WO2021199566A1 - Endoscope system, control method, and control program - Google Patents

Endoscope system, control method, and control program Download PDF

Info

Publication number
WO2021199566A1
WO2021199566A1 PCT/JP2021/000840 JP2021000840W WO2021199566A1 WO 2021199566 A1 WO2021199566 A1 WO 2021199566A1 JP 2021000840 W JP2021000840 W JP 2021000840W WO 2021199566 A1 WO2021199566 A1 WO 2021199566A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
characteristic
illumination light
endoscopic system
imaging
Prior art date
Application number
PCT/JP2021/000840
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 檜谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022511550A priority Critical patent/JPWO2021199566A1/ja
Publication of WO2021199566A1 publication Critical patent/WO2021199566A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an endoscopic system, a control method, and a control program.
  • an endoscope system that continuously performs imaging while irradiating a subject with normal light such as white light and displays a live image. Further, there is known an endoscopic system that performs continuous imaging while irradiating a subject with special light such as narrow band light and performs analysis such as IEE (Image-Enhanced Endoscopy).
  • IEE Image-Enhanced Endoscopy
  • Patent Document 1 when acquiring and displaying a plurality of types of observation moving images, exposure conditions for all the observation moving images are set based on the brightness of a specific observation moving image that the user pays attention to, and the exposure conditions are set. An endoscopic system that adjusts the amount of exposure according to the exposure conditions is described.
  • Patent Document 2 the operation of continuously executing normal light imaging and then executing special light imaging is repeated, and based on the determination result of the degree of correlation between the normal light image and the special light image, instead of the normal light image data.
  • An endoscopic system that controls the timing of executing special optical image data is described.
  • the illumination light is periodically switched to special light for analysis at the back end. It was not possible to suppress the hunting of the amount of illumination light.
  • Patent Document 1 does not disclose a configuration in which normal light such as white light is irradiated as illumination light to display a live image, and the illumination light is periodically switched to special light for analysis at the back end. , Problems and solutions related to hunting that occur as described above are not described. Further, such problems and solutions are not described in Patent Document 2.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope system, a control method, and a control program capable of suppressing hunting of the amount of illumination light.
  • the endoscope system of the present invention includes a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor.
  • the processor continuously irradiates the illumination light of the first characteristic from the light source during the first period over a plurality of consecutive imaging frames, and then extends over at least one imaging frame.
  • the operation of irradiating the illumination light of the second characteristic different from the first characteristic from the light source is repeated, and the amount of the illumination light of the second characteristic to be irradiated from the light source precedes the illumination light of the second characteristic.
  • the control is performed based on the amount of the illumination light of the first characteristic and the image pickup signal obtained by the image pickup element when the illumination light of the first characteristic is irradiated.
  • control method of the endoscope system of the present invention includes a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor.
  • a control method for an endoscopic system comprising the above, wherein the processor continuously irradiates the illumination light of the first characteristic from the light source during the first period over a plurality of continuous imaging frames, and then at least. During the second period over one imaging frame, the operation of irradiating the illumination light of the second characteristic different from the first characteristic from the light source is repeated, and the amount of the illumination light of the second characteristic to be irradiated from the light source is the first.
  • the control is performed based on the amount of the illumination light of the first characteristic that precedes the illumination light of the two characteristics and the image pickup signal obtained by the image pickup element when the illumination light of the first characteristic is irradiated.
  • control program of the present invention includes a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. It is a control program of the spectroscopic system, in which the processor is continuously irradiated with the illumination light of the first characteristic from the light source during the first period over a plurality of consecutive imaging frames, and then the at least one imaging frame is subjected to. During the second period across, the operation of irradiating the illumination light of the second characteristic different from the first characteristic from the light source is repeated, and the amount of the illumination light of the second characteristic to be irradiated from the light source is the illumination light of the second characteristic. This is for executing a process that is controlled based on the amount of illumination light of the first characteristic that precedes the above and the image pickup signal obtained by the image pickup element when the illumination light of the first characteristic is irradiated. ..
  • an endoscope system a control method, and a control program capable of suppressing hunting of the amount of illumination light.
  • FIG. 1 shows the amount of illumination light in an endoscope apparatus 100.
  • control example 2 of the amount of illumination light in an endoscope apparatus 100.
  • control example 3 of the amount of illumination light in an endoscope apparatus 100.
  • control example 4 of the amount of illumination light in an endoscope apparatus 100.
  • FIG. 1 is a diagram showing an example of an endoscope device 100 according to an embodiment of the present invention.
  • the endoscope device 100 is an example of the endoscope system of the present invention. As shown in FIG. 1, the endoscope device 100 includes an endoscope 1, a control device 4 to which the endoscope 1 is connected, and a light source device 5.
  • the light source device 5 is an example of a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics.
  • the control device 4 includes a display 7 that displays an image captured by imaging the inside of the subject with the endoscope 1, and an input unit 6 that is an interface for inputting various information to the control device 4. , Are connected.
  • the control device 4 controls the endoscope 1, the light source device 5, and the display 7.
  • the display 7 has a display surface in which display pixels are arranged in a two-dimensional manner, and pixel data constituting the image data is drawn on each display pixel of the display surface to obtain an image based on the image data.
  • the display is done.
  • the display 7 constitutes a display unit that switches the display image in response to a command from the control device 4.
  • the endoscope 1 is a tubular member extending in one direction and is provided at an insertion portion 10 inserted into a subject and a proximal end portion of the insertion portion 10, and is provided for an observation mode switching operation, an imaging recording operation, a forceps operation, and the like.
  • An operation unit 11 provided with an operation member for performing air supply / water supply operation, suction operation, etc., an angle knob 12 provided adjacent to the operation unit 11, an endoscope 1, a control device 4 and a light source device.
  • a forceps hole for inserting forceps for collecting biological tissues such as cells or polyps is provided inside the operation unit 11 and the insertion unit 10.
  • a channel for air supply and water supply is provided inside the operation unit 11 and the insertion unit 10.
  • Various channels such as a suction channel are provided.
  • the insertion portion 10 is composed of a flexible soft portion 10A, a curved portion 10B provided at the tip of the flexible portion 10A, and a hard tip portion 10C provided at the tip of the curved portion 10B.
  • the curved portion 10B is configured to be bendable by rotating the angle knob 12.
  • the curved portion 10B can be curved in an arbitrary direction and an arbitrary angle according to the part of the subject in which the endoscope 1 is used, and the tip portion 10C can be directed in a desired direction.
  • FIG. 2 is a schematic view showing the internal configuration of the endoscope device 100 shown in FIG.
  • FIG. 3 is a diagram showing an example of a spectrum of light generated by the light source device 5 shown in FIG.
  • the light source device 5 can irradiate the illumination light by switching between normal light and special light.
  • Normal light is light having an emission spectrum suitable for recognition by humans such as doctors, such as white light.
  • the special light is light having an emission spectrum different from that of normal light and having an emission spectrum suitable for image analysis by a computer such as IEE.
  • the light source device 5 includes a light source processor 51, a light source unit 52, and an optical path coupling unit 54.
  • the light source processor 51 is connected to the system control unit 44 of the control device 4, and controls the light source unit 52 based on a command from the system control unit 44.
  • the light source unit 52 has, for example, a plurality of semiconductor light sources, each of which is turned on or off, and when the light source unit 52 is turned on, the amount of light emitted from each semiconductor light source is controlled to emit illumination light that illuminates the observation target.
  • the light source unit 52 includes a V-LED (Violet Light Emitting Diet) 52a, a B-LED (Blue Light Emitting Diode) 52b, a G-LED (Green Light Emitting Diode) 52c, and an R-LED (Red). It has a 4-color LED of Emitting DIode) 52d.
  • the light source processor 51 independently controls V-LED52a, B-LED52b, G-LED52c, and R-LED52d to independently control purple light V, blue light B, green light G, or red light R, respectively. It is possible to emit light by changing the amount of light.
  • the V-LED 52a generates purple light V having a center wavelength of 405 ⁇ 10 nm and a wavelength range of 380 to 420 nm.
  • the B-LED 52b generates blue light B having a center wavelength of 450 ⁇ 10 nm and a wavelength range of 420 to 500 nm.
  • the G-LED 52c generates green light G having a wavelength range of 480 to 600 nm.
  • the R-LED52d generates red light R having a center wavelength of 620 to 630 nm and a wavelength range of 600 to 650 nm.
  • the light source processor 51 emits white light having a light amount ratio of Vc: Bc: Gc: Rc among purple light V, blue light B, green light G, and red light R when irradiated with normal light.
  • the light source processor 51 has a light amount ratio of Vs: Bs: Gs: Rs with purple light V, blue light B, green light G, and red light R as short-wavelength narrow-band light when irradiated with special light.
  • Each LED 52a to 52d is controlled so as to emit the special light.
  • the light amount ratio Vs: Bs: Gs: Rs is different from the light amount ratio Vc: Bc: Gc: Rc used when irradiating normal light, and is appropriately determined according to the purpose of observation. For example, when emphasizing superficial blood vessels, it is preferable to make Vs larger than other Bs, Gs, Rs, and when emphasizing mesopelagic blood vessels, Gs is made larger than other Vs, Gs, Rs. It is also preferable to increase the size.
  • the optical path coupling unit 54 combines the lights emitted from the V-LED 52a, B-LED 52b, G-LED 52c, and R-LED 52d, and emits the combined light as illumination light.
  • the illumination light emitted from the optical path coupling portion 54 of the light source portion 52 enters the light guide 53 described later built in the universal cord 13, and passes through the illumination lens 50 provided at the tip portion 10C of the insertion portion 10. The subject is illuminated.
  • the tip portion 10C of the endoscope 1 includes an imaging optical system including an objective lens 21 and a lens group 22, an imaging element 23 that images a subject through the imaging optical system, and a memory 25 such as a RAM (Random Access Memory).
  • a communication interface (I / F) 26, an image pickup driving unit 27, and a light guide 53 for guiding the illumination light emitted from the light source unit 52 to the illumination lens 50 are provided.
  • the light guide 53 extends from the tip portion 10C to the connector portion 13A of the universal cord 13. With the connector portion 13A of the universal cord 13 connected to the light source device 5, the illumination light emitted from the light source portion 52 of the light source device 5 can be incident on the light guide 53.
  • the image sensor 23 As the image sensor 23, a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like is used. In the present embodiment, the image sensor 23 may perform a rolling shutter type image pickup or a global shutter type image pickup.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the image pickup element 23 has a light receiving surface in which a plurality of pixels are arranged two-dimensionally, and the optical image formed on the light receiving surface by the above image pickup optical system is converted into an electric signal (imaging signal) in each pixel. do. Then, the image pickup element 23 converts the converted image pickup signal from an analog signal into a digital signal having a predetermined number of bits, and outputs the image pickup signal converted into the digital signal to the memory 25.
  • the image pickup device 23 for example, one equipped with a color filter such as a primary color or a complementary color is used. A set of image pickup signals output from each pixel on the light receiving surface of the image sensor 23 is called an image pickup image signal.
  • the image sensor 23 may be arranged at the tip portion 10C in a state where the light receiving surface is perpendicular to the optical axis Ax of the objective lens 21, or the light receiving surface is parallel to the optical axis Ax of the objective lens 21. It may be arranged in the tip portion 10C in such a state.
  • the image pickup optical system provided in the endoscope 1 includes optical members (including the above lens group 22) such as a lens and a prism on the optical path of light from the subject between the image pickup element 23 and the objective lens 21. It is composed of an objective lens 21 and.
  • the imaging optical system may be composed of only the objective lens 21.
  • the memory 25 temporarily records the digital image pickup signal output from the image pickup device 23.
  • the communication I / F 26 is connected to the communication interface (I / F) 41 of the control device 4.
  • the communication I / F 26 transmits the image pickup signal recorded in the memory 25 to the control device 4 through the signal line in the universal code 13.
  • the image pickup drive unit 27 is connected to the system control unit 44 of the control device 4 via the communication I / F 26.
  • the image pickup drive unit 27 drives the image pickup element 23 and the memory 25 based on a command from the system control unit 44 received by the communication I / F 26.
  • the control device 4 includes a communication I / F 41 connected to the communication I / F 26 of the endoscope 1 by a universal code 13, a signal processing unit 42, a display controller 43, a system control unit 44, a recording medium 45, and the like. To be equipped.
  • the communication I / F 41 receives the image pickup signal transmitted from the communication I / F 26 of the endoscope 1 and transmits it to the signal processing unit 42.
  • the signal processing unit 42 has a built-in memory for temporarily recording the image pickup signal received from the communication I / F 41, and processes the image pickup image signal which is a set of the image pickup signals recorded in the memory (demosaic processing, gamma correction processing, etc.). Image processing) to generate captured image information in a format capable of recognition processing and the like.
  • the captured image information generated by the signal processing unit 42 is recorded on a recording medium 45 such as a hard disk or a flash memory.
  • the display controller 43 displays the captured image based on the captured image information generated by the signal processing unit 42 on the display 7.
  • the coordinates of each pixel data constituting the captured image information generated by the signal processing unit 42 are managed in association with the coordinates of any of the display pixels constituting the display surface of the display 7.
  • the system control unit 44 controls each part of the control device 4 and sends a command to the image pickup drive unit 27 of the endoscope 1 and the light source processor 51 of the light source device 5, and controls the entire endoscope device 100 in an integrated manner. do.
  • the system control unit 44 controls the image pickup device 23 via the image pickup drive unit 27.
  • the system control unit 44 controls the light source unit 52 via the light source processor 51.
  • the control device 4 includes various processors that execute programs and perform processing, RAM, and ROM (Read Only Memory).
  • programmable logic is a processor whose circuit configuration can be changed after manufacturing such as a general-purpose processor that executes a program and performs various processes, such as a CPU (Application Specific Processing Unit) and an FPGA (Field Programmable Gate Array).
  • a dedicated electric circuit or the like which is a processor having a circuit configuration specially designed for executing a specific process such as a device (Programmable Logic Device: PLD) or an ASIC (Application Specific Integrated Circuit), is included.
  • the structure of these various processors is an electric circuit that combines circuit elements such as semiconductor elements.
  • the control device 4 may be composed of one of various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). You may.
  • FIG. 4 is a diagram showing an example of the functional block of the signal processing unit 42 shown in FIG.
  • the processor of the signal processing unit 42 for example, by executing a control program stored in the ROM built in the signal processing unit 42, causes the captured image information generation unit 42a, the live image generation unit 42b, the analysis unit 42c, and the analysis unit 42c. It includes an analysis image generation unit 42d and a light amount control unit 42e.
  • the captured image information generation unit 42a generates captured image information by performing image processing such as demosaic processing or gamma correction processing on the image pickup signal obtained by the image pickup of the image pickup element 23.
  • the captured image information generation unit 42a outputs the captured image information based on the imaging signal obtained by imaging during normal light irradiation to the live image generation unit 42b as an imaging frame among the generated captured image information, and outputs the special light.
  • the captured image information based on the imaging signal obtained by imaging during irradiation is output to the analysis unit 42c as an imaging frame.
  • the imaging frame is an imaging signal obtained by one imaging.
  • the live image generation unit 42b generates live image information for displaying a live image based on the image pickup frame output from the image capture image information generation unit 42a, and displays the generated live image information as the image capture image information controller 43. Output to (see Fig. 2).
  • the live image is a moving image that displays the result of continuous imaging by the image sensor 23 in real time.
  • the analysis unit 42c performs analysis (image analysis) based on the image pickup frame output from the image capture image information generation unit 42a, and outputs the analysis result to the analysis image generation unit 42d.
  • the analysis by the analysis unit 42c is an analysis performed (at the back end) in a state invisible to a user such as a doctor. Further, the analysis by the analysis unit 42c may be an analysis using AI (Artificial Intelligence) or an analysis using a specific algorithm based on an imaging frame.
  • AI Artificial Intelligence
  • the analysis unit 42c extracts the contour of the captured image as an analysis.
  • the analysis unit 42c identifies the contour of the biological structure reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light.
  • the biological structure of the specific object is, for example, a superficial blood vessel structure, a middle blood vessel structure, a deep blood vessel structure, or the like.
  • the analysis by the analysis unit 42c is performed in parallel with the display of the live image.
  • the analysis image generation unit 42d generates IEE image information for displaying an IEE image indicating the analysis result output from the analysis unit 42c, and displays the generated IEE image information as captured image information controller 43 (see FIG. 2). ) Is output.
  • the IEE image is an image in which the outline of the structure of the subject is emphasized based on the imaging signal obtained by imaging when irradiating a special light such as a blue laser. In this case, special light such as a blue laser constitutes light for image-enhanced observation.
  • the IEE image is an image in which the surface blood vessel structure is emphasized, an image in which the middle layer blood vessel structure is emphasized, an image in which the deep blood vessel structure is emphasized, and the like.
  • the image generated by the analysis image generation unit 42d is not limited to the captured image and the processed image of the captured image, and numerical values (number, accuracy, etc.) and characters (tumor type) based on the analysis by the analysis unit 42c are used. It may be an image shown.
  • the endoscope device 100 includes an analysis unit 42c that performs analysis based on the captured image information obtained by imaging in the second period irradiated with special light among the captured image information.
  • the endoscope device 100 displays a live image based on the captured image information obtained by the imaging in the first period when the normal light is irradiated, among the captured image information. This makes it possible to perform analysis based on special light while displaying moving images based on normal light. Switching between normal light and irradiation light will be described later (see, for example, FIG. 6).
  • the image pickup image information generation unit 42a calculates a histogram value based on the image pickup signal obtained by the image pickup of the image pickup device 23.
  • the histogram value based on the imaging signal is information indicating the brightness of the image indicated by the imaging signal.
  • the histogram value based on the imaging signal is information indicating the distribution of the number of pixels for each brightness (illuminance) in the image indicated by the imaging signal.
  • the captured image information generation unit 42a outputs the calculated histogram value to the light amount control unit 42e.
  • the light amount control unit 42e controls the amount of illumination light emitted by the light source device 5 based on the histogram value output from the captured image information generation unit 42a.
  • the light amount of the light source device 5 is controlled by the light amount control unit 42e via the system control unit 44 (see FIG. 2).
  • the control of the light amount by the light amount control unit 42e will be described later.
  • FIG. 5 is a diagram showing an example of a screen displayed on the display 7.
  • the display controller 43 displays, for example, the screen 70 shown in FIG. 5 on the display 7 based on the captured image information output from the signal processing unit 42.
  • the screen 70 includes a main screen 71 and a sub screen 72.
  • a live image based on the live image information output from the live image generation unit 42b of the signal processing unit 42 is displayed.
  • an IEE image based on the IEE image information output from the analysis image generation unit 42d of the signal processing unit 42 is displayed.
  • the endoscope device 100 includes a live image based on the captured image information obtained by imaging in the first period irradiated with normal light and an image captured in the second period irradiated with special light.
  • the screen 70 including the result of the analysis based on the captured image information obtained by
  • the usage pattern of the analysis result of the analysis unit 42c is not limited to this.
  • the analysis result of the analysis unit 42c may be displayed by a device different from the display 7, or may be transmitted to and stored in the storage unit of the endoscope device 100 or another device.
  • FIG. 6 is a diagram showing an example of switching of illumination light in the endoscope device 100.
  • the illumination light timing 75 is a timing at which the light source device 5 irradiates the illumination light according to a command from the control device 4.
  • the WLI in the illumination light timing 75 is a timing at which the light source device 5 irradiates normal light such as white light as illumination light.
  • the IEE 1 in the illumination light timing 75 is a timing at which the light source device 5 irradiates the first special light such as narrow band light as the illumination light.
  • the IEE2 in the illumination light timing 75 is a timing at which the light source device 5 irradiates a second special light different from the first special light as the illumination light.
  • the light source device 5 repeatedly executes a predetermined irradiation operation in the period T.
  • This irradiation operation is an operation of irradiating normal light and then irradiating special light (first special light or second special light).
  • first special light or second special light the light source device 5 alternately switches the special light to be irradiated between the first special light and the second special light in each cycle T.
  • the light source device 5 may use only the first special light as the special light for each period T.
  • the image pickup timing 76 is a timing at which the image pickup device 23 takes an image (exposure) according to a command from the control device 4.
  • the vertical direction at the image pickup timing 76 indicates the position of the pixels of the image pickup device 23 in the row direction.
  • the image sensor 23 performs a rolling shutter type image pickup, and in this case, the image pickup timing 76 is deviated for each position in the column direction.
  • the image sensor 23 performs imaging at a frame rate of 90 fps (frames per second).
  • the first period in which the light source device 5 continuously irradiates the normal light extends over a plurality of consecutive frames in the image pickup by the image pickup element 23.
  • the second period in which the light source device 5 continuously irradiates the special light extends over at least one frame in the image pickup by the image pickup device 23. In the example shown in FIG. 6, the second period extends over a plurality of consecutive frames by the image sensor 23.
  • the light source device 5 continuously irradiates normal light (illumination light of the first characteristic) over a plurality of continuous imaging frames, and then special light (illumination light of the second characteristic different from the first characteristic). Repeat the operation of irradiating. Then, as described above, the control device 4 displays a live image (moving image) on the display 7 based on the captured image obtained when the normal light is irradiated, and is based on the captured image obtained when the special light is irradiated. Perform analysis.
  • FIG. 7 is a diagram showing a control example 1 of the amount of illumination light in the endoscope device 100.
  • B in the illumination light timing 75 is a timing at which the light source device 5 irradiates short-wavelength narrow-band light as illumination light.
  • the image sensor 23 performs image pickup by the global shutter method.
  • # 0 to # 14 in the image pickup timing 76 are serial numbers assigned to each image pickup timing (each image pickup frame) of the image pickup element 23.
  • the light source device 5 irradiates the short-wavelength narrow-band light (B) at the imaging timings 76 # 4 and # 11. Further, at the imaging timings 76 # 1 to # 3, # 5 to # 10, and # 12 to # 14, the light source device 5 irradiates short-wavelength normal light (WLI).
  • the histogram value 77 is a histogram value calculated by the image pickup image information generation unit 42a (see FIG. 4) based on the image pickup signal obtained by the image pickup device 23 at each of the image pickup timings 76.
  • # 0 to # 12 in the histogram value 77 are serial numbers corresponding to # 0 to # 12 in the imaging timing 76.
  • # 0 of the histogram value 77 is a histogram value based on the imaging signal obtained at # 0 of the imaging timing 76.
  • # 1 to # 12 of the histogram value 77 are histogram values based on the imaging signals obtained at # 1 to # 12 of the imaging timing 76, respectively.
  • the histogram value 77 is calculated with a delay of two imaging frames with respect to the imaging timing 76, but the calculation timing of the histogram value 77 is not limited to this.
  • the light amount control unit 42e uses the histogram value 77 to perform AE control for controlling the light amount of the illumination light emitted by the light source device 5.
  • the light amount control unit 42e bases the light amount of the normal light at the imaging timing 76 # 3 on the light amount information indicating the light amount of the normal light at the preceding imaging timing 76 # 0 and the histogram value 77 # 0. To control.
  • the light amount control unit 42e determines whether # 0 of the histogram value 77 is “appropriate”, “bright”, or “dark”.
  • the fact that the histogram value 77 is "appropriate” means that, for example, the brightness at which the number of pixels is maximized is within a predetermined range in the number of pixels for each brightness indicated by the histogram value 77.
  • the fact that the histogram value 77 is "bright” means that, for example, in the number of pixels for each brightness indicated by the histogram value 77, the brightness that maximizes the number of pixels is brighter than the above-mentioned predetermined range. ..
  • the fact that the histogram value 77 is "dark” means that, for example, in the number of pixels for each brightness indicated by the histogram value 77, the brightness at which the number of pixels is maximum is darker than the above-mentioned predetermined range. ..
  • the light amount control unit 42e sets the amount of normal light at # 3 of the imaging timing 76 to be the same as the amount of normal light at # 0 of the imaging timing 76.
  • the light amount control unit 42e reduces the amount of normal light at # 3 of the imaging timing 76 to be smaller than the amount of normal light at # 0 of the imaging timing 76.
  • the light amount control unit 42e increases the amount of normal light at # 3 of the imaging timing 76 more than the amount of normal light at # 0 of the imaging timing 76.
  • the light amount control unit 42e uses, for example, the light amount of 3 frames before and the histogram value 77 of 3 frames before for the light amount of normal light, so that the brightness indicated by the histogram value 77 is within an appropriate range. Perform AE control to maintain.
  • control of the amount of normal light at # 3 of the imaging timing 76 has been described, but the same applies to the control of the normal light at other imaging timings 76.
  • the control of the normal light at the imaging timing 76 # 5 is performed based on the amount of the normal light at the imaging timing 76 # 2 and the histogram value 77 # 2.
  • the reference destination is the information of the special light of # 4 and # 11 of the imaging timing 76, respectively, so the control method is different from the above. May be good.
  • the amount of normal light at # 7 of the imaging timing 76 is based on the amount of normal light at # 3 of the imaging timing 76 immediately before # 4 of the imaging timing 76 and # 3 of the histogram value 77. May be controlled.
  • the light amount control unit 42e sets the light amount of the special light at # 11 of the imaging timing 76, for example, the light amount information indicating the light amount of the normal light at the preceding imaging timing 76 # 8 and the histogram value 77 # 8. Control based on.
  • the light amount control unit 42e changes the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76.
  • the amount of light is multiplied by the conversion coefficient.
  • This conversion coefficient is a predetermined value according to the difference between the characteristics of normal light and the characteristics of special light.
  • the conversion coefficient is 5 (special light 5 with respect to normal light 1) as an example, but is not limited to this, and is arbitrarily set according to the difference between the characteristics of normal light and the characteristics of special light. ..
  • the light amount control unit 42e converts the light amount of the special light at the imaging timing 76 # 11 into the light amount of the normal light at the imaging timing 76 # 8. Make it less than the multiplied amount of light.
  • the light amount control unit 42e converts the light amount of the special light at the imaging timing 76 # 11 into the light amount of the normal light at the imaging timing 76 # 8. Increase the amount of light multiplied.
  • control of the amount of special light at # 11 of the imaging timing 76 has been described, but the same applies to the control of the special light at the other imaging timing 76.
  • the control of the special light at the imaging timing 76 # 4 is performed based on the amount of normal light at the imaging timing 76 # 1, the histogram value 77 # 1, and the above conversion coefficient.
  • the light amount control unit 42e has the light amount of the preceding normal light (for example, the normal light at the imaging timing 76 # 8) and the preceding light amount of the special light (for example, the special light at the imaging timing 76 # 11). Control is performed based on the histogram value (for example, # 8 of the histogram value 77) based on the imaging signal obtained during irradiation with normal light. At this time, the light amount control unit 42e can perform control in consideration of the difference between the characteristics of normal light and the characteristics of special light by using the above conversion coefficient.
  • the amount of special light is controlled based on the information of the situation closer to the timing, as compared with the case where the control is performed based only on the information on the preceding special light (for example, the special light in # 4 of the imaging timing 76). be able to. Therefore, hunting of the amount of illumination light of the light source device 5 can be suppressed.
  • the frame three frames before is described as an example as the preceding frame referred to in the control of the light intensity of the illumination light
  • the preceding frame referred to in the control of the light intensity of the illumination light is not gripped by the frame three frames before and is one frame. It may be a frame two frames before, or four or more frames before.
  • FIG. 8 is a diagram showing a control example 2 of the amount of illumination light in the endoscope device 100.
  • the light amount control unit 42e also refers to the histogram value 77 obtained at the time of the preceding special light irradiation in the control of the special light (B) irradiated by the light source device 5.
  • the light amount control unit 42e sets the light amount of the special light at # 11 of the imaging timing 76, the light amount information indicating the light amount of the normal light at the imaging timing 76 # 8 which is the preceding normal light, and the histogram value 77 # 8. And the control is performed based on # 4 of the histogram value 77 corresponding to the preceding special light.
  • the light amount control unit 42e changes the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76.
  • the amount of light is multiplied by the conversion coefficient.
  • the light amount control unit 42e refers to # 4 of the histogram value 77. Then, when # 4 of the histogram value 77 is within the appropriate range or “dark”, the light amount control unit 42e captures the light amount of the special light at # 11 of the imaging timing 76, as in the example shown in FIG. The amount of light is less than the amount of normal light at # 8 of timing 76 multiplied by the conversion coefficient.
  • the light amount control unit 42e converts the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76. Not less than the amount of light multiplied by. Alternatively, in this case, the light amount control unit 42e increases the light amount of the special light at # 11 of the imaging timing 76 more than when # 4 of the histogram value 77 is within an appropriate range or “dark”. As a result, it is possible to suppress a large variation in the histogram value 77 between the analysis image obtained by the special light of # 4 and the analysis image obtained by the special light of # 11.
  • the light amount control unit 42e refers to # 4 of the histogram value 77. Then, when # 4 of the histogram value 77 is within the appropriate range or “bright”, the light amount control unit 42e captures the light amount of the special light at # 11 of the imaging timing 76, as in the example shown in FIG. The amount of light is increased by multiplying the amount of normal light at # 8 of timing 76 by the conversion coefficient.
  • the light amount control unit 42e converts the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76. Do not exceed the amount of light multiplied by. Alternatively, in this case, the light amount control unit 42e reduces the amount of special light at # 11 of the imaging timing 76 less than when # 4 of the histogram value 77 is within an appropriate range or is “bright”. As a result, it is possible to suppress a large variation in the histogram value 77 between the analysis image obtained by the special light of # 4 and the analysis image obtained by the special light of # 11.
  • control of the amount of special light at # 11 of the imaging timing 76 has been described, but the same applies to the control of the special light at the other imaging timing 76.
  • the control of the special light at the imaging timing 76 # 4 includes the amount of normal light at the imaging timing 76 # 1, the histogram value 77 # 1, the above conversion coefficient, and the special light at the imaging timing 76 # 4. It is performed based on the histogram value 77 (not shown) obtained by the special light preceding the light.
  • the light amount control unit 42e has the light amount of the preceding normal light (for example, the normal light at the imaging timing 76 # 8) and the preceding light amount of the special light (for example, the special light at the imaging timing 76 # 11).
  • a histogram value based on the imaging signal obtained when the normal light is irradiated for example, # 8 of the histogram value 77
  • a histogram value based on the imaging signal obtained when the preceding special light is irradiated for example, # 4 of the histogram value 77.
  • the light amount control unit 42e can perform control in consideration of the difference between the characteristics of normal light and the characteristics of special light by using the above conversion coefficient.
  • the histogram value 77 obtained by the special light immediately before the preceding even if there is a change in the inspection scene using the endoscope 1, for example, between the analysis images obtained by the special light. Hunting due to large fluctuations in the histogram value 77 can be suppressed. Thereby, for example, the accuracy of analysis can be improved.
  • the inspection scene using the endoscope 1 includes, for example, a scene in which the inner surface in the subject and the tip of the endoscope 1 (imaging element 23) are close to each other (a bright red scene), and a scene in the subject.
  • a scene in which the inner surface and the tip of the endoscope 1 are close to each other dark red scene
  • a scene after dyeing by the endoscope 1 blue scene
  • FIG. 9 is a diagram showing a control example 3 of the amount of illumination light in the endoscope device 100.
  • the image sensor 23 performs a rolling shutter type image pickup.
  • the period of irradiating the special light for each period T is made longer than that of the one imaging frame so that the exposure in all the pixel rows of one imaging frame can be performed by irradiating the special light.
  • both normal light and special light are irradiated during the rolling shutter type exposure, so that the amount of light collapses. ..
  • control device 4 performs a blank reading of the image pickup signal obtained by the image pickup device 23 at # 10 and # 12 of the image pickup timing 76.
  • the blank reading of an imaging signal is, for example, discarding the imaging signal without using it for displaying or analyzing a live image.
  • the light amount control unit 42e copies and uses the histogram value 77 of # 9 of the imaging timing 76 immediately before the histogram value 77 corresponding to # 10 and # 12 of the imaging timing 76 that has been blank-read. Further, in the example shown in FIG. 9, the light amount control unit 42e also copies the histogram value 77 of # 9 of the imaging timing 76 for the histogram value 77 corresponding to # 11 of the imaging timing 76 irradiated with the special light. I am using it.
  • the light amount control unit 42e controls the amount of normal light at # 13 of the imaging timing 76 based on the light amount information indicating the amount of normal light at # 9 of the imaging timing 76 and # 9 of the histogram value 77. do. Similarly, the light amount control unit 42e displays the amount of normal light at # 14 and # 15 of the imaging timing 76, the light amount information indicating the amount of normal light at # 9 of the imaging timing 76, and # 9 of the histogram value 77. Control based on.
  • the light amount control unit 42e applies the amount of normal light emitted from the light source device 5 in a first imaging frame (for example, # 13 to # 15 of the imaging timing 76) to the first imaging frame.
  • a first imaging frame for example, # 13 to # 15 of the imaging timing 76
  • the amount of normal light irradiated in the second imaging frame for example, # 9 of the newest imaging timing 76
  • Control is performed based on the image pickup signal (for example, # 9 of the histogram value 77) obtained in the above.
  • the light amount control unit 42e sets the amount of normal light emitted from the light source device 5 in a certain image pickup frame to an image pickup frame that precedes the image pickup frame by a predetermined number of frames (3 frames in the example shown in FIG. 9). Control is performed based on the amount of corresponding normal light and the histogram value 77. However, when the preceding image pickup frame is an image pickup frame in which normal light and special light are switched, the light amount control unit 42e is further preceded by the preceding image pickup frame and is irradiated with only normal light. Control is performed based on the amount of normal light corresponding to the frame and the histogram value 77.
  • the state in which the special light is not irradiated is a state in which the special light is not irradiated, or a state in which the influence on the AE control is negligible even if the special light is irradiated.
  • FIG. 10 is a diagram showing a control example 4 of the amount of illumination light in the endoscope device 100.
  • the histogram values 77 of # 9 of the imaging timing 76 immediately before the blank readings of # 10 and # 12 of the imaging timing 76 and # 11 of the imaging timing 76 irradiated with only special light are copied.
  • the configuration is not limited to such a configuration.
  • the light amount control unit 42e copied and used the histogram value 77 of # 9 of the immediately preceding imaging timing 76 for # 10 of the imaging timing 76 in which the blank reading was performed, and performed the blank reading.
  • # 12 of the imaging timing 76 the histogram value 77 of # 11 of the immediately preceding imaging timing 76 may be copied and used.
  • the light amount control unit 42e may make a determination based on, for example, the average value of brightness in the histogram value 77. Further, the determination of the histogram value by the light amount control unit 42e may be a two-stage determination of "bright” and “dark” instead of a three-stage determination of "appropriate”, “bright” and “dark", or a four-stage determination. The above determination may be made. Further, when the light amount control unit 42e determines the histogram value in three or more stages, the light amount control amount of the illumination light emitted by the light source device 5 may also be changed according to the determination stage.
  • analysis unit 42c signal processing unit 42
  • the analysis by the analysis unit 42c is not limited to this.
  • the analysis unit 42c may analyze the insertion shape of the endoscope 1 as the above analysis.
  • the analysis of the insertion shape of the endoscope 1 specifically identifies the insertion shape of the insertion portion 10 of the endoscope 1 inserted into the subject.
  • the analysis unit 42c identifies the insertion shape of the endoscope 1 based on the change in the captured image information obtained by imaging during irradiation with special light.
  • the analysis image generation unit 42d generates image information for displaying an image showing the insertion shape of the endoscope 1 specified by the analysis unit 42c. As a result, an image showing the insertion shape of the endoscope 1 is displayed on the sub screen 72, and the operator of the endoscope 1 can easily insert the insertion portion 10 of the endoscope 1 into the subject. Can be done.
  • the analysis unit 42c may detect the region of interest in the subject into which the endoscope 1 is inserted as the above analysis. For example, the analysis unit 42c detects a region of interest in the subject from the image indicated by the captured image information obtained by imaging during irradiation with special light.
  • the area of interest is an area of interest in the observations within the subject, such as an area that is likely to be a lesion.
  • the analysis image generation unit 42d provides image information for displaying the attention area-enhanced image in which the attention area is emphasized detected by the analysis unit 42c in the image indicated by the captured image information obtained by imaging during irradiation with special light. Generate.
  • the region-focused image is displayed on the sub-screen 72, and the operator of the endoscope 1 can easily recognize the region of interest in the subject.
  • the analysis image generation unit 42d expands the color difference between the abnormal part (lesion part or the like) and the normal part, which is the region of interest, in the image indicated by the captured image information obtained by imaging during irradiation with special light. Image information for displaying the color difference expansion image that has undergone the color difference expansion processing may be generated. As a result, the color difference expanded image is displayed on the sub screen 72, and the operator of the endoscope 1 can easily distinguish between the abnormal part and the normal part in the subject.
  • the analysis unit 42c may select a similar case image as the above analysis.
  • the analysis unit 42c selects a case image similar to the captured image information obtained by imaging during irradiation with special light by searching a database accessible to the endoscope device 100.
  • the analysis image generation unit 42d generates image information for displaying an image showing the result of selection by the analysis unit 42c.
  • the result of selection by the analysis unit 42c may be the case image itself selected by the analysis unit 42c, or the case image associated with the case image selected by the analysis unit 42c in the above database. It may be information such as a diagnosis result regarding.
  • the selection result of the similar case image is displayed on the sub screen 72, and the operator of the endoscope 1 can easily compare the state in the subject under observation with the similar case.
  • the analysis unit 42c may discriminate between a tumor and a non-tumor as the above analysis. For example, the analysis unit 42c determines whether or not the biological region reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light is a tumor.
  • the analysis image generation unit 42d generates image information for displaying an image showing the result of discrimination by the analysis unit 42c.
  • the result of discrimination by the analysis unit 42c may be information indicating whether or not the biological region reflected in the most recently captured image is a tumor, or it may be a tumor after the current examination is started. It may be information indicating the number of biological regions determined to be present.
  • the discrimination result of the tumor and the non-tumor is displayed on the sub screen 72, and it is possible to support the observation by the operator of the endoscope 1 and the operation of the endoscope 1.
  • the analysis unit 42c may identify the state of the organ as the above analysis. For example, the analysis unit 42c identifies the state of the organs reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light.
  • the state of the organ is, for example, the oxygen saturation for each region, the thickness, density, pattern, and uniformity of the vascular structure, the surface structure of the large intestine (for example, pit-like structure), the surface structure of the duodenum (for example, villous structure), and the like. be.
  • the analysis image generation unit 42d generates image information for displaying an image showing a specific result by the analysis unit 42c. For example, the analysis image generation unit 42d generates an oxygen saturation image that images the oxygen saturation for each specified region.
  • the identification result of the state of the organ is displayed on the sub screen 72, and it is possible to support the observation by the operator of the endoscope 1 and the operation of the endoscope 1.
  • the analysis unit 42c may generate a planned separation line as the above analysis.
  • the analysis unit 42c is scheduled to be cut off, which is a line to be cut off in order to remove a tumor or the like from the biological region reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light. Determine the line (demarkation line).
  • the analysis image generation unit 42d generates image information for displaying an image with a scheduled separation line determined by the analysis unit 42c in the image indicated by the captured image information obtained by imaging during irradiation with special light. do. As a result, the image with the scheduled separation line is displayed on the sub screen 72, and the operator of the endoscope 1 can easily recognize the scheduled separation line in the subject.
  • the cycle T which is the repeating cycle of the operation of irradiating the normal light and the special light
  • the cycle T may be indefinite.
  • the cycle T the special light may be first irradiated and then the normal light may be irradiated.
  • the spectrum of normal light may be constant at the repetition of each cycle T, or may be indefinite at the repetition of each cycle T.
  • spectrum of the special light may be constant at the repetition of each period T or may be indefinite at the repetition of each period T.
  • the light source device 5 irradiates the illumination light between the first period and the second period. There may be a non-irradiation period.
  • the endoscope device 100 has been described as an example of the endoscope system of the present invention, the endoscope system of the present invention may be realized by a plurality of devices connected to each other via a network. For example, at least a part of the processing by the control device 4 may be executed by another device connected to the endoscope device 100 via a network.
  • Control program The control program stored in the ROM of the control device 4 is stored in a computer-readable non-transitory storage medium.
  • a "computer-readable storage medium” includes, for example, an optical medium such as a CD-ROM (Compact Disc-ROM), a magnetic storage medium such as a USB (Universal Serial Bus) memory, or a memory card. It is also possible to provide such a program by downloading via a network.
  • An endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor.
  • the above processor After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame.
  • the amount of the illumination light of the second characteristic to be irradiated from the light source is the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by Endoscopic system.
  • the processor uses the light amount of the illumination light of the second characteristic to be emitted from the light source, the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the irradiation of the illumination light of the first characteristic. Control is sometimes performed based on the brightness information indicated by the imaging signal obtained by the imaging element. Endoscopic system.
  • the endoscopic system according to (1) or (2).
  • the processor controls the amount of illumination light of the second characteristic based on the image pickup signal obtained by the image pickup element when irradiating the illumination light of the second characteristic that precedes the illumination light of the second characteristic. do, Endoscopic system.
  • the processor measures the amount of illumination light of the second characteristic, and further, the brightness indicated by the image pickup signal obtained by the image pickup element when irradiating the illumination light of the second characteristic that precedes the illumination light of the second characteristic. Control based on the information of Endoscopic system.
  • the endoscopic system according to any one of (1) to (4).
  • the processor further controls the amount of illumination light of the second characteristic based on a predetermined conversion coefficient. Endoscopic system.
  • the conversion coefficient is a coefficient determined according to the difference between the first characteristic and the second characteristic. Endoscopic system.
  • the endoscopic system according to any one of (1) to (6).
  • the image pickup device performs a rolling shutter type image pickup. Endoscopic system.
  • the endoscopic system described irradiates the illumination light of the first characteristic, which is emitted from the light source in the first imaging frame, with the illumination light of the first characteristic among the imaging frames preceding the first imaging frame, and the second characteristic. Control is performed based on the amount of the illumination light of the first characteristic irradiated in the second imaging frame in which the characteristic illumination light is not irradiated and the imaging signal obtained by the imaging element in the second imaging frame.
  • the endoscopic system according to any one of (1) to (6).
  • the image sensor is for performing global shutter type imaging. Endoscopic system.
  • the endoscopic system according to any one of (10) to (12).
  • the image analysis includes an analysis of the insertion shape of an endoscope including the image sensor. Endoscopic system.
  • the endoscopic system according to any one of (10) to (13).
  • the image analysis includes extracting the contour of the captured image. Endoscopic system.
  • the endoscopic system according to any one of (10) to (14).
  • the image analysis includes detection of a region of interest in a subject into which an endoscope equipped with the image sensor is inserted. Endoscopic system.
  • the endoscopic system according to any one of (10) to (15).
  • the image analysis includes selection of similar case images. Endoscopic system.
  • the endoscopic system according to any one of (1) to (19).
  • the lengths of the first period and the second period are constant in the repetition of the operation, or indefinite in the repetition of the operation. Endoscopic system.
  • the endoscopic system according to any one of (1) to (22).
  • the first period is longer than the second period, Endoscopic system.
  • the endoscopic system according to any one of (1) to (23).
  • the illumination light of the first characteristic and the illumination light of the second characteristic are white light or light for image-enhanced observation. Endoscopic system.
  • a control method for an endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor.
  • the above processor After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame.
  • the amount of the illumination light of the second characteristic to be irradiated from the light source is the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by Control method.
  • a control program for an endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. , To the above processor After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame.
  • the amount of the illumination light of the second characteristic to be irradiated from the light source is the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by A control program for executing processing.
  • an endoscope system a control method, and a control program capable of suppressing hunting of the amount of illumination light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)

Abstract

Provided are an endoscope system, a control method, and a control program capable of suppressing hunting of the amount of illumination light. A light source device 5 repeats an operation of continuously radiating illumination light having first characteristics during a first period extending over a plurality of consecutive image-capturing frames and then radiating illumination light having second characteristics during a second period extending over at least one image-capturing frame. A display 7 displays video using captured images obtained from an image capturing element 23, displays, for the first period, video on the basis of images captured during the first period, and displays, for the second period, video on the basis of images captured during a period other than the second period.

Description

内視鏡システム、制御方法、及び制御プログラムEndoscopic system, control method, and control program
 本発明は、内視鏡システム、制御方法、及び制御プログラムに関する。 The present invention relates to an endoscopic system, a control method, and a control program.
 従来、白色光等の通常光を被検体内に照射しながら連続撮像を行い、ライブ画像を表示する内視鏡システムが知られている。また、狭帯域光等の特殊光を被検体内に照射しながら連続撮像を行い、IEE(Image-Enhanced Endoscopy:画像強調観察)などの解析を行う内視鏡システムが知られている。 Conventionally, there is known an endoscope system that continuously performs imaging while irradiating a subject with normal light such as white light and displays a live image. Further, there is known an endoscopic system that performs continuous imaging while irradiating a subject with special light such as narrow band light and performs analysis such as IEE (Image-Enhanced Endoscopy).
 特許文献1には、複数種類の観察動画を取得して表示する際に、ユーザが着目する特定の観察動画の明るさに基づいて、全ての観察動画の露光条件を設定し、その設定された露光条件に従って露光量を調整する内視鏡システムが記載されている。 In Patent Document 1, when acquiring and displaying a plurality of types of observation moving images, exposure conditions for all the observation moving images are set based on the brightness of a specific observation moving image that the user pays attention to, and the exposure conditions are set. An endoscopic system that adjusts the amount of exposure according to the exposure conditions is described.
 特許文献2には、通常光撮像を連続実行した後に特殊光撮像を実行する動作を繰り返し、通常光画像と特殊光画像との相関の度合いの判定結果に基づいて、通常光画像データの代わりに特殊光画像データを実行させるタイミングを制御する内視鏡システムが記載されている。 In Patent Document 2, the operation of continuously executing normal light imaging and then executing special light imaging is repeated, and based on the determination result of the degree of correlation between the normal light image and the special light image, instead of the normal light image data. An endoscopic system that controls the timing of executing special optical image data is described.
特開2013-188365号公報Japanese Unexamined Patent Publication No. 2013-188365 特開2016-019569号公報Japanese Unexamined Patent Publication No. 2016-019569
 しかしながら、上記の従来技術では、例えば、照明光として白色光等の通常光を照射してライブ画像を表示しつつ、照明光を周期的に特殊光に切り替えてバックエンドで解析を行う構成において、照明光の光量のハンチングを抑制することができなかった。 However, in the above-mentioned conventional technique, for example, in a configuration in which normal light such as white light is irradiated as illumination light to display a live image, the illumination light is periodically switched to special light for analysis at the back end. It was not possible to suppress the hunting of the amount of illumination light.
 例えば、上記の構成において、撮像により得られた撮像信号に基づいて照明光の光量を制御するAE(Automatic Exposure:自動露出)制御を行う場合、照明光が切り替わるタイミングで内視鏡の検査の状況(シーン)が切り替わると、照明光の光量のハンチングが発生しやすい。 For example, in the above configuration, when AE (Automatic Exposure) control that controls the amount of illumination light based on the imaging signal obtained by imaging is performed, the state of endoscopic examination at the timing when the illumination light is switched. When (scene) is switched, hunting of the amount of illumination light is likely to occur.
 特許文献1には、照明光として白色光等の通常光を照射してライブ画像を表示しつつ、照明光を周期的に特殊光に切り替えてバックエンドで解析を行う構成は開示されておらず、上記のように発生するハンチングに関する課題や解決手段は記載されていない。また、このような課題や解決手段は、特許文献2にも記載されてない。 Patent Document 1 does not disclose a configuration in which normal light such as white light is irradiated as illumination light to display a live image, and the illumination light is periodically switched to special light for analysis at the back end. , Problems and solutions related to hunting that occur as described above are not described. Further, such problems and solutions are not described in Patent Document 2.
 本発明は、上記事情に鑑みてなされたものであり、照明光の光量のハンチングを抑制することのできる内視鏡システム、制御方法、及び制御プログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope system, a control method, and a control program capable of suppressing hunting of the amount of illumination light.
 本発明の内視鏡システムは、特性が異なる複数種類の照明光を切り替えて照射可能な光源と、上記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムであって、上記プロセッサは、連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を上記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に上記第1特性と異なる第2特性の照明光を上記光源から照射させる動作を繰り返し、上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号と、に基づいて制御するものである。 The endoscope system of the present invention includes a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. In the spectroscopic system, the processor continuously irradiates the illumination light of the first characteristic from the light source during the first period over a plurality of consecutive imaging frames, and then extends over at least one imaging frame. During the period, the operation of irradiating the illumination light of the second characteristic different from the first characteristic from the light source is repeated, and the amount of the illumination light of the second characteristic to be irradiated from the light source precedes the illumination light of the second characteristic. The control is performed based on the amount of the illumination light of the first characteristic and the image pickup signal obtained by the image pickup element when the illumination light of the first characteristic is irradiated.
 また、本発明の内視鏡システムの制御方法は、特性が異なる複数種類の照明光を切り替えて照射可能な光源と、上記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムの制御方法であって、上記プロセッサが、連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を上記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に上記第1特性と異なる第2特性の照明光を上記光源から照射させる動作を繰り返し、上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号と、に基づいて制御するものである。 Further, the control method of the endoscope system of the present invention includes a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. A control method for an endoscopic system comprising the above, wherein the processor continuously irradiates the illumination light of the first characteristic from the light source during the first period over a plurality of continuous imaging frames, and then at least. During the second period over one imaging frame, the operation of irradiating the illumination light of the second characteristic different from the first characteristic from the light source is repeated, and the amount of the illumination light of the second characteristic to be irradiated from the light source is the first. The control is performed based on the amount of the illumination light of the first characteristic that precedes the illumination light of the two characteristics and the image pickup signal obtained by the image pickup element when the illumination light of the first characteristic is irradiated.
 また、本発明の制御プログラムは、特性が異なる複数種類の照明光を切り替えて照射可能な光源と、上記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムの制御プログラムであって、上記プロセッサに、連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を上記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に上記第1特性と異なる第2特性の照明光を上記光源から照射させる動作を繰り返し、上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号と、に基づいて制御する、処理を実行させるためのものである。 Further, the control program of the present invention includes a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. It is a control program of the spectroscopic system, in which the processor is continuously irradiated with the illumination light of the first characteristic from the light source during the first period over a plurality of consecutive imaging frames, and then the at least one imaging frame is subjected to. During the second period across, the operation of irradiating the illumination light of the second characteristic different from the first characteristic from the light source is repeated, and the amount of the illumination light of the second characteristic to be irradiated from the light source is the illumination light of the second characteristic. This is for executing a process that is controlled based on the amount of illumination light of the first characteristic that precedes the above and the image pickup signal obtained by the image pickup element when the illumination light of the first characteristic is irradiated. ..
 本発明によれば、照明光の光量のハンチングを抑制することのできる内視鏡システム、制御方法、及び制御プログラムを提供することができる。 According to the present invention, it is possible to provide an endoscope system, a control method, and a control program capable of suppressing hunting of the amount of illumination light.
本発明の一実施形態である内視鏡装置100の一例を示す図である。It is a figure which shows an example of the endoscope apparatus 100 which is one Embodiment of this invention. 図1に示す内視鏡装置100の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the endoscope apparatus 100 shown in FIG. 図2に示した光源装置5が発生させる光のスペクトルの一例を示す図である。It is a figure which shows an example of the spectrum of the light generated by the light source apparatus 5 shown in FIG. 図2に示した信号処理部42の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of the signal processing unit 42 shown in FIG. ディスプレイ7に表示される画面の一例を示す図である。It is a figure which shows an example of the screen displayed on the display 7. 内視鏡装置100における照明光の切り替えの一例を示す図である。It is a figure which shows an example of switching of illumination light in an endoscope apparatus 100. 内視鏡装置100における照明光の光量の制御例1を示す図である。It is a figure which shows the control example 1 of the amount of illumination light in an endoscope apparatus 100. 内視鏡装置100における照明光の光量の制御例2を示す図である。It is a figure which shows the control example 2 of the amount of illumination light in an endoscope apparatus 100. 内視鏡装置100における照明光の光量の制御例3を示す図である。It is a figure which shows the control example 3 of the amount of illumination light in an endoscope apparatus 100. 内視鏡装置100における照明光の光量の制御例4を示す図である。It is a figure which shows the control example 4 of the amount of illumination light in an endoscope apparatus 100.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<本発明の一実施形態である内視鏡装置100>
 図1は、本発明の一実施形態である内視鏡装置100の一例を示す図である。
<Endoscope device 100 according to an embodiment of the present invention>
FIG. 1 is a diagram showing an example of an endoscope device 100 according to an embodiment of the present invention.
 内視鏡装置100は、本発明の内視鏡システムの一例である。図1に示すように、内視鏡装置100は、内視鏡1と、この内視鏡1が接続される制御装置4及び光源装置5と、を備える。光源装置5は、特性が異なる複数種類の照明光を切り替えて照射可能な光源の一例である。 The endoscope device 100 is an example of the endoscope system of the present invention. As shown in FIG. 1, the endoscope device 100 includes an endoscope 1, a control device 4 to which the endoscope 1 is connected, and a light source device 5. The light source device 5 is an example of a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics.
 制御装置4には、内視鏡1によって被検体内を撮像して得られる撮像画像等を表示するディスプレイ7と、制御装置4に対して各種情報を入力するためのインタフェースである入力部6と、が接続されている。制御装置4は、内視鏡1、光源装置5、及びディスプレイ7を制御する。 The control device 4 includes a display 7 that displays an image captured by imaging the inside of the subject with the endoscope 1, and an input unit 6 that is an interface for inputting various information to the control device 4. , Are connected. The control device 4 controls the endoscope 1, the light source device 5, and the display 7.
 ディスプレイ7は、表示画素が二次元状に配列された表示面を有し、この表示面の各表示画素に、画像データを構成する画素データが描画されることで、この画像データに基づく画像の表示が行われる。ディスプレイ7は、制御装置4からの指令に応じて表示画像を切り替える表示部を構成する。 The display 7 has a display surface in which display pixels are arranged in a two-dimensional manner, and pixel data constituting the image data is drawn on each display pixel of the display surface to obtain an image based on the image data. The display is done. The display 7 constitutes a display unit that switches the display image in response to a command from the control device 4.
 内視鏡1は、一方向に延びる管状部材であって被検体内に挿入される挿入部10と、挿入部10の基端部に設けられ、観察モード切替操作、撮像記録操作、鉗子操作、送気送水操作、及び吸引操作等を行うための操作部材が設けられた操作部11と、操作部11に隣接して設けられたアングルノブ12と、内視鏡1を制御装置4と光源装置5にそれぞれ着脱自在に接続するコネクタ部13A,13Bを含むユニバーサルコード13と、を含む。 The endoscope 1 is a tubular member extending in one direction and is provided at an insertion portion 10 inserted into a subject and a proximal end portion of the insertion portion 10, and is provided for an observation mode switching operation, an imaging recording operation, a forceps operation, and the like. An operation unit 11 provided with an operation member for performing air supply / water supply operation, suction operation, etc., an angle knob 12 provided adjacent to the operation unit 11, an endoscope 1, a control device 4 and a light source device. A universal cord 13 including connector portions 13A and 13B, which are detachably connected to 5, respectively, is included.
 なお、図1では省略されているが、操作部11及び挿入部10の内部には、細胞又はポリープ等の生体組織を採取するための鉗子を挿入する鉗子孔、送気及び送水用のチャンネル、吸引用のチャンネル等の各種のチャンネルが設けられる。 Although omitted in FIG. 1, inside the operation unit 11 and the insertion unit 10, a forceps hole for inserting forceps for collecting biological tissues such as cells or polyps, a channel for air supply and water supply, and a channel for air supply and water supply, Various channels such as a suction channel are provided.
 挿入部10は、可撓性を有する軟性部10Aと、軟性部10Aの先端に設けられた湾曲部10Bと、湾曲部10Bの先端に設けられた硬質の先端部10Cとから構成される。 The insertion portion 10 is composed of a flexible soft portion 10A, a curved portion 10B provided at the tip of the flexible portion 10A, and a hard tip portion 10C provided at the tip of the curved portion 10B.
 湾曲部10Bは、アングルノブ12の回動操作により湾曲自在に構成されている。この湾曲部10Bは、内視鏡1が使用される被検体の部位等に応じて、任意の方向及び任意の角度に湾曲でき、先端部10Cを所望の方向に向けることができる。 The curved portion 10B is configured to be bendable by rotating the angle knob 12. The curved portion 10B can be curved in an arbitrary direction and an arbitrary angle according to the part of the subject in which the endoscope 1 is used, and the tip portion 10C can be directed in a desired direction.
<図1に示す内視鏡装置100の内部構成>
 図2は、図1に示す内視鏡装置100の内部構成を示す模式図である。図3は、図2に示した光源装置5が発生させる光のスペクトルの一例を示す図である。
<Internal configuration of the endoscope device 100 shown in FIG. 1>
FIG. 2 is a schematic view showing the internal configuration of the endoscope device 100 shown in FIG. FIG. 3 is a diagram showing an example of a spectrum of light generated by the light source device 5 shown in FIG.
 光源装置5は、照明光として、通常光と特殊光とを切り替えて照射可能である。通常光は、白色光等の、医師等の人間による認識に適した発光スペクトルを有する光である。特殊光は、通常光とは発光スペクトルが異なる、IEE等のコンピュータによる画像解析に適した発光スペクトルを有する光である。 The light source device 5 can irradiate the illumination light by switching between normal light and special light. Normal light is light having an emission spectrum suitable for recognition by humans such as doctors, such as white light. The special light is light having an emission spectrum different from that of normal light and having an emission spectrum suitable for image analysis by a computer such as IEE.
 具体的には、光源装置5は、光源用プロセッサ51と、光源部52と、光路結合部54と、を備える。光源用プロセッサ51は、制御装置4のシステム制御部44と接続されており、システム制御部44からの指令に基づいて光源部52を制御する。 Specifically, the light source device 5 includes a light source processor 51, a light source unit 52, and an optical path coupling unit 54. The light source processor 51 is connected to the system control unit 44 of the control device 4, and controls the light source unit 52 based on a command from the system control unit 44.
 光源部52は、例えば、複数の半導体光源を有し、これらをそれぞれ点灯又は消灯し、点灯する場合には各半導体光源の発光量を制御することにより、観察対象を照明する照明光を発する。本実施形態では、光源部52は、V-LED(Violet Light Emitting Diode)52a、B-LED(Blue Light Emitting Diode)52b、G-LED(Green Light Emitting Diode)52c、及びR-LED(Red Light Emitting Diode)52dの4色のLEDを有する。 The light source unit 52 has, for example, a plurality of semiconductor light sources, each of which is turned on or off, and when the light source unit 52 is turned on, the amount of light emitted from each semiconductor light source is controlled to emit illumination light that illuminates the observation target. In the present embodiment, the light source unit 52 includes a V-LED (Violet Light Emitting Diet) 52a, a B-LED (Blue Light Emitting Diode) 52b, a G-LED (Green Light Emitting Diode) 52c, and an R-LED (Red). It has a 4-color LED of Emitting DIode) 52d.
 光源用プロセッサ51は、V-LED52a、B-LED52b、G-LED52c、及びR-LED52dをそれぞれ独立に制御することで、紫色光V、青色光B、緑色光G、又は赤色光Rをそれぞれ独立に光量を変えて発光可能である。図3に示すように、V-LED52aは、中心波長405±10nm、波長範囲380~420nmの紫色光Vを発生する。B-LED52bは、中心波長450±10nm、波長範囲420~500nmの青色光Bを発生する。G-LED52cは、波長範囲が480~600nmに及ぶ緑色光Gを発生する。R-LED52dは、中心波長620~630nmで、波長範囲が600~650nmに及ぶ赤色光Rを発生する。 The light source processor 51 independently controls V-LED52a, B-LED52b, G-LED52c, and R-LED52d to independently control purple light V, blue light B, green light G, or red light R, respectively. It is possible to emit light by changing the amount of light. As shown in FIG. 3, the V-LED 52a generates purple light V having a center wavelength of 405 ± 10 nm and a wavelength range of 380 to 420 nm. The B-LED 52b generates blue light B having a center wavelength of 450 ± 10 nm and a wavelength range of 420 to 500 nm. The G-LED 52c generates green light G having a wavelength range of 480 to 600 nm. The R-LED52d generates red light R having a center wavelength of 620 to 630 nm and a wavelength range of 600 to 650 nm.
 また、光源用プロセッサ51は、通常光の照射時には、紫色光V、青色光B、緑色光G、及び赤色光R間の光量比がVc:Bc:Gc:Rcとなる白色光を発光するように、各LED52a~52dを制御する。なお、Vc、Bc、Gc、Rc>0である。 Further, the light source processor 51 emits white light having a light amount ratio of Vc: Bc: Gc: Rc among purple light V, blue light B, green light G, and red light R when irradiated with normal light. In addition, each LED 52a to 52d is controlled. In addition, Vc, Bc, Gc, Rc> 0.
 また、光源用プロセッサ51は、特殊光の照射時には、短波長の狭帯域光としての紫色光V、青色光B、緑色光G、及び赤色光Rとの光量比がVs:Bs:Gs:Rsとなる特殊光を発光するように、各LED52a~52dを制御する。 Further, the light source processor 51 has a light amount ratio of Vs: Bs: Gs: Rs with purple light V, blue light B, green light G, and red light R as short-wavelength narrow-band light when irradiated with special light. Each LED 52a to 52d is controlled so as to emit the special light.
 光量比Vs:Bs:Gs:Rsは、通常光の照射時に使用する光量比Vc:Bc:Gc:Rcと異なっており、観察目的に応じて適宜定められる。例えば、表層血管を強調する場合には、Vsを、他のBs、Gs、Rsよりも大きくすることが好ましく、中深層血管を強調する場合には、Gsを、他のVs、Gs、Rsよりも大きくすることが好ましい。 The light amount ratio Vs: Bs: Gs: Rs is different from the light amount ratio Vc: Bc: Gc: Rc used when irradiating normal light, and is appropriately determined according to the purpose of observation. For example, when emphasizing superficial blood vessels, it is preferable to make Vs larger than other Bs, Gs, Rs, and when emphasizing mesopelagic blood vessels, Gs is made larger than other Vs, Gs, Rs. It is also preferable to increase the size.
 光路結合部54は、V-LED52a、B-LED52b、G-LED52c、及びR-LED52dから出射される各光を結合し、結合した光を照明光として出射する。光源部52の光路結合部54から出射された照明光は、ユニバーサルコード13に内蔵された後述のライトガイド53に入射し、挿入部10の先端部10Cに設けられた照明用レンズ50を通って被写体に照射される。 The optical path coupling unit 54 combines the lights emitted from the V-LED 52a, B-LED 52b, G-LED 52c, and R-LED 52d, and emits the combined light as illumination light. The illumination light emitted from the optical path coupling portion 54 of the light source portion 52 enters the light guide 53 described later built in the universal cord 13, and passes through the illumination lens 50 provided at the tip portion 10C of the insertion portion 10. The subject is illuminated.
 内視鏡1の先端部10Cには、対物レンズ21及びレンズ群22を含む撮像光学系と、この撮像光学系を通して被写体を撮像する撮像素子23と、RAM(Random Access Memory)等のメモリ25と、通信インタフェース(I/F)26と、撮像駆動部27と、光源部52から出射された照明光を照明用レンズ50に導くためのライトガイド53と、が設けられている。 The tip portion 10C of the endoscope 1 includes an imaging optical system including an objective lens 21 and a lens group 22, an imaging element 23 that images a subject through the imaging optical system, and a memory 25 such as a RAM (Random Access Memory). A communication interface (I / F) 26, an image pickup driving unit 27, and a light guide 53 for guiding the illumination light emitted from the light source unit 52 to the illumination lens 50 are provided.
 ライトガイド53は、先端部10Cからユニバーサルコード13のコネクタ部13Aまで延びている。ユニバーサルコード13のコネクタ部13Aが光源装置5に接続された状態で、光源装置5の光源部52から出射される照明光がライトガイド53に入射可能な状態となる。 The light guide 53 extends from the tip portion 10C to the connector portion 13A of the universal cord 13. With the connector portion 13A of the universal cord 13 connected to the light source device 5, the illumination light emitted from the light source portion 52 of the light source device 5 can be incident on the light guide 53.
 撮像素子23は、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等が用いられる。本実施形態においては、撮像素子23は、ローリングシャッタ方式の撮像を行うものであってもよいし、グローバルシャッタ方式の撮像を行うものであってもよい。 As the image sensor 23, a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like is used. In the present embodiment, the image sensor 23 may perform a rolling shutter type image pickup or a global shutter type image pickup.
 撮像素子23は、複数の画素が二次元状に配置された受光面を有し、上記の撮像光学系によってこの受光面に結像された光学像を各画素において電気信号(撮像信号)に変換する。そして、撮像素子23は、変換した撮像信号をアナログ信号から所定のビット数のデジタル信号に変換し、デジタル信号に変換した撮像信号をメモリ25に出力する。撮像素子23は、例えば原色又は補色等のカラーフィルタを搭載するものが用いられる。撮像素子23の受光面の各画素から出力される撮像信号の集合を撮像画像信号という。 The image pickup element 23 has a light receiving surface in which a plurality of pixels are arranged two-dimensionally, and the optical image formed on the light receiving surface by the above image pickup optical system is converted into an electric signal (imaging signal) in each pixel. do. Then, the image pickup element 23 converts the converted image pickup signal from an analog signal into a digital signal having a predetermined number of bits, and outputs the image pickup signal converted into the digital signal to the memory 25. As the image pickup device 23, for example, one equipped with a color filter such as a primary color or a complementary color is used. A set of image pickup signals output from each pixel on the light receiving surface of the image sensor 23 is called an image pickup image signal.
 撮像素子23は、対物レンズ21の光軸Axに対して受光面が垂直となる状態で先端部10Cに配置されていてもよいし、対物レンズ21の光軸Axに対して受光面が平行となる状態で先端部10Cに配置されていてもよい。 The image sensor 23 may be arranged at the tip portion 10C in a state where the light receiving surface is perpendicular to the optical axis Ax of the objective lens 21, or the light receiving surface is parallel to the optical axis Ax of the objective lens 21. It may be arranged in the tip portion 10C in such a state.
 内視鏡1に設けられる撮像光学系は、撮像素子23と対物レンズ21との間における被写体からの光の光路上にあるレンズ、プリズム等の光学部材(上記のレンズ群22を含む)と、対物レンズ21と、によって構成される。撮像光学系は、対物レンズ21のみで構成される場合もある。 The image pickup optical system provided in the endoscope 1 includes optical members (including the above lens group 22) such as a lens and a prism on the optical path of light from the subject between the image pickup element 23 and the objective lens 21. It is composed of an objective lens 21 and. The imaging optical system may be composed of only the objective lens 21.
 メモリ25は、撮像素子23から出力されたデジタルの撮像信号を一時的に記録する。 The memory 25 temporarily records the digital image pickup signal output from the image pickup device 23.
 通信I/F26は、制御装置4の通信インタフェース(I/F)41と接続される。通信I/F26は、メモリ25に記録された撮像信号を、ユニバーサルコード13内の信号線を通して制御装置4に伝送する。 The communication I / F 26 is connected to the communication interface (I / F) 41 of the control device 4. The communication I / F 26 transmits the image pickup signal recorded in the memory 25 to the control device 4 through the signal line in the universal code 13.
 撮像駆動部27は、通信I/F26を介して制御装置4のシステム制御部44と接続されている。撮像駆動部27は、通信I/F26で受信されるシステム制御部44からの指令に基づいて、撮像素子23及びメモリ25を駆動する。 The image pickup drive unit 27 is connected to the system control unit 44 of the control device 4 via the communication I / F 26. The image pickup drive unit 27 drives the image pickup element 23 and the memory 25 based on a command from the system control unit 44 received by the communication I / F 26.
 制御装置4は、ユニバーサルコード13によって内視鏡1の通信I/F26と接続される通信I/F41と、信号処理部42と、表示コントローラ43と、システム制御部44と、記録媒体45と、を備える。 The control device 4 includes a communication I / F 41 connected to the communication I / F 26 of the endoscope 1 by a universal code 13, a signal processing unit 42, a display controller 43, a system control unit 44, a recording medium 45, and the like. To be equipped.
 通信I/F41は、内視鏡1の通信I/F26から伝送されてきた撮像信号を受信して信号処理部42に伝達する。 The communication I / F 41 receives the image pickup signal transmitted from the communication I / F 26 of the endoscope 1 and transmits it to the signal processing unit 42.
 信号処理部42は、通信I/F41から受けた撮像信号を一時記録するメモリを内蔵しており、メモリに記録された撮像信号の集合である撮像画像信号を処理(デモザイク処理又はガンマ補正処理等の画像処理)して、認識処理等が可能な形式の撮像画像情報を生成する。信号処理部42によって生成された撮像画像情報は、ハードディスク又はフラッシュメモリ等の記録媒体45に記録される。 The signal processing unit 42 has a built-in memory for temporarily recording the image pickup signal received from the communication I / F 41, and processes the image pickup image signal which is a set of the image pickup signals recorded in the memory (demosaic processing, gamma correction processing, etc.). Image processing) to generate captured image information in a format capable of recognition processing and the like. The captured image information generated by the signal processing unit 42 is recorded on a recording medium 45 such as a hard disk or a flash memory.
 表示コントローラ43は、信号処理部42によって生成された撮像画像情報に基づく撮像画像をディスプレイ7に表示させる。信号処理部42によって生成された撮像画像情報を構成する各画素データの座標は、ディスプレイ7の表示面を構成するいずれかの表示画素の座標と対応付けて管理されている。 The display controller 43 displays the captured image based on the captured image information generated by the signal processing unit 42 on the display 7. The coordinates of each pixel data constituting the captured image information generated by the signal processing unit 42 are managed in association with the coordinates of any of the display pixels constituting the display surface of the display 7.
 システム制御部44は、制御装置4の各部を制御すると共に、内視鏡1の撮像駆動部27と光源装置5の光源用プロセッサ51とに指令を送り、内視鏡装置100の全体を統括制御する。例えば、システム制御部44は、撮像駆動部27を介して撮像素子23の制御を行う。また、システム制御部44は、光源用プロセッサ51を介して光源部52の制御を行う。 The system control unit 44 controls each part of the control device 4 and sends a command to the image pickup drive unit 27 of the endoscope 1 and the light source processor 51 of the light source device 5, and controls the entire endoscope device 100 in an integrated manner. do. For example, the system control unit 44 controls the image pickup device 23 via the image pickup drive unit 27. Further, the system control unit 44 controls the light source unit 52 via the light source processor 51.
 制御装置4は、プログラムを実行して処理を行う各種のプロセッサと、RAMと、ROM(Read Only Memory)を含む。 The control device 4 includes various processors that execute programs and perform processing, RAM, and ROM (Read Only Memory).
 各種のプロセッサとしては、プログラムを実行して各種処理を行う汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、又はASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 As various processors, programmable logic is a processor whose circuit configuration can be changed after manufacturing such as a general-purpose processor that executes a program and performs various processes, such as a CPU (Application Specific Processing Unit) and an FPGA (Field Programmable Gate Array). A dedicated electric circuit or the like, which is a processor having a circuit configuration specially designed for executing a specific process such as a device (Programmable Logic Device: PLD) or an ASIC (Application Specific Integrated Circuit), is included.
 これら各種のプロセッサの構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 More specifically, the structure of these various processors is an electric circuit that combines circuit elements such as semiconductor elements.
 制御装置4は、各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ又はCPUとFPGAの組み合わせ)で構成されてもよい。 The control device 4 may be composed of one of various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). You may.
<図2に示した信号処理部42の機能ブロック>
 図4は、図2に示した信号処理部42の機能ブロックの一例を示す図である。
<Functional block of signal processing unit 42 shown in FIG. 2>
FIG. 4 is a diagram showing an example of the functional block of the signal processing unit 42 shown in FIG.
 信号処理部42のプロセッサは、例えば信号処理部42に内蔵されるROMに格納された制御プログラムを実行することにより、撮像画像情報生成部42aと、ライブ画像生成部42bと、解析部42cと、解析画像生成部42dと、光量制御部42eとを備える。 The processor of the signal processing unit 42, for example, by executing a control program stored in the ROM built in the signal processing unit 42, causes the captured image information generation unit 42a, the live image generation unit 42b, the analysis unit 42c, and the analysis unit 42c. It includes an analysis image generation unit 42d and a light amount control unit 42e.
 撮像画像情報生成部42aは、撮像素子23の撮像により得られた撮像信号に対して、デモザイク処理又はガンマ補正処理等の画像処理を行うことにより撮像画像情報を生成する。撮像画像情報生成部42aは、生成した撮像画像情報のうち、通常光の照射時の撮像により得られた撮像信号に基づく撮像画像情報を撮像フレームとしてライブ画像生成部42bへ出力し、特殊光の照射時の撮像により得られた撮像信号に基づく撮像画像情報を撮像フレームとして解析部42cへ出力する。撮像フレームは、1回の撮像により得られた撮像信号である。 The captured image information generation unit 42a generates captured image information by performing image processing such as demosaic processing or gamma correction processing on the image pickup signal obtained by the image pickup of the image pickup element 23. The captured image information generation unit 42a outputs the captured image information based on the imaging signal obtained by imaging during normal light irradiation to the live image generation unit 42b as an imaging frame among the generated captured image information, and outputs the special light. The captured image information based on the imaging signal obtained by imaging during irradiation is output to the analysis unit 42c as an imaging frame. The imaging frame is an imaging signal obtained by one imaging.
 ライブ画像生成部42bは、撮像画像情報生成部42aから出力された撮像フレームに基づいて、ライブ画像を表示するためのライブ画像情報を生成し、生成したライブ画像情報を撮像画像情報として表示コントローラ43(図2参照)へ出力する。ライブ画像は、撮像素子23による連続した撮像の結果をリアルタイムで表示する動画である。 The live image generation unit 42b generates live image information for displaying a live image based on the image pickup frame output from the image capture image information generation unit 42a, and displays the generated live image information as the image capture image information controller 43. Output to (see Fig. 2). The live image is a moving image that displays the result of continuous imaging by the image sensor 23 in real time.
 解析部42cは、撮像画像情報生成部42aから出力された撮像フレームに基づく解析(画像解析)を行い、その解析の結果を解析画像生成部42dへ出力する。解析部42cによる解析は、例えば医師等のユーザから見えない状態で(バックエンドで)行われる解析である。また、解析部42cによる解析は、AI(Artificial Intelligence)を用いた解析であってもよいし、撮像フレームに基づく特定のアルゴリズムを用いた解析であってもよい。 The analysis unit 42c performs analysis (image analysis) based on the image pickup frame output from the image capture image information generation unit 42a, and outputs the analysis result to the analysis image generation unit 42d. The analysis by the analysis unit 42c is an analysis performed (at the back end) in a state invisible to a user such as a doctor. Further, the analysis by the analysis unit 42c may be an analysis using AI (Artificial Intelligence) or an analysis using a specific algorithm based on an imaging frame.
 一例として、解析部42cは、解析として撮像画像の輪郭抽出を行う。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像に写り込んでいる生体構造の輪郭を特定する。特定対象の生体構造は、例えば、表層血管構造、中層血管構造、又は深層血管構造などである。解析部42cによる解析は、ライブ画像の表示と並行して行われる。 As an example, the analysis unit 42c extracts the contour of the captured image as an analysis. For example, the analysis unit 42c identifies the contour of the biological structure reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light. The biological structure of the specific object is, for example, a superficial blood vessel structure, a middle blood vessel structure, a deep blood vessel structure, or the like. The analysis by the analysis unit 42c is performed in parallel with the display of the live image.
 解析画像生成部42dは、解析部42cから出力された解析の結果を示すIEE画像を表示するためのIEE画像情報を生成し、生成したIEE画像情報を撮像画像情報として表示コントローラ43(図2参照)へ出力する。IEE画像は、青色レーザ等の特殊光の照射時の撮像により得られた撮像信号に基づく、被写体の構造の輪郭が強調された画像である。この場合、青色レーザ等の特殊光は、画像強調観察用の光を構成する。例えば、IEE画像は、表層血管構造を強調した画像、中層血管構造を強調した画像、深層血管構造を強調した画像などである。 The analysis image generation unit 42d generates IEE image information for displaying an IEE image indicating the analysis result output from the analysis unit 42c, and displays the generated IEE image information as captured image information controller 43 (see FIG. 2). ) Is output. The IEE image is an image in which the outline of the structure of the subject is emphasized based on the imaging signal obtained by imaging when irradiating a special light such as a blue laser. In this case, special light such as a blue laser constitutes light for image-enhanced observation. For example, the IEE image is an image in which the surface blood vessel structure is emphasized, an image in which the middle layer blood vessel structure is emphasized, an image in which the deep blood vessel structure is emphasized, and the like.
 なお、解析画像生成部42dによって生成される画像は、撮像画像や撮像画像を加工した画像に限らず、解析部42cによる解析に基づく、数値(数、確度等)や文字(腫瘍種別)などを示す画像であってもよい。 The image generated by the analysis image generation unit 42d is not limited to the captured image and the processed image of the captured image, and numerical values (number, accuracy, etc.) and characters (tumor type) based on the analysis by the analysis unit 42c are used. It may be an image shown.
 図4において説明したように、内視鏡装置100は、撮像画像情報のうち、特殊光が照射された第2期間の撮像により得られた撮像画像情報に基づく解析を行う解析部42cを備える。一方で、内視鏡装置100は、撮像画像情報のうち、通常光が照射された第1期間の撮像により得られた撮像画像情報に基づくライブ画像を表示する。これにより、通常光に基づく動画表示を行いつつ、特殊光に基づく解析を行うことができる。通常光及び照射光の切り替えについては後述する(例えば図6参照)。 As described with reference to FIG. 4, the endoscope device 100 includes an analysis unit 42c that performs analysis based on the captured image information obtained by imaging in the second period irradiated with special light among the captured image information. On the other hand, the endoscope device 100 displays a live image based on the captured image information obtained by the imaging in the first period when the normal light is irradiated, among the captured image information. This makes it possible to perform analysis based on special light while displaying moving images based on normal light. Switching between normal light and irradiation light will be described later (see, for example, FIG. 6).
 また、撮像画像情報生成部42aは、撮像素子23の撮像により得られた撮像信号に基づくヒストグラム値を算出する。撮像信号に基づくヒストグラム値は、その撮像信号が示す画像の明るさを示す情報である。例えば、撮像信号に基づくヒストグラム値は、その撮像信号が示す画像における、明るさ(照度)毎の画素数の分布を示す情報である。撮像画像情報生成部42aは、算出したヒストグラム値を光量制御部42eへ出力する。 Further, the image pickup image information generation unit 42a calculates a histogram value based on the image pickup signal obtained by the image pickup of the image pickup device 23. The histogram value based on the imaging signal is information indicating the brightness of the image indicated by the imaging signal. For example, the histogram value based on the imaging signal is information indicating the distribution of the number of pixels for each brightness (illuminance) in the image indicated by the imaging signal. The captured image information generation unit 42a outputs the calculated histogram value to the light amount control unit 42e.
 光量制御部42eは、撮像画像情報生成部42aから出力されたヒストグラム値に基づいて、光源装置5が照射する照明光の光量を制御する。光量制御部42eによる光源装置5の光量の制御は、システム制御部44(図2参照)を介して行われる。光量制御部42eによる光量の制御については後述する。 The light amount control unit 42e controls the amount of illumination light emitted by the light source device 5 based on the histogram value output from the captured image information generation unit 42a. The light amount of the light source device 5 is controlled by the light amount control unit 42e via the system control unit 44 (see FIG. 2). The control of the light amount by the light amount control unit 42e will be described later.
<ディスプレイ7に表示される画面>
 図5は、ディスプレイ7に表示される画面の一例を示す図である。
<Screen displayed on display 7>
FIG. 5 is a diagram showing an example of a screen displayed on the display 7.
 表示コントローラ43は、信号処理部42から出力された撮像画像情報に基づいて、例えば図5に示す画面70をディスプレイ7に表示させる。画面70には、メイン画面71と、サブ画面72と、が含まれる。 The display controller 43 displays, for example, the screen 70 shown in FIG. 5 on the display 7 based on the captured image information output from the signal processing unit 42. The screen 70 includes a main screen 71 and a sub screen 72.
 メイン画面71には、信号処理部42のライブ画像生成部42bから出力されたライブ画像情報に基づくライブ画像が表示される。サブ画面72には、信号処理部42の解析画像生成部42dから出力されたIEE画像情報に基づくIEE画像が表示される。 On the main screen 71, a live image based on the live image information output from the live image generation unit 42b of the signal processing unit 42 is displayed. On the sub screen 72, an IEE image based on the IEE image information output from the analysis image generation unit 42d of the signal processing unit 42 is displayed.
 図5において説明したように、内視鏡装置100は、通常光が照射された第1期間の撮像により得られた撮像画像情報に基づくライブ画像と、特殊光が照射された第2期間の撮像により得られた撮像画像情報に基づく解析の結果と、を含む画面70を表示する。 As described with reference to FIG. 5, the endoscope device 100 includes a live image based on the captured image information obtained by imaging in the first period irradiated with normal light and an image captured in the second period irradiated with special light. The screen 70 including the result of the analysis based on the captured image information obtained by
 なお、図4に示した解析部42cの解析結果をライブ画像とともにディスプレイ7に表示させる構成について説明したが、解析部42cの解析結果の利用形態はこれに限らない。例えば、解析部42cの解析結果は、ディスプレイ7とは異なる装置によって表示されてもよいし、内視鏡装置100又は他の装置の記憶部に送信されて記憶されてもよい。 Although the configuration for displaying the analysis result of the analysis unit 42c shown in FIG. 4 on the display 7 together with the live image has been described, the usage pattern of the analysis result of the analysis unit 42c is not limited to this. For example, the analysis result of the analysis unit 42c may be displayed by a device different from the display 7, or may be transmitted to and stored in the storage unit of the endoscope device 100 or another device.
<内視鏡装置100における照明光の切り替え>
 図6は、内視鏡装置100における照明光の切り替えの一例を示す図である。
<Switching of illumination light in the endoscope device 100>
FIG. 6 is a diagram showing an example of switching of illumination light in the endoscope device 100.
 照明光タイミング75は、制御装置4からの指令により光源装置5が照明光を照射するタイミングである。照明光タイミング75におけるWLIは、光源装置5が照明光として白色光等の通常光を照射するタイミングである。照明光タイミング75におけるIEE1は、光源装置5が照明光として狭帯域光等の第1特殊光を照射するタイミングである。照明光タイミング75におけるIEE2は、光源装置5が照明光として第1特殊光とは異なる第2特殊光を照射するタイミングである。 The illumination light timing 75 is a timing at which the light source device 5 irradiates the illumination light according to a command from the control device 4. The WLI in the illumination light timing 75 is a timing at which the light source device 5 irradiates normal light such as white light as illumination light. The IEE 1 in the illumination light timing 75 is a timing at which the light source device 5 irradiates the first special light such as narrow band light as the illumination light. The IEE2 in the illumination light timing 75 is a timing at which the light source device 5 irradiates a second special light different from the first special light as the illumination light.
 照明光タイミング75に示すように、光源装置5は、予め定められた照射動作を周期Tで繰り返し実行する。この照射動作は、通常光を照射し、その後に特殊光(第1特殊光又は第2特殊光)を照射する動作である。図6に示す例では、光源装置5は、照射する特殊光を、周期T毎に、第1特殊光と第2特殊光とに交互に切り替えている。ただし、光源装置5は、周期Tごとの特殊光を第1特殊光のみとしてもよい。 As shown in the illumination light timing 75, the light source device 5 repeatedly executes a predetermined irradiation operation in the period T. This irradiation operation is an operation of irradiating normal light and then irradiating special light (first special light or second special light). In the example shown in FIG. 6, the light source device 5 alternately switches the special light to be irradiated between the first special light and the second special light in each cycle T. However, the light source device 5 may use only the first special light as the special light for each period T.
 撮像タイミング76は、制御装置4からの指令により撮像素子23が撮像(露光)を行うタイミングである。撮像タイミング76における縦方向は撮像素子23の画素の列方向の位置を示している。図6に示す例では、撮像素子23がローリングシャッタ方式の撮像を行うものとし、この場合、撮像タイミング76は列方向の位置毎にずれている。図6に示す例では、撮像素子23は、90fps(frames per second)のフレームレートにより撮像を行っている。 The image pickup timing 76 is a timing at which the image pickup device 23 takes an image (exposure) according to a command from the control device 4. The vertical direction at the image pickup timing 76 indicates the position of the pixels of the image pickup device 23 in the row direction. In the example shown in FIG. 6, it is assumed that the image sensor 23 performs a rolling shutter type image pickup, and in this case, the image pickup timing 76 is deviated for each position in the column direction. In the example shown in FIG. 6, the image sensor 23 performs imaging at a frame rate of 90 fps (frames per second).
 照明光タイミング75及び撮像タイミング76に示すように、光源装置5が連続して通常光を照射する第1期間は、撮像素子23による撮像における連続する複数のフレームに渡る。また、光源装置5が連続して特殊光を照射する第2期間は、撮像素子23による撮像における少なくとも1フレームに渡る。図6に示す例では、第2期間は、撮像素子23による連続する複数のフレームに渡っている。 As shown in the illumination light timing 75 and the image pickup timing 76, the first period in which the light source device 5 continuously irradiates the normal light extends over a plurality of consecutive frames in the image pickup by the image pickup element 23. Further, the second period in which the light source device 5 continuously irradiates the special light extends over at least one frame in the image pickup by the image pickup device 23. In the example shown in FIG. 6, the second period extends over a plurality of consecutive frames by the image sensor 23.
 このように、光源装置5は、通常光(第1特性の照明光)を連続した複数の撮像フレームに渡って連続して照射した後に特殊光(第1特性と異なる第2特性の照明光)を照射する動作を繰り返す。そして、上記のように、制御装置4は、通常光の照射時に得られた撮像画像に基づいてライブ画像(動画)をディスプレイ7に表示させるとともに、特殊光の照射時に得られた撮像画像に基づく解析を行う。 In this way, the light source device 5 continuously irradiates normal light (illumination light of the first characteristic) over a plurality of continuous imaging frames, and then special light (illumination light of the second characteristic different from the first characteristic). Repeat the operation of irradiating. Then, as described above, the control device 4 displays a live image (moving image) on the display 7 based on the captured image obtained when the normal light is irradiated, and is based on the captured image obtained when the special light is irradiated. Perform analysis.
<内視鏡装置100における照明光の光量の制御例1>
 図7は、内視鏡装置100における照明光の光量の制御例1を示す図である。
<Example 1 of controlling the amount of illumination light in the endoscope device 100>
FIG. 7 is a diagram showing a control example 1 of the amount of illumination light in the endoscope device 100.
 図7に示す例では、光源装置5が、周期T毎に、上記の特殊光として狭帯域の短波長(青色)の光を照射するものとする。照明光タイミング75におけるBは、光源装置5が照明光として短波長の狭帯域光を照射するタイミングである。 In the example shown in FIG. 7, it is assumed that the light source device 5 irradiates light having a short wavelength (blue) in a narrow band as the above-mentioned special light for each period T. B in the illumination light timing 75 is a timing at which the light source device 5 irradiates short-wavelength narrow-band light as illumination light.
 また、図7に示す例では、撮像素子23がグローバルシャッタ方式の撮像を行うものとする。撮像タイミング76における#0~#14は、撮像素子23の各撮像タイミング(各撮像フレーム)に付した連番である。図7に示す例では、撮像タイミング76の#4,#11において、光源装置5が短波長の狭帯域光(B)を照射している。また、撮像タイミング76の#1~#3,#5~#10,#12~#14において、光源装置5が短波長の通常光(WLI)を照射している。 Further, in the example shown in FIG. 7, it is assumed that the image sensor 23 performs image pickup by the global shutter method. # 0 to # 14 in the image pickup timing 76 are serial numbers assigned to each image pickup timing (each image pickup frame) of the image pickup element 23. In the example shown in FIG. 7, the light source device 5 irradiates the short-wavelength narrow-band light (B) at the imaging timings 76 # 4 and # 11. Further, at the imaging timings 76 # 1 to # 3, # 5 to # 10, and # 12 to # 14, the light source device 5 irradiates short-wavelength normal light (WLI).
 ヒストグラム値77は、撮像タイミング76のそれぞれにおいて撮像素子23により得られた撮像信号に基づいて撮像画像情報生成部42a(図4参照)が算出したヒストグラム値である。ヒストグラム値77における#0~#12は、撮像タイミング76における#0~#12に対応する連番である。 The histogram value 77 is a histogram value calculated by the image pickup image information generation unit 42a (see FIG. 4) based on the image pickup signal obtained by the image pickup device 23 at each of the image pickup timings 76. # 0 to # 12 in the histogram value 77 are serial numbers corresponding to # 0 to # 12 in the imaging timing 76.
 例えば、ヒストグラム値77の#0は、撮像タイミング76の#0において得られた撮像信号に基づくヒストグラム値である。同様に、ヒストグラム値77の#1~#12は、それぞれ撮像タイミング76の#1~#12において得られた撮像信号に基づくヒストグラム値である。図7に示す例では、ヒストグラム値77は、撮像タイミング76に対して2つの撮像フレーム分だけ遅れて算出されているが、ヒストグラム値77の算出タイミングはこれに限らない。 For example, # 0 of the histogram value 77 is a histogram value based on the imaging signal obtained at # 0 of the imaging timing 76. Similarly, # 1 to # 12 of the histogram value 77 are histogram values based on the imaging signals obtained at # 1 to # 12 of the imaging timing 76, respectively. In the example shown in FIG. 7, the histogram value 77 is calculated with a delay of two imaging frames with respect to the imaging timing 76, but the calculation timing of the histogram value 77 is not limited to this.
 光量制御部42e(図4参照)は、ヒストグラム値77を用いて、光源装置5が照射する照明光の光量を制御するAE制御を行う。 The light amount control unit 42e (see FIG. 4) uses the histogram value 77 to perform AE control for controlling the light amount of the illumination light emitted by the light source device 5.
 まず、光源装置5が照射する通常光(WLI)の光量の制御について説明する。例えば、光量制御部42eは、撮像タイミング76の#3における通常光の光量を、先行する撮像タイミング76の#0における通常光の光量を示す光量情報と、ヒストグラム値77の#0と、に基づいて制御する。 First, the control of the amount of normal light (WLI) emitted by the light source device 5 will be described. For example, the light amount control unit 42e bases the light amount of the normal light at the imaging timing 76 # 3 on the light amount information indicating the light amount of the normal light at the preceding imaging timing 76 # 0 and the histogram value 77 # 0. To control.
 具体的には、光量制御部42eは、ヒストグラム値77の#0が、「適正」、「明」、「暗」のいずれであるかを判定する。ヒストグラム値77が「適正」であるとは、一例としては、ヒストグラム値77が示す明るさ毎の画素数において、画素数が最大となる明るさが所定の範囲内であることである。 Specifically, the light amount control unit 42e determines whether # 0 of the histogram value 77 is “appropriate”, “bright”, or “dark”. The fact that the histogram value 77 is "appropriate" means that, for example, the brightness at which the number of pixels is maximized is within a predetermined range in the number of pixels for each brightness indicated by the histogram value 77.
 ヒストグラム値77が「明」であるとは、一例としては、ヒストグラム値77が示す明るさ毎の画素数において、画素数が最大となる明るさが、上記の所定の範囲よりも明るいことである。ヒストグラム値77が「暗」であるとは、一例としては、ヒストグラム値77が示す明るさ毎の画素数において、画素数が最大となる明るさが、上記の所定の範囲よりも暗いことである。 The fact that the histogram value 77 is "bright" means that, for example, in the number of pixels for each brightness indicated by the histogram value 77, the brightness that maximizes the number of pixels is brighter than the above-mentioned predetermined range. .. The fact that the histogram value 77 is "dark" means that, for example, in the number of pixels for each brightness indicated by the histogram value 77, the brightness at which the number of pixels is maximum is darker than the above-mentioned predetermined range. ..
 光量制御部42eは、ヒストグラム値77の#0が「適正」である場合、撮像タイミング76の#3における通常光の光量を、撮像タイミング76の#0における通常光の光量と同じにする。 When # 0 of the histogram value 77 is "appropriate", the light amount control unit 42e sets the amount of normal light at # 3 of the imaging timing 76 to be the same as the amount of normal light at # 0 of the imaging timing 76.
 また、光量制御部42eは、ヒストグラム値77の#0が「明」である場合、撮像タイミング76の#3における通常光の光量を、撮像タイミング76の#0における通常光の光量より少なくする。 Further, when the histogram value 77 # 0 is "bright", the light amount control unit 42e reduces the amount of normal light at # 3 of the imaging timing 76 to be smaller than the amount of normal light at # 0 of the imaging timing 76.
 また、光量制御部42eは、ヒストグラム値77の#0が「暗」である場合、撮像タイミング76の#3における通常光の光量を、撮像タイミング76の#0における通常光の光量より多くする。 Further, when the histogram value 77 # 0 is "dark", the light amount control unit 42e increases the amount of normal light at # 3 of the imaging timing 76 more than the amount of normal light at # 0 of the imaging timing 76.
 このように、光量制御部42eは、通常光の光量について、例えば、3フレーム前の光量と、3フレーム前のヒストグラム値77と、を用いることで、ヒストグラム値77が示す明るさを適正範囲内に維持するAE制御を行う。 As described above, the light amount control unit 42e uses, for example, the light amount of 3 frames before and the histogram value 77 of 3 frames before for the light amount of normal light, so that the brightness indicated by the histogram value 77 is within an appropriate range. Perform AE control to maintain.
 撮像タイミング76の#3における通常光の光量の制御について説明したが、他の撮像タイミング76における通常光の制御についても同様である。例えば、撮像タイミング76の#5における通常光の制御は、撮像タイミング76の#2における通常光の光量と、ヒストグラム値77の#2と、に基づいて行われる。 The control of the amount of normal light at # 3 of the imaging timing 76 has been described, but the same applies to the control of the normal light at other imaging timings 76. For example, the control of the normal light at the imaging timing 76 # 5 is performed based on the amount of the normal light at the imaging timing 76 # 2 and the histogram value 77 # 2.
 ただし、例えば撮像タイミング76の#7,#14における通常光の光量については、参照先がそれぞれ撮像タイミング76の#4,#11の特殊光の情報になるため、制御方法を上記と異ならせてもよい。例えば、撮像タイミング76の#7における通常光の光量については、撮像タイミング76の#4の1つ前の撮像タイミング76の#3における通常光の光量と、ヒストグラム値77の#3と、に基づいて制御してもよい。 However, for example, regarding the amount of normal light at # 7 and # 14 of the imaging timing 76, the reference destination is the information of the special light of # 4 and # 11 of the imaging timing 76, respectively, so the control method is different from the above. May be good. For example, the amount of normal light at # 7 of the imaging timing 76 is based on the amount of normal light at # 3 of the imaging timing 76 immediately before # 4 of the imaging timing 76 and # 3 of the histogram value 77. May be controlled.
 次に、光源装置5が照射する特殊光(B)の制御について説明する。光量制御部42eは、例えば撮像タイミング76の#11における特殊光の光量を、例えば、先行する撮像タイミング76の#8における通常光の光量を示す光量情報と、ヒストグラム値77の#8と、に基づいて制御する。 Next, the control of the special light (B) emitted by the light source device 5 will be described. The light amount control unit 42e sets the light amount of the special light at # 11 of the imaging timing 76, for example, the light amount information indicating the light amount of the normal light at the preceding imaging timing 76 # 8 and the histogram value 77 # 8. Control based on.
 具体的には、光量制御部42eは、ヒストグラム値77の#8が「適正」である場合、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量にする。この変換係数は、通常光の特性と特殊光の特性との間の相違に応じて予め定められた値である。 Specifically, when the histogram value 77 # 8 is “appropriate”, the light amount control unit 42e changes the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76. The amount of light is multiplied by the conversion coefficient. This conversion coefficient is a predetermined value according to the difference between the characteristics of normal light and the characteristics of special light.
 すなわち、撮像素子23が設けられた内視鏡1の先端の周囲の明るさが一定である場合、観察に適した明るさのライブ画像を得るための通常光の光量と、解析に適した明るさの画像を得るための特殊光の光量と、は相違するため、この相違に応じた変換係数が予め内視鏡装置100に設定される。変換係数は、一例としては5(通常光1に対して特殊光5)であるが、これに限らず、通常光の特性と特殊光の特性との間の相違に応じて任意に設定される。 That is, when the brightness around the tip of the endoscope 1 provided with the image pickup element 23 is constant, the amount of normal light for obtaining a live image having a brightness suitable for observation and the brightness suitable for analysis. Since there is a difference from the amount of special light for obtaining the image, a conversion coefficient corresponding to this difference is set in advance in the endoscope device 100. The conversion coefficient is 5 (special light 5 with respect to normal light 1) as an example, but is not limited to this, and is arbitrarily set according to the difference between the characteristics of normal light and the characteristics of special light. ..
 また、光量制御部42eは、ヒストグラム値77の#8が「明」である場合、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量より少なくする。 Further, when the histogram value 77 # 8 is “bright”, the light amount control unit 42e converts the light amount of the special light at the imaging timing 76 # 11 into the light amount of the normal light at the imaging timing 76 # 8. Make it less than the multiplied amount of light.
 また、光量制御部42eは、ヒストグラム値77の#8が「暗」である場合、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量より多くする。 Further, when the histogram value 77 # 8 is “dark”, the light amount control unit 42e converts the light amount of the special light at the imaging timing 76 # 11 into the light amount of the normal light at the imaging timing 76 # 8. Increase the amount of light multiplied.
 撮像タイミング76の#11における特殊光の光量の制御について説明したが、他の撮像タイミング76における特殊光の制御についても同様である。例えば、撮像タイミング76の#4における特殊光の制御は、撮像タイミング76の#1における通常光の光量と、ヒストグラム値77の#1と、上記の変換係数と、に基づいて行われる。 The control of the amount of special light at # 11 of the imaging timing 76 has been described, but the same applies to the control of the special light at the other imaging timing 76. For example, the control of the special light at the imaging timing 76 # 4 is performed based on the amount of normal light at the imaging timing 76 # 1, the histogram value 77 # 1, and the above conversion coefficient.
 このように、光量制御部42eは、特殊光(例えば撮像タイミング76の#11における特殊光)の光量について、先行する通常光(例えば撮像タイミング76の#8における通常光)の光量と、その先行する通常光の照射時に得られた撮像信号に基づくヒストグラム値(例えばヒストグラム値77の#8)と、に基づいて制御する。このとき、光量制御部42eは、上記の変換係数を用いることで、通常光の特性と特殊光の特性との相違を考慮した制御を行うことができる。 As described above, the light amount control unit 42e has the light amount of the preceding normal light (for example, the normal light at the imaging timing 76 # 8) and the preceding light amount of the special light (for example, the special light at the imaging timing 76 # 11). Control is performed based on the histogram value (for example, # 8 of the histogram value 77) based on the imaging signal obtained during irradiation with normal light. At this time, the light amount control unit 42e can perform control in consideration of the difference between the characteristics of normal light and the characteristics of special light by using the above conversion coefficient.
 これにより、先行する特殊光(例えば撮像タイミング76の#4における特殊光)に関する情報のみに基づいて制御を行う場合と比べて、よりタイミングが近い状況の情報に基づいて特殊光の光量を制御することができる。このため、光源装置5の照明光の光量のハンチングを抑制することができる。 As a result, the amount of special light is controlled based on the information of the situation closer to the timing, as compared with the case where the control is performed based only on the information on the preceding special light (for example, the special light in # 4 of the imaging timing 76). be able to. Therefore, hunting of the amount of illumination light of the light source device 5 can be suppressed.
 なお、照明光の光量の制御において参照する先行フレームとして3フレーム前のフレームを例として説明したが、照明光の光量の制御において参照する先行フレームは、3フレーム前のフレームに握らず、1フレーム前、2フレーム前、又は4フレーム以上前のフレームであってもよい。 Although the frame three frames before is described as an example as the preceding frame referred to in the control of the light intensity of the illumination light, the preceding frame referred to in the control of the light intensity of the illumination light is not gripped by the frame three frames before and is one frame. It may be a frame two frames before, or four or more frames before.
<内視鏡装置100における照明光の光量の制御例2>
 図8は、内視鏡装置100における照明光の光量の制御例2を示す図である。
<Control example 2 of the amount of illumination light in the endoscope device 100>
FIG. 8 is a diagram showing a control example 2 of the amount of illumination light in the endoscope device 100.
 図8に示す例では、光量制御部42eは、光源装置5が照射する特殊光(B)の制御において、先行する特殊光の照射時に得られたヒストグラム値77も参照する。 In the example shown in FIG. 8, the light amount control unit 42e also refers to the histogram value 77 obtained at the time of the preceding special light irradiation in the control of the special light (B) irradiated by the light source device 5.
 例えば、光量制御部42eは、撮像タイミング76の#11における特殊光の光量を、先行する通常光である撮像タイミング76の#8における通常光の光量を示す光量情報と、ヒストグラム値77の#8と、先行する特殊光に対応するヒストグラム値77の#4と、に基づいて制御する。 For example, the light amount control unit 42e sets the light amount of the special light at # 11 of the imaging timing 76, the light amount information indicating the light amount of the normal light at the imaging timing 76 # 8 which is the preceding normal light, and the histogram value 77 # 8. And the control is performed based on # 4 of the histogram value 77 corresponding to the preceding special light.
 具体的には、光量制御部42eは、ヒストグラム値77の#8が「適正」である場合、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量にする。 Specifically, when the histogram value 77 # 8 is “appropriate”, the light amount control unit 42e changes the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76. The amount of light is multiplied by the conversion coefficient.
 また、光量制御部42eは、ヒストグラム値77の#8が「明」である場合、ヒストグラム値77の#4を参照する。そして、ヒストグラム値77の#4が適正範囲内又は「暗」である場合、光量制御部42eは、図7に示した例と同様に、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量より少なくする。 Further, when # 8 of the histogram value 77 is “bright”, the light amount control unit 42e refers to # 4 of the histogram value 77. Then, when # 4 of the histogram value 77 is within the appropriate range or “dark”, the light amount control unit 42e captures the light amount of the special light at # 11 of the imaging timing 76, as in the example shown in FIG. The amount of light is less than the amount of normal light at # 8 of timing 76 multiplied by the conversion coefficient.
 一方で、ヒストグラム値77の#4が「明」である場合、光量制御部42eは、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量より少なくしない。又は、この場合、光量制御部42eは、撮像タイミング76の#11における特殊光の光量を、ヒストグラム値77の#4が適正範囲内又は「暗」である場合よりも多くする。これにより、#4の特殊光により得られた解析用画像と、#11の特殊光により得られた解析用画像と、の間でヒストグラム値77が大きく変動することを抑制することができる。 On the other hand, when # 4 of the histogram value 77 is “bright”, the light amount control unit 42e converts the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76. Not less than the amount of light multiplied by. Alternatively, in this case, the light amount control unit 42e increases the light amount of the special light at # 11 of the imaging timing 76 more than when # 4 of the histogram value 77 is within an appropriate range or “dark”. As a result, it is possible to suppress a large variation in the histogram value 77 between the analysis image obtained by the special light of # 4 and the analysis image obtained by the special light of # 11.
 また、光量制御部42eは、ヒストグラム値77の#8が「暗」である場合、ヒストグラム値77の#4を参照する。そして、ヒストグラム値77の#4が適正範囲内又は「明」である場合、光量制御部42eは、図7に示した例と同様に、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量より多くする。 Further, when # 8 of the histogram value 77 is “dark”, the light amount control unit 42e refers to # 4 of the histogram value 77. Then, when # 4 of the histogram value 77 is within the appropriate range or “bright”, the light amount control unit 42e captures the light amount of the special light at # 11 of the imaging timing 76, as in the example shown in FIG. The amount of light is increased by multiplying the amount of normal light at # 8 of timing 76 by the conversion coefficient.
 一方で、ヒストグラム値77の#4が「暗」である場合、光量制御部42eは、撮像タイミング76の#11における特殊光の光量を、撮像タイミング76の#8における通常光の光量に変換係数を乗じた光量より多くしない。又は、この場合、光量制御部42eは、撮像タイミング76の#11における特殊光の光量を、ヒストグラム値77の#4が適正範囲内又は「明」である場合よりも少なくする。これにより、#4の特殊光により得られた解析用画像と、#11の特殊光により得られた解析用画像と、の間でヒストグラム値77が大きく変動することを抑制することができる。 On the other hand, when # 4 of the histogram value 77 is “dark”, the light amount control unit 42e converts the amount of special light at # 11 of the imaging timing 76 into the amount of normal light at # 8 of the imaging timing 76. Do not exceed the amount of light multiplied by. Alternatively, in this case, the light amount control unit 42e reduces the amount of special light at # 11 of the imaging timing 76 less than when # 4 of the histogram value 77 is within an appropriate range or is “bright”. As a result, it is possible to suppress a large variation in the histogram value 77 between the analysis image obtained by the special light of # 4 and the analysis image obtained by the special light of # 11.
 撮像タイミング76の#11における特殊光の光量の制御について説明したが、他の撮像タイミング76における特殊光の制御についても同様である。例えば、撮像タイミング76の#4における特殊光の制御は、撮像タイミング76の#1における通常光の光量と、ヒストグラム値77の#1と、上記の変換係数と、撮像タイミング76の#4における特殊光に先行する特殊光により得られたヒストグラム値77(不図示)と、に基づいて行われる。 The control of the amount of special light at # 11 of the imaging timing 76 has been described, but the same applies to the control of the special light at the other imaging timing 76. For example, the control of the special light at the imaging timing 76 # 4 includes the amount of normal light at the imaging timing 76 # 1, the histogram value 77 # 1, the above conversion coefficient, and the special light at the imaging timing 76 # 4. It is performed based on the histogram value 77 (not shown) obtained by the special light preceding the light.
 このように、光量制御部42eは、特殊光(例えば撮像タイミング76の#11における特殊光)の光量について、先行する通常光(例えば撮像タイミング76の#8における通常光)の光量と、その先行する通常光の照射時に得られた撮像信号に基づくヒストグラム値(例えばヒストグラム値77の#8)と、先行する特殊光の照射時に得られた撮像信号に基づくヒストグラム値(例えばヒストグラム値77の#4)に基づいて制御する。また、光量制御部42eは、上記の変換係数を用いることで、通常光の特性と特殊光の特性との相違を考慮した制御を行うことができる。 As described above, the light amount control unit 42e has the light amount of the preceding normal light (for example, the normal light at the imaging timing 76 # 8) and the preceding light amount of the special light (for example, the special light at the imaging timing 76 # 11). A histogram value based on the imaging signal obtained when the normal light is irradiated (for example, # 8 of the histogram value 77) and a histogram value based on the imaging signal obtained when the preceding special light is irradiated (for example, # 4 of the histogram value 77). ) To control. Further, the light amount control unit 42e can perform control in consideration of the difference between the characteristics of normal light and the characteristics of special light by using the above conversion coefficient.
 これにより、先行する特殊光(例えば撮像タイミング76の#4における特殊光)に関する情報のみに基づいて制御を行う場合と比べて、よりタイミングが近い状況における情報に基づいて制御することができる。このため、光源装置5の照明光の光量のハンチングを抑制することができる。 As a result, it is possible to control based on the information in the situation where the timing is closer than in the case where the control is performed based only on the information on the preceding special light (for example, the special light in # 4 of the imaging timing 76). Therefore, hunting of the amount of illumination light of the light source device 5 can be suppressed.
 また、先行する直前の特殊光により得られたヒストグラム値77も参照することで、例えば内視鏡1を用いた検査のシーンの変化があっても、特殊光により得られる解析用画像の間でヒストグラム値77が大きく変動することによるハンチングを抑制することができる。これにより、例えば解析の精度を向上させることができる。 In addition, by referring to the histogram value 77 obtained by the special light immediately before the preceding, even if there is a change in the inspection scene using the endoscope 1, for example, between the analysis images obtained by the special light. Hunting due to large fluctuations in the histogram value 77 can be suppressed. Thereby, for example, the accuracy of analysis can be improved.
 なお、内視鏡1を用いた検査のシーンには、例えば、被検体内の内表面と内視鏡1の先端(撮像素子23)とが近いシーン(明るい赤色のシーン)、被検体内の内表面と内視鏡1の先端とが近いシーン(暗い赤色のシーン)、内視鏡1による色素散布後のシーン(青色のシーン)などの各種のシーンがある。 The inspection scene using the endoscope 1 includes, for example, a scene in which the inner surface in the subject and the tip of the endoscope 1 (imaging element 23) are close to each other (a bright red scene), and a scene in the subject. There are various scenes such as a scene in which the inner surface and the tip of the endoscope 1 are close to each other (dark red scene) and a scene after dyeing by the endoscope 1 (blue scene).
<内視鏡装置100における照明光の光量の制御例3>
 図9は、内視鏡装置100における照明光の光量の制御例3を示す図である。
<Control example 3 of the amount of illumination light in the endoscope device 100>
FIG. 9 is a diagram showing a control example 3 of the amount of illumination light in the endoscope device 100.
 図9に示す例では、撮像素子23がローリングシャッタ方式の撮像を行うものとする。この場合に、1撮像フレームのすべての画素行における露光を特殊光の照射化で行えるように、上記の周期T毎に特殊光を照射する期間を1撮像フレームよりも長くする。 In the example shown in FIG. 9, it is assumed that the image sensor 23 performs a rolling shutter type image pickup. In this case, the period of irradiating the special light for each period T is made longer than that of the one imaging frame so that the exposure in all the pixel rows of one imaging frame can be performed by irradiating the special light.
 図9に示す例では、撮像タイミング76の#11の撮像フレームのすべての画素行における露光を特殊光の照射化で行えるように、撮像タイミング76の#10の途中から、撮像タイミング76の#12の途中まで、光源装置5から特殊光(B)が照射されている。 In the example shown in FIG. 9, from the middle of the imaging timing 76 # 10 to the imaging timing 76 # 12 so that the exposure in all the pixel rows of the imaging frame of the imaging timing 76 # 11 can be performed by irradiation with special light. The special light (B) is irradiated from the light source device 5 until the middle of.
 この場合に、光源装置5からの照明光が切り替わる撮像タイミング76の#10,#12においては、ローリングシャッタ方式の露光中に通常光と特殊光の両方が照射されるため、光量崩れが発生する。 In this case, at the imaging timings 76 # 10 and # 12 in which the illumination light from the light source device 5 is switched, both normal light and special light are irradiated during the rolling shutter type exposure, so that the amount of light collapses. ..
 この場合に、制御装置4は、撮像タイミング76の#10,#12において撮像素子23により得られた撮像信号の空読みを行う。撮像信号の空読みとは、例えば、その撮像信号を、ライブ画像の表示や解析などに用いずに破棄することである。 In this case, the control device 4 performs a blank reading of the image pickup signal obtained by the image pickup device 23 at # 10 and # 12 of the image pickup timing 76. The blank reading of an imaging signal is, for example, discarding the imaging signal without using it for displaying or analyzing a live image.
 光量制御部42eは、空読みを行った撮像タイミング76の#10,#12に対応するヒストグラム値77については、その直前の撮像タイミング76の#9のヒストグラム値77をコピーして用いる。また、図9に示す例では、光量制御部42eは、特殊光の照射を行った撮像タイミング76の#11に対応するヒストグラム値77についても、撮像タイミング76の#9のヒストグラム値77をコピーして用いている。 The light amount control unit 42e copies and uses the histogram value 77 of # 9 of the imaging timing 76 immediately before the histogram value 77 corresponding to # 10 and # 12 of the imaging timing 76 that has been blank-read. Further, in the example shown in FIG. 9, the light amount control unit 42e also copies the histogram value 77 of # 9 of the imaging timing 76 for the histogram value 77 corresponding to # 11 of the imaging timing 76 irradiated with the special light. I am using it.
 例えば、光量制御部42eは、撮像タイミング76の#13における通常光の光量を、撮像タイミング76の#9における通常光の光量を示す光量情報と、ヒストグラム値77の#9と、に基づいて制御する。同様に、光量制御部42eは、撮像タイミング76の#14,#15における通常光の光量を、撮像タイミング76の#9における通常光の光量を示す光量情報と、ヒストグラム値77の#9と、に基づいて制御する。 For example, the light amount control unit 42e controls the amount of normal light at # 13 of the imaging timing 76 based on the light amount information indicating the amount of normal light at # 9 of the imaging timing 76 and # 9 of the histogram value 77. do. Similarly, the light amount control unit 42e displays the amount of normal light at # 14 and # 15 of the imaging timing 76, the light amount information indicating the amount of normal light at # 9 of the imaging timing 76, and # 9 of the histogram value 77. Control based on.
 図9において説明したように、光量制御部42eは、ある第1撮像フレーム(例えば撮像タイミング76の#13~#15)において光源装置5から照射させる通常光の光量を、その第1撮像フレームに先行する撮像フレームのうち通常光を照射させ特殊光が非照射の第2撮像フレーム(例えば最も新しい撮像タイミング76の#9)において照射した通常光の光量と、その第2撮像フレームにおいて撮像素子23により得られた撮像信号(例えばヒストグラム値77の#9)と、に基づいて制御する。 As described with reference to FIG. 9, the light amount control unit 42e applies the amount of normal light emitted from the light source device 5 in a first imaging frame (for example, # 13 to # 15 of the imaging timing 76) to the first imaging frame. Of the preceding imaging frames, the amount of normal light irradiated in the second imaging frame (for example, # 9 of the newest imaging timing 76) that is irradiated with normal light and is not irradiated with special light, and the imaging element 23 in the second imaging frame. Control is performed based on the image pickup signal (for example, # 9 of the histogram value 77) obtained in the above.
 具体的には、光量制御部42eは、ある撮像フレームにおいて光源装置5から照射させる通常光の光量を、その撮像フレームから所定フレーム数(図9に示す例では3フレーム)だけ先行する撮像フレームに対応する通常光の光量とヒストグラム値77に基づいて制御する。ただし、光量制御部42eは、その先行する撮像フレームが、通常光と特殊光との切り替えが行われる撮像フレームである場合、その先行する撮像フレームよりさらに先行する、通常光のみが照射される撮像フレームに対応する通常光の光量とヒストグラム値77に基づいて制御を行う。 Specifically, the light amount control unit 42e sets the amount of normal light emitted from the light source device 5 in a certain image pickup frame to an image pickup frame that precedes the image pickup frame by a predetermined number of frames (3 frames in the example shown in FIG. 9). Control is performed based on the amount of corresponding normal light and the histogram value 77. However, when the preceding image pickup frame is an image pickup frame in which normal light and special light are switched, the light amount control unit 42e is further preceded by the preceding image pickup frame and is irradiated with only normal light. Control is performed based on the amount of normal light corresponding to the frame and the histogram value 77.
 これにより、照明光の特性の切り替えにより光量崩れが発生する撮像フレームがあっても、AE制御を継続することが可能になる。なお、特殊光が非照射の状態とは、特殊光が照射されていない状態か、又は特殊光が照射されていてもAE制御への影響が無視できる程度の微量である状態である。 This makes it possible to continue AE control even if there is an imaging frame in which the amount of light collapses due to switching of the characteristics of the illumination light. The state in which the special light is not irradiated is a state in which the special light is not irradiated, or a state in which the influence on the AE control is negligible even if the special light is irradiated.
<内視鏡装置100における照明光の光量の制御例4>
 図10は、内視鏡装置100における照明光の光量の制御例4を示す図である。
<Control example 4 of the amount of illumination light in the endoscope device 100>
FIG. 10 is a diagram showing a control example 4 of the amount of illumination light in the endoscope device 100.
 図9においては、空読みを行った撮像タイミング76の#10,#12及び特殊光のみが照射された撮像タイミング76の#11について、その直前の撮像タイミング76の#9のヒストグラム値77をコピーして用いる構成について説明したが、このような構成に限らない。 In FIG. 9, the histogram values 77 of # 9 of the imaging timing 76 immediately before the blank readings of # 10 and # 12 of the imaging timing 76 and # 11 of the imaging timing 76 irradiated with only special light are copied. However, the configuration is not limited to such a configuration.
 例えば、光量制御部42eは、図10に示すように、空読みを行った撮像タイミング76の#10について直前の撮像タイミング76の#9のヒストグラム値77をコピーして用い、空読みを行った撮像タイミング76の#12について直前の撮像タイミング76の#11のヒストグラム値77をコピーして用いてもよい。 For example, as shown in FIG. 10, the light amount control unit 42e copied and used the histogram value 77 of # 9 of the immediately preceding imaging timing 76 for # 10 of the imaging timing 76 in which the blank reading was performed, and performed the blank reading. Regarding # 12 of the imaging timing 76, the histogram value 77 of # 11 of the immediately preceding imaging timing 76 may be copied and used.
(ヒストグラム値の判定の他の例)
 なお、光量制御部42eが、ヒストグラム値において画素数が最大となる明るさに基づいて「適正」、「明」、「暗」の3段階の判定を行う場合について説明したが、光量制御部42eによるヒストグラム値の判定方法はこれに限らない。
(Other examples of determining histogram values)
Although the case where the light amount control unit 42e determines the three stages of “appropriate”, “bright”, and “dark” based on the brightness that maximizes the number of pixels in the histogram value has been described, the light amount control unit 42e has been described. The method of determining the histogram value by is not limited to this.
 例えば、光量制御部42eは、例えばヒストグラム値77における明るさの平均値等に基づいて判定を行ってもよい。また、光量制御部42eによるヒストグラム値の判定は、「適正」、「明」、「暗」の3段階の判定ではなく、「明」、「暗」の2段階の判定でもよいし、4段階以上の判定でもよい。また、光量制御部42eは、ヒストグラム値について3段階以上の判定を行う場合、光源装置5が照射する照明光の光量の制御量も、判定の段階に応じて変化させてもよい。 For example, the light amount control unit 42e may make a determination based on, for example, the average value of brightness in the histogram value 77. Further, the determination of the histogram value by the light amount control unit 42e may be a two-stage determination of "bright" and "dark" instead of a three-stage determination of "appropriate", "bright" and "dark", or a four-stage determination. The above determination may be made. Further, when the light amount control unit 42e determines the histogram value in three or more stages, the light amount control amount of the illumination light emitted by the light source device 5 may also be changed according to the determination stage.
(解析の他の例)
 特殊光の照射時の撮像により得られた撮像画像情報に基づく解析部42c(信号処理部42)による解析として撮像画像の輪郭の抽出について説明したが、解析部42cによる解析はこれに限らない。
(Other examples of analysis)
Although the extraction of the contour of the captured image has been described as the analysis by the analysis unit 42c (signal processing unit 42) based on the image captured image information obtained by imaging during irradiation with special light, the analysis by the analysis unit 42c is not limited to this.
 例えば、解析部42cは、上記の解析として、内視鏡1の挿入形状の解析を行ってもよい。内視鏡1の挿入形状の解析は、具体的には、被検体内へ挿入された内視鏡1の挿入部10の挿入形状の特定である。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報の変化に基づいて、内視鏡1の挿入形状を特定する。解析画像生成部42dは、解析部42cにより特定された内視鏡1の挿入形状を示す画像を表示するための画像情報を生成する。これにより、内視鏡1の挿入形状を示す画像がサブ画面72に表示され、内視鏡1の操作者は、内視鏡1の挿入部10の被検体内への挿入を容易に行うことができる。 For example, the analysis unit 42c may analyze the insertion shape of the endoscope 1 as the above analysis. The analysis of the insertion shape of the endoscope 1 specifically identifies the insertion shape of the insertion portion 10 of the endoscope 1 inserted into the subject. For example, the analysis unit 42c identifies the insertion shape of the endoscope 1 based on the change in the captured image information obtained by imaging during irradiation with special light. The analysis image generation unit 42d generates image information for displaying an image showing the insertion shape of the endoscope 1 specified by the analysis unit 42c. As a result, an image showing the insertion shape of the endoscope 1 is displayed on the sub screen 72, and the operator of the endoscope 1 can easily insert the insertion portion 10 of the endoscope 1 into the subject. Can be done.
 又は、解析部42cは、上記の解析として、内視鏡1が挿入された被検体内の注目領域の検出を行ってもよい。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像から、被検体内の注目領域を検出する。注目領域は、例えば、病変である可能性が高い領域など、被検体内の観察のうち注目が推奨される領域である。解析画像生成部42dは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像において、解析部42cにより検出された注目領域を強調した注目領域強調画像を表示するための画像情報を生成する。これにより、注目領域強調画像がサブ画面72に表示され、内視鏡1の操作者は、被検体内における注目領域を容易に認識できる。又は、解析画像生成部42dは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像において、注目領域である異常部(病変部など)と正常部との色の差を拡張する色差拡張処理を行った色差拡張画像を表示するための画像情報を生成してもよい。これにより、色差拡張画像がサブ画面72に表示され、内視鏡1の操作者は、被検体内における異常部と正常部を容易に見分けることができる。 Alternatively, the analysis unit 42c may detect the region of interest in the subject into which the endoscope 1 is inserted as the above analysis. For example, the analysis unit 42c detects a region of interest in the subject from the image indicated by the captured image information obtained by imaging during irradiation with special light. The area of interest is an area of interest in the observations within the subject, such as an area that is likely to be a lesion. The analysis image generation unit 42d provides image information for displaying the attention area-enhanced image in which the attention area is emphasized detected by the analysis unit 42c in the image indicated by the captured image information obtained by imaging during irradiation with special light. Generate. As a result, the region-focused image is displayed on the sub-screen 72, and the operator of the endoscope 1 can easily recognize the region of interest in the subject. Alternatively, the analysis image generation unit 42d expands the color difference between the abnormal part (lesion part or the like) and the normal part, which is the region of interest, in the image indicated by the captured image information obtained by imaging during irradiation with special light. Image information for displaying the color difference expansion image that has undergone the color difference expansion processing may be generated. As a result, the color difference expanded image is displayed on the sub screen 72, and the operator of the endoscope 1 can easily distinguish between the abnormal part and the normal part in the subject.
 又は、解析部42cは、上記の解析として、類似症例画像の選択を行ってもよい。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報と類似する症例画像を、内視鏡装置100がアクセス可能なデータベースを検索することにより選択する。解析画像生成部42dは、解析部42cによる選択の結果を示す画像を表示するための画像情報を生成する。解析部42cによる選択の結果とは、解析部42cが選択した症例画像そのものであってもよいし、解析部42cが選択した症例画像に対して上記のデータベースにおいて対応付けられている、その症例画像に関する診断結果等の情報であってもよい。これにより、類似症例画像の選択結果がサブ画面72に表示され、内視鏡1の操作者は、観察中の被検体内の状態と、類似症例との比較を容易に行うことができる。 Alternatively, the analysis unit 42c may select a similar case image as the above analysis. For example, the analysis unit 42c selects a case image similar to the captured image information obtained by imaging during irradiation with special light by searching a database accessible to the endoscope device 100. The analysis image generation unit 42d generates image information for displaying an image showing the result of selection by the analysis unit 42c. The result of selection by the analysis unit 42c may be the case image itself selected by the analysis unit 42c, or the case image associated with the case image selected by the analysis unit 42c in the above database. It may be information such as a diagnosis result regarding. As a result, the selection result of the similar case image is displayed on the sub screen 72, and the operator of the endoscope 1 can easily compare the state in the subject under observation with the similar case.
 又は、解析部42cは、上記の解析として、腫瘍及び非腫瘍の判別を行ってもよい。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像に写り込んでいる生体領域が腫瘍であるか否かを判別する。解析画像生成部42dは、解析部42cによる判別の結果を示す画像を表示するための画像情報を生成する。解析部42cによる判別の結果とは、直近に撮像された画像に写り込んでいる生体領域が腫瘍であるか否かを示す情報であってもよいし、現在の検査が開始されてから腫瘍であると判別された生体領域の数を示す情報などであってもよい。これにより、腫瘍及び非腫瘍の判別結果がサブ画面72に表示され、内視鏡1の操作者による観察や内視鏡1の操作を支援することができる。 Alternatively, the analysis unit 42c may discriminate between a tumor and a non-tumor as the above analysis. For example, the analysis unit 42c determines whether or not the biological region reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light is a tumor. The analysis image generation unit 42d generates image information for displaying an image showing the result of discrimination by the analysis unit 42c. The result of discrimination by the analysis unit 42c may be information indicating whether or not the biological region reflected in the most recently captured image is a tumor, or it may be a tumor after the current examination is started. It may be information indicating the number of biological regions determined to be present. As a result, the discrimination result of the tumor and the non-tumor is displayed on the sub screen 72, and it is possible to support the observation by the operator of the endoscope 1 and the operation of the endoscope 1.
 又は、解析部42cは、上記の解析として、器官の状態の特定を行ってもよい。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像に写り込んでいる器官の状態を特定する。器官の状態は、例えば、領域ごとの酸素飽和度、血管構造の太さ、密度、模様、均一性や、大腸の表面構造(例えばpit様構造)、十二指腸の表面構造(例えば絨毛構造)などである。解析画像生成部42dは、解析部42cによる特定の結果を示す画像を表示するための画像情報を生成する。例えば、解析画像生成部42dは、特定した領域ごとの酸素飽和度を画像化した酸素飽和度画像を生成する。これにより、器官の状態の特定結果がサブ画面72に表示され、内視鏡1の操作者による観察や内視鏡1の操作を支援することができる。 Alternatively, the analysis unit 42c may identify the state of the organ as the above analysis. For example, the analysis unit 42c identifies the state of the organs reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light. The state of the organ is, for example, the oxygen saturation for each region, the thickness, density, pattern, and uniformity of the vascular structure, the surface structure of the large intestine (for example, pit-like structure), the surface structure of the duodenum (for example, villous structure), and the like. be. The analysis image generation unit 42d generates image information for displaying an image showing a specific result by the analysis unit 42c. For example, the analysis image generation unit 42d generates an oxygen saturation image that images the oxygen saturation for each specified region. As a result, the identification result of the state of the organ is displayed on the sub screen 72, and it is possible to support the observation by the operator of the endoscope 1 and the operation of the endoscope 1.
 又は、解析部42cは、上記の解析として、切離予定線の生成を行ってもよい。例えば、解析部42cは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像に写り込んでいる生体領域のうち、腫瘍等を除去するために切離すべき線である切離予定線(デマルケーションライン)を決定する。解析画像生成部42dは、特殊光の照射時の撮像により得られた撮像画像情報が示す画像において、解析部42cにより決定された切離予定線を付した画像を表示するための画像情報を生成する。これにより、切離予定線が付された画像がサブ画面72に表示され、内視鏡1の操作者は、被検体内における切離予定線を容易に認識できる。 Alternatively, the analysis unit 42c may generate a planned separation line as the above analysis. For example, the analysis unit 42c is scheduled to be cut off, which is a line to be cut off in order to remove a tumor or the like from the biological region reflected in the image indicated by the captured image information obtained by imaging during irradiation with special light. Determine the line (demarkation line). The analysis image generation unit 42d generates image information for displaying an image with a scheduled separation line determined by the analysis unit 42c in the image indicated by the captured image information obtained by imaging during irradiation with special light. do. As a result, the image with the scheduled separation line is displayed on the sub screen 72, and the operator of the endoscope 1 can easily recognize the scheduled separation line in the subject.
(第1期間、第2期間、及び周期Tの変形例)
 通常光を照射する第1期間及び特殊光を照射する第2期間の各長さが、周期Tごとの繰り返しにおいて一定である構成について説明したが、通常光を照射する第1期間及び特殊光を照射する第2期間の各長さが、周期Tごとの繰り返しにおいて一定でなくても(不定であっても)よい。例えば、ある周期Tにおける第1期間及び第2期間の各長さの比が3:1であり、他の周期Tにおける第1期間及び第2期間の各長さの比が3:2であってもよい。
(Modified examples of the first period, the second period, and the period T)
The configuration in which the lengths of the first period of irradiating normal light and the second period of irradiating special light are constant in each cycle T has been described, but the first period of irradiating normal light and the special light are described. Each length of the second period of irradiation may not be constant (or indefinite) in the repetition of each cycle T. For example, the ratio of the lengths of the first period and the second period in one cycle T is 3: 1, and the ratio of the lengths of the first period and the second period in another cycle T is 3: 2. You may.
 また、通常光及び特殊光を照射する動作の繰り返し周期である周期Tが一定である場合について説明したが、周期Tは不定であってもよい。また、周期Tにおいて、まず通常光を照射し、その後に特殊光を照射する構成について説明したが、周期Tにおいて、まず特殊光を照射し、その後に通常光を照射する構成としてもよい。 Further, although the case where the cycle T, which is the repeating cycle of the operation of irradiating the normal light and the special light, is constant has been described, the cycle T may be indefinite. Further, in the period T, the configuration in which the normal light is first irradiated and then the special light is irradiated has been described, but in the cycle T, the special light may be first irradiated and then the normal light may be irradiated.
 また、通常光のスペクトルは、周期Tごとの繰り返しにおいて一定であってもよいし、周期Tごとの繰り返しにおいて不定であってもよい。同様に、特殊光のスペクトルは、周期Tごとの繰り返しにおいて一定であってもよいし、周期Tごとの繰り返しにおいて不定であってもよい。 Further, the spectrum of normal light may be constant at the repetition of each cycle T, or may be indefinite at the repetition of each cycle T. Similarly, the spectrum of the special light may be constant at the repetition of each period T or may be indefinite at the repetition of each period T.
 また、通常光を照射する第1期間の直後に、特殊光を照射する第2期間となる構成について説明したが、第1期間と第2期間との間に、光源装置5が照明光を照射しない無照射期間があってもよい。 Further, the configuration in which the special light is irradiated immediately after the first period of irradiating the normal light is described, but the light source device 5 irradiates the illumination light between the first period and the second period. There may be a non-irradiation period.
 また、上記の通常光又は特殊光として、狭帯域短波調光と白色光とを同時に照射する構成としてもよい。これにより、色の微細な違いを色彩強調して表示し、炎症観察や拾上げ観察等の観察が容易になる。 Further, as the above-mentioned normal light or special light, a configuration in which narrow band short wave dimming and white light are simultaneously irradiated may be used. As a result, minute differences in color are displayed with color emphasis, and observation such as inflammation observation and pick-up observation becomes easy.
(内視鏡システムの別の形態)
 本発明の内視鏡システムの一例として内視鏡装置100を説明したが、本発明の内視鏡システムは、ネットワークを介して互いに接続される複数の装置によって実現されてもよい。例えば、上記の制御装置4による処理の少なくとも一部を、内視鏡装置100とネットワークを介して接続される他の装置により実行する構成としてもよい。
(Another form of endoscopic system)
Although the endoscope device 100 has been described as an example of the endoscope system of the present invention, the endoscope system of the present invention may be realized by a plurality of devices connected to each other via a network. For example, at least a part of the processing by the control device 4 may be executed by another device connected to the endoscope device 100 via a network.
(制御プログラム)
 制御装置4のROMに記憶される制御プログラムは、プログラムをコンピュータが読取可能な一時的でない(non-transitory)記憶媒体に記憶される。このような「コンピュータ読取可能な記憶媒体」は、例えば、CD-ROM(Compact Disc-ROM)等の光学媒体や、USB(Universal Serial Bus)メモリ又はメモリカード等の磁気記憶媒体等を含む。また、このようなプログラムを、ネットワークを介したダウンロードによって提供することもできる。
(Control program)
The control program stored in the ROM of the control device 4 is stored in a computer-readable non-transitory storage medium. Such a "computer-readable storage medium" includes, for example, an optical medium such as a CD-ROM (Compact Disc-ROM), a magnetic storage medium such as a USB (Universal Serial Bus) memory, or a memory card. It is also possible to provide such a program by downloading via a network.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As explained above, the following matters are disclosed in this specification.
(1)
 特性が異なる複数種類の照明光を切り替えて照射可能な光源と、上記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムであって、
 上記プロセッサは、
 連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を上記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に上記第1特性と異なる第2特性の照明光を上記光源から照射させる動作を繰り返し、
 上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号と、に基づいて制御する、
 内視鏡システム。
(1)
An endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor.
The above processor
After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame. Repeat the operation of irradiating the illumination light from the above light source,
The amount of the illumination light of the second characteristic to be irradiated from the light source is the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by
Endoscopic system.
(2)
 (1)記載の内視鏡システムであって、
 上記プロセッサは、上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号が示す明るさの情報と、に基づいて制御する、
 内視鏡システム。
(2)
(1) The endoscopic system described.
The processor uses the light amount of the illumination light of the second characteristic to be emitted from the light source, the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the irradiation of the illumination light of the first characteristic. Control is sometimes performed based on the brightness information indicated by the imaging signal obtained by the imaging element.
Endoscopic system.
(3)
 (1)又は(2)記載の内視鏡システムであって、
 上記プロセッサは、上記第2特性の照明光の光量を、さらに、その第2特性の照明光に先行する上記第2特性の照明光の照射時に上記撮像素子により得られた撮像信号に基づいて制御する、
 内視鏡システム。
(3)
The endoscopic system according to (1) or (2).
The processor controls the amount of illumination light of the second characteristic based on the image pickup signal obtained by the image pickup element when irradiating the illumination light of the second characteristic that precedes the illumination light of the second characteristic. do,
Endoscopic system.
(4)
 (3)記載の内視鏡システムであって、
 上記プロセッサは、上記第2特性の照明光の光量を、さらに、その第2特性の照明光に先行する上記第2特性の照明光の照射時に上記撮像素子により得られた撮像信号が示す明るさの情報に基づいて制御する、
 内視鏡システム。
(4)
(3) The endoscopic system described.
The processor measures the amount of illumination light of the second characteristic, and further, the brightness indicated by the image pickup signal obtained by the image pickup element when irradiating the illumination light of the second characteristic that precedes the illumination light of the second characteristic. Control based on the information of
Endoscopic system.
(5)
 (1)から(4)のいずれか1つに記載の内視鏡システムであって、
 上記プロセッサは、上記第2特性の照明光の光量を、さらに、予め定められた変換係数に基づいて制御する、
 内視鏡システム。
(5)
The endoscopic system according to any one of (1) to (4).
The processor further controls the amount of illumination light of the second characteristic based on a predetermined conversion coefficient.
Endoscopic system.
(6)
 (5)記載の内視鏡システムであって、
 上記変換係数は、上記第1特性と上記第2特性との間の相違に応じて定められた係数である、
 内視鏡システム。
(6)
(5) The endoscopic system described above.
The conversion coefficient is a coefficient determined according to the difference between the first characteristic and the second characteristic.
Endoscopic system.
(7)
 (1)から(6)のいずれか1つに記載の内視鏡システムであって、
 上記撮像素子は、ローリングシャッタ方式の撮像を行うものである、
 内視鏡システム。
(7)
The endoscopic system according to any one of (1) to (6).
The image pickup device performs a rolling shutter type image pickup.
Endoscopic system.
(8)
 (7)記載の内視鏡システムであって、
 上記プロセッサは、第1撮像フレームにおいて上記光源から照射させる上記第1特性の照明光の光量を、上記第1撮像フレームに先行する撮像フレームのうち上記第1特性の照明光を照射させ上記第2特性の照明光が非照射の第2撮像フレームにおいて照射した上記第1特性の照明光の光量と、上記第2撮像フレームにおいて上記撮像素子により得られた撮像信号と、に基づいて制御する、
 内視鏡システム。
(8)
(7) The endoscopic system described.
The processor irradiates the illumination light of the first characteristic, which is emitted from the light source in the first imaging frame, with the illumination light of the first characteristic among the imaging frames preceding the first imaging frame, and the second characteristic. Control is performed based on the amount of the illumination light of the first characteristic irradiated in the second imaging frame in which the characteristic illumination light is not irradiated and the imaging signal obtained by the imaging element in the second imaging frame.
Endoscopic system.
(9)
 (1)から(6)のいずれか1つに記載の内視鏡システムであって、
 上記撮像素子は、グローバルシャッタ方式の撮像を行うものである、
 内視鏡システム。
(9)
The endoscopic system according to any one of (1) to (6).
The image sensor is for performing global shutter type imaging.
Endoscopic system.
(10)
 (1)から(9)のいずれか1つに記載の内視鏡システムであって、
 上記第2期間に上記撮像素子から得られた撮像画像は画像解析される、
 内視鏡システム。
(10)
The endoscopic system according to any one of (1) to (9).
The image captured from the image sensor during the second period is image-analyzed.
Endoscopic system.
(11)
 (10)記載の内視鏡システムであって、
 ディスプレイを備え、
 上記プロセッサは、上記第1期間に上記撮像素子から得られた撮像画像に基づく動画を上記ディスプレイに表示させる、
 内視鏡システム。
(11)
(10) The endoscopic system according to the above.
Equipped with a display
The processor displays a moving image based on the captured image obtained from the image pickup device on the display during the first period.
Endoscopic system.
(12)
 (11)記載の内視鏡システムであって、
 上記プロセッサは、
 上記動画と上記画像解析の結果とを含む画面を上記ディスプレイに表示させる、
 内視鏡システム。
(12)
(11) The endoscopic system according to the above.
The above processor
A screen including the above video and the result of the above image analysis is displayed on the above display.
Endoscopic system.
(13)
 (10)から(12)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、上記撮像素子を備える内視鏡の挿入形状の解析を含む、
 内視鏡システム。
(13)
The endoscopic system according to any one of (10) to (12).
The image analysis includes an analysis of the insertion shape of an endoscope including the image sensor.
Endoscopic system.
(14)
 (10)から(13)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、上記撮像画像の輪郭の抽出を含む、
 内視鏡システム。
(14)
The endoscopic system according to any one of (10) to (13).
The image analysis includes extracting the contour of the captured image.
Endoscopic system.
(15)
 (10)から(14)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、上記撮像素子を備える内視鏡が挿入された被検体内の注目領域の検出を含む、
 内視鏡システム。
(15)
The endoscopic system according to any one of (10) to (14).
The image analysis includes detection of a region of interest in a subject into which an endoscope equipped with the image sensor is inserted.
Endoscopic system.
(16)
 (10)から(15)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、類似症例画像の選択を含む、
 内視鏡システム。
(16)
The endoscopic system according to any one of (10) to (15).
The image analysis includes selection of similar case images.
Endoscopic system.
(17)
 (10)から(16)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、腫瘍及び非腫瘍の判別を含む、
 内視鏡システム。
(17)
The endoscopic system according to any one of (10) to (16).
The above image analysis includes discrimination between tumor and non-tumor.
Endoscopic system.
(18)
 (10)から(17)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、器官の状態の特定を含む、
 内視鏡システム。
(18)
The endoscopic system according to any one of (10) to (17).
The above image analysis involves identifying the state of the organ,
Endoscopic system.
(19)
 (10)から(18)のいずれか1つに記載の内視鏡システムであって、
 上記画像解析は、切離予定線の生成を含む、
 内視鏡システム。
(19)
The endoscopic system according to any one of (10) to (18).
The above image analysis includes the generation of scheduled decoupling lines.
Endoscopic system.
(20)
 (1)から(19)のいずれか1つに記載の内視鏡システムであって、
 上記第1期間及び上記第2期間の各長さは、上記動作の繰り返しにおいて一定であり、又は上記動作の繰り返しにおいて不定である、
 内視鏡システム。
(20)
The endoscopic system according to any one of (1) to (19).
The lengths of the first period and the second period are constant in the repetition of the operation, or indefinite in the repetition of the operation.
Endoscopic system.
(21)
 (1)から(20)のいずれか1つに記載の内視鏡システムであって、
 上記第1特性の照明光及び上記第2特性の照明光のスペクトルは、上記動作の繰り返しにおいて一定であり、又は上記動作の繰り返しにおいて不定である、
 内視鏡システム。
(21)
The endoscopic system according to any one of (1) to (20).
The spectra of the illumination light of the first characteristic and the illumination light of the second characteristic are constant in the repetition of the operation, or indefinite in the repetition of the operation.
Endoscopic system.
(22)
 (1)から(21)のいずれか1つに記載の内視鏡システムであって、
 上記第1期間と上記第2期間との間に上記光源の無照射期間がある、
 内視鏡システム。
(22)
The endoscopic system according to any one of (1) to (21).
There is a non-irradiation period of the light source between the first period and the second period.
Endoscopic system.
(23)
 (1)から(22)のいずれか1つに記載の内視鏡システムであって、
 上記第1期間は上記第2期間より長い期間である、
 内視鏡システム。
(23)
The endoscopic system according to any one of (1) to (22).
The first period is longer than the second period,
Endoscopic system.
(24)
 (1)から(23)のいずれか1つに記載の内視鏡システムであって、
 上記第1特性の照明光及び上記第2特性の照明光は、白色光又は画像強調観察用の光である、
 内視鏡システム。
(24)
The endoscopic system according to any one of (1) to (23).
The illumination light of the first characteristic and the illumination light of the second characteristic are white light or light for image-enhanced observation.
Endoscopic system.
(25)
 特性が異なる複数種類の照明光を切り替えて照射可能な光源と、上記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムの制御方法であって、
 上記プロセッサが、
 連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を上記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に上記第1特性と異なる第2特性の照明光を上記光源から照射させる動作を繰り返し、
 上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号と、に基づいて制御する、
 制御方法。
(25)
A control method for an endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. ,
The above processor
After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame. Repeat the operation of irradiating the illumination light from the above light source,
The amount of the illumination light of the second characteristic to be irradiated from the light source is the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by
Control method.
(26)
 特性が異なる複数種類の照明光を切り替えて照射可能な光源と、上記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムの制御プログラムであって、
 上記プロセッサに、
 連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を上記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に上記第1特性と異なる第2特性の照明光を上記光源から照射させる動作を繰り返し、
 上記光源から照射させる上記第2特性の照明光の光量を、その第2特性の照明光に先行する上記第1特性の照明光の光量と、その第1特性の照明光の照射時に上記撮像素子により得られた撮像信号と、に基づいて制御する、
 処理を実行させるための制御プログラム。
(26)
A control program for an endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. ,
To the above processor
After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame. Repeat the operation of irradiating the illumination light from the above light source,
The amount of the illumination light of the second characteristic to be irradiated from the light source is the amount of the illumination light of the first characteristic that precedes the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by
A control program for executing processing.
 本発明によれば、照明光の光量のハンチングを抑制することのできる内視鏡システム、制御方法、及び制御プログラムを提供することができる。 According to the present invention, it is possible to provide an endoscope system, a control method, and a control program capable of suppressing hunting of the amount of illumination light.
 1 内視鏡
 4 制御装置
 5 光源装置
 6 入力部
 7 ディスプレイ
 10 挿入部
 10A 軟性部
 10B 湾曲部
 10C 先端部
 11 操作部
 12 アングルノブ
 13 ユニバーサルコード
 13A,13B コネクタ部
 21 対物レンズ
 22 レンズ群
 23 撮像素子
 25 メモリ
 26,41 通信I/F
 27 撮像駆動部
 42 信号処理部
 42a 撮像画像情報生成部
 42b ライブ画像生成部
 42c 解析部
 42d 解析画像生成部
 42e 光量制御部
 43 表示コントローラ
 44 システム制御部
 45 記録媒体
 50 照明用レンズ
 51 光源用プロセッサ
 52 光源部
 52a V-LED
 52b B-LED
 52c G-LED
 52d R-LED
 53 ライトガイド
 54 光路結合部
 70 画面
 71 メイン画面
 72 サブ画面
 75 照明光タイミング
 76 撮像タイミング
 77 ヒストグラム値
 100 内視鏡装置
1 Endoscope 4 Control device 5 Light source device 6 Input part 7 Display 10 Insert part 10A Flexible part 10B Curved part 10C Tip part 11 Operation part 12 Angle knob 13 Universal cord 13A, 13B Connector part 21 Objective lens 22 Lens group 23 Imaging element 25 Memory 26,41 Communication I / F
27 Image pickup drive 42 Signal processing section 42a Captured image information generation section 42b Live image generation section 42c Analysis section 42d Analysis image generation section 42e Light intensity control section 43 Display controller 44 System control section 45 Recording medium 50 Lighting lens 51 Light source processor 52 Light source 52a V-LED
52b B-LED
52c G-LED
52d R-LED
53 Light guide 54 Optical path junction 70 screen 71 Main screen 72 Sub screen 75 Illumination light timing 76 Imaging timing 77 Histogram value 100 Endoscope device

Claims (26)

  1.  特性が異なる複数種類の照明光を切り替えて照射可能な光源と、前記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムであって、
    前記プロセッサは、
     連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を前記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に前記第1特性と異なる第2特性の照明光を前記光源から照射させる動作を繰り返し、
     前記光源から照射させる前記第2特性の照明光の光量を、当該第2特性の照明光に先行する前記第1特性の照明光の光量と、当該第1特性の照明光の照射時に前記撮像素子により得られた撮像信号と、に基づいて制御する、
     内視鏡システム。
    An endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor.
    The processor
    After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame. The operation of irradiating the illumination light from the light source is repeated.
    The amount of illumination light of the second characteristic to be irradiated from the light source is the amount of illumination light of the first characteristic preceding the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by
    Endoscopic system.
  2.  請求項1記載の内視鏡システムであって、
     前記プロセッサは、前記光源から照射させる前記第2特性の照明光の光量を、当該第2特性の照明光に先行する前記第1特性の照明光の光量と、当該第1特性の照明光の照射時に前記撮像素子により得られた撮像信号が示す明るさの情報と、に基づいて制御する、 内視鏡システム。
    The endoscopic system according to claim 1.
    The processor sets the amount of illumination light of the second characteristic to be emitted from the light source, the amount of illumination light of the first characteristic preceding the illumination light of the second characteristic, and the irradiation of the illumination light of the first characteristic. An endoscopic system that controls based on the brightness information indicated by the imaging signal sometimes obtained by the imaging element.
  3.  請求項1又は2記載の内視鏡システムであって、
     前記プロセッサは、前記第2特性の照明光の光量を、さらに、当該第2特性の照明光に先行する前記第2特性の照明光の照射時に前記撮像素子により得られた撮像信号に基づいて制御する、
     内視鏡システム。
    The endoscopic system according to claim 1 or 2.
    The processor further controls the amount of illumination light of the second characteristic based on the image pickup signal obtained by the image pickup element at the time of irradiation of the illumination light of the second characteristic that precedes the illumination light of the second characteristic. do,
    Endoscopic system.
  4.  請求項3記載の内視鏡システムであって、
     前記プロセッサは、前記第2特性の照明光の光量を、さらに、当該第2特性の照明光に先行する前記第2特性の照明光の照射時に前記撮像素子により得られた撮像信号が示す明るさの情報に基づいて制御する、
     内視鏡システム。
    The endoscopic system according to claim 3.
    The processor measures the amount of illumination light of the second characteristic, and further, the brightness indicated by the image pickup signal obtained by the image pickup element when the illumination light of the second characteristic precedes the illumination light of the second characteristic. Control based on the information of
    Endoscopic system.
  5.  請求項1から4のいずれか1項記載の内視鏡システムであって、
     前記プロセッサは、前記第2特性の照明光の光量を、さらに、予め定められた変換係数に基づいて制御する、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 4.
    The processor further controls the amount of illumination light of the second characteristic based on a predetermined conversion coefficient.
    Endoscopic system.
  6.  請求項5記載の内視鏡システムであって、
     前記変換係数は、前記第1特性と前記第2特性との間の相違に応じて定められた係数である、
     内視鏡システム。
    The endoscopic system according to claim 5.
    The conversion coefficient is a coefficient determined according to the difference between the first characteristic and the second characteristic.
    Endoscopic system.
  7.  請求項1から6のいずれか1項記載の内視鏡システムであって、
     前記撮像素子は、ローリングシャッタ方式の撮像を行うものである、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 6.
    The image pickup device performs a rolling shutter type image pickup.
    Endoscopic system.
  8.  請求項7記載の内視鏡システムであって、
     前記プロセッサは、第1撮像フレームにおいて前記光源から照射させる前記第1特性の照明光の光量を、前記第1撮像フレームに先行する撮像フレームのうち前記第1特性の照明光を照射させ前記第2特性の照明光が非照射の第2撮像フレームにおいて照射した前記第1特性の照明光の光量と、前記第2撮像フレームにおいて前記撮像素子により得られた撮像信号と、に基づいて制御する、
     内視鏡システム。
    The endoscopic system according to claim 7.
    The processor irradiates the illumination light of the first characteristic emitted from the light source in the first imaging frame with the illumination light of the first characteristic among the imaging frames preceding the first imaging frame. Control is performed based on the amount of illumination light of the first characteristic illuminated by the second imaging frame of the characteristic and the imaging signal obtained by the imaging element in the second imaging frame.
    Endoscopic system.
  9.  請求項1から6のいずれか1項記載の内視鏡システムであって、
     前記撮像素子は、グローバルシャッタ方式の撮像を行うものである、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 6.
    The image pickup device performs a global shutter type image pickup.
    Endoscopic system.
  10.  請求項1から9のいずれか1項記載の内視鏡システムであって、
     前記第2期間に前記撮像素子から得られた撮像画像は画像解析される、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 9.
    The image captured from the image sensor during the second period is image-analyzed.
    Endoscopic system.
  11.  請求項10記載の内視鏡システムであって、
     ディスプレイを備え、
     前記プロセッサは、前記第1期間に前記撮像素子から得られた撮像画像に基づく動画を前記ディスプレイに表示させる、
     内視鏡システム。
    The endoscopic system according to claim 10.
    Equipped with a display
    The processor causes the display to display a moving image based on the captured image obtained from the image pickup device during the first period.
    Endoscopic system.
  12.  請求項11記載の内視鏡システムであって、
     前記プロセッサは、
     前記動画と前記画像解析の結果とを含む画面を前記ディスプレイに表示させる、
     内視鏡システム。
    The endoscopic system according to claim 11.
    The processor
    A screen including the moving image and the result of the image analysis is displayed on the display.
    Endoscopic system.
  13.  請求項10から12のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、前記撮像素子を備える内視鏡の挿入形状の解析を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 12.
    The image analysis includes analysis of the insertion shape of an endoscope including the image sensor.
    Endoscopic system.
  14.  請求項10から13のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、前記撮像画像の輪郭の抽出を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 13.
    The image analysis includes extracting the contour of the captured image.
    Endoscopic system.
  15.  請求項10から14のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、前記撮像素子を備える内視鏡が挿入された被検体内の注目領域の検出を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 14.
    The image analysis includes detection of a region of interest in a subject into which an endoscope equipped with the image sensor is inserted.
    Endoscopic system.
  16.  請求項10から15のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、類似症例画像の選択を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 15.
    The image analysis involves selection of similar case images.
    Endoscopic system.
  17.  請求項10から16のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、腫瘍及び非腫瘍の判別を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 16.
    The image analysis includes discrimination between tumors and non-tumors.
    Endoscopic system.
  18.  請求項10から17のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、器官の状態の特定を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 17.
    The image analysis involves identifying the state of the organ.
    Endoscopic system.
  19.  請求項10から18のいずれか1項記載の内視鏡システムであって、
     前記画像解析は、切離予定線の生成を含む、
     内視鏡システム。
    The endoscopic system according to any one of claims 10 to 18.
    The image analysis involves the generation of scheduled decoupling lines.
    Endoscopic system.
  20.  請求項1から19のいずれか1項記載の内視鏡システムであって、
     前記第1期間及び前記第2期間の各長さは、前記動作の繰り返しにおいて一定であり、又は前記動作の繰り返しにおいて不定である、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 19.
    The lengths of the first period and the second period are constant in the repetition of the operation or indefinite in the repetition of the operation.
    Endoscopic system.
  21.  請求項1から20のいずれか1項記載の内視鏡システムであって、
     前記第1特性の照明光及び前記第2特性の照明光のスペクトルは、前記動作の繰り返しにおいて一定であり、又は前記動作の繰り返しにおいて不定である、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 20.
    The spectra of the illumination light of the first characteristic and the illumination light of the second characteristic are constant in the repetition of the operation or indefinite in the repetition of the operation.
    Endoscopic system.
  22.  請求項1から21のいずれか1項記載の内視鏡システムであって、
     前記第1期間と前記第2期間との間に前記光源の無照射期間がある、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 21.
    There is a non-irradiation period of the light source between the first period and the second period.
    Endoscopic system.
  23.  請求項1から22のいずれか1項記載の内視鏡システムであって、
     前記第1期間は前記第2期間より長い期間である、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 22.
    The first period is longer than the second period.
    Endoscopic system.
  24.  請求項1から23のいずれか1項記載の内視鏡システムであって、
     前記第1特性の照明光及び前記第2特性の照明光は、白色光又は画像強調観察用の光である、
     内視鏡システム。
    The endoscopic system according to any one of claims 1 to 23.
    The illumination light of the first characteristic and the illumination light of the second characteristic are white light or light for image-enhanced observation.
    Endoscopic system.
  25.  特性が異なる複数種類の照明光を切り替えて照射可能な光源と、前記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムの制御方法であって、
     前記プロセッサが、
     連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を前記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に前記第1特性と異なる第2特性の照明光を前記光源から照射させる動作を繰り返し、
     前記光源から照射させる前記第2特性の照明光の光量を、当該第2特性の照明光に先行する前記第1特性の照明光の光量と、当該第1特性の照明光の照射時に前記撮像素子により得られた撮像信号と、に基づいて制御する、
     制御方法。
    A control method for an endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. ,
    The processor
    After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame. The operation of irradiating the illumination light from the light source is repeated.
    The amount of illumination light of the second characteristic to be irradiated from the light source is the amount of illumination light of the first characteristic preceding the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by
    Control method.
  26.  特性が異なる複数種類の照明光を切り替えて照射可能な光源と、前記照明光を用いて撮像を行う撮像素子を有する内視鏡と、プロセッサと、を備える内視鏡システムの制御プログラムであって、
     前記プロセッサに、
     連続した複数の撮像フレームに渡る第1期間に第1特性の照明光を前記光源から連続して照射させた後、少なくとも1つの撮像フレームに渡る第2期間に前記第1特性と異なる第2特性の照明光を前記光源から照射させる動作を繰り返し、
     前記光源から照射させる前記第2特性の照明光の光量を、当該第2特性の照明光に先行する前記第1特性の照明光の光量と、当該第1特性の照明光の照射時に前記撮像素子により得られた撮像信号と、に基づいて制御する、
     処理を実行させるための制御プログラム。
    A control program for an endoscope system including a light source capable of switching and irradiating a plurality of types of illumination light having different characteristics, an endoscope having an imaging element that performs imaging using the illumination light, and a processor. ,
    To the processor
    After the illumination light of the first characteristic is continuously irradiated from the light source in the first period over a plurality of continuous imaging frames, the second characteristic different from the first characteristic is used in the second period over at least one imaging frame. The operation of irradiating the illumination light from the light source is repeated.
    The amount of illumination light of the second characteristic to be irradiated from the light source is the amount of illumination light of the first characteristic preceding the illumination light of the second characteristic, and the image pickup element when the illumination light of the first characteristic is irradiated. Control based on the imaging signal obtained by
    A control program for executing processing.
PCT/JP2021/000840 2020-03-31 2021-01-13 Endoscope system, control method, and control program WO2021199566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511550A JPWO2021199566A1 (en) 2020-03-31 2021-01-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-063808 2020-03-31
JP2020063808 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199566A1 true WO2021199566A1 (en) 2021-10-07

Family

ID=77928437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000840 WO2021199566A1 (en) 2020-03-31 2021-01-13 Endoscope system, control method, and control program

Country Status (2)

Country Link
JP (1) JPWO2021199566A1 (en)
WO (1) WO2021199566A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055938A1 (en) * 2008-11-17 2010-05-20 オリンパス株式会社 Image-processing system, and imaging device, reception device, and image display device thereof
JP2010213993A (en) * 2009-03-18 2010-09-30 Fujifilm Corp Endoscope system, endoscope processor, and method for driving endoscope
JP2014023626A (en) * 2012-07-25 2014-02-06 Fujifilm Corp Endoscope system
WO2018198507A1 (en) * 2017-04-27 2018-11-01 オリンパス株式会社 Light source device system, normal light source device, special light observation light source device, and endoscope system
WO2018216276A1 (en) * 2017-05-22 2018-11-29 ソニー株式会社 Observation system and light source control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055938A1 (en) * 2008-11-17 2010-05-20 オリンパス株式会社 Image-processing system, and imaging device, reception device, and image display device thereof
JP2010213993A (en) * 2009-03-18 2010-09-30 Fujifilm Corp Endoscope system, endoscope processor, and method for driving endoscope
JP2014023626A (en) * 2012-07-25 2014-02-06 Fujifilm Corp Endoscope system
WO2018198507A1 (en) * 2017-04-27 2018-11-01 オリンパス株式会社 Light source device system, normal light source device, special light observation light source device, and endoscope system
WO2018216276A1 (en) * 2017-05-22 2018-11-29 ソニー株式会社 Observation system and light source control apparatus

Also Published As

Publication number Publication date
JPWO2021199566A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7333805B2 (en) Image processing device, endoscope system, and method of operating image processing device
CN112105284B (en) Image processing device, endoscope system, and image processing method
JP7289296B2 (en) Image processing device, endoscope system, and method of operating image processing device
JPWO2019198637A1 (en) Image processing equipment, endoscopic system, and image processing method
JP7374280B2 (en) Endoscope device, endoscope processor, and method of operating the endoscope device
JP6952214B2 (en) Endoscope processor, information processing device, endoscope system, program and information processing method
JPWO2017126531A1 (en) Endoscope processor and method of operating an endoscope processor
WO2021199566A1 (en) Endoscope system, control method, and control program
WO2016151675A1 (en) Living body observation device and living body observation method
WO2021111756A1 (en) Endoscope system, control program, and display method
WO2021181967A1 (en) Endoscope system, control method, and control program
WO2021176890A1 (en) Endoscope system, control method, and control program
WO2021117330A1 (en) Endoscope system, control method, and control program
CN112689469B (en) Endoscope device, endoscope processor, and method for operating endoscope device
WO2021192524A1 (en) Endoscope system, control method, and control program
WO2022210508A1 (en) Processor device, medical image processing device, medical image processing system, and endoscopic system
WO2022059233A1 (en) Image processing device, endoscope system, operation method for image processing device, and program for image processing device
WO2023007896A1 (en) Endoscope system, processor device, and operation method therefor
US20230037060A1 (en) Endoscope system and operation method therefor
JPWO2020008528A1 (en) Endoscope device, operation method and program of the endoscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782304

Country of ref document: EP

Kind code of ref document: A1