WO2023007896A1 - Endoscope system, processor device, and operation method therefor - Google Patents

Endoscope system, processor device, and operation method therefor Download PDF

Info

Publication number
WO2023007896A1
WO2023007896A1 PCT/JP2022/019386 JP2022019386W WO2023007896A1 WO 2023007896 A1 WO2023007896 A1 WO 2023007896A1 JP 2022019386 W JP2022019386 W JP 2022019386W WO 2023007896 A1 WO2023007896 A1 WO 2023007896A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
interest
section
frame rate
display
Prior art date
Application number
PCT/JP2022/019386
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 下村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023007896A1 publication Critical patent/WO2023007896A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements

Definitions

  • the present invention relates to an endoscope system, a processor device, and an operating method thereof that acquire multiple types of images and display different images on images having duplicate sections.
  • the subject is illuminated with multiple illumination lights with different wavelength ranges depending on the purpose of diagnosis.
  • multiple illumination lights with different wavelength ranges depending on the purpose of diagnosis.
  • normal light that can observe the mucous membrane of the digestive tract in natural colors
  • short-wave light that penetrates deep into the superficial layer in order to obtain surface layer information such as superficial blood vessels and deep layer information such as deep blood vessels.
  • the middle wavelength light having a depth of penetration to the deep layer is switched and illuminated, and the normal light image obtained by the normal light illumination, the surface layer image obtained by the short wave light illumination as the special light image, and the medium wavelength light Acquire a depth image obtained by illumination of
  • a first special observation image obtained by switching between a first illumination light that emphasizes superficial blood vessels and a second illumination light that emphasizes deep blood vessels, and a first special observation image obtained by illumination with the first illumination light and a first special observation image obtained by illumination with the second illumination light There is known a technique for sequentially displaying second special observation images by switching them (Patent Document 1).
  • the present invention provides an endoscope system and a processor device that enable smooth observation of an image of particular interest when illuminating by switching a plurality of lights and displaying a plurality of images obtained by illuminating with each light. and a method of operating the same.
  • a processor device of the present invention is a processor device that includes a light source processor and an image processing processor.
  • the light source processor automatically selects a first illumination period during which the subject illuminated with the first illumination light is imaged and a second illumination period during which the subject is imaged with the second illumination light having a spectrum different from that of the first illumination light. switch control.
  • the image processing processor acquires a first illumination light image as a medical image during the first illumination period, acquires a second illumination light image as a medical image during the second illumination period, and obtains the first illumination light image and/or the second illumination light image.
  • a display image for displaying an illumination light image is generated, and the display image has a target segment and a semi-target segment, and is the number of medical images displayed in the target segment per unit time.
  • the frame rate and the quasi-region-of-interest display frame rate which is the number of medical images displayed in the quasi-region of interest per unit time, are within the range of the overall display frame rate, which is the number of display images to be displayed per unit time,
  • the target section display frame rate is higher than the semi-target section display frame rate, and the medical image displayed in the target section is the first illumination light image or the second illumination light image.
  • the image processing processor acquires a medical image of interest, which is a medical image to be displayed in the section of interest, based on a section-of-interest imaging frame rate, which is the number of medical images of interest acquired per unit time, and displays the image in the sub-section of interest. It is preferable to acquire quasi-interest medical images, which are medical images, based on a quasi-interest segment imaging frame rate, which is the number of quasi-interest medical images acquired per unit time.
  • the image processing processor preferably uses the target medical image to generate an interpolated frame image for display in the target section. It is preferable that the image processing processor uses the quasi-interest medical image to generate an interpolated frame image to be displayed in the quasi-interest zone when the quasi-zone-of-interest display frame rate is higher than the quasi-interest zone imaging frame rate.
  • the interpolated frame image is preferably generated by an arithmetic mean method using at least two medical images of interest or semi-interested medical images.
  • the interpolated frame image is preferably generated by the motion vector method using at least two or more target medical images or quasi-target medical images.
  • the interpolated frame image is preferably generated by duplicating the medical image of interest or the medical image of semi-interest.
  • the image processing processor preferably selects a medical image of interest to be displayed in the section of interest when the display frame rate of the section of interest is lower than the imaging frame rate of the section of interest.
  • the image processing processor selects the sub-interest medical image to be displayed in the semi-interest segment when the semi-interest segment display frame rate is lower than the semi-interest segment imaging frame rate.
  • the image processing processor detects a region of interest, which is a region that the user should pay attention to, from the medical image of interest and/or the medical image of secondary interest, and/or discriminates the region of interest from the medical image of secondary interest.
  • the image processing processor preferably controls the display of the detection result, which is the result of detecting the region of interest, and/or the discrimination result, which is the result of discriminating the region of interest, in the section of interest and/or the sub-section of interest.
  • the image processing processor performs control to switch display and non-display of the semi-interest section. It is preferable that the image processing processor performs control to change the size of the target section and the sub-target section in the display image.
  • the image processing processor captures a subject illuminated by any one of the first illumination light and at least one type of second illumination light to obtain a medical image, and a first illumination period. and a multi-emission mode in which a medical image is obtained by capturing an object by automatically switching between the second illumination period and the second illumination period.
  • a method of operating a processor device comprises a first illumination period for capturing an image of a subject illuminated by first illumination light, and a second illumination period for capturing an image of the subject illuminated by second illumination light having a spectrum different from that of the first illumination light. obtaining a first illumination light image as a medical image during the first illumination period; and obtaining a second illumination light image as a medical image during the second illumination period. and generating a display image for displaying the first illumination light image and/or the second illumination light image.
  • the display image has a target segment and a semi-target segment, and has a target segment display frame rate, which is the number of medical images displayed in the target segment per unit time, and a medical image displayed in the semi-target segment per unit time.
  • the medical image displayed in the section of interest is the first illumination light image or the second illumination light image.
  • An endoscope system of the present invention includes the above-described processor device, light source device, and endoscope.
  • an endoscope capable of smoothly observing an image of particular interest when illuminating by switching a plurality of lights and switching and displaying a plurality of images obtained by illuminating with each light.
  • a system, processor apparatus and method of operation thereof can be provided.
  • FIG. 1 is an explanatory diagram of a configuration of an endoscope system;
  • FIG. 1 is a block diagram showing functions of an endoscope system;
  • FIG. It is a graph which shows the spectrum of 1st illumination light. It is a graph which shows the spectrum SP of the 2nd illumination 1st spectrum light. It is a graph which shows the spectrum SQ of the 2nd illumination 2nd spectrum light. It is a graph which shows the spectrum SR of the 2nd illumination 3rd spectrum light. It is a graph which shows the spectrum SS of the 2nd illumination 4th spectrum light.
  • FIG. 10 is an explanatory diagram showing a first light emission pattern in a multi-light emission mode;
  • FIG. 10 is an explanatory diagram showing a second light emission pattern in multi-light emission mode;
  • FIG. 11 is an explanatory diagram showing a third light emission pattern in multi-light emission mode
  • FIG. 4 is an image diagram showing an example of a display image
  • 4 is a block diagram showing functions of a display control unit
  • FIG. 11 is an image diagram showing an example of a display image setting screen
  • FIG. 10 is an image diagram showing a display image when the target section and the semi-target section have the same size
  • FIG. 9 is an image diagram showing an example of a section display frame rate setting screen
  • FIG. 10 is an image diagram showing a display image when displaying the first illumination light image in the section of interest and the second illumination light image in the sub-section of interest
  • FIG. 11 is an image diagram showing an example of a section imaging frame rate setting screen; It is explanatory drawing which shows an addition averaging method.
  • FIG. 4 is an explanatory diagram showing a motion vector method;
  • FIG. 4 is an explanatory diagram showing a simple copy method;
  • FIG. 4 is an explanatory diagram showing selection of a target medical image or a quasi-target medical image to be displayed;
  • 4 is a block diagram showing functions of a lesion recognition unit;
  • FIG. 10 is an explanatory diagram showing that a detection result is output when a medical image is input as a classification for detection;
  • FIG. 10 is an explanatory diagram showing that when a medical image is input to classification for discrimination, a discrimination result is output;
  • FIG. 11 is an image diagram showing a display image when displaying a detection result; It is an image diagram showing a display image when displaying a discrimination result.
  • FIG. 10 is an image diagram showing a display image when displaying a still image and character information;
  • FIG. 10 is an explanatory diagram of an example of displaying a display image when an extended processor device is provided;
  • the endoscope system 10 includes an endoscope 12, a light source device 13, a processor device 14, a display 15 and a user interface 16.
  • the endoscope 12 is optically connected to the light source device 13 and electrically connected to the processor device 14 .
  • the endoscope 12 has an insertion section 12a, an operation section 12b, a bending section 12c and a distal end section 12d.
  • the insertion portion 12a is inserted into the body of the subject.
  • the operation portion 12b is provided at the proximal end portion of the insertion portion 12a.
  • the curved portion 12c and the distal end portion 12d are provided on the distal end side of the insertion portion 12a.
  • the bending portion 12c is bent by operating the angle knob 12e of the operation portion 12b.
  • the distal end portion 12d is directed in a desired direction by the bending motion of the bending portion 12c.
  • a forceps channel (not shown) for inserting a treatment tool or the like is provided from the insertion portion 12a to the distal end portion 12d.
  • the treatment instrument is inserted into the forceps channel from the forceps port 12j.
  • An optical system for forming a subject image and an optical system for illuminating the subject with illumination light are provided inside the endoscope 12 .
  • the operation unit 12b is provided with an angle knob 12e, a mode changeover switch 12f, a still image acquisition instruction switch 12h, and a zoom operation unit 12i.
  • the mode changeover switch 12f is used for an observation mode changeover operation.
  • a still image acquisition instruction switch 12h is used to instruct acquisition of a still image of a subject.
  • a zoom operation unit 12 i is used for operating the zoom lens 42 .
  • the light source device 13 generates illumination light.
  • the display 15 displays medical images.
  • the medical images include a first illumination light image and a second illumination light image that use different illumination light for imaging, and a target medical image and a sub-target medical image that differ in display sections.
  • the user interface 16 has a keyboard, mouse, microphone, tablet, touch pen, and the like, and receives input operations such as function settings.
  • the processor device 14 performs system control of the endoscope system 10 and further performs image processing and the like on image signals transmitted from the endoscope 12 .
  • the light source device 13 includes a light source unit 20 , a light source processor 21 that controls the light source unit 20 , and an optical path coupling unit 22 .
  • the light source unit 20 has a plurality of semiconductor light sources, which are turned on or off. Also, when lighting a plurality of semiconductor light sources, the illumination light for illuminating the subject is emitted by controlling the amount of light emitted from each semiconductor light source.
  • the light source unit 20 includes a V-LED (Violet Light Emitting Diode) 20a, a B-LED (Blue Light Emitting Diode) 20b, a G-LED (Green Light Emitting Diode) 20c, and an R-LED (Red Light Emitting Diode) 20d. It has four color LEDs.
  • the light source unit 20 or the light source processor 21 may be built in the endoscope 12 .
  • the light source processor 21 may be incorporated in the processor device 14 .
  • the endoscope system 10 has a mono-emission mode and a multi-emission mode, and the modes are switched via the central control unit 50 by operating the mode switching switch 12f.
  • the mono light emission mode is a mode in which the illumination light of the same spectrum is continuously emitted to illuminate the object to be observed.
  • the multi-light emission mode is a mode in which a plurality of illumination lights with different spectra are emitted while being switched according to a specific pattern to illuminate the subject.
  • the illumination light includes first illumination light and second illumination light having a spectrum different from that of the first illumination light.
  • the first illumination light is normal light (broadband light such as white light) used for screening observation by giving brightness to the entire subject.
  • the second illumination light is a plurality of types of special light used for emphasizing specific structures such as ducts and blood vessels of mucous membranes that are subjects.
  • the V-LED 20a When emitting the first illumination light, as shown in FIG. 3, the V-LED 20a emits violet light V with a central wavelength of 405 ⁇ 10 nm and a wavelength range of 380-420 nm.
  • the B-LED 20b generates blue light B with a central wavelength of 450 ⁇ 10 nm and a wavelength range of 420-500 nm.
  • the G-LED 20c generates green light G with a wavelength range of 480-600 nm.
  • the R-LED 20d emits red light R with a central wavelength of 620-630 nm and a wavelength range of 600-650 nm.
  • the second illumination light includes, for example, second illumination first spectrum light that emphasizes superficial blood vessels, second illumination second spectrum light that emphasizes superficial blood vessels shallower than superficial blood vessels, and absorption coefficients of oxyhemoglobin and deoxyhemoglobin.
  • a second illumination third spectrum light for generating an oxygen saturation image using a difference, and a second illumination fourth spectrum light for generating a color difference extended image extending the color difference between a plurality of subject ranges.
  • the violet light V emits light of the spectrum SP having a higher peak intensity than the blue light B, green light G, and red light R of other colors.
  • the second illumination second spectrum light is emitted, as shown in FIG. 5
  • light of spectrum SQ including violet light V which is light in a wavelength range where the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are different, is emitted.
  • blue-green light B peak wavelength is, for example, 470 to 480 nm
  • the second illumination fourth spectrum light is emitted, as shown in FIG. 7, the peak intensity of the violet light V and the blue light B is higher than the peak intensities of the green light G and the red light R, and the light of the spectrum SS is emitted.
  • the kind of 2nd illumination light is not restricted to this.
  • the light source processor 21 independently controls the light amounts of the four colors of violet light V, blue light B, green light G, and red light R, and changes the light amounts to produce the first illumination light and the second illumination light (for example, the second illumination light).
  • illumination first spectrum light, second illumination second spectrum light, second illumination third spectrum light, second illumination fourth spectrum light are emitted.
  • illumination light with the same spectrum is continuously emitted for each frame.
  • the display 15 displays the first illumination light image with natural colors.
  • the second illumination light image emphasizing a specific structure is displayed on the display 15 .
  • the term “frame” refers to a unit of period including at least the period from the timing of light emission to the completion of readout of the image signal by the imaging sensor 43 .
  • control is performed to change the light amounts of the violet light V, the blue light B, the green light G, and the red light R for each specific frame F according to a specific light emission pattern.
  • emission patterns are given below.
  • the first illumination light L1 for two frames is emitted during the first illumination period Pe1 in which the subject is illuminated with the first illumination light L1, and the second illumination light L2 is emitted.
  • the second illumination period Pe2 in which the subject is illuminated by the pattern of sequentially emitting one frame of the second illumination light (the second illumination first spectral light L2SP) is repeated.
  • arrows indicate the direction in which time advances.
  • the second light emission pattern As shown in FIG. 9, two frames of the first illumination light L1 are emitted during the first illumination period Pe1, and one frame of the second illumination light L2 (the second illumination light L2) is emitted during the second illumination period Pe2.
  • Illumination first spectrum light L2SP is emitted, then two frames of the first illumination light L1 are emitted during the first illumination period Pe1, and one frame of the second illumination light L2 (the second illumination light L2 is emitted during the second illumination period Pe2).
  • Illumination first spectrum light L2SQ is emitted.
  • the spectrum of the second illumination light emitted after the first illumination light is changed each time.
  • the first illumination light L1 for one frame is emitted during the first illumination period Pe1
  • the second illumination light L2 for four frames is emitted during the second illumination period Pe2. repeat.
  • the second illumination light L2 includes a second illumination first spectral light L2SP, a second illumination second spectral light L2SQ, a second illumination third spectral light L2SR, and a second illumination fourth spectral light. It is automatically switched to emit the light L2SS and the second illumination light L2 having a different spectrum for each frame.
  • the light source processor 21 adjusts the light amount of each light source and performs shooting according to the shooting frame rate setting and the light emission pattern setting, which will be described later.
  • the light emission pattern is not limited to the above three patterns, and can be arbitrarily set as described later.
  • the mono-emission mode and the multi-emission mode when the user wants to acquire a medical image as a still image, by operating the still image acquisition instruction switch 12h, a signal relating to the still image acquisition instruction is sent to the endoscope 12, the light source device 13, and the like. and sent to the processor unit 14 .
  • each of the LEDs 20a to 20d (see FIG. 2) is incident on the light guide 23 via the optical path coupling section 22 composed of mirrors, lenses, and the like.
  • the light guide 23 propagates the light from the optical path coupling portion 22 to the distal end portion 12 d of the endoscope 12 .
  • the distal end portion 12d of the endoscope 12 is provided with an illumination optical system 30a and an imaging optical system 30b.
  • the illumination optical system 30 a has an illumination lens 31 , and the illumination light propagated by the light guide 23 is applied to the subject through the illumination lens 31 .
  • the imaging optical system 30 b has an objective lens 41 and an imaging sensor 43 . Light from a subject irradiated with illumination light enters an imaging sensor 43 via an objective lens 41 and a zoom lens 42 . As a result, an image of the subject is formed on the imaging sensor 43 .
  • the zoom lens 42 is a lens for enlarging a subject, and is moved between the tele end and the wide end by operating the zoom operation section 12i.
  • the imaging sensor 43 is a primary color sensor, and includes B pixels (blue pixels) having blue color filters, G pixels (green pixels) having green color filters, and R pixels (red pixels) having red color filters. and three types of pixels.
  • the imaging sensor 43 is preferably a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the imaging processor 44 controls the imaging sensor 43 . Specifically, an image signal is output from the imaging sensor 43 by reading the signal of the imaging sensor 43 by the imaging processor 44 . The output image signal is transmitted to the medical image acquisition unit 60 of the processor device 14 .
  • the medical image acquisition unit 60 performs various signal processing such as defect correction processing, offset processing, demosaicing processing, matrix processing, white balance adjustment, gamma conversion processing, and YC conversion processing on the received color image. Next, by performing image processing including 3 ⁇ 3 matrix processing, gradation conversion processing, color conversion processing such as three-dimensional LUT (Look Up Table) processing, color enhancement processing, and structural enhancement processing such as spatial frequency enhancement, A first illumination light image for the first illumination light and a second illumination light image for the second illumination light are acquired.
  • image processing including 3 ⁇ 3 matrix processing, gradation conversion processing, color conversion processing such as three-dimensional LUT (Look Up Table) processing, color enhancement processing, and structural enhancement processing such as spatial frequency enhancement.
  • the medical image acquisition unit 60 when the second illumination light is the second illumination third spectrum light, the medical image acquisition unit 60 generates an oxygen saturation image as the second illumination light image based on the image signal ratio from the imaging sensor 43. do. Furthermore, when the second illumination light is the second illumination fourth spectrum light, the medical image acquisition unit 60 obtains a color difference expanded image that has undergone color difference expansion processing based on the image signal ratio from the imaging sensor 43. A second illumination light image is generated.
  • the processor device 14 includes a central control unit 50, a medical image acquisition unit 60, a display control unit 70, an overall display frame rate recognition unit 90, a section display frame rate setting unit 100, a section photographing frame rate setting unit 110, and an interpolation frame image generation unit. 120 and a lesion recognition unit 130 (see FIG. 2).
  • the programs in the program memory are operated by the central control unit 50 composed of the light source processor 21 and the image processing processor (not shown), thereby the medical image acquisition unit 60 and the display control unit 70, the functions of the entire display frame rate recognition unit 90, the section display frame rate setting unit 100, the section imaging frame rate setting unit 110, the interpolation frame image generation unit 120, and the lesion recognition unit 130 are realized.
  • the first illumination light image and/or the second illumination light image acquired by the medical image acquisition unit 60 are transmitted to the display control unit 70.
  • the display control unit 70 generates a display image 71 as shown in FIG. 11 that displays the first illumination light image and/or the second illumination light image, and causes the display 15 to display it.
  • the display image 71 has one section of interest 72 and at least one or more sub-sections of interest 73 .
  • the display image 71 has a section of interest 72 and a sub-section of interest 73 .
  • the target section 72 is a section that displays the type of medical image that a user such as a doctor wants to focus on most.
  • the semi-interest section 73 is a section that displays a type of medical image other than the medical image displayed in the interest section.
  • Either the first illumination light image or the second illumination light image can be selected as the medical image to be displayed in the section of interest.
  • the types of medical images to be displayed in the attention section 72 and the semi-interest section 73 can be set via the display image setting section 80 of the display control section 70 shown in FIG.
  • the user can set the type of medical image to be displayed in the attention section 72 and the semi-attention section 73 and the number of the semi-attention sections 73 using the tab 82 on the display image setting screen 81 illustrated in FIG. Only one tab 82 is labeled for clarity.
  • the number of semi-interest sections 73 is one.
  • the type of medical image displayed in the section of interest 72 is the first illumination light image.
  • the type of medical image displayed in the semi-interest section 73 is the second illumination light image, and the second illumination light image in this case is captured using the second illumination first spectrum light.
  • the medical image displayed in the semi-interest section can be switched between display and non-display.
  • the display or non-display setting of the semi-interest medical image to be displayed in the semi-interest section 73 is performed on the display image setting screen 81, for example.
  • the display of the quasi-interest medical image displayed in the quasi-interest segment is "present". Switching between display and non-display of the quasi-interest medical image may be performed on the display image 71 .
  • the sizes of the target section 72 and the semi-target section 73 occupying the display image 71 can be arbitrarily changed.
  • the layout such as the size and arrangement of the target section 72 and the semi-target section 73 may be set by selecting the layout setting button 83 on the display image setting screen 81 .
  • the target section 72 may be larger than the semi-target section 73 (see FIG. 11), or, as shown in FIG. 14, the target section 72 and the semi-target section 73 may be the same size.
  • a layout template may be prepared and selected. The setting may be performed by directly operating by pinching in, pinching out, dragging with two fingers, or the like.
  • the frame rate for displaying the target section and the semi-target section can each be set within the range of the overall display frame rate of the display 15 .
  • the overall display frame rate recognition section 90 recognizes the frame rate of the display 15 connected to the processor device 14 as the overall display frame rate, and transmits it to the section display frame rate setting section 100 .
  • the overall display frame rate is the number of display images displayed by the display 15 per unit time.
  • the target section display frame rate and the semi-target section display frame rate may be set within the range of the refresh rate of the display 15 .
  • the refresh rate refers to the number of display images that can be processed for display per unit time.
  • the section display frame rate setting unit 100 sets the target section display frame rate and the semi-target section display frame rate within the range of the overall display frame rate.
  • the target section display frame rate is the number of medical images displayed in the target section per unit time.
  • the quasi-region-of-interest display frame rate is the number of medical images displayed in the quasi-region of interest per unit time.
  • the target segment display frame rate is set higher than the sub-target segment table frame rate. It is also possible to set the quasi-focused partition table frame rate higher than the focused partition display frame rate, or set the quasi-focused partition table frame rate and the focused partition display frame rate to the same value.
  • section display frame rate will be used as a collective term that does not distinguish between the target section display frame rate and the semi-target section display frame rate.
  • the partition display frame rate is set via the partition display frame rate setting screen 101.
  • the overall display frame rate is displayed in the overall display frame rate display column 102 .
  • the user enters numerical values in the target section display frame rate setting field 103 and the sub-target section display frame rate setting field 104 within the range displayed in the overall display frame rate display field 102, and the section display frame rate is displayed. Settings can be made.
  • the overall display frame rate is 60 fps (frames per second).
  • the division-of-interest display frame rate of the division of interest and the division-of-interest display frame rate of the divisions of interest indicated by "section of interest (1)" and "section of interest (2)" do not exceed 60 fps, respectively.
  • the target section display frame rate is set to 60 fps
  • the semi-target section display frame rate is set to 15 fps.
  • Input methods for the target section display frame rate setting field 103 and the semi-target section display frame rate setting field 104 include user input using a keyboard or voice, input using tabs, automatic input of predetermined values, and the like. It is not limited to this.
  • the display control unit 70 sets the target section display frame rate and the quasi-target section display frame rate of the section display frame rate setting unit 100, and sets the target section 72 and the quasi-target section 73 of the display image 71.
  • An image (first illumination light image or second illumination light image) is displayed.
  • the first illumination light image is displayed in the target section 72 and the second illumination light image (indicated by diagonal lines) is displayed in the semi-target section 73 .
  • a configuration in which the target section display frame rate and the semi-interest section display frame rate can be set respectively is particularly effective in the multi-emission mode in which multiple types of medical images can be sequentially obtained.
  • the section shooting frame rate setting unit 110 sets the target section shooting frame rate and the sub-target section shooting frame rate.
  • the overall imaging frame rate is an imaging frame rate determined by the performance of the imaging sensor 43, and is the number of medical images that can be acquired per unit time. Assuming that the medical image displayed in the section of interest is the medical image of interest, and the medical image displayed in the section of secondary interest is the medical image of secondary interest, the imaging frame rate of the section of interest is the number of medical images of interest acquired per unit time. . Also, the quasi-part-of-interest imaging frame rate is the number of quasi-interest medical images acquired per unit time.
  • the section-of-interest imaging frame rate can be set to be higher or lower than the section-of-interest display frame rate.
  • the quasi-section-of-interest imaging frame rate can be set to be higher or lower than the quasi-section-of-interest display frame rate.
  • the sum of the section-of-interest imaging frame rate and the sub-section-of-interest imaging frame rate is the overall imaging frame rate.
  • section imaging frame rate will be used as a term that collectively refers to the target section imaging frame rate and the semi-target section imaging frame rate without distinguishing between them.
  • the division imaging frame rate is set via the division imaging frame rate setting screen 111 .
  • the overall imaging frame rate is displayed in the overall imaging frame rate display field 112 of the section imaging frame rate setting screen 111 illustrated in FIG. 17 .
  • the user enters numerical values into the target section imaging frame rate setting field 113 and the sub-target section imaging frame rate setting field 114 within the range displayed in the overall imaging frame rate display field 112 to set the section imaging frame rate. It can be carried out.
  • the overall imaging frame rate is 60 fps
  • the target segment imaging frame rate of the target segment (the target medical image to be displayed in) is 30 fps
  • the semi-interest segment imaging frame rate of each semi-interest segment (the semi-interest medical image displayed in) indicated by is set to 15 fps.
  • the type of illumination light used to acquire the medical image of interest and the medical image of secondary interest can be set on tabs 82, respectively.
  • the first illumination light for the medical image of interest is the first illumination light image
  • the first quasi-interest medical image is the second illumination light image illuminated with the second illumination
  • first spectrum light is the second illumination
  • the second quasi-interest medical image is the second illumination light image. 2 is a second illumination light image illuminated with spectral light;
  • the emission pattern of the illumination light used to acquire the medical image of interest and the quasi-interest medical image can be set in the emission pattern setting field 115.
  • the light emission pattern is set as "1, 1, 2, 1, 1, 3".
  • the light emission pattern of "first illumination light, first illumination light, second illumination first spectrum light, first illumination light, first illumination light, second illumination second spectrum light” is repeated. This indicates that the lights are emitted sequentially.
  • the setting of the light emission pattern set on the section imaging frame rate setting screen 111 is transmitted to the light source processor 21 via the central control unit 50 .
  • Table 1 shows specific examples of the overall display frame rate, section display frame rate, overall imaging frame rate, and section imaging frame rate.
  • "whole” in the lower part of “display frame rate” is “whole display frame rate”
  • "attention section” is “attention section display frame rate”
  • “semi-attention section” is “semi-attention section display frame rate”.
  • “whole” in the lower part of “imaging frame rate” indicates “whole imaging frame rate”
  • interested section indicates “interested section imaging frame rate”
  • “semi-interested section” indicates “semi-interested section imaging frame rate”.
  • the unit of the column in which only numerical values are written is fps.
  • the medical image of interest is the first illumination light image
  • the quasi-interest medical image is the second illumination light image.
  • Example 1 in Table 1 is an example in which the overall display frame rate (60 fps) is higher than the overall imaging frame rate (45 fps), and the target section imaging frame rate (30 fps) is higher than the sub-target section imaging frame rate (15 fps). .
  • Example 2 in Table 1 is an example in which the overall display frame rate (60 fps) is higher than the overall imaging frame rate (45 fps), and the target section imaging frame rate (15 fps) is lower than the sub-target section imaging frame rate (30 fps). .
  • “15 fps ⁇ 2" in the "remarks of semi-interest section” column indicates that there are two types of second illumination light, and the second illumination light image for each type of second illumination light is acquired at 15 fps.
  • the second illumination light images captured at the sub-section-of-interest imaging frame rate of 15 fps are displayed in the two quasi-sections of interest.
  • a second illumination light image captured at a quasi-zone-of-interest imaging frame rate of 15 fps using the second illumination first spectral light is displayed.
  • section display frame rate is 15 fps
  • a second illumination light image captured at a quasi-target section imaging frame rate of 15 fps using the second illumination second spectrum light is displayed.
  • Example 3 in Table 1 is an example in which the overall display frame rate (60 fps) is lower than the overall imaging frame rate (90 fps), and the target section imaging frame rate (60 fps) is higher than the sub-target section imaging frame rate (30 fps). .
  • "15 fps ⁇ 2" in the "remarks of semi-interest section” column indicates that there are two types of second illumination light, and the second illumination light image for each type of second illumination light is acquired at 15 fps.
  • the relationship between the sectional imaging frame rate and the sectional frame rate of the quasi-interest medical image is the same as in the second embodiment.
  • Example 4 in Table 1 is an example in which the overall display frame rate (60 fps) is lower than the overall imaging frame rate (90 fps), and the target section imaging frame rate (30 fps) is lower than the sub-target section imaging frame rate (60 fps).
  • "15 fps ⁇ 4" in the "remarks of semi-interest section” column indicates that there are four types of second illumination light, and the second illumination light image for each type of second illumination light is acquired at 15 fps.
  • the relationship between the section imaging frame rate and the section frame rate of the quasi-interest medical image is the second illumination light image captured using two types of second illuminating light in the two quasi-interest zones of the second embodiment. Same as example.
  • Example 5 in Table 1 is an example in which the semi-target section display frame rate (45 fps) is higher than the target section imaging frame rate (15 fps). This is an example in which an interpolated frame image, which will be described later, is required for the semi-interest section.
  • Example 6 in Table 1 is an example in which the target section display frame rate (60 fps) is lower than the target section imaging frame rate (90 fps). This is an example in which it is necessary to select a medical image of interest to be displayed in the section of interest, which will be described later.
  • an image of particular interest is set as the target section, and the frame rate of the target section is set higher than the frame rate of the semi-target section. By doing so, it is possible to smoothly observe an image of particular interest.
  • the interpolation frame image generation unit 120 preferably generates an interpolation frame image to be displayed in the target section using the target medical image. Specifically, as in Examples 1, 2, 4, and 5, when the target section display frame rate is higher than the target section imaging frame rate, an interpolation frame image is generated. That is, an interpolated frame image is generated when the imaged medical image of interest does not satisfy the display frame rate of the section of interest.
  • the interpolated frame image generation unit 120 preferably generates an interpolated frame image to be displayed in the sub-interest section using the semi-interest medical image.
  • an interpolation frame image is generated when the quasi-section-of-interest display frame rate is higher than the quasi-section-of-interest imaging frame rate. That is, when the captured quasi-interest medical image does not satisfy the quasi-interest segment display frame rate, an interpolated frame image is generated.
  • an interpolated frame image is generated and displayed when the section display frame rate is higher than the section imaging frame rate, so that an image of particular interest is set as the section of interest, and an image to interpolate the image of particular interest is obtained.
  • smooth observation can be performed.
  • the interpolated frame image is not generated, and the imaged target medical images are sequentially displayed in the target section. .
  • the interpolated frame image is preferably generated by an arithmetic mean method using at least two medical images of interest or semi-interested medical images.
  • the averaging method is a method of generating an interpolated frame image by superimposing a plurality of frames of interest medical images or quasi-interest medical images captured in the past.
  • the averaging method will be described using a specific example (FIG. 18) in which the medical image of interest is the first illumination light image.
  • the medical image of interest is the first illumination light image.
  • two frames of the target medical image 121 are captured during the first illumination period in which the illumination light is emitted in the light emission pattern Pa1 once and the first illumination light L1 is emitted (in FIG. Indicated by frames 1 and 2)
  • one frame of the quasi-interest medical image 122 is captured during the second illumination period in which the second illumination light L2 is emitted (indicated by imaging frame 3 in FIG. 18).
  • the interpolation frame image generation unit 120 generates an interpolation frame image 123 (indicated by interpolation frame “1+2” in FIG. 18) by overlapping captured frames 1 and 2.
  • FIG. The display frames are displayed in the order of imaged frame 1, interpolation frame "1+2", imaged frame 2, and so on, and the images are displayed in the target section in this order.
  • imaging frames 4 and 5 are acquired as the target medical image 121 for one emission pattern
  • imaging frame 6 is acquired as the secondary target medical image 122
  • the interpolation frame image 123 is acquired at the interpolation frame "2+4". is generated.
  • one frame of interpolation frame image 123 is generated from two frames of attention medical image 121 for the sake of simplification.
  • An image 123 may be generated.
  • the same procedure is performed. Generate an interpolated frame image.
  • the interpolated frame image 123 When the interpolated frame image 123 is generated by superimposing the target medical images 121 by the averaging method, it may be generated by the simple averaging method by superimposing the plurality of target medical images 121 at the same ratio. It may be generated by a weighted averaging method in which weighting is performed and superimposition is performed. Also, as in Example 5 of Table 1, when generating the interpolated frame image 123 from the quasi-interest medical image, the interpolated frame image is generated in the same manner.
  • the interpolated frame image is preferably generated by the motion vector method using at least two or more target medical images or quasi-target medical images.
  • interpolated frame images are created by superimposing the target medical images or the quasi-interest medical images in consideration of the motion vector of the subject captured between the target medical images or the quasi-interest medical images of multiple frames captured in the past. It is a method to generate.
  • the interpolated frame image generation unit 120 When generating an interpolated frame image by the motion vector method, the interpolated frame image generation unit 120 first analyzes image signals of a plurality of target medical images or quasi-target medical images, and, for example, uses a pattern matching method to generate the preceding and following frames. are searched for a pixel corresponding to the same observation site between the images, and the spatial distance (movement amount) and direction (movement direction) of this pixel are calculated as a movement vector. Next, the image of each frame is weighted by adding the motion vector, and the target medical image or the quasi-target medical image is superimposed.
  • the movement vector method As shown in FIG. 19, when three medical images of interest 124, 125, and 126 acquired in chronological order are superimposed, the distance between the medical image of interest 124 in the first frame and the medical image of interest 125 in the second frame is A movement vector 127a of the subject S and a movement vector 127b of the subject S between the second frame of interest medical image 125 and the third frame of interest medical image 126 are calculated.
  • the motion vector 127b is larger than the motion vector 127a, the image of the third frame is weighted relatively large, and then the target medical images 124, 125, and 126 are superimposed, and the interpolated frame image 128 is superimposed.
  • interpolated frame image 1208 for example, a superposition 128a (indicated by a solid line) of the subject S calculated from the second frame of interest medical image 125 and the third frame of interest medical image 126 appears.
  • an afterimage 128b (indicated by a dotted line) of the subject S may be projected.
  • the generated interpolated frame image 128 is displayed, for example, inserted between the second frame of interest medical image 125 and the third frame of interest medical image 126 .
  • the interpolated frame image is preferably generated by a simple copy method that duplicates the medical image of interest or the medical image of semi-interest.
  • the simple copy method is a method of generating an interpolated frame image by duplicating at least one or more target medical images or quasi-target medical images captured in the past. As a result, the interpolated frame image can be generated while reducing the image analysis load on the processor device 14 .
  • FIG. 20 A specific example of the simple copy method will be explained.
  • the illumination light is the illumination light for one emission pattern Pa1
  • the first illumination period in which the first illumination light L1 is emitted two frames of the target medical image 121 are captured, and the second illumination light L2 is emitted.
  • One frame of the quasi-interest medical image 122 is captured during the second illumination period.
  • the interpolation frame image generation unit 120 superimposes the captured frames 1 and 2 to generate an interpolation frame image 123 (indicated by interpolation frames “1”, “2”, “4”, “5”, and “7” in FIG. 20).
  • the display frames are displayed in the order of imaging frame 1, interpolation frame "1", imaging frame 2, and so on, and the images are displayed in the target section in this order.
  • the method for generating the interpolated frame image includes, but is not limited to, the averaging method, the motion vector method, or the simple copy method.
  • the target medical image displayed in the target section or the semi-target medical image displayed in the semi-target section may be selected.
  • the segment display frame rate is lower than the segment imaging frame rate
  • the number of obtained medical images of interest or quasi-interest medical images exceeds the number of images that can be displayed.
  • Select medical images and adjust the number of images that can be displayed. The selection of images to display is preferably determined by the difference between the segment display frame rate and the segment capture frame rate.
  • the target section display frame rate is 60 fps, and the target section imaging frame rate is 90 fps. do.
  • the quasi-region-of-interest display frame rate is 15 fps and the region-of-interest imaging frame rate is 30 fps (in Example 6 in Table 1, one type of second illumination light is used to capture the quasi-region of interest medical image. , and is imaged at 30 fps.), and a selection is made to display each of the obtained medical images of interest in two frames.
  • the display control unit 70 selects, for example, images to be displayed one by one in two frames of the acquired attention medical image 121 . That is, as display frames, the target medical image 121 is displayed in the order of imaging frames "1", “3", "5", "7", and so on.
  • the lesion recognition unit 130 detects a region of interest, which is a region that the user should pay attention to, from the medical image of interest and/or the medical image of sub-interest, and further discriminates the region of interest.
  • a region of interest is a site such as a lesion that has a feature amount within a specific range.
  • the feature quantity is preferably the shape or color of the subject or a value obtained from the shape, color, or the like.
  • the items of feature values include, for example, blood vessel density, blood vessel shape, number of blood vessel branches, blood vessel thickness, blood vessel length, blood vessel tortuosity, blood vessel invasion depth, duct shape, and duct opening shape. , duct length, duct tortuosity, and color information.
  • the feature amount is preferably at least one of these, or a value obtained by combining two or more of these. It should be noted that the item of the feature amount is not limited to this, and may be added as appropriate according to the usage situation.
  • Detection is to discover a region of interest from a medical image. Differentiation is to identify what properties the region of interest has (eg, neoplastic polyp, non-neoplastic polyp, inflammation, etc.).
  • the lesion recognition unit 130 includes a detection classifier 131 and a discrimination classifier 132, as shown in FIG.
  • the detection classifier 131 receives a medical image 130a, which is a medical image of interest and/or a medical image of interest, from the medical image acquisition unit 60, and detects a region of interest as a detection result 131a.
  • the classification classifier 132 receives a medical image 130a, which is a medical image of interest and/or a medical image of interest and/or a medical image of interest, from the medical image acquisition unit 60, and produces a classification result 132a that is a result of distinguishing a region of interest. to output Either one or both of the detection and discrimination of the region of interest may be performed.
  • the detection classifier 131 and the discrimination classifier 132 are preferably learning models that have been trained using teacher image data.
  • the addition of the detection result and discrimination result to the teacher image data may be performed by a skilled doctor, or may be automatically performed by a device other than the detection classifier 131 and the discrimination classifier 132 .
  • information output by the detection classifier 131, the discrimination classifier 132, or another learning model is added to the medical image, and used as teacher image data for learning of the detection classifier 131 and the discrimination classifier 132. may be used.
  • deep learning for machine learning to generate learning models
  • machine learning includes decision trees, support vector machines, random forests, regression analysis, supervised learning, semi-unsupervised learning, unsupervised learning, reinforcement learning, deep reinforcement learning, learning using neural networks, Includes generative adversarial networks and the like.
  • the detection result output by the detection classifier 131 and the discrimination result output by the discrimination classifier 132 are transmitted to the display control unit 70 .
  • the display control unit 70 preferably performs control to display the detection result or the discrimination result in the target section and/or the semi-target section. You may perform control which displays a detection result and a discrimination result.
  • the target section 72 on the display image 71 shows the detection result of detecting the region of interest 135 from the sub-target medical image 134
  • the target medical image 136 displayed in the target section 72 is A frame 137 is displayed around the included region of interest 135 .
  • a marker 138 indicating an approximate position within the medical image of interest 136 is displayed.
  • the marker 138 indicates that there is a region of interest 135 on the lower right.
  • the method of indicating the detection result is not limited to this, such as a circle or polygonal enclosure, an on-screen warning display, or a warning sound.
  • a caption 139 indicating the discrimination result is displayed in the target section 72 on the display image 71 when the discrimination result obtained by discriminating the region of interest 135 from the semi-interest medical image 134 is displayed.
  • the caption 139 is displayed as "tumor”.
  • the marker 138 may be displayed in a different color according to the discrimination result. For example, the marker 138 is displayed in yellow when the discrimination result is neoplastic, and is displayed in green when it is non-neoplastic.
  • the method of indicating the identification result is not limited to this, such as a circle or polygonal enclosure, a warning display on the screen, or a warning sound.
  • the display image 71 is provided with a still image segment 140 for displaying a still image and a text information segment 141 for displaying text information, as shown in FIG. may
  • an extended processor device 150 may be provided, and the lesion recognition unit 130 may be provided in the extended processor device 150.
  • the medical image of interest 151 and/or the medical image of interest 152 are input to the lesion recognition unit 130 of the extended processor device 150, and as a result, detection results and/or discrimination results of the region of interest 135 are output.
  • the detection results and/or discrimination results are transmitted to the processor device 14 and displayed in the attention section 72 or the semi-interest section 73 .
  • the display image 71 shows the detection result of the region of interest 135 .
  • the present invention is not limited to this, and other medical devices such as an ultrasonic imaging device and a radiation imaging device can be used.
  • a device may be used.
  • a rigid scope or a flexible scope may be used as the endoscope 12 .
  • the endoscope system 10 includes a central control unit 50, a medical image acquisition unit 60, a display control unit 70, an overall display frame rate recognition unit 90, a division display frame rate setting unit 100, a division imaging frame rate setting unit 110, an interpolation
  • a part or all of the frame image generation unit 120 and the lesion recognition unit 130 can be provided in an image processing device that communicates with the processor device 14 and cooperates with the endoscope system 10, for example.
  • it can be provided in a diagnosis support device that acquires an image captured by the endoscope 12 directly from the endoscope system 10 or indirectly from the PACS.
  • the endoscope system 10 is connected to various inspection devices such as the first inspection device, the second inspection device, .
  • the central control unit 50, the medical image acquisition unit 60, the display control unit 70, the overall display frame rate recognition unit 90, the section display frame rate setting unit 100, the section shooting frame rate setting unit 110, the interpolation frame image generation unit 120 and the lesion recognition unit 130, the hardware structure of a processing unit that executes various processes is various processors as shown below.
  • the circuit configuration is changed after manufacturing such as CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), which is a general-purpose processor that executes software (program) and functions as various processing units.
  • Programmable Logic Devices which are processors, dedicated electric circuits, which are processors with circuit configurations specially designed to perform various types of processing, and the like.
  • One processing unit may be configured by one of these various processors, and may be configured by a combination of two or more processors of the same type or different types (for example, multiple FPGAs or a combination of a CPU and an FPGA).
  • a plurality of processing units may be configured by one processor.
  • a plurality of processing units may be configured by one processor.
  • this processor functions as a plurality of processing units.
  • SoC System On Chip
  • SoC System On Chip
  • the hardware structure of these various processors is, more specifically, an electric circuit in the form of a combination of circuit elements such as semiconductor elements.
  • the hardware structure of the storage unit is a storage device such as an HDD (hard disc drive) or SSD (solid state drive).

Abstract

Provided are an endoscope system, a processor device, and an operation method therefor with which, when switching and illuminating with multiple light rays and displaying multiple images obtained by the illumination of the respective light rays, images of particular interest can be observed smoothly. A processor device (14) performs control to automatically switch between first illumination light and second illumination light, acquires a first illumination light image and a second illumination light image, and generates a display image (71) comprising a section of interest (72) and a secondary section of interest (73). The display frame rate for the section of interest is higher than the display frame rate for the secondary section of interest, and the display frame rate for the section of interest and the display frame rate for the secondary section of interest are within the range of the overall display frame rate.

Description

内視鏡システム、プロセッサ装置及びその作動方法Endoscope system, processor device and operating method thereof
 本発明は、複数種類の画像を取得し、複製の区画を有する画像に異なる画像を表示する内視鏡システム、プロセッサ装置及びその作動方法に関する。 The present invention relates to an endoscope system, a processor device, and an operating method thereof that acquire multiple types of images and display different images on images having duplicate sections.
 内視鏡検査では、診断の目的に応じて、互いに波長域が異なる複数の照明光を被写体に照明することが行われている。例えば、消化器の粘膜を自然な色で観察することができる通常光に加えて、表層血管など表層の情報と深層血管など深層の情報を得るために、表層にまで深達度を有する短波光と、深層にまで深達度を有する中波長光を切り替えて照明し、通常光の照明により得られる通常光画像と、特殊光画像として、短波光の照明により得られる表層画像と、中波長光の照明により得られる深層画像とを取得する。 In endoscopy, the subject is illuminated with multiple illumination lights with different wavelength ranges depending on the purpose of diagnosis. For example, in addition to normal light that can observe the mucous membrane of the digestive tract in natural colors, short-wave light that penetrates deep into the superficial layer in order to obtain surface layer information such as superficial blood vessels and deep layer information such as deep blood vessels. , the middle wavelength light having a depth of penetration to the deep layer is switched and illuminated, and the normal light image obtained by the normal light illumination, the surface layer image obtained by the short wave light illumination as the special light image, and the medium wavelength light Acquire a depth image obtained by illumination of
 表層血管を強調する第1照明光と、深層血管を強調する第2照明光を切り替えて照明し、第1照明光の照明により得られる第1特殊観察画像と、第2照明光の照明により得られる第2特殊観察画像を切り替えて順次表示する技術が知られている(特許文献1)。 A first special observation image obtained by switching between a first illumination light that emphasizes superficial blood vessels and a second illumination light that emphasizes deep blood vessels, and a first special observation image obtained by illumination with the first illumination light and a first special observation image obtained by illumination with the second illumination light There is known a technique for sequentially displaying second special observation images by switching them (Patent Document 1).
国際公開第2020/158165号WO2020/158165
 複数種類の照明光を用いて得た画像を、独立して同時に観察したい需要がある。また、複数種類の画像を取得しても、場面によって注目したい画像の種類は異なる。例えば、消化管内で内視鏡を進める場合や、スクリーニングを行う場合は、自然な光と明るさによって管腔内の構造を把握しやすい通常光画像を注視できた方がよい。一方、病変部の構造を精査して分類を行いたい場合は、特殊光画像を注視できた方がよい。このように、特に注目したい画像がある場合、特に注目したい画像について、表示のカクつきがなくスムーズな観察ができることが求められている。 There is a demand for independent and simultaneous observation of images obtained using multiple types of illumination light. Also, even if a plurality of types of images are acquired, the type of image to be focused on differs depending on the scene. For example, when advancing an endoscope in the gastrointestinal tract or performing screening, it is better to be able to gaze at a normal light image that makes it easy to grasp the intraluminal structure with natural light and brightness. On the other hand, when it is desired to examine the structure of the lesion and classify it, it is better to be able to gaze at the special light image. Thus, when there is an image of particular interest, it is required that the image of particular interest can be observed smoothly without display stuttering.
 本発明は、複数の光を切り替えて照明し、各光の照明により得られる複数の画像を表示する場合において、特に注目したい画像について、スムーズな観察を行うことができる内視鏡システム、プロセッサ装置及びその作動方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention provides an endoscope system and a processor device that enable smooth observation of an image of particular interest when illuminating by switching a plurality of lights and displaying a plurality of images obtained by illuminating with each light. and a method of operating the same.
 本発明のプロセッサ装置は、光源用プロセッサと、画像処理用プロセッサとを備えるプロセッサ装置である。光源用プロセッサは、第1照明光で照明された被写体を撮像する第1照明期間と、第1照明光とスペクトルが異なる第2照明光で照明された被写体を撮像する第2照明期間とを自動的に切り替える制御を行う。画像処理用プロセッサは、第1照明期間に医療画像として第1照明光画像を取得し、第2照明期間に医療画像として第2照明光画像を取得し、第1照明光画像及び/又は第2照明光画像を表示するための表示用画像を生成し、表示用画像は、注目区画と、準注目区画とを有し、単位時間当たりに注目区画に表示する医療画像の数である注目区画表示フレームレート及び単位時間当たりに準注目区画に表示する医療画像の数である準注目区画表示フレームレートは、単位時間当たりに表示する表示用画像の数である全体表示フレームレートの範囲内であり、注目区画表示フレームレートは、準注目区画表示フレームレートより高く、注目区画に表示する医療画像は、第1照明光画像又は第2照明光画像である。 A processor device of the present invention is a processor device that includes a light source processor and an image processing processor. The light source processor automatically selects a first illumination period during which the subject illuminated with the first illumination light is imaged and a second illumination period during which the subject is imaged with the second illumination light having a spectrum different from that of the first illumination light. switch control. The image processing processor acquires a first illumination light image as a medical image during the first illumination period, acquires a second illumination light image as a medical image during the second illumination period, and obtains the first illumination light image and/or the second illumination light image. A display image for displaying an illumination light image is generated, and the display image has a target segment and a semi-target segment, and is the number of medical images displayed in the target segment per unit time. The frame rate and the quasi-region-of-interest display frame rate, which is the number of medical images displayed in the quasi-region of interest per unit time, are within the range of the overall display frame rate, which is the number of display images to be displayed per unit time, The target section display frame rate is higher than the semi-target section display frame rate, and the medical image displayed in the target section is the first illumination light image or the second illumination light image.
 画像処理用プロセッサは、注目区画に表示する医療画像である注目医療画像を、単位時間当たりに取得する注目医療画像の数である注目区画撮像フレームレートに基づいて取得し、準注目区画に表示する医療画像である準注目医療画像を、単位時間当たりに取得する準注目医療画像の数である準注目区画撮像フレームレートに基づいて取得することが好ましい。 The image processing processor acquires a medical image of interest, which is a medical image to be displayed in the section of interest, based on a section-of-interest imaging frame rate, which is the number of medical images of interest acquired per unit time, and displays the image in the sub-section of interest. It is preferable to acquire quasi-interest medical images, which are medical images, based on a quasi-interest segment imaging frame rate, which is the number of quasi-interest medical images acquired per unit time.
 画像処理用プロセッサは、注目区画表示フレームレートが注目区画撮像フレームレートより高い場合、注目医療画像を用い、注目区画に表示するための補間フレーム画像を生成することが好ましい。画像処理用プロセッサは、準注目区画表示フレームレートが準注目区画撮像フレームレートより高い場合、準注目医療画像を用い、準注目区画に表示するための補間フレーム画像を生成することが好ましい。 When the target section display frame rate is higher than the target section imaging frame rate, the image processing processor preferably uses the target medical image to generate an interpolated frame image for display in the target section. It is preferable that the image processing processor uses the quasi-interest medical image to generate an interpolated frame image to be displayed in the quasi-interest zone when the quasi-zone-of-interest display frame rate is higher than the quasi-interest zone imaging frame rate.
 補間フレーム画像は、少なくとも2枚以上の注目医療画像又は準注目医療画像を用い、加算平均方式によって生成されることが好ましい。 The interpolated frame image is preferably generated by an arithmetic mean method using at least two medical images of interest or semi-interested medical images.
 補間フレーム画像は、少なくとも2枚以上の注目医療画像又は準注目医療画像を用い、移動ベクトル方式によって生成されることが好ましい。 The interpolated frame image is preferably generated by the motion vector method using at least two or more target medical images or quasi-target medical images.
 補間フレーム画像は、注目医療画像又は準注目医療画像を複製することによって生成されることが好ましい。 The interpolated frame image is preferably generated by duplicating the medical image of interest or the medical image of semi-interest.
 画像処理用プロセッサは、注目区画表示フレームレートが注目区画撮像フレームレートより低い場合、注目区画に表示する注目医療画像を選択することが好ましい。画像処理用プロセッサは、準注目区画表示フレームレートが準注目区画撮像フレームレートより低い場合、準注目区画に表示する準注目医療画像を選択することが好ましい。 The image processing processor preferably selects a medical image of interest to be displayed in the section of interest when the display frame rate of the section of interest is lower than the imaging frame rate of the section of interest. Preferably, the image processing processor selects the sub-interest medical image to be displayed in the semi-interest segment when the semi-interest segment display frame rate is lower than the semi-interest segment imaging frame rate.
 画像処理用プロセッサは、注目医療画像及び/又は準注目医療画像から、ユーザーが着目すべき領域である関心領域を検出し、及び/又は準注目医療画像から関心領域を鑑別することが好ましい。 It is preferable that the image processing processor detects a region of interest, which is a region that the user should pay attention to, from the medical image of interest and/or the medical image of secondary interest, and/or discriminates the region of interest from the medical image of secondary interest.
 画像処理用プロセッサは、注目区画及び/又は準注目区画に、関心領域を検出した結果である検出結果及び/又は関心領域を鑑別した結果である鑑別結果を表示する制御を行うことが好ましい。 The image processing processor preferably controls the display of the detection result, which is the result of detecting the region of interest, and/or the discrimination result, which is the result of discriminating the region of interest, in the section of interest and/or the sub-section of interest.
 画像処理用プロセッサは、前記準注目区画の表示と非表示を切り替える制御を行うことが好ましい。画像処理用プロセッサは、注目区画及び準注目区画の表示用画像に占める大きさを変更する制御を行うことが好ましい。 It is preferable that the image processing processor performs control to switch display and non-display of the semi-interest section. It is preferable that the image processing processor performs control to change the size of the target section and the sub-target section in the display image.
 画像処理用プロセッサは、第1照明光又は少なくとも1種類以上の第2照明光のうちのいずれか1つにより照明された被写体を撮像して医療画像を取得するモノ発光モードと、第1照明期間と、第2照明期間とを自動的に切り替えて被写体を撮像して医療画像を取得するマルチ発光モードとを、切り替える制御を行うことが好ましい。 The image processing processor captures a subject illuminated by any one of the first illumination light and at least one type of second illumination light to obtain a medical image, and a first illumination period. and a multi-emission mode in which a medical image is obtained by capturing an object by automatically switching between the second illumination period and the second illumination period.
 本発明のプロセッサ装置の作動方法は、第1照明光で照明された被写体を撮像する第1照明期間と、第1照明光とスペクトルが異なる第2照明光で照明された被写体を撮像する第2照明期間とを自動的に切り替える制御を行うステップと、第1照明期間に医療画像として第1照明光画像を取得するステップと、第2照明期間に医療画像として第2照明光画像を取得するステップと、第1照明光画像及び/又は第2照明光画像を表示するための表示用画像を生成するステップと、を備える。表示用画像は、注目区画と、準注目区画とを有し、単位時間当たりに注目区画に表示する医療画像の数である注目区画表示フレームレート及び単位時間当たりに準注目区画に表示する医療画像の数である準注目区画表示フレームレートは、単位時間当たりに表示する表示用画像の数である全体表示フレームレートの範囲内であり、注目区画表示フレームレートは、準注目区画表示フレームレートより高く、注目区画に表示する医療画像は、第1照明光画像又は第2照明光画像である。 A method of operating a processor device according to the present invention comprises a first illumination period for capturing an image of a subject illuminated by first illumination light, and a second illumination period for capturing an image of the subject illuminated by second illumination light having a spectrum different from that of the first illumination light. obtaining a first illumination light image as a medical image during the first illumination period; and obtaining a second illumination light image as a medical image during the second illumination period. and generating a display image for displaying the first illumination light image and/or the second illumination light image. The display image has a target segment and a semi-target segment, and has a target segment display frame rate, which is the number of medical images displayed in the target segment per unit time, and a medical image displayed in the semi-target segment per unit time. is within the range of the overall display frame rate, which is the number of display images to be displayed per unit time, and the target section display frame rate is higher than the secondary target section display frame rate. , the medical image displayed in the section of interest is the first illumination light image or the second illumination light image.
 本発明の内視鏡システムは、上記のプロセッサ装置と、光源装置と、内視鏡と、を備える。 An endoscope system of the present invention includes the above-described processor device, light source device, and endoscope.
 本発明によれば、複数の光を切り替えて照明し、各光の照明により得られる複数の画像を切り替えて表示する場合において、特に注目したい画像について、スムーズな観察を行うことができる内視鏡システム、プロセッサ装置及びその作動方法を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, an endoscope capable of smoothly observing an image of particular interest when illuminating by switching a plurality of lights and switching and displaying a plurality of images obtained by illuminating with each light. A system, processor apparatus and method of operation thereof can be provided.
内視鏡システムの構成の説明図である。1 is an explanatory diagram of a configuration of an endoscope system; FIG. 内視鏡システムの機能を示すブロック図である。1 is a block diagram showing functions of an endoscope system; FIG. 第1照明光のスペクトルを示すグラフである。It is a graph which shows the spectrum of 1st illumination light. 第2照明第1スペクトル光のスペクトルSPを示すグラフである。It is a graph which shows the spectrum SP of the 2nd illumination 1st spectrum light. 第2照明第2スペクトル光のスペクトルSQを示すグラフである。It is a graph which shows the spectrum SQ of the 2nd illumination 2nd spectrum light. 第2照明第3スペクトル光のスペクトルSRを示すグラフである。It is a graph which shows the spectrum SR of the 2nd illumination 3rd spectrum light. 第2照明第4スペクトル光のスペクトルSSを示すグラフである。It is a graph which shows the spectrum SS of the 2nd illumination 4th spectrum light. マルチ発光モード時の第1発光パターンを示す説明図である。FIG. 10 is an explanatory diagram showing a first light emission pattern in a multi-light emission mode; マルチ発光モード時の第2発光パターンを示す説明図である。FIG. 10 is an explanatory diagram showing a second light emission pattern in multi-light emission mode; マルチ発光モード時の第3発光パターンを示す説明図である。FIG. 11 is an explanatory diagram showing a third light emission pattern in multi-light emission mode; 表示用画像の例を示す画像図である。FIG. 4 is an image diagram showing an example of a display image; 表示制御部の機能を示すブロック図である。4 is a block diagram showing functions of a display control unit; FIG. 表示用画像設定画面の例を示す画像図である。FIG. 11 is an image diagram showing an example of a display image setting screen; 注目区画と準注目区画が同じ大きさである場合の表示用画像を示す画像図である。FIG. 10 is an image diagram showing a display image when the target section and the semi-target section have the same size; 区画表示フレームレート設定画面の例を示す画像図である。FIG. 9 is an image diagram showing an example of a section display frame rate setting screen; 注目区画に第1照明光画像を、準注目区画に第2照明光画像を表示する場合の表示用画像を示す画像図である。FIG. 10 is an image diagram showing a display image when displaying the first illumination light image in the section of interest and the second illumination light image in the sub-section of interest; 区画撮像フレームレート設定画面の例を示す画像図である。FIG. 11 is an image diagram showing an example of a section imaging frame rate setting screen; 加算平均方式を示す説明図である。It is explanatory drawing which shows an addition averaging method. 移動ベクトル方式を示す説明図である。FIG. 4 is an explanatory diagram showing a motion vector method; 単純コピー方式を示す説明図である。FIG. 4 is an explanatory diagram showing a simple copy method; 表示する注目医療画像又は準注目医療画像の選択について示す説明図である。FIG. 4 is an explanatory diagram showing selection of a target medical image or a quasi-target medical image to be displayed; 病変認識部の機能を示すブロック図である。4 is a block diagram showing functions of a lesion recognition unit; FIG. 医療画像を検出用分類に入力した場合、検出結果を出力することを示す説明図である。FIG. 10 is an explanatory diagram showing that a detection result is output when a medical image is input as a classification for detection; 医療画像を鑑別用分類に入力した場合、鑑別結果を出力することを示す説明図である。FIG. 10 is an explanatory diagram showing that when a medical image is input to classification for discrimination, a discrimination result is output; 検出結果を表示する場合の表示用画像を示す画像図である。FIG. 11 is an image diagram showing a display image when displaying a detection result; 鑑別結果を表示する場合の表示用画像を示す画像図である。It is an image diagram showing a display image when displaying a discrimination result. 静止画像及び文字情報を表示する場合の表示用画像を示す画像図である。FIG. 10 is an image diagram showing a display image when displaying a still image and character information; 拡張プロセッサ装置を設けた場合に表示用画像を表示する例の説明図である。FIG. 10 is an explanatory diagram of an example of displaying a display image when an extended processor device is provided;
 図1に示すように、内視鏡システム10は、内視鏡12、光源装置13、プロセッサ装置14、ディスプレイ15及びユーザーインターフェース16を備える。内視鏡12は、光源装置13と光学的に接続され、かつ、プロセッサ装置14と電気的に接続される。 As shown in FIG. 1, the endoscope system 10 includes an endoscope 12, a light source device 13, a processor device 14, a display 15 and a user interface 16. The endoscope 12 is optically connected to the light source device 13 and electrically connected to the processor device 14 .
 内視鏡12は、挿入部12a、操作部12b、湾曲部12c及び先端部12dを有している。挿入部12aは、被写体の体内に挿入される。操作部12bは、挿入部12aの基端部分に設けられる。湾曲部12c及び先端部12dは、挿入部12aの先端側に設けられる。湾曲部12cは、操作部12bのアングルノブ12eを操作することにより湾曲動作する。先端部12dは、湾曲部12cの湾曲動作によって所望の方向に向けられる。挿入部12aから先端部12dにわたって、処置具などを挿通するための鉗子チャンネル(図示しない)を設けている。処置具は、鉗子口12jから鉗子チャンネル内に挿入する。 The endoscope 12 has an insertion section 12a, an operation section 12b, a bending section 12c and a distal end section 12d. The insertion portion 12a is inserted into the body of the subject. The operation portion 12b is provided at the proximal end portion of the insertion portion 12a. The curved portion 12c and the distal end portion 12d are provided on the distal end side of the insertion portion 12a. The bending portion 12c is bent by operating the angle knob 12e of the operation portion 12b. The distal end portion 12d is directed in a desired direction by the bending motion of the bending portion 12c. A forceps channel (not shown) for inserting a treatment tool or the like is provided from the insertion portion 12a to the distal end portion 12d. The treatment instrument is inserted into the forceps channel from the forceps port 12j.
 内視鏡12の内部には、被写体像を結像するための光学系、及び、被写体に照明光を照射するための光学系が設けられる。操作部12bには、アングルノブ12e、モード切替スイッチ12f、静止画像取得指示スイッチ12h及びズーム操作部12iが設けられる。モード切替スイッチ12fは、観察モードの切り替え操作に用いる。静止画像取得指示スイッチ12hは、被写体の静止画像の取得指示に用いる。ズーム操作部12iは、ズームレンズ42の操作に用いる。 An optical system for forming a subject image and an optical system for illuminating the subject with illumination light are provided inside the endoscope 12 . The operation unit 12b is provided with an angle knob 12e, a mode changeover switch 12f, a still image acquisition instruction switch 12h, and a zoom operation unit 12i. The mode changeover switch 12f is used for an observation mode changeover operation. A still image acquisition instruction switch 12h is used to instruct acquisition of a still image of a subject. A zoom operation unit 12 i is used for operating the zoom lens 42 .
 光源装置13は、照明光を発生する。ディスプレイ15は、医療画像を表示する。医療画像には、撮像に用いる照明光が異なる第1照明光画像及び第2照明光画像、並びに、表示する区画が異なる注目医療画像及び準注目医療画像が含まれる。ユーザーインターフェース16は、キーボード、マウス、マイク、タブレット、及びタッチペン等を有し、機能設定等の入力操作を受け付ける。プロセッサ装置14は、内視鏡システム10のシステム制御を行い、さらに、内視鏡12から送信された画像信号に対して画像処理等を行う。 The light source device 13 generates illumination light. The display 15 displays medical images. The medical images include a first illumination light image and a second illumination light image that use different illumination light for imaging, and a target medical image and a sub-target medical image that differ in display sections. The user interface 16 has a keyboard, mouse, microphone, tablet, touch pen, and the like, and receives input operations such as function settings. The processor device 14 performs system control of the endoscope system 10 and further performs image processing and the like on image signals transmitted from the endoscope 12 .
 図2において、光源装置13は、光源部20、光源部20を制御する光源用プロセッサ21、及び、光路結合部22を備えている。光源部20は、複数の半導体光源を有し、これらをそれぞれ点灯又は消灯する。また、複数の半導体光源を点灯する場合は、各半導体光源の発光量を制御することにより、被写体を照明する照明光を発する。光源部20は、V-LED(Violet Light Emitting Diode)20a、B-LED(Blue Light Emitting Diode)20b、G-LED(Green Light Emitting Diode)20c、及びR-LED(Red Light Emitting Diode)20dの4色のLEDを有する。光源部20又は光源用プロセッサ21は内視鏡12に内蔵されていてもよい。光源用プロセッサ21はプロセッサ装置14に内蔵されていてもよい。 2, the light source device 13 includes a light source unit 20 , a light source processor 21 that controls the light source unit 20 , and an optical path coupling unit 22 . The light source unit 20 has a plurality of semiconductor light sources, which are turned on or off. Also, when lighting a plurality of semiconductor light sources, the illumination light for illuminating the subject is emitted by controlling the amount of light emitted from each semiconductor light source. The light source unit 20 includes a V-LED (Violet Light Emitting Diode) 20a, a B-LED (Blue Light Emitting Diode) 20b, a G-LED (Green Light Emitting Diode) 20c, and an R-LED (Red Light Emitting Diode) 20d. It has four color LEDs. The light source unit 20 or the light source processor 21 may be built in the endoscope 12 . The light source processor 21 may be incorporated in the processor device 14 .
 内視鏡システム10は、モノ発光モード及びマルチ発光モードを備えており、モード切替スイッチ12fを操作することで、中央制御部50を介してモードが切り替えられる。モノ発光モードは、同一スペクトルの照明光を連続的に照射し、観察対象である被写体を照明するモードである。マルチ発光モードは、異なるスペクトルの複数の照明光を、特定のパターンに従って切り替えながら照射し、被写体を照明するモードである。照明光には、第1照明光と、第1照明光とスペクトルが異なる第2照明光が含まれる。第1照明光は、被写体の全体に明るさを与えてスクリーニング観察するために用いる通常光(白色光などの広帯域の光)である。第2照明光は、被写体である粘膜の腺管や血管等の特定の構造を強調するために用いる、複数種類の特殊光である。モノ発光モードでは、第1照明光と第2照明光を切り替えるようにできることが好ましい。 The endoscope system 10 has a mono-emission mode and a multi-emission mode, and the modes are switched via the central control unit 50 by operating the mode switching switch 12f. The mono light emission mode is a mode in which the illumination light of the same spectrum is continuously emitted to illuminate the object to be observed. The multi-light emission mode is a mode in which a plurality of illumination lights with different spectra are emitted while being switched according to a specific pattern to illuminate the subject. The illumination light includes first illumination light and second illumination light having a spectrum different from that of the first illumination light. The first illumination light is normal light (broadband light such as white light) used for screening observation by giving brightness to the entire subject. The second illumination light is a plurality of types of special light used for emphasizing specific structures such as ducts and blood vessels of mucous membranes that are subjects. In the mono light emission mode, it is preferable to be able to switch between the first illumination light and the second illumination light.
 第1照明光を発する場合、図3に示すように、V-LED20aは、中心波長405±10nm、波長範囲380~420nmの紫色光Vを発生する。B-LED20bは、中心波長450±10nm、波長範囲420~500nmの青色光Bを発生する。G-LED20cは、波長範囲が480~600nmに及ぶ緑色光Gを発生する。R-LED20dは、中心波長620~630nmで、波長範囲が600~650nmに及ぶ赤色光Rを発生する。 When emitting the first illumination light, as shown in FIG. 3, the V-LED 20a emits violet light V with a central wavelength of 405±10 nm and a wavelength range of 380-420 nm. The B-LED 20b generates blue light B with a central wavelength of 450±10 nm and a wavelength range of 420-500 nm. The G-LED 20c generates green light G with a wavelength range of 480-600 nm. The R-LED 20d emits red light R with a central wavelength of 620-630 nm and a wavelength range of 600-650 nm.
 第2照明光には、例えば、表層血管を強調する第2照明第1スペクトル光、表層血管よりも浅い極表層血管を強調する第2照明第2スペクトル光、酸化ヘモグロビンと還元ヘモグロビンの吸光係数の差を利用した酸素飽和度画像を生成するための第2照明第3スペクトル光、及び、複数の被写体範囲の間の色差を拡張した色差拡張画像を生成するための第2照明第4スペクトル光がある。 The second illumination light includes, for example, second illumination first spectrum light that emphasizes superficial blood vessels, second illumination second spectrum light that emphasizes superficial blood vessels shallower than superficial blood vessels, and absorption coefficients of oxyhemoglobin and deoxyhemoglobin. A second illumination third spectrum light for generating an oxygen saturation image using a difference, and a second illumination fourth spectrum light for generating a color difference extended image extending the color difference between a plurality of subject ranges. be.
 第2照明第1スペクトル光を発する場合、図4に示すように、紫色光Vが他の色の青色光B、緑色光G、赤色光Rよりもピークの強度が大きいスペクトルSPの光を発する。第2照明第2スペクトル光を発する場合、図5に示すように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数に差がある波長域の光である紫色光Vを含むスペクトルSQの光を発する。第2照明第3スペクトル光を発する場合、図6に示すように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数に差がある波長域の光である青緑色光B(ピーク波長は例えば470~480nm)を含むスペクトルSRの光を発する。第2照明第4スペクトル光を発する場合、図7に示すように、紫色光V及び青色光Bのピーク強度が、緑色光G及び赤色光Rのピーク強度よりも大きいスペクトルSSの光を発する。なお、第2照明光の種類はこれに限られない。 When the second illumination first spectrum light is emitted, as shown in FIG. 4, the violet light V emits light of the spectrum SP having a higher peak intensity than the blue light B, green light G, and red light R of other colors. . When the second illumination second spectrum light is emitted, as shown in FIG. 5, light of spectrum SQ including violet light V, which is light in a wavelength range where the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are different, is emitted. When the second illumination third spectrum light is emitted, as shown in FIG. 6, blue-green light B (peak wavelength is, for example, 470 to 480 nm), which is light in a wavelength range in which the absorption coefficients of oxygenated hemoglobin and reduced hemoglobin are different, is emitted. emits light with a spectrum SR containing When the second illumination fourth spectrum light is emitted, as shown in FIG. 7, the peak intensity of the violet light V and the blue light B is higher than the peak intensities of the green light G and the red light R, and the light of the spectrum SS is emitted. In addition, the kind of 2nd illumination light is not restricted to this.
 光源用プロセッサ21は、4色の紫色光V、青色光B、緑色光G、赤色光Rの光量を独立に制御し、光量を変えて第1照明光及び第2照明光(例えば、第2照明第1スペクトル光、第2照明第2スペクトル光、第2照明第3スペクトル光、第2照明第4スペクトル光)を発光させる。 The light source processor 21 independently controls the light amounts of the four colors of violet light V, blue light B, green light G, and red light R, and changes the light amounts to produce the first illumination light and the second illumination light (for example, the second illumination light). illumination first spectrum light, second illumination second spectrum light, second illumination third spectrum light, second illumination fourth spectrum light) are emitted.
 モノ発光モードの場合、1フレーム毎に、同一スペクトルの照明光を連続的に発光する。例えば、1フレーム毎に第1照明光を被写体に照明して撮像することによって、自然な色合いの第1照明光画像をディスプレイ15に表示する。また、1フレーム毎に第2照明光を被写体に照明して撮像することによって、特定の構造を強調した第2照明光画像をディスプレイ15に表示する。なお、フレームとは、発光のタイミングから撮像センサ43による画像信号の読み出し完了までの間の期間を少なくとも含む期間の単位のことをいう。 In the case of mono light emission mode, illumination light with the same spectrum is continuously emitted for each frame. For example, by illuminating the subject with the first illumination light for each frame and capturing an image, the display 15 displays the first illumination light image with natural colors. In addition, by illuminating the subject with the second illumination light for each frame and capturing an image, the second illumination light image emphasizing a specific structure is displayed on the display 15 . Note that the term “frame” refers to a unit of period including at least the period from the timing of light emission to the completion of readout of the image signal by the imaging sensor 43 .
 マルチ発光モードの場合、特定の発光パターンに従って、特定のフレームF毎に、紫色光V、青色光B、緑色光G、赤色光Rの光量を変化させる制御が行われる。発光パターンの例を以下に挙げる。例えば、第1発光パターンでは、図8に示すように、第1照明光L1により被写体を照明する第1照明期間Pe1に、2フレーム分の第1照明光L1を発光し、第2照明光L2により被写体を照明する第2照明期間Pe2に、1フレーム分の第2照明光(第2照明第1スペクトル光L2SP)を順次発光するパターンを繰り返す。図において、矢印は時間が進む方向を示す。 In the case of the multi-light emission mode, control is performed to change the light amounts of the violet light V, the blue light B, the green light G, and the red light R for each specific frame F according to a specific light emission pattern. Examples of emission patterns are given below. For example, in the first light emission pattern, as shown in FIG. 8, the first illumination light L1 for two frames is emitted during the first illumination period Pe1 in which the subject is illuminated with the first illumination light L1, and the second illumination light L2 is emitted. In the second illumination period Pe2 in which the subject is illuminated by , the pattern of sequentially emitting one frame of the second illumination light (the second illumination first spectral light L2SP) is repeated. In the figure, arrows indicate the direction in which time advances.
 第2発光パターンでは、図9に示すように、第1照明期間Pe1に2フレーム分、第1照明光L1を発光し、第2照明期間Pe2に1フレーム分、第2照明光L2(第2照明第1スペクトル光L2SP)を発光し、次いで、第1照明期間Pe1に2フレーム分、第1照明光L1を発光し、第2照明期間Pe2に1フレーム分、第2照明光L2(第2照明第1スペクトル光L2SQ)を発光する。第2発光パターンでは、第1発光パターンとは異なり、第1照明光の後に発光する第2照明光のスペクトルを毎回変更させる。 In the second light emission pattern, as shown in FIG. 9, two frames of the first illumination light L1 are emitted during the first illumination period Pe1, and one frame of the second illumination light L2 (the second illumination light L2) is emitted during the second illumination period Pe2. Illumination first spectrum light L2SP) is emitted, then two frames of the first illumination light L1 are emitted during the first illumination period Pe1, and one frame of the second illumination light L2 (the second illumination light L2 is emitted during the second illumination period Pe2). Illumination first spectrum light L2SQ) is emitted. In the second light emission pattern, unlike the first light emission pattern, the spectrum of the second illumination light emitted after the first illumination light is changed each time.
 第3発光パターンでは、図10に示すように、第1照明期間Pe1に1フレーム分第1照明光L1を発光し、第2照明期間Pe2に第2照明光L2を4フレーム分発光するパターンを繰り返す。このとき、第2照明期間Pe2において、第2照明光L2は、第2照明第1スペクトル光L2SP、第2照明第2スペクトル光L2SQ、第2照明第3スペクトル光L2SR、第2照明第4スペクトル光L2SSと、1フレームごとにスペクトルが異なる第2照明光L2を発光するよう自動的に切り替えられる。 In the third light emission pattern, as shown in FIG. 10, the first illumination light L1 for one frame is emitted during the first illumination period Pe1, and the second illumination light L2 for four frames is emitted during the second illumination period Pe2. repeat. At this time, in the second illumination period Pe2, the second illumination light L2 includes a second illumination first spectral light L2SP, a second illumination second spectral light L2SQ, a second illumination third spectral light L2SR, and a second illumination fourth spectral light. It is automatically switched to emit the light L2SS and the second illumination light L2 having a different spectrum for each frame.
 マルチ発光モードでは、照明光を自動的に切り替えることで、消化管内のほぼ同じ位置において異なる照明光で照明した被写体の画像を取得することができる。マルチ発光モードでは、後述する撮影フレームレート設定、及び発光パターン設定に従い、光源用プロセッサ21が各光源の光量調節を行って撮影を行う。発光パターンは、上記の3パターンに限られず、後述するように任意に設定できる。 In multi-light mode, by automatically switching the illumination light, it is possible to acquire images of the subject illuminated with different illumination lights at almost the same position in the digestive tract. In the multi-light emission mode, the light source processor 21 adjusts the light amount of each light source and performs shooting according to the shooting frame rate setting and the light emission pattern setting, which will be described later. The light emission pattern is not limited to the above three patterns, and can be arbitrarily set as described later.
 モノ発光モード及びマルチ発光モードにおいて、ユーザーが医療画像を静止画像として取得したい場合は、静止画像取得指示スイッチ12hを操作することにより、静止画像取得指示に関する信号が内視鏡12、光源装置13、及びプロセッサ装置14に送られる。 In the mono-emission mode and the multi-emission mode, when the user wants to acquire a medical image as a still image, by operating the still image acquisition instruction switch 12h, a signal relating to the still image acquisition instruction is sent to the endoscope 12, the light source device 13, and the like. and sent to the processor unit 14 .
 各LED20a~20d(図2参照)が発する光は、ミラーやレンズ等で構成される光路結合部22を介して、ライトガイド23に入射される。ライトガイド23は、光路結合部22からの光を、内視鏡12の先端部12dまで伝搬する。 Light emitted from each of the LEDs 20a to 20d (see FIG. 2) is incident on the light guide 23 via the optical path coupling section 22 composed of mirrors, lenses, and the like. The light guide 23 propagates the light from the optical path coupling portion 22 to the distal end portion 12 d of the endoscope 12 .
 内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ31を有しており、ライトガイド23によって伝搬した照明光は照明レンズ31を介して被写体に照射される。一方、光源部20が内視鏡12の先端部12dに内蔵される場合は、ライトガイドを介さずに照明光学系の照明レンズを介して被写体に向けて出射される。撮像光学系30bは、対物レンズ41、撮像センサ43を有する。照明光を照射したことによる被写体からの光は、対物レンズ41及びズームレンズ42を介して撮像センサ43に入射する。これにより、撮像センサ43に被写体の像が結像される。ズームレンズ42は被写体を拡大するためのレンズであり、ズーム操作部12iを操作することによって、テレ端とワイド端と間を移動する。 The distal end portion 12d of the endoscope 12 is provided with an illumination optical system 30a and an imaging optical system 30b. The illumination optical system 30 a has an illumination lens 31 , and the illumination light propagated by the light guide 23 is applied to the subject through the illumination lens 31 . On the other hand, when the light source unit 20 is built in the distal end portion 12d of the endoscope 12, the light is emitted toward the object through the illumination lens of the illumination optical system without the light guide. The imaging optical system 30 b has an objective lens 41 and an imaging sensor 43 . Light from a subject irradiated with illumination light enters an imaging sensor 43 via an objective lens 41 and a zoom lens 42 . As a result, an image of the subject is formed on the imaging sensor 43 . The zoom lens 42 is a lens for enlarging a subject, and is moved between the tele end and the wide end by operating the zoom operation section 12i.
 撮像センサ43は、原色系のカラーセンサであり、青色カラーフィルタを有するB画素(青色画素)、緑色カラーフィルタを有するG画素(緑色画素)、及び、赤色カラーフィルタを有するR画素(赤色画素)の3種類の画素を備える。 The imaging sensor 43 is a primary color sensor, and includes B pixels (blue pixels) having blue color filters, G pixels (green pixels) having green color filters, and R pixels (red pixels) having red color filters. and three types of pixels.
 また、撮像センサ43は、CCD(Charge-Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)であることが好ましい。撮像用プロセッサ44は、撮像センサ43を制御する。具体的には、撮像用プロセッサ44により撮像センサ43の信号読み出しを行うことによって、撮像センサ43から画像信号が出力される。出力された画像信号は、プロセッサ装置14の医療画像取得部60に送信される。 Also, the imaging sensor 43 is preferably a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The imaging processor 44 controls the imaging sensor 43 . Specifically, an image signal is output from the imaging sensor 43 by reading the signal of the imaging sensor 43 by the imaging processor 44 . The output image signal is transmitted to the medical image acquisition unit 60 of the processor device 14 .
 医療画像取得部60は、受信したカラー画像に対して、欠陥補正処理、オフセット処理、デモザイク処理、マトリクス処理、ホワイトバランスの調整、ガンマ変換処理、及びYC変換処理等の各種信号処理を行う。次いで、3×3のマトリクス処理、階調変換処理、3次元LUT(Look Up Table)処理等の色変換処理、色彩強調処理、空間周波数強調等の構造強調処理を含む画像処理を施すことで、第1照明光に対する第1照明光画像、及び、第2照明光に対する第2照明光画像を取得する。 The medical image acquisition unit 60 performs various signal processing such as defect correction processing, offset processing, demosaicing processing, matrix processing, white balance adjustment, gamma conversion processing, and YC conversion processing on the received color image. Next, by performing image processing including 3×3 matrix processing, gradation conversion processing, color conversion processing such as three-dimensional LUT (Look Up Table) processing, color enhancement processing, and structural enhancement processing such as spatial frequency enhancement, A first illumination light image for the first illumination light and a second illumination light image for the second illumination light are acquired.
 また、医療画像取得部60は、第2照明光が第2照明第3スペクトル光であった場合、撮像センサ43からの画像信号比に基づいて、第2照明光画像として酸素飽和度画像を生成する。さらに、医療画像取得部60は、第2照明光が第2照明第4スペクトル光であった場合、撮像センサ43からの画像信号比に基づいて、色差を拡張する処理を行った色差拡張画像を第2照明光画像として生成する。 Further, when the second illumination light is the second illumination third spectrum light, the medical image acquisition unit 60 generates an oxygen saturation image as the second illumination light image based on the image signal ratio from the imaging sensor 43. do. Furthermore, when the second illumination light is the second illumination fourth spectrum light, the medical image acquisition unit 60 obtains a color difference expanded image that has undergone color difference expansion processing based on the image signal ratio from the imaging sensor 43. A second illumination light image is generated.
 プロセッサ装置14は、中央制御部50、医療画像取得部60、表示制御部70、全体表示フレームレート認識部90、区画表示フレームレート設定部100、区画撮影フレームレート設定部110、補間フレーム画像生成部120、及び、病変認識部130を含む(図2参照)。 The processor device 14 includes a central control unit 50, a medical image acquisition unit 60, a display control unit 70, an overall display frame rate recognition unit 90, a section display frame rate setting unit 100, a section photographing frame rate setting unit 110, and an interpolation frame image generation unit. 120 and a lesion recognition unit 130 (see FIG. 2).
 プロセッサ装置14においては、光源用プロセッサ21及び画像処理用プロセッサ(図示しない)で構成される中央制御部50により、プログラム用メモリ内のプログラムが動作することで、医療画像取得部60、表示制御部70、全体表示フレームレート認識部90、区画表示フレームレート設定部100、区画撮影フレームレート設定部110、補間フレーム画像生成部120、及び、病変認識部130の機能が実現される。 In the processor device 14, the programs in the program memory are operated by the central control unit 50 composed of the light source processor 21 and the image processing processor (not shown), thereby the medical image acquisition unit 60 and the display control unit 70, the functions of the entire display frame rate recognition unit 90, the section display frame rate setting unit 100, the section imaging frame rate setting unit 110, the interpolation frame image generation unit 120, and the lesion recognition unit 130 are realized.
 医療画像取得部60が取得した第1照明光画像及び/又は第2照明光画像は、表示制御部70に送信される。表示制御部70は、第1照明光画像及び/又は第2照明光画像を表示する、図11に示すような表示用画像71を生成し、ディスプレイ15に表示させる。表示用画像71は、1の注目区画72と、少なくとも1以上の準注目区画73を有する。図11の例では、表示用画像71に、注目区画72と1の準注目区画73が存在する。注目区画72は、医師等のユーザーが最も注目したい種類の医療画像を表示する区画である。準注目区画73は、注目区画に表示した医療画像以外の種類の医療画像を表示する区画である。 The first illumination light image and/or the second illumination light image acquired by the medical image acquisition unit 60 are transmitted to the display control unit 70. The display control unit 70 generates a display image 71 as shown in FIG. 11 that displays the first illumination light image and/or the second illumination light image, and causes the display 15 to display it. The display image 71 has one section of interest 72 and at least one or more sub-sections of interest 73 . In the example of FIG. 11 , the display image 71 has a section of interest 72 and a sub-section of interest 73 . The target section 72 is a section that displays the type of medical image that a user such as a doctor wants to focus on most. The semi-interest section 73 is a section that displays a type of medical image other than the medical image displayed in the interest section.
 注目区画に表示する医療画像は、第1照明光画像又は第2照明光画像のいずれかを選択できる。注目区画72及び準注目区画73に表示する医療画像の種類は、図12に示す、表示制御部70の表示用画像設定部80を介して設定できる。ユーザーは、図13に例示する、表示用画像設定画面81で、注目区画72及び準注目区画73に表示する医療画像の種類と、準注目区画73の数をタブ82によって設定できる。図を見やすくするため、符号は1つのタブ82にのみ付している。 Either the first illumination light image or the second illumination light image can be selected as the medical image to be displayed in the section of interest. The types of medical images to be displayed in the attention section 72 and the semi-interest section 73 can be set via the display image setting section 80 of the display control section 70 shown in FIG. The user can set the type of medical image to be displayed in the attention section 72 and the semi-attention section 73 and the number of the semi-attention sections 73 using the tab 82 on the display image setting screen 81 illustrated in FIG. Only one tab 82 is labeled for clarity.
 図13に示す、表示用画像設定画面81の具体例では、準注目区画73の数は1である。注目区画72に表示する医療画像の種類は第1照明光画像である。準注目区画73に表示する医療画像の種類は第2照明光画像であり、この場合の第2照明光画像は、第2照明第1スペクトル光を用いて撮像されている。 In the specific example of the display image setting screen 81 shown in FIG. 13, the number of semi-interest sections 73 is one. The type of medical image displayed in the section of interest 72 is the first illumination light image. The type of medical image displayed in the semi-interest section 73 is the second illumination light image, and the second illumination light image in this case is captured using the second illumination first spectrum light.
 準注目区画に表示する医療画像(準注目医療画像)は、表示と非表示を切り替えられることが好ましい。準注目区画73に表示する準注目医療画像の表示又は非表示の設定は、例えば、表示用画像設定画面81で行う。図13に示す具体例では、準注目区画に表示する準注目医療画像の表示が「有」となっている。準注目医療画像の表示と非表示の切り替えは、表示用画像71上で行ってもよい。 It is preferable that the medical image displayed in the semi-interest section (quasi-interest medical image) can be switched between display and non-display. The display or non-display setting of the semi-interest medical image to be displayed in the semi-interest section 73 is performed on the display image setting screen 81, for example. In the specific example shown in FIG. 13, the display of the quasi-interest medical image displayed in the quasi-interest segment is "present". Switching between display and non-display of the quasi-interest medical image may be performed on the display image 71 .
 注目区画72及び準注目区画73の表示用画像71に占める大きさは、任意に変更できることが好ましい。注目区画72及び準注目区画73の大きさや配置等のレイアウトは、表示用画像設定画面81のレイアウト設定ボタン83を選択して設定してもよい。例えば、注目区画72を準注目区画73よりも大きくしてもよく(図11参照)、図14のように、注目区画72と準注目区画73を同じ大きさにしてもよい。注目区画72及び準注目区画73の大きさや配置に関しては、レイアウトのテンプレートを用意して選択するようにしてもよく、ユーザーが表示用画像設定画面81に表示された表示用画像の表示例84の上で、ピンチイン、ピンチアウト、二本指ドラッグ等により直接操作することで設定してもよい。 It is preferable that the sizes of the target section 72 and the semi-target section 73 occupying the display image 71 can be arbitrarily changed. The layout such as the size and arrangement of the target section 72 and the semi-target section 73 may be set by selecting the layout setting button 83 on the display image setting screen 81 . For example, the target section 72 may be larger than the semi-target section 73 (see FIG. 11), or, as shown in FIG. 14, the target section 72 and the semi-target section 73 may be the same size. Regarding the size and arrangement of the target section 72 and the semi-target section 73, a layout template may be prepared and selected. The setting may be performed by directly operating by pinching in, pinching out, dragging with two fingers, or the like.
 注目区画及び準注目区画の表示のフレームレートは、ディスプレイ15の全体表示フレームレートの範囲内でそれぞれ設定できる。まず、全体表示フレームレート認識部90が、プロセッサ装置14に接続されたディスプレイ15のフレームレートを全体表示フレームレートとして認識し、区画表示フレームレート設定部100に送信する。全体表示フレームレートとは、ディスプレイ15が単位時間当たりに表示する表示用画像の数である。なお、注目区画表示フレームレート及び準注目区画表示フレームレートは、ディスプレイ15のリフレッシュレートの範囲内で設定してもよい。リフレッシュレートとは、単位時間当たりに表示のための処理を行うことができる表示用画像の枚数を指す。 The frame rate for displaying the target section and the semi-target section can each be set within the range of the overall display frame rate of the display 15 . First, the overall display frame rate recognition section 90 recognizes the frame rate of the display 15 connected to the processor device 14 as the overall display frame rate, and transmits it to the section display frame rate setting section 100 . The overall display frame rate is the number of display images displayed by the display 15 per unit time. Note that the target section display frame rate and the semi-target section display frame rate may be set within the range of the refresh rate of the display 15 . The refresh rate refers to the number of display images that can be processed for display per unit time.
 区画表示フレームレート設定部100は、全体表示フレームレートの範囲内で、注目区画表示フレームレート、及び、準注目区画表示フレームレートを設定する。注目区画表示フレームレートは、単位時間当たりに注目区画に表示する医療画像の数である。準注目区画表示フレームレートは、単位時間当たりに準注目区画に表示する医療画像の数である。 The section display frame rate setting unit 100 sets the target section display frame rate and the semi-target section display frame rate within the range of the overall display frame rate. The target section display frame rate is the number of medical images displayed in the target section per unit time. The quasi-region-of-interest display frame rate is the number of medical images displayed in the quasi-region of interest per unit time.
 注目区画に表示する医療画像をなるべく多くすることでカクつきのないスムーズな動画像を得るため、注目区画表示フレームレートは、準注目区画表フレームレートより高く設定される。なお、準注目区画表フレームレートを注目区画表示フレームレートより高く設定することや、準注目区画表フレームレートと注目区画表示フレームレートを同値に設定することもできる。以降、注目区画表示フレームレート及び準注目区画表示フレームレートのことを区別せずまとめて指す用語として、「区画表示フレームレート」を用いる。 In order to obtain smooth moving images without stuttering by displaying as many medical images as possible in the target segment, the target segment display frame rate is set higher than the sub-target segment table frame rate. It is also possible to set the quasi-focused partition table frame rate higher than the focused partition display frame rate, or set the quasi-focused partition table frame rate and the focused partition display frame rate to the same value. Hereinafter, the term "section display frame rate" will be used as a collective term that does not distinguish between the target section display frame rate and the semi-target section display frame rate.
 区画表示フレームレートは、区画表示フレームレート設定画面101を介して設定する。図15に例示する、区画表示フレームレート設定画面101では、全体表示フレームレート表示欄102に、全体表示フレームレートが表示されている。ユーザーは、注目区画表示フレームレート設定欄103と、準注目区画表示フレームレート設定欄104に、全体表示フレームレート表示欄102に表示されている範囲内で、それぞれ数値を入力し、区画表示フレームレート設定を行うことができる。 The partition display frame rate is set via the partition display frame rate setting screen 101. In the block display frame rate setting screen 101 illustrated in FIG. 15, the overall display frame rate is displayed in the overall display frame rate display column 102 . The user enters numerical values in the target section display frame rate setting field 103 and the sub-target section display frame rate setting field 104 within the range displayed in the overall display frame rate display field 102, and the section display frame rate is displayed. Settings can be made.
 図15の例では、全体表示フレームレートが60fps(frames per second)である。この場合、注目区画の注目区画表示フレームレート、及び、「準注目区画(1)」「準注目区画(2)」で示した準注目区画の準注目区画表示フレームレートを、それぞれ60fpsを越えない範囲内で設定できる。図15の例では、注目区画表示フレームレートは60fps、準注目区画表示フレームレートはそれぞれ15fpsに設定されている。注目区画表示フレームレート設定欄103及び準注目区画表示フレームレート設定欄104への入力方法は、キーボードや音声を用いたユーザー入力、タブを用いた入力、予め定めた値の自動入力等があり、これに限られない。 In the example of FIG. 15, the overall display frame rate is 60 fps (frames per second). In this case, the division-of-interest display frame rate of the division of interest and the division-of-interest display frame rate of the divisions of interest indicated by "section of interest (1)" and "section of interest (2)" do not exceed 60 fps, respectively. Can be set within the range. In the example of FIG. 15, the target section display frame rate is set to 60 fps, and the semi-target section display frame rate is set to 15 fps. Input methods for the target section display frame rate setting field 103 and the semi-target section display frame rate setting field 104 include user input using a keyboard or voice, input using tabs, automatic input of predetermined values, and the like. It is not limited to this.
 表示制御部70は、区画表示フレームレート設定部100の注目区画表示フレームレート、及び、準注目区画表示フレームレートの設定に従い、表示用画像71の、注目区画72と準注目区画73のそれぞれに医療画像(第1照明光画像又は第2照明光画像)を表示する。図16に示す、表示用画像71の例では、注目区画72に第1照明光画像が、準注目区画73に第2照明光画像(斜線で示す)が表示されている。 The display control unit 70 sets the target section display frame rate and the quasi-target section display frame rate of the section display frame rate setting unit 100, and sets the target section 72 and the quasi-target section 73 of the display image 71. An image (first illumination light image or second illumination light image) is displayed. In the example of the display image 71 shown in FIG. 16, the first illumination light image is displayed in the target section 72 and the second illumination light image (indicated by diagonal lines) is displayed in the semi-target section 73 .
 注目区画表示フレームレート、及び、準注目区画表示フレームレートをそれぞれ設定できる構成は、複数種類の医療画像を順次得ることができるマルチ発光モードにおいて特に有効である。上記構成により、複数種類の光を切り替えて照明し、各照明光の照明により得られる複数の画像を切り替えて表示する場合において、特に注目したい画像の種類を注目区画に表示し、注目区画のフレームレートを準注目区画のフレームレートより高くすることで、注目したい画像についてカクつきがなくスムーズな観察を行うことができる。 A configuration in which the target section display frame rate and the semi-interest section display frame rate can be set respectively is particularly effective in the multi-emission mode in which multiple types of medical images can be sequentially obtained. With the above configuration, in the case of illuminating by switching a plurality of types of light and displaying a plurality of images obtained by switching the illumination of each illumination light, the type of image that is particularly desired is displayed in the target section, and the frame of the target section is displayed. By setting the rate to be higher than the frame rate of the quasi-interest section, the image of interest can be observed smoothly without stuttering.
 区画撮影フレームレート設定部110は、注目区画撮像フレームレート、及び、準注目区画撮像フレームレートを設定する。全体撮像フレームレートは、撮像センサ43の性能によって決定される撮像フレームレートであって、単位時間当たりに取得することができる医療画像の数である。注目区画に表示する医療画像を注目医療画像とし、準注目区画に表示する医療画像を準注目医療画像とすると、注目区画撮像フレームレートとは、単位時間当たりに取得する注目医療画像の数である。また、準注目区画撮像フレームレートとは、単位時間当たりに取得する準注目医療画像の数である。注目区画撮像フレームレートは、注目区画表示フレームレート以上又は以下になるように設定可能である。同様に、準注目区画撮像フレームレートは、準注目区画表示フレームレート以上又は以下になるように設定可能である。注目区画撮像フレームレートと準注目区画撮像フレームレートを足し合わせた合計が、全体撮像フレームレートとなる。 The section shooting frame rate setting unit 110 sets the target section shooting frame rate and the sub-target section shooting frame rate. The overall imaging frame rate is an imaging frame rate determined by the performance of the imaging sensor 43, and is the number of medical images that can be acquired per unit time. Assuming that the medical image displayed in the section of interest is the medical image of interest, and the medical image displayed in the section of secondary interest is the medical image of secondary interest, the imaging frame rate of the section of interest is the number of medical images of interest acquired per unit time. . Also, the quasi-part-of-interest imaging frame rate is the number of quasi-interest medical images acquired per unit time. The section-of-interest imaging frame rate can be set to be higher or lower than the section-of-interest display frame rate. Similarly, the quasi-section-of-interest imaging frame rate can be set to be higher or lower than the quasi-section-of-interest display frame rate. The sum of the section-of-interest imaging frame rate and the sub-section-of-interest imaging frame rate is the overall imaging frame rate.
 以降、注目区画撮像フレームレート及び準注目区画撮像フレームレートのことを区別せずまとめて指す用語として、「区画撮像フレームレート」を用いる。区画撮像フレームレートは、区画撮像フレームレート設定画面111を介して設定する。図17に例示する、区画撮像フレームレート設定画面111の全体撮像フレームレート表示欄112には、全体撮像フレームレートが表示されている。ユーザーは、全体撮像フレームレート表示欄112に表示されている範囲内で、注目区画撮像フレームレート設定欄113と、準注目区画撮像フレームレート設定欄114に数値を入力し、区画撮像フレームレート設定を行うことができる。 Hereinafter, the term "section imaging frame rate" will be used as a term that collectively refers to the target section imaging frame rate and the semi-target section imaging frame rate without distinguishing between them. The division imaging frame rate is set via the division imaging frame rate setting screen 111 . The overall imaging frame rate is displayed in the overall imaging frame rate display field 112 of the section imaging frame rate setting screen 111 illustrated in FIG. 17 . The user enters numerical values into the target section imaging frame rate setting field 113 and the sub-target section imaging frame rate setting field 114 within the range displayed in the overall imaging frame rate display field 112 to set the section imaging frame rate. It can be carried out.
 図17の例では、全体撮像フレームレートが60fpsであり、注目区画(に表示する注目医療画像)の注目区画撮像フレームレートを30fps、「準注目区画(1)」「準注目区画(2)」で示した各準注目区画(に表示する準注目医療画像)の準注目区画撮像フレームレートを15fpsとそれぞれ設定している。 In the example of FIG. 17, the overall imaging frame rate is 60 fps, the target segment imaging frame rate of the target segment (the target medical image to be displayed in) is 30 fps, and the "semi-target segment (1)" and "semi-target segment (2)" The semi-interest segment imaging frame rate of each semi-interest segment (the semi-interest medical image displayed in) indicated by is set to 15 fps.
 また、区画撮像フレームレート設定画面111では、注目医療画像及び準注目医療画像を取得するために用いる照明光の種類を設定することができる。注目医療画像及び準注目医療画像を取得するために用いる照明光の種類は、それぞれタブ82で設定することができる。図17の例では、注目医療画像は第1照明光、1つめの準注目医療画像は第2照明第1スペクトル光、2つめの準注目医療画像は第2照明第2スペクトル光を用いることが、それぞれ設定されている。すなわち、注目医療画像は第1照明光画像、1つめの準注目医療画像は第2照明第1スペクトル光で照明された第2照明光画像、2つめの準注目医療画像は第2照明第2スペクトル光で照明された第2照明光画像である。 In addition, on the sectional imaging frame rate setting screen 111, it is possible to set the type of illumination light used to acquire the medical image of interest and the medical image of secondary interest. The type of illumination light used to acquire the medical image of interest and the medical image of sub-interest can be set on tabs 82, respectively. In the example of FIG. 17, it is possible to use the first illumination light for the medical image of interest, the second illumination first spectrum light for the first quasi-interest medical image, and the second illumination second spectrum light for the second quasi-interest medical image. , respectively. That is, the medical image of interest is the first illumination light image, the first quasi-interest medical image is the second illumination light image illuminated with the second illumination, first spectrum light, and the second quasi-interest medical image is the second illumination light image. 2 is a second illumination light image illuminated with spectral light;
また、区画撮像フレームレート設定画面111では、注目医療画像及び準注目医療画像を取得するために用いる照明光の発光パターンを、発光パターン設定欄115で設定することができる。図17の例では、発光パターンは、「1、1、2、1、1、3」と設定されている。これは、各フレームFにおいて「第1照明光、第1照明光、第2照明第1スペクトル光、第1照明光、第1照明光、第2照明第2スペクトル光」の発光パターンを繰り返して順次発光することを示している。区画撮像フレームレート設定画面111で設定された発光パターンの設定は、中央制御部50を介して光源用プロセッサ21に伝えられる。 In addition, on the sectional imaging frame rate setting screen 111, the emission pattern of the illumination light used to acquire the medical image of interest and the quasi-interest medical image can be set in the emission pattern setting field 115. FIG. In the example of FIG. 17, the light emission pattern is set as "1, 1, 2, 1, 1, 3". In each frame F, the light emission pattern of "first illumination light, first illumination light, second illumination first spectrum light, first illumination light, first illumination light, second illumination second spectrum light" is repeated. This indicates that the lights are emitted sequentially. The setting of the light emission pattern set on the section imaging frame rate setting screen 111 is transmitted to the light source processor 21 via the central control unit 50 .
 全体表示フレームレート、区画表示フレームレート、全体撮像フレームレート、及び、区画撮像フレームレートの具体例を表1に示す。表1では、「表示フレームレート」の下段の「全体」は「全体表示フレームレート」、「注目区画」は「注目区画表示フレームレート」、「準注目区画」は「準注目区画表示フレームレート」を指す。また、「撮像フレームレート」の下段の「全体」は「全体撮像フレームレート」、「注目区画」は「注目区画撮像フレームレート」、「準注目区画」は「準注目区画撮像フレームレート」を指す。数値のみが書かれている欄の単位はfpsである。また、表1の実施例1から6では、注目医療画像は第1照明光画像、準注目医療画像は第2照明光画像とする。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows specific examples of the overall display frame rate, section display frame rate, overall imaging frame rate, and section imaging frame rate. In Table 1, "whole" in the lower part of "display frame rate" is "whole display frame rate", "attention section" is "attention section display frame rate", and "semi-attention section" is "semi-attention section display frame rate". point to In addition, "whole" in the lower part of "imaging frame rate" indicates "whole imaging frame rate", "interested section" indicates "interested section imaging frame rate", and "semi-interested section" indicates "semi-interested section imaging frame rate". . The unit of the column in which only numerical values are written is fps. In Examples 1 to 6 in Table 1, the medical image of interest is the first illumination light image, and the quasi-interest medical image is the second illumination light image.
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1は、全体表示フレームレート(60fps)が全体撮像フレームレート(45fps)より高く、注目区画撮像フレームレート(30fps)が、準注目区画撮像フレームレート(15fps)より高い例である。 Example 1 in Table 1 is an example in which the overall display frame rate (60 fps) is higher than the overall imaging frame rate (45 fps), and the target section imaging frame rate (30 fps) is higher than the sub-target section imaging frame rate (15 fps). .
 表1の実施例2は、全体表示フレームレート(60fps)が全体撮像フレームレート(45fps)より高く、注目区画撮像フレームレート(15fps)が、準注目区画撮像フレームレート(30fps)より低い例である。「準注目区画の備考」欄の「15fps×2」は、第2照明光が2種類あり、それぞれの種類の第2照明光に対する第2照明光画像が15fpsで取得されることを示す。実施例2では、2つの準注目区画に、それぞれ15fpsの準注目区画撮像フレームレートで撮像された第2照明光画像が表示される。例えば、一方の準注目区画(準注目区画表示フレームレートが15fps)には、第2照明第1スペクトル光を用いて、準注目区画撮像フレームレートが15fpsで撮像した第2照明光画像が表示される。もう一方の準注目区画(区画表示フレームレートが15fps)には、第2照明第2スペクトル光を用いて、準注目区画撮像フレームレートが15fpsで撮像した第2照明光画像が表示される。 Example 2 in Table 1 is an example in which the overall display frame rate (60 fps) is higher than the overall imaging frame rate (45 fps), and the target section imaging frame rate (15 fps) is lower than the sub-target section imaging frame rate (30 fps). . "15 fps×2" in the "remarks of semi-interest section" column indicates that there are two types of second illumination light, and the second illumination light image for each type of second illumination light is acquired at 15 fps. In Example 2, the second illumination light images captured at the sub-section-of-interest imaging frame rate of 15 fps are displayed in the two quasi-sections of interest. For example, in one quasi-zone of interest (quasi-zone-of-interest display frame rate is 15 fps), a second illumination light image captured at a quasi-zone-of-interest imaging frame rate of 15 fps using the second illumination first spectral light is displayed. be. In the other quasi-target section (section display frame rate is 15 fps), a second illumination light image captured at a quasi-target section imaging frame rate of 15 fps using the second illumination second spectrum light is displayed.
 表1の実施例3は、全体表示フレームレート(60fps)が全体撮像フレームレート(90fps)より低く、注目区画撮像フレームレート(60fps)が、準注目区画撮像フレームレート(30fps)より高い例である。「準注目区画の備考」欄の「15fps×2」は、第2照明光が2種類あり、それぞれの種類の第2照明光に対する第2照明光画像が15fpsで取得されることを示す。準注目医療画像の区画撮像フレームレートと区画フレームレートの関係は、実施例2と同様である。 Example 3 in Table 1 is an example in which the overall display frame rate (60 fps) is lower than the overall imaging frame rate (90 fps), and the target section imaging frame rate (60 fps) is higher than the sub-target section imaging frame rate (30 fps). . "15 fps×2" in the "remarks of semi-interest section" column indicates that there are two types of second illumination light, and the second illumination light image for each type of second illumination light is acquired at 15 fps. The relationship between the sectional imaging frame rate and the sectional frame rate of the quasi-interest medical image is the same as in the second embodiment.
 表1の実施例4は、全体表示フレームレート(60fps)が全体撮像フレームレート(90fps)より低く、注目区画撮像フレームレート(30fps)が、準注目区画撮像フレームレート(60fps)より低い例である。「準注目区画の備考」欄の「15fps×4」は、第2照明光が4種類あり、それぞれの種類の第2照明光に対する第2照明光画像が15fpsで取得されることを示す。準注目医療画像の区画撮像フレームレートと区画フレームレートの関係は、実施例2の、2つの準注目区画に、2種類の第2照明光を用いてそれぞれ撮像した第2照明光画像を表示する例と同様である。すなわち、4つの準注目区画(準注目区画表示フレームレートが15fps)に、4種類の第2照明光を用いて、それぞれ15fpsの準注目区画撮像フレームレートで撮像した第2照明光画像を表示する。 Example 4 in Table 1 is an example in which the overall display frame rate (60 fps) is lower than the overall imaging frame rate (90 fps), and the target section imaging frame rate (30 fps) is lower than the sub-target section imaging frame rate (60 fps). . "15 fps×4" in the "remarks of semi-interest section" column indicates that there are four types of second illumination light, and the second illumination light image for each type of second illumination light is acquired at 15 fps. The relationship between the section imaging frame rate and the section frame rate of the quasi-interest medical image is the second illumination light image captured using two types of second illuminating light in the two quasi-interest zones of the second embodiment. Same as example. That is, in four quasi-zones of interest (quasi-zone-of-interest display frame rate is 15 fps), four types of second illumination light are used to display second illumination light images captured at a quasi-zone-of-interest imaging frame rate of 15 fps. .
 表1の実施例5は、準注目区画表示フレームレート(45fps)が、注目区画撮像フレームレート(15fps)より高い例である。準注目区画に、後述する補間フレーム画像が必要である例である。 Example 5 in Table 1 is an example in which the semi-target section display frame rate (45 fps) is higher than the target section imaging frame rate (15 fps). This is an example in which an interpolated frame image, which will be described later, is required for the semi-interest section.
 表1の実施例6は、注目区画表示フレームレート(60fps)が、注目区画撮像フレームレート(90fps)より低い例である。後述する、注目区画に表示する注目医療画像の選択が必要である例である。 Example 6 in Table 1 is an example in which the target section display frame rate (60 fps) is lower than the target section imaging frame rate (90 fps). This is an example in which it is necessary to select a medical image of interest to be displayed in the section of interest, which will be described later.
 実施例1から6のように、全体撮像フレームレートと全体表示フレームレートの大小関係に関わらず、特に注目したい画像を注目区画に設定し、注目区画のフレームレートを準注目区画のフレームレートより高くすることで、特に注目したい画像のスムーズな観察を行うことができる。 As in Embodiments 1 to 6, regardless of the magnitude relationship between the overall imaging frame rate and the overall display frame rate, an image of particular interest is set as the target section, and the frame rate of the target section is set higher than the frame rate of the semi-target section. By doing so, it is possible to smoothly observe an image of particular interest.
 補間フレーム画像生成部120は、注目医療画像を用いて、注目区画に表示する補間フレーム画像を生成することが好ましい。具体的には、実施例1、実施例2、実施例4、実施例5のように、注目区画表示フレームレートが、注目区画撮像フレームレートより高い場合に補間フレーム画像を生成する。すなわち、撮像した注目医療画像が、注目区画表示フレームレートを満たさない場合に補間フレーム画像を生成する。 The interpolation frame image generation unit 120 preferably generates an interpolation frame image to be displayed in the target section using the target medical image. Specifically, as in Examples 1, 2, 4, and 5, when the target section display frame rate is higher than the target section imaging frame rate, an interpolation frame image is generated. That is, an interpolated frame image is generated when the imaged medical image of interest does not satisfy the display frame rate of the section of interest.
 また、補間フレーム画像生成部120は、準注目医療画像を用いて、準注目区画に表示する補間フレーム画像を生成することが好ましい。具体的には、実施例6のように、準注目区画表示フレームレートが、準注目区画撮像フレームレートより高い場合に補間フレーム画像を生成する。すなわち、撮像した準注目医療画像が、準注目区画表示フレームレートを満たさない場合に、補間フレーム画像を生成する。 Also, the interpolated frame image generation unit 120 preferably generates an interpolated frame image to be displayed in the sub-interest section using the semi-interest medical image. Specifically, as in the sixth embodiment, an interpolation frame image is generated when the quasi-section-of-interest display frame rate is higher than the quasi-section-of-interest imaging frame rate. That is, when the captured quasi-interest medical image does not satisfy the quasi-interest segment display frame rate, an interpolated frame image is generated.
 上記構成により、区画表示フレームレートが、区画撮像フレームレートより高い場合に補間フレーム画像を生成して表示することで、特に注目したい画像を注目区画に設定し、特に注目したい画像を補間する画像を表示することで、スムーズな観察を行うことができる。なお、実施例3では、注目区画表示フレームレート及び注目区画撮像フレームレートが60fpsとなっているため、補間フレーム画像は生成されず、撮像された注目医療画像が、順次、注目区画に表示される。 With the above configuration, an interpolated frame image is generated and displayed when the section display frame rate is higher than the section imaging frame rate, so that an image of particular interest is set as the section of interest, and an image to interpolate the image of particular interest is obtained. By displaying, smooth observation can be performed. In the third embodiment, since the target section display frame rate and the target section imaging frame rate are 60 fps, the interpolated frame image is not generated, and the imaged target medical images are sequentially displayed in the target section. .
 補間フレーム画像は、少なくとも2枚以上の注目医療画像又は準注目医療画像を用い、加算平均方式によって生成されることが好ましい。加算平均方式は、過去に撮像した複数フレームの注目医療画像又は準注目医療画像を重ね合わせることで補間フレーム画像を生成する方式である。 The interpolated frame image is preferably generated by an arithmetic mean method using at least two medical images of interest or semi-interested medical images. The averaging method is a method of generating an interpolated frame image by superimposing a plurality of frames of interest medical images or quasi-interest medical images captured in the past.
 加算平均方式について、注目医療画像が第1照明光画像である場合の具体例(図18)を用いて説明する。図18の例で示すように、照明光が、発光パターン1回分Pa1で、第1照明光L1の発光される第1照明期間に、注目医療画像121が2フレーム分撮像され(図18では撮像フレーム1及び2で示す)、第2照明光L2の発光される第2照明期間に、準注目医療画像122が1フレーム分撮像される(図18では撮像フレーム3で示す)。この場合、補間フレーム画像生成部120は、撮像フレーム1と2を重ね合わせることで、補間フレーム画像123(図18では補間フレーム「1+2」で示す)を生成する。表示フレームは、撮像フレーム1、補間フレーム「1+2」、撮像フレーム2……の順番となり、この順番で注目区画に画像が表示される。以降、同様にして、発光パターン1回分で撮像フレームの4、5が注目医療画像121として取得され、撮像フレームの6が準注目医療画像122として取得され、補間フレーム「2+4」で補間フレーム画像123が生成される。 The averaging method will be described using a specific example (FIG. 18) in which the medical image of interest is the first illumination light image. As shown in the example of FIG. 18, two frames of the target medical image 121 are captured during the first illumination period in which the illumination light is emitted in the light emission pattern Pa1 once and the first illumination light L1 is emitted (in FIG. Indicated by frames 1 and 2), one frame of the quasi-interest medical image 122 is captured during the second illumination period in which the second illumination light L2 is emitted (indicated by imaging frame 3 in FIG. 18). In this case, the interpolation frame image generation unit 120 generates an interpolation frame image 123 (indicated by interpolation frame “1+2” in FIG. 18) by overlapping captured frames 1 and 2. FIG. The display frames are displayed in the order of imaged frame 1, interpolation frame "1+2", imaged frame 2, and so on, and the images are displayed in the target section in this order. After that, in the same way, imaging frames 4 and 5 are acquired as the target medical image 121 for one emission pattern, imaging frame 6 is acquired as the secondary target medical image 122, and the interpolation frame image 123 is acquired at the interpolation frame "2+4". is generated.
 なお、図18では図の簡略化のために2フレーム分の注目医療画像121から1フレーム分の補間フレーム画像123を生成しているが、3フレーム以上の注目医療画像121を重ね合わせて補間フレーム画像123を生成してもよい。また、表1の実施例5のように、準注目区画表示フレームレートが、準注目区画撮像フレームレートより高い場合であって、準注目医療画像から補間フレーム画像123を生成する場合も同様にして補間フレーム画像を生成する。 In FIG. 18, one frame of interpolation frame image 123 is generated from two frames of attention medical image 121 for the sake of simplification. An image 123 may be generated. Also, as in Example 5 of Table 1, when the sub-region-of-interest display frame rate is higher than the sub-region-of-interest imaging frame rate, and the interpolated frame image 123 is generated from the sub-interest medical image, the same procedure is performed. Generate an interpolated frame image.
 加算平均方式で、注目医療画像121を重ね合わせて補間フレーム画像123を生成する場合、複数の注目医療画像121を同じ割合で重ね合わせる単純加算平均方式によって生成してもよく、注目医療画像121によって重み付けをして重ね合わせる加重加算平均方式によって生成してもよい。また、表1の実施例5のように、準注目医療画像から補間フレーム画像123を生成する場合も同様にして補間フレーム画像を生成する。 When the interpolated frame image 123 is generated by superimposing the target medical images 121 by the averaging method, it may be generated by the simple averaging method by superimposing the plurality of target medical images 121 at the same ratio. It may be generated by a weighted averaging method in which weighting is performed and superimposition is performed. Also, as in Example 5 of Table 1, when generating the interpolated frame image 123 from the quasi-interest medical image, the interpolated frame image is generated in the same manner.
 上記構成によって、区画表示フレームレートを補う補間フレーム画像を生成する場合に、画像の重ね合わせによって自然な見た目の補間フレーム画像を生成することができる。 With the above configuration, when generating an interpolation frame image that compensates for the block display frame rate, it is possible to generate a natural-looking interpolation frame image by superimposing the images.
 また、補間フレーム画像は、少なくとも2枚以上の注目医療画像又は準注目医療画像を用い、移動ベクトル方式によって生成されることが好ましい。移動ベクトル方式は、過去に撮像した複数フレームの注目医療画像間又は準注目医療画像間に写る被写体の移動ベクトルを加味して、注目医療画像又は準注目医療画像を重ね合わせることで補間フレーム画像を生成する方式である。 Also, the interpolated frame image is preferably generated by the motion vector method using at least two or more target medical images or quasi-target medical images. In the motion vector method, interpolated frame images are created by superimposing the target medical images or the quasi-interest medical images in consideration of the motion vector of the subject captured between the target medical images or the quasi-interest medical images of multiple frames captured in the past. It is a method to generate.
 移動ベクトル方式によって補間フレーム画像を生成する場合、補間フレーム画像生成部120は、まず、複数の注目医療画像又は準注目医療画像の画像信号を解析し、例えば、パターンマッチング法を用いて、前後フレームの画像間で同一の観察部位に対応する画素を探索し、この画素の空間的距離(移動量)および方向(移動方向)を移動ベクトルとして算出する。次に、移動ベクトルを加味して各フレームの画像に対する重み付けを行い、注目医療画像又は準注目医療画像を重ね合わせる。 When generating an interpolated frame image by the motion vector method, the interpolated frame image generation unit 120 first analyzes image signals of a plurality of target medical images or quasi-target medical images, and, for example, uses a pattern matching method to generate the preceding and following frames. are searched for a pixel corresponding to the same observation site between the images, and the spatial distance (movement amount) and direction (movement direction) of this pixel are calculated as a movement vector. Next, the image of each frame is weighted by adding the motion vector, and the target medical image or the quasi-target medical image is superimposed.
 移動ベクトル方式の具体例を説明する。例えば、図19に示すように、時系列順に取得された注目医療画像124、125、126を3枚重ね合わせる場合、1フレーム目の注目医療画像124と2フレーム目の注目医療画像125の間の被写体Sの移動ベクトル127aと、2フレーム目の注目医療画像125と3フレーム目の注目医療画像126の間の被写体Sの移動ベクトル127bをそれぞれ算出する。この場合、移動ベクトル127aより移動ベクトル127bが大きいため、3フレーム目の画像に対して相対的に大きく重み付けを行った上で注目医療画像124、125、126の重ね合わせを行い、補間フレーム画像128を生成する。補間フレーム画像128には、例えば、2フレーム目の注目医療画像125と3フレーム目の注目医療画像126から演算された被写体Sの重ね合わせ128a(実線で示す)が写る。なお、被写体Sの残像128b(点線で示す)を映してもよい。生成された補間フレーム画像128は、例えば、2フレーム目の注目医療画像125と3フレーム目の注目医療画像126の間に挿入されて表示される。これにより、移動した結果の画像に合わせて、動きがスムーズに見える補間フレーム画像を生成することができる。 A specific example of the movement vector method will be explained. For example, as shown in FIG. 19, when three medical images of interest 124, 125, and 126 acquired in chronological order are superimposed, the distance between the medical image of interest 124 in the first frame and the medical image of interest 125 in the second frame is A movement vector 127a of the subject S and a movement vector 127b of the subject S between the second frame of interest medical image 125 and the third frame of interest medical image 126 are calculated. In this case, since the motion vector 127b is larger than the motion vector 127a, the image of the third frame is weighted relatively large, and then the target medical images 124, 125, and 126 are superimposed, and the interpolated frame image 128 is superimposed. to generate In the interpolated frame image 128, for example, a superposition 128a (indicated by a solid line) of the subject S calculated from the second frame of interest medical image 125 and the third frame of interest medical image 126 appears. Note that an afterimage 128b (indicated by a dotted line) of the subject S may be projected. The generated interpolated frame image 128 is displayed, for example, inserted between the second frame of interest medical image 125 and the third frame of interest medical image 126 . As a result, it is possible to generate an interpolated frame image whose movement looks smooth according to the image resulting from the movement.
 上記構成によって、区画表示フレームレートを補う補間フレーム画像を生成する場合に、移動ベクトルを加味した画像の重ね合わせによって自然な見た目の補間フレーム画像を生成することができる。 With the above configuration, when generating an interpolation frame image that compensates for the block display frame rate, it is possible to generate a natural-looking interpolation frame image by superimposing the images with the movement vector added.
 また、補間フレーム画像は、注目医療画像又は準注目医療画像を複製する単純コピー方式によって生成されることが好ましい。単純コピー方式は、過去に撮像した少なくとも1枚以上の注目医療画像間又は準注目医療画像間を複製することで補間フレーム画像を生成する方式である。これにより、プロセッサ装置14に画像解析の負担を少なくしながら、補間フレーム画像を生成することができる。 Also, the interpolated frame image is preferably generated by a simple copy method that duplicates the medical image of interest or the medical image of semi-interest. The simple copy method is a method of generating an interpolated frame image by duplicating at least one or more target medical images or quasi-target medical images captured in the past. As a result, the interpolated frame image can be generated while reducing the image analysis load on the processor device 14 .
 単純コピー方式の具体例について説明する。注目医療画像が第1照明光画像である場合の具体例(図20)を用いて説明する。図18と同様に、照明光が、発光パターン1回分Pa1で、第1照明光L1の発光される第1照明期間に、注目医療画像121が2フレーム分撮像され、第2照明光L2の発光される第2照明期間に、準注目医療画像122が1フレーム分撮像される。この場合、補間フレーム画像生成部120は、撮像フレーム1と2を重ね合わせることで、補間フレーム画像123(図20では補間フレーム「1」「2」「4」「5」「7」で示す)を生成する。表示フレームは、撮像フレーム1、補間フレーム「1」、撮像フレーム2……の順番となり、この順番で注目区画に画像が表示される。 A specific example of the simple copy method will be explained. A specific example (FIG. 20) in which the target medical image is the first illumination light image will be described. As in FIG. 18, the illumination light is the illumination light for one emission pattern Pa1, and in the first illumination period in which the first illumination light L1 is emitted, two frames of the target medical image 121 are captured, and the second illumination light L2 is emitted. One frame of the quasi-interest medical image 122 is captured during the second illumination period. In this case, the interpolation frame image generation unit 120 superimposes the captured frames 1 and 2 to generate an interpolation frame image 123 (indicated by interpolation frames “1”, “2”, “4”, “5”, and “7” in FIG. 20). to generate The display frames are displayed in the order of imaging frame 1, interpolation frame "1", imaging frame 2, and so on, and the images are displayed in the target section in this order.
 上記構成によって、区画表示フレームレートを補う補間フレーム画像を生成する場合に、画像を複製することで、プロセッサにかかる負荷を小さくしつつ、自然な見た目の補間フレーム画像を生成することができる。 With the above configuration, when generating an interpolated frame image that compensates for the block display frame rate, by duplicating the image, it is possible to generate a natural-looking interpolated frame image while reducing the load on the processor.
 補間フレーム画像を生成する方法は、加算平均方式、移動ベクトル方式、又は単純コピー方式が含まれるが、これに限られない。  The method for generating the interpolated frame image includes, but is not limited to, the averaging method, the motion vector method, or the simple copy method.
 表1の実施例6のように、区画表示フレームレートが区画撮像フレームレートより低い場合、注目区画に表示する注目医療画像、又は、準注目区画に表示する準注目医療画像が選択されることが好ましい。区画表示フレームレートが区画撮像フレームレートより低い場合は、取得された注目医療画像又は準注目医療画像の枚数が、表示できる枚数を超えるため、表示制御部70は、表示する注目医療画像又は準注目医療画像を選択し、表示可能な枚数に調整する。表示する画像の選択は、区画表示フレームレートと区画撮像フレームレートの差によって決定されることが好ましい。 As in Example 6 of Table 1, when the section display frame rate is lower than the section imaging frame rate, the target medical image displayed in the target section or the semi-target medical image displayed in the semi-target section may be selected. preferable. When the segment display frame rate is lower than the segment imaging frame rate, the number of obtained medical images of interest or quasi-interest medical images exceeds the number of images that can be displayed. Select medical images and adjust the number of images that can be displayed. The selection of images to display is preferably determined by the difference between the segment display frame rate and the segment capture frame rate.
 例えば、表1の実施例6の場合、注目区画表示フレームレートが60fpsに対して、注目区画撮像フレームレートが90fpsであるため、取得された注目医療画像の3フレームに2枚ごとに表示する選択をする。また、準注目区画表示フレームレートが15fpsに対して、注目区画撮像フレームレートが30fpsであるため(表1の実施例6では、準注目医療画像の撮像には1種類の第2照明光を用い、30fpsで撮像をしている。)、取得された注目医療画像の2フレームに1枚ごとに表示する選択をする。 For example, in the case of Example 6 in Table 1, the target section display frame rate is 60 fps, and the target section imaging frame rate is 90 fps. do. In addition, since the quasi-region-of-interest display frame rate is 15 fps and the region-of-interest imaging frame rate is 30 fps (in Example 6 in Table 1, one type of second illumination light is used to capture the quasi-region of interest medical image. , and is imaged at 30 fps.), and a selection is made to display each of the obtained medical images of interest in two frames.
 例えば、図21に示すように、表示する注目医療画像又は準注目医療画像を選択する場合、図18と同様に、照明光が、発光パターン1回分Pa1で、第1照明光L1の発光される第1照明期間に、注目医療画像121が2フレーム分撮像され、第2照明光L2の発光される第2照明期間に、準注目医療画像122が1フレーム分撮像される。この場合、表示制御部70は、例えば、取得された注目医療画像121の2フレームに1枚ずつ表示する画像を選択する。すなわち、表示フレームとして、撮像フレーム「1」「3」「5」「7」……の順に、注目医療画像121が表示される。 For example, as shown in FIG. 21, when selecting a medical image of interest or a semi-interesting medical image to be displayed, as in FIG. Two frames of the target medical image 121 are captured during the first illumination period, and one frame of the quasi-target medical image 122 is captured during the second illumination period in which the second illumination light L2 is emitted. In this case, the display control unit 70 selects, for example, images to be displayed one by one in two frames of the acquired attention medical image 121 . That is, as display frames, the target medical image 121 is displayed in the order of imaging frames "1", "3", "5", "7", and so on.
 上記構成により、全体撮像フレームレートと全体表示フレームレートの大小関係に関わらず、注目区画表示フレームレート及び準注目区画表示フレームレートに合わせて表示する画像を間引いて選択することができる。 With the above configuration, it is possible to thin out and select images to be displayed according to the target section display frame rate and the semi-target section display frame rate, regardless of the magnitude relationship between the overall imaging frame rate and the overall display frame rate.
 病変認識部130は、ユーザーが着目すべき領域である関心領域を、注目医療画像及び/又は準注目医療画像から検出し、さらに、関心領域を鑑別することが好ましい。関心領域とは、特定の範囲内の特徴量を有する、病変等の部位である。特徴量とは、被写体の形状、色又はそれら形状や色等から得られる値であることが好ましい。特徴量の項目としては、例えば、血管密度、血管形状、血管の分岐数、血管の太さ、血管の長さ、血管の蛇行度、血管の深達度、腺管形状、腺管開口部形状、腺管の長さ、腺管の蛇行度、色情報である。特徴量はこれらの少なくともいずれか1つ、もしくは、これらの2以上を組み合わせた値であることが好ましい。なお、特徴量の項目については、この限りではなく、使用状況に応じて適宜追加されてもよい。 It is preferable that the lesion recognition unit 130 detects a region of interest, which is a region that the user should pay attention to, from the medical image of interest and/or the medical image of sub-interest, and further discriminates the region of interest. A region of interest is a site such as a lesion that has a feature amount within a specific range. The feature quantity is preferably the shape or color of the subject or a value obtained from the shape, color, or the like. The items of feature values include, for example, blood vessel density, blood vessel shape, number of blood vessel branches, blood vessel thickness, blood vessel length, blood vessel tortuosity, blood vessel invasion depth, duct shape, and duct opening shape. , duct length, duct tortuosity, and color information. The feature amount is preferably at least one of these, or a value obtained by combining two or more of these. It should be noted that the item of the feature amount is not limited to this, and may be added as appropriate according to the usage situation.
 検出とは、関心領域を医療画像から発見することである。鑑別とは、関心領域がどのような性状(例えば、腫瘍性ポリープ、非腫瘍性ポリープ、炎症等)を有するかを特定することである。  Detection is to discover a region of interest from a medical image. Differentiation is to identify what properties the region of interest has (eg, neoplastic polyp, non-neoplastic polyp, inflammation, etc.).
 病変認識部130は、図22に示すように、検出用分類器131及び鑑別用分類器132を備える。検出用分類器131は、図23に示すように、医療画像取得部60から注目医療画像及び/又は準注目医療画像である医療画像130aを入力され、関心領域を検出した結果である検出結果131aを出力する。鑑別用分類器132は、図24に示すように、医療画像取得部60から注目医療画像及び/又は準注目医療画像である医療画像130aを入力され、関心領域を鑑別した結果である鑑別結果132aを出力する。関心領域の検出及び鑑別は、いずれか一方を行ってもよく、両方行ってもよい。 The lesion recognition unit 130 includes a detection classifier 131 and a discrimination classifier 132, as shown in FIG. As shown in FIG. 23, the detection classifier 131 receives a medical image 130a, which is a medical image of interest and/or a medical image of interest, from the medical image acquisition unit 60, and detects a region of interest as a detection result 131a. to output As shown in FIG. 24, the classification classifier 132 receives a medical image 130a, which is a medical image of interest and/or a medical image of interest and/or a medical image of interest, from the medical image acquisition unit 60, and produces a classification result 132a that is a result of distinguishing a region of interest. to output Either one or both of the detection and discrimination of the region of interest may be performed.
 検出用分類器131及び鑑別用分類器132は、教師用画像データによって学習されている学習モデルであることが好ましい。教師用画像データにおける、検出結果や鑑別結果の付与は、熟練した医師が行ってもよく、検出用分類器131及び鑑別用分類器132以外の装置が自動的に行ってもよい。また、検出用分類器131、鑑別用分類器132、又は、別の学習モデルが出力した情報を医療画像に付与し、教師用画像データとして検出用分類器131及び鑑別用分類器132の学習に用いてもよい。 The detection classifier 131 and the discrimination classifier 132 are preferably learning models that have been trained using teacher image data. The addition of the detection result and discrimination result to the teacher image data may be performed by a skilled doctor, or may be automatically performed by a device other than the detection classifier 131 and the discrimination classifier 132 . In addition, information output by the detection classifier 131, the discrimination classifier 132, or another learning model is added to the medical image, and used as teacher image data for learning of the detection classifier 131 and the discrimination classifier 132. may be used.
 学習モデルを生成する機械学習には深層学習を用いることが好ましく、例えば、多層畳み込みニューラルネットワークを用いることが好ましい。機械学習には、深層学習に加え、決定木、サポートベクトルマシン、ランダムフォレスト、回帰分析、教師あり学習、半教師なし学習、教師なし学習、強化学習、深層強化学習、ニューラルネットワークを用いた学習、敵対的生成ネットワーク等が含まれる。 It is preferable to use deep learning for machine learning to generate learning models, for example, it is preferable to use a multi-layer convolutional neural network. In addition to deep learning, machine learning includes decision trees, support vector machines, random forests, regression analysis, supervised learning, semi-unsupervised learning, unsupervised learning, reinforcement learning, deep reinforcement learning, learning using neural networks, Includes generative adversarial networks and the like.
 上記構成により、注目医療画像又は準注目医療画像から関心領域を検出し、鑑別を行うことでスクリーニング観察又は詳細な構造の観察を支援することができる。 With the above configuration, it is possible to detect a region of interest from a medical image of interest or a medical image of semi-interest and perform discrimination to support screening observation or observation of detailed structures.
 検出用分類器131が出力した検出結果、及び、鑑別用分類器132が出力した鑑別結果は、表示制御部70に送信される。表示制御部70は、注目区画及び/又は準注目区画に、検出結果、又は、鑑別結果を表示する制御を行うことが好ましい。検出結果及び鑑別結果を表示する制御を行ってもよい。 The detection result output by the detection classifier 131 and the discrimination result output by the discrimination classifier 132 are transmitted to the display control unit 70 . The display control unit 70 preferably performs control to display the detection result or the discrimination result in the target section and/or the semi-target section. You may perform control which displays a detection result and a discrimination result.
 検出結果を示す具体例について説明する。例えば、図25に示すように、表示用画像71上の注目区画72に、準注目医療画像134から関心領域135を検出した検出結果を示す場合、注目区画72に表示される注目医療画像136に含まれる関心領域135の周辺に枠137を表示する。また、注目医療画像136内のおおよその位置を示すマーカー138を表示する。図21の場合、マーカー138は、右下に関心領域135があることを示している。検出結果を示す方法は、円や多角形の囲いや、画面上の警告表示や警告音声など、これに限られない。 A specific example showing the detection results will be explained. For example, as shown in FIG. 25, when the target section 72 on the display image 71 shows the detection result of detecting the region of interest 135 from the sub-target medical image 134, the target medical image 136 displayed in the target section 72 is A frame 137 is displayed around the included region of interest 135 . Also, a marker 138 indicating an approximate position within the medical image of interest 136 is displayed. In the case of FIG. 21, the marker 138 indicates that there is a region of interest 135 on the lower right. The method of indicating the detection result is not limited to this, such as a circle or polygonal enclosure, an on-screen warning display, or a warning sound.
 鑑別結果を示す具体例について説明する。例えば、図26に示すように、表示用画像71上の注目区画72に、準注目医療画像134から関心領域135を鑑別した鑑別結果を示す場合、鑑別結果を示すキャプション139を表示する。図26の場合、鑑別結果は「腫瘍」であるため、キャプション139に「腫瘍」と表示されている。また、鑑別結果に合わせてマーカー138の色を変えて表示してもよい。例えば、鑑別結果が腫瘍性の場合はマーカー138を黄色で表示し、非腫瘍性の場合は緑色で表示する。鑑別結果を示す方法は、円や多角形の囲いや、画面上の警告表示や警告音声など、これに限られない。 A specific example showing the identification results will be explained. For example, as shown in FIG. 26, a caption 139 indicating the discrimination result is displayed in the target section 72 on the display image 71 when the discrimination result obtained by discriminating the region of interest 135 from the semi-interest medical image 134 is displayed. In the case of FIG. 26, since the discrimination result is "tumor", the caption 139 is displayed as "tumor". Also, the marker 138 may be displayed in a different color according to the discrimination result. For example, the marker 138 is displayed in yellow when the discrimination result is neoplastic, and is displayed in green when it is non-neoplastic. The method of indicating the identification result is not limited to this, such as a circle or polygonal enclosure, a warning display on the screen, or a warning sound.
 上記構成により、検出結果や鑑別結果を表示することで、スクリーニング観察又は詳細な構造の観察を支援することができる。 With the above configuration, it is possible to support screening observation or observation of detailed structures by displaying detection results and discrimination results.
 また、表示用画像71には、注目区画72及び準注目区画73の他に、図27に示すように、静止画像を表示する静止画像区画140や、文字情報を表示する文字情報区画141を設けてもよい。 In addition to the target segment 72 and semi-target segment 73, the display image 71 is provided with a still image segment 140 for displaying a still image and a text information segment 141 for displaying text information, as shown in FIG. may
 また、図28に示すように、拡張プロセッサ装置150を設け、病変認識部130を拡張プロセッサ装置150に備えるようにしてもよい。この場合、注目医療画像151及び/又は準注目医療画像152は、拡張プロセッサ装置150の病変認識部130に入力され、その結果、関心領域135の検出結果及び/又は鑑別結果が出力される。検出結果及び/又は鑑別結果はプロセッサ装置14に送信され、注目区画72又は準注目区画73に検出結果及び/又は鑑別結果が表示される。図28では、表示用画像71に、関心領域135の検出結果が示されている。 Further, as shown in FIG. 28, an extended processor device 150 may be provided, and the lesion recognition unit 130 may be provided in the extended processor device 150. In this case, the medical image of interest 151 and/or the medical image of interest 152 are input to the lesion recognition unit 130 of the extended processor device 150, and as a result, detection results and/or discrimination results of the region of interest 135 are output. The detection results and/or discrimination results are transmitted to the processor device 14 and displayed in the attention section 72 or the semi-interest section 73 . In FIG. 28, the display image 71 shows the detection result of the region of interest 135 .
 本実施形態では、プロセッサ装置14が内視鏡システム10に接続されている例で説明をしたが、本発明はこれに限定されず、超音波画像撮影装置や放射線撮影装置等、他の医療用装置を用いてもよい。また、この内視鏡12は、硬性鏡又は軟性鏡が用いられてよい。また、内視鏡システム10のうち中央制御部50、医療画像取得部60、表示制御部70、全体表示フレームレート認識部90、区画表示フレームレート設定部100、区画撮影フレームレート設定部110、補間フレーム画像生成部120、及び、病変認識部130の一部又は全部は、例えばプロセッサ装置14と通信して内視鏡システム10と連携する画像処理装置に設けることができる。例えば、内視鏡システム10から直接的に、又は、PACSから間接的に、内視鏡12で撮像した画像を取得する診断支援装置に設けることができる。また、内視鏡システム10を含む、第1検査装置、第2検査装置、…、第N検査装置等の各種検査装置と、ネットワークを介して接続する医療業務支援装置に、内視鏡システム10のうち、中央制御部50、医療画像取得部60、表示制御部70、全体表示フレームレート認識部90、区画表示フレームレート設定部100、区画撮影フレームレート設定部110、補間フレーム画像生成部120、及び、病変認識部130の一部又は全部を設けることができる。 In the present embodiment, an example in which the processor device 14 is connected to the endoscope system 10 has been described, but the present invention is not limited to this, and other medical devices such as an ultrasonic imaging device and a radiation imaging device can be used. A device may be used. A rigid scope or a flexible scope may be used as the endoscope 12 . In addition, the endoscope system 10 includes a central control unit 50, a medical image acquisition unit 60, a display control unit 70, an overall display frame rate recognition unit 90, a division display frame rate setting unit 100, a division imaging frame rate setting unit 110, an interpolation A part or all of the frame image generation unit 120 and the lesion recognition unit 130 can be provided in an image processing device that communicates with the processor device 14 and cooperates with the endoscope system 10, for example. For example, it can be provided in a diagnosis support device that acquires an image captured by the endoscope 12 directly from the endoscope system 10 or indirectly from the PACS. In addition, the endoscope system 10 is connected to various inspection devices such as the first inspection device, the second inspection device, . Among them, the central control unit 50, the medical image acquisition unit 60, the display control unit 70, the overall display frame rate recognition unit 90, the section display frame rate setting unit 100, the section shooting frame rate setting unit 110, the interpolation frame image generation unit 120, Also, part or all of the lesion recognition unit 130 can be provided.
 本実施形態において、中央制御部50、医療画像取得部60、表示制御部70、全体表示フレームレート認識部90、区画表示フレームレート設定部100、区画撮影フレームレート設定部110、補間フレーム画像生成部120、及び、病変認識部130といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array) 等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 In this embodiment, the central control unit 50, the medical image acquisition unit 60, the display control unit 70, the overall display frame rate recognition unit 90, the section display frame rate setting unit 100, the section shooting frame rate setting unit 110, the interpolation frame image generation unit 120 and the lesion recognition unit 130, the hardware structure of a processing unit that executes various processes is various processors as shown below. For various processors, the circuit configuration is changed after manufacturing such as CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), which is a general-purpose processor that executes software (program) and functions as various processing units. Programmable Logic Devices (PLDs), which are processors, dedicated electric circuits, which are processors with circuit configurations specially designed to perform various types of processing, and the like.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよく、同種又は異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be configured by one of these various processors, and may be configured by a combination of two or more processors of the same type or different types (for example, multiple FPGAs or a combination of a CPU and an FPGA). may Also, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units in one processor, first, as represented by computers such as clients and servers, one processor is configured by combining one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units. Second, as typified by System On Chip (SoC), etc., there is a form of using a processor that realizes the functions of the entire system including multiple processing units with a single IC (Integrated Circuit) chip. be. In this way, the various processing units are configured using one or more of the above various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた形態の電気回路(circuitry)である。また、記憶部のハードウェア的な構造はHDD(hard disc drive)やSSD(solid state drive)等の記憶装置である。 Furthermore, the hardware structure of these various processors is, more specifically, an electric circuit in the form of a combination of circuit elements such as semiconductor elements. The hardware structure of the storage unit is a storage device such as an HDD (hard disc drive) or SSD (solid state drive).
 10 内視鏡システム
 12 内視鏡
 12a 挿入部
 12b 操作部
 12c 湾曲部
 12d 先端部
 12e アングルノブ
 12f 観察モード切替スイッチ
 12h 静止画像取得指示スイッチ
 12i ズーム操作部
 12j 鉗子口
 13 光源装置
 14 プロセッサ装置
 15 ディスプレイ
 16 ユーザーインターフェース
 20 光源部
 20a V-LED
 20b B-LED
 20c G-LED
 20d R-LED
 21 光源用プロセッサ
 22 光路結合部
 23 ライトガイド
 30a 照明光学系
 30b 撮像光学系
 31 照明レンズ
 41 対物レンズ
 42 ズームレンズ
 43 撮像センサ
 44 撮像用プロセッサ
 50 中央制御部
 60 医療画像取得部
 70 表示制御部
 71 表示用画像
 72 注目区画
 73 準注目区画
 80 表示用画像設定部
 81 表示用画像設定画面
 82 タブ
 83 レイアウト設定ボタン
 84 表示例
 90 全体表示フレームレート認識部
 100 区画表示フレームレート設定部
 101 区画表示フレームレート設定画面
 102 全体表示フレームレート表示欄
 103 注目区画表示フレームレート設定欄
 104 準注目区画表示フレームレート設定欄
 110 区画撮影フレームレート設定部
 111 区画撮像フレームレート設定画面
 112 全体撮像フレームレート表示欄
 113 注目区画撮像フレームレート設定欄
 114 準注目区画撮像フレームレート設定欄
 115 発光パターン設定欄
 120 補間フレーム画像生成部
 121、124、125、126、136、151 注目医療画像
 122、134、152 準注目医療画像
 123、128 補間フレーム画像
 127a、127b 移動ベクトル
 128a 被写体の重ね合わせ
 128b 残像
 130 病変認識部
 130a 医療画像
 131 検出用分類器
 131a 検出結果
 132 鑑別用分類器
 132a 鑑別結果
 135 関心領域
 137 枠
 138 マーカー
 139 キャプション
 140 静止画像区画
 141 文字情報区画
 150 拡張プロセッサ装置
REFERENCE SIGNS LIST 10 endoscope system 12 endoscope 12a insertion portion 12b operation portion 12c bending portion 12d tip portion 12e angle knob 12f observation mode switching switch 12h still image acquisition instruction switch 12i zoom operation portion 12j forceps port 13 light source device 14 processor device 15 display 16 user interface 20 light source 20a V-LED
20b B-LED
20c G-LED
20d R-LED
21 light source processor 22 optical path coupling unit 23 light guide 30a illumination optical system 30b imaging optical system 31 illumination lens 41 objective lens 42 zoom lens 43 imaging sensor 44 imaging processor 50 central control unit 60 medical image acquisition unit 70 display control unit 71 display image for display 72 section of interest 73 section of secondary interest 80 image setting section for display 81 image setting screen for display 82 tab 83 layout setting button 84 display example 90 overall display frame rate recognition section 100 section display frame rate setting section 101 section display frame rate setting Screen 102 Overall display frame rate display field 103 Interested section display frame rate setting field 104 Semi-interested section display frame rate setting field 110 Section shooting frame rate setting unit 111 Sectional imaging frame rate setting screen 112 Overall imaging frame rate display field 113 Interesting section imaging Frame rate setting field 114 Semi-interest section imaging frame rate setting field 115 Light emission pattern setting field 120 Interpolated frame image generator 121, 124, 125, 126, 136, 151 Medical image of interest 122, 134, 152 Medical image of interest 123, 128 Interpolated frame images 127a, 127b Movement vector 128a Superposition of subject 128b Afterimage 130 Lesion recognition unit 130a Medical image 131 Classifier for detection 131a Detection result 132 Classifier for discrimination 132a Discrimination result 135 Region of interest 137 Frame 138 Marker 139 Caption 140 Still image Partition 141 Character information partition 150 Extended processor unit

Claims (16)

  1.  光源用プロセッサと、画像処理用プロセッサとを備えるプロセッサ装置であって、
     前記光源用プロセッサは、
     第1照明光で照明された被写体を撮像する第1照明期間と、前記第1照明光とはスペクトルが異なる第2照明光で照明された前記被写体を撮像する第2照明期間とを自動的に切り替える制御を行い、
     前記画像処理用プロセッサは、
     前記第1照明期間に医療画像として第1照明光画像を取得し、
     前記第2照明期間に前記医療画像として第2照明光画像を取得し、
     前記第1照明光画像及び/又は第2照明光画像を表示するための表示用画像を生成し、
     前記表示用画像は、注目区画と、準注目区画とを有し、
     単位時間当たりに前記注目区画に表示する前記医療画像の数である注目区画表示フレームレート及び単位時間当たりに前記準注目区画に表示する前記医療画像の数である準注目区画表示フレームレートは、単位時間当たりに表示する前記表示用画像の数である全体表示フレームレートの範囲内であり、
     前記注目区画表示フレームレートは、前記準注目区画表示フレームレートより高く、
     前記注目区画に表示する前記医療画像は、前記第1照明光画像又は前記第2照明光画像であるプロセッサ装置。
    A processor device comprising a light source processor and an image processing processor,
    The light source processor,
    A first illumination period for capturing an image of a subject illuminated by a first illumination light and a second illumination period for capturing an image of the subject illuminated by a second illumination light having a spectrum different from that of the first illumination light are automatically performed. control to switch,
    The image processing processor,
    Acquiring a first illumination light image as a medical image during the first illumination period;
    acquiring a second illumination light image as the medical image during the second illumination period;
    generating a display image for displaying the first illumination light image and/or the second illumination light image;
    The display image has an attention section and a quasi-attention section,
    A section-of-interest display frame rate, which is the number of medical images displayed in the section of interest per unit time, and a sub-section-of-interest display frame rate, which is the number of medical images displayed in the sub-section of interest per unit time, are expressed in units of is within the range of the overall display frame rate, which is the number of display images displayed per time;
    The target section display frame rate is higher than the semi-target section display frame rate,
    The processor device, wherein the medical image displayed in the target section is the first illumination light image or the second illumination light image.
  2.  前記画像処理用プロセッサは、
     前記注目区画に表示する前記医療画像である注目医療画像を、単位時間当たりに取得する前記注目医療画像の数である注目区画撮像フレームレートに基づいて取得し、
     前記準注目区画に表示する前記医療画像である準注目医療画像を、単位時間当たりに取得する前記準注目医療画像の数である準注目区画撮像フレームレートに基づいて取得する請求項1に記載のプロセッサ装置。
    The image processing processor,
    obtaining a medical image of interest, which is the medical image to be displayed in the section of interest, based on a section-of-interest imaging frame rate that is the number of the medical images of interest acquired per unit time;
    2. The quasi-interest medical image, which is the medical image to be displayed in the quasi-interest segment, is acquired based on a quasi-zone-of-interest imaging frame rate that is the number of the quasi-interest medical images acquired per unit time. processor unit.
  3.  前記画像処理用プロセッサは、
     前記注目区画表示フレームレートが前記注目区画撮像フレームレートより高い場合、
     前記注目医療画像を用い、前記注目区画に表示するための補間フレーム画像を生成する請求項2に記載のプロセッサ装置。
    The image processing processor,
    When the target section display frame rate is higher than the target section imaging frame rate,
    3. The processor device according to claim 2, wherein the attention medical image is used to generate an interpolated frame image to be displayed in the attention section.
  4.  前記画像処理用プロセッサは、
    前記準注目区画表示フレームレートが前記準注目区画撮像フレームレートより高い場合、
     前記準注目医療画像を用い、前記準注目区画に表示するための前記補間フレーム画像を生成する請求項2に記載のプロセッサ装置。
    The image processing processor,
    When the quasi-section-of-interest display frame rate is higher than the quasi-section-of-interest imaging frame rate,
    3. The processor device according to claim 2, wherein the quasi-interest medical image is used to generate the interpolated frame image to be displayed in the quasi-interest segment.
  5.  前記補間フレーム画像は、少なくとも2枚以上の前記注目医療画像又は前記準注目医療画像を用い、加算平均方式によって生成される請求項3又は4に記載のプロセッサ装置。 5. The processor device according to claim 3 or 4, wherein the interpolated frame image is generated by an averaging method using at least two of the target medical images or the quasi-target medical images.
  6.  前記補間フレーム画像は、少なくとも2枚以上の前記注目医療画像又は前記準注目医療画像を用い、移動ベクトル方式によって生成される請求項3又は4に記載のプロセッサ装置。 5. The processor device according to claim 3 or 4, wherein the interpolated frame image is generated by a motion vector method using at least two of the target medical images or the quasi-target medical images.
  7.  前記補間フレーム画像は、前記注目医療画像又は前記準注目医療画像を複製することによって生成される請求項3又は4に記載のプロセッサ装置。 The processor device according to claim 3 or 4, wherein the interpolated frame image is generated by duplicating the medical image of interest or the quasi-interest medical image.
  8.  前記画像処理用プロセッサは、
     前記注目区画表示フレームレートが前記注目区画撮像フレームレートより低い場合、
     前記注目区画に表示する前記注目医療画像を選択する請求項2に記載のプロセッサ装置。
    The image processing processor,
    When the target section display frame rate is lower than the target section imaging frame rate,
    3. The processor device according to claim 2, wherein the medical image of interest to be displayed in the section of interest is selected.
  9.  前記画像処理用プロセッサは、
     前記準注目区画表示フレームレートが前記準注目区画撮像フレームレートより低い場合、
     前記準注目区画に表示する前記準注目医療画像を選択する請求項2に記載のプロセッサ装置。
    The image processing processor,
    When the quasi-section-of-interest display frame rate is lower than the quasi-section-of-interest imaging frame rate,
    3. The processor device according to claim 2, wherein the sub-interest medical image to be displayed in the sub-interest segment is selected.
  10.  前記画像処理用プロセッサは、
     前記注目医療画像及び/又は前記準注目医療画像から、ユーザーが着目すべき領域である関心領域を検出し、及び/又は前記関心領域を鑑別する請求項2ないし9のいずれか1項に記載のプロセッサ装置。
    The image processing processor,
    10. The method according to any one of claims 2 to 9, wherein a region of interest, which is a region to which a user should pay attention, is detected and/or discriminated from the medical image of interest and/or the medical image of sub-interest. processor unit.
  11.  前記画像処理用プロセッサは、
     前記注目区画及び/又は前記準注目区画に、前記関心領域を検出した結果である検出結果及び/又は前記関心領域を鑑別した結果である鑑別結果を表示する制御を行う請求項10に記載のプロセッサ装置。
    The image processing processor,
    11. The processor according to claim 10, which performs control to display a detection result that is a result of detecting the region of interest and/or a discrimination result that is a result of discriminating the region of interest in the section of interest and/or the sub-section of interest. Device.
  12.  前記画像処理用プロセッサは、
     前記準注目区画の表示と非表示を切り替える制御を行う請求項1ないし11のいずれか1項に記載のプロセッサ装置。
    The image processing processor,
    12. The processor device according to any one of claims 1 to 11, wherein control is performed to switch display and non-display of the semi-attention section.
  13.  前記画像処理用プロセッサは、
     前記注目区画及び前記準注目区画の前記表示用画像に占める大きさを変更する制御を行う請求項1ないし12のいずれか1項に記載のプロセッサ装置。
    The image processing processor,
    13. The processor device according to any one of claims 1 to 12, wherein control is performed to change the sizes of the target section and the semi-target section in the display image.
  14.  前記画像処理用プロセッサは、
     前記第1照明光又は少なくとも1種類以上の前記第2照明光のうちのいずれか1つにより照明された前記被写体を撮像して前記医療画像を取得するモノ発光モードと、
     前記第1照明期間と、前記第2照明期間とを自動的に切り替えて前記被写体を撮像して前記医療画像を取得するマルチ発光モードとを、切り替える制御を行う請求項1ないし13のいずれか1項に記載のプロセッサ装置。
    The image processing processor,
    a mono emission mode for capturing the medical image by imaging the subject illuminated by one of the first illumination light and at least one type of the second illumination light;
    14. Control for switching between a multi-emission mode in which the first illumination period and the second illumination period are automatically switched to image the subject and obtain the medical image. 11. A processor device according to claim 1.
  15.  第1照明光で照明された被写体を撮像する第1照明期間と、前記第1照明光とスペクトルが異なる第2照明光で照明された前記被写体を撮像する第2照明期間とを自動的に切り替える制御を行うステップと、
      前記第1照明期間に医療画像として第1照明光画像を取得するステップと、
     前記第2照明期間に前記医療画像として第2照明光画像を取得するステップと、
     前記第1照明光画像及び/又は第2照明光画像を表示するための表示用画像を生成するステップと、を備え、
     前記表示用画像は、注目区画と、準注目区画とを有し、
     単位時間当たりに前記注目区画に表示する前記医療画像の数である注目区画表示フレームレート及び単位時間当たりに前記準注目区画に表示する前記医療画像の数である準注目区画表示フレームレートは、単位時間当たりに表示する前記表示用画像の数である全体表示フレームレートの範囲内であり、
     前記注目区画表示フレームレートは、前記準注目区画表示フレームレートより高く、
     前記注目区画に表示する前記医療画像は、前記第1照明光画像又は前記第2照明光画像であるプロセッサ装置の作動方法。
    Automatically switching between a first illumination period for capturing an image of a subject illuminated by first illumination light and a second illumination period for capturing an image of the subject illuminated by second illumination light having a spectrum different from that of the first illumination light a controlling step;
    acquiring a first illumination light image as a medical image during the first illumination period;
    acquiring a second illumination light image as the medical image during the second illumination period;
    generating a display image for displaying the first illumination light image and/or the second illumination light image;
    The display image has an attention section and a quasi-attention section,
    A section-of-interest display frame rate, which is the number of medical images displayed in the section of interest per unit time, and a sub-section-of-interest display frame rate, which is the number of medical images displayed in the sub-section of interest per unit time, are expressed in units of is within the range of the overall display frame rate, which is the number of display images displayed per time;
    The target section display frame rate is higher than the semi-target section display frame rate,
    The operating method of the processor device, wherein the medical image displayed in the attention section is the first illumination light image or the second illumination light image.
  16.  請求項1ないし14のいずれか1項に記載のプロセッサ装置と、光源装置と、内視鏡と、を備える内視鏡システム。 An endoscope system comprising a processor device according to any one of claims 1 to 14, a light source device, and an endoscope.
PCT/JP2022/019386 2021-07-28 2022-04-28 Endoscope system, processor device, and operation method therefor WO2023007896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123622 2021-07-28
JP2021123622 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023007896A1 true WO2023007896A1 (en) 2023-02-02

Family

ID=85086528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019386 WO2023007896A1 (en) 2021-07-28 2022-04-28 Endoscope system, processor device, and operation method therefor

Country Status (1)

Country Link
WO (1) WO2023007896A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063589A (en) * 2008-09-10 2010-03-25 Fujifilm Corp Endoscope system and drive control method thereof
JP2011188929A (en) * 2010-03-12 2011-09-29 Olympus Corp Fluorescent endoscope apparatus
WO2020008834A1 (en) * 2018-07-05 2020-01-09 富士フイルム株式会社 Image processing device, method, and endoscopic system
WO2020158165A1 (en) * 2019-01-30 2020-08-06 富士フイルム株式会社 Endoscope system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063589A (en) * 2008-09-10 2010-03-25 Fujifilm Corp Endoscope system and drive control method thereof
JP2011188929A (en) * 2010-03-12 2011-09-29 Olympus Corp Fluorescent endoscope apparatus
WO2020008834A1 (en) * 2018-07-05 2020-01-09 富士フイルム株式会社 Image processing device, method, and endoscopic system
WO2020158165A1 (en) * 2019-01-30 2020-08-06 富士フイルム株式会社 Endoscope system

Similar Documents

Publication Publication Date Title
JP7289296B2 (en) Image processing device, endoscope system, and method of operating image processing device
JP7335399B2 (en) MEDICAL IMAGE PROCESSING APPARATUS, ENDOSCOPE SYSTEM, AND METHOD OF OPERATION OF MEDICAL IMAGE PROCESSING APPARATUS
WO2020162275A1 (en) Medical image processing device, endoscope system, and medical image processing method
JP7374280B2 (en) Endoscope device, endoscope processor, and method of operating the endoscope device
JP2020065685A (en) Endoscope system
WO2020170809A1 (en) Medical image processing device, endoscope system, and medical image processing method
US20230101620A1 (en) Medical image processing apparatus, endoscope system, method of operating medical image processing apparatus, and non-transitory computer readable medium
JP7386347B2 (en) Endoscope system and its operating method
WO2023007896A1 (en) Endoscope system, processor device, and operation method therefor
JP6731065B2 (en) Endoscope system and operating method thereof
WO2022071413A1 (en) Image processing device, endoscope system, method for operating image processing device, and program for image processing device
JP7402314B2 (en) Medical image processing system, operating method of medical image processing system
WO2022014235A1 (en) Image analysis processing device, endoscopy system, operation method for image analysis processing device, and program for image analysis processing device
JP7217351B2 (en) Image processing device, endoscope system, and method of operating image processing device
JP7411515B2 (en) Endoscope system and its operating method
WO2022004056A1 (en) Endoscope system and method for operating same
US20240013392A1 (en) Processor device, medical image processing device, medical image processing system, and endoscope system
US20220022739A1 (en) Endoscope control device, method of changing wavelength characteristics of illumination light, and information storage medium
JP7307709B2 (en) Treatment instrument management system, endoscope system, and operating method thereof
WO2021176890A1 (en) Endoscope system, control method, and control program
WO2023058503A1 (en) Endoscope system, medical image processing device, and method for operating same
WO2021199566A1 (en) Endoscope system, control method, and control program
WO2022044371A1 (en) Endoscope system and method for operating same
WO2022059233A1 (en) Image processing device, endoscope system, operation method for image processing device, and program for image processing device
JP2023018543A (en) Endoscope system and operation method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE