材20を介して主テールケーブルMTCに連結されている。分岐テールケーブルBTC2の他端は、導入部132を介して機器本体10に導入され、内部ユニット11に接続されている。分岐テールケーブルBTC2は、光ファイバ群FG2を含んでいる。
 図2に示すように、分岐部材20は、主テールケーブルMTCと分岐テールケーブルBTC1、BTC2とを連結している。さらに、分岐部材20は、主テールケーブルMTCが含む複数本の光ファイバを光ファイバ群FG1、FG2に分岐させる貫通孔21を内部に備えている。
 分岐部材20、主テールケーブルMTC、及び分岐テールケーブルBTC1、BTC2からテールケーブルが構成されている。
 分岐部材20の詳細については後述する。
 図2に示すように、ジョイントカバー30は、分岐部材20、主テールケーブルMTC、及び分岐テールケーブルBTC1、BTC2を収容する円筒部及びジョイントボックスJBを収容する円錐部からなる中空部材である。円錐部は、海底ケーブルSC側に向かって径が細くなっている。ジョイントカバー30の一端(すなわち円筒部の一端)は、機器本体10の耐圧筐体12に嵌合もしくは螺合され、固定されている。ジョイントカバー30の他端(すなわち円錐部の先端)は、海底ケーブルSCを導入するために、開口されている。ジョイントカバー30の内部には海水が浸入する。
 以上の通り、第2の実施形態に係る海底機器も、主テールケーブルMTCが含む複数本の光ファイバを光ファイバ群FG1、FG2に分岐させる分岐部材20を備えている。そのため、複数の導入部131、132を介して機器本体10に光ファイバを導入でき、海底ケーブルの伝送容量増加に対応できる。
<分岐部材20の詳細>
 次に、図3、図4を参照して、分岐部材20の詳細について説明する。図3は、分岐部材20の外観斜視図である。図4は、分岐部材20の断面斜視図である。
 図4に示すように、分岐部材20の内部には、平面視Y字状の貫通孔21が形成されている。Y字状の貫通孔21における3つの開口端には、貫通孔21よりも内径の大きいザグリ穴22、221、222が形成されている。
 図4に示すように、ザグリ穴22には、主テールケーブルMTCを構成する銅管CPの一端部が例えば数mm程度の深さで嵌入されている。また、図3に示すように、ザグリ穴22の開口端には、ザグリ穴22の内周面から外側に向かって拡径するようにテーパ部22aが形成されている。
 テーパ部22aを設けることによって、ザグリ穴22への銅管CPの挿入、及び分岐部材20と銅管CPとのろう付けが容易になる。具体的には、図4に示すように、このテーパ部22aと銅管CPとの隙間にろう材を充填することによって、リング状のろう付け部が形成されている。
 図4に示すように、ザグリ穴221、222には、それぞれ分岐テールケーブルBTC1、BTC2を構成する銅管CP1、CP2の一端部が例えば数mm程度の深さで嵌入されている。ザグリ穴22と同様に、ザグリ穴221、222の開口端にも、内周面から外側に向かって拡径するようにテーパ部221a、222aがそれぞれ形成されている。
 テーパ部を設けることによって、ザグリ穴221、222への銅管CP1、CP2の挿入、及び分岐部材20と銅管CP1、CP2とのろう付けが容易になる。具体的には、図4に示すように、ザグリ穴221、222のテーパ部221a、222aにも、ザグリ穴22のテーパ部22aと同様に、リング状のろう付け部が形成されている。
 製造時には、図4に太い矢印で示すように、分岐テールケーブルBTC1の銅管CP1、分岐部材20の貫通孔21を介して、主テールケーブルMTCの銅管CPに光ファイバ群FG1を挿通する。同様に、分岐テールケーブルBTC2の銅管CP2、分岐部材20の貫通孔21を介して、主テールケーブルMTCの銅管CPに光ファイバ群FG2を挿通する。
 そのため、図4に示した例では、貫通孔21において、銅管CP1、CP2と銅管CPとを接続する経路は、それぞれ平面視で弧を描くように、なめらかに形成されている。このような構成によって、光ファイバ群FG1、FG2の屈曲を抑制できる。
 また、図4に示した例では、銅管CP1、CP2の内径よりも貫通孔21の直径が大きく形成されていると共に、貫通孔21の直径よりも銅管CPの内径が大きく形成されている。そのため、光ファイバ群FG1、FG2を挿通させる際、銅管CP1、CP2の内周面と貫通孔21との段差、あるいは貫通孔21と銅管CPの内周面との段差に、光ファイバ群FG1、FG2の先端が引っ掛かることを抑制できる。
 分岐部材20は、水深8000mの水圧に耐える強度を有しており、例えば鉄鋼材料、銅、銅合金(例えばベリリウム銅合金)等からなる。また、気密性を確保するため、上述の通り、分岐部材20は、主テールケーブルMTCの銅管CP及び分岐テールケーブルBTC1、BTC2の銅管CP1、CP2と、ろう付けされている。さらに、分岐部材20は、銅管CP、CP1、CP2と同様に、光ファイバ群FG1、FG2を保護すると共に、給電線としても機能している。
 このように、強度、銅管とのろう付け性、電気抵抗等を考慮して、分岐部材20の材料が選択される。なお、給電線全体の電気抵抗としては、銅管の電気抵抗が支配的であるため、分岐部材20の材料を選択する上で、電気抵抗の優先度は低い。
 また、分岐部材20の製造では、Y字状に分岐した貫通孔21の機械加工が難しいため、分岐部材20は例えば金属粉末を用いた積層造形(いわゆる金属3Dプリンタ)等によって製造される。
 一例として、分岐部材20は、マルエージング鋼粉末を用いた積層造形によって製造される。高強度のマルエージング鋼を用いることによって、分岐部材20を薄肉化(すなわち小型化・軽量化)できる。さらに、分岐部材20の薄肉化によって、ろう付け時における抜熱が抑制され、ろう材が溶融し易くなり、溶接性が向上する。ここで、鉄鋼材料は、銅や銅合金に比べ、強度が高いため薄肉化できると共に、熱伝導率が低いためろう付け時の抜熱を抑制できる。例えば、銅管CPとろう付けされるザグリ穴22が形成された部位の肉厚を2mm以下(例えば1.2mm)にできる。
 図3、図4に示すように、分岐部材20は、Y字状の貫通孔21に対応したなめらかな外形を有している。他方、分岐部材20では、銅管CP1、CP2が挿入された一対のザグリ穴221、222の間の部位が外側に張り出している。
 ここで、詳細には後述するように、分岐部材20は絶縁モールドされる。絶縁モールド時、仮にザグリ穴221、222の間に凹部が形成されていると、空隙が生じ易い。図3、図4に示した分岐部材20では、ザグリ穴221、222の間の部位が外側に張り出しているため、絶縁モールド時の空隙が抑制され、耐電圧が向上する。
 また、図3に示すように、分岐部材20における外周面と端面との境界に位置する角部は面取りされている。絶縁モールド時、仮に分岐部材20に角部が形成されていると、角部に空隙が生じ易い。図3、図4に示した分岐部材20では、角部が面取りされているため、絶縁モールド時の空隙が抑制され、耐電圧が向上する。また、角部の電界強度自体も抑制され、耐電圧が向上する。
<テールケーブルの製造方法>
 次に、図5を参照して、テールケーブルの製造方法について説明する。図5は、テールケーブルの製造方法を示す平面図である。図4も適宜参照する。
 上述の通り、テールケーブルは、分岐部材20、主テールケーブルMTC、及び分岐テールケーブルBTC1、BTC2から構成されている。
 図5の上段に示すように、主テールケーブルMTCは、外周面に絶縁被覆層ICLが被覆された銅管CPを備えている。分岐テールケーブルBTC1は、外周面に絶縁被覆層ICL1が被覆された銅管CP1を備えている。分岐テールケーブルBTC2は、外周面に絶縁被覆層ICL2が被覆された銅管CP2を備えている。絶縁被覆層ICL、ICL1、ICL2は、例えばポリエチレンからなる。
 まず、図5の上段に示すように、分岐部材20に挿入する主テールケーブルMTCの一端の絶縁被覆層ICLを除去して銅管CPを露出させる。また、分岐部材20に挿入する分岐テールケーブルBTC1の一端の絶縁被覆層ICL1を除去して銅管CP1を露出させる。同様に、分岐部材20に挿入する分岐テールケーブルBTC2の一端の絶縁被覆層ICL2を除去して銅管CP2を露出させる。また、図5に示した例では、分岐部材20に銅管CP1、CP2を挿入した後、分岐テールケーブルBTC1、BTC2が平行になるように、露出させた銅管CP1、CP2を予め湾曲させておく。
 次に、図5の中段に示すように、分岐部材20に銅管CP、CP1、CP2を挿入して組み付け、ろう付けする。
 詳細については、図4を参照して説明した通りである。
 次に、図5の下段に示すように、分岐部材20及び露出している銅管CP、CP1、CP2を絶縁モールドし、絶縁被覆層ICL3によって覆う。絶縁モールド時に、絶縁被覆層ICL3は、絶縁被覆層ICL、ICL1、ICL2と一体化される。絶縁被覆層ICL3、絶縁被覆層ICL、ICL1、ICL2と同様に、例えばポリエチレンからなる。
 その後、図4に太い矢印で示すように、分岐テールケーブルBTC1の銅管CP1、分岐部材20の貫通孔21を介して、主テールケーブルMTCの銅管CPに光ファイバ群FG1を挿通する。同様に、分岐テールケーブルBTC2の銅管CP2、分岐部材20の貫通孔21を介して、主テールケーブルMTCの銅管CPに光ファイバ群FG2を挿通する。
 以上によって、テールケーブルが製造される。テールケーブルは、絶縁被覆層ICL、ICL1~ICL3によって、例えば15kV以上の耐電圧を有する。また、絶縁被覆層ICL、ICL1~ICL3によって、金属製である銅管CP、CP1、CP2及び分岐部材20の腐食を抑制できる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 海底ケーブルに接続する1本の主テールケーブルと、
 前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと、
 前記複数本の光ファイバのうちの第2群を含む第2の分岐テールケーブルと、
 前記主テールケーブルと前記第1及び第2の分岐テールケーブルとを連結すると共に、前記主テールケーブルが含む前記複数本の光ファイバを前記第1群及び第2群に分岐させる貫通孔を内部に備える分岐部材と、
 前記第1の分岐テールケーブルを導入する第1の導入部、及び前記第2の分岐テールケーブルを導入する第2の導入部を有する機器本体と、を備える、
海底機器。
 (付記2)
 前記主テールケーブルは、前記複数本の光ファイバを覆う銅管を備え、
 前記第1の分岐テールケーブルは、前記第1群の光ファイバを覆う銅管を備え、
 前記第2の分岐テールケーブルは、前記第2群の光ファイバを覆う銅管を備え、
 前記分岐部材の前記貫通孔の各開口端に、前記主テールケーブル並びに前記第1及び第2の分岐テールケーブルの各銅管の一端部が、ろう付けされている、
付記1に記載の海底機器。
 (付記3)
 前記分岐部材の前記貫通孔の各開口端に、ザグリ穴が設けられており、
 当該ザグリ穴のそれぞれに、前記主テールケーブル並びに前記第1及び第2の分岐テールケーブルの各銅管の前記一端部が、挿入され、ろう付けされている、
付記2に記載の海底機器。
 (付記4)
 前記貫通孔の各ザグリ穴の開口端に、内周面から外側に向かって拡径されたテーパ部が設けられており、
 当該テーパ部のそれぞれに、ろう付け部が形成されている、
付記3に記載の海底機器。
 (付記5)
 前記分岐部材において、
 前記第1及び第2の分岐テールケーブルの銅管が挿入された一対の前記ザグリ穴の間の部位が、外側に張り出している、
付記3又は4に記載の海底機器。
 (付記6)
 前記第1及び第2の分岐テールケーブルの銅管の内径よりも前記貫通孔の直径が大きく、当該貫通孔の直径よりも前記主テールケーブルの銅管の内径が大きい、
付記2~5のいずれか一項に記載の海底機器。
 (付記7)
 前記分岐部材の外周面と端面との境界に位置する角部が面取りされている、
付記1~6のいずれか一項に記載の海底機器。
 (付記8)
 前記分岐部材が、マルエージング鋼からなる、
付記1~7のいずれか一項に記載の海底機器。
 (付記9)
 海底ケーブルに接続する1本の主テールケーブルを、分岐部材を介して、前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと第2群を含む第2の分岐テールケーブルとに分岐させるステップと、
 前記第1の分岐テールケーブルを第1の導入部を介して機器本体に導入すると共に、前記第2の分岐テールケーブルを第2の導入部を介して機器本体に導入するステップと、を備える、
海底機器の構成方法。
 (付記10)
 海底ケーブルと、
 前記海底ケーブルに接続された海底機器と、を備え、
 前記海底機器は、
 前記海底ケーブルに接続する1本の主テールケーブルと、
 前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと、
 前記複数本の光ファイバのうちの第2群を含む第2の分岐テールケーブルと、
 前記主テールケーブルと前記第1及び第2の分岐テールケーブルとを連結すると共に、前記主テールケーブルが含む前記複数本の光ファイバを前記第1群及び第2群に分岐させる貫通孔を内部に備える分岐部材と、
 前記第1の分岐テールケーブルを導入する第1の導入部、及び前記第2の分岐テールケーブルを導入する第2の導入部を有する機器本体と、を備える、
海底ケーブルシステム。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2020年3月30日に出願された日本出願特願2020-059951を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 機器本体
11 内部ユニット
12 耐圧筐体
20 分岐部材
21 貫通孔
22、221、222 ザグリ穴
22a、221a、222a テーパ部
30 ジョイントカバー
131、132 導入部
BTC1、BTC2 分岐テールケーブル
CP、CP1、CP2 銅管
FG1、FG2 光ファイバ群
ICL、ICL1~ICL3 絶縁被覆層
JB ジョイントボックス
MTC 主テールケーブル
SC 海底ケーブル

Claims (10)

  1.  海底ケーブルに接続する1本の主テールケーブルと、
     前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと、
     前記複数本の光ファイバのうちの第2群を含む第2の分岐テールケーブルと、
     前記主テールケーブルと前記第1及び第2の分岐テールケーブルとを連結すると共に、前記主テールケーブルが含む前記複数本の光ファイバを前記第1群及び第2群に分岐させる貫通孔を内部に備える分岐部材と、
     前記第1の分岐テールケーブルを導入する第1の導入部、及び前記第2の分岐テールケーブルを導入する第2の導入部を有する機器本体と、を備える、
    海底機器。
  2.  前記主テールケーブルは、前記複数本の光ファイバを覆う銅管を備え、
     前記第1の分岐テールケーブルは、前記第1群の光ファイバを覆う銅管を備え、
     前記第2の分岐テールケーブルは、前記第2群の光ファイバを覆う銅管を備え、
     前記分岐部材の前記貫通孔の各開口端に、前記主テールケーブル並びに前記第1及び第2の分岐テールケーブルの各銅管の一端部が、ろう付けされている、
    請求項1に記載の海底機器。
  3.  前記分岐部材の前記貫通孔の各開口端に、ザグリ穴が設けられており、
     当該ザグリ穴のそれぞれに、前記主テールケーブル並びに前記第1及び第2の分岐テールケーブルの各銅管の前記一端部が、挿入され、ろう付けされている、
    請求項2に記載の海底機器。
  4.  前記貫通孔の各ザグリ穴の開口端に、内周面から外側に向かって拡径されたテーパ部が設けられており、
     当該テーパ部のそれぞれに、ろう付け部が形成されている、
    請求項3に記載の海底機器。
  5.  前記分岐部材において、
     前記第1及び第2の分岐テールケーブルの銅管が挿入された一対の前記ザグリ穴の間の部位が、外側に張り出している、
    請求項3又は4に記載の海底機器。
  6.  前記第1及び第2の分岐テールケーブルの銅管の内径よりも前記貫通孔の直径が大きく、当該貫通孔の直径よりも前記主テールケーブルの銅管の内径が大きい、
    請求項2~5のいずれか一項に記載の海底機器。
  7.  前記分岐部材の外周面と端面との境界に位置する角部が面取りされている、
    請求項1~6のいずれか一項に記載の海底機器。
  8.  前記分岐部材が、マルエージング鋼からなる、
    請求項1~7のいずれか一項に記載の海底機器。
  9.  海底ケーブルに接続する1本の主テールケーブルを、分岐部材を介して、前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと第2群を含む第2の分岐テールケーブルとに分岐させるステップと、
     前記第1の分岐テールケーブルを第1の導入部を介して機器本体に導入すると共に、前記第2の分岐テールケーブルを第2の導入部を介して機器本体に導入するステップと、を備える、
    海底機器の構成方法。
  10.  海底ケーブルと、
     前記海底ケーブルに接続された海底機器と、を備え、
     前記海底機器は、
     前記海底ケーブルに接続する1本の主テールケーブルと、
     前記主テールケーブルが含む複数本の光ファイバのうちの第1群を含む第1の分岐テールケーブルと、
     前記複数本の光ファイバのうちの第2群を含む第2の分岐テールケーブルと、
     前記主テールケーブルと前記第1及び第2の分岐テールケーブルとを連結すると共に、前記主テールケーブルが含む前記複数本の光ファイバを前記第1群及び第2群に分岐させる貫通孔を内部に備える分岐部材と、
     前記第1の分岐テールケーブルを導入する第1の導入部、及び前記第2の分岐テールケーブルを導入する第2の導入部を有する機器本体と、を備える、
    海底ケーブルシステム。
PCT/JP2021/003978 2020-03-30 2021-02-03 海底機器、海底機器の構成方法、及び海底ケーブルシステム WO2021199663A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022511598A JPWO2021199663A1 (ja) 2020-03-30 2021-02-03
US17/912,234 US11762160B2 (en) 2020-03-30 2021-02-03 Submarine device, method of configuring submarine device, and submarine cable system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020059951 2020-03-30
JP2020-059951 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021199663A1 true WO2021199663A1 (ja) 2021-10-07

Family

ID=77927837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003978 WO2021199663A1 (ja) 2020-03-30 2021-02-03 海底機器、海底機器の構成方法、及び海底ケーブルシステム

Country Status (3)

Country Link
US (1) US11762160B2 (ja)
JP (1) JPWO2021199663A1 (ja)
WO (1) WO2021199663A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819043A (ja) * 1981-07-28 1983-02-03 Nec Corp 光海底ケ−ブルの給電構造
JPH05142428A (ja) * 1991-04-05 1993-06-11 Alcatel Nv スプライスのないフアイバ分岐を有する光フアイバケーブルおよびその製造方法
JP2005215413A (ja) * 2004-01-30 2005-08-11 Nec Corp 光海底ケーブル用光部品収容体
JP2017215438A (ja) * 2016-05-31 2017-12-07 株式会社フジクラ 光ファイバケーブル分岐部材及び光ファイバケーブル分岐構造
US20190187396A1 (en) * 2016-08-15 2019-06-20 Commscope Technologies Llc Indexing architecture including a fan-out arrangement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773702A (en) * 1980-10-28 1982-05-08 Nippon Telegr & Teleph Corp <Ntt> Branch structure of submarine optical tail cable
JPH08205375A (ja) 1995-01-25 1996-08-09 Fujitsu Ltd 海底中継装置
JP2693931B2 (ja) * 1995-06-27 1997-12-24 日本電気エンジニアリング株式会社 光海底分岐装置
JP7099631B2 (ja) * 2019-06-13 2022-07-12 日本電気株式会社 陸揚げケーブル及び部分陸揚げケーブル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819043A (ja) * 1981-07-28 1983-02-03 Nec Corp 光海底ケ−ブルの給電構造
JPH05142428A (ja) * 1991-04-05 1993-06-11 Alcatel Nv スプライスのないフアイバ分岐を有する光フアイバケーブルおよびその製造方法
JP2005215413A (ja) * 2004-01-30 2005-08-11 Nec Corp 光海底ケーブル用光部品収容体
JP2017215438A (ja) * 2016-05-31 2017-12-07 株式会社フジクラ 光ファイバケーブル分岐部材及び光ファイバケーブル分岐構造
US20190187396A1 (en) * 2016-08-15 2019-06-20 Commscope Technologies Llc Indexing architecture including a fan-out arrangement

Also Published As

Publication number Publication date
US11762160B2 (en) 2023-09-19
US20230204886A1 (en) 2023-06-29
JPWO2021199663A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP3935751B2 (ja) 断熱配管
KR100278728B1 (ko) 전송 능력이 향상된 복합 통신 케이블
US4156104A (en) Submarine cable for optical communications
JP5702405B2 (ja) 隔離されたバイパス伝導性経路が、海底装置を横切っている、多重導体の海底光ケーブルの海底装置への結合
US9522640B2 (en) Wire harness and shield conductive path
US10598880B2 (en) Hybrid conduit system
US4757157A (en) Housing for an undersea repeater
JP2006221877A (ja) 超電導ケーブルの中間接続構造
CN102474090B (zh) 用于海底电缆的接头
JP2015032525A (ja) 超電導ケーブルの接続構造、超電導ケーブル、超電導ケーブルの終端部の電流端子構造
US7574086B2 (en) Installation method of optical fiber composite electric power cable and cable structure therefor
WO2021199663A1 (ja) 海底機器、海底機器の構成方法、及び海底ケーブルシステム
WO2021199664A1 (ja) 海底機器、海底機器の構成方法、及び海底ケーブルシステム
US20150295657A1 (en) Repeater, feedthrough, and repeater manufacturing method
CN103208770A (zh) 110kV电缆中间接头附件及其连接方法
WO2022181011A1 (ja) 海底分岐装置、海底分岐装置の構成方法、及び海底ケーブルシステム
JP4089276B2 (ja) 海中分岐装置
CN202142834U (zh) 一种防水多芯电缆中间接头
CN115036063A (zh) 一种双芯层绞电缆
JP2010020970A (ja) 超電導ケーブルコアの接続構造
CN209823032U (zh) 矿物绝缘电缆组件
JP4330008B2 (ja) 超電導ケーブル用プーリングアイ及びプーリングアイを用いた超電導ケーブルの布設方法
JP2008233302A (ja) 光ケーブル用光ファイバ収容体
JP2011199960A (ja) 超電導ケーブルの端末接続構造
KR101086109B1 (ko) 광복합 전력케이블용 접속함

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779346

Country of ref document: EP

Kind code of ref document: A1