WO2021199135A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2021199135A1
WO2021199135A1 PCT/JP2020/014506 JP2020014506W WO2021199135A1 WO 2021199135 A1 WO2021199135 A1 WO 2021199135A1 JP 2020014506 W JP2020014506 W JP 2020014506W WO 2021199135 A1 WO2021199135 A1 WO 2021199135A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
air conditioner
pressure
circuit
condenser
Prior art date
Application number
PCT/JP2020/014506
Other languages
English (en)
French (fr)
Inventor
圭佑 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/014506 priority Critical patent/WO2021199135A1/ja
Priority to JP2022512883A priority patent/JP7241968B2/ja
Publication of WO2021199135A1 publication Critical patent/WO2021199135A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to an air conditioner that applies regenerative braking to a motor installed inside.
  • a general air conditioner includes a compressor, an outdoor heat exchanger, a decompression device, and a refrigeration cycle in which a refrigerant circulates in a refrigerant circuit having an indoor heat exchanger as a basic configuration.
  • air conditioners that apply hydrofluorocarbons such as R32 (difluoromethane CH 2 F 2) as a refrigerant are often designed.
  • a model of air conditioner capable of cooling operation and heating operation is provided with a four-way valve in the above-mentioned refrigerant circuit. The air conditioner switches the cooling and heating operations by switching the direction of the refrigerant flow path with a four-way valve.
  • the air conditioner is equipped with various motors such as a motor for blowing air for heat exchange in the outdoor heat exchanger and the indoor heat exchanger, and a motor for compressing the refrigerant in the compressor.
  • the rotation speed of each motor can be arbitrarily changed by inverter control for the purpose of improving user comfort and energy saving effect.
  • a temperature sensor such as a thermistor is installed near the compressor or heat exchanger. Based on the information from these temperature sensors, the microcomputer built into the outdoor unit or indoor unit performs calculations, sends signals to each actuator, and controls the operating points of the refrigeration cycle such as the compressor or blower. Is going.
  • the refrigerant compressed by the compressor shows the highest pressure value when it is condensed by the condenser.
  • the outdoor heat exchanger acts as a condenser during cooling
  • the indoor heat exchanger acts as a condenser during heating.
  • the upper limit of the pressure applied to the air conditioner at the time of condensation is set from the viewpoint of preventing the failure of the air conditioner and ensuring the reliability.
  • the upper limit value is referred to as a pressure upper limit value. It is necessary to design the air conditioner so that the pressure of the air conditioner does not exceed the pressure upper limit value in various operation modes.
  • One of the modes in which the pressure of the air conditioner easily exceeds the upper limit of the pressure is the transient indoor heat exchange that occurs until the target wind speed is reached when the wind speed of the blower provided in the indoor unit is reduced in the heating operation.
  • There is a rise in vessel pressure. This increase in pressure is due to the fact that the amount of heat exchanged in the condenser sharply decreases due to the decrease in wind speed, and the amount of heat supplied from the compressor to the condenser exceeds the amount of heat released in the condenser.
  • the control method described in Patent Document 1 is a method utilizing the fact that the refrigeration cycle is operated in a state in which the balance in the refrigerant circuit is balanced.
  • the operating frequency of the compressor is lowered before the wind speed is lowered to lower the condensation pressure and avoid an excessive rise in pressure due to the wind speed drop.
  • the present disclosure has been made to solve such a problem, and it is possible to prevent the pressure of the air conditioner from exceeding the pressure upper limit value while suppressing the power consumption during motor deceleration.
  • the purpose is to get an opportunity.
  • the air conditioner according to the present disclosure includes a refrigeration cycle having a compressor, a condenser, an inverter, and a decompression device, a blower that blows air to the condenser and the inverter, and the compressor or the blower.
  • a motor that drives the motor an inverter circuit that drives the motor, a regenerative circuit that is connected between the power supply and the inverter circuit and includes a switching element that performs regenerative braking of the motor, and during deceleration of the motor. It is provided with a control unit for controlling the on / off operation of the switching element provided in the regenerative circuit based on the condensing pressure of the condenser and the pressure upper limit value of the condenser.
  • the on / off operation of the switching element provided in the regenerative circuit is controlled based on the condensing pressure of the condenser and the pressure upper limit value of the condenser to perform regenerative braking when the motor is decelerated. Since this is done, it is possible to prevent the pressure of the air conditioner from exceeding the pressure upper limit value while suppressing the power consumption during deceleration of the motor.
  • FIG. It is a refrigerant circuit diagram which shows the structure of the refrigerant circuit of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a circuit diagram which shows the structure of the motor control circuit 40 provided in the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is an enlarged view which shows the structure of the regenerative circuit 17 of FIG.
  • FIG. It is a figure which shows the equivalent circuit 50 of the circuit 50A of FIG.
  • It is a circuit diagram at the time of electromagnetic energy storage in the motor control circuit 40 of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a circuit diagram at the time of power regeneration in the motor control circuit 40 of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. 1 It is a circuit diagram at the time of power non-regeneration in the motor control circuit 40 of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a figure which shows the on-time Ton and the off-time Tof of switches 25 and 27 provided in the regenerative circuit 17 of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the control part 20 of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the process flow of the control part 20 of the air conditioner 100 which concerns on Embodiment 1.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit of the air conditioner 100 according to the first embodiment.
  • the air conditioner 100 is composed of a combination of the outdoor unit 1 and the indoor unit 2.
  • the outdoor unit 1 and the indoor unit 2 are connected to each other via a refrigerant pipe 30.
  • the refrigerant pipe 30 is, for example, a copper pipe.
  • the refrigerant flows in the refrigerant pipe 30.
  • a part of the structure is transparent and is shown by a broken line.
  • the direction of the refrigerant flow path during cooling is indicated by a solid arrow
  • the direction of the refrigerant flow path during heating is indicated by a alternate long and short dash line.
  • the outdoor unit 1 is installed outdoors.
  • the indoor unit 2 is installed indoors.
  • the indoor unit 2 is, for example, a wall-mounted type that can be installed on an indoor wall.
  • one outdoor unit 1 and one indoor unit 2 are connected, but the number of them is not limited to this example.
  • one or a plurality of outdoor units 1 and one indoor unit 2, or one or a plurality of outdoor units 1 and a plurality of indoor units 2 can be connected.
  • the outdoor unit 1 includes a compressor 3, an outdoor heat exchanger 4, a decompression device 5, and a four-way valve 6. Further, the outdoor unit 1 has a control unit 20.
  • the control unit 20 may be installed in the indoor unit 2 instead of the outdoor unit 1. Alternatively, the control unit 20 may be installed in both the outdoor unit 1 and the indoor unit 2.
  • the control unit 20 is composed of, for example, a microcomputer. The hardware configuration of the control unit 20 will be described later.
  • the compressor 3 has a compressor motor 19 (see FIG. 2).
  • the compressor 3 operates using the compressor motor 19 as a power source.
  • the rotation speed of the compressor motor 19 can be changed by inverter control based on the control of the control unit 20.
  • the compressor 3 is, for example, an inverter compressor.
  • the compressor 3 compresses and discharges the sucked refrigerant.
  • the compressor motor 19 constitutes an actuator that drives the compressor 3.
  • the outdoor heat exchanger 4 exchanges heat between the refrigerant circulating inside and the air.
  • the outdoor heat exchanger 4 is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 4 functions as a condenser.
  • the outdoor heat exchanger 4 functions as an evaporator.
  • the decompression device 5 is connected between the outdoor heat exchanger 4 and the indoor heat exchanger 7, which will be described later.
  • the depressurizing device 5 decompresses the refrigerant.
  • the pressure reducing device 5 is, for example, an expansion valve.
  • As the expansion valve an expansion valve that reduces the pressure using a thin tube, an electronic expansion valve, or the like is used.
  • the pressure reducing device 5 is an electronic expansion valve, the refrigerant flow rate of the pressure reducing device 5 can be electrically controlled by the control unit 20.
  • the four-way valve 6 switches the direction of the refrigerant flow path in the refrigerant circuit based on the control of the control unit 20.
  • the four-way valve 6 is in the state of the solid line in FIG. 1 and connects the discharge port of the compressor 3 and the outdoor heat exchanger 4.
  • the four-way valve 6 is in the state of the alternate long and short dash line in FIG. 1 and connects the discharge port of the compressor 3 and the indoor heat exchanger 7.
  • the installation of the four-way valve 6 is omitted.
  • the indoor unit 2 houses the indoor heat exchanger 7.
  • the indoor heat exchanger 7 exchanges heat between the refrigerant flowing inside and the air.
  • the indoor heat exchanger 7 is, for example, a fin-and-tube heat exchanger.
  • the indoor heat exchanger 7 functions as an evaporator.
  • the indoor heat exchanger 7 functions as a condenser.
  • the compressor 3, the four-way valve 6, the outdoor heat exchanger 4, the decompression device 5, and the indoor heat exchanger 7 are connected by a refrigerant pipe 30 to form a refrigerant circuit.
  • the air conditioner 100 includes a compressor 3, an outdoor heat exchanger 4, a decompression device 5, and a refrigerating cycle in which the refrigerant circulates in the refrigerant circuit having the basic configuration of the indoor heat exchanger 7.
  • the outdoor unit 1 further houses an outdoor blower motor 8 and an outdoor fan 9.
  • the rotation speed of the outdoor blower motor 8 can be changed by inverter control based on the control of the control unit 20.
  • the outdoor fan 9 operates using the outdoor blower motor 8 as a power source.
  • the outdoor fan 9 rotates at the same rotation speed as the outdoor blower motor 8.
  • the outdoor fan 9 is, for example, a propeller fan.
  • the outdoor blower motor 8 constitutes an actuator that drives the outdoor fan 9.
  • the indoor unit 2 further houses the indoor blower motor 10 and the indoor fan 11.
  • the rotation speed of the indoor blower motor 10 can be changed by inverter control based on the control of the control unit 20.
  • the indoor fan 11 operates using the indoor blower motor 10 as a power source.
  • the indoor fan 11 rotates at the same rotation speed as the indoor blower motor 10.
  • the indoor fan 11 is, for example, a cross flow fan. In the example of FIG. 1, the indoor fan 11 is shown as a cross-flow fan, but the present invention is not limited to this case.
  • the indoor fan 11 can be a propeller fan in the same way as the outdoor fan 9.
  • the indoor blower motor 10 constitutes an actuator that drives the indoor fan 11.
  • the outdoor fan 9 blows the air that has been heat-exchanged by the outdoor heat exchanger 4, and the indoor fan 11 blows the air that has been heat-exchanged by the indoor heat exchanger 7.
  • the operation of the air conditioner 100 will be described. First, the operation when the air conditioner 100 performs the cooling operation will be described.
  • the compressor 3 compresses and discharges the sucked refrigerant.
  • the discharged refrigerant flows into the outdoor heat exchanger 4 via the four-way valve 6. Air is blown to the outdoor heat exchanger 4 from the outdoor fan 9.
  • the outdoor heat exchanger 4 exchanges heat between the refrigerant and air.
  • the outdoor heat exchanger 4 functions as a condenser. Therefore, the refrigerant is cooled by heat exchange.
  • the cooled refrigerant flows into the decompression device 5.
  • the decompression device 5 decompresses and expands the refrigerant.
  • the refrigerant flows into the indoor heat exchanger 7.
  • Air is blown to the indoor heat exchanger 7 from the indoor fan 11.
  • the indoor heat exchanger 7 exchanges heat between the refrigerant and air.
  • the indoor heat exchanger 7 functions as an evaporator. Therefore, heat exchange heats the refrigerant and cools the air.
  • the heated refrigerant is sucked into the compressor 3 via the four-way valve 6.
  • the compressor 3 compresses and discharges the sucked refrigerant.
  • the discharged refrigerant flows into the indoor heat exchanger 7 via the four-way valve 6. Air is blown to the indoor heat exchanger 7 from the indoor fan 11.
  • the indoor heat exchanger 7 exchanges heat between the refrigerant and air.
  • the indoor heat exchanger 7 functions as a condenser. Therefore, heat exchange cools the refrigerant and heats the air.
  • the cooled refrigerant flows into the decompression device 5.
  • the decompression device 5 decompresses and expands the refrigerant.
  • the expanded refrigerant flows into the outdoor heat exchanger 4. Air is blown to the outdoor heat exchanger 4 from the outdoor fan 9.
  • the outdoor heat exchanger 4 exchanges heat between the refrigerant and air.
  • the outdoor heat exchanger 4 functions as an evaporator. Therefore, the refrigerant is heated by heat exchange. The heated refrigerant is sucked into the compressor 3 via the four-way valve 6.
  • a temperature sensor 12 is provided in each of the compressor 3, the outdoor heat exchanger 4, and the indoor heat exchanger 7.
  • Each temperature sensor 12 is, for example, a thermistor.
  • Each temperature sensor 12 and the control unit 20 are electrically connected.
  • the control unit 20 can grasp the refrigerant state in each actuator based on the information from each temperature sensor 12.
  • the number of temperature sensors 12 is three, but it is possible to increase or decrease the number of temperature sensors 12 provided in the outdoor unit 1 and the indoor unit 2 as needed.
  • FIG. 2 is a circuit diagram showing a configuration of a motor control circuit 40 provided in the air conditioner 100 according to the first embodiment.
  • the motor control circuit 40 controls the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8.
  • the motor control circuit 40 includes a noise filter circuit 14, a converter circuit 15, a regenerative circuit 17, and an inverter circuit 18.
  • the regenerative circuit 17 and the inverter circuit 18 are mounted on the same substrate.
  • the substrate will be referred to as an inverter substrate.
  • the noise filter circuit 14 is connected to the AC power supply 13. Power from the AC power supply 13 is supplied to the noise filter circuit 14. One end of the noise filter circuit 14 is connected to the positive bus 41, and the other end is connected to the negative bus 42. The noise filter circuit 14 removes noise from the waveform of the AC voltage output from the AC power supply 13.
  • the converter circuit 15 is connected in parallel to the noise filter circuit 14. One end of the converter circuit 15 is connected to the positive bus 41, and the other end is connected to the negative bus 42.
  • the converter circuit 15 converts the AC waveform output from the noise filter circuit 14 into a DC waveform.
  • the converter circuit 15 includes a plurality of switching elements such as a diode element. In the example of FIG. 2, the converter circuit 15 is a bridge circuit in which four diode elements are bridge-connected.
  • a reactor 16 is provided as a part of the converter circuit 15.
  • the reactor 16 is connected in series with the positive bus 41.
  • the reactor 16 is connected to the above-mentioned inverter substrate and is provided in the outdoor unit 1.
  • the converter circuit 15 has switches 15a and 15b. Switching between the switches 15a and 15b on and off is controlled by the control unit 20.
  • the switches 15a and 15b are, for example, semiconductor switching elements.
  • the regenerative circuit 17 is connected between the AC power supply 13 and the inverter circuit 18. More specifically, the regenerative circuit 17 is connected between the converter circuit 15 and the inverter circuit 18. When driving the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8, the regenerative circuit 17 supplies the direct current output from the converter circuit 15 to each of the inverter circuits 18. On the other hand, when the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8 are decelerated, the regenerative circuit 17 performs regenerative braking of these motors.
  • the regenerative circuit 17 has a switching element.
  • the control unit 20 controls the on / off operation of the switching element, so that the regenerative circuit 17 performs regenerative braking of the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8.
  • the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8 are used as generators.
  • the regenerative circuit 17 regenerates the electric power obtained by the regenerative braking to the power source side or stores it in the capacitor 17a (see FIG. 3). As a result, an energy saving effect can be obtained.
  • regenerative braking is an electric brake that brakes a motor by operating a motor that is normally used as a power source as a generator and converting the kinetic energy of rotation into electrical energy and recovering it. This is a method.
  • the motor In regenerative braking, the motor is driven as a generator by making the armature voltage of the motor higher than the power supply voltage. The magnitude of braking in regenerative braking depends on the magnitude of the current flowing through the inverter circuit 18.
  • FIG. 3 is an enlarged view showing the configuration of the regenerative circuit 17 of FIG.
  • the regenerative circuit 17 includes a capacitor 17a, two diodes 17b and 17d, and two switching elements 17c and 17e.
  • connection point 45 The connection point between the capacitor 17a and the negative bus 42 is referred to as a connection point 46.
  • the condenser 17a stores electric power obtained by regenerative braking during deceleration of the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8.
  • the capacitor 17a is a capacitor or a battery.
  • the diode 17d is connected in parallel to the capacitor 17a.
  • the cathode terminal is connected to the positive bus 41 and the anode terminal is connected to the negative bus 42.
  • the connection point between the diode 17d and the positive bus 41 is called a connection point 47.
  • the connection point between the diode 17d and the negative bus 42 is referred to as a connection point 48.
  • the switching element 17e is connected in parallel to the diode 17d.
  • the diode 17b is connected in series with the positive bus 41.
  • the direction of the diode 17b is opposite to the direction of the current flowing through the positive bus 41. That is, in the diode 17b, the cathode terminal is connected to the connection point 45, and the anode terminal is connected to the connection point 47.
  • the switching element 17c is connected in parallel to the diode 17b.
  • the switching elements 17c and 17e are, for example, semiconductor switching elements. Switching of the switching elements 17c and 17e on and off is controlled by the control unit 20. When the switching element 17c is off, the power supply from the AC power supply 13 to the inverter circuit 18 is cut off.
  • the positive bus 41 branches into three positive bus 41a, 41b, and 41c at the connection point 43.
  • the negative side bus 42 branches into three negative side bus lines 42a, 42b, and 42c at the connection point 44.
  • the inverter circuit 18 includes three inverter circuits 18a, 18b and 18c.
  • the inverter circuit 18a converts the direct current output from the regenerative circuit 17 into a three-phase alternating current waveform and supplies it to the indoor blower motor 10. As a result, the indoor fan 11 is driven.
  • the inverter circuit 18b converts the direct current output from the regenerative circuit 17 into a three-phase alternating current waveform and supplies it to the compressor motor 19. As a result, the compressor 3 is driven.
  • the inverter circuit 18c converts the direct current output from the regenerative circuit 17 into a three-phase alternating current waveform and supplies it to the outdoor blower motor 8. As a result, the outdoor fan 9 is driven.
  • Each of the inverter circuits 18a, 18b and 18c includes a plurality of switching elements. These switching elements are, for example, transistors such as IGBTs (Insulated Gate Bipolar Transistors). A diode for preventing backflow is connected in antiparallel to each transistor.
  • each of the inverter circuits 18a, 18b and 18c is a three-phase bridge circuit in which six transistors are bridge-connected.
  • Each of the inverter circuits 18a, 18b and 18c converts the DC bus voltage into a three-phase AC voltage by the on / off operation of the six transistors. Switching between on and off of these transistors is controlled by the control unit 20.
  • the operation of the motor control circuit 40 of FIG. 2 will be described. Power is supplied from the AC power supply 13, and the noise filter circuit 14 removes noise from the AC waveform. Next, the converter circuit 15 converts the AC waveform into the DC waveform. Next, the DC current that has passed through the regenerative circuit 17 is converted into an AC waveform again by the inverter circuits 18a, 18b, and 18c. As a result, the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8 are driven. An indoor fan 11 is connected to the indoor blower motor 10, a compressor 3 is connected to the compressor motor 19, and an outdoor fan 9 is connected to the outdoor blower motor 8. The indoor fan 11, the compressor 3, and the outdoor fan 9 rotate at the rotation speeds of the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8, respectively.
  • the converter circuit 15, the regenerative circuit 17, and the inverter circuit 18 include a switching element capable of switching the energization on and off.
  • a switching element for example, a semiconductor switching element is used as described above.
  • the timing of switching the switching element is controlled by the control unit 20.
  • FIG. 4 is a diagram showing an equivalent circuit 50 of the circuit 50A of FIG.
  • the circuit 50A includes a regenerative circuit 17, an inverter circuit 18, an indoor blower motor 10, a compressor motor 19, and an outdoor blower motor 8.
  • the motor 21 represents any one of the indoor blower motor 10, the compressor motor 19, and the outdoor blower motor 8.
  • the equivalent circuit 50 can be represented by a capacitor 22, a resistor 23, two diodes 24 and 26, two switches 25 and 27, a resistor 28, and an inductor 29.
  • the capacitor 22 can store the electric charge generated by the regenerative braking of the motor 21.
  • One end of the resistor 23 is connected in series to the positive terminal of the capacitor 22.
  • the internal resistance of the resistor 23 represents the combined resistance of the wiring.
  • a diode 24 is connected in series to the other end of the resistor 23 in the opposite direction. That is, the cathode terminal of the diode 24 is connected to the other end of the resistor 23.
  • the switch 25 is connected in parallel to the diode 24.
  • the diode 26 is arranged after the diode 24.
  • the diode 26 is connected in parallel to the capacitor 22.
  • the cathode terminal of the diode 26 is connected to the anode terminal of the diode 24.
  • the anode terminal of the diode 26 is connected to the negative terminal of the capacitor 22.
  • the switch 27 is connected in parallel to the diode 26. The switch 25 and the switch 27 can be switched on and off by the control unit 20.
  • the resistor 28 is arranged after the diode 26.
  • One end of the resistor 28 is connected to the anode terminal of the diode 24 and is connected to the cathode terminal of the diode 26.
  • the other end of the resistor 28 is connected in series to one end of the inductor 29.
  • the resistor 28 represents the combined impedance of the winding resistance including the iron loss and the copper loss of the motor 21 and the inductance of the inductor 29.
  • the other end of the inductor 29 is connected to one end of the motor 21.
  • the other end of the motor 21 is connected to the anode terminal of the diode 26 and the negative terminal of the capacitor 22. It is also possible to intentionally connect the inductor 29 to the outside of the motor 21.
  • the resistor 28 in that case represents a combined value of the inductance of the externally connected inductor 29 and the above-mentioned combined impedance.
  • the switch 25 is turned on and the switch 27 is turned off by the control of the control unit 20.
  • power is supplied from the AC power supply 13 to the motor 21.
  • the control unit 20 regulates that the switch 25 and the switch 27 are not turned on at the same time. Specifically, for example, from the time of giving off signal to one of the switch 25 and the switch 27, after a predetermined time T D (see FIG. 8) has passed, it is sufficient to provide the ON signal to the other.
  • the fixed time T D is referred to as a short circuit prevention period or a dead time.
  • the operation of the equivalent circuit 50 during deceleration of the motor 21 will be described.
  • the switch 25 is on and the switch 27 is off, as described above.
  • the switch 25 is turned off by the control of the control unit 20.
  • the boost chopper circuit is formed in the equivalent circuit 50 by repeatedly switching the switch 27 on and off.
  • the voltage on the motor 21 side is boosted. At that time, it is possible to regenerate the electric power to the AC power supply 13 side depending on the direction of the current flowing in the equivalent circuit 50.
  • FIG. 5 is a circuit diagram when electromagnetic energy is stored in the motor control circuit 40 of the air conditioner 100 according to the first embodiment.
  • FIG. 5 shows a circuit diagram when the switch 25 is turned off and the switch 27 is turned on in the equivalent circuit 50 of FIG. 4 when the motor 21 is decelerated. At this time, an electromotive force proportional to the rotation speed is generated in the motor 21.
  • FIG. 6 is a circuit diagram at the time of power regeneration in the motor control circuit 40 of the air conditioner 100 according to the first embodiment.
  • the current I flows in the direction of the arrow in the figure, that is, counterclockwise. Therefore, the electric power generated during deceleration of the motor 21 is regenerated to the capacitor 22.
  • the regenerated electric power is used as standby electric power of the air conditioner 100 or electric power at the time of restarting the motor 21.
  • FIG. 7 is a circuit diagram of the motor control circuit 40 of the air conditioner 100 according to the first embodiment when the electric power is not regenerated.
  • the current I flows in the direction of the arrow in the figure, that is, clockwise.
  • the electric power generated during deceleration of the motor 21 is consumed as heat by the resistor 28 and the like.
  • the control unit 20 adjusts the switching cycle T for switching the switch 27, so that it is possible to control the time length of the transient state until the motor speed is decelerated to the target motor speed.
  • the length of time in the transient state is inversely proportional to the magnitude of braking.
  • the control unit 20 determines a switching constant that controls the switching operation of the switch 27 while the switch 25 is off during the deceleration of the motor 21.
  • the switching constant is two parameters indicating the on-time Ton and the off-time Toff of the switch 27, respectively.
  • FIG. 8 is a diagram showing on-time Ton and off-time Tof of switches 25 and 27 provided in the regenerative circuit 17 of the air conditioner 100 according to the first embodiment. In FIG.
  • the horizontal axis represents time and the vertical axis represents the voltages of switches 25 and 27.
  • the solid line 60 indicates the on / off state of the switch 25, and the solid line 61 indicates the on / off state of the switch 27.
  • the switching cycle T is a value obtained by adding the on-time Ton and the off-time Tof of the switch 27.
  • Ton / T the ratio of the on-time Ton of the switch 27 to the switching period T of the switch 27. It may be one parameter.
  • the control unit 20 determines that the condensing pressure is excessively increased as the condensing pressure of the condenser approaches the upper limit of the pressure, and controls to delay the deceleration speed of the motor 21. .. At this time, the control unit 20 changes the above switching constant to increase the time required for the motor rotation speed of the decelerating motor 21 to reach the target rotation speed, so that the amount of heat exchange in the condenser is abrupt. Avoid over-design pressure due to significant reduction.
  • control unit 20 determines that as the condensing pressure of the condenser deviates from the upper limit of the pressure, a margin is secured against the excess of the design pressure, and the deceleration speed of the motor 21 is reduced. Control to speed up. At this time, the control unit 20 changes the above switching constant to shorten the time required for the motor rotation speed of the motor 21 during deceleration to reach the target rotation speed, thereby changing the rotation speed of the motor 21. Increase responsiveness and improve user comfort.
  • the control unit 20 controls the on / off operation of the switch 27 provided in the regenerative circuit 17 based on the condensing pressure of the condenser and the pressure upper limit value during the deceleration of the motor 21.
  • the condensation pressure of the condenser is obtained, for example, as follows.
  • the temperature sensor 12 is provided in the outdoor heat exchanger 4 and the indoor heat exchanger 7.
  • the outdoor heat exchanger 4 functions as a condenser during cooling
  • the indoor heat exchanger 7 functions as a condenser during heating.
  • the control unit 20 acquires the temperature from the temperature sensor 12 attached to the outdoor heat exchanger 4 during cooling. Further, the control unit 20 acquires the temperature from the temperature sensor 12 attached to the indoor heat exchanger 7 during heating.
  • the control unit 20 converts the refrigerant temperature detected by the temperature sensor 12 into the refrigerant pressure.
  • the control unit 20 uses the refrigerant pressure thus obtained as the condensation pressure.
  • the control unit 20 calculates the refrigerant pressure from the refrigerant temperature using a preset calculation formula.
  • the control unit 20 stores in advance a data table in which the value of the refrigerant pressure for each refrigerant temperature is defined in the storage unit 20d (see FIG. 9), and uses the data table to obtain the refrigerant pressure from the refrigerant temperature. You may do so.
  • the control unit 20 stores the pressure upper limit value of the air conditioner 100 in the storage unit 20d (see FIG. 9) in advance.
  • the control unit 20 calculates the difference between the condensing pressure obtained from the refrigerant temperature and the pressure upper limit value, and changes the switching constant described above based on the difference.
  • the deceleration process of the motor 21 may be examined at a specific deceleration speed. Therefore, when the motor 21 decelerates, in addition to changing the switching constant by the calculation of the control unit 20, the control unit 20 also includes a mode in which the switching constant can be artificially set.
  • the user can change the two parameters indicating the on-time Ton and the off-time Toff of the switch 27 in the rewritable data format by inputting them to the control unit 20 from the outside.
  • the switching constant is determined in consideration of the margin for the condensation pressure exceeding the design pressure after the actual machine is evaluated in an overloaded environment where the pressure of the air conditioner 100 tends to exceed the design pressure. By doing so, it is possible to reliably prevent the pressure of the air conditioner 100 from exceeding the design pressure.
  • FIG. 9 is a block diagram showing the configuration of the control unit 20 of the air conditioner 100 according to the first embodiment.
  • the control unit 20 includes a temperature acquisition unit 20a, a calculation unit 20b, a switching control unit 20c, and a storage unit 20d.
  • the temperature acquisition unit 20a acquires the refrigerant temperature from the temperature sensor 12 attached to the outdoor heat exchanger 4 during cooling, and acquires the temperature from the temperature sensor 12 attached to the indoor heat exchanger 7 during heating. .. In this way, the temperature acquisition unit 20a acquires the refrigerant temperature from the temperature sensor 12 attached to the outdoor heat exchanger 4 or the indoor heat exchanger 7 functioning as a condenser.
  • the calculation unit 20b obtains the condensation pressure of the condenser by converting the refrigerant temperature acquired by the temperature acquisition unit 20a into the refrigerant pressure. Further, the calculation unit 20b obtains the difference between the obtained condensation pressure and the pressure upper limit value stored in the storage unit 20d. Further, the calculation unit 20b obtains a switching constant for controlling the on / off operation of the switch 27 of the regenerative circuit 17 based on the difference.
  • the calculation unit 20b determines the switching constant so that the deceleration speed of the motor 21 becomes slower as the condensation pressure of the condenser is equal to or less than the pressure upper limit value and the condensation pressure of the condenser approaches the pressure upper limit value. do. That is, the on-time Ton of the switch 27 is reduced, and the off-time Ton is increased. Further, the calculation unit 20b determines the switching constant so that the deceleration speed of the motor 21 increases as the condensing pressure of the condenser is equal to or less than the pressure upper limit value and the condensing pressure of the condenser deviates from the pressure upper limit value. .. That is, the on-time Ton of the switch 27 is increased and the off-time Tof is decreased. The calculation unit 20b determines the switching constant so that the deceleration speed of the motor 21 becomes slow when the condensing pressure of the condenser exceeds the pressure upper limit value.
  • the switching control unit 20c controls the on / off operation of the switches 25 and 27 provided in the regenerative circuit 17.
  • the switching control unit 20c also controls the on / off operation of the switches 15a and 15b provided in the converter circuit 15 shown in FIG. Further, the switching control unit 20c also controls the on / off operation of each transistor provided in the inverter circuits 18a, 18b and 18c.
  • the storage unit 20d stores the pressure upper limit value in advance. Further, the storage unit 20d stores the data of the refrigerant temperature acquired by the temperature acquisition unit 20a. Further, the storage unit 20d stores various data such as the calculation result of the calculation unit 20b. Further, the storage unit 20d stores the above-mentioned data table in which the value of the refrigerant pressure for each refrigerant temperature is defined as needed.
  • the processing circuit is composed of dedicated hardware or a processor.
  • the dedicated hardware is, for example, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the processor executes a program stored in memory.
  • the storage unit 20d is composed of a memory.
  • the memory is a non-volatile or volatile semiconductor memory such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableROM), or a disk such as a magnetic disk, flexible disk, or optical disk. be.
  • FIG. 10 is a flowchart showing a processing flow of the control unit 20 of the air conditioner 100 according to the first embodiment. The flow processing of FIG. 10 is performed when the motor 21 is decelerating.
  • step S1 the control unit 20 turns off the switch 25 of the regenerative circuit 17. As a result, the supply of electric power from the AC power supply 13 to the motor 21 is cut off.
  • step S2 the temperature acquisition unit 20a of the control unit 20 acquires the refrigerant temperature from the temperature sensor 12. At this time, the temperature acquisition unit 20a acquires the refrigerant temperature from the temperature sensor 12 attached to the outdoor heat exchanger 4 or the indoor heat exchanger 7 functioning as a condenser.
  • step S3 the calculation unit 20b of the control unit 20 obtains the condensation pressure of the condenser by converting the refrigerant temperature acquired in step S2 into the refrigerant pressure.
  • step S4 the calculation unit 20b of the control unit 20 obtains the difference between the condensation pressure obtained in step S3 and the preset pressure upper limit value.
  • step S5 the calculation unit 20b of the control unit 20 obtains the above switching constant for controlling the on / off operation of the switch 27 of the regenerative circuit 17 based on the difference obtained in step S4.
  • step S6 the switching control unit 20c of the control unit 20 controls the on / off operation of the switch 27 of the regenerative circuit 17 based on the switching constant obtained in step S5. After that, the process returns to the process of step S2.
  • regenerative braking capable of switching control is applied to the motor 21 of the air conditioner 100.
  • the control unit 20 controls the regenerative circuit 17 based on the condensing pressure of the condenser and the pressure upper limit value of the condenser when the motor 21 is decelerated.
  • the motor 21 can be decelerated while maintaining a pressure equal to or lower than the design pressure of the air conditioner 100.
  • the electric power obtained by the regenerative braking as the standby electric power of the air conditioner 100 or the electric power at the time of restarting the motor 21, it has an effect of realizing the operation of the air conditioner 100 with reduced power consumption.
  • the excessive rise in the pressure of the condenser during the deceleration of the motor 21 is avoided only by the actuator control. Therefore, it is not necessary to increase the pressure resistance of the refrigerant circuit components of the air conditioner 100 more than necessary, and a cost advantage can be expected. Specifically, it is not necessary to take measures for improving the pressure resistance, such as thickening the copper pipe constituting the refrigerant pipe 30 or improving the pressure resistance by changing the material. Therefore, it is possible to suppress the cost increase of the air conditioner 100 without incurring the cost of the pressure resistance improving measure.
  • the switching constant at the time of deceleration of the motor 21 can be changed, and can be set by calculation by the control unit 20 or input by the user.
  • the control unit 20 calculates the difference between the condensing pressure obtained from the refrigerant temperature and the pressure upper limit value, and changes the switching constant based on the difference. Therefore, the condensing pressure does not exceed the pressure upper limit value, and as a result, the pressure of the air conditioner 100 does not exceed the design pressure.
  • the switching constant determined based on the evaluation of the actual machine in an overloaded environment where the pressure of the air conditioner 100 tends to exceed the design pressure is used. Therefore, the condensing pressure does not exceed the pressure upper limit value, and as a result, the pressure of the air conditioner 100 does not exceed the design pressure.
  • the power supply from the AC power supply 13 to the motor 21 is cut off. Since there is no power consumption during deceleration of the motor 21, further energy saving effect can be obtained. Further, the electric power stored in the condenser 17a of the regenerative circuit 17 is used as standby electric power of the air conditioner 100 or electric power at the time of re-driving the motor 21. As a result, it is possible to obtain a highly efficient and highly reliable air conditioner 100 with reduced power consumption.
  • the wind speed that can be set by the user with the remote controller is often designed in multiple stages such as 4th or 5th speed.
  • the pressure of the air conditioner exceeds the design pressure when the motor decelerates from the maximum rotation speed to the minimum rotation speed. There is even more concern that it will end up.
  • regenerative braking capable of switching control is applied to the motor 21 of the air conditioner 100.
  • the motor 21 can be decelerated while maintaining the pressure equal to or lower than the design pressure of the air conditioner 100.
  • the refrigerant R32 currently used by most manufacturers exhibits a higher pressure value than the conventionally used refrigerant R22 (chlorodifluoromethane CHClF 2) and other hydrochlorofluorocarbons. Therefore, countermeasures against equipment malfunctions caused by the pressure of the air conditioner exceeding the design pressure need to be considered more carefully.
  • the motor 21 can be decelerated while maintaining the pressure equal to or lower than the design pressure of the air conditioner 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機は、圧縮機、凝縮器、蒸発器、および、減圧装置を有する冷凍サイクルと、凝縮器および蒸発器に対して送風を行う送風機と、圧縮機または送風機を駆動するモータと、モータを駆動するインバータ回路と、電源とインバータ回路との間に接続され、モータの回生制動を行うスイッチング素子を備えた回生回路と、モータの減速中に、凝縮器の凝縮圧力と凝縮器の圧力上限値とに基づいて、回生回路に設けられたスイッチング素子のオンオフ動作を制御する制御部とを備えている。

Description

空気調和機
 本開示は、内部に設けられたモータに回生制動を適用する空気調和機に関する。
 一般的な空気調和機は、圧縮機、室外熱交換器、減圧装置、および、室内熱交換器を基本構成とした冷媒回路内を冷媒が循環する冷凍サイクルを備える。近年、冷媒としてR32(ジフルオロメタン CH)などのハイドロフルオロカーボンを適用する空気調和機が設計されることが多い。冷房運転と暖房運転とが可能な機種の空気調和機は、上記冷媒回路内に四方弁を備えている。当該空気調和機は、四方弁により冷媒流路方向を切り替えることで、冷房および暖房の運転切り替えを実施している。
 空気調和機は、室外熱交換器および室内熱交換器での熱交換用の空気を送風するためのモータ、および、圧縮機内で冷媒を圧縮するためのモータなど、各種モータを備えている。各モータは、ユーザの快適性および省エネルギー効果の向上を目的として、インバータ制御によって任意に回転数を変更することが可能である。
 圧縮機または熱交換器の付近には、サーミスタなどの温度センサが備えられている。それら温度センサからの情報を基に、室外機または室内機に内蔵されたマイクロコンピュータが演算を行い、各アクチュエータに対して信号を送信し、圧縮機または送風機などの冷凍サイクルの動作点の制御を行っている。
 冷凍サイクルでは、圧縮機で圧縮された冷媒が、凝縮器で凝縮される際に最も高い圧力値を示す。冷房時は室外熱交換器、暖房時は室内熱交換器が、凝縮器として作用する。凝縮器では、空気調和機の故障を防ぎ、信頼性を確保するという観点から、凝縮時の空気調和機にかかる圧力の上限値を設定している。以下、当該上限値を、圧力上限値と呼ぶ。様々な運転モードにおいて、空気調和機の圧力が圧力上限値を超過しないように、空気調和機を設計する必要がある。
 空気調和機の圧力が圧力上限値を超過しやすいモードの一つに、暖房運転において、室内機に備える送風機の風速を低下させる際に、目的の風速に至るまでに生じる過渡的な室内熱交換器の圧力上昇がある。この圧力上昇は、風速低下により凝縮器での熱交換量が急激に減少し、圧縮機から凝縮器に供給する熱量が凝縮器での放熱量を上回ることに起因するものである。
 上記の圧力超過を回避するためには、耐圧に優れた空気調和機を設計することが求められる。しかしながら、耐圧向上のためには、例えば、冷媒回路を構成する各種配管を厚くする、あるいは、材料変更による耐圧向上を図るなどの変更を行う必要がある。しかしながら、それらの変更を行った場合、耐圧は向上するが、それに伴い、冷媒回路部品のコストアップにつながることが多い。コストパフォーマンスが良好な状態で、空気調和機の設計圧力超過を回避するためには、ハードウェアまたは冷媒物性により決まる圧力上限値に対して、アクチュエータ制御方法の変更による冷凍サイクルの動作点の操作で対応することが有効であると考えられる。
 アクチュエータ制御方法の変更による上記の圧力超過を回避する方法として、例えば、リモコンから風速低下の指令を受けた後、送風機モータの回転数を減少させる前に、圧縮機モータの回転数をあらかじめ減少させる制御方法が提案されている(例えば、特許文献1参照)。
 特許文献1に記載の当該制御方法は、冷凍サイクルが冷媒回路内のバランスがつり合う状態で運転されることを利用した方法である。当該制御方法では、風速低下よりも前に圧縮機の運転周波数を低下させることで、凝縮圧力を下げ、風速低下による圧力の過上昇を回避している。
特開平11-211247号公報
 しかしながら、気候変動が大きい地域または断熱性の悪い住宅に設置される空気調和機においては、快適性確保のため、空気調和機のモータ減速が頻繁に行われる。このとき、特許文献1に記載の空気調和機では、モータ減速中の過渡状態においても、電源からの電力供給があり、電力を消費している。そのため、省エネルギー効果が得られないという課題があった。
 本開示は、かかる課題を解決するためになされたものであり、モータ減速中の消費電力を抑えながら、空気調和機の圧力が圧力上限値を超過することを防止することが可能な、空気調和機を得ることを目的としている。
 本開示に係る空気調和機は、圧縮機、凝縮器、蒸発器、および、減圧装置を有する冷凍サイクルと、前記凝縮器および前記蒸発器に対して送風を行う送風機と、前記圧縮機または前記送風機を駆動するモータと、前記モータを駆動するインバータ回路と、電源と前記インバータ回路との間に接続され、前記モータの回生制動を行うスイッチング素子を備えた回生回路と、前記モータの減速中に、前記凝縮器の凝縮圧力と前記凝縮器の圧力上限値とに基づいて、前記回生回路に設けられた前記スイッチング素子のオンオフ動作を制御する制御部とを備えたものである。
 本開示に係る空気調和機によれば、凝縮器の凝縮圧力と凝縮器の圧力上限値とに基づいて、回生回路に設けられたスイッチング素子のオンオフ動作を制御して、モータ減速時に回生制動を行うようにしたので、モータ減速中の消費電力を抑えながら、空気調和機の圧力が圧力上限値を超過することを防止することができる。
実施の形態1に係る空気調和機100の冷媒回路の構成を示す冷媒回路図である。 実施の形態1に係る空気調和機100に設けられたモータ制御回路40の構成を示す回路図である。 図2の回生回路17の構成を示す拡大図である。 図2の回路50Aの等価回路50を示す図である。 実施の形態1に係る空気調和機100のモータ制御回路40における電磁エネルギー蓄積時の回路図である。 実施の形態1に係る空気調和機100のモータ制御回路40における電力回生時の回路図である。 実施の形態1に係る空気調和機100のモータ制御回路40における電力非回生時の回路図である。 実施の形態1に係る空気調和機100の回生回路17に設けられたスイッチ25および27のオン時間Tonとオフ時間Toffとを示す図である。 実施の形態1に係る空気調和機100の制御部20の構成を示すブロック図である。 実施の形態1に係る空気調和機100の制御部20の処理の流れを示すフローチャートである。
 以下、本開示に係る空気調和機の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、実施の形態1に係る空気調和機100の冷媒回路の構成を示す冷媒回路図である。空気調和機100は、室外機1と室内機2との組み合わせにより構成されている。室外機1と室内機2とは互いに冷媒配管30を介して接続されている。冷媒配管30は、例えば銅配管である。冷媒は、冷媒配管30内を流れる。図1においては、説明のため、構成の一部分を透過させ、破線で示している。また、冷房時の冷媒流路方向を実線の矢印で示し、暖房時の冷媒流路方向を一点鎖線で示している。
 室外機1は、屋外に設置される。一方、室内機2は、屋内に設置される。室内機2は、例えば、屋内の壁に設置可能な壁掛け形である。図1の例では、1台の室外機1と1台の室内機2とが接続されているが、それらの台数はこの例に限らない。例えば、1台または複数台の室外機1と1台の室内機2、あるいは、1台または複数台の室外機1と複数台の室内機2を接続することも可能である。
 室外機1には、図1に示すように、圧縮機3、室外熱交換器4、減圧装置5、および、四方弁6が収容されている。また、室外機1は、制御部20を有している。制御部20は、室外機1ではなく、室内機2に設置されていてもよい。あるいは、制御部20は、室外機1および室内機2の両方に設置されていてもよい。制御部20は、例えば、マイクロコンピュータから構成される。制御部20のハードウェア構成については後述する。
 圧縮機3は、圧縮機モータ19(図2参照)を有する。圧縮機3は、圧縮機モータ19を動力源として動作する。圧縮機モータ19は、制御部20の制御に基づくインバータ制御により回転数の変更が可能である。圧縮機3は、例えば、インバータ圧縮機である。圧縮機3は、吸入した冷媒を圧縮して吐出する。圧縮機モータ19は、圧縮機3を駆動するアクチュエータを構成している。
 室外熱交換器4は、内部を流通する冷媒と空気との間で熱交換を行う。室外熱交換器4は、例えば、フィンアンドチューブ型熱交換器である。空気調和機100が冷房運転を行っているときは、室外熱交換器4は、凝縮器として機能する。一方、空気調和機100が暖房運転を行っているときは、室外熱交換器4は、蒸発器として機能する。
 減圧装置5は、室外熱交換器4と後述する室内熱交換器7との間に接続されている。減圧装置5は、冷媒を減圧させる。減圧装置5は、例えば、膨張弁である。膨張弁としては、細管を用いて減圧させる膨張弁、または、電子式膨張弁などが用いられる。減圧装置5が電子式膨張弁の場合、制御部20により、減圧装置5の冷媒流量は電気的に制御することができる。
 四方弁6は、制御部20の制御に基づいて、冷媒回路における冷媒流路方向を切り替える。空気調和機100が冷房運転を行っているときは、四方弁6は、図1の実線の状態となり、圧縮機3の吐出口と室外熱交換器4とを接続する。一方、空気調和機100が暖房運転を行っているときは、四方弁6は、図1の一点鎖線の状態となり、圧縮機3の吐出口と室内熱交換器7とを接続する。暖房運転または冷房運転のいずれか一方のみ運転可能な空気調和機においては、四方弁6の搭載は省略される。
 室内機2には、図1に示すように、室内熱交換器7が収容されている。室内熱交換器7は、内部を流通する冷媒と空気との間で熱交換を行う。室内熱交換器7は、例えば、フィンアンドチューブ型熱交換器である。空気調和機100が冷房運転を行っているときは、室内熱交換器7は、蒸発器として機能する。一方、空気調和機100が暖房運転を行っているときは、室内熱交換器7は、凝縮器として機能する。
 図1に示すように、圧縮機3、四方弁6、室外熱交換器4、減圧装置5、および、室内熱交換器7は、冷媒配管30により接続されて、冷媒回路を構成している。このように、空気調和機100は、圧縮機3、室外熱交換器4、減圧装置5、および、室内熱交換器7を基本構成とした冷媒回路内を冷媒が循環する冷凍サイクルを備える。
 また、室外機1には、図1に示すように、さらに、室外送風機モータ8と室外ファン9が収容されている。室外送風機モータ8は、制御部20の制御に基づくインバータ制御により回転数の変更が可能である。室外ファン9は、室外送風機モータ8を動力源として動作する。室外ファン9は、室外送風機モータ8と同じ回転数で回転する。室外ファン9は、例えばプロペラファンである。室外送風機モータ8は、室外ファン9を駆動するアクチュエータを構成している。
 また、室内機2には、図1に示すように、さらに、室内送風機モータ10と室内ファン11が収容されている。室内送風機モータ10は、制御部20の制御に基づくインバータ制御により回転数の変更が可能である。室内ファン11は、室内送風機モータ10を動力源として動作する。室内ファン11は、室内送風機モータ10と同じ回転数で回転する。室内ファン11は、例えば、クロスフローファンである。なお、図1の例では、室内ファン11はクロスフローファンとして示されているが、この場合に限定されない。室内ファン11は、室外ファン9と同じように、プロペラファンとすることも可能である。室内送風機モータ10は、室内ファン11を駆動するアクチュエータを構成している。
 室外ファン9により、室外熱交換器4で熱交換された空気の送風を行い、室内ファン11により、室内熱交換器7で熱交換された空気の送風を行う。
 空気調和機100の動作について説明する。はじめに、空気調和機100が冷房運転を行うときの動作について説明する。圧縮機3は、吸入した冷媒を圧縮して吐出する。吐出された冷媒は、四方弁6を介して、室外熱交換器4に流入される。室外熱交換器4には、室外ファン9から空気が送風される。室外熱交換器4は、冷媒と空気との間の熱交換を行う。このとき、室外熱交換器4は、凝縮器として機能する。従って、熱交換により、冷媒は冷却される。冷却された冷媒は、減圧装置5に流入される。減圧装置5は、当該冷媒を減圧して膨張させる。当該冷媒は、室内熱交換器7に流入される。室内熱交換器7には、室内ファン11から空気が送風される。室内熱交換器7は、冷媒と空気との間の熱交換を行う。室内熱交換器7は、蒸発器として機能する。従って、熱交換により、冷媒は加熱され、空気は冷却される。加熱された冷媒は、四方弁6を介して、圧縮機3に吸入される。
 次に、空気調和機100が暖房運転を行うときの動作について説明する。圧縮機3は、吸入した冷媒を圧縮して吐出する。吐出された冷媒は、四方弁6を介して、室内熱交換器7に流入される。室内熱交換器7には、室内ファン11から空気が送風される。室内熱交換器7は、冷媒と空気との間の熱交換を行う。室内熱交換器7は、凝縮器として機能する。従って、熱交換により、冷媒は冷却され、空気は加熱される。冷却された冷媒は、減圧装置5に流入される。減圧装置5は、当該冷媒を減圧して膨張させる。膨張された冷媒は、室外熱交換器4に流入される。室外熱交換器4には、室外ファン9から空気が送風される。室外熱交換器4は、冷媒と空気との間の熱交換を行う。室外熱交換器4は、蒸発器として機能する。従って、熱交換により、冷媒は加熱される。加熱された冷媒は、四方弁6を介して、圧縮機3に吸入される。
 また、図1に示すように、圧縮機3、室外熱交換器4および室内熱交換器7のそれぞれには、温度センサ12が設けられている。各温度センサ12は、例えば、サーミスタである。各温度センサ12と制御部20とは電気的に接続されている。制御部20は、各温度センサ12からの情報を基に、各アクチュエータにおける冷媒状態を把握可能となる。図1の例では、温度センサ12の個数は3つとしているが、必要に応じて室外機1と室内機2とに備える温度センサ12の個数を増加または減少することは可能である。
 図2は、実施の形態1に係る空気調和機100に設けられたモータ制御回路40の構成を示す回路図である。モータ制御回路40は、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8の制御を行う。図2に示すように、モータ制御回路40は、ノイズフィルタ回路14と、コンバータ回路15と、回生回路17と、インバータ回路18とを有している。回生回路17とインバータ回路18とは、同一の基板上に実装される。以下では、当該基板を、インバータ基板と呼ぶ。
 ノイズフィルタ回路14は、交流電源13に接続されている。ノイズフィルタ回路14には、交流電源13からの電力が供給される。ノイズフィルタ回路14は、一端が正側母線41に接続され、他端が負側母線42に接続されている。ノイズフィルタ回路14は、交流電源13から出力される交流電圧の波形から、ノイズを除去する。
 コンバータ回路15は、ノイズフィルタ回路14に並列に接続されている。コンバータ回路15は、一端が正側母線41に接続され、他端が負側母線42に接続されている。コンバータ回路15は、ノイズフィルタ回路14から出力された交流波形を、直流波形に変換する。コンバータ回路15は、ダイオード素子などの複数のスイッチング素子を含む。図2の例においては、コンバータ回路15は、4個のダイオード素子がブリッジ接続されたブリッジ回路である。
 コンバータ回路15を構成する一部としてリアクタ16が設けられている。リアクタ16は、正側母線41に直列に接続されている。リアクタ16は、上述したインバータ基板に接続されて、室外機1の中に備えられる。
 また、コンバータ回路15は、スイッチ15aおよび15bを有している。スイッチ15aおよび15bのオンとオフとの切り替えは、制御部20によって制御される。スイッチ15aおよび15bは、例えば、半導体スイッチング素子である。
 回生回路17は、交流電源13とインバータ回路18との間に接続されている。さらに詳細に言えば、回生回路17は、コンバータ回路15とインバータ回路18との間に接続されている。室内送風機モータ10、圧縮機モータ19および室外送風機モータ8の駆動時は、回生回路17は、コンバータ回路15から出力された直流電流を、インバータ回路18のそれぞれに供給する。一方、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8の減速時は、回生回路17は、これらのモータの回生制動を行う。回生回路17は、スイッチング素子を有している。制御部20が当該スイッチング素子のオンオフ動作を制御することで、回生回路17は、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8の回生制動を行う。回生制動においては、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8は、発電機として利用される。また、回生回路17は、回生制動で得られた電力を電源側に回生するか、あるいは、蓄電器17a(図3参照)に蓄積する。これにより、省エネルギー効果が得られる。
 ここで、回生制動とは、通常は動力源として用いられているモータを、発電機として作動させ、回転の運動エネルギーを電気エネルギーに変換して回収することで、モータに制動をかける電気ブレーキの一手法である。回生制動では、モータの電機子電圧を電源電圧よりも高くすることにより、モータを発電機として駆動させる。回生制動における制動の大きさは、インバータ回路18に流す電流の大きさに依存する。
 図3は、図2の回生回路17の構成を示す拡大図である。図3に示すように、回生回路17は、蓄電器17aと、2つのダイオード17bおよび17dと、2つのスイッチング素子17cおよび17eとを有している。
 蓄電器17aは、一端が正側母線41に接続され、他端が負側母線42に接続されている。蓄電器17aと正側母線41との接続点を、接続点45と呼ぶ。また、蓄電器17aと負側母線42との接続点を、接続点46と呼ぶ。蓄電器17aは、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8の減速時の回生制動により得られる電力を蓄積する。蓄電器17aは、コンデンサまたはバッテリである。
 ダイオード17dは、蓄電器17aに並列に接続されている。ダイオード17dは、カソード端子が正側母線41に接続され、アノード端子が負側母線42に接続されている。ダイオード17dと正側母線41との接続点を、接続点47と呼ぶ。また、ダイオード17dと負側母線42との接続点を、接続点48と呼ぶ。スイッチング素子17eは、ダイオード17dに並列に接続されている。
 ダイオード17bは、正側母線41に直列に接続されている。ダイオード17bの向きは、正側母線41に流れる電流の向きに対して逆向きである。すなわち、ダイオード17bは、カソード端子が接続点45に接続され、アノード端子が接続点47に接続されている。スイッチング素子17cは、ダイオード17bに並列に接続されている。
 スイッチング素子17cおよび17eは、例えば半導体スイッチング素子である。スイッチング素子17cおよび17eのオンとオフとの切り替えは、制御部20によって制御される。スイッチング素子17cがオフの状態のとき、交流電源13からインバータ回路18への電力供給は遮断される。
 また、図3に示すように、正側母線41は、接続点43で、3つの正側母線41a、41b、および、41cに分岐する。また、負側母線42は、接続点44で、3つの負側母線42a、42b、および、42cに分岐する。
 図2の説明に戻る。インバータ回路18は、3つのインバータ回路18a、18bおよび18cを含む。
 インバータ回路18aは、一端が正側母線41aに接続され、他端が負側母線42aに接続されている。インバータ回路18aは、回生回路17から出力された直流電流を3相の交流波形に変換して、室内送風機モータ10に供給する。これにより、室内ファン11が駆動される。
 インバータ回路18bは、一端が正側母線41bに接続され、他端が負側母線42bに接続されている。インバータ回路18bは、回生回路17から出力された直流電流を3相の交流波形に変換して、圧縮機モータ19に供給する。これにより、圧縮機3が駆動される。
 インバータ回路18cは、一端が正側母線41cに接続され、他端が負側母線42cに接続されている。インバータ回路18cは、回生回路17から出力された直流電流を3相の交流波形に変換して、室外送風機モータ8に供給する。これにより、室外ファン9が駆動される。
 インバータ回路18a、18bおよび18cのそれぞれは、複数のスイッチング素子を含む。それらのスイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)などのトランジスタである。各トランジスタには、逆流防止用のダイオードが逆並列接続されている。図2の例においては、インバータ回路18a、18bおよび18cのそれぞれは、6個のトランジスタがブリッジ接続された三相ブリッジ回路である。インバータ回路18a、18bおよび18cのそれぞれは、6個のトランジスタのオンオフ動作により、直流母線電圧を三相交流電圧に変換する。それらのトランジスタのオンとオフとの切り替えは、制御部20によって制御される。
 次に、図2のモータ制御回路40の動作について説明する。交流電源13から電力が供給され、ノイズフィルタ回路14により交流波形のノイズ除去が行われる。次に、コンバータ回路15が、交流波形から直流波形への変換を行う。次に、回生回路17を通過した直流電流は、インバータ回路18a、18bおよび18cにより、再び、交流波形に変換される。これにより、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8が駆動される。室内送風機モータ10には室内ファン11が接続され、圧縮機モータ19には圧縮機3が接続され、室外送風機モータ8には室外ファン9が接続されている。室内送風機モータ10、圧縮機モータ19および室外送風機モータ8の回転数で、それぞれ、室内ファン11、圧縮機3および室外ファン9が回転する。
 上述したように、コンバータ回路15、回生回路17およびインバータ回路18は、通電のオンとオフとの切り替えが可能なスイッチング素子を備える。それらスイッチング素子としては、上述したように、例えば半導体スイッチング素子が用いられる。スイッチング素子を切り替えるタイミングは、制御部20によって制御される。
 図2に示すモータ制御回路40のうち、回路50A部分は、図4に示す簡易な等価回路50で表すことができる。図4は、図2の回路50Aの等価回路50を示す図である。回路50Aは、回生回路17、インバータ回路18、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8を含む。ただし、図4において、モータ21は、室内送風機モータ10、圧縮機モータ19および室外送風機モータ8のいずれか1つを表す。
 図4に示すように、等価回路50は、キャパシタ22と、抵抗23と、2つのダイオード24および26と、2つのスイッチ25および27と、抵抗28と、インダクタ29とで、表すことができる。
 キャパシタ22は、モータ21の回生制動により生じる電荷を蓄えることが可能である。キャパシタ22の正側端子には、抵抗23の一端が直列接続されている。抵抗23の内部抵抗は、配線の合成抵抗を表している。抵抗23の他端には、ダイオード24が逆向きで直列接続されている。すなわち、ダイオード24のカソード端子が抵抗23の当該他端に接続されている。スイッチ25は、ダイオード24に並列接続されている。
 ダイオード26は、ダイオード24の後段に配置されている。ダイオード26は、キャパシタ22に並列に接続されている。ダイオード26のカソード端子が、ダイオード24のアノード端子に接続されている。ダイオード26のアノード端子は、キャパシタ22の負側端子に接続されている。スイッチ27は、ダイオード26に並列接続されている。スイッチ25とスイッチ27とは、制御部20によりオンとオフの切り替えが可能である。
 抵抗28は、ダイオード26の後段に配置されている。抵抗28の一端は、ダイオード24のアノード端子に接続されると共に、ダイオード26のカソード端子に接続されている。抵抗28の他端は、インダクタ29の一端に直列接続されている。抵抗28は、モータ21の鉄損および銅損を含んだ巻線抵抗、および、インダクタ29によるインダクタンスとの合成インピーダンスを表している。インダクタ29の他端は、モータ21の一端に接続されている。モータ21の他端は、ダイオード26のアノード端子およびキャパシタ22の負側端子に接続されている。なお、モータ21の外部へ意図的にインダクタ29を接続することも可能である。その場合の抵抗28は、その外部接続されたインダクタ29によるインダクタンスと前述した合成インピーダンスとの合成値を表す。
 図4に示す等価回路50において、モータ21の停止中は、制御部20の制御により、スイッチ25とスイッチ27がともにオフの状態であり、交流電源13からのモータ21への電力供給はない。
 一方、モータ21の駆動時は、図4に示す等価回路50において、制御部20の制御により、スイッチ25がオン、スイッチ27がオフとなる。これにより、交流電源13からモータ21への電力供給が行われる。このとき、制御部20により制御される周波数でインバータ回路18に備える複数のトランジスタのオンとオフを切り替えることにより、モータ21の駆動時のモータ回転数が可変となる。キャパシタ22の短絡を回避するため、制御部20では、スイッチ25とスイッチ27が同時にオンとならないような規制を行う。具体的には、例えば、スイッチ25およびスイッチ27の一方にオフ信号を与えた時点から、一定時間T(図8参照)が経過した後に、他方にオン信号を与えるようにすればよい。当該一定時間Tを、短絡防止期間またはデッドタイムという。
 次に、モータ21の減速時の等価回路50の動作について説明する。まず、モータ21が駆動中のときは、上述したように、スイッチ25がオン、スイッチ27がオフになっている。このとき、モータ21を減速する場合、制御部20の制御により、スイッチ25がオフとなる。これにより、交流電源13からモータ21への電力供給が遮断される。この状態で、スイッチ27のオンとオフとの切り替えを繰り返し行うことにより、等価回路50において、昇圧チョッパ回路が形成される。これにより、モータ21の減速時に、モータ21側の電圧の昇圧が行われる。その際、等価回路50内に流れる電流の方向により、交流電源13側への電力の回生を行うことが可能となる。
 図5は、実施の形態1に係る空気調和機100のモータ制御回路40における電磁エネルギー蓄積時の回路図である。図5は、モータ21の減速時に、図4の等価回路50において、スイッチ25をオフとし、スイッチ27をオンとしたときの回路図を示す。このとき、モータ21には、その回転数に比例した起電力が発生する。駆動時に電動機として作用していたモータ21は、図5において発電機として作用し、インダクタ29には電磁エネルギーが蓄積される。このとき、図5の回路には、モータ21の回転数に応じて時計回りと反時計回りのいずれの方向にも電流Iが流れる可能性がある。
 一方、図4の等価回路50において、スイッチ25とスイッチ27とを共にオフとしたとき、図5の回路においてインダクタ29に蓄積された電磁エネルギーが放出される。このとき、回路に流れる電流Iの方向により、図6と図7の回路に場合分けされる。
 図6は、実施の形態1に係る空気調和機100のモータ制御回路40における電力回生時の回路図である。図6において、電流Iは、図中の矢印の方向、すなわち、反時計回りに流れる。そのため、モータ21の減速時に生じる電力は、キャパシタ22へ回生される。回生した電力は、空気調和機100の待機電力またはモータ21の再駆動時の電力として利用される。
 図7は、実施の形態1に係る空気調和機100のモータ制御回路40における電力非回生時の回路図である。図7において、電流Iは、図中の矢印方向、すなわち、時計回りに流れる。これにより、モータ21の減速時に生じる電力は、抵抗28などで熱として消費される。
 モータ21の減速中は、制御部20でスイッチ27を切り替えるスイッチング周期Tを調整することにより、目的のモータ回転数に減速するまでの過渡状態の時間長を制御することが可能となる。過渡状態の時間長は、制動の大きさと反比例する。制御部20は、モータ21の減速中に、スイッチ25がオフの状態において、スイッチ27のスイッチング動作を制御するスイッチング定数を決定する。スイッチング定数は、スイッチ27のオン時間Tonとオフ時間Toffとをそれぞれ示す2つのパラメータである。図8は、実施の形態1に係る空気調和機100の回生回路17に設けられたスイッチ25および27のオン時間Tonとオフ時間Toffとを示す図である。図8において、横軸は時間を示し、縦軸はスイッチ25およびスイッチ27の電圧を示す。また、実線60は、スイッチ25のオンオフの状態を示し、実線61は、スイッチ27のオンオフの状態を示す。図8に示すように、スイッチング周期Tは、スイッチ27のオン時間Tonとオフ時間Toffとを加算した値である。
 なお、モータ21の減速中の制動の大きさは、スイッチ27のスイッチング周期T(=Ton+Toff)に対するスイッチ27のオン時間Tonの比(=Ton/T)に依存する。当該比が1に近づくほど、モータ21の目標回転数に至るまでに要する時間が短くなる。したがって、スイッチング定数は、スイッチ27のオン時間Tonとオフ時間Toffとを示す2つのパラメータの代わりに、スイッチ27のオン時間Tonとスイッチ27のスイッチング周期Tとの比(=Ton/T)を示す1つのパラメータとしてもよい。
 制御部20は、モータ21の減速中に、凝縮器の凝縮圧力が圧力上限値に近くなるほど、凝縮圧力が過上昇している状態であると判定し、モータ21の減速スピードを遅らせる制御を行う。このとき、制御部20にて、上記のスイッチング定数を変更し、減速中のモータ21のモータ回転数が目標回転数に至るまでに要する時間を長くすることで、凝縮器における熱交換量の急激な減少による設計圧力超過を回避する。
 制御部20は、モータ21の減速中に、凝縮器の凝縮圧力が圧力上限値から離れるほど、設計圧力超過に対してマージンが確保できている状態であると判定し、モータ21の減速スピードを速くする制御を行う。このとき、制御部20にて、上記のスイッチング定数を変更し、減速中のモータ21のモータ回転数が目標回転数に至るまでに要する時間を短くすることで、モータ21の回転数の変更の即応性を高め、ユーザの快適性を向上させる。
 このように、制御部20は、モータ21の減速中に、凝縮器の凝縮圧力と圧力上限値とに基づいて、回生回路17に設けられたスイッチ27のオンオフ動作を制御する。凝縮器の凝縮圧力は、例えば、以下のようにして求める。図1に示すように、温度センサ12は、室外熱交換器4および室内熱交換器7に設けられている。冷房時は室外熱交換器4が凝縮器として機能し、暖房時は室内熱交換器7が凝縮器として機能する。制御部20は、冷房時は、室外熱交換器4に取り付けられた温度センサ12から温度を取得する。また、制御部20は、暖房時は、室内熱交換器7に取り付けられた温度センサ12から温度を取得する。制御部20は、温度センサ12によって検出された冷媒温度を冷媒圧力に変換する。制御部20は、こうして得た冷媒圧力を、凝縮圧力として用いる。なお、冷媒温度を冷媒圧力に変換する方法は、制御部20が、予め設定された演算式を用いて冷媒温度から冷媒圧力を演算する。あるいは、制御部20が、冷媒温度ごとの冷媒圧力の値を定義したデータテーブルを予め記憶部20d(図9参照)に記憶しておき、当該データテーブルを用いて、冷媒温度から冷媒圧力を求めるようにしてもよい。
 制御部20は、空気調和機100の圧力上限値を予め記憶部20d(図9参照)に記憶している。制御部20は、冷媒温度から求めた凝縮圧力と圧力上限値との差を演算し、当該差に基づいて、上述したスイッチング定数の変更を行う。
 また、モータ回転数変更の即応性を重点的に設計する場合など、設計意図によっては、特定の減速スピードにてモータ21の減速過程を検討する場合がある。そこで、モータ21が減速する際、制御部20の演算によるスイッチング定数変更のほかに、制御部20は、人為的にスイッチング定数を設定可能なモードも備える。
 当該モードでは、書き換え可能なデータ形式にて、スイッチ27のオン時間Tonとオフ時間Toffを示す2つのパラメータを、ユーザが外部から制御部20に入力することで、変更可能とする。あるいは、スイッチ27のオン時間Tonとスイッチング周期Tとの比(=Ton/T)を示す1つのパラメータを、ユーザが外部から制御部20に入力することで、変更可能とする。この場合、空気調和機100の圧力が設計圧力を超過しやすい過負荷環境下における実機評価を経て、凝縮圧力の設計圧力超過に対するマージンを考慮し、スイッチング定数の決定を行う。こうすることで、空気調和機100の圧力が設計圧力を超過することを確実に抑制できる。
 図9は、実施の形態1に係る空気調和機100の制御部20の構成を示すブロック図である。図9に示すように、制御部20は、温度取得部20aと、演算部20bと、スイッチング制御部20cと、記憶部20dとを有している。
 温度取得部20aは、冷房時は、室外熱交換器4に取り付けられた温度センサ12から冷媒温度を取得し、暖房時は、室内熱交換器7に取り付けられた温度センサ12から温度を取得する。このように、温度取得部20aは、凝縮器として機能している室外熱交換器4または室内熱交換器7に取り付けられた温度センサ12から冷媒温度を取得する。
 演算部20bは、温度取得部20aが取得した冷媒温度を冷媒圧力に変換することで、凝縮器の凝縮圧力を求める。また、演算部20bは、求めた凝縮圧力と、記憶部20dに記憶された圧力上限値との差を求める。また、演算部20bは、当該差に基づいて、回生回路17のスイッチ27のオンオフ動作を制御するためのスイッチング定数を求める。スイッチング定数は、スイッチ27のオン時間Tonとオフ時間Toffを示す2つのパラメータ、または、スイッチ27のオン時間Tonとスイッチング周期Tとの比(=Ton/T)を示す1つのパラメータである。
 このとき、演算部20bは、凝縮器の凝縮圧力が圧力上限値以下で、且つ、凝縮器の凝縮圧力が圧力上限値に近づくほど、モータ21の減速スピードが遅くなるように、スイッチング定数を決定する。すなわち、スイッチ27のオン時間Tonを小さくし、オフ時間Toffを大きくする。また、演算部20bは、凝縮器の凝縮圧力が圧力上限値以下で、且つ、凝縮器の凝縮圧力が圧力上限値から離れるほど、モータ21の減速スピードが速くなるように、スイッチング定数を決定する。すなわち、スイッチ27のオン時間Tonを大きくし、オフ時間Toffを小さくする。なお、演算部20bは、凝縮器の凝縮圧力が圧力上限値を超えている場合には、モータ21の減速スピードが遅くなるように、スイッチング定数を決定する。
 スイッチング制御部20cは、回生回路17に設けられたスイッチ25および27のオンオフ動作の制御を行う。また、スイッチング制御部20cは、図2に示したコンバータ回路15に設けられたスイッチ15aおよび15bのオンオフ動作も制御する。さらに、スイッチング制御部20cは、インバータ回路18a、18bおよび18cに設けられた各トランジスタのオンオフ動作の制御も行う。
 記憶部20dは、圧力上限値を予め記憶している。さらに、記憶部20dは、温度取得部20aが取得した冷媒温度のデータを記憶する。また、記憶部20dは、演算部20bの演算結果などの各種データを記憶する。また、記憶部20dは、必要に応じて、冷媒温度ごとの冷媒圧力の値を定義した上記データテーブルを記憶する。
 ここで、制御部20のハードウェア構成について説明する。制御部20における温度取得部20a、演算部20bおよびスイッチング制御部20cの各機能は、処理回路により実現される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、メモリに記憶されるプログラムを実行する。記憶部20dはメモリから構成される。メモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。
 図10は、実施の形態1に係る空気調和機100の制御部20の処理の流れを示すフローチャートである。図10のフローの処理は、モータ21の減速時に行われる。
 図10に示すように、ステップS1で、制御部20は、回生回路17のスイッチ25をオフにする。これにより、交流電源13からモータ21への電力の供給が遮断される。
 次に、ステップS2で、制御部20の温度取得部20aは、温度センサ12から冷媒温度を取得する。このとき、温度取得部20aは、凝縮器として機能している室外熱交換器4または室内熱交換器7に取り付けられた温度センサ12から冷媒温度を取得する。
 次に、ステップS3で、制御部20の演算部20bは、ステップS2で取得した冷媒温度を冷媒圧力に変換することで、凝縮器の凝縮圧力を求める。
 次に、ステップS4で、制御部20の演算部20bは、ステップS3で求めた凝縮圧力と、予め設定された圧力上限値との差を求める。
 次に、ステップS5で、制御部20の演算部20bは、ステップS4で求めた差に基づいて、回生回路17のスイッチ27のオンオフ動作を制御するための上記のスイッチング定数を求める。
 次に、ステップS6で、制御部20のスイッチング制御部20cは、ステップS5で求めたスイッチング定数に基づいて、回生回路17のスイッチ27のオンオフ動作を制御する。その後、ステップS2の処理に戻る。
 以上のように、実施の形態1においては、空気調和機100のモータ21に、スイッチング制御可能な回生制動を適用する。制御部20は、モータ21の減速時に、凝縮器の凝縮圧力と凝縮器の圧力上限値とに基づいて、回生回路17を制御する。これにより、空気調和機100の設計圧力以下の圧力を保持しながら、モータ21の減速が可能となる。また、回生制動によって得られる電力を空気調和機100の待機電力またはモータ21の再駆動時の電力として利用することで、消費電力を抑えた空気調和機100の稼働を実現するという効果を有する。
 実施の形態1においては、モータ21の減速中の凝縮器の圧力の過上昇をアクチュエータ制御のみで回避する。そのため、必要以上に、空気調和機100の冷媒回路部品の耐圧性を高める必要がなく、コスト面でのメリットも期待できる。具体的には、冷媒配管30を構成する銅配管を厚くする、あるいは、材料変更による耐圧向上を図るなどの、耐圧向上対策が必要ない。そのため、耐圧向上対策にかかる費用がかからず、空気調和機100のコストアップを抑制することができる。
 また、実施の形態1では、モータ21の減速時のスイッチング定数は変更可能であり、制御部20での演算またはユーザの入力により設定可能である。実施の形態1においては、制御部20は、冷媒温度から求めた凝縮圧力と圧力上限値との差を演算し、当該差に基づいて、スイッチング定数の変更を行う。そのため、凝縮圧力が圧力上限値を超えることはなく、その結果、空気調和機100の圧力が設計圧力を超えることはない。また、ユーザがスイッチング定数を入力する場合は、空気調和機100の圧力が設計圧力を超過しやすい過負荷環境下における実機評価に基づいて決定したスイッチング定数を用いる。そのため、凝縮圧力が圧力上限値を超えることはなく、その結果、空気調和機100の圧力が設計圧力を超えることはない。
 また、実施の形態1では、モータ21の減速時は、交流電源13からモータ21への電力供給を遮断する。モータ21の減速時の電力消費がないため、さらに、省エネルギー効果が得られる。また、回生回路17の蓄電器17aに蓄電した電力を、空気調和機100の待機電力またはモータ21の再駆動時の電力として利用する。これにより、消費電力を抑えた高効率かつ信頼性の高い空気調和機100を得ることができる。
 ユーザの快適性が重要視される空気調和機においては、ユーザがリモコンで設定可能な風速は4速または5速などの多段階に設計されることが多い。このように、モータの最大回転数と最小回転数との差が大きい設計をすることで、モータが最大回転数から最小回転数に減速したときに、空気調和機の圧力が設計圧力を超過してしまうことが一層懸念される。しかしながら、実施の形態1に係る空気調和機100においては、上述したように、空気調和機100のモータ21にスイッチング制御可能な回生制動を適用する。これにより、実施の形態1では、このような場合においても、空気調和機100の設計圧力以下の圧力を保持しながら、モータ21の減速が可能である。
 また、現在、ほとんどのメーカが採用している冷媒のR32は、従来用いられてきた冷媒のR22(クロロジフルオロメタン CHClF)などのハイドロクロロフルオロカーボンと比較して、高い圧力値を示す。このため、空気調和機の圧力が設計圧力を超過することにより引き起こされる機器不具合への対策は、より慎重に検討する必要がある。しかしながら、実施の形態1に係る空気調和機100においては、冷媒としてR32を使用した場合においても、空気調和機100の設計圧力以下の圧力を保持しながら、モータ21の減速が可能である。
 1 室外機、2 室内機、3 圧縮機、4 室外熱交換器、5 減圧装置、6 四方弁、7 室内熱交換器、8 室外送風機モータ、9 室外ファン、10 室内送風機モータ、11 室内ファン、12 温度センサ、13 交流電源、14 ノイズフィルタ回路、15 コンバータ回路、15a スイッチ、15b スイッチ、16 リアクタ、17 回生回路、17a 蓄電器、17b ダイオード、17c スイッチング素子、17d ダイオード、17e スイッチング素子、18 インバータ回路、18a インバータ回路、18b インバータ回路、18c インバータ回路、19 圧縮機モータ、20 制御部、20a 温度取得部、20b 演算部、20c スイッチング制御部、20d 記憶部、21 モータ、22 キャパシタ、23 抵抗、24 ダイオード、25 スイッチ、26 ダイオード、27 スイッチ、28 抵抗、29 インダクタ、30 冷媒配管、40 モータ制御回路、41 正側母線、41a 正側母線、41b 正側母線、41c 正側母線、42 負側母線、42a 負側母線、42b 負側母線、42c 負側母線、43 接続点、44 接続点、45 接続点、46 接続点、47 接続点、48 接続点、50 等価回路、50A 回路、60 実線、61 実線、100 空気調和機。

Claims (10)

  1.  圧縮機、凝縮器、蒸発器、および、減圧装置を有する冷凍サイクルと、
     前記凝縮器および前記蒸発器に対して送風を行う送風機と、
     前記圧縮機または前記送風機を駆動するモータと、
     前記モータを駆動するインバータ回路と、
     電源と前記インバータ回路との間に接続され、前記モータの回生制動を行うスイッチング素子を備えた回生回路と、
     前記モータの減速中に、前記凝縮器の凝縮圧力と前記凝縮器の圧力上限値とに基づいて、前記回生回路に設けられた前記スイッチング素子のオンオフ動作を制御する制御部と
     を備えた、空気調和機。
  2.  前記凝縮器に設けられ、前記凝縮器の内部を流れる冷媒の温度を検出する温度センサを備え、
     前記制御部は、前記温度センサが検出した前記冷媒の前記温度を前記冷媒の圧力に変換することで、前記凝縮圧力を求める、
     請求項1に記載の空気調和機。
  3.  前記回生回路は、前記制御部の制御により、前記モータの減速時に、前記電源から前記モータへの電力供給を遮断する、
     請求項1または2に記載の空気調和機。
  4.  前記回生回路は、前記回生制動で得られた電力を蓄積する蓄電器を有している、
     請求項1~3のいずれか1項に記載の空気調和機。
  5.  前記蓄電器に蓄積された前記電力は、前記制御部の制御により、待機電力または前記モータの再駆動時の電力として使用される、
     請求項4に記載の空気調和機。
  6.  前記制御部は、
     前記凝縮器の前記凝縮圧力と前記圧力上限値とに基づいてスイッチング定数を決定し、
     前記スイッチング定数に基づいて、前記スイッチング素子のオンオフ動作を制御する、
     請求項1~5のいずれか1項に記載の空気調和機。
  7.  前記制御部は、
     外部から入力されるスイッチング定数に基づいて、前記スイッチング素子のオンオフ動作を制御する、
     請求項1~5のいずれか1項に記載の空気調和機。
  8.  前記スイッチング定数は、前記スイッチング素子のオン時間とオフ時間とを示す2つのパラメータである、
     請求項6または7に記載の空気調和機。
  9.  前記スイッチング定数は、前記スイッチング素子のオン時間とスイッチング周期との比を示す1つのパラメータである、
     請求項6または7に記載の空気調和機。
  10.  前記制御部は、
     前記凝縮器の前記凝縮圧力が前記圧力上限値に近づくほど、前記モータの減速スピードを遅くし、
     前記凝縮器の前記凝縮圧力が前記圧力上限値から離れるほど、前記モータの前記減速スピードを速くする、
     請求項1~9のいずれか1項に記載の空気調和機。
PCT/JP2020/014506 2020-03-30 2020-03-30 空気調和機 WO2021199135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/014506 WO2021199135A1 (ja) 2020-03-30 2020-03-30 空気調和機
JP2022512883A JP7241968B2 (ja) 2020-03-30 2020-03-30 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014506 WO2021199135A1 (ja) 2020-03-30 2020-03-30 空気調和機

Publications (1)

Publication Number Publication Date
WO2021199135A1 true WO2021199135A1 (ja) 2021-10-07

Family

ID=77927985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014506 WO2021199135A1 (ja) 2020-03-30 2020-03-30 空気調和機

Country Status (2)

Country Link
JP (1) JP7241968B2 (ja)
WO (1) WO2021199135A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055485A (ja) * 1998-08-07 2000-02-25 Sharp Corp 空気調和機
WO2007049506A1 (ja) * 2005-10-26 2007-05-03 Matsushita Electric Industrial Co., Ltd. 膨張機を用いたヒートポンプ応用機器
JP2011220640A (ja) * 2010-04-13 2011-11-04 Ihi Corp ターボ冷凍機
JP2014018070A (ja) * 2007-08-02 2014-01-30 Mitsubishi Electric Corp モータ駆動制御装置並びに空気調和機、換気扇及びヒートポンプタイプの給湯機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055485A (ja) * 1998-08-07 2000-02-25 Sharp Corp 空気調和機
WO2007049506A1 (ja) * 2005-10-26 2007-05-03 Matsushita Electric Industrial Co., Ltd. 膨張機を用いたヒートポンプ応用機器
JP2014018070A (ja) * 2007-08-02 2014-01-30 Mitsubishi Electric Corp モータ駆動制御装置並びに空気調和機、換気扇及びヒートポンプタイプの給湯機
JP2011220640A (ja) * 2010-04-13 2011-11-04 Ihi Corp ターボ冷凍機

Also Published As

Publication number Publication date
JP7241968B2 (ja) 2023-03-17
JPWO2021199135A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US9543884B2 (en) Motor control device of air conditioner using distributed power supply
US8164292B2 (en) Motor controller of air conditioner
EP2779406B1 (en) Power converter and air conditioner having the same
CN103326664B (zh) 电动机控制装置及利用其的电动机驱动装置、压缩机、冷冻装置、空气调节器、以及电动机控制方法
KR20190040296A (ko) 구동 장치, 공기 조화기 및 전동기의 구동 방법
JP2007064542A (ja) 冷凍装置及びそれに用いられるインバータ装置
JP6689464B2 (ja) 駆動装置、圧縮機、及び空気調和機、並びに永久磁石埋込型電動機の駆動方法
JP4164554B2 (ja) 冷凍装置及びそれに用いられるインバータ装置
JP5063570B2 (ja) ファン駆動装置及びこれを搭載した空気調和機
JP5125695B2 (ja) 空調システム
WO2021199135A1 (ja) 空気調和機
WO2020008620A1 (ja) 冷凍サイクル装置および空気調和装置
JP2007166782A (ja) 冷凍装置及びそれに用いられるインバータ装置
JP2006250449A (ja) 空気調和機
JP4859483B2 (ja) 空気調和機
JP6775548B2 (ja) モータ制御装置、および、空気調和機
JP2001224175A (ja) 電源装置
JP3829212B2 (ja) インバータ装置及び冷凍装置
JP4905293B2 (ja) エンジン駆動式空気調和装置
JP7153697B2 (ja) モータ制御装置、および、空気調和機
KR100395945B1 (ko) 인버터 공기조화기의 캐리어주파수제어방법
WO2022185374A1 (ja) 交流直流変換装置、電動機駆動装置及び冷凍サイクル機器
JP2013194969A (ja) 空気調和装置
KR102063633B1 (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
US12025328B2 (en) Outdoor unit of air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928571

Country of ref document: EP

Kind code of ref document: A1