WO2016151675A1 - Living body observation device and living body observation method - Google Patents

Living body observation device and living body observation method Download PDF

Info

Publication number
WO2016151675A1
WO2016151675A1 PCT/JP2015/058477 JP2015058477W WO2016151675A1 WO 2016151675 A1 WO2016151675 A1 WO 2016151675A1 JP 2015058477 W JP2015058477 W JP 2015058477W WO 2016151675 A1 WO2016151675 A1 WO 2016151675A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
blood
image
fat
unit
Prior art date
Application number
PCT/JP2015/058477
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 貴之
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/058477 priority Critical patent/WO2016151675A1/en
Publication of WO2016151675A1 publication Critical patent/WO2016151675A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a living body observation apparatus and a living body observation method.
  • NBI narrow band light observation
  • This narrow-band light observation is expected as an alternative observation method of pigment dispersion widely performed for detailed diagnosis of the esophagus region and pit pattern (ductal structure) observation of the large intestine, and the examination time and unnecessary biopsy The reduction is expected to contribute to the efficiency of inspections.
  • a living body observation apparatus capable of preventing damage to nerves surrounding a target organ by making the structure of the tissue on the surface of the target organ such as an extraction target easy to see (for example, patent documents 2).
  • this living body observation apparatus focusing on the fact that the nerve surrounding the target organ is present in the fat layer, the absorption characteristics of ⁇ -carotene contained in fat and hemoglobin in the blood have different wavelength bands. Because of the absorption characteristics, it is possible to irradiate the irradiation light of the corresponding wavelength band to obtain an image that is easy to identify fat, and to perform surgery so as not to damage nerves distributed in the fat layer.
  • the detection of fat is performed by extracting the difference between the image captured by irradiating the light near 480 nm with much absorption of ⁇ -carotene and the light imaged by the light near 510 nm with little absorption of ⁇ -carotene and extracted. realizable.
  • blood is present on the subject due to bleeding during the operation.
  • Hemoglobin contained in blood has absorption characteristics in the wavelength band near 480 nm and 510 nm, so absorption of hemoglobin becomes dominant compared to the absorption of ⁇ -carotene when a large amount of blood is placed on fat , Fat can not be detected accurately (false positive, false negative occurs).
  • blood is detected by comparing an image captured by irradiation with light near 610 nm having a small absorption of hemoglobin with an image captured by irradiation with light near 510 nm having a larger absorption than 610 nm to detect blood as described above. It is desirable to correct fat detection results with blood detection results.
  • JP 2011-224038 A International Publication No. 2013/115323
  • the obtained information is different in the depth direction of the living body. That is, since the image captured by emitting light in the vicinity of 510 nm and the image captured by emitting light in the vicinity of 610 nm are different in the information in the depth direction, blood detection accuracy is lowered, and stable fat detection can not be performed.
  • the present invention has been made in view of the above-described circumstances, and improves the detection accuracy of blood when blood is placed on fat while maintaining smooth observation when there is little blood on fat.
  • One embodiment of the present invention includes a light source unit that emits illumination light to a living tissue, an imaging unit that captures reflected light from the living tissue of the illumination light emitted by the light source unit and acquires an image, and the imaging unit Based on a fat detection unit that detects fat in the acquired image, a blood detection unit that detects blood in the image acquired by the imaging unit, and detection results by the fat detection unit and the blood detection unit Control unit configured to control at least one of the light source unit and the imaging unit, the control unit controlling the image by the blood detection unit in a state where fat is detected in the image by the fat detection unit
  • a living body that switches between a simultaneous first imaging method for simultaneously imaging a plurality of band lights of different wavelength bands and a second imaging method for surface sequential imaging that sequentially images according to the state of blood detected inside Observation equipment It is.
  • the fat detection unit is acquired using the acquired image As a result, fat in the image is detected, and blood in the image is detected by the blood detection unit.
  • the control unit performs the first imaging method and the second imaging method Switch.
  • the first imaging method since plural bands of light having different wavelength bands are simultaneously irradiated, reflected light of plural bands of light can be photographed at the same time, and the frame rate can be improved.
  • the second imaging method since a plurality of band lights of different wavelength bands are sequentially irradiated, the frame rate is lower than that of the first imaging method, but reflected light of extremely close wavelength bands which can not be captured simultaneously. Can take pictures.
  • Beta-carotene is effective in detecting fat because it is abundant in fat
  • hemoglobin is effective in detecting blood because it is rich in blood.
  • the blood detection unit is a hemoglobin based on a ratio between an image signal of a green wavelength band and an image signal of a red wavelength band simultaneously acquired by the imaging unit.
  • hemoglobin may be detected based on a ratio of image signals of two wavelength bands of green having difference in absorbance of hemoglobin sequentially acquired by the imaging unit.
  • the light in the green wavelength band and the red wavelength band both have low absorbance to ⁇ -carotene, and the light in the green wavelength band has higher absorbance to hemoglobin than the light in the red wavelength band. Therefore, in the first imaging method, hemoglobin can be detected by taking these ratios. In this case, since light in the red and green wavelength bands is easily separated and photographed, it can be photographed at the same time, and the frame rate can be improved.
  • light of two green wavelength bands having differences in absorbance for hemoglobin used in the second imaging method also detects hemoglobin by taking the ratio because absorbance for ⁇ -carotene is similarly low. be able to.
  • absorbance for ⁇ -carotene is similarly low. be able to.
  • it is difficult to separate and shoot the light in the two green wavelength bands it is necessary to sequentially capture them, and the frame rate is lowered, but the reflected light is scattered and returned at the same depth position. Therefore, hemoglobin can be detected accurately.
  • the green wavelength band in the first imaging system is a wavelength band near 510 nm
  • the red wavelength band is a wavelength band near 610 nm
  • the green in the second imaging system The wavelength band of may be a wavelength band near a wavelength of 510 nm and a wavelength near a wavelength of 540 nm.
  • the absorption characteristics of ⁇ -carotene are low and the absorption characteristics of hemoglobin are relatively high, and the light of wavelength bands around 510 nm and the absorption characteristics of ⁇ -carotene and hemoglobin are both low.
  • Light in a wavelength band near 610 nm can be simultaneously captured to detect the amount of hemoglobin at a high frame rate without being affected by ⁇ -carotene.
  • the frame rate is the first photographing. Hemoglobin can be detected with high accuracy based on the information of the same depth position although it is lower than the method.
  • the blood detection unit detects the spread of blood in the image acquired by the imaging unit, and the control unit determines that the spread of blood detected by the blood detection unit is predetermined.
  • the second imaging method may be switched.
  • the image processing apparatus further includes a motion detection unit that detects an amount of motion of the imaging unit with respect to the living tissue based on the image acquired by the imaging unit, and the control unit detects the movement by the motion detection unit. If the calculated motion amount is smaller than a predetermined threshold, switching to the second imaging method may be performed. In this way, in a state where the imaging unit is moved with respect to the living tissue to move the observation position, movement of the first imaging method with high frame rate can be smooth even if blood spreading is occurring. Image observation, and in the state where the imaging unit is at rest with respect to the living tissue, when blood spreading occurs, fat detection with reduced influence of blood by the second imaging method is performed. Can.
  • the motion detection unit may identify a global motion vector of the entire image and a local motion vector, and detect a motion amount based on the global motion vector. .
  • the amount of movement is as long as there is no global motion vector for the entire image. The observation by the second imaging method can be performed as a small one.
  • mist detection part which detects existence of generation of mist based on the above-mentioned picture, and when the control part detects that mist has disappeared by the mist detection part, You may switch to the said 2nd imaging
  • the mist detection unit detects that mist is generated in the image, the field of view is poor due to the mist and it is difficult to detect with high accuracy, so the first photographing is performed. Switch to the method, and perform observation with a smooth image of movement with a high frame rate.
  • the mist disappears the visual field is improved, and therefore, when the spread of the blood is large, fat can be detected with the influence of the blood suppressed by the second imaging method.
  • another aspect of the present invention is an illumination step of irradiating illumination light to a living tissue, an imaging step of capturing reflected light of the illumination light emitted by the illumination step in the living tissue, and acquiring an image;
  • the fat is detected in the image obtained in the imaging step, the fat detecting step for detecting fat in the image, the blood detecting step for detecting blood in the image obtained in the imaging step, and the fat in the image obtained by the fat detecting step
  • a simultaneous imaging method for simultaneously imaging a plurality of band lights having different wavelength bands and a plane sequential imaging sequentially It is a living body observation method including the control step which changes with the photography method of a formula.
  • the present invention it is possible to accurately detect a blood vessel present in a living tissue and to selectively detect a blood vessel having a predetermined thickness.
  • FIG. 8 It is a figure which shows the flowchart explaining the biological body observation method by the biological body observation apparatus of FIG. It is a whole block diagram which shows the modification of the biological body observation apparatus of FIG. It is a front view which shows the filter turret with which the biological body observation apparatus of FIG. 8 is equipped. It is a block diagram showing the image processing device with which the living body observation device concerning a 2nd embodiment of the present invention is equipped. It is a block diagram which shows the movement amount detection part with which the biological body observation apparatus of FIG. 10 is equipped. It is a figure which shows an example of the motion vector calculated by the motion amount detection part of FIG. It is a figure which shows the flowchart explaining the biological body observation method by the biological body observation apparatus of FIG.
  • FIG. 1 It is a block diagram which shows the image processing apparatus with which the biological body observation apparatus which concerns on the 3rd Embodiment of this invention is equipped. It is a figure which shows the flowchart explaining the biological body observation method by the biological body observation apparatus of FIG. It is a figure which shows the time change of the evaluation value of average brightness and brightness
  • the living body observation apparatus 1 is an endoscope apparatus, and as shown in FIG. 1, an insertion unit 2 inserted into a living body, a light source unit 3 connected to the insertion unit 2, and A main unit 5 including a signal processing unit 4 and an image display unit 6 displaying an image generated by the signal processing unit 4 are provided.
  • the insertion unit 2 includes an illumination optical system 7 for irradiating the light input from the light source unit 3 toward the subject, and a photographing optical system 8 for photographing reflected light from the subject.
  • the illumination optical system 7 is disposed over the entire length of the insertion portion 2, and the light guide cable 9a for guiding the light incident from the light source portion 3 on the proximal end to the tip 2a and the tip of the insertion portion 2 And a diffusion optical system 9b for emitting light from the front to the front.
  • the photographing optical system 8 includes an objective lens 10 for condensing reflected light of the light irradiated by the illumination optical system 7 in the biological tissue, and an imaging element (imaging unit) 11 for photographing the light condensed by the objective lens 10. Is equipped.
  • the imaging device 11 is a color CCD provided with a filter that transmits blue, green, and red light to each pixel.
  • the light source unit 3 includes a plurality of light emitting diodes (LEDs) L1, L2, L3, L4 for emitting light of different wavelength bands, a mirror 12 and a dichroic mirror 13, and light from the respective light emitting diodes L1, L2, L3, L4 To be incident on the incident end of the light guide cable 9a.
  • LEDs light emitting diodes
  • B wavelength blue wavelength band near 480 nm
  • G1 wavelength green wavelength band near 510 nm
  • G2 wavelength near 540 nm
  • R wavelength the wavelength band of 610 nm
  • ⁇ -carotene contained in fat has an absorption characteristic that is high at the B wavelength and low absorbance at the G1 wavelength, the G2 wavelength, and the R wavelength.
  • hemoglobin which is a component in blood, has a low absorption characteristic at the R wavelength and a higher absorption characteristic than the R wavelength at the G1 wavelength and the G2 wavelength.
  • Hemoglobin has a higher absorption characteristic at the G2 wavelength than at the G1 wavelength.
  • the signal processing unit 4 includes a memory 14 for storing an image signal acquired by the imaging device 11, an image processing unit 15 for performing predetermined image processing on the image signal stored in the memory 14, light emitting diodes L1 and L2, and A control unit 16 is provided to control the light emission timing of L 3 and L 4 and the imaging timing synchronization by the imaging device 11 and the write and read timing of the memory 14.
  • the control unit 16 can switch between two imaging methods.
  • the light emitting diodes L1, L2, and L4 in the light source unit 3 are controlled to synchronize with the period T required for imaging of the imaging element 11, and the B and G wavelengths And R wavelength light is emitted. At this time, the light emitting diode L3 does not emit light, and light of G2 wavelength is not emitted.
  • the first imaging method from the light source unit 3, light of B wavelength having high absorbance of ⁇ -carotene, light of G wavelength having low absorbance of ⁇ -carotene and high absorbance of hemoglobin, ⁇ -carotene and hemoglobin Light of R wavelength with low absorbance is emitted.
  • the light of three wavelengths emitted from the light source unit 3 is irradiated to the living tissue via the light guide cable 9 a and the diffusion optical system 9 b in the insertion unit 2, and the reflected light of the light in the living tissue is the imaging optical system 8.
  • the light is collected by the objective lens 10 of the image pickup device 11 and simultaneously photographed by the image pickup device 11.
  • An image acquired by imaging in one period T is written to the memory 14 each time, read out at the next imaging timing, and sent to the image processing unit 15 in the subsequent stage. For example, after an image acquired by the imaging device 11 is written to the memory 14, it is read at timing when the imaging device 11 acquires the next image. Details of image processing by the image processing unit 15 will be described later.
  • the light emitting diodes L1, L2, L3, and L4 in the light source unit 3 are controlled to synchronize with the first period Ta required for imaging of the imaging device 11B.
  • the light of the wavelength, the G1 wavelength and the R wavelength is emitted, and the emission of the light of the B wavelength, the G2 wavelength and the R wavelength is alternately repeated in synchronization with the next second period Tb.
  • the light source unit 3 emits light of B wavelength having high absorbance of ⁇ -carotene during the first period Ta and light of G wavelength having low absorbance of ⁇ -carotene and high absorbance of hemoglobin. , And light of R wavelength with low absorbance of both ⁇ -carotene and hemoglobin. Also, from the light source unit 3, light of B wavelength having high absorbance of ⁇ -carotene, light of G wavelength having low absorbance of ⁇ -carotene and high absorbance of hemoglobin, and light absorbance of ⁇ -carotene and hemoglobin during the second period Tb Both low R wavelength light is emitted.
  • the light of three wavelengths emitted from the light source unit 3 in the first period Ta and the second period Tb is applied to the living tissue through the light guide cable 9a and the diffusion optical system 9b in the insertion portion 2, Reflected light of light in the living tissue is collected by the objective lens 10 of the photographing optical system 8 and is alternately photographed by the imaging element 11.
  • the image acquired by the imaging in the first period Ta is written to the memory 14 and read out during the next second period Tb and the period (Ta + Tb) until the imaging end of the next first period Ta, and the subsequent stage Is sent to the image processing unit 15 of FIG.
  • the reading is immediately started and is read out in the period (Ta + Tb) until the end of the imaging of the next first period Ta. It is sent to the image processing unit 15 in the latter stage.
  • an image acquired in the first period Ta by the imaging device 11 is written to the memory 14, it is read at timing when the imaging device 11 acquires a next image Tb. Further, the image acquired in the second period Tb by the imaging device 11 is read out at the same timing as the image acquired in the first period Ta immediately after being written in the memory 14 and the image processing unit in the subsequent stage It will be sent to 15.
  • the image processing unit 15 includes a preprocessing unit 17, a ⁇ -carotene detection unit (fat detection unit) 18, a hemoglobin detection unit (blood detection unit) 19, a fat extraction unit 20, and a blood distribution calculation unit 21. , A post-processing unit 22 and a fat emphasizing unit 23.
  • the preprocessing unit 17 is configured to perform OB (optical black) clamp processing, gain correction processing, and WB (white balance) correction processing on the image signal transferred from the memory 14.
  • the pre-processing unit 17 is configured to output the pre-processed image signal to the post-processing unit 22, the ⁇ -carotene detection unit 18, and the hemoglobin detection unit 19.
  • the ⁇ -carotene detection unit 18 detects ⁇ -carotene by calculating the ratio of the signal value of the B wavelength to the signal value of the G1 wavelength in the image signal sent from the pre-processing unit 17, and outputs it as a ⁇ -carotene detection value It is supposed to In the first imaging method, the hemoglobin detection unit 19 detects the hemoglobin by calculating the ratio of the signal value of the G1 wavelength to the signal value of the R wavelength in the image signal sent from the preprocessing unit 17, It is output as a hemoglobin detection value.
  • the hemoglobin detection unit 19 detects hemoglobin by calculating the ratio of the signal value of the G1 wavelength to the signal value of the G2 wavelength in the image signal sent from the preprocessing unit 17 And output as a hemoglobin detection value.
  • the fat extraction unit 20 previously obtains a coefficient K1 represented by the following equation (1) based on the absorption characteristics of hemoglobin in order to perform fat extraction in which the influence of blood is removed.
  • ⁇ ( ⁇ i) is the absorbance of light at the wavelength ⁇ i
  • ⁇ 1 B wavelength
  • ⁇ 2 G1 wavelength
  • ⁇ 4 R wavelength.
  • the fat extraction unit 20 detects the ⁇ -carotene detection value CrValue output from the ⁇ -carotene detection unit 18, the hemoglobin detection value HbValue1 output from the hemoglobin detection unit 19, and the coefficient K1. From this, the fat extraction value BkValue1 is calculated.
  • K1 ( ⁇ ( ⁇ 1) - ⁇ ( ⁇ 2)) / ( ⁇ ( ⁇ 4) - ⁇ ( ⁇ 2)) (1)
  • BkValue1 CrValue / HbValue1 K1 (2)
  • the fat extraction unit 20 previously obtains a coefficient K2 represented by the following equation (3) based on the absorption characteristic of hemoglobin in order to perform fat extraction in which the influence of blood is removed.
  • the fat extraction unit 20 detects the ⁇ -carotene detection value CrValue output from the ⁇ -carotene detection unit 18, the hemoglobin detection value HbValue2 output from the hemoglobin detection unit 19, and the coefficient K2 From this, the fat extraction value BkValue2 is calculated.
  • the post-processing unit 22 is configured to perform tone conversion processing, color processing, and edge enhancement processing on the image signal sent from the pre-processing unit 17.
  • the post-processing unit 22 is configured to output the post-processed image signal to the fat emphasizing unit 23.
  • the fat emphasizing unit 23 performs color emphasis on the image signal input from the post-processing unit 22 based on the fat extraction value extracted by the fat extracting unit 20, and outputs the image signal to the image display unit 6. .
  • the blood distribution calculation unit 21 will be described.
  • the operation of the blood distribution calculation unit 21 is common to the first imaging method and the second imaging method.
  • the blood distribution calculating unit 21 sets a target region for calculating the blood distribution at the center of the image at which the operator gazes, in order to calculate the blood distribution on the image.
  • the area is divided into a plurality of blocks.
  • the target area is divided into 24 blocks. Then, the average value of the detected hemoglobin values in each block is calculated, and it is determined that the block whose average value is larger than a predetermined threshold is that the blood is spread. When the number of blocks determined to have blood spread exceeds a predetermined number, it is determined that the blood spread on the image is large, and the control unit 16 is notified of this.
  • a living body observation method using the living body observation device 1 according to the present embodiment configured as described above will be described below.
  • an illumination step S2 for irradiating illumination light to a living tissue
  • an imaging step S3 for capturing an image by capturing reflected light reflected on the living tissue.
  • the fat detection step S4 for detecting fat in the image
  • the blood detection step S5 for detecting blood in the image
  • the fat detection step at the fat detection step S4 A state is detected (step S6)
  • control steps S7, S8, and S9 for switching between the first imaging method and the second imaging method according to the detected blood state are included.
  • the control unit 16 first controls the light source unit 3, the imaging device 11, the memory 14, and the image processing unit 15 according to the first imaging method (step S1).
  • control unit 16 controls the light emitting diodes L1, L2, and L4 in the light source unit 3 to emit light of the B wavelength, the G1 wavelength, and the R wavelength in synchronization with the period required for imaging of the imaging device 11. . At this time, light of the G2 wavelength is not emitted.
  • light of B wavelength having high absorption characteristics of ⁇ -carotene, absorption light of G-wavelength having low absorption characteristics of ⁇ -carotene and high absorption characteristics of hemoglobin, as well as absorption characteristics of ⁇ -carotene and hemoglobin Light with a low R wavelength is emitted.
  • the light of three wavelengths emitted from the light source unit 3 is irradiated to the living tissue via the light guide cable 9a and the diffusion optical system 9b in the insertion unit 2 (illumination step S2), and the reflected light of the light in the living tissue is The light is collected by the objective lens 10 of the photographing optical system 8.
  • the control unit 16 controls the imaging timing of the imaging element 11 to simultaneously capture these reflected lights (imaging step S3).
  • the control unit 16 writes the image acquired by photographing in one period into the memory 14 each time, reads it at the next photographing timing, and causes the image processing unit 15 to output it.
  • the preprocessing unit 17 subjects the image signal transferred from the memory 14 to preprocessing such as OB clamp processing, gain correction processing, WB correction processing, etc.
  • the image signal is output to the post-processing unit 22, the ⁇ -carotene detection unit 18 and the hemoglobin detection unit 19.
  • tone conversion processing, color processing and edge enhancement processing are performed on the image signal sent from the pre-processing unit 17.
  • the ⁇ -carotene detection unit 18 detects ⁇ -carotene by calculating the ratio of the signal value of the B wavelength of the image signal sent from the pre-processing unit 17 to the signal value of the G1 wavelength (fat detection step) S4).
  • the hemoglobin detection unit 19 the hemoglobin is detected by calculating the ratio between the signal value of the G1 wavelength and the signal value of the R wavelength in the image signal sent from the pre-processing unit 17 (blood detection step S5) .
  • the ⁇ -carotene detection value detected by the ⁇ -carotene detection unit 18 and the hemoglobin detection value detected by the hemoglobin detection unit 19 are sent to the fat extraction unit 20 and are based on the absorption characteristics of hemoglobin at B, G1 and R wavelengths.
  • the fat extraction value is calculated using a coefficient K1 which has been obtained in advance.
  • the fat emphasizing unit 23 performs color emphasis on the image signal input from the post-processing unit 22 based on the fat extraction value extracted by the fat extracting unit 20, and the image in which fat is emphasized is an image display unit Displayed on 6.
  • the operator can easily identify the region where fat is present by confirming the image displayed on the image display unit 6, and surgery is performed so as not to damage the nerve distributed in the fat layer. It can be performed.
  • the display frame rate of the image in the first imaging method is 1 / T.
  • the hemoglobin detection value detected by the hemoglobin detection unit 19 is sent to the blood distribution calculation unit 21, and the spread of blood in the central region of the image is calculated (step S6). If it is determined that the spread of the upper blood is large, the control unit 16 is notified (step S7). When the notification that the spread of the blood calculated by the blood distribution calculation unit 21 is large is sent to the control unit 16, the control unit 16 switches from the first imaging method to the second imaging method (step S9). .
  • step S10 it is determined whether the imaging can be continued (step S10), and when the imaging is continued, the control unit 16 controls the light emitting diodes L1, L2, L3, and L4 in the light source unit 3.
  • the light of the B wavelength, the G1 wavelength and the R wavelength is emitted in synchronization with the first period required for photographing of the imaging device 11 by control, and the B wavelength, the G2 wavelength and R are synchronized with the next second period.
  • the light emission of the wavelength is alternately repeated.
  • light of B wavelength having high absorption characteristics of ⁇ -carotene during the first period light of G1 wavelength having low absorption characteristics of ⁇ -carotene and high absorption characteristics of hemoglobin, ⁇ -carotene and hemoglobin And R light having low absorption characteristics are emitted.
  • light of wavelength B having high absorption characteristics of ⁇ -carotene in the second period light of wavelength G2 having low absorption characteristics of ⁇ -carotene and high absorption characteristics of hemoglobin, ⁇ -carotene and hemoglobin
  • Light of R wavelength with low absorption characteristics is emitted.
  • An image acquired by shooting in the first period is written to the memory 14 and read out and sent to the image processing unit 15 in the next second period and the period until the end of shooting in the next first period. .
  • the reading is immediately started, and is read out in the period until the end of the imaging in the next first period, and the image processing unit 15 Sent.
  • the display frame rate of the image in the second imaging method is 1 / 2T.
  • the image processing unit 15 performs pre-processing, post-processing and ⁇ -carotene detection processing on the image signal read from the memory 14 in the same manner as the first imaging method (fat detection step S4).
  • the hemoglobin detection unit 19 detects the hemoglobin by calculating the ratio between the signal value of the G1 wavelength and the signal value of the G2 wavelength in the image signal sent from the preprocessing unit 17 (blood detection step S5 ), Is output as a hemoglobin detection value.
  • fat extraction unit 20 in order to perform fat extraction in which the influence of blood is removed, fat extraction is performed using a coefficient K2 obtained in advance based on the absorption characteristics of hemoglobin at the B wavelength, G1 wavelength, and G2 wavelength. The value is calculated. Then, in the fat emphasizing unit 23, color emphasis of the image signal input from the post-processing unit 22 is performed based on the fat extraction value extracted by the fat extracting unit 20, and output to the image display unit 6.
  • step S6 when the transmission of the notification is stopped from the state where the notification that the blood spread (step S6) calculated by the blood distribution calculation unit 21 is large is sent (step S7), the control unit 16 performs the second imaging.
  • the mode is switched to the first imaging mode (step S8).
  • the hemoglobin detection unit 19 detects hemoglobin based on the ratio of the signal value of the G1 wavelength to the signal value of the R wavelength.
  • the transition from the first imaging method to the second imaging method is made.
  • detection of hemoglobin is performed by the ratio of the signal value of the G1 wavelength to the signal value of the G2 wavelength.
  • the difference in absorption of hemoglobin is remarkable between the light of the G1 wavelength and the light of the G2 wavelength, and since the light of the wavelength which is very close, information from approximately the same position in the depth direction of the living tissue is It contains.
  • the detection accuracy of blood detected by hemoglobin detected using reflected light of these wavelengths can be improved, and there is an advantage that fat detection with less influence of blood can be performed.
  • the ratio of the signal value of the G1 wavelength to the signal value of the R wavelength is obtained by transitioning from the second imaging method to the first imaging method.
  • the display frame rate is improved from 1 ⁇ 2T to 1 / T instead of the detection of hemoglobin.
  • the light of the G1 wavelength and the light of the R wavelength have a remarkable difference in absorption of hemoglobin, but when compared with the relationship between the G1 wavelength and the G2 wavelength, the wavelengths are distant, so the depth direction of the living tissue Contains information from different locations.
  • the detection accuracy of blood by hemoglobin detected using the reflected light of these wavelengths is lower than in the case of the second imaging method, but the frame rate is improved instead and the movement is smooth. There is an advantage that an easy-to-see image can be displayed.
  • the blood distribution calculation unit 21 calculates the blood distribution in the target area at the center of the image that the operator is considered to be gazing at, but instead, it is possible to use fat other than the center of the image.
  • An area having a high extraction value may be detected, and the area may be set as a target area. Also, an arbitrary area may be set as the target area by the operator.
  • the blood distribution calculation unit 21 stores the average value of the detected hemoglobin values in a storage unit (not shown) for each imaging frame, and calculates the time change of the average value to detect the presence or absence of hemorrhage, and bleeding is present.
  • the spread of blood may be determined from the number of blocks. By doing this, even in the case where a thick blood vessel is present in the target region for which the blood distribution is to be calculated, it is possible to detect the spread of hemorrhage in distinction from the thick blood vessel.
  • the light source unit 3 configured to emit light of different wavelength bands is configured by the plurality of light emitting diodes L1, L2, L3, and L4.
  • a light source unit 27 having a xenon lamp 24 for generating light, a filter turret 25 for rotating a plurality of narrow band filters F1, F2 and F3, and a linear movement mechanism 26 for moving the filter turret 25 in a radial direction You may
  • the filter turret 25 includes a narrow band filter F1 disposed radially inward and narrow band filters F2 and F3 disposed radially outward.
  • the narrow band filters F1 and F2 transmit the B wavelength, the G1 wavelength, and the R wavelength
  • the filter F3 transmits the B wavelength, the G2 wavelength, and the R wavelength.
  • a narrow band-pass filter F1 is disposed on the optical axis from the xenon lamp 24 to the light guide cable 9a, and the filter turret 25 is rotated to perform the illumination of the first imaging method, and the narrow band-pass filter F2 on the optical axis , F3 and rotating the filter turret 25, illumination of the second imaging method can be performed.
  • the narrow band light is generated in the light source unit 3 and the reflected light in the living body tissue is photographed as it is, but instead, the living body tissue is irradiated with wide band light such as white light.
  • a filter that selectively transmits narrow band light may be disposed upstream of the imaging element 11 of the imaging optical system 8.
  • a filter using the above-described filter turret 25 or a wavelength tunable filter such as an etalon may be employed.
  • a motion amount detection unit (motion detection unit) 29 that calculates the motion amount of an image based on the image signal after the image processing unit 30 is processed. And the control unit 16 switches to the second imaging method when the spread of the blood is large and the movement amount of the image detected by the movement amount detection unit 29 is smaller than a predetermined threshold. This is different from the living body observation device 1 according to the first embodiment.
  • the motion amount detection unit 29 is sent from the pre-processing unit 17 and a memory 31 that delays the image signal of G wavelength sent from the pre-processing unit 17 by one frame.
  • a motion vector calculation unit 32 that calculates a motion vector from the G wavelength image signal and the G wavelength image signal stored in the memory 31 that has been stored in the memory 31, and intersects the optical axis based on the calculated motion vector
  • a motion amount calculation unit 33 for calculating the motion amount in the direction to be moved.
  • the motion vector can be calculated by a known block matching method or gradient method.
  • motion vectors are calculated for a plurality of points set at equal intervals on the image, as shown in FIG.
  • the motion amount calculator 33 is configured to calculate the motion amount MV by the following equation (5) based on the motion vector calculated by the motion vector calculator 32.
  • M is the total number of motion vectors
  • vi is a motion vector.
  • the global motion of the entire image can be calculated as the motion amount of the image by calculating the motion amount by averaging all the motion vectors (step S11).
  • step S12 when it is determined by the blood distribution calculation unit 21 that the spread of the blood is large, the first imaging method can be maintained, and a decrease in the display frame rate can be prevented (step S12).
  • the blood distribution calculation unit 21 when it is determined by the blood distribution calculation unit 21 that the spread of the blood is large and the amount of movement of the image is small, that is, when the photographing optical system 8 of the tip 2a of the insertion unit 2 is stationary. Can be switched to the second imaging method, and observation can be performed with priority given to fat extraction less affected by blood (step S12).
  • the image signal of G wavelength is used to detect the amount of movement of the image, but the amount of movement may be calculated using a luminance signal calculated from the image signal of RGB.
  • motion vectors are calculated at a plurality of points arranged at equal intervals, motion vectors of all pixels on an image may be calculated.
  • the motion amount of the image when calculating the motion vector of each position on the image, the presence or absence of a correlation with the motion vector located around the image is determined.
  • the motion amount of the image may be calculated only from the motion vector determined to be. In this case, the motion amount can be calculated using the following equation (6).
  • ci 0 indicates no correlation with peripheral motion vectors
  • the amount of motion of the image is zero, and the motion vector is processed as a zero vector.
  • the motion vector may be, for example, a disturbance due to a forceps operation or the like during the procedure, as well as the movement of a focused portion on a living tissue.
  • the motion vector due to the disturbance is not correlated with the surrounding motion vector.
  • the motion amount of the image can be calculated with high accuracy by excluding the motion vector due to the disturbance based on the correlation with the peripheral motion vector.
  • the correlation with the peripheral motion vector may be, for example, correlation if the magnitude of the difference between the vectors is less than a predetermined threshold, and no correlation if the magnitude is greater than the threshold.
  • the living body observation apparatus 1 includes a mist detection unit 35 that detects the generation of mist based on the image signal after the image processing unit 34, and the control unit 16 When the spread of the blood is large and the mist disappears, switching to the second imaging method is performed. When the mist is detected, the first imaging is performed even when the spread of the blood is large. It differs from the living body observation apparatus 1 according to the first embodiment in that the method is maintained.
  • mist Smoke and water vapor
  • mist detection is performed to switch the imaging method.
  • the mist detection unit 35 determines the average luminance YAve (n), the average saturation SAve (n), and the average D range (dynamic range) DAve (dynamic range) of the central region of the image based on the image signal preprocessed in the preprocessing unit 17.
  • n is calculated and stored in a storage unit (not shown).
  • n indicates the timing at which the image was acquired.
  • the mist detection unit 35 calculates the mist detection evaluation values Vy (n), Vs (n), and Vd (n) based on Expressions (7), (8), and (9).
  • Vy (n) YAve (n) -YAve (nx) (7)
  • Vs (n) SAve (n) -SAve (n-x) (8)
  • Vd (n) DAve (n)-DAve (n-x) (9)
  • YAve (n-x) is the average luminance calculated from an image acquired x frames before the current image
  • SAve (n-x) is acquired x frames before the current image
  • DAve (n ⁇ x) is the average saturation calculated from the image
  • the average D range calculated from the image acquired x frames before the current image An arbitrary number can be set as x.
  • Vy (n) is calculated from the average luminance calculated from the image signal at the current time n and the image signal acquired in the past by x Difference with the average brightness.
  • Vs (n) is the difference between the average saturation calculated from the image signal at the current time n and the average saturation calculated from the image signal acquired in the past by x.
  • Vd (n) is the difference between the average D-range calculated from the image signal at the current time n and the average D-range calculated from the image signal acquired in the past by x.
  • FIG. 16 shows the time change of the average luminance value YAve (n), the average saturation SAve (n) and the average D range DAve (n) of the image when the amount of mist changes.
  • FIG. 18 shows the time change of the average luminance value YAve (n), the average saturation SAve (n) and the average D range DAve (n) of the image when the amount of mist changes.
  • the average luminance value YAve (n) increases as mist is generated and fills the body, and the average saturation SAve (n) and the average D range DAve (n) ) Decreases. Then, as the generation of mist stops and disappears, the average luminance value YAve (n) decreases, and the average saturation SAve (n) and the average D range DAve (n) increase. This is because the mist raises the average luminance value YAve (n) to diffusely reflect the illumination and decreases the average saturation SAve (n) and the average D range DAve (n) because the mist is opaque. .
  • FIGS. 16, 17 and 18 shows evaluation values Vy (n) when the average luminance value YAve (n), the average saturation SAve (n) and the average D range DAve (n) change as described above. , Vs (n), Vd (n) over time. Since these evaluation values are difference values, the characteristics are obtained by differentiating the characteristics of the average luminance value YAve (n), the average saturation SAve (n), and the average D range DAve (n) in the upper row, respectively.
  • the evaluation value Vy (n) of luminance has an upward convex characteristic
  • the evaluation value Vs (n) of saturation and the evaluation value Vd (n) of D range have a downward convex characteristic.
  • the luminance evaluation value Vy (n) has a downward convex characteristic
  • the saturation evaluation value Vs (n) and the D range evaluation value Vd (n) have an upward convex characteristic.
  • the mist detection unit 35 determines the presence or absence of the generation of the mist in the following manner with respect to such changes in the evaluation values Vy (n), Vs (n), Vd (n). It is supposed to be. That is, as shown in FIG. 15, the mist detection unit 35 evaluates the luminance value Vy (n) above a predetermined threshold and evaluates the saturation evaluation value Vs (n) and the D range evaluation value Vd ( It is determined that mist has occurred at the time when n) falls below a predetermined threshold (step S13).
  • the mist detection unit 35 the time when the evaluation value Vy (n) of the luminance value becomes a local minimum smaller than the first threshold, and the evaluation value of the saturation and the evaluation value of the D range each have the first threshold. Detect the time when the maximum value is larger. Then, after these times, the mist detection unit 35 indicates that the evaluation value of the luminance value exceeds the second threshold, and the evaluation value of the saturation and the evaluation value of the D range each fall below the second predetermined threshold. At time n, it is determined that the mist has disappeared (step S14).
  • the control unit 16 performs the first operation even when the spread of the blood is large.
  • the display frame rate can be prevented from being lowered, and the easiness of observation can be improved.
  • the mode is switched to the second imaging method, so fat extraction with little influence of blood is prioritized to detect fat accurately. be able to.
  • Reference Signs List 1 living body observation apparatus 3, 27 light source unit 11 imaging device (imaging unit) 16 control unit 18 ⁇ -carotene detection unit (fat detection unit) 19 Hemoglobin detection unit (blood detection unit) 29 Motion amount detector (Motion detector) 35 mist detection unit S2 illumination step S3 imaging step S4 fat detection step S5 blood detection step S7, S8, S9 control step

Abstract

The purpose of the present invention is to detect fat stably while maintaining smooth observation in the case where the amount of blood placed on the fat is small and while improving the accuracy of the detection of blood when blood is placed on the fat. A living body observation device (1) equipped with a light source section (3) for irradiating a biological tissue with illuminating light, an imaging section (11) for imaging reflected light in the biological tissue to acquire an image, a fat detection section for detecting fat in the acquired image, a blood detection section for detecting blood in the image, and a control section (16) for controlling the light source section (3) and/or the imaging section (11) on the basis of the detection results obtained by the fat detection section and the blood detection section, wherein the control section (16) makes it possible to switch between a simultaneous-type first imaging mode in which multiple light beams having different wavelength bands from each other are imaged simultaneously and a frame sequential-type second imaging mode in which the light beams are imaged sequentially, depending on the condition of blood detected in the image by the blood detection section when fat is detected in the image by the fat detection section.

Description

生体観察装置および生体観察方法Living body observation apparatus and living body observation method
 本発明は、生体観察装置および生体観察方法に関するものである。 The present invention relates to a living body observation apparatus and a living body observation method.
 血液に含まれるヘモグロビンに吸収されやすい狭帯域化された波長の照明光を照射し、粘膜表面の毛細血管等を強調表示する狭帯域光観察(NBI)が知られている(例えば、特許文献1参照。)。
 この狭帯域光観察は、食道領域の詳細診断や大腸のピットパターン(腺管構造)観察のために広く行われている色素散布の代替観察法として期待され、検査時間や不必要な生検の減少によって、検査の効率化への貢献が期待されている。
A narrow band light observation (NBI) is known, which illuminates illumination light of a narrow band which is easily absorbed by hemoglobin contained in blood and highlights capillaries and the like on the surface of the mucous membrane (for example, Patent Document 1) reference.).
This narrow-band light observation is expected as an alternative observation method of pigment dispersion widely performed for detailed diagnosis of the esophagus region and pit pattern (ductal structure) observation of the large intestine, and the examination time and unnecessary biopsy The reduction is expected to contribute to the efficiency of inspections.
 しかしながら、狭帯域光観察は、血管の強調表示を行うことはできるが、神経を強調表示することは困難である。例えば、直腸全摘出手術や前立腺全摘出手術において神経の温存を行う場合は、対象臓器を摘出する際に、対象臓器を取り囲むように分布している神経を傷つけないように対象臓器を露出させて摘出する必要があるが、直径50から300μmの細い神経は、白色あるいは透明であるため、腹腔鏡による拡大観察でも観察することが困難である。このため、医師が経験や勘に頼って手術せざるを得ず、損傷してしまう可能性が高いという不都合がある。 However, although narrowband light observation can highlight blood vessels, it is difficult to highlight nerves. For example, in the case of nerve preservation in total rectum excision surgery or total prostate excision surgery, when removing the target organ, expose the target organ so as not to damage the nerve distributed so as to surround the target organ. Although it is necessary to remove it, thin nerves with a diameter of 50 to 300 μm are white or transparent, so it is difficult to observe even by a laparoscopic magnifying observation. For this reason, there is a disadvantage that the doctor has to operate according to experience and intuition and there is a high possibility of damage.
 このため、摘出対象等の対象臓器の表面の組織の構造を見やすくして、対象臓器を取り囲んでいる神経の損傷を未然に防止することができる生体観察装置が提案されている(例えば、特許文献2参照)。この生体観察装置によれば、対象臓器を取り囲む神経が脂肪層内に存在していることに着目し、脂肪に含まれるβカロテンの吸収特性と、血液中のヘモグロビンとが、それぞれ異なる波長帯域の吸収特性であるため、対応する波長帯域の照射光を照射して、脂肪を見分けやすい画像を取得し、脂肪層内に分布する神経に損傷を与えないように手術を行うことができる。 For this reason, there has been proposed a living body observation apparatus capable of preventing damage to nerves surrounding a target organ by making the structure of the tissue on the surface of the target organ such as an extraction target easy to see (for example, patent documents 2). According to this living body observation apparatus, focusing on the fact that the nerve surrounding the target organ is present in the fat layer, the absorption characteristics of β-carotene contained in fat and hemoglobin in the blood have different wavelength bands. Because of the absorption characteristics, it is possible to irradiate the irradiation light of the corresponding wavelength band to obtain an image that is easy to identify fat, and to perform surgery so as not to damage nerves distributed in the fat layer.
 脂肪の検出は、βカロテンの吸収が多い480nm近傍の光を照射して撮像した画像と、βカロテンの吸収が少ない510nm近傍の光を照射して撮像した画像の信号の差分を抽出することで実現できる。ところで、手術中は出血により被写体上に血液が存在する。血液に含まれるヘモグロビンは、480nm近傍と510nm近傍の波長帯域に吸収特性を持っているため、脂肪の上に多量の血液が載ると、βカロテンの吸収に比べてヘモグロビンの吸収が支配的になり、脂肪が正確に検出できなくなる(擬陽性、偽陰性が発生する)。 The detection of fat is performed by extracting the difference between the image captured by irradiating the light near 480 nm with much absorption of β-carotene and the light imaged by the light near 510 nm with little absorption of β-carotene and extracted. realizable. By the way, blood is present on the subject due to bleeding during the operation. Hemoglobin contained in blood has absorption characteristics in the wavelength band near 480 nm and 510 nm, so absorption of hemoglobin becomes dominant compared to the absorption of β-carotene when a large amount of blood is placed on fat , Fat can not be detected accurately (false positive, false negative occurs).
 このため、ヘモグロビンの吸収が少ない610nm近傍の光を照射して撮像した画像と、610nmと比べて吸収が大きい510nm近傍の光を照射して撮像した画像を比較して血液を検出し、上述の脂肪の検出結果を血液の検出結果で補正することが望ましい。 For this reason, blood is detected by comparing an image captured by irradiation with light near 610 nm having a small absorption of hemoglobin with an image captured by irradiation with light near 510 nm having a larger absorption than 610 nm to detect blood as described above. It is desirable to correct fat detection results with blood detection results.
特開2011-224038号公報JP 2011-224038 A 国際公開第2013/115323号International Publication No. 2013/115323
 生体における光の特性として、波長が長い光は生体のより深層まで到達する特性を持つ。そのため、波長が離れた光によって撮像した画像は、得られる情報が生体の深さ方向で異なることになる。すなわち、510nm近傍の光を照射して撮像した画像と、610nm近傍の光を照射して撮像した画像は深さ方向の情報が異なるため、血液検出精度が落ち、安定的な脂肪検出ができない。 As a characteristic of light in living organisms, light with a long wavelength has a characteristic of reaching deeper layers of living organisms. Therefore, in the image captured by the light whose wavelength is separated, the obtained information is different in the depth direction of the living body. That is, since the image captured by emitting light in the vicinity of 510 nm and the image captured by emitting light in the vicinity of 610 nm are different in the information in the depth direction, blood detection accuracy is lowered, and stable fat detection can not be performed.
 本発明は上述した事情に鑑みてなされたものであって、脂肪の上に載る血液が少ない場合のスムーズな観察を維持しながら、脂肪の上に血液が載った場合の血液の検出精度を向上しつつ安定的な脂肪検出を行うことができる生体観察装置および生体観察方法を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and improves the detection accuracy of blood when blood is placed on fat while maintaining smooth observation when there is little blood on fat. However, it is an object of the present invention to provide a living body observing apparatus and a living body observing method capable of performing stable fat detection.
 本発明の一態様は、生体組織に照明光を照射する光源部と、該光源部により照射された照明光の前記生体組織における反射光を撮影し画像を取得する撮像部と、該撮像部により取得された前記画像内の脂肪を検出する脂肪検出部と、前記撮像部により取得された前記画像内の血液を検出する血液検出部と、前記脂肪検出部および前記血液検出部による検出結果に基づいて前記光源部および前記撮像部の少なくとも一方を制御する制御部とを備え、該制御部は、前記脂肪検出部により前記画像内に脂肪が検出されている状態で、前記血液検出部により前記画像内に検出される血液の状態に応じて、波長帯域の異なる複数の帯域光を同時に撮影する同時式の第1の撮影方式と、順次撮影する面順次式の第2の撮影方式とを切り替える生体観察装置である。 One embodiment of the present invention includes a light source unit that emits illumination light to a living tissue, an imaging unit that captures reflected light from the living tissue of the illumination light emitted by the light source unit and acquires an image, and the imaging unit Based on a fat detection unit that detects fat in the acquired image, a blood detection unit that detects blood in the image acquired by the imaging unit, and detection results by the fat detection unit and the blood detection unit Control unit configured to control at least one of the light source unit and the imaging unit, the control unit controlling the image by the blood detection unit in a state where fat is detected in the image by the fat detection unit A living body that switches between a simultaneous first imaging method for simultaneously imaging a plurality of band lights of different wavelength bands and a second imaging method for surface sequential imaging that sequentially images according to the state of blood detected inside Observation equipment It is.
 本態様によれば、光源部から発せられた照明光が生体組織に照射され、生体組織における反射光が撮像部により撮影されて画像が取得されると、取得された画像を用いて脂肪検出部により画像内の脂肪が検出されるとともに、血液検出部により画像内の血液が検出される。脂肪検出部により画像内に脂肪が検出されている状態で、血液検出部により画像内に検出される血液の状態が変化したときに、制御部が第1の撮影方式と第2の撮影方式とを切り替える。 According to this aspect, when the illumination light emitted from the light source unit is irradiated to the living tissue, and the reflected light in the living tissue is photographed by the imaging unit and an image is acquired, the fat detection unit is acquired using the acquired image As a result, fat in the image is detected, and blood in the image is detected by the blood detection unit. In a state where fat is detected in the image by the fat detection unit, when the state of the blood detected in the image by the blood detection unit changes, the control unit performs the first imaging method and the second imaging method Switch.
 第1の撮影方式では波長帯域の異なる複数の帯域光を同時に照射するので、複数の帯域光についての反射光を同時に撮影でき、フレームレートを向上することができる。一方、第2の撮影方式では、波長帯域の異なる複数の帯域光を順次照射するので、フレームレートは第1の撮影方式より低下するが、同時には撮影できないような極めて近接した波長帯域の反射光を撮影できる。 In the first imaging method, since plural bands of light having different wavelength bands are simultaneously irradiated, reflected light of plural bands of light can be photographed at the same time, and the frame rate can be improved. On the other hand, in the second imaging method, since a plurality of band lights of different wavelength bands are sequentially irradiated, the frame rate is lower than that of the first imaging method, but reflected light of extremely close wavelength bands which can not be captured simultaneously. Can take pictures.
 生体組織に含まれるβカロテンやヘモグロビンは波長によって吸光度が異なるため、異なる波長の反射光を取得して比を取ることにより、生体組織に含まれるβカロテンやヘモグロビンの量を容易に検出することができる。βカロテンは脂肪に多く含まれるため脂肪の検出に有効であり、ヘモグロビンは血液に多く含まれるため血液の検出に有効である。 Since β-carotene and hemoglobin contained in living tissue vary in absorbance depending on the wavelength, it is possible to easily detect the amount of β-carotene and hemoglobin contained in living tissue by acquiring reflected light of different wavelengths and taking the ratio. it can. Beta-carotene is effective in detecting fat because it is abundant in fat, and hemoglobin is effective in detecting blood because it is rich in blood.
 この場合に、生体組織は、波長に依存した散乱特性を有するため、波長が離れていると、生体組織への進達度の相違から異なる深さ位置において散乱して戻る反射光を撮影することになる。したがって、第2の撮影方式では、近接した波長帯域の反射光を撮影することで、同等の深さ位置から戻る異なる波長の光を用いて、生体組織内に含有される成分を精度よく検出することができる。 In this case, since biological tissue has wavelength-dependent scattering characteristics, it is possible to capture reflected light that is scattered and returned at different depth positions due to the difference in the degree of penetration to the biological tissue when the wavelengths are separated. Become. Therefore, in the second imaging method, by capturing reflected light in a close wavelength band, components contained in living tissue are accurately detected using light of different wavelengths returning from the equivalent depth position. be able to.
 上記態様においては、前記血液検出部が、前記第1の撮影方式においては、前記撮像部により同時に取得された緑色の波長帯域の画像信号と赤色の波長帯域の画像信号との比に基づいてヘモグロビンを検出し、前記第2の撮影方式においては、前記撮像部により順次取得された、ヘモグロビンの吸光度差を有する緑色の2つの波長帯域の画像信号の比に基づいてヘモグロビンを検出してもよい。 In the above aspect, in the first imaging method, the blood detection unit is a hemoglobin based on a ratio between an image signal of a green wavelength band and an image signal of a red wavelength band simultaneously acquired by the imaging unit. In the second imaging method, hemoglobin may be detected based on a ratio of image signals of two wavelength bands of green having difference in absorbance of hemoglobin sequentially acquired by the imaging unit.
 緑色の波長帯域および赤色の波長帯域の光は、いずれもβカロテンに対する吸光度が低く、赤色の波長帯域の光よりも緑色の波長帯域の光の方が、ヘモグロビンに対する吸光度が高い。したがって、第1の撮影方式においては、これらの比を取ることによりヘモグロビンを検出することができる。この場合に、赤色と緑色の波長帯域の光は、分離して撮影し易いので、同時に撮影することができ、フレームレートを向上することができる。 The light in the green wavelength band and the red wavelength band both have low absorbance to β-carotene, and the light in the green wavelength band has higher absorbance to hemoglobin than the light in the red wavelength band. Therefore, in the first imaging method, hemoglobin can be detected by taking these ratios. In this case, since light in the red and green wavelength bands is easily separated and photographed, it can be photographed at the same time, and the frame rate can be improved.
また、第2の撮影方式において使用される、ヘモグロビンに対する吸光度に差がある緑色の2つの波長帯域の光も、βカロテンに対する吸光度が同様に低いので、これらの比を取ることによりヘモグロビンを検出することができる。この場合に、2つの緑色の波長帯域の光は、分離して撮影し難いので、順次撮影する必要があり、フレームレートは低下するが、同等の深さ位置において散乱して戻る反射光であるため、ヘモグロビンを精度よく検出することができる。 In addition, light of two green wavelength bands having differences in absorbance for hemoglobin used in the second imaging method also detects hemoglobin by taking the ratio because absorbance for β-carotene is similarly low. be able to. In this case, since it is difficult to separate and shoot the light in the two green wavelength bands, it is necessary to sequentially capture them, and the frame rate is lowered, but the reflected light is scattered and returned at the same depth position. Therefore, hemoglobin can be detected accurately.
 また、上記態様においては、前記第1の撮影方式における緑色の波長帯域が波長510nm近傍の波長帯域であり、赤色の波長帯域が波長610nm近傍の波長帯域であり、前記第2の撮影方式における緑色の波長帯域が、波長510nm近傍および波長540nm近傍の波長帯域であってもよい。 In the above aspect, the green wavelength band in the first imaging system is a wavelength band near 510 nm, the red wavelength band is a wavelength band near 610 nm, and the green in the second imaging system The wavelength band of may be a wavelength band near a wavelength of 510 nm and a wavelength near a wavelength of 540 nm.
 このようにすることで、第1の撮影方式においては、βカロテンの吸収特性が低くヘモグロビンの吸収特性が比較的高い510nm近傍の波長帯域の光と、βカロテンおよびヘモグロビンの吸収特性がいずれも低い610nm近傍の波長帯域の光を同時に撮影して、βカロテンに影響を受けることなくヘモグロビンの量を高いフレームレートで検出することができる。 In this way, in the first imaging method, the absorption characteristics of β-carotene are low and the absorption characteristics of hemoglobin are relatively high, and the light of wavelength bands around 510 nm and the absorption characteristics of β-carotene and hemoglobin are both low. Light in a wavelength band near 610 nm can be simultaneously captured to detect the amount of hemoglobin at a high frame rate without being affected by β-carotene.
 一方、第2の撮影方式においては、510nmの波長帯域の光と、510nm近傍の波長帯域の光よりヘモグロビンの吸収特性が高い540nm近傍の光とを順次撮影するので、フレームレートは第1の撮影方式より低下するが、同じ深さ位置の情報に基づいて、ヘモグロビンを精度よく検出することができる。 On the other hand, in the second imaging method, since the light of the wavelength band of 510 nm and the light of 540 nm near which the absorption characteristic of hemoglobin is higher than the light of the wavelength band of 510 nm are sequentially photographed, the frame rate is the first photographing. Hemoglobin can be detected with high accuracy based on the information of the same depth position although it is lower than the method.
 また、上記態様においては、前記血液検出部が、前記撮像部により取得された前記画像内における血液の広がりを検出し、前記制御部は、前記血液検出部により検出された血液の広がりが所定の閾値を超える場合に、前記第2の撮影方式に切り替えてもよい。
 このようにすることで、血液の広がりが小さい場合には、第1の撮影方式によって高いフレームレートでの動きのスムーズな画像による観察を行い、血液の広がりが大きくなったときには、第2の撮影方式に切り替えて、血液を精度よく検出し、血液の影響を抑えた脂肪の検出を行うことができる。
In the above aspect, the blood detection unit detects the spread of blood in the image acquired by the imaging unit, and the control unit determines that the spread of blood detected by the blood detection unit is predetermined. When the threshold value is exceeded, the second imaging method may be switched.
By doing this, when the spread of the blood is small, the smooth imaging of the movement at a high frame rate is performed by the first imaging method, and when the spread of the blood becomes large, the second imaging is performed. By switching to the method, it is possible to detect blood accurately and detect fat with less influence of blood.
 また、上記態様においては、前記撮像部により取得された前記画像に基づいて、前記生体組織に対する前記撮像部の動き量を検出する動き検出部を備え、前記制御部は、前記動き検出部により検出された動き量が所定の閾値より小さい場合に、前記第2の撮影方式に切り替えてもよい。
 このようにすることで、生体組織に対して撮像部を動かして観察位置を移動している状態では、血液の広がりが発生している場合でもフレームレートの高い第1の撮影方式による動きのスムーズな画像による観察を行い、生体組織に対して撮像部が静止している状態で、血液の広がりが発生した場合には、第2の撮影方式による血液の影響を抑えた脂肪の検出を行うことができる。
Further, in the above aspect, the image processing apparatus further includes a motion detection unit that detects an amount of motion of the imaging unit with respect to the living tissue based on the image acquired by the imaging unit, and the control unit detects the movement by the motion detection unit. If the calculated motion amount is smaller than a predetermined threshold, switching to the second imaging method may be performed.
In this way, in a state where the imaging unit is moved with respect to the living tissue to move the observation position, movement of the first imaging method with high frame rate can be smooth even if blood spreading is occurring. Image observation, and in the state where the imaging unit is at rest with respect to the living tissue, when blood spreading occurs, fat detection with reduced influence of blood by the second imaging method is performed. Can.
 また、上記態様においては、前記動き検出部は、画像全体の大域的な動きベクトルと、局所的な動きベクトルとを識別し、前記大域的な動きベクトルに基づいて動き量を検出してもよい。
 このようにすることで、静止した画像内において鉗子等の処置具が移動する局所的な画像の動きが存在しても、画像全体の大域的な動きベクトルが存在しない場合には、動き量が小さいものとして第2の撮影方式による観察を行うことができる。
Further, in the above aspect, the motion detection unit may identify a global motion vector of the entire image and a local motion vector, and detect a motion amount based on the global motion vector. .
By doing this, even if there is a local image movement in which a treatment tool such as forceps moves in a still image, the amount of movement is as long as there is no global motion vector for the entire image. The observation by the second imaging method can be performed as a small one.
 また、上記態様においては、前記画像に基づいて、ミストの発生の有無を検出するミスト検出部を備え、前記制御部は、前記ミスト検出部により、ミストが消失したことが検出された場合に、前記第2の撮影方式に切り替えてもよい。
 このようにすることで、ミスト検出部により、画像内にミストが発生していると検出された場合には、ミストにより視界が悪く、精度の高い検出が困難であることから、第1の撮影方式に切り替えて、高いフレームレートによる動きのスムーズな画像による観察を行う。一方、ミストが消失した場合には、視界が良好となるので、血液の広がりが大きくなった場合には第2の撮影方式により血液の影響を抑えた脂肪の検出を行うことができる。
In the above-mentioned mode, it has a mist detection part which detects existence of generation of mist based on the above-mentioned picture, and when the control part detects that mist has disappeared by the mist detection part, You may switch to the said 2nd imaging | photography method.
In this way, when the mist detection unit detects that mist is generated in the image, the field of view is poor due to the mist and it is difficult to detect with high accuracy, so the first photographing is performed. Switch to the method, and perform observation with a smooth image of movement with a high frame rate. On the other hand, when the mist disappears, the visual field is improved, and therefore, when the spread of the blood is large, fat can be detected with the influence of the blood suppressed by the second imaging method.
 また、本発明の他の態様は、生体組織に照明光を照射する照明ステップと、該照明ステップにより照射された照明光の前記生体組織における反射光を撮影し画像を取得する撮像ステップと、該撮像ステップにより取得された前記画像内の脂肪を検出する脂肪検出ステップと、前記撮像ステップにより取得された前記画像内の血液を検出する血液検出ステップと、前記脂肪検出ステップにより前記画像内に脂肪が検出されている状態で、前記血液検出ステップにより前記画像内に検出される血液の状態に応じて、波長帯域の異なる複数の帯域光を同時に撮影する同時式の撮影方式と、順次撮影する面順次式の撮影方式とを切り替える制御ステップとを含む生体観察方法である。 Further, another aspect of the present invention is an illumination step of irradiating illumination light to a living tissue, an imaging step of capturing reflected light of the illumination light emitted by the illumination step in the living tissue, and acquiring an image; The fat is detected in the image obtained in the imaging step, the fat detecting step for detecting fat in the image, the blood detecting step for detecting blood in the image obtained in the imaging step, and the fat in the image obtained by the fat detecting step In the detected state, according to the state of the blood detected in the image by the blood detection step, a simultaneous imaging method for simultaneously imaging a plurality of band lights having different wavelength bands and a plane sequential imaging sequentially It is a living body observation method including the control step which changes with the photography method of a formula.
 本発明によれば、生体組織に存在する血管を正確に検出することができ、かつ、所定の太さの血管を選択的に検出することができるという効果を奏する。 According to the present invention, it is possible to accurately detect a blood vessel present in a living tissue and to selectively detect a blood vessel having a predetermined thickness.
本発明の第1の実施形態に係る生体観察装置を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows the biological body observation apparatus which concerns on the 1st Embodiment of this invention. 図1の生体観察装置により検出されるβカロテンおよびヘモグロビンの分光特性を示す図である。It is a figure which shows the spectral characteristic of (beta) carotene and hemoglobin which are detected by the biological body observation apparatus of FIG. 図1の生体観察装置による第1の撮影方式を説明するタイミングチャートを示す図である。It is a figure which shows the timing chart explaining the 1st imaging | photography method by the biological body observation apparatus of FIG. 図1の生体観察装置による第2の撮影方式を説明するタイミングチャートを示す図である。It is a figure which shows the timing chart explaining the 2nd imaging | photography system by the biological body observation apparatus of FIG. 図1の生体観察装置に備えられる画像処理部を示すブロック図である。It is a block diagram which shows the image processing part with which the biological body observation apparatus of FIG. 1 is equipped. 図1の生体観察装置により取得された画像上における血液の広がりの検出を説明する図である。It is a figure explaining the detection of the spreading | spread of the blood on the image acquired by the biological body observation apparatus of FIG. 図1の生体観察装置による生体観察方法を説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the biological body observation method by the biological body observation apparatus of FIG. 図1の生体観察装置の変形例を示す全体構成図である。It is a whole block diagram which shows the modification of the biological body observation apparatus of FIG. 図8の生体観察装置に備えられるフィルタターレットを示す正面図である。It is a front view which shows the filter turret with which the biological body observation apparatus of FIG. 8 is equipped. 本発明の第2の実施形態に係る生体観察装置に備えられる画像処理装置を示すブロック図である。It is a block diagram showing the image processing device with which the living body observation device concerning a 2nd embodiment of the present invention is equipped. 図10の生体観察装置に備えられる動き量検出部を示すブロック図である。It is a block diagram which shows the movement amount detection part with which the biological body observation apparatus of FIG. 10 is equipped. 図11の動き量検出部により算出される動きベクトルの一例を示す図である。It is a figure which shows an example of the motion vector calculated by the motion amount detection part of FIG. 図10の生体観察装置による生体観察方法を説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the biological body observation method by the biological body observation apparatus of FIG. 本発明の第3の実施形態に係る生体観察装置に備えられる画像処理装置を示すブロック図である。It is a block diagram which shows the image processing apparatus with which the biological body observation apparatus which concerns on the 3rd Embodiment of this invention is equipped. 図14の生体観察装置による生体観察方法を説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the biological body observation method by the biological body observation apparatus of FIG. 体内でミストが発生し消失するまでの平均輝度および輝度の評価値の時間変化を示す図である。It is a figure which shows the time change of the evaluation value of average brightness and brightness | luminance until mist generate | occur | produces in a body and lose | disappears. 体内でミストが発生し消失するまでの平均彩度および彩度の評価値の時間変化を示す図である。It is a figure which shows the time change of the evaluation value of average saturation and saturation until the mist generate | occur | produces in a body and lose | disappears. 体内でミストが発生し消失するまでの平均DレンジおよびDレンジの評価値の時間変化を示す図である。It is a figure which shows the time change of the evaluation value of the average D range and D range until mist generate | occur | produces in a body and lose | disappears.
 本発明の第1の実施形態に係る生体観察装置1および生体観察方法について図面を参照して以下に説明する。
 本実施形態に係る生体観察装置1は、内視鏡装置であって、図1に示されるように、生体内に挿入される挿入部2と、該挿入部2に接続された光源部3および信号処理部4を備える本体部5と、信号処理部4により生成された画像を表示する画像表示部6とを備えている。
A living body observation apparatus 1 and a living body observation method according to a first embodiment of the present invention will be described below with reference to the drawings.
The living body observation apparatus 1 according to the present embodiment is an endoscope apparatus, and as shown in FIG. 1, an insertion unit 2 inserted into a living body, a light source unit 3 connected to the insertion unit 2, and A main unit 5 including a signal processing unit 4 and an image display unit 6 displaying an image generated by the signal processing unit 4 are provided.
 挿入部2は、光源部3から入力された光を被写体に向けて照射する照明光学系7と、被写体からの反射光を撮影する撮影光学系8とを備えている。照明光学系7は、挿入部2の全長にわたって配置され、基端側の光源部3から入射された光を先端2aまで導光するライトガイドケーブル9aと導光された光を挿入部2の先端から前方に射出させる拡散光学系9bとを備えている。撮影光学系8は照明光学系7により照射された光の生体組織における反射光を集光する対物レンズ10と、該対物レンズ10により集光された光を撮影する撮像素子(撮像部)11とを備えている。撮像素子11は、各画素にそれぞれ青色、緑色、赤色の光を透過するフィルタを備えたカラーCCDである。 The insertion unit 2 includes an illumination optical system 7 for irradiating the light input from the light source unit 3 toward the subject, and a photographing optical system 8 for photographing reflected light from the subject. The illumination optical system 7 is disposed over the entire length of the insertion portion 2, and the light guide cable 9a for guiding the light incident from the light source portion 3 on the proximal end to the tip 2a and the tip of the insertion portion 2 And a diffusion optical system 9b for emitting light from the front to the front. The photographing optical system 8 includes an objective lens 10 for condensing reflected light of the light irradiated by the illumination optical system 7 in the biological tissue, and an imaging element (imaging unit) 11 for photographing the light condensed by the objective lens 10. Is equipped. The imaging device 11 is a color CCD provided with a filter that transmits blue, green, and red light to each pixel.
 光源部3は、異なる波長帯域の光を射出する複数の発光ダイオード(LED)L1,L2,L3,L4、ミラー12およびダイクロイックミラー13を備え、各発光ダイオードL1,L2,L3,L4からの光を合成してライトガイドケーブル9aの入射端に入射させるようになっている。
 図1に示す例では、青色の波長帯域である480nm近傍(以下、B波長という。)、緑色の波長帯域である510nm近傍(以下、G1波長という。)および540nm近傍(以下、G2波長という。)、および赤色の波長帯域である610nm(以下、R波長という。)の波長帯域の光をそれぞれ射出する4個の発光ダイオードL1,L2,L3,L4を備えている。
The light source unit 3 includes a plurality of light emitting diodes (LEDs) L1, L2, L3, L4 for emitting light of different wavelength bands, a mirror 12 and a dichroic mirror 13, and light from the respective light emitting diodes L1, L2, L3, L4 To be incident on the incident end of the light guide cable 9a.
In the example shown in FIG. 1, the blue wavelength band near 480 nm (hereinafter referred to as B wavelength), the green wavelength band near 510 nm (hereinafter referred to as G1 wavelength), and near 540 nm (hereinafter referred to as G2 wavelength). And four light emitting diodes L1, L2, L3, and L4 that respectively emit light in a wavelength band of 610 nm (hereinafter referred to as R wavelength), which is a red wavelength band.
 図2に示されるように、脂肪に含まれるβカロテンは、B波長において高く、G1波長、G2波長およびR波長においては低い吸光度となる吸収特性を有している。また、血液中の成分であるヘモグロビン(HbO)は、R波長において低く、G1波長およびG2波長においてR波長より高い吸収特性を有している。また、ヘモグロビンはG2波長の方がG1波長よりも高い吸収特性を有している。 As shown in FIG. 2, β-carotene contained in fat has an absorption characteristic that is high at the B wavelength and low absorbance at the G1 wavelength, the G2 wavelength, and the R wavelength. In addition, hemoglobin (HbO 2 ), which is a component in blood, has a low absorption characteristic at the R wavelength and a higher absorption characteristic than the R wavelength at the G1 wavelength and the G2 wavelength. Hemoglobin has a higher absorption characteristic at the G2 wavelength than at the G1 wavelength.
 信号処理部4は、撮像素子11により取得された画像信号を記憶するメモリ14と、該メモリ14に記憶された画像信号に所定の画像処理を施す画像処理部15と、発光ダイオードL1,L2,L3,L4の発光タイミングと撮像素子11により撮影タイミングの同期、メモリ14の書き込みおよび読み出しタイミングを制御する制御部16とを備えている。 The signal processing unit 4 includes a memory 14 for storing an image signal acquired by the imaging device 11, an image processing unit 15 for performing predetermined image processing on the image signal stored in the memory 14, light emitting diodes L1 and L2, and A control unit 16 is provided to control the light emission timing of L 3 and L 4 and the imaging timing synchronization by the imaging device 11 and the write and read timing of the memory 14.
 ここで、撮像素子11の撮影タイミングと、発光ダイオードL1,L2,L3,L4の発光タイミングと、メモリ14の書き込みおよび読み出しタイミングとの関係について図3および図4を参照して説明する。図3および図4に示されるように、制御部16は、2つの撮影方式を切り替えることができるようになっている。 Here, the relationship between the imaging timing of the imaging device 11, the light emission timings of the light emitting diodes L1, L2, L3 and L4, and the write and read timings of the memory 14 will be described with reference to FIGS. 3 and 4. As shown in FIGS. 3 and 4, the control unit 16 can switch between two imaging methods.
 第1の撮影方式は、図3に示されるように、光源部3における発光ダイオードL1,L2,L4を制御して、撮像素子11の撮影に要する期間Tに同期して、B波長、G1波長およびR波長の光を発光させるようになっている。このとき、発光ダイオードL3は未発光であり、G2波長の光は射出されない。 In the first imaging method, as shown in FIG. 3, the light emitting diodes L1, L2, and L4 in the light source unit 3 are controlled to synchronize with the period T required for imaging of the imaging element 11, and the B and G wavelengths And R wavelength light is emitted. At this time, the light emitting diode L3 does not emit light, and light of G2 wavelength is not emitted.
 したがって、第1の撮影方式においては、光源部3からは、βカロテンの吸光度が高いB波長の光と、βカロテンの吸光度が低くヘモグロビンの吸光度が高いG1波長の光と、βカロテンおよびヘモグロビンの吸光度が共に低いR波長の光とが射出される。光源部3から射出された3つの波長の光は、挿入部2内のライトガイドケーブル9aおよび拡散光学系9bを介して生体組織に照射され、生体組織における光の反射光が、撮影光学系8の対物レンズ10により集光され撮像素子11によって同時に撮影される。 Therefore, in the first imaging method, from the light source unit 3, light of B wavelength having high absorbance of β-carotene, light of G wavelength having low absorbance of β-carotene and high absorbance of hemoglobin, β-carotene and hemoglobin Light of R wavelength with low absorbance is emitted. The light of three wavelengths emitted from the light source unit 3 is irradiated to the living tissue via the light guide cable 9 a and the diffusion optical system 9 b in the insertion unit 2, and the reflected light of the light in the living tissue is the imaging optical system 8. The light is collected by the objective lens 10 of the image pickup device 11 and simultaneously photographed by the image pickup device 11.
 1回の期間Tにおける撮影により取得された画像はその都度メモリ14に書き込まれ、次の撮影タイミングで読み出されて後段の画像処理部15に送られる。例えば、撮像素子11により取得された画像はメモリ14に書き込まれた後に、撮像素子11が次の画像を取得するタイミングで読み出される。画像処理部15により画像処理の詳細については後述する。 An image acquired by imaging in one period T is written to the memory 14 each time, read out at the next imaging timing, and sent to the image processing unit 15 in the subsequent stage. For example, after an image acquired by the imaging device 11 is written to the memory 14, it is read at timing when the imaging device 11 acquires the next image. Details of image processing by the image processing unit 15 will be described later.
 第2の撮影方式は、図4に示されるように、光源部3における発光ダイオードL1,L2,L3,L4を制御して、撮像素子11の撮影に要する第1の期間Taに同期してB波長、G1波長およびR波長の光を発光させ、次の第2の期間Tbに同期してB波長、G2波長およびR波長の光を発光させることを交互に繰り返させるようになっている。 In the second imaging method, as shown in FIG. 4, the light emitting diodes L1, L2, L3, and L4 in the light source unit 3 are controlled to synchronize with the first period Ta required for imaging of the imaging device 11B. The light of the wavelength, the G1 wavelength and the R wavelength is emitted, and the emission of the light of the B wavelength, the G2 wavelength and the R wavelength is alternately repeated in synchronization with the next second period Tb.
 したがって、第2の撮影方式においては、光源部3からは、第1の期間Taにβカロテンの吸光度が高いB波長の光と、βカロテンの吸光度が低くヘモグロビンの吸光度が高いG1波長の光と、βカロテンおよびヘモグロビンの吸光度が共に低いR波長の光とが射出される。また、光源部3からは、第2の期間Tbにβカロテンの吸光度が高いB波長の光と、βカロテンの吸光度が低くヘモグロビンの吸光度が高いG2波長の光と、βカロテンおよびヘモグロビンの吸光度が共に低いR波長の光とが射出される。第1の期間Taおよび第2の期間Tbにそれぞれ光源部3から射出された3つの波長の光は、挿入部2内のライトガイドケーブル9aおよび拡散光学系9bを介して生体組織に照射され、生体組織における光の反射光が、撮影光学系8の対物レンズ10により集光され撮像素子11によって交互に撮影される。 Therefore, in the second imaging method, the light source unit 3 emits light of B wavelength having high absorbance of β-carotene during the first period Ta and light of G wavelength having low absorbance of β-carotene and high absorbance of hemoglobin. , And light of R wavelength with low absorbance of both β-carotene and hemoglobin. Also, from the light source unit 3, light of B wavelength having high absorbance of β-carotene, light of G wavelength having low absorbance of β-carotene and high absorbance of hemoglobin, and light absorbance of β-carotene and hemoglobin during the second period Tb Both low R wavelength light is emitted. The light of three wavelengths emitted from the light source unit 3 in the first period Ta and the second period Tb is applied to the living tissue through the light guide cable 9a and the diffusion optical system 9b in the insertion portion 2, Reflected light of light in the living tissue is collected by the objective lens 10 of the photographing optical system 8 and is alternately photographed by the imaging element 11.
 第1の期間Taにおける撮影により取得された画像はメモリ14に書き込まれ、次の第2の期間Tbおよびさらに次の第1の期間Taの撮影終了までの期間(Ta+Tb)に読み出されて後段の画像処理部15に送られる。第2の期間Tbにおける撮影により取得された画像はメモリ14に書き込まれた後、即座に読み出しが開始されて、次の第1の期間Taの撮影終了までの期間(Ta+Tb)に読み出されて後段の画像処理部15に送られるようになっている。 The image acquired by the imaging in the first period Ta is written to the memory 14 and read out during the next second period Tb and the period (Ta + Tb) until the imaging end of the next first period Ta, and the subsequent stage Is sent to the image processing unit 15 of FIG. After the image acquired by the imaging in the second period Tb is written to the memory 14, the reading is immediately started and is read out in the period (Ta + Tb) until the end of the imaging of the next first period Ta. It is sent to the image processing unit 15 in the latter stage.
 例えば、撮像素子11により第1の期間Taに取得された画像はメモリ14に書き込まれた後に、撮像素子11が次の画像Tbを取得するタイミングで読み出される。また、撮像素子11により第2の期間Tbに取得された画像はメモリ14に書き込まれた後即座に、第1の期間Taに取得された画像と同じタイミングで読み出されて後段の画像処理部15に送られるようになっている。 For example, after an image acquired in the first period Ta by the imaging device 11 is written to the memory 14, it is read at timing when the imaging device 11 acquires a next image Tb. Further, the image acquired in the second period Tb by the imaging device 11 is read out at the same timing as the image acquired in the first period Ta immediately after being written in the memory 14 and the image processing unit in the subsequent stage It will be sent to 15.
 画像処理部15は、図5に示されるように、前処理部17、βカロテン検出部(脂肪検出部)18、ヘモグロビン検出部(血液検出部)19、脂肪抽出部20、血液分布算出部21、後処理部22および脂肪強調部23を備えている。
 前処理部17は、メモリ14から転送された画像信号に対して、OB(オプティカルブラック)クランプ処理、ゲイン補正処理およびWB(ホワイトバランス)補正処理を行うようになっている。前処理部17は前処理後の画像信号を後処理部22、βカロテン検出部18およびヘモグロビン検出部19に出力するようになっている。
As shown in FIG. 5, the image processing unit 15 includes a preprocessing unit 17, a β-carotene detection unit (fat detection unit) 18, a hemoglobin detection unit (blood detection unit) 19, a fat extraction unit 20, and a blood distribution calculation unit 21. , A post-processing unit 22 and a fat emphasizing unit 23.
The preprocessing unit 17 is configured to perform OB (optical black) clamp processing, gain correction processing, and WB (white balance) correction processing on the image signal transferred from the memory 14. The pre-processing unit 17 is configured to output the pre-processed image signal to the post-processing unit 22, the β-carotene detection unit 18, and the hemoglobin detection unit 19.
 βカロテン検出部18は、前処理部17から送られてきた画像信号におけるB波長の信号値とG1波長の信号値との比を算出することによりβカロテンを検出し、βカロテン検出値として出力するようになっている。
 ヘモグロビン検出部19は、第1の撮影方式においては、前処理部17から送られてきた画像信号におけるG1波長の信号値とR波長の信号値との比を算出することによりヘモグロビンを検出し、ヘモグロビン検出値として出力するようになっている。
 また、ヘモグロビン検出部19は、第2の撮影方式においては、前処理部17から送られてきた画像信号におけるG1波長の信号値とG2波長の信号値との比を算出することによりヘモグロビンを検出し、ヘモグロビン検出値として出力するようになっている。
The β-carotene detection unit 18 detects β-carotene by calculating the ratio of the signal value of the B wavelength to the signal value of the G1 wavelength in the image signal sent from the pre-processing unit 17, and outputs it as a β-carotene detection value It is supposed to
In the first imaging method, the hemoglobin detection unit 19 detects the hemoglobin by calculating the ratio of the signal value of the G1 wavelength to the signal value of the R wavelength in the image signal sent from the preprocessing unit 17, It is output as a hemoglobin detection value.
In the second imaging method, the hemoglobin detection unit 19 detects hemoglobin by calculating the ratio of the signal value of the G1 wavelength to the signal value of the G2 wavelength in the image signal sent from the preprocessing unit 17 And output as a hemoglobin detection value.
 脂肪抽出部20は、第1の撮影方式においては血液の影響を除去した脂肪抽出を行うために、予めヘモグロビンの吸収特性に基づいて下式(1)で示される係数K1を求めておく。ここで、μ(λi)は波長λiにおける光の吸収度であり、λ1=B波長、λ2=G1波長、λ4=R波長である。さらに、脂肪抽出部20は下式(2)で示されるようにβカロテン検出部18から出力されたβカロテン検出値CrValueと、ヘモグロビン検出部19から出力されたヘモグロビン検出値HbValue1と、係数K1とから脂肪抽出値BkValue1を算出するようになっている。 In the first imaging method, the fat extraction unit 20 previously obtains a coefficient K1 represented by the following equation (1) based on the absorption characteristics of hemoglobin in order to perform fat extraction in which the influence of blood is removed. Here, μ (λi) is the absorbance of light at the wavelength λi, and λ1 = B wavelength, λ2 = G1 wavelength, λ4 = R wavelength. Furthermore, as shown by the following equation (2), the fat extraction unit 20 detects the β-carotene detection value CrValue output from the β-carotene detection unit 18, the hemoglobin detection value HbValue1 output from the hemoglobin detection unit 19, and the coefficient K1. From this, the fat extraction value BkValue1 is calculated.
 K1=(μ(λ1)-μ(λ2))/(μ(λ4)-μ(λ2)) (1)
 BkValue1=CrValue/HbValue1K1    (2)
K1 = (μ (λ1) -μ (λ2)) / (μ (λ4) -μ (λ2)) (1)
BkValue1 = CrValue / HbValue1 K1 (2)
 一方、脂肪抽出部20は、第2の撮影方式においては血液の影響を除去した脂肪抽出を行うために、予めヘモグロビンの吸収特性に基づいて下式(3)で示される係数K2を求めておく。ここで、μ(λi)は波長λiにおける光の吸収度であり、λ1=B波長、λ2=G1波長、λ3=G2波長である。さらに、脂肪抽出部20は下式(4)で示されるようにβカロテン検出部18から出力されたβカロテン検出値CrValueと、ヘモグロビン検出部19から出力されたヘモグロビン検出値HbValue2と、係数K2とから脂肪抽出値BkValue2を算出するようになっている。 On the other hand, in the second imaging method, the fat extraction unit 20 previously obtains a coefficient K2 represented by the following equation (3) based on the absorption characteristic of hemoglobin in order to perform fat extraction in which the influence of blood is removed. . Here, μ (λi) is the absorbance of light at the wavelength λi, where λ1 = B wavelength, λ2 = G1 wavelength, λ3 = G2 wavelength. Furthermore, as shown by the following equation (4), the fat extraction unit 20 detects the β-carotene detection value CrValue output from the β-carotene detection unit 18, the hemoglobin detection value HbValue2 output from the hemoglobin detection unit 19, and the coefficient K2 From this, the fat extraction value BkValue2 is calculated.
 K2=(μ(λ1)-μ(λ2))/(μ(λ3)-μ(λ2)) (3)
 BkValue2=CrValue/HbValue2K2     (4)
K2 = (μ (λ1) -μ (λ2)) / (μ (λ3) -μ (λ2)) (3)
BkValue2 = CrValue / HbValue2 K2 (4)
 また、後処理部22は、前処理部17から送られてきた画像信号に対して階調変換処理、色処理および輪郭強調処理を行うようになっている。後処理部22は、後処理後の画像信号を脂肪強調部23に向けて出力するようになっている。
 脂肪強調部23は、脂肪抽出部20により抽出された脂肪抽出値に基づいて、後処理部22から入力されてきた画像信号の色強調を行い、画像表示部6に出力するようになっている。
The post-processing unit 22 is configured to perform tone conversion processing, color processing, and edge enhancement processing on the image signal sent from the pre-processing unit 17. The post-processing unit 22 is configured to output the post-processed image signal to the fat emphasizing unit 23.
The fat emphasizing unit 23 performs color emphasis on the image signal input from the post-processing unit 22 based on the fat extraction value extracted by the fat extracting unit 20, and outputs the image signal to the image display unit 6. .
 次に、血液分布算出部21について説明する。
 血液分布算出部21の動作は、第1の撮影方式および第2の撮影方式において共通である。
 血液分布算出部21は、図6に示されるように、画像上の血液分布を算出するために、血液分布を算出する対象領域を操作者が注視する画像の中央に設定し、設定された対象領域を複数個のブロックに分割するようになっている。
Next, the blood distribution calculation unit 21 will be described.
The operation of the blood distribution calculation unit 21 is common to the first imaging method and the second imaging method.
As shown in FIG. 6, the blood distribution calculating unit 21 sets a target region for calculating the blood distribution at the center of the image at which the operator gazes, in order to calculate the blood distribution on the image. The area is divided into a plurality of blocks.
 図6においては、対象領域は24個のブロックに分割されている。そして、各ブロックにおけるヘモグロビン検出値の平均値を算出し、平均値が所定の閾値より大きいブロックは、血液の広がりがあると判定するようになっている。そして、血液の広がりがあると判定されたブロックの数が所定数を越えた場合には、画像上の血液の広がりが大きいと判断して制御部16に通知するようになっている。 In FIG. 6, the target area is divided into 24 blocks. Then, the average value of the detected hemoglobin values in each block is calculated, and it is determined that the block whose average value is larger than a predetermined threshold is that the blood is spread. When the number of blocks determined to have blood spread exceeds a predetermined number, it is determined that the blood spread on the image is large, and the control unit 16 is notified of this.
 このように構成された本実施形態に係る生体観察装置1を用いた生体観察方法について以下に説明する。
 本実施形態に係る生体観察方法は、図7に示されるように、生体組織に照明光を照射する照明ステップS2と、生体組織において反射した反射光を撮影し画像を取得する撮像ステップS3と、画像内の脂肪を検出する脂肪検出ステップS4と、画像内の血液を検出する血液検出ステップS5と、脂肪検出ステップS4により脂肪が検出されている状態で、血液検出ステップS5により検出された血液の状態が検出され(ステップS6)、検出された血液の状態に応じて、第1の撮影方式と第2の撮影方式とを切り替える制御ステップS7,S8,S9とを含んでいる。
A living body observation method using the living body observation device 1 according to the present embodiment configured as described above will be described below.
In the living body observation method according to the present embodiment, as shown in FIG. 7, an illumination step S2 for irradiating illumination light to a living tissue, and an imaging step S3 for capturing an image by capturing reflected light reflected on the living tissue. The fat detection step S4 for detecting fat in the image, the blood detection step S5 for detecting blood in the image, and the fat detection step at the fat detection step S4 A state is detected (step S6), and control steps S7, S8, and S9 for switching between the first imaging method and the second imaging method according to the detected blood state are included.
 さらに具体的には、操作者は、挿入部2を生体内に挿入し、挿入部2の先端2aを体内の生体組織に対向させた状態で、光源部3から発せられた照明光を生体組織に照射し、生体組織における反射光を撮像素子11により撮影する。最初の状態では、制御部16は、まず、第1の撮影方式により、光源部3、撮像素子11、メモリ14および画像処理部15を制御する(ステップS1)。 More specifically, the operator inserts the insertion portion 2 into the living body, and with the tip 2a of the insertion portion 2 facing the living tissue in the body, the illumination light emitted from the light source unit 3 is a living tissue And the reflected light from the living tissue is photographed by the imaging device 11. In the initial state, the control unit 16 first controls the light source unit 3, the imaging device 11, the memory 14, and the image processing unit 15 according to the first imaging method (step S1).
 すなわち、制御部16は、光源部3における発光ダイオードL1,L2,L4を、撮像素子11の撮影に要する期間に同期して、B波長、G1波長およびR波長の光を発光させるように制御する。このとき、G2波長の光は発光しない。 That is, the control unit 16 controls the light emitting diodes L1, L2, and L4 in the light source unit 3 to emit light of the B wavelength, the G1 wavelength, and the R wavelength in synchronization with the period required for imaging of the imaging device 11. . At this time, light of the G2 wavelength is not emitted.
 これにより、光源部3からは、βカロテンの吸収特性が高いB波長の光と、βカロテンの吸収特性が低くヘモグロビンの吸収特性が高いG1波長の光と、βカロテンおよびヘモグロビンの吸収特性が共に低いR波長の光とが射出される。光源部3から射出された3つの波長の光は、挿入部2内のライトガイドケーブル9aおよび拡散光学系9bを介して生体組織に照射され(照明ステップS2)、生体組織における光の反射光が、撮影光学系8の対物レンズ10により集光される。制御部16は撮像素子11の撮影タイミングを制御して、これらの反射光を同時に撮影させる(撮像ステップS3)。 As a result, from the light source unit 3, light of B wavelength having high absorption characteristics of β-carotene, absorption light of G-wavelength having low absorption characteristics of β-carotene and high absorption characteristics of hemoglobin, as well as absorption characteristics of β-carotene and hemoglobin Light with a low R wavelength is emitted. The light of three wavelengths emitted from the light source unit 3 is irradiated to the living tissue via the light guide cable 9a and the diffusion optical system 9b in the insertion unit 2 (illumination step S2), and the reflected light of the light in the living tissue is The light is collected by the objective lens 10 of the photographing optical system 8. The control unit 16 controls the imaging timing of the imaging element 11 to simultaneously capture these reflected lights (imaging step S3).
 制御部16は、1回の期間における撮影により取得された画像をその都度メモリ14に書き込み、次の撮影タイミングで読み出して、画像処理部15に出力させる。
 画像処理部15においては、まず、前処理部17において、メモリ14から転送された画像信号に対して、OBクランプ処理、ゲイン補正処理およびWB補正処理等の前処理が施され、前処理後の画像信号が、後処理部22、βカロテン検出部18およびヘモグロビン検出部19に出力される。
The control unit 16 writes the image acquired by photographing in one period into the memory 14 each time, reads it at the next photographing timing, and causes the image processing unit 15 to output it.
In the image processing unit 15, first, the preprocessing unit 17 subjects the image signal transferred from the memory 14 to preprocessing such as OB clamp processing, gain correction processing, WB correction processing, etc. The image signal is output to the post-processing unit 22, the β-carotene detection unit 18 and the hemoglobin detection unit 19.
 後処理部22においては、前処理部17から送られてきた画像信号に対して階調変換処理、色処理および輪郭強調処理が行われる。
 βカロテン検出部18においては、前処理部17から送られてきた画像信号のB波長の信号値とG1波長の信号値との比が算出されることによりβカロテンが検出される(脂肪検出ステップS4)。
 ヘモグロビン検出部19においては、前処理部17から送られてきた画像信号におけるG1波長の信号値とR波長の信号値との比が算出されることによりヘモグロビンが検出される(血液検出ステップS5)。
In the post-processing unit 22, tone conversion processing, color processing and edge enhancement processing are performed on the image signal sent from the pre-processing unit 17.
The β-carotene detection unit 18 detects β-carotene by calculating the ratio of the signal value of the B wavelength of the image signal sent from the pre-processing unit 17 to the signal value of the G1 wavelength (fat detection step) S4).
In the hemoglobin detection unit 19, the hemoglobin is detected by calculating the ratio between the signal value of the G1 wavelength and the signal value of the R wavelength in the image signal sent from the pre-processing unit 17 (blood detection step S5) .
 βカロテン検出部18により検出されたβカロテン検出値およびヘモグロビン検出部19により検出されたヘモグロビン検出値は脂肪抽出部20に送られて、B波長、G1波長およびR波長におけるヘモグロビンの吸収特性に基づいて予め求められていた係数K1を用いて脂肪抽出値が算出される。
 そして、脂肪強調部23において、脂肪抽出部20により抽出された脂肪抽出値に基づいて、後処理部22から入力されてきた画像信号の色強調を行い、脂肪が強調された画像が画像表示部6に表示される。
The β-carotene detection value detected by the β-carotene detection unit 18 and the hemoglobin detection value detected by the hemoglobin detection unit 19 are sent to the fat extraction unit 20 and are based on the absorption characteristics of hemoglobin at B, G1 and R wavelengths. The fat extraction value is calculated using a coefficient K1 which has been obtained in advance.
Then, the fat emphasizing unit 23 performs color emphasis on the image signal input from the post-processing unit 22 based on the fat extraction value extracted by the fat extracting unit 20, and the image in which fat is emphasized is an image display unit Displayed on 6.
 これにより、操作者は、画像表示部6に表示される画像を確認することにより、脂肪が存在する領域を見分けやすくすることができ、脂肪層内に分布する神経に損傷を与えないように手術を行うことができる。
 ここで、第1の撮影方式における画像の表示フレームレートは、1/Tである。
Thus, the operator can easily identify the region where fat is present by confirming the image displayed on the image display unit 6, and surgery is performed so as not to damage the nerve distributed in the fat layer. It can be performed.
Here, the display frame rate of the image in the first imaging method is 1 / T.
 この場合において、画像処理部15においては、ヘモグロビン検出部19により検出されてヘモグロビン検出値が血液分布算出部21に送られて、画像の中央領域における血液の広がりが算出され(ステップS6)、画像上の血液の広がりが大きいと判断された場合には制御部16に通知される(ステップS7)。
 血液分布算出部21によって算出された血液の広がりが大きい旨の通知が制御部16に送られてくると、制御部16は、第1の撮影方式から第2の撮影方式に切り替える(ステップS9)。
In this case, in the image processing unit 15, the hemoglobin detection value detected by the hemoglobin detection unit 19 is sent to the blood distribution calculation unit 21, and the spread of blood in the central region of the image is calculated (step S6). If it is determined that the spread of the upper blood is large, the control unit 16 is notified (step S7).
When the notification that the spread of the blood calculated by the blood distribution calculation unit 21 is large is sent to the control unit 16, the control unit 16 switches from the first imaging method to the second imaging method (step S9). .
 第2の撮影方式に切り替えられると、撮影の続行可否が判定され(ステップS10)、撮影が続行される場合には、制御部16が、光源部3における発光ダイオードL1,L2,L3,L4を制御して、撮像素子11の撮影に要する第1の期間に同期してB波長、G1波長およびR波長の光を発光させ、次の第2の期間に同期してB波長、G2波長およびR波長の光を発光させることを交互に繰り返させる。 When the second imaging method is switched, it is determined whether the imaging can be continued (step S10), and when the imaging is continued, the control unit 16 controls the light emitting diodes L1, L2, L3, and L4 in the light source unit 3. The light of the B wavelength, the G1 wavelength and the R wavelength is emitted in synchronization with the first period required for photographing of the imaging device 11 by control, and the B wavelength, the G2 wavelength and R are synchronized with the next second period. The light emission of the wavelength is alternately repeated.
 これにより、光源部3からは、第1の期間にβカロテンの吸収特性が高いB波長の光と、βカロテンの吸収特性が低くヘモグロビンの吸収特性が高いG1波長の光と、βカロテンおよびヘモグロビンの吸収特性が共に低いR波長の光とが射出される。また、光源部3からは、第2の期間にβカロテンの吸収特性が高いB波長の光と、βカロテンの吸収特性が低くヘモグロビンの吸収特性が高いG2波長の光と、βカロテンおよびヘモグロビンの吸収特性が共に低いR波長の光とが射出される。 Thus, from the light source unit 3, light of B wavelength having high absorption characteristics of β-carotene during the first period, light of G1 wavelength having low absorption characteristics of β-carotene and high absorption characteristics of hemoglobin, β-carotene and hemoglobin And R light having low absorption characteristics are emitted. Also, from the light source unit 3, light of wavelength B having high absorption characteristics of β-carotene in the second period, light of wavelength G2 having low absorption characteristics of β-carotene and high absorption characteristics of hemoglobin, β-carotene and hemoglobin Light of R wavelength with low absorption characteristics is emitted.
 第1の期間および第2の期間にそれぞれ光源部3から射出された3つの波長の光は、挿入部2内のライトガイドケーブル9aおよび拡散光学系9bを介して生体組織に照射され(照明ステップS2)、生体組織における光の反射光が、撮影光学系8の対物レンズ10により集光され撮像素子11によって交互に撮影される(撮像ステップS3)。 Light of three wavelengths emitted from the light source unit 3 in the first period and the second period is applied to the living tissue via the light guide cable 9 a and the diffusion optical system 9 b in the insertion portion 2 (illumination step S2) Reflected light of light in the living tissue is collected by the objective lens 10 of the photographing optical system 8 and photographed alternately by the imaging element 11 (imaging step S3).
 第1の期間における撮影により取得された画像はメモリ14に書き込まれ、次の第2の期間およびさらに次の第1の期間の撮影終了までの期間に読み出されて画像処理部15に送られる。第2の期間における撮影により取得された画像はメモリ14に書き込まれた後、即座に読み出しが開始されて、次の第1の期間の撮影終了までの期間に読み出されて画像処理部15に送られる。ここで、第2の撮影方式における画像の表示フレームレートは、1/2Tである。 An image acquired by shooting in the first period is written to the memory 14 and read out and sent to the image processing unit 15 in the next second period and the period until the end of shooting in the next first period. . After the image acquired by the imaging in the second period is written to the memory 14, the reading is immediately started, and is read out in the period until the end of the imaging in the next first period, and the image processing unit 15 Sent. Here, the display frame rate of the image in the second imaging method is 1 / 2T.
 画像処理部15においては、第1の撮影方式と同様にして、メモリ14から読み出された画像信号に対し、前処理、後処理およびβカロテンの検出処理が行われる(脂肪検出ステップS4)。
 一方、ヘモグロビン検出部19においては、前処理部17から送られてきた画像信号におけるG1波長の信号値とG2波長の信号値との比が算出されることによりヘモグロビンが検出され(血液検出ステップS5)、ヘモグロビン検出値として出力される。
The image processing unit 15 performs pre-processing, post-processing and β-carotene detection processing on the image signal read from the memory 14 in the same manner as the first imaging method (fat detection step S4).
On the other hand, the hemoglobin detection unit 19 detects the hemoglobin by calculating the ratio between the signal value of the G1 wavelength and the signal value of the G2 wavelength in the image signal sent from the preprocessing unit 17 (blood detection step S5 ), Is output as a hemoglobin detection value.
 また、脂肪抽出部20においては、血液の影響を除去した脂肪抽出を行うために、B波長、G1波長およびG2波長におけるヘモグロビンの吸収特性に基づいて予め求められていた係数K2を用いて脂肪抽出値が算出される。
 そして、脂肪強調部23において、脂肪抽出部20により抽出された脂肪抽出値に基づいて、後処理部22から入力されてきた画像信号の色強調が行われ、画像表示部6に出力される。
In addition, in the fat extraction unit 20, in order to perform fat extraction in which the influence of blood is removed, fat extraction is performed using a coefficient K2 obtained in advance based on the absorption characteristics of hemoglobin at the B wavelength, G1 wavelength, and G2 wavelength. The value is calculated.
Then, in the fat emphasizing unit 23, color emphasis of the image signal input from the post-processing unit 22 is performed based on the fat extraction value extracted by the fat extracting unit 20, and output to the image display unit 6.
 一方、血液分布算出部21によって算出された血液の広がり(ステップS6)が大きい旨の通知が送られている状態から通知の送信が停止すると(ステップS7)、制御部16は、第2の撮影方式から第1の撮影方式に切り替える(ステップS8)。
 上述したように第1の撮影方式においては、ヘモグロビン検出部19において、G1波長の信号値とR波長の信号値との比によりヘモグロビンが検出される。
On the other hand, when the transmission of the notification is stopped from the state where the notification that the blood spread (step S6) calculated by the blood distribution calculation unit 21 is large is sent (step S7), the control unit 16 performs the second imaging. The mode is switched to the first imaging mode (step S8).
As described above, in the first imaging method, the hemoglobin detection unit 19 detects hemoglobin based on the ratio of the signal value of the G1 wavelength to the signal value of the R wavelength.
 このように、本実施形態に係る生体観察装置1および生体観察方法によれば、画像上において血液の分布が広がったと判断された場合には、第1の撮影方式から第2の撮影方式に遷移することで、表示フレームレートが1/Tから1/2Tに低下する代わりに、G1波長の信号値とG2波長の信号値との比によりヘモグロビンの検出が行われるようになる。 Thus, according to the living body observation apparatus 1 and the living body observation method according to the present embodiment, when it is determined that the distribution of blood has spread on the image, the transition from the first imaging method to the second imaging method is made. By doing this, instead of the display frame rate decreasing from 1 / T to 1 / 2T, detection of hemoglobin is performed by the ratio of the signal value of the G1 wavelength to the signal value of the G2 wavelength.
 G1波長の光とG2波長の光とは、ヘモグロビンの吸収の差が顕著であり、かつ、非常に近接した波長の光であるため、生体組織の深さ方向に略同等の位置からの情報を含んでいる。その結果、これらの波長の反射光を用いて検出されるヘモグロビンによる血液の検出精度を向上することができ、血液の影響の少ない脂肪検出を行うことができるという利点がある。 The difference in absorption of hemoglobin is remarkable between the light of the G1 wavelength and the light of the G2 wavelength, and since the light of the wavelength which is very close, information from approximately the same position in the depth direction of the living tissue is It contains. As a result, the detection accuracy of blood detected by hemoglobin detected using reflected light of these wavelengths can be improved, and there is an advantage that fat detection with less influence of blood can be performed.
 一方、画像上において血液の分布が小さくなったと判断された場合には、第2の撮影方式から第1の撮影方式に遷移することで、G1波長の信号値とR波長の信号値との比によりヘモグロビンの検出が行われる代わりに、表示フレームレートが1/2Tから1/Tに向上するようになる。 On the other hand, when it is determined that the blood distribution has become smaller on the image, the ratio of the signal value of the G1 wavelength to the signal value of the R wavelength is obtained by transitioning from the second imaging method to the first imaging method. Causes the display frame rate to be improved from 1⁄2T to 1 / T instead of the detection of hemoglobin.
 すなわち、G1波長の光とR波長の光とは、ヘモグロビンの吸収の差が顕著であるが、G1波長とG2波長との関係と比較すると、波長が離れているため、生体組織の深さ方向に異なる位置からの情報を含んでいる。その結果、これらの波長の反射光を用いて検出されるヘモグロビンによる血液の検出精度は第2の撮影方式の場合よりも低下するが、その代わりにフレームレートが向上して、動気がスムーズな見やすい画像を表示することができるという利点がある。 That is, the light of the G1 wavelength and the light of the R wavelength have a remarkable difference in absorption of hemoglobin, but when compared with the relationship between the G1 wavelength and the G2 wavelength, the wavelengths are distant, so the depth direction of the living tissue Contains information from different locations. As a result, the detection accuracy of blood by hemoglobin detected using the reflected light of these wavelengths is lower than in the case of the second imaging method, but the frame rate is improved instead and the movement is smooth. There is an advantage that an easy-to-see image can be displayed.
 なお、本実施形態においては、血液分布算出部21において、操作者が注視していると考えられる画像の中央の対象領域における血液分布を算出したが、これに代えて、画像の中央以外に脂肪抽出値の高い領域を検出して、その領域を対象領域に設定してもよい。また、操作者によって任意の領域を対象領域として設定してもよい。 In the present embodiment, the blood distribution calculation unit 21 calculates the blood distribution in the target area at the center of the image that the operator is considered to be gazing at, but instead, it is possible to use fat other than the center of the image. An area having a high extraction value may be detected, and the area may be set as a target area. Also, an arbitrary area may be set as the target area by the operator.
 また、血液分布算出部21において、ヘモグロビン検出値の平均値を撮影フレーム毎に図示しない記憶部に記憶し、平均値の時間変化を算出することにより、出血の有無を検出し、出血の存在するブロックの個数から血液の広がりを判定してもよい。このようにすることで、血液分布を算出する対象領域に太い血管が存在する場合にも、太い血管と区別して出血の広がりを検出することができる。 Further, the blood distribution calculation unit 21 stores the average value of the detected hemoglobin values in a storage unit (not shown) for each imaging frame, and calculates the time change of the average value to detect the presence or absence of hemorrhage, and bleeding is present. The spread of blood may be determined from the number of blocks. By doing this, even in the case where a thick blood vessel is present in the target region for which the blood distribution is to be calculated, it is possible to detect the spread of hemorrhage in distinction from the thick blood vessel.
 また、本実施形態においては、複数の発光ダイオードL1,L2,L3,L4により異なる波長帯域の光を照射する光源部3を構成したが、これに代えて、図8に示されるように、広帯域の光を発生するキセノンランプ24と、複数の狭帯域フィルタF1,F2,F3を回転させるフィルタターレット25と、該フィルタターレット25を径方向に移動させる直動機構26とを備える光源部27を構成してもよい。 Further, in the present embodiment, the light source unit 3 configured to emit light of different wavelength bands is configured by the plurality of light emitting diodes L1, L2, L3, and L4. However, instead of this, as shown in FIG. A light source unit 27 having a xenon lamp 24 for generating light, a filter turret 25 for rotating a plurality of narrow band filters F1, F2 and F3, and a linear movement mechanism 26 for moving the filter turret 25 in a radial direction You may
 フィルタターレット25は、図9に示されるように、径方向内方に配置される狭帯域フィルタF1と、径方向外方に配置される狭帯域フィルタF2,F3とを備えている。狭帯域フィルタF1,F2は、B波長、G1波長およびR波長を透過させ、フィルタF3はB波長、G2波長およびR波長を透過させるようになっている。キセノンランプ24からライトガイドケーブル9aに向かう光軸上に狭帯域フィルタF1を配置して、フィルタターレット25を回転させることにより、第1の撮影方式の照明を行い、光軸上に狭帯域フィルタF2,F3を配置してフィルタターレット25を回転させることにより、第2の撮影方式の照明を行うことができる。 As shown in FIG. 9, the filter turret 25 includes a narrow band filter F1 disposed radially inward and narrow band filters F2 and F3 disposed radially outward. The narrow band filters F1 and F2 transmit the B wavelength, the G1 wavelength, and the R wavelength, and the filter F3 transmits the B wavelength, the G2 wavelength, and the R wavelength. A narrow band-pass filter F1 is disposed on the optical axis from the xenon lamp 24 to the light guide cable 9a, and the filter turret 25 is rotated to perform the illumination of the first imaging method, and the narrow band-pass filter F2 on the optical axis , F3 and rotating the filter turret 25, illumination of the second imaging method can be performed.
 また、本実施形態においては、光源部3において狭帯域光を生成し、生体組織における反射光をそのまま撮影することとしたが、これに代えて、生体組織に対し白色光等の広帯域光を照射し、撮影光学系8の撮像素子11の前段に狭帯域光を選択的に透過させるフィルタを配置してもよい。フィルタとしては、上述したフィルタターレット25を用いたものや、エタロンのような波長可変フィルタを採用すればよい。 In the embodiment, the narrow band light is generated in the light source unit 3 and the reflected light in the living body tissue is photographed as it is, but instead, the living body tissue is irradiated with wide band light such as white light. Alternatively, a filter that selectively transmits narrow band light may be disposed upstream of the imaging element 11 of the imaging optical system 8. As the filter, a filter using the above-described filter turret 25 or a wavelength tunable filter such as an etalon may be employed.
 次に、本発明の第2の実施形態に係る生体観察装置について、図面を参照して以下に説明する。
 本実施形態の説明において、上述した第1の実施形態に係る生体観察装置1と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, a living body observation apparatus according to a second embodiment of the present invention will be described below with reference to the drawings.
In the description of the present embodiment, parts having the same configuration as those of the living body observation apparatus 1 according to the first embodiment described above are assigned the same reference numerals and descriptions thereof will be omitted.
 本実施形態に係る生体観察装置は、図10に示されるように、画像処理部30が前処理後の画像信号に基づいて画像の動き量を算出する動き量検出部(動き検出部)29を備え、制御部16が、血液の広がりが大きい場合であって、かつ、動き量検出部29により検出された画像の動き量が所定の閾値より小さい場合に、第2の撮影方式に切り替える点において、第1の実施形態に係る生体観察装置1と相違している。 In the living body observation apparatus according to the present embodiment, as shown in FIG. 10, a motion amount detection unit (motion detection unit) 29 that calculates the motion amount of an image based on the image signal after the image processing unit 30 is processed. And the control unit 16 switches to the second imaging method when the spread of the blood is large and the movement amount of the image detected by the movement amount detection unit 29 is smaller than a predetermined threshold. This is different from the living body observation device 1 according to the first embodiment.
 動き量検出部29は、例えば、図11に示されるように、前処理部17から送られてきたG波長の画像信号を記憶する1フレーム分遅延させるメモリ31と、前処理部17から送られてきたG波長の画像信号とメモリ31に記憶されている1フレーム前のG波長の画像信号とから動きベクトルを算出する動きベクトル算出部32と、算出された動きベクトルに基づいて光軸に交差する方向の動き量を算出する動き量算出部33とを備えている。 For example, as shown in FIG. 11, the motion amount detection unit 29 is sent from the pre-processing unit 17 and a memory 31 that delays the image signal of G wavelength sent from the pre-processing unit 17 by one frame. A motion vector calculation unit 32 that calculates a motion vector from the G wavelength image signal and the G wavelength image signal stored in the memory 31 that has been stored in the memory 31, and intersects the optical axis based on the calculated motion vector And a motion amount calculation unit 33 for calculating the motion amount in the direction to be moved.
 動きベクトルの算出は、公知のブロックマッチング法や勾配法で行うことができる。ここでは、動きベクトルは、図12に示されるように、画像上に等間隔に設定された複数点について算出する。
 動き量算出部33は、動きベクトル算出部32により算出された動きベクトルに基づいて、下式(5)により動き量MVを算出するようになっている。
The motion vector can be calculated by a known block matching method or gradient method. Here, motion vectors are calculated for a plurality of points set at equal intervals on the image, as shown in FIG.
The motion amount calculator 33 is configured to calculate the motion amount MV by the following equation (5) based on the motion vector calculated by the motion vector calculator 32.
Figure JPOXMLDOC01-appb-M000001
 ここで、Mは動きベクトルの総数、viは動きベクトルである。
 図13に示されるように、全ての動きベクトルを平均して動き量を算出することにより、画像全体の大域的な動きを画像の動き量として算出することができる(ステップS11)。
Figure JPOXMLDOC01-appb-M000001
Here, M is the total number of motion vectors, and vi is a motion vector.
As shown in FIG. 13, the global motion of the entire image can be calculated as the motion amount of the image by calculating the motion amount by averaging all the motion vectors (step S11).
 このようにすることで、画像の動き量が大きい場合、すなわち、挿入部2の先端2aの撮影光学系8が動いている場合には、操作者が、細かな処置を施している状態ではなく、出血場所や患部を探している状態であると考えられる。このため、血液分布算出部21により血液の広がりが大きいと判断された場合であっても、第1の撮影方式を維持し、表示フレームレートの低下を防止することができる(ステップS12)。一方、血液分布算出部21により血液の広がりが大きいと判断された場合であって、画像の動き量が小さい場合、すなわち、挿入部2の先端2aの撮影光学系8が静止している場合には、第2の撮影方式に切り替えて、血液の影響の少ない脂肪抽出を優先した観察を行うことができる(ステップS12)。 By doing this, when the amount of movement of the image is large, that is, when the imaging optical system 8 at the tip 2a of the insertion portion 2 is moving, the operator is not in the state of performing detailed treatment. , It is thought that it is in the state where it is looking for a bleeding place or an affected part. Therefore, even when it is determined by the blood distribution calculation unit 21 that the spread of the blood is large, the first imaging method can be maintained, and a decrease in the display frame rate can be prevented (step S12). On the other hand, when it is determined by the blood distribution calculation unit 21 that the spread of the blood is large and the amount of movement of the image is small, that is, when the photographing optical system 8 of the tip 2a of the insertion unit 2 is stationary. Can be switched to the second imaging method, and observation can be performed with priority given to fat extraction less affected by blood (step S12).
 なお、本実施形態においては、画像の動き量の検出にG波長の画像信号を用いたが、RGBの画像信号から算出した輝度信号を用いて動き量を算出してもよい。また、等間隔に配置された複数点において動きベクトルを算出することとしたが、画像上の全画素の動きベクトルを算出してもよい。 In the present embodiment, the image signal of G wavelength is used to detect the amount of movement of the image, but the amount of movement may be calculated using a luminance signal calculated from the image signal of RGB. Although motion vectors are calculated at a plurality of points arranged at equal intervals, motion vectors of all pixels on an image may be calculated.
 また、式(5)により画像の動き量を算出することに代えて、画像上の各位置の動きベクトルの算出に際し、画像の周辺に位置する動きベクトルとの相関の有無を判定し、相関有りと判定された動きベクトルのみから画像の動き量を算出してもよい。
 この場合、動き量の算出は、下式(6)を用いて行うことができる。
Also, instead of calculating the amount of motion of the image according to equation (5), when calculating the motion vector of each position on the image, the presence or absence of a correlation with the motion vector located around the image is determined. The motion amount of the image may be calculated only from the motion vector determined to be.
In this case, the motion amount can be calculated using the following equation (6).
Figure JPOXMLDOC01-appb-M000002
 ここで、ci=0は周辺の動きベクトルとの相関無し、ci=1は周辺の動きベクトルとの相関有りを示す。
Figure JPOXMLDOC01-appb-M000002
Here, ci = 0 indicates no correlation with peripheral motion vectors, and ci = 1 indicates correlation with peripheral motion vectors.
 相関有りと判定される動きベクトルが存在しない場合には、画像の動き量はゼロであり、動きベクトルはゼロベクトルとして処理される。動きベクトルには、生体組織上の着目箇所の移動によるものの他、例えば、手技中の鉗子操作等の外乱によるものがある。外乱による動きベクトルは、周辺の動きベクトルとは相関がない。式(6)に示されるように、周辺の動きベクトルとの相関に基づいて、外乱による動きベクトルを除外することで、高精度に画像の動き量を算出することができる。周辺の動きベクトルとの相関は、例えば、ベクトル間の差分の大きさが所定の閾値未満であれば相関有り、閾値以上であれば相関無しとすればよい。 If there is no motion vector determined to be correlated, the amount of motion of the image is zero, and the motion vector is processed as a zero vector. The motion vector may be, for example, a disturbance due to a forceps operation or the like during the procedure, as well as the movement of a focused portion on a living tissue. The motion vector due to the disturbance is not correlated with the surrounding motion vector. As shown in Expression (6), the motion amount of the image can be calculated with high accuracy by excluding the motion vector due to the disturbance based on the correlation with the peripheral motion vector. The correlation with the peripheral motion vector may be, for example, correlation if the magnitude of the difference between the vectors is less than a predetermined threshold, and no correlation if the magnitude is greater than the threshold.
 次に、本発明の第3の実施形態に係る生体観察装置について、図面を参照して以下に説明する。
 本実施形態の説明において、上述した第1の実施形態に係る生体観察装置1と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, a living body observation apparatus according to a third embodiment of the present invention will be described below with reference to the drawings.
In the description of the present embodiment, parts having the same configuration as those of the living body observation apparatus 1 according to the first embodiment described above are assigned the same reference numerals and descriptions thereof will be omitted.
 本実施形態に係る生体観察装置1は、図14に示されるように、画像処理部34が前処理後の画像信号に基づいてミストの発生を検出するミスト検出部35を備え、制御部16が、血液の広がりが大きい場合であって、かつ、ミストが消失している場合に、第2の撮影方式に切り替え、ミストが検出されている場合には血液の広がりが大きい場合でも第1の撮影方式を維持する点において、第1の実施形態に係る生体観察装置1と相違している。 As shown in FIG. 14, the living body observation apparatus 1 according to the present embodiment includes a mist detection unit 35 that detects the generation of mist based on the image signal after the image processing unit 34, and the control unit 16 When the spread of the blood is large and the mist disappears, switching to the second imaging method is performed. When the mist is detected, the first imaging is performed even when the spread of the blood is large. It differs from the living body observation apparatus 1 according to the first embodiment in that the method is maintained.
 術中の電気メスや超音波メス等を使用した病変部の処置によって、煙や水蒸気(以下、ミストと言う。)が発生する。ミストが発生して体内(例えば、腹腔内)に充満すると視界が曇り、病変部を視認しにくくなる。そこで、本実施形態においては、ミストを検出して撮影方式を切り替えることとしている。 Smoke and water vapor (hereinafter referred to as mist) are generated by treatment of a lesioned part using an electric scalpel or ultrasonic scalpel during operation. When mist is generated and fills the inside of the body (for example, in the abdominal cavity), the field of vision becomes cloudy and it becomes difficult to visually recognize a lesion. Therefore, in the present embodiment, mist detection is performed to switch the imaging method.
 ミスト検出部35は、前処理部17において前処理された画像信号に基づいて、画像の中央領域の平均輝度YAve(n)、平均彩度SAve(n)、平均Dレンジ(ダイナミックレンジ)DAve(n)を算出し、図示しない記憶部に記憶するようになっている。ここで、nは画像が取得されたタイミングを示している。 The mist detection unit 35 determines the average luminance YAve (n), the average saturation SAve (n), and the average D range (dynamic range) DAve (dynamic range) of the central region of the image based on the image signal preprocessed in the preprocessing unit 17. n) is calculated and stored in a storage unit (not shown). Here, n indicates the timing at which the image was acquired.
 ミスト検出部35は、式(7)、式(8)、式(9)に基づいて、ミスト検出の評価値Vy(n)、Vs(n)、Vd(n)を算出する。
 Vy(n)=YAve(n)-YAve(n-x)      (7)
 Vs(n)=SAve(n)-SAve(n-x)      (8)
 Vd(n)=DAve(n)-DAve(n-x)      (9)
The mist detection unit 35 calculates the mist detection evaluation values Vy (n), Vs (n), and Vd (n) based on Expressions (7), (8), and (9).
Vy (n) = YAve (n) -YAve (nx) (7)
Vs (n) = SAve (n) -SAve (n-x) (8)
Vd (n) = DAve (n)-DAve (n-x) (9)
 ここで、YAve(n-x)は、現在の画像よりxフレーム前に取得された画像から算出した平均輝度であり、SAve(n-x)は、現在の画像よりxフレーム前に取得された画像から算出した平均彩度であり、DAve(n-x)は、現在の画像よりxフレーム前に取得された画像から算出した平均Dレンジである。xとしては、任意の数を設定できる。 Here, YAve (n-x) is the average luminance calculated from an image acquired x frames before the current image, and SAve (n-x) is acquired x frames before the current image DAve (n−x) is the average saturation calculated from the image, and the average D range calculated from the image acquired x frames before the current image. An arbitrary number can be set as x.
 式(7)、式(8)、式(9)から分かるように、Vy(n)は、現在時刻nの画像信号から算出された平均輝度と、xだけ過去に取得された画像信号から算出された平均輝度との差である。また、Vs(n)は、現在時刻nの画像信号から算出された平均彩度と、xだけ過去に取得された画像信号から算出された平均彩度との差である。また、Vd(n)は、現在時刻nの画像信号から算出された平均Dレンジと、xだけ過去に取得された画像信号から算出された平均Dレンジとの差である。 As can be understood from the equations (7), (8) and (9), Vy (n) is calculated from the average luminance calculated from the image signal at the current time n and the image signal acquired in the past by x Difference with the average brightness. Vs (n) is the difference between the average saturation calculated from the image signal at the current time n and the average saturation calculated from the image signal acquired in the past by x. Vd (n) is the difference between the average D-range calculated from the image signal at the current time n and the average D-range calculated from the image signal acquired in the past by x.
 評価値Vy(n),Vs(n),Vd(n)の時間変化について図16、図17および図18を用いて説明する。
 病変部に合わせて処置具を挿入し、処置を開始すると、処置を行っている箇所からミストが発生し、周辺に広がって体内に充満する。
The time change of the evaluation values Vy (n), Vs (n) and Vd (n) will be described with reference to FIG. 16, FIG. 17 and FIG.
When the treatment tool is inserted according to the lesion and treatment is started, mist is generated from the place where treatment is being performed, and it spreads around and fills the body.
 ミストが発生している間は、ミストの濃度の変化はあるものの同様の状態が続く。ミストの発生が停止すると、視界中のミストが徐々に薄れていき、時間経過とともにミストが消失していく。
 図16、図17および図18の上段は、ミストの量が変化しているときの画像の平均輝度値YAve(n)、平均彩度SAve(n)、平均DレンジDAve(n)の時間変化を示す図である。
While mist is generated, the same condition continues although there is a change in mist concentration. When the generation of the mist stops, the mist in the field of view gradually fades and disappears with the passage of time.
The upper part of FIG. 16, FIG. 17 and FIG. 18 shows the time change of the average luminance value YAve (n), the average saturation SAve (n) and the average D range DAve (n) of the image when the amount of mist changes. FIG.
 これらの図16、図17および図18に示すように、ミストが発生して体内に充満するに従って平均輝度値YAve(n)が上昇し、平均彩度SAve(n)および平均DレンジDAve(n)が低下する。そして、ミストの発生が止まり、消失していくに従って、平均輝度値YAve(n)が低下し、平均彩度SAve(n)および平均DレンジDAve(n)が上昇する。これは、ミストが照明を乱反射するために平均輝度値YAve(n)を上昇させ、ミストが不透明であるために平均彩度SAve(n)および平均DレンジDAve(n)を低下させるためである。 As shown in FIGS. 16, 17 and 18, the average luminance value YAve (n) increases as mist is generated and fills the body, and the average saturation SAve (n) and the average D range DAve (n) ) Decreases. Then, as the generation of mist stops and disappears, the average luminance value YAve (n) decreases, and the average saturation SAve (n) and the average D range DAve (n) increase. This is because the mist raises the average luminance value YAve (n) to diffusely reflect the illumination and decreases the average saturation SAve (n) and the average D range DAve (n) because the mist is opaque. .
 図16、図17および図18の下段は、上記のように平均輝度値YAve(n)、平均彩度SAve(n)および平均DレンジDAve(n)が変化するときの評価値Vy(n),Vs(n),Vd(n)の時間変化を示している。これらの評価値は差分値なので、それぞれ、上段の平均輝度値YAve(n)、平均彩度SAve(n)および平均DレンジDAve(n)の特性を微分したような特性となる。 The lower part of FIGS. 16, 17 and 18 shows evaluation values Vy (n) when the average luminance value YAve (n), the average saturation SAve (n) and the average D range DAve (n) change as described above. , Vs (n), Vd (n) over time. Since these evaluation values are difference values, the characteristics are obtained by differentiating the characteristics of the average luminance value YAve (n), the average saturation SAve (n), and the average D range DAve (n) in the upper row, respectively.
 ミストの発生時には輝度の評価値Vy(n)は上に凸の特性を有し、彩度の評価値Vs(n)およびDレンジの評価値Vd(n)は下に凸の特性を有する。一方、ミストの消失時には、輝度の評価値Vy(n)は下に凸の特性を有し、彩度の評価値Vs(n)およびDレンジの評価値Vd(n)は上に凸の特性を有する。 When the mist is generated, the evaluation value Vy (n) of luminance has an upward convex characteristic, and the evaluation value Vs (n) of saturation and the evaluation value Vd (n) of D range have a downward convex characteristic. On the other hand, when the mist disappears, the luminance evaluation value Vy (n) has a downward convex characteristic, and the saturation evaluation value Vs (n) and the D range evaluation value Vd (n) have an upward convex characteristic. Have.
 このような評価値Vy(n),Vs(n),Vd(n)の変化に対して、本実施形態においては、ミスト検出部35が、以下のようにしてミストの発生の有無を判定するようになっている。すなわち、図15に示されるように、ミスト検出部35は輝度値の評価値Vy(n)が所定の閾値を上回り、かつ、彩度の評価値Vs(n)およびDレンジの評価値Vd(n)がそれぞれ所定の閾値を下回った場合の時刻においてミストが発生したと判定するようになっている(ステップS13)。 In the present embodiment, the mist detection unit 35 determines the presence or absence of the generation of the mist in the following manner with respect to such changes in the evaluation values Vy (n), Vs (n), Vd (n). It is supposed to be. That is, as shown in FIG. 15, the mist detection unit 35 evaluates the luminance value Vy (n) above a predetermined threshold and evaluates the saturation evaluation value Vs (n) and the D range evaluation value Vd ( It is determined that mist has occurred at the time when n) falls below a predetermined threshold (step S13).
 次に、ミスト検出部35は、輝度値の評価値Vy(n)が第1の閾値より小さい極小値となった時刻と、彩度の評価値およびDレンジの評価値がそれぞれ第1の閾値より大きい極大値となる時刻を検出する。そして、ミスト検出部35は、それらの時刻以降で、輝度値の評価値が第2の閾値を上回り、かつ、彩度の評価値およびDレンジの評価値がそれぞれ第2の所定閾値を下回った時刻nでミストが消失したと判定するようになっている(ステップS14)。 Next, in the mist detection unit 35, the time when the evaluation value Vy (n) of the luminance value becomes a local minimum smaller than the first threshold, and the evaluation value of the saturation and the evaluation value of the D range each have the first threshold. Detect the time when the maximum value is larger. Then, after these times, the mist detection unit 35 indicates that the evaluation value of the luminance value exceeds the second threshold, and the evaluation value of the saturation and the evaluation value of the D range each fall below the second predetermined threshold. At time n, it is determined that the mist has disappeared (step S14).
 このように、本実施形態に係る生体観察装置によれば、ミスト検出部35によりミストが発生していることが検出された場合には、血液の広がりが大きい場合でも、制御部16により第1の撮影方式が維持されるので、表示フレームレートの低下を防止して、観察しやすさを向上することができる。一方、血液の広がりが大きい場合であって、かつ、ミストが消失している場合には第2の撮影方式に切り替わるので、血液の影響の少ない脂肪抽出を優先して、精度よく脂肪を検出することができる。 As described above, according to the living body observation apparatus according to the present embodiment, when the mist detection unit 35 detects that the mist is generated, the control unit 16 performs the first operation even when the spread of the blood is large. Thus, the display frame rate can be prevented from being lowered, and the easiness of observation can be improved. On the other hand, when the spread of the blood is large and the mist disappears, the mode is switched to the second imaging method, so fat extraction with little influence of blood is prioritized to detect fat accurately. be able to.
 1 生体観察装置
 3,27 光源部
 11 撮像素子(撮像部)
 16 制御部
 18 βカロテン検出部(脂肪検出部)
 19 ヘモグロビン検出部(血液検出部)
 29 動き量検出部(動き検出部)
 35 ミスト検出部
 S2 照明ステップ
 S3 撮像ステップ
 S4 脂肪検出ステップ
 S5 血液検出ステップ
 S7,S8,S9 制御ステップ
Reference Signs List 1 living body observation apparatus 3, 27 light source unit 11 imaging device (imaging unit)
16 control unit 18 β-carotene detection unit (fat detection unit)
19 Hemoglobin detection unit (blood detection unit)
29 Motion amount detector (Motion detector)
35 mist detection unit S2 illumination step S3 imaging step S4 fat detection step S5 blood detection step S7, S8, S9 control step

Claims (8)

  1.  生体組織に照明光を照射する光源部と、
     該光源部により照射された照明光の前記生体組織における反射光を撮影し画像を取得する撮像部と、
     該撮像部により取得された前記画像内の脂肪を検出する脂肪検出部と、
     前記撮像部により取得された前記画像内の血液を検出する血液検出部と、
     前記脂肪検出部および前記血液検出部による検出結果に基づいて前記光源部および前記撮像部の少なくとも一方を制御する制御部とを備え、
     該制御部は、前記脂肪検出部により前記画像内に脂肪が検出されている状態で、前記血液検出部により前記画像内に検出される血液の状態に応じて、波長帯域の異なる複数の帯域光を同時に撮影する同時式の第1の撮影方式と、順次撮影する面順次式の第2の撮影方式とを切り替える生体観察装置。
    A light source unit that emits illumination light to the living tissue;
    An imaging unit configured to capture reflected light of the illumination light emitted by the light source unit in the biological tissue to obtain an image;
    A fat detection unit that detects fat in the image acquired by the imaging unit;
    A blood detection unit that detects blood in the image acquired by the imaging unit;
    A control unit configured to control at least one of the light source unit and the imaging unit based on detection results of the fat detection unit and the blood detection unit;
    The control unit is configured to detect a plurality of band lights having different wavelength bands according to the state of blood detected in the image by the blood detection unit in a state in which fat is detected in the image by the fat detection unit. The living body observation apparatus switches between a simultaneous first imaging method for imaging at the same time and a surface-sequential second imaging method for imaging sequentially.
  2.  前記血液検出部が、前記第1の撮影方式においては、前記撮像部により同時に取得された緑色の波長帯域の画像信号と赤色の波長帯域の画像信号との比に基づいてヘモグロビンを検出し、前記第2の撮影方式においては、前記撮像部により順次取得された、ヘモグロビンの吸光度差を有する緑色の2つの波長帯域の画像信号の比に基づいてヘモグロビンを検出する請求項1に記載の生体観察装置。 In the first imaging method, the blood detection unit detects hemoglobin based on a ratio between an image signal of a green wavelength band and an image signal of a red wavelength band simultaneously acquired by the imaging unit, The biological observation apparatus according to claim 1, wherein in the second imaging method, the hemoglobin is detected based on a ratio of image signals of two green wavelength bands having a difference in absorbance of hemoglobin sequentially acquired by the imaging unit. .
  3.  前記第1の撮影方式における緑色の波長帯域が波長510nm近傍の波長帯域であり、赤色の波長帯域が波長610nm近傍の波長帯域であり、
     前記第2の撮影方式における緑色の波長帯域が、波長510nm近傍および波長540nm近傍の波長帯域である請求項2に記載の生体観察装置。
    The green wavelength band in the first imaging method is a wavelength band near a wavelength of 510 nm, and the red wavelength band is a wavelength band near a wavelength of 610 nm,
    The biological observation apparatus according to claim 2, wherein a green wavelength band in the second imaging method is a wavelength band near a wavelength of 510 nm and a wavelength near a wavelength of 540 nm.
  4.  前記血液検出部が、前記撮像部により取得された前記画像内における血液の広がりを検出し、
     前記制御部は、前記血液検出部により検出された血液の広がりが所定の閾値を超える場合に、前記第2の撮影方式に切り替える請求項1から請求項3のいずれかに記載の生体観察装置。
    The blood detection unit detects the spread of blood in the image acquired by the imaging unit;
    The biological observation apparatus according to any one of claims 1 to 3, wherein the control unit switches to the second imaging method when the spread of the blood detected by the blood detection unit exceeds a predetermined threshold.
  5.  前記撮像部により取得された前記画像に基づいて、前記生体組織に対する前記撮像部の動き量を検出する動き検出部を備え、
     前記制御部は、前記動き検出部により検出された動き量が所定の閾値より小さい場合に、前記第2の撮影方式に切り替える請求項1から請求項4のいずれかに記載の生体観察装置。
    A motion detection unit configured to detect an amount of movement of the imaging unit with respect to the living tissue based on the image acquired by the imaging unit;
    The biological observation apparatus according to any one of claims 1 to 4, wherein the control unit switches to the second imaging method when the amount of movement detected by the movement detection unit is smaller than a predetermined threshold.
  6.  前記動き検出部は、画像全体の大域的な動きベクトルと、局所的な動きベクトルとを識別し、前記大域的な動きベクトルに基づいて動き量を検出する請求項5に記載の生体観察装置。 The living body observation apparatus according to claim 5, wherein the motion detection unit identifies a global motion vector of the entire image and a local motion vector, and detects a motion amount based on the global motion vector.
  7.  前記画像に基づいて、ミストの発生の有無を検出するミスト検出部を備え、
     前記制御部は、前記ミスト検出部により、ミストが消失したことが検出された場合に、前記第2の撮影方式に切り替える請求項1から請求項4のいずれかに記載の生体観察装置。
    A mist detection unit that detects the presence or absence of mist generation based on the image;
    The living body observation apparatus according to any one of claims 1 to 4, wherein the control unit switches to the second imaging method when the mist detection unit detects that the mist disappears.
  8.  生体組織に照明光を照射する照明ステップと、
     該照明ステップにより照射された照明光の前記生体組織における反射光を撮影し画像を取得する撮像ステップと、
     該撮像ステップにより取得された前記画像内の脂肪を検出する脂肪検出ステップと、
     前記撮像ステップにより取得された前記画像内の血液を検出する血液検出ステップと、
     前記脂肪検出ステップにより前記画像内に脂肪が検出されている状態で、前記血液検出ステップにより前記画像内に検出される血液の状態に応じて、波長帯域の異なる複数の帯域光を同時に撮影する同時式の撮影方式と、順次撮影する面順次式の撮影方式とを切り替える制御ステップとを含む生体観察方法。
     
    Illuminating the body tissue with illumination light;
    Imaging the reflected light of the illumination light emitted from the illumination step in the living tissue to obtain an image;
    A fat detection step of detecting fat in the image acquired by the imaging step;
    A blood detection step of detecting blood in the image acquired by the imaging step;
    In a state in which fat is detected in the image by the fat detecting step, simultaneously imaging a plurality of band lights having different wavelength bands simultaneously according to the state of blood detected in the image by the blood detecting step A living body observation method comprising a control step of switching between an imaging method of the formula and a field-sequential imaging method of sequentially capturing images.
PCT/JP2015/058477 2015-03-20 2015-03-20 Living body observation device and living body observation method WO2016151675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058477 WO2016151675A1 (en) 2015-03-20 2015-03-20 Living body observation device and living body observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058477 WO2016151675A1 (en) 2015-03-20 2015-03-20 Living body observation device and living body observation method

Publications (1)

Publication Number Publication Date
WO2016151675A1 true WO2016151675A1 (en) 2016-09-29

Family

ID=56977036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058477 WO2016151675A1 (en) 2015-03-20 2015-03-20 Living body observation device and living body observation method

Country Status (1)

Country Link
WO (1) WO2016151675A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235179A1 (en) * 2017-06-21 2018-12-27 オリンパス株式会社 Image processing device, endoscope device, method for operating image processing device, and image processing program
WO2018235178A1 (en) * 2017-06-21 2018-12-27 オリンパス株式会社 Image processing device, endoscope device, method for operating image processing device, and image processing program
CN110826486A (en) * 2019-11-05 2020-02-21 拉卡拉支付股份有限公司 Face recognition auxiliary detection method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239206A (en) * 2005-03-04 2006-09-14 Fujinon Corp Endoscope apparatus
WO2013115323A1 (en) * 2012-01-31 2013-08-08 オリンパス株式会社 Biological observation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239206A (en) * 2005-03-04 2006-09-14 Fujinon Corp Endoscope apparatus
WO2013115323A1 (en) * 2012-01-31 2013-08-08 オリンパス株式会社 Biological observation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235179A1 (en) * 2017-06-21 2018-12-27 オリンパス株式会社 Image processing device, endoscope device, method for operating image processing device, and image processing program
WO2018235178A1 (en) * 2017-06-21 2018-12-27 オリンパス株式会社 Image processing device, endoscope device, method for operating image processing device, and image processing program
CN110769738A (en) * 2017-06-21 2020-02-07 奥林巴斯株式会社 Image processing device, endoscope device, method for operating image processing device, and image processing program
CN110769738B (en) * 2017-06-21 2022-03-08 奥林巴斯株式会社 Image processing apparatus, endoscope apparatus, method of operating image processing apparatus, and computer-readable storage medium
CN110826486A (en) * 2019-11-05 2020-02-21 拉卡拉支付股份有限公司 Face recognition auxiliary detection method and device

Similar Documents

Publication Publication Date Title
JP5395725B2 (en) Electronic endoscope system
JP5452300B2 (en) Electronic endoscope system, processor device for electronic endoscope, operation method of electronic endoscope system, pathological observation device, and pathological microscope device
WO2017057574A1 (en) Image processing apparatus, endoscope system, and image processing method
JP4566754B2 (en) Image processing device
JP6336949B2 (en) Image processing apparatus, image processing method, and endoscope system
WO2013005533A1 (en) Endoscope system, endoscope system processor and image display method
JP6581984B2 (en) Endoscope system
JP5808031B2 (en) Endoscope system
US20180033142A1 (en) Image-processing apparatus, biological observation apparatus, and image-processing method
US20150257635A1 (en) Observation apparatus
JP6522539B2 (en) Endoscope system and method of operating the same
JP6454359B2 (en) Image processing apparatus, operation method of image processing apparatus, operation program for image processing apparatus, and endoscope apparatus
JP6188992B1 (en) Image analysis apparatus, image analysis system, and operation method of image analysis apparatus
US20180000334A1 (en) Biological observation apparatus
JPWO2018211885A1 (en) Image acquisition system, control device, and image acquisition method
JP2012010733A (en) Electronic endoscope system, processor for electronic endoscope, image search system, and image search method
JP7374280B2 (en) Endoscope device, endoscope processor, and method of operating the endoscope device
US10856805B2 (en) Image processing device, living-body observation device, and image processing method
WO2016151675A1 (en) Living body observation device and living body observation method
JP6203088B2 (en) Living body observation system
WO2016121811A1 (en) Image processing device, image processing method, and endoscope system
JP2010119742A (en) Endoscope apparatus and its control method
JP5844447B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP7163386B2 (en) Endoscope device, method for operating endoscope device, and program for operating endoscope device
JP2021108793A (en) Medical image generation apparatus, medical image generation method, and medical image generation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP