WO2021197293A1 - 光学成像装置 - Google Patents

光学成像装置 Download PDF

Info

Publication number
WO2021197293A1
WO2021197293A1 PCT/CN2021/083800 CN2021083800W WO2021197293A1 WO 2021197293 A1 WO2021197293 A1 WO 2021197293A1 CN 2021083800 W CN2021083800 W CN 2021083800W WO 2021197293 A1 WO2021197293 A1 WO 2021197293A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
component
optical
assembly
optical element
Prior art date
Application number
PCT/CN2021/083800
Other languages
English (en)
French (fr)
Inventor
肖家胜
肖冰
Original Assignee
优奈柯恩(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优奈柯恩(北京)科技有限公司 filed Critical 优奈柯恩(北京)科技有限公司
Priority to EP21780738.7A priority Critical patent/EP4120002A4/en
Priority to US17/995,088 priority patent/US20230176392A1/en
Publication of WO2021197293A1 publication Critical patent/WO2021197293A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance

Definitions

  • the present disclosure relates to the technical field of optical engineering, and in particular, to an optical imaging device.
  • AR Augmented Reality
  • AR is a technology that ingeniously integrates virtual information with the real world.
  • AR has been widely used in many fields such as medical care, industry, education, and entertainment. It combines computer-generated text, images, and three-dimensional models. After simulating virtual information such as, music, video, etc., it is superimposed into the real world, and the two kinds of information complement each other, thus realizing the enhancement of the real world.
  • the device for realizing augmented reality is composed of a number of optical elements, which are assembled in a certain combination to realize the presentation of virtual information and real scenes to the user, thereby playing the role of augmented reality display.
  • the present disclosure provides an optical imaging device, including a first optical element, the first optical element includes an image projection assembly and a first positioning assembly integrally formed with the image projection assembly; a second optical element, the second optical element
  • the element includes a light splitting assembly and a second positioning assembly integrally formed with the light splitting assembly; and a third optical element including a reflective assembly and a third positioning assembly integrally formed with the reflecting assembly; wherein the light splitting assembly is used for Reflect the image light emitted by the image projection component to the reflection component and transmit the image imaging light and the environment imaging light emitted from the reflection component.
  • the reflection component is used to reflect the image imaging light emitted from the beam splitting component and transmit the environment imaging light.
  • the first positioning component The structure of the second positioning component and the third positioning component is arranged to make the image projection component, the light splitting component and the reflective component as desired when the first optical element, the second optical element and the third optical element are assembled into an optical imaging device
  • the optical accuracy index requires the realization of optical alignment.
  • Each element in the device contains a positioning component, and when each component is assembled based on its own positioning component, it is assembled directly without resorting to other components, which reduces the difficulty of installing optical components and simplifies the installation process of the optical system .
  • the positioning component in each component is integrated with other components, so that the assembly error between the components is further reduced, and the installation accuracy of the optical system is further improved.
  • an optical imaging device including: a first optical element, the first optical element including an image projection component and a first positioning component integrally formed with the image projection component; Element, the second optical element includes a light splitting assembly and a second positioning assembly integrally formed with the light splitting assembly; and a third optical element including a reflective assembly and a second positioning assembly integrally formed with the reflective assembly Three positioning components; wherein the light splitting component is used to reflect the image light emitted by the image projection component to the reflection component and to transmit the image imaging light and the environment imaging light emitted from the reflection component, and the reflection component is used
  • the structures of the first positioning component, the second positioning component, and the third positioning component are configured to When the element, the second optical element, and the third optical element are assembled into an optical imaging device, the image projection assembly, the spectroscopic assembly, and the reflection assembly are made to achieve optical alignment according to the desired optical accuracy index requirements.
  • FIG. 1 shows a schematic diagram of an example of using a mounting bracket to install an optical element in an augmented reality device in the prior art.
  • FIG. 2 shows a schematic diagram of an example of the optical imaging device of the embodiment of the present disclosure.
  • FIG. 3 shows a schematic diagram of an example of the first optical element of the embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of an example of the second optical element of the embodiment of the present disclosure.
  • FIG. 5 shows a schematic diagram of an example of the third optical element of the embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of an example of the optical imaging device of the present disclosure.
  • FIG. 7 shows a schematic diagram of another example of the optical imaging device of the present disclosure.
  • FIG. 8 shows a schematic diagram of another example of the optical imaging device of the present disclosure.
  • FIG. 9 shows a schematic diagram of an example of the positioning structure included in each positioning component in the optical imaging device of the embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes screw holes.
  • FIG. 11 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes positioning edges.
  • FIG. 12 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes a buckle.
  • FIG. 13 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes a hole and a protrusion.
  • FIG. 14 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes a card slot.
  • FIG. 15 shows a schematic diagram of another example of positioning when the positioning structure of the embodiment of the present disclosure includes a card slot.
  • FIG. 16 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes a card slot and a positioning edge.
  • FIG. 17 shows a schematic diagram of an example in which the optical component of the embodiment of the present disclosure is surrounded by the component frame.
  • FIG. 18 shows a schematic diagram of an example in which the first positioning structure and the second positioning structure of the embodiment of the present disclosure are formed as a single card slot.
  • FIG. 19 shows a schematic diagram of an example in which the first positioning structure and the second positioning structure of the embodiment of the present disclosure are card slots.
  • FIG. 20 shows a schematic diagram of another example in which the first positioning structure and the second positioning structure of the embodiment of the present disclosure are card slots.
  • FIG. 21 shows a schematic diagram of an example in which the first positioning structure and the second positioning structure included in the first optical element of the embodiment of the present disclosure are card holes.
  • the term “including” and its variations mean open terms, meaning “including but not limited to”.
  • the term “based on” means “based at least in part on.”
  • the terms “one embodiment” and “an embodiment” mean “at least one embodiment.”
  • the term “another embodiment” means “at least one other embodiment.”
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other definitions can be included below, whether explicit or implicit. Unless clearly indicated in the context, the definition of a term is consistent throughout the application.
  • connection refers to direct mechanical connection, communication or electrical connection between two components, or indirect mechanical connection, communication or electrical connection through intermediate components.
  • electrically connected refers to the possibility of electrical communication between two components for data/information exchange.
  • the electrical connection may refer to a direct electrical connection between two components, or an indirect electrical connection through an intermediate component.
  • the electrical connection can be implemented in a wired manner or a wireless manner.
  • AR is a technology that ingeniously integrates virtual information with the real world.
  • AR has been widely used in many fields such as medical treatment, industry, education, and entertainment. It combines computer-generated text, images, 3D models, music, video and other virtual information After the simulation is superimposed on the real world, the two kinds of information complement each other, thus realizing the enhancement of the real world.
  • the device for realizing augmented reality is composed of a number of optical elements, which are assembled in a certain combination to realize the presentation of virtual information and real scenes to the user, thereby playing the role of augmented reality.
  • a mounting bracket is used.
  • the mounting bracket has a position for installing each optical element. Install each optical element in the corresponding position on the mounting bracket to complete the installation.
  • a complete augmented reality display device is used.
  • FIG. 1 shows a schematic diagram of an example of using a mounting bracket to install an optical element in an augmented reality device in the prior art.
  • the augmented reality device 100 includes an image source element 110, a beam splitting element 120, and a reflective element 130.
  • the mounting bracket 140 is a molded bracket, and the mounting bracket 140 is equipped with a corresponding optical element at each position.
  • the image source element 110 is installed in the corresponding frame above, the light splitting element 120 is installed in the corresponding frame on the left, and the reflective element 130 is installed in the corresponding frame on the right.
  • the augmented reality device 100 after installation is composed of an image source element 110, a light splitting element 120, a reflecting element 130, and a mounting bracket 140.
  • each optical element needs to be adjusted independently with the installation error of the mounting bracket 140 during installation. This makes the process of assembling the optical element difficult and cumbersome to adjust.
  • the augmented reality effect of the assembled device is weakened.
  • the present disclosure provides an optical imaging device, including a first optical element, the first optical element includes an image projection assembly and a first positioning assembly integrally formed with the image projection assembly; a second optical element, the first optical element
  • the second optical element includes a light splitting assembly and a second positioning assembly integrally formed with the light splitting assembly; and a third optical element including a reflective assembly and a third positioning assembly integrally formed with the reflective assembly; wherein, the light splitting assembly It is used to reflect the image light emitted by the image projection component to the reflective component and to transmit the image imaging light and ambient imaging light emitted from the reflective component.
  • the reflective component is used to reflect the image imaging light emitted from the beam splitting component and transmit the ambient imaging light.
  • the structure of the positioning component, the second positioning component, and the third positioning component are configured to make the image projection component, the light splitting component, and the reflective component when the first optical element, the second optical element, and the third optical element are assembled into an optical imaging device
  • the optical alignment is achieved in accordance with the desired optical accuracy index requirements.
  • Each optical element in the device contains a positioning component.
  • each optical element is assembled based on its own positioning component, it is assembled directly without resorting to other parts.
  • the installation error is the assembling error between each optical element, so that the optical error between each optical element is fixed.
  • the positioning component and other components in each optical element are integrally molded with high precision, so that the assembly error between the various optical elements is further reduced.
  • FIG. 2 shows a schematic diagram of an example of the optical imaging device of the embodiment of the present disclosure.
  • the optical imaging device is a three-dimensional structure and can use a three-dimensional coordinate (such as an xyz coordinate system) as a reference system.
  • the schematic diagram shown in FIG. 2 is a schematic diagram of a viewing angle, and the schematic diagram uses the yz coordinate system as a reference system.
  • the optical imaging device may be head-mounted.
  • the optical imaging device 200 includes a first optical element 210, a second optical element 220, and a third optical element 230.
  • the optical imaging device may also include other optical elements other than the above three elements.
  • the optical imaging device 200 is a device that performs imaging through the cooperation of various optical elements.
  • the optical imaging device 200 may be an augmented reality display device, VR (Virtual Reality, virtual reality technology)
  • the optical imaging device 200 may exist in the form of glasses, helmets, etc.
  • the optical imaging device 200 is AR glasses.
  • the first optical element 210 is used to generate an image and project the generated image.
  • the first optical element 210 may be used to play a video, and emit light for the played screen image through the display screen.
  • the first optical element 210 may include an image projection component 211 and a first positioning component 212.
  • the image projection component 211 is used for image projection.
  • the image projection component 211 may be one of a tablet, a mobile phone, and a display screen.
  • the first positioning component 212 is used to determine the relative position of the first optical element 210 and other optical elements to realize the assembly of the first optical element 210 and the other optical elements according to the expected structure.
  • the position of the first positioning component 212 on the first optical element 210 may be designated.
  • the first positioning components 212 may be distributed on two or three sides of the first optical element 210.
  • the first positioning component 212 may be distributed around the first optical element 210, for example, the first positioning component 212 surrounds the image projection component 211.
  • FIG. 3 shows a schematic diagram of an example of the first optical element 210 of the embodiment of the present disclosure.
  • the schematic diagram shown in Fig. 3 uses the xz coordinate system as the reference system.
  • the box represents the image projection component 211, and the part between the box and the edge of the first optical element 210 includes the first positioning component 212.
  • the image projection component 211 and the first positioning component 212 are integrally formed.
  • the first optical element 210 generates the image projection component 211 and the first positioning component 212 during the production or manufacturing process, and the image projection component 211 and the first positioning component 212 are connected together as an object.
  • the second optical element 220 may include a light splitting assembly 221 and a second positioning assembly 222 that are integrally formed.
  • the spectroscopic component 221 can perform processing such as reflection and transmission on the light reaching the component.
  • the light splitting component 221 may include an optical region capable of processing light, and when light reaches the optical region, the light splitting component 221 may process the light accordingly.
  • the second positioning component 222 is used to determine the relative position of the second optical element 220 and other optical elements so as to realize the assembly of the second optical element 220 and the other optical elements according to the expected structure.
  • the position of the second positioning component 222 on the second optical element 220 may be designated.
  • the second positioning components 222 may be distributed on two or three sides of the second optical element 220.
  • the second positioning components 222 may be distributed around the second optical element 220.
  • FIG. 4 shows a schematic diagram of an example of the second optical element 220 of the embodiment of the present disclosure.
  • the schematic diagram shown in Figure 4 is based on the xy coordinate system as the reference system.
  • the dashed frame represents the light splitting component 221
  • the part between the dashed frame and the edge of the second optical element 220 includes the second positioning component 222.
  • the third optical element 230 may include a reflective component 231 and a third positioning component 232 that are integrally formed.
  • the reflective component 231 can perform processing such as reflection and transmission on the light reaching the component.
  • the reflective component 231 may include an optical region capable of processing light, and when light reaches the optical region, the reflective component 231 can process the light accordingly.
  • the third positioning component 232 is used to determine the relative position of the third optical element 230 and other optical elements so as to realize the assembly of the third optical element 230 and the other optical elements according to the expected structure.
  • the position of the third positioning component 232 on the third optical element 230 may be designated.
  • the third positioning components 232 may be distributed on two sides or three sides of the third optical element 230.
  • the third positioning components 232 may be distributed around the third optical element 230.
  • FIG. 5 shows a schematic diagram of an example of the third optical element 230 of the embodiment of the present disclosure.
  • the schematic diagram shown in Figure 5 is based on the xy coordinate system as the reference system.
  • the dashed frame represents the reflective component 231
  • the part between the dashed frame and the edge of the third optical element 230 includes the third positioning component 232.
  • the image projection component includes an image source and a circular polarizer attached to or close to the image source facing the light splitting component.
  • the light splitting component includes a polarizer and a polarizer attached to the polarizer facing the reflective component.
  • the reflective component On the side of the wave plate, the reflective component includes a semi-reflective and semi-transparent element.
  • the wave plate included in the light splitting component may be a quarter wave plate.
  • FIG. 6 shows a schematic diagram of an example of the optical imaging device of the present disclosure.
  • the image source 601 emits imaging light to the circular polarizer 602, the circular polarizer 602 transmits the imaging light, and the transmitted imaging light is converted into a third polarization state (right-handed circularly polarized light).
  • the imaging light of the third polarization state is projected to the quarter-wave plate 603, and the quarter-wave plate 603 transmits and converts the imaging light of the third polarization state into the first polarization state (the line whose vibration direction is the first direction) Polarized light), the imaging light in the first polarization state is reflected by the polarizer 604 to the quarter-wave plate 603, and the quarter-wave plate 603 in turn converts the imaging light in the first polarization state into the imaging light in the third polarization state.
  • the imaging light in the third polarization state is propagated to the semi-reflective semi-transparent element 605, and the semi-reflective semi-transparent element 605 reflects the imaging light in the third polarization state and converts it into the fourth polarization state (left-handed circular polarization).
  • the imaging light in the fourth polarization state is transmitted through the quarter-wave plate 603 and converted into a second polarization state (linearly polarized light whose vibration direction is the second direction).
  • the imaging light in the second polarization state is transmitted to the position of the human eye through the polarizer 604.
  • the ambient light (shown by the dashed line in the figure) is transmitted from the outside through the transflective element 605 and propagates forward to the quarter wave plate 603.
  • the quarter wave plate 603 transmits the ambient light to the polarizer 604 and passes through the polarization.
  • the sheet 604 is transmitted to the position of the human eye.
  • the image projection component includes an image source and a first polarizer attached to or close to the image source on the side facing the light splitting component, the light splitting component includes a transflective element, and the reflective component includes a second polarizer .
  • FIG. 7 shows a schematic diagram of another example of the optical imaging device of the present disclosure.
  • the image source 701 emits imaging light to the first polarizer 702, and the first polarizer 702 will transmit the imaging light in the first polarization state (the vibration direction is linearly polarized light in the first direction). It transmits to the semi-reflective and semi-transmissive element 703, and the semi-reflective and semi-transparent element 703 reflects the imaging light to the second polarizer 704.
  • the second polarizer 704 can reflect the light of the first polarization state. Based on this, the second polarizer 704 reflects the imaging light of the first polarization state to the transflective element 703, and then transmits it to the person through the transflective element 703. Eye position.
  • the ambient light (shown by the dotted line in the figure) with the second polarization state (the linearly polarized light in the second direction of vibration) is transmitted from the outside through the second polarizer 704 and propagates forward to the semi-reflective element 703, and then passes through the semi-transparent element 703.
  • the transflective element 703 transmits to the position of the human eye.
  • the ambient light having the first polarization state will be reflected by the second polarizer 704.
  • the image projection component includes an image source
  • the light splitting component includes a polarizer
  • the reflective component includes a semi-reflective and semi-transparent element and a wave plate attached to or close to the semi-reflective and semi-transparent element facing the light splitting component.
  • FIG. 8 shows a schematic diagram of another example of the optical imaging device of the present disclosure.
  • the image source 801 emits imaging light to the polarizer 802, and the polarizer 802 reflects the imaging light of the first polarization state (the linearly polarized light with the first direction of vibration) to the wave plate 803
  • the wave plate 803 can convert the first polarization state into circularly polarized light, and the converted circularly polarized light is propagated to the semi-reflective and semi-transparent element 804.
  • the semi-reflective and semi-transparent element 804 reflects the circularly polarized light to the wave plate 803, and the wave plate 803 converts the circularly polarized light into the second polarization state (the linearly polarized light with the vibration direction in the second direction), and the converted second polarization state
  • the imaging light of is propagated to the polarizer 802, and is transmitted to the position of the human eye through the polarizer 802.
  • the ambient light (shown by the dotted line in the figure) is transmitted from the outside through the semi-reflective and semi-transparent element 804 and travels forward to the wave plate 803, and then is transmitted through the wave plate 803 and the polarizer 802 to the position of the human eye in turn.
  • the first polarization state and the second polarization state indicate that the vibration directions of the light are different.
  • the vibration direction of the first polarization state and the vibration direction of the second polarization state are perpendicular to each other.
  • the light with the first polarization state may be polarized light with the polarization state in the P direction
  • the light with the second polarization state may be polarized light with the polarization state in the S direction.
  • the first polarization state can also be polarized light with a certain angle between the polarization state and the P direction
  • the second polarization state can also be It is polarized light whose polarization state is at a certain angle to the S direction.
  • the third polarization state and the fourth polarization state may be circularly polarized light or elliptically polarized light with opposite rotation directions.
  • the positioning component and the corresponding optical component are formed by an injection integral molding process.
  • the relative position between the positioning component and the optical component formed by the integrated injection molding process meets the requirements of the optical precision index.
  • the positioning component included in each optical element corresponds to the optical component.
  • the image projection component 211 included in the first optical element 210 corresponds to the first positioning component 212
  • the image projection component 211 and the first positioning component 212 is formed by an integral injection molding process.
  • the integrated injection molding process is used to make the positioning component and the corresponding optical component become one body, which avoids the installation error between the positioning component and the optical component during the assembly process.
  • the structures of the first positioning component 212, the second positioning component 222, and the third positioning component 232 are arranged to be used for assembling the first optical element 210, the second optical element 220, and the third optical element 230
  • the image projection component 211, the beam splitter component 221 and the reflection component 231 are made to achieve optical alignment according to the desired optical precision index requirements.
  • the positional relationship among the first optical element 210, the second optical element 220, and the third optical element 230 is definite.
  • the structures of the first positioning component 212, the second positioning component 222, and the third positioning component 232 are connected to each other for installation such that one of the first optical element 210, the second optical element 220, and the third optical element 230 is The positional relationship between is unique.
  • any two of the first positioning component 212, the second positioning component 222, and the third positioning component 232 can be used to determine the first optical element 210, the second optical element 220, and the third optical element 230.
  • the positional relationship between the persons are unique.
  • the optical accuracy index may include at least one of indexes such as assembly tolerance and assembly accuracy.
  • the assembly tolerance is the redundancy of the gap or interference when each component is assembled, and the assembly accuracy is the minimum error achieved by the geometric parameters of the optical imaging device after each component is assembled into an optical imaging device for optical imaging.
  • the image projection component 211 can project the generated image, and the projected light for the generated image is reflected by the spectroscopic component 221 to the reflection component 231, and then the light passes through the reflection component 231 It is reflected to the light splitting component 221, and then transmitted to the pupil 240 by the light splitting component 221 so that the generated image can be seen.
  • the propagation path of the image light projected by the image projection component 211 is shown as a solid line in FIG. 2.
  • the light of the real scene may also pass through the third optical element 230 and the second optical element 220 to reach the pupil 240, so that the real scene can also be seen.
  • the propagation path of light in a real scene is shown by the dashed line. It first transmits through the reflective component 231 to the light splitting component 221, and then transmits through the light splitting component 221 to the pupil 240.
  • each of the first positioning component 212, the second positioning component 222, and the third positioning component 232 includes a first positioning structure and a second positioning structure.
  • the first positioning structure in each positioning assembly is used for positioning assembly with one of the other two positioning assemblies
  • the second positioning structure is used for positioning assembly with the other two positioning assemblies.
  • a positioning assembly is used for positioning and assembling.
  • FIG. 9 shows a schematic diagram of an example of a positioning structure included in each positioning component in the optical imaging device 900 of an embodiment of the present disclosure.
  • the first positioning structure is 212-1
  • the second positioning structure is 212-2
  • the third positioning assembly 232 included in the third optical element 230 the first positioning structure is 232-1, and the second positioning structure is 232- 2.
  • the first positioning structure 212-1 is used for positioning and assembly with the second positioning assembly 222 in the second optical element 220
  • the second positioning structure 212-2 is used for positioning and assembling with the third optical element 230
  • the third positioning component 232 in the assembly is positioned and assembled.
  • each positioning structure included in each positioning component has a one-to-one correspondence with positioning structures included in other positioning components. This can ensure that the structural relationship among the first optical element 210, the second optical element 220, and the third optical element 230 is determined when assembling based on the first positioning component 212, the second positioning component 222, and the third positioning component 232. In turn, the certainty and convenience of assembling the optical imaging device are improved.
  • the first positioning structure in the first optical element 210 is in a one-to-one correspondence with the first positioning structure in the second optical element 220 is 222-1.
  • the second positioning structure 212-2 has a one-to-one correspondence with the first positioning structure 232-1 in the third optical element 230, and the second positioning structure in the second optical element 220 is 222-2 and the third optical element.
  • the second positioning structure in 230 is 232-2 in a one-to-one correspondence.
  • one of the first positioning component 212, the second positioning component 222, and the third positioning component 232 is used as a reference positioning component, and the reference positioning component includes a first positioning structure and a second positioning structure,
  • the other two positioning components include a positioning structure.
  • first positioning structure and the second positioning structure of the reference positioning assembly are respectively used for positioning and assembling with one of the other two positioning assemblies.
  • the first positioning structure and the second positioning structure may include at least one of a slot, a hole, a protrusion, a screw hole, a buckle, and a positioning edge.
  • the first positioning structure and the second positioning structure have the same structure or different structures.
  • both the first positioning structure and the second positioning structure included in the first optical element 210 may be card slots.
  • the first positioning structure included in the second optical element 220 is a card slot, and the second positioning structure may be a positioning edge.
  • each positioning structure in each positioning assembly has a structure that matches a corresponding positioning structure in the positioning assembly for positioning assembly.
  • the screw holes and the screw holes may have matching structures, two or more matching screw holes are aligned and connected, and corresponding screws are used to fix the aligned screw holes.
  • FIG. 10 shows a schematic diagram of an example of positioning when the positioning structure 1000 of the embodiment of the present disclosure includes screw holes.
  • the screw hole 1010 and the screw hole 1020 are two matched screw holes, and the hole diameters of the screw hole 1010 and the screw hole 1020 are the same, and the threads are the same.
  • the screw 1030 is a screw that matches the screw hole 1010 and the screw hole 1020, that is, the screw 1030 can be screwed into the screw hole 1010 and the screw hole 1020.
  • the two corresponding positioning structures include the screw hole 1010 and the screw hole 1020
  • the screw hole 1010 and the screw hole 1020 can be aligned and placed, and then the screw 1030 is screwed into the screw hole 1010 and the screw hole 1020 to make the screw
  • the hole 1010 and the screw hole 1020 are fixed, so as to achieve the positioning purpose of the two positioning structures.
  • the surfaces where the positioning edge 1110 and the positioning edge 1120 contact each other can be used to achieve the optical accuracy index.
  • the positioning edge and the positioning edge may be a matching structure, and two matching positioning edges or more matching positioning edges are aligned and connected to achieve structural positioning. After positioning, glue, adhesive, etc. can be used to fix the two positioning edge structures.
  • FIG. 11 shows a schematic diagram of an example of positioning when the positioning structure of the embodiment of the present disclosure includes positioning edges.
  • the positioning edge 1110 and the positioning edge 1120 are two matching positioning edges. During positioning and assembly, the positioning edge 1110 and the positioning edge 1120 are aligned and connected to achieve the positioning purpose of the corresponding two positioning structures.
  • the buckle and the buckle may have matching structures, and two matching buckles may be connected in a buckle manner.
  • the two buckles can not only be positioned, but can also be fixed.
  • FIG. 12 shows a schematic diagram of an example of positioning when the positioning structure 1200 of the embodiment of the present disclosure includes a buckle.
  • the buckle 1210 and the buckle 1220 are two matching buckles.
  • the buckle 1210 can be called a male buckle
  • the buckle 1220 can be called a female buckle.
  • the male buckle and the female buckle can buckle each other. So that the buckle 1210 and the buckle 1220 are tightly combined.
  • the hole and the protrusion may be a matching structure, the protrusion may be inserted into the matching hole, and the protrusion and the hole are tightly connected.
  • the shape-matched card holes and protrusions can be designed into structures of various shapes. For example, if the protrusions are diamond-shaped structures, then the matching card holes are also diamond-shaped structures.
  • FIG. 13 shows a schematic diagram of an example of positioning when the positioning structure 1300 of the embodiment of the present disclosure includes a hole and a protrusion.
  • the hole 1320 and the protrusion 1310 are matched, and the protrusion 1310 is inserted into the hole 1320 during positioning and assembly to make the protrusion 1310 and the hole 1320 tightly connected, thereby realizing positioning.
  • the card slot and the card slot can have matching structures, and the matching card slot and the card slot can be embedded and connected to each other to achieve structural positioning.
  • FIG. 14 shows a schematic diagram of an example of positioning when the positioning structure 1400 of the embodiment of the present disclosure includes a card slot.
  • the card slot 1410 and the card slot 1420 match, each card slot includes a convex structure part and a concave structure part, the convex structure part of the card slot 1410 and the concave structure part of the card slot 1420 Matching, the concave structure part of the card slot 1410 matches the convex structure part of the card slot 1420, and the card slot 1410 and the card slot 1420 are correspondingly connected during positioning and assembly to achieve the positioning purpose.
  • the two matching slots include a slot with a convex structure and a slot with a concave structure.
  • the angle of the outer corner formed by the slot with the concave structure is formed by the slot with the convex structure.
  • FIG. 15 shows a schematic diagram of another example of positioning when the positioning structure 1500 of the embodiment of the present disclosure includes a card slot.
  • the external angle formed by the groove 1510 with a concave structure includes angle 1 and a right angle
  • the internal angle formed by the groove 1520 with a convex structure includes angle 2 and a right angle.
  • the right angle matches the right angle as the internal angle, and the angle 1 and the angle 2 are the same, that is, they are matched.
  • the card slot and the positioning edge may have a matching structure, and the positioning edge may be embedded in the matching card slot and connected to achieve structural positioning.
  • the angle formed by the positioning edge matches the angle formed by the card slot, so that the positioning edge and the card slot are closely connected. The angle formed by the positioning edge and the angle formed by the card slot can be specified.
  • FIG. 16 shows a schematic diagram of an example of positioning when the positioning structure 1600 of an embodiment of the present disclosure includes a card slot and a positioning edge.
  • the positioning edge 1610 and the card slot 1620 match, the angle formed by the positioning edge 1610 is a right angle, and the angle formed by the card slot 1620 is also a right angle.
  • the right angles match each other so that the positioning edge 1610 can be inserted into the card slot 1620.
  • the positioning edge 1610 and the card slot 1620 are correspondingly connected during positioning and assembly to achieve the positioning purpose.
  • the corresponding positioning structures are matched with each other, and different corresponding positioning structures can adopt the same type of structure.
  • all positioning structures in the optical imaging device adopt a card slot structure.
  • the corresponding positioning structure in the optical imaging device may include a card hole and a protrusion, a screw hole and a screw hole, and a card slot and a card slot.
  • the corresponding positioning structures 212-1 and 222-1 are positioning structures using snap holes and protrusions
  • the corresponding positioning structures 212-2 and 232-1 are positioning structures using screw holes and screw holes.
  • the corresponding positioning structures 222-2 and 232-2 are positioning structures using a card slot and a card slot.
  • the matching latching hole and protrusion are a right-angled tenon structure.
  • the right-angled tenon structure can be a single-sided shoulder-cut tenon structure, an open open tenon structure, a half open open tenon structure, an open double tenon structure, a dark dovetail structure, an open dovetail tenon structure, and a half open dovetail tenon structure.
  • At least one of the first positioning component 212, the second positioning component 222, and the third positioning component 232 has a component frame.
  • each positioning component is a part of the positioning component, the component frame and other parts of the positioning component are also integrally formed.
  • each positioning component is a component frame, and the component frame and the corresponding optical component are integrally formed.
  • the component frame surrounds the corresponding optical component and the corresponding first positioning structure and second positioning structure are provided on the component frame.
  • FIG. 17 shows a schematic diagram of an example in which the optical component of the embodiment of the present disclosure is surrounded by the component frame.
  • the part between the dashed line and the solid edge of the first optical element 210 is the assembly frame 213, which is a part of the first positioning assembly 212 of the first optical element 210.
  • the component frame 213 surrounds the image projection component 211 in a ring shape, and the corresponding first positioning structure and second positioning structure provided on the component frame 213 may be positioning edges.
  • the first positioning structure and the second positioning structure are card slots
  • the first positioning structure and the second positioning structure are formed as a single card slot.
  • the formed single slot includes a first positioning structure and a second positioning structure, and the first positioning structure and the second positioning structure are integrated and both belong to a part of the single slot.
  • FIG. 18 shows a schematic diagram of an example in which the first positioning structure and the second positioning structure of the embodiment of the present disclosure are formed as a single card slot.
  • the edge of the optical element shown in FIG. 18 is a card slot structure.
  • the card slot surrounds the edge of the entire optical element and surrounds the optical component of the optical element.
  • the card slot belongs to a single card slot.
  • the card slot includes a first positioning structure 1810 and a second positioning structure 1820.
  • the first positioning structure 1810 is located on one side of the card slot
  • the second positioning structure 1820 is located on the other side of the card slot.
  • first positioning structure and the second positioning structure are card slots
  • the first positioning structure and the second positioning structure are two independent card slots.
  • FIG. 19 shows a schematic diagram of an example in which the first positioning structure and the second positioning structure of the embodiment of the present disclosure are card slots.
  • the first positioning structure 1910 and the second positioning structure 1920 are both card slots, and the first positioning structure 1910 and the second positioning structure 1920 are two independent card slots.
  • each positioning structure may include a plurality of independent single card slots.
  • FIG. 20 shows a schematic diagram of another example in which the first positioning structure and the second positioning structure of the embodiment of the present disclosure are card slots.
  • the first positioning structure 2010 includes two single card slots
  • the second positioning structure 2020 includes two single card slots.
  • the first positioning structure or the second positioning structure when the first positioning structure or the second positioning structure is a snap hole, the first positioning structure or the second positioning structure includes at least three snap holes. Among them, the position of each card hole can be designated. In this example, at least three card holes can make the positioning structure more accurate when connected, thereby reducing optical errors and improving the optical accuracy of the optical imaging device.
  • FIG. 21 shows a schematic diagram of an example in which the first positioning structure and the second positioning structure included in the first optical element 210 of the embodiment of the present disclosure are snap holes.
  • the first optical element 210 includes a first positioning structure 2110 and a second positioning structure 2120.
  • the first positioning structure 2110 includes three clamping holes
  • the second positioning structure 2120 also includes three clamping holes.
  • the second optical element 220 and the third optical element 230 may include at least three card holes.
  • the first optical element 210, the second optical element 220, and the third optical element 230 are assembled based on the structure of the first positioning component 212, the second positioning component 222, and the third positioning component 232.
  • an optical imaging device is used for optical imaging
  • one of the first positioning component 212, the second positioning component 222, and the third positioning component 232 may be used as a reference component for assembly.
  • the first positioning component 212 is determined as the reference component; the first positioning structure included in the first positioning component 212 and the first positioning structure included in the second positioning component 222 are connected so that the first optical element 210 is connected to the first positioning component 222.
  • the two optical elements 220 are assembled; the second positioning structure included in the first positioning assembly 212 and the first positioning structure included in the third positioning assembly 232 are connected so that the first optical element 210 and the third optical element 230 are assembled.
  • the second positioning component 222 is determined as a reference component; the first positioning structure included in the second positioning component is connected to the first positioning structure included in the first positioning component 212 so that the second optical element 220 is connected to the first positioning structure.
  • An optical element 210 is assembled; the second positioning structure included in the second positioning assembly 222 is connected to the second positioning structure included in the third positioning assembly 232 so that the second optical element 220 and the third optical element 230 are assembled.
  • the third positioning component 232 is determined as the reference component; the first positioning structure included in the third positioning component is connected to the second positioning structure included in the first positioning component 212 so that the reflective element is connected to the first optical element 210 for assembly; the second positioning structure included in the third positioning assembly 232 and the second positioning structure included in the second positioning assembly 222 are connected so that the third optical element 230 and the second optical element 220 are assembled.
  • the first positioning component at least partially surrounds the image projection component; the second positioning component at least partially surrounds the spectroscopic component; and the third positioning component at least partially surrounds the reflective component.
  • the component frame of the positioning component extends toward the other two positioning components.
  • an optical imaging device includes: a first optical element, the first optical element includes an image projection assembly and a first positioning assembly surrounding the image projection assembly; a second optical element, the second optical element includes a beam splitting assembly and A second positioning component surrounding the light splitting component; and a third optical element, the third optical element includes a reflective component and a third positioning component surrounding the reflective component; wherein the light splitting component is used to reflect the image light emitted by the image projection component to Reflective component and transmit image imaging light and ambient imaging light emitted from the reflective component, the reflective component is used to reflect image imaging light emitted from the light splitting component and transmit ambient imaging light, first positioning component, second positioning component, and third positioning component
  • the structure of is configured to achieve optical alignment of the image projection component, the spectroscopic component, and the reflective component when the first optical element, the second optical element, and the third optical element are assembled into an optical imaging device.
  • the first positioning component and the image projection component are integrally formed; the second positioning component and the spectroscopic component are integrally formed; and the third positioning component and the reflective component are integrally formed.
  • one of the first positioning component, the second positioning component, and the third positioning component as the reference positioning component includes a first positioning structure and a second positioning structure
  • the other two positioning components include a positioning structure;
  • the first positioning structure and the second positioning structure of the reference positioning assembly are respectively used for positioning and assembling with one of the other two positioning assemblies, wherein each positioning structure in each positioning assembly has a positioning assembly The matching structure of the corresponding positioning structure in the positioning component.
  • the reference positioning component extends in the direction of the other two optical elements. For example, extend to be parallel to the plane where the other two optical elements are located.
  • an optical imaging device includes: a first optical element, the first optical element includes an image projection assembly and a first positioning assembly surrounding the image projection assembly; a second optical element, the second optical element includes a beam splitting assembly and A second positioning component surrounding the light splitting component; and a third optical element, the third optical element includes a reflective component and a third positioning component surrounding the reflective component; wherein the light splitting component is used to reflect the image light emitted by the image projection component to the reflective component And transmitting the image imaging light and the environment imaging light emitted from the reflection component, the reflection component is used to reflect the image imaging light emitted from the light splitting component and transmit the environment imaging light, the structure of the first positioning component, the second positioning component and the third positioning component When the first optical element, the second optical element, and the third optical element are assembled into an optical imaging device, it is configured to enable the image projection component, the beam splitter component, and the reflective component to achieve optical alignment according to the desired optical accuracy index requirements; first positioning The component as a reference positioning component includes a first positioning structure and a

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

本公开提供了一种光学成像装置,包括:包括一体形成的图像投射组件和第一定位组件的第一光学元件,包括一体形成的分光组件和第二定位组件的第二光学元件,包括一体形成的反射组件和第三定位组件的第三光学元件;第一定位组件、第二定位组件和第三定位组件的结构使得图像投射组件、分光组件和反射组件按照期望光学精度指标要求实现光学对准。在上述装置中,各个元件基于各自的定位组件进行组装时无需借助于其他部件,这样降低了各个元件之间的安装难度,简化了安装流程同时,每个元件中的定位组件与其他组件是一体的,使得各个元件之间的安装误差进一步减小,进而使得光学系统的安装精度进一步提高。

Description

[根据细则37.2由ISA制定的发明名称] 光学成像装置 技术领域
本公开涉及光学工程技术领域,具体地,涉及一种光学成像装置。
背景技术
AR(Augmented Reality,增强现实)是一种将虚拟信息与真实世界巧妙融合的技术,AR已广泛应用于医疗、工业、教育、娱乐等多个领域,其将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,叠加到真实世界中,两种信息互为补充,从而实现对真实世界的增强。
用于实现增强现实的装置是由若干个光学元件组成的,这些光学元件通过一定的组合方式进行组装以实现将虚拟信息和真实场景呈现给用户,进而起到增强现实显示的作用。
发明内容
鉴于上述,本公开提供了一种光学成像装置,包括第一光学元件,该第一光学元件包括图像投射组件和与图像投射组件一体形成的第一定位组件;第二光学元件,该第二光学元件包括分光组件和与分光组件一体形成的第二定位组件;以及第三光学元件,该第三光学元件包括反射组件和与所述反射组件一体形成的第三定位组件;其中,分光组件用于将图像投射组件发出的图像光线反射到反射组件以及透射从反射组件出射的图像成像光线和环境成像光线,反射组件用于反射从分光组件出射的图像成像光线以及透射环境成像光线,第一定位组件、第二定位组件和第三定位组件的结构被设置为在将第一光学元件、第二光学元件和第三光学元件组装成光学成像装置时,使得图像投射组件、分光组件和反射组件按照期望光学精度指标要求实现光学对准。
该装置中的每个元件都包含有定位组件,各个元件基于各自的定位组件进行组装时是直接接触组装而无需借助于其他部件,这样降低了安装光学元件的难度,简化了光学系统的安装过程。并且,每个元件中的定位组件与其他组件是一体的,使得各个元件之间的组装误差进一步减小,进而使得光学系统的安装精度进一步提高。
根据本公开的一个方面,提供了一种光学成像装置,包括:第一光学元件,所述第一光学元件包括图像投射组件和与所述图像投射组件一体形成的第一定位组件;第二 光学元件,所述第二光学元件包括分光组件和与所述分光组件一体形成的第二定位组件;以及第三光学元件,所述第三光学元件包括反射组件和与所述反射组件一体形成的第三定位组件;其中,所述分光组件用于将所述图像投射组件发出的图像光线反射到所述反射组件以及透射从所述反射组件出射的图像成像光线和环境成像光线,所述反射组件用于反射从所述分光组件出射的图像成像光线以及透射环境成像光线,所述第一定位组件、所述第二定位组件和所述第三定位组件的结构被设置为在将所述第一光学元件、所述第二光学元件和所述第三光学元件组装成光学成像装置时,使得所述图像投射组件、所述分光组件和所述反射组件按照期望光学精度指标要求实现光学对准。
附图说明
通过参照下面的附图,可以实现对于本申请的实施例内容的本质和优点的进一步理解。在附图中,类似组件或特征可以具有相同的附图标记。附图是用来提供对本发明实施例的进一步理解,并且构成本申请的一部分,与下面的具体实施方式一起用于解释本申请的实施例,但并不构成对本申请的实施例的限制。在附图中:
图1示出了现有技术的使用安装支架来安装增强现实装置中的光学元件的一个示例的示意图。
图2示出了本公开的实施例的光学成像装置的一个示例的示意图。
图3示出了本公开的实施例的第一光学元件的一个示例的示意图。
图4示出了本公开的实施例的第二光学元件的一个示例的示意图。
图5示出了本公开的实施例的第三光学元件的一个示例的示意图。
图6示出了本公开的光学成像装置的一个示例的示意图。
图7示出了本公开的光学成像装置的另一个示例的示意图。
图8示出了本公开的光学成像装置的另一个示例的示意图。
图9示出了本公开的实施例的光学成像装置中各个定位组件包括的定位结构的一个示例的示意图。
图10示出了本公开的实施例的定位结构包括螺孔时进行定位的一个示例的示意图。
图11示出了本公开的实施例的定位结构包括定位边缘时进行定位的一个示例的示意图。
图12示出了本公开的实施例的定位结构包括卡扣时进行定位的一个示例的示意图。
图13示出了本公开的实施例的定位结构包括卡孔和凸起时进行定位的一个示例的示意图。
图14示出了本公开的实施例的定位结构包括卡槽时进行定位的一个示例的示意图。
图15示出了本公开的实施例的定位结构包括卡槽时进行定位的另一个示例的示意图。
图16示出了本公开的实施例的定位结构包括卡槽与定位边缘时进行定位的一个示例的示意图。
图17示出了本公开的实施例的光学组件被组件框架包围的一个示例的示意图。
图18示出了本公开的实施例的第一定位结构和第二定位结构被形成为单个卡槽的一个示例的示意图。
图19示出了本公开的实施例的第一定位结构和第二定位结构为卡槽的一个示例的示意图。
图20示出了本公开的实施例的第一定位结构和第二定位结构为卡槽的另一个示例的示意图。
图21示出了本公开的实施例的第一光学元件包括的第一定位结构和第二定位结构为卡孔的一个示例的示意图。
具体实施方式
以下将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对本申请的限制。可以在不脱离本申请的实施例内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示“至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个申请中是一致的。
在本文中,术语“连接”是指两个组件之间直接机械连接、连通或电连接,或者通过中间组件来间接机械连接、连通或电连接。术语“电连接”是指两个组件之间可以进行电通信以进行数据/信息交换。同样,所述电连接可以指两个组件之间直接电连接,或者通过中间组件来间接电连接。所述电连接可以采用有线方式或无线方式来实现。
AR是一种将虚拟信息与真实世界巧妙融合的技术,AR已广泛应用于医疗、工业、 教育、娱乐等多个领域,其将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,叠加到真实世界中,两种信息互为补充,从而实现对真实世界的增强。
用于实现增强现实的装置是由若干个光学元件组成的,这些光学元件通过一定的组合方式进行组装以实现将虚拟信息和真实场景呈现给用户,进而起到增强现实的作用。
目前,在组装增强现实的装置时,是借助于一种安装支架,该安装支架具有用于安装各个光学元件的位置,将各个光学元件安装在该安装支架上的对应位置,即完成安装,成为一个完整的增强现实显示的装置。
由于增强现实显示的装置是由若干个光学元件组合而成的,各个光学元件之间相互精密配合才能达到预期的增强现实的效果,因此在安装过程中各个光学元件之间需满足严格的光学精度要求。目前的安装都是基于安装支架,每个光学元件都是安装在安装支架上而非直接光学元件相互接触安装。图1示出了现有技术的使用安装支架来安装增强现实装置中的光学元件的一个示例的示意图。如图1所示,该增强现实装置100包括图像源元件110、分光元件120以及反射元件130,安装支架140是已成型的支架,该安装支架140每个位置安装对应的光学元件。在安装过程中,图像源元件110安装在上面对应的框中,分光元件120安装在左边对应的框中,反射元件130安装在右边对应的框中。安装完成后的增强现实装置100是由图像源元件110、分光元件120、反射元件130以及安装支架140构成。
然而,每个光学元件在安装支架140上安装时都会存在安装误差,每个光学元件在安装时需要独立调整与安装支架140的安装误差,这样使得光学元件装配的过程难度大和调整繁琐,进而导致所组装而成的装置的增强现实的效果减弱。
为了解决上述问题,本公开提供了一种光学成像装置,包括第一光学元件,该第一光学元件包括图像投射组件和与图像投射组件一体形成的第一定位组件;第二光学元件,该第二光学元件包括分光组件和与分光组件一体形成的第二定位组件;以及第三光学元件,该第三光学元件包括反射组件和与所述反射组件一体形成的第三定位组件;其中,分光组件用于将图像投射组件发出的图像光线反射到反射组件以及透射从反射组件出射的图像成像光线和环境成像光线,反射组件用于反射从分光组件出射的图像成像光线以及透射环境成像光线,第一定位组件、第二定位组件和第三定位组件的结构被设置为在将第一光学元件、第二光学元件和第三光学元件组装成光学成像装置时,使得图像投射组件、分光组件和反射组件按照期望光学精度指标要求实现光学对准。
该装置中的每个光学元件都包含有定位组件,各个光学元件基于各自的定位组件进行组装时是直接接触组装而无需借助于其他部件,此时仅存在各个光学元件之间的安装误差,该安装误差即各个光元件之间的装配误差,这样各个光元件之间的光学误差固 定。同时,每个光学元件中的定位组件与其他组件通过高精密一体成型,使得各个光学元件之间的组装误差进一步减小。
下面将结合附图来详细描述根据本公开的一种光学成像装置。
图2示出了本公开的实施例的光学成像装置的一个示例的示意图。需要说明的是,光学成像装置是立体结构,可以以三维坐标(比如xyz坐标系)作为参考系,图2所示的示意图是一个视角的示意图,该示意图以yz坐标系作为参考系。在一个示例中,光学成像装置可以是头戴式的。
如图2所示,光学成像装置200包括第一光学元件210、第二光学元件220以及第三光学元件230,该光学成像装置还可以包括上述三种元件以外的其他光学元件。
在本公开中,光学成像装置200是通过各个光学元件的配合以进行成像的装置,在本公开的一个示例中,光学成像装置200可以是增强现实显示装置、VR(Virtual Reality,虚拟现实技术)装置等,光学成像装置200可以是眼镜、头盔等形式存在。例如,光学成像装置200是AR眼镜。
在本公开中,第一光学元件210用于生成图像并将所生成的图像进行投射。例如,第一光学元件210可以用于播放视频,并通过显示屏发出针对所播放画面图像的光线。
第一光学元件210可以包括图像投射组件211和第一定位组件212。图像投射组件211用于进行图像投射。例如,图像投射组件211可以是平板、手机以及显示屏等其中的一种。第一定位组件212用于确定第一光学元件210与其他光学元件的相对位置以实现第一光学元件210与其他光学元件按照预期的结构进行组装。
第一定位组件212在第一光学元件210上的位置可以是指定的。在一个示例中,第一定位组件212可以分布在第一光学元件210的两侧或三侧。在另一个示例中,第一定位组件212可以分布在第一光学元件210的四周,例如,第一定位组件212包围图像投射组件211。
以图3为例,图3示出了本公开的实施例的第一光学元件210的一个示例的示意图。图3所示的示意图是以xz坐标系作为参考系。如图3所示,方框表示图像投射组件211,方框与第一光学元件210的边缘之间的部分包括第一定位组件212。
图像投射组件211和第一定位组件212是一体形成的。在一个示例中,第一光学元件210在生产或制造过程中便生成图像投射组件211和第一定位组件212,且图像投射组件211和第一定位组件212作为一个物体连接在一起。
在本公开中,第二光学元件220可以包括一体形成的分光组件221和第二定位组件222。分光组件221可以对到达该组件的光线进行反射、透射等处理。在一个示例中,分光组件221可以包括具备处理光线能力的光学区域,当有光线到达该光学区域时分光 组件221可以对该光线进行相应地处理。
第二定位组件222用于确定第二光学元件220与其他光学元件的相对位置以实现第二光学元件220与其他光学元件按照预期的结构进行组装。第二定位组件222在第二光学元件220上的位置可以是指定的。在一个示例中,第二定位组件222可以分布在第二光学元件220的两侧或三侧。在另一个示例中,第二定位组件222可以分布在第二光学元件220的四周。
以图4为例,图4示出了本公开的实施例的第二光学元件220的一个示例的示意图。图4所示的示意图是以xy坐标系作为参考系。如图4所示,虚线框表示分光组件221,虚线框框与第二光学元件220的边缘之间的部分包括第二定位组件222。
在本公开中,第三光学元件230可以包括一体形成的反射组件231和第三定位组件232。反射组件231可以对到达该组件的光线进行反射、透射等处理。在一个示例中,反射组件231可以包括具备处理光线能力的光学区域,当有光线到达该光学区域时反射组件231可以对该光线进行相应地处理。
第三定位组件232用于确定第三光学元件230与其他光学元件的相对位置以实现第三光学元件230与其他光学元件按照预期的结构进行组装。第三定位组件232在第三光学元件230上的位置可以是指定的。在一个示例中,第三定位组件232可以分布在第三光学元件230的两侧或三侧。在另一个示例中,第三定位组件232可以分布在第三光学元件230的四周。
以图5为例,图5示出了本公开的实施例的第三光学元件230的一个示例的示意图。图5所示的示意图是以xy坐标系作为参考系。如图5所示,虚线框表示反射组件231,虚线框框与第三光学元件230的边缘之间的部分包括第三定位组件232。
在本公开的一个示例中,图像投射组件包括像源以及贴合或靠近该像源的朝向分光组件一侧的圆偏光片,分光组件包括偏振片和贴合在偏振片朝向所述反射组件一侧的波片,反射组件包括半反半透元件。分光组件所包括的波片可以是1/4波片。
图6示出了本公开的光学成像装置的一个示例的示意图。如图6所示,光学成像装置600中,像源601发出成像光线至圆偏光片602,圆偏光片602透射该成像光线,透射出的成像光线被转换为第三偏振态(右旋圆偏光),第三偏振态的成像光线被投射至1/4波片603,1/4波片603将第三偏振态的成像光线透射并转换成第一偏振态(振动方向为第一方向的线偏光),该第一偏振态的成像光线被偏振片604反射至1/4波片603,1/4波片603又将第一偏振态的成像光线转换成第三偏振态的成像光线,该第三偏振态的成像光线被传播至半反半透元件605,半反半透元件605将第三偏振态的成像光线进行反射并转换成为第四偏振态(左旋圆偏光)。该第四偏振态的成像光线经由1/4波片 603透射并转换成为第二偏振态(振动方向为第二方向的线偏光)。第二偏振态的成像光线经由偏振片604透射至人眼位置。
环境光线(图中虚线所示)从外界经由半反半透元件605透射并向前传播至1/4波片603,1/4波片603将该环境光线透射至偏振片604,并经由偏振片604透射至人眼位置。
在本公开的一个示例中,图像投射组件包括像源以及贴合或靠近该像源的朝向分光组件一侧的第一偏振片,分光组件包括半反半透元件,反射组件包括第二偏振片。
图7示出了本公开的光学成像装置的另一个示例的示意图。如图7所示,光学成像装置700中,像源701发出成像光线至第一偏振片702,第一偏振片702将透射第一偏振态(振动方向为第一方向的线偏光)的成像光线透射至半反半透元件703,半反半透元件703将该成像光线反射至第二偏振片704。第二偏振片704可以反射第一偏振态的光线,基于此,第二偏振片704将第一偏振态的成像光线反射至半反半透元件703,再经由半反半透元件703透射至人眼位置。
具有第二偏振态(振动方向为第二方向的线偏光)的环境光线(图中虚线所示)从外界经由第二偏振片704透射并向前传播至半反半透元件703,再经由半反半透元件703透射至人眼位置。具有第一偏振态的环境光线会被第二偏振片704反射。
在本公开的一个示例中,图像投射组件包括像源,分光组件包括偏振片,反射组件包括半反半透元件以及贴合或靠近半反半透元件的朝向分光组件一侧的波片。
图8示出了本公开的光学成像装置的另一个示例的示意图。如图8所示,光学成像装置800中,像源801发出成像光线至偏振片802,偏振片802将反射第一偏振态(振动方向为第一方向的线偏光)的成像光线至波片803,该波片803可以将第一偏振态转化成圆偏振光,该转换后的圆偏振光被传播至半反半透元件804。半反半透元件804将圆偏振光反射至波片803,波片803再将圆偏振光转换成第二偏振态(振动方向为第二方向的线偏光),该转换后的第二偏振态的成像光线被传播至偏振片802,并经由偏振片802透射至人眼位置。
环境光线(图中虚线所示)从外界经由半反半透元件804透射并向前传播至波片803,再依次经由波片803和偏振片802透射至人眼位置。
在图6至图8的实施例中,第一偏振态和第二偏振态指示光线的振动方向不同。第一偏振态的振动方向和第二偏振态的振动方向相互垂直。例如,具有第一偏振态的光线可以是偏振态为P方向的偏振光,具有第二偏振态的光线可以是偏振态为S方向的偏振光。考虑到P偏振光和S偏振光可以在满足相互垂直的前提下绕光线传播方向旋转,因此,第一偏振态也可以是偏振态与P方向呈一定角度的偏振光,第二偏振态也可以是 偏振态与S方向呈一定角度的偏振光。第三偏振态和第四偏振态可以是旋向相反的圆偏光或椭圆偏振光。
在本公开的一个示例中,定位组件和对应的光学组件采用注塑一体成型工艺形成的。采用注塑一体成型工艺形成的定位组件与光学组件之间的相对位置满足光学精度指标的要求。
每个光学元件所包括的定位组件与光学组件是对应的,例如,第一光学元件210包括的图像投射组件211与第一定位组件212是对应的,该图像投射组件211和该第一定位组件212是采用注塑一体成型工艺形成的。
在该示例中,采用注塑一体成型工艺使得定位组件和对应的光学组件成为一体,避免了在组装过程中定位组件与光学组件之间的安装误差。
在本公开中,第一定位组件212、第二定位组件222和第三定位组件232的结构被设置为在将第一光学元件210、第二光学元件220和第三光学元件230组装成用于光学成像的光学成像装置时,使得图像投射组件211、分光组件221和反射组件231按照期望光学精度指标要求实现光学对准。
第一定位组件212、第二定位组件222和第三定位组件232的结构相互连接进行安装时使得第一光学元件210、第二光学元件220和第三光学元件230三者之间的位置关系是确定的。在一个示例中,第一定位组件212、第二定位组件222和第三定位组件232的结构相互连接进行安装时使得第一光学元件210、第二光学元件220和第三光学元件230三者之间的位置关系是唯一的。在另一个示例中,使用第一定位组件212、第二定位组件222和第三定位组件232中的任意两个组件可以确定第一光学元件210、第二光学元件220和第三光学元件230三者之间的位置关系。
在本公开的一个示例中,光学精度指标可以包括装配公差和装配精度等指标中的至少一种。装配公差是各个元件组装时间隙或过盈的冗余量,装配精度是各个元件组装成用于光学成像的光学成像装置后该光学成像装置的几何参数达到的最小误差。
在本公开中,在光学成像装置组装完成后,图像投射组件211可以将生成的图像进行投射,投射的针对所生成图像的光线经过分光组件221反射至反射组件231,然后该光线经由反射组件231反射至分光组件221,再由分光组件221透射至眼瞳240以使该生成图像被看见。图像投射组件211投射的图像光线的传播路径如图2中的实线所示。
在一个示例中,当光学成像装置是增强现实显示装置时,真实场景的光线也可以经过第三光学元件230和第二光学元件220到达眼瞳240,以使真实场景也能被看见。以图2为例,真实场景的光线的传播路径如虚线所示,先经过反射组件231透射至分光组件221,再由分光组件221透射至眼瞳240。
在本公开的一个示例中,第一定位组件212、第二定位组件222和第三定位组件232中的每个定位组件包括第一定位结构和第二定位结构。
在该示例中,每个定位组件中的第一定位结构被使用来与其他两个定位组件中的一个定位组件进行定位组装,以及第二定位结构被使用来与其他两个定位组件中的另一定位组件进行定位组装。
以图9为例,图9示出了本公开的实施例的光学成像装置900中各个定位组件包括的定位结构的一个示例的示意图。如图9所示,第一光学元件210包括的第一定位组件212中,第一定位结构是212-1,第二定位结构是212-2;第二光学元件220包括的第二定位组件222中,第一定位结构是222-1,第二定位结构是222-2;第三光学元件230包括的第三定位组件232中,第一定位结构是232-1,第二定位结构是232-2。对于第一光学元件210,第一定位结构212-1被使用来与第二光学元件220中的第二定位组件222进行定位组装,第二定位结构212-2被使用来与第三光学元件230中的第三定位组件232进行定位组装。
在一个示例中,每个定位组件包括的各个定位结构与其他定位组件包括的定位结构是一一对应的。这样可以确保基于第一定位组件212、第二定位组件222以及第三定位组件232进行组装时第一光学元件210、第二光学元件220和第三光学元件230三者的结构关系是确定的,进而提高光学成像装置组装的确定性和便利性。
以图9为例,第一光学元件210中的第一定位结构是212-1与第二光学元件220中的第一定位结构是222-1是一一对应的,第一光学元件210中的第二定位结构是212-2与第三光学元件230中的第一定位结构是232-1是一一对应的,第二光学元件220中的第二定位结构是222-2与第三光学元件230中的第二定位结构是232-2是一一对应的。
在本公开的一个示例中,第一定位组件212、第二定位组件222和第三定位组件232中的其中一个定位组件作为基准定位组件,基准定位组件包括第一定位结构和第二定位结构,另外两个定位组件包括一个定位结构。
其中,基准定位组件的第一定位结构和第二定位结构分别被使用与另外两个定位组件中的一个定位结构进行定位组装。
在本公开的一个示例中,第一定位结构和第二定位结构可以包括卡槽、卡孔、凸起、螺孔、卡扣以及定位边缘等结构中的至少一种。
在本公开的一个示例中,第一定位结构和第二定位结构具有相同的结构或者不同的结构。例如,第一光学元件210包括的第一定位结构和第二定位结构都可以是卡槽。又例如,第二光学元件220包括的第一定位结构是卡槽,第二定位结构可以是定位边缘。
在一个示例中,每个定位组件中的各个定位结构具有与进行定位组装的定位组件 中的对应定位结构匹配的结构。
在一个示例中,螺孔与螺孔可以是匹配的结构,两个匹配的螺孔或者更多个匹配的螺孔对齐连接,并使用对应的螺钉来固定对齐的螺孔。
以图10为例,图10示出了本公开的实施例的定位结构1000包括螺孔时进行定位的一个示例的示意图。如图10所示,螺孔1010和螺孔1020是两个匹配的螺孔,螺孔1010和螺孔1020的孔径相同,且螺纹相同。螺钉1030是与螺孔1010和螺孔1020相匹配的螺钉,即螺钉1030可以被旋入螺孔1010和螺孔1020中。当两个对应的定位结构包括螺孔1010和螺孔1020时,在组装过程中,可以将螺孔1010和螺孔1020对齐放置,再将螺钉1030旋入螺孔1010和螺孔1020以使螺孔1010和螺孔1020固定,进而实现该两个定位结构的定位目的。可以利用定位边缘1110和定位边缘1120相互接触的面实现光学精度指标。
在另一个示例中,定位边缘与定位边缘可以是匹配的结构,两个匹配的定位边缘或者更多个匹配的定位边缘对齐连接以实现结构定位。在定位后,可以使用胶水、粘合剂等手段将两个定位边缘结构进行固定。
以图11为例,图11示出了本公开的实施例的定位结构包括定位边缘时进行定位的一个示例的示意图。如图11所示,定位边缘1110和定位边缘1120是两个匹配的定位边缘,在进行定位组装时将定位边缘1110和定位边缘1120对齐连接,进而实现对应两个定位结构的定位目的。
在另一个示例中,卡扣与卡扣可以是匹配的结构,两个匹配的卡扣可以以扣住的方式连接。两个卡扣不仅可以定位,而且还可以固定。
以图12为例,图12示出了本公开的实施例的定位结构1200包括卡扣时进行定位的一个示例的示意图。如图12所示,卡扣1210和卡扣1220是两个匹配的卡扣,其中,可以将卡扣1210称为公扣,将卡扣1220称为母扣,公扣和母扣可以相互扣住以使得卡扣1210和卡扣1220紧密结合。
在另一个示例中,卡孔与凸起可以是匹配的结构,凸起可以被插入相匹配的卡孔中,并且凸起与卡孔紧密连接。形状匹配的卡孔和凸起可以被设计成多种形状的结构,例如,凸起是菱形结构,则匹配的卡孔也是菱形结构。
以图13为例,图13示出了本公开的实施例的定位结构1300包括卡孔和凸起时进行定位的一个示例的示意图。如图13所示,卡孔1320和凸起1310相匹配,在进行定位组装时凸起1310被插入卡孔1320中以使得凸起1310和卡孔1320紧密连接,进而实现定位。
在另一个示例中,卡槽与卡槽可以是匹配的结构,匹配的卡槽与卡槽可以相互嵌 入并连接以实现结构定位。
以图14为例,图14示出了本公开的实施例的定位结构1400包括卡槽时进行定位的一个示例的示意图。如图14所示,卡槽1410和卡槽1420相匹配,每个卡槽都包括有凸起结构部分和凹形结构部分,卡槽1410的凸起结构部分与卡槽1420的凹形结构部分匹配,卡槽1410的凹形结构部分与卡槽1420的凸起结构部分匹配,在进行定位组装时将卡槽1410和卡槽1420对应连接以实现定位目的。
在该示例中,匹配的两个卡槽包括具备凸起结构的卡槽和具备凹形结构的卡槽,具备凹形结构的卡槽所形成的外角角度与具备凸起结构的卡槽所形成的内角角度相同以用于定位。
以图15为例,图15示出了本公开的实施例的定位结构1500包括卡槽时进行定位的另一个示例的示意图。如图15所示,具备凹形结构的卡槽1510所形成的外角角度包括角度1和直角,具备凸起结构的卡槽1520所形成的内角角度包括角度2和直角,其中,作为外角角度的直角与作为内角角度的直角相匹配,角度1与角度2相同,即相匹配。
在另一个示例中,卡槽与定位边缘可以是匹配的结构,定位边缘可以嵌入匹配的卡槽并连接以实现结构定位。在该示例中,定位边缘所形成的角度与卡槽所形成的角度是匹配的,以使得定位边缘和卡槽紧密连接。定位边缘所形成的角度与卡槽所形成的角度可以是指定的。
以图16为例,图16示出了本公开的实施例的定位结构1600包括卡槽与定位边缘时进行定位的一个示例的示意图。如图16所示,定位边缘1610和卡槽1620相匹配,定位边缘1610所形成的角度是直角,卡槽1620所形成的角度也是直角,直角相互匹配以使得定位边缘1610可以嵌入卡槽1620的凹形结构中,在进行定位组装时将定位边缘1610和卡槽1620对应连接以实现定位目的。
对应的定位结构是相互匹配的,不同的对应定位结构可以采用相同类型的结构。例如,光学成像装置中的所有定位结构都采用卡槽结构。
不同的对应定位结构还可以采用不同类型的结构。例如,光学成像装置中对应的定位结构可以包括卡孔与凸起,螺孔与螺孔,以及卡槽与卡槽。以图9为例,对应的定位结构212-1与222-1是采用卡孔与凸起的定位结构,对应的定位结构212-2与232-1是采用螺孔与螺孔的定位结构,对应的定位结构222-2与232-2是采用卡槽与卡槽的定位结构。
在本公开的一个示例中,在对应的定位结构包括卡孔和凸起时,该匹配的卡孔和凸起为直角榫结构。
在该示例中,直角榫结构可以是单面切肩榫结构,开口明榫结构,半开口明榫结构,开口暗双榫结构,暗燕尾榫结构,开口燕尾榫结构,半开口暗榫结构,燕尾暗双榫结构,开口暗榫结构,明燕尾榫结构以及沟槽榫结构等榫结构中的一种。
在本公开的一个示例中,第一定位组件212、第二定位组件222和第三定位组件232中的至少一个具有组件框架。
在一个示例中,每个定位组件的组件框架是该定位组件的一部分,则该组件框架与该定位组件的其他部分也是一体形成的。在另一个示例中,每个定位组件即为一个组件框架,则该组件框架与对应的光学组件是一体形成的。
在该示例中,组件框架包围对应的光学组件并且在组件框架上设置对应的第一定位结构和第二定位结构。
以图17为例,图17示出了本公开的实施例的光学组件被组件框架包围的一个示例的示意图。如图17所示,虚线与第一光学元件210的边缘实线之间的部分是组件框架213,该组件框架213是第一光学元件210的第一定位组件212的一部分。该组件框架213呈环形包围图像投射组件211,该组件框架213上设置的对应的第一定位结构和第二定位结构可以是定位边缘。
在本公开的一个示例中,在第一定位结构和第二定位结构是卡槽时,第一定位结构和第二定位结构被形成为单个卡槽。
在该示例中,所形成的单个卡槽包括第一定位结构和第二定位结构,该第一定位结构和该第二定位结构是一体的,都属于该单个卡槽的一部分。
以图18为例,图18示出了本公开的实施例的第一定位结构和第二定位结构被形成为单个卡槽的一个示例的示意图。如图18所示,图18所示的光学元件的边缘是卡槽结构,该卡槽环绕整个光学元件的边缘,包围该光学元件的光学组件,该卡槽属于单个卡槽。该卡槽包括第一定位结构1810和第二定位结构1820,该第一定位结构1810位于卡槽的一侧,该第二定位结构1820位于卡槽的另一侧。
在另一个示例中,在第一定位结构和第二定位结构是卡槽时,第一定位结构和第二定位结构是独立的两个卡槽。
以图19为例,图19示出了本公开的实施例的第一定位结构和第二定位结构为卡槽的一个示例的示意图。如图19所示,第一定位结构1910和第二定位结构1920都是卡槽,且第一定位结构1910和第二定位结构1920是独立的两个卡槽。
在一个示例中,每个定位结构可以包括多个独立的单个卡槽。以图20为例,图20示出了本公开的实施例的第一定位结构和第二定位结构为卡槽的另一个示例的示意图。如图20所示,第一定位结构2010包括两个单个卡槽,第二定位结构2020包括两个单 个卡槽。
在本公开的一个示例中,在第一定位结构或第二定位结构是卡孔时,第一定位结构或第二定位结构包括至少三个卡孔。其中,每个卡孔的位置可以是指定的。在该示例中,至少三个卡孔可以使得定位结构连接时更精准,进而减小光学误差,提高光学成像装置的光学精度。
以图21为例,图21示出了本公开的实施例的第一光学元件210包括的第一定位结构和第二定位结构为卡孔的一个示例的示意图。如图21所示,第一光学元件210包括第一定位结构2110和第二定位结构2120,第一定位结构2110包括有三个卡孔,第二定位结构2120也包括有三个卡孔。
第二光学元件220和第三光学元件230所包括的第一定位结构或第二定位结构是卡孔时,第二光学元件220和第三光学元件230可以包括至少三个卡孔。
在本说明书的一个示例中,在基于第一定位组件212、第二定位组件222和第三定位组件232的结构来将第一光学元件210、第二光学元件220和第三光学元件230组装成用于光学成像的光学成像装置时,可以将第一定位组件212、第二定位组件222和第三定位组件232中的其中一个定位组件作为基准组件进行组装。
在一个示例中,将第一定位组件212确定为基准组件;将第一定位组件212包括的第一定位结构与第二定位组件222包括的第一定位结构连接以使得第一光学元件210与第二光学元件220进行组装;将第一定位组件212包括的第二定位结构与第三定位组件232包括的第一定位结构连接以使得第一光学元件210与第三光学元件230进行组装。
在另一个示例中,将第二定位组件222确定为基准组件;将第二定位组件包括的第一定位结构与第一定位组件212包括的第一定位结构连接以使得第二光学元件220与第一光学元件210进行组装;将第二定位组件222包括的第二定位结构与第三定位组件232包括的第二定位结构连接以使得第二光学元件220与第三光学元件230进行组装。
在另一个示例中,将第三定位组件232确定为基准组件;将第三定位组件包括的第一定位结构与第一定位组件212包括的第二定位结构连接以使得反射元件与第一光学元件210进行组装;将第三定位组件232包括的第二定位结构与第二定位组件222包括的第二定位结构连接以使得第三光学元件230与第二光学元件220进行组装。
在一个示例中,第一定位组件至少部分包围图像投射组件;第二定位组件至少部分包围分光组件;第三定位组件至少部分包围反射组件。
在一个示例中,定位组件具有的组件框架朝向另两个定位组件延伸。
在一个示例中,一种光学成像装置,包括:第一光学元件,第一光学元件包括图像投射组件和围绕图像投射组件的第一定位组件;第二光学元件,第二光学元件包括分 光组件和围绕所述分光组件的第二定位组件;以及第三光学元件,第三光学元件包括反射组件和围绕反射组件的第三定位组件;其中,分光组件用于将图像投射组件发出的图像光线反射到反射组件以及透射从反射组件出射的图像成像光线和环境成像光线,反射组件用于反射从分光组件出射的图像成像光线以及透射环境成像光线,第一定位组件、第二定位组件和第三定位组件的结构被设置为在将第一光学元件、第二光学元件和第三光学元件组装成光学成像装置时,使得图像投射组件、分光组件和反射组件按照期望光学精度指标要求实现光学对准。
在一个示例中,第一定位组件与图像投射组件一体成型;第二定位组件与分光组件一体成型;第三定位组件与反射组件一体成型。
在一个示例中,第一定位组件、第二定位组件和第三定位组件中的其中一个定位组件作为基准定位组件包括第一定位结构和第二定位结构,另外两个定位组件包括一个定位结构;其中,基准定位组件的第一定位结构和第二定位结构分别被使用与另外两个定位组件中的一个定位结构进行定位组装,其中,每个定位组件中的各个定位结构具有与进行定位组装的定位组件中的对应定位结构匹配的结构。
在一个示例中,基准定位组件朝向另外两个光学元件的方向延伸。例如,延伸到与另外两个光学元件所在的面平行。
在一个示例中,一种光学成像装置,包括:第一光学元件,第一光学元件包括图像投射组件和围绕图像投射组件的第一定位组件;第二光学元件,第二光学元件包括分光组件和围绕分光组件的第二定位组件;以及第三光学元件,第三光学元件包括反射组件和围绕反射组件的第三定位组件;其中,分光组件用于将图像投射组件发出的图像光线反射到反射组件以及透射从反射组件出射的图像成像光线和环境成像光线,反射组件用于反射从分光组件出射的图像成像光线以及透射环境成像光线,第一定位组件、第二定位组件和第三定位组件的结构被设置为在将第一光学元件、第二光学元件和第三光学元件组装成光学成像装置时,使得图像投射组件、分光组件和反射组件按照期望光学精度指标要求实现光学对准;第一定位组件作为基准定位组件包括第一定位结构和第二定位结构,第一定位结构和第二光学元件的第二定位组件进行定位组装,第二定位结构和第三光学元件的第三定位组件进行定位组装,第一定位结构和第二定位结构为螺孔。
在整个本说明书中使用的术语“示例性”意味着“用作示例、实例或例示”,并不意味着比其它实施例“优选”或“具有优势”。出于提供对所描述技术的理解的目的,具体实施方式包括具体细节。然而,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,为了避免对所描述的实施例的概念造成难以理解,公知的结构和装置以框图形式示出。
以上结合附图详细描述了本公开的实施例的可选实施方式,但是,本公开的实施例并不限于上述实施方式中的具体细节,在本公开的实施例的技术构思范围内,可以对本公开的实施例的技术方案进行多种简单变型,这些简单变型均属于本公开的实施例的保护范围。
本公开内容的上述描述被提供来使得本领域任何普通技术人员能够实现或者使用本公开内容。对于本领域普通技术人员来说,对本公开内容进行的各种修改是显而易见的,并且,也可以在不脱离本公开内容的保护范围的情况下,将本文所定义的一般性原理应用于其它变型。因此,本公开内容并不限于本文所描述的示例和设计,而是与符合本文公开的原理和新颖性特征的最广范围相一致。

Claims (15)

  1. 一种光学成像装置,包括:
    第一光学元件,所述第一光学元件包括图像投射组件和与所述图像投射组件一体形成的第一定位组件;
    第二光学元件,所述第二光学元件包括分光组件和与所述分光组件一体形成的第二定位组件;以及
    第三光学元件,所述第三光学元件包括反射组件和与所述反射组件一体形成的第三定位组件;
    其中,所述分光组件用于将所述图像投射组件发出的图像光线反射到所述反射组件以及透射从所述反射组件出射的图像成像光线和环境成像光线,所述反射组件用于反射从所述分光组件出射的图像成像光线以及透射环境成像光线,
    所述第一定位组件、所述第二定位组件和所述第三定位组件的结构被设置为在将所述第一光学元件、所述第二光学元件和所述第三光学元件组装成光学成像装置时,使得所述图像投射组件、所述分光组件和所述反射组件按照期望光学精度指标要求实现光学对准。
  2. 如权利要求1所述的光学成像装置,其中,所述第一定位组件至少部分包围所述图像投射组件;
    所述第二定位组件至少部分包围所述分光组件;
    所述第三定位组件至少部分包围所述反射组件。
  3. 如权利要求1-2中任一项所述的光学成像装置,其中,所述第一定位组件、所述第二定位组件和所述第三定位组件中的其中一个定位组件作为基准定位组件包括第一定位结构和第二定位结构,另外两个定位组件包括一个定位结构;
    其中,所述基准定位组件的所述第一定位结构和所述第二定位结构分别被使用与另外两个定位组件中的一个定位结构进行定位组装,
    其中,每个定位组件中的各个定位结构具有与进行定位组装的定位组件中的对应定位结构匹配的结构。
  4. 如权利要求1-3中任一项所述的光学成像装置,其中,所述第一定位组件、所述第二定位组件和所述第三定位组件中的每个定位组件包括第一定位结构和第二定位结构,
    其中,每个定位组件中的第一定位结构被使用来与其他两个定位组件中的一个定位组件进行定位组装,以及第二定位结构被使用来与所述其他两个定位组件中的另一定位 组件进行定位组装,并且每个定位组件中的各个定位结构具有与进行定位组装的定位组件中的对应定位结构匹配的结构。
  5. 如权利要求3或4所述的光学成像装置,其中,所述第一定位结构和所述第二定位结构包括卡槽、卡孔、凸起、螺孔、卡扣以及定位边缘中的至少一种。
  6. 如权利要求3-5中任一项所述的光学成像装置,其中,在所述第一定位结构和所述第二定位结构是卡槽时,所述第一定位结构和所述第二定位结构被形成为单个卡槽或独立的两个卡槽。
  7. 如权利要求5所述的光学成像装置,其中,匹配的所述卡孔和所述凸起为直角榫结构。
  8. 如权利要求3或4所述的光学成像装置,其中,所述第一定位结构和所述第二定位结构具有相同的结构或者不同的结构。
  9. 如权利要求3或4所述的光学成像装置,其中,所述第一定位组件、所述第二定位组件和所述第三定位组件中的至少一个具有组件框架,所述组件框架包围对应的光学组件并且在所述组件框架上设置对应的第一定位结构和第二定位结构。
  10. 如权利要求9所述的光学成像装置,其中,定位组件具有的所述组件框架朝向另两个定位组件延伸。
  11. 如权利要求1-10任一项所述的光学成像装置,其中,所述定位组件和对应的光学组件是采用注塑一体成型工艺形成的。
  12. 如权利要求1-11任一项所述的光学成像装置,其中,所述图像投射组件包括像源以及贴合或靠近所述像源的朝向所述分光组件一侧的圆偏光片,所述分光组件包括偏振片和贴合在所述偏振片朝向所述反射组件一侧的波片,所述反射组件包括半反半透元件。
  13. 如权利要求1-11任一项所述的光学成像装置,其中,所述图像投射组件包括像源以及贴合或靠近所述像源的朝向所述分光组件一侧的第一偏振片,所述分光组件包括半反半透元件,所述反射组件包括第二偏振片。
  14. 如权利要求1-11任一项所述的光学成像装置,其中,所述图像投射组件包括像源,所述分光组件包括偏振片,所述反射组件包括半反半透元件以及贴合或靠近所述半反半透元件的朝向所述分光组件一侧的波片。
  15. 如权利要求1-14任一项所述的光学成像装置,其中,所述光学成像装置形成为头戴式装置。
PCT/CN2021/083800 2020-03-31 2021-03-30 光学成像装置 WO2021197293A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21780738.7A EP4120002A4 (en) 2020-03-31 2021-03-30 OPTICAL IMAGING DEVICE
US17/995,088 US20230176392A1 (en) 2020-03-31 2021-03-30 Optical imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010241961.7A CN111290126A (zh) 2020-03-31 2020-03-31 光学成像装置
CN202010241961.7 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197293A1 true WO2021197293A1 (zh) 2021-10-07

Family

ID=71022183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083800 WO2021197293A1 (zh) 2020-03-31 2021-03-30 光学成像装置

Country Status (4)

Country Link
US (1) US20230176392A1 (zh)
EP (1) EP4120002A4 (zh)
CN (1) CN111290126A (zh)
WO (1) WO2021197293A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290126A (zh) * 2020-03-31 2020-06-16 优奈柯恩(北京)科技有限公司 光学成像装置
CN117706792B (zh) * 2024-02-05 2024-06-11 优奈柯恩(北京)科技有限公司 光学系统及头戴显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205539729U (zh) * 2016-04-26 2016-08-31 北京亮亮视野科技有限公司 一种微型显示系统
CN109709676A (zh) * 2019-03-07 2019-05-03 浙江水晶光电科技股份有限公司 一种增强现实光学模组及增强现实装置
CN209842238U (zh) * 2019-04-04 2019-12-24 深圳惠牛科技有限公司 一种光学模组结构及ar眼镜
CN209879145U (zh) * 2019-05-09 2019-12-31 北京京东方光电科技有限公司 镜筒、光学模块以及眼镜
US20200026072A1 (en) * 2015-05-18 2020-01-23 Rockwell Collins, Inc. Micro collimator system and method for a head up display (hud)
CN111290126A (zh) * 2020-03-31 2020-06-16 优奈柯恩(北京)科技有限公司 光学成像装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406303A (en) * 1991-05-09 1995-04-11 Nu-Tech And Engineering, Inc. Instrument display method and system for passenger vehicle
JP3645684B2 (ja) * 1997-03-28 2005-05-11 オリンパス株式会社 光学プリズム
JP3645698B2 (ja) * 1997-11-17 2005-05-11 オリンパス株式会社 光学プリズム、鏡枠および光学アッセンブリ
JP3730806B2 (ja) * 1999-05-18 2006-01-05 オリンパス株式会社 光学系
JP2002118799A (ja) * 2000-05-10 2002-04-19 Canon Inc 画像表示装置、画像表示システムおよび画像表示素子
US9134534B2 (en) * 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
KR101451220B1 (ko) * 2013-03-12 2014-10-16 한국항공우주산업 주식회사 모의 비행 훈련 장비 전용 모의 전방 상향 지시기
TW201819990A (zh) * 2016-10-31 2018-06-01 美商康寧公司 單中心廣視野個人顯示器
CN106842482B (zh) * 2016-12-28 2019-08-16 海信集团有限公司 一种透镜安装组件和光学设备
CN107422480A (zh) * 2017-08-03 2017-12-01 深圳市汇龙天成科技有限公司 一种半透半反曲面透镜显示结构及显示方法
CN207965356U (zh) * 2017-11-14 2018-10-12 塔普翊海(上海)智能科技有限公司 一种近眼可透视头显光学系统
CN208110168U (zh) * 2018-04-28 2018-11-16 歌尔股份有限公司 一种光学组件以及头戴显示设备
CN208156309U (zh) * 2018-05-02 2018-11-27 歌尔股份有限公司 用于增强现实设备的光学组件以及增强现实设备
CN108572457A (zh) * 2018-07-12 2018-09-25 王锐 一种光学显示系统
CN109471262A (zh) * 2018-10-16 2019-03-15 中国航空工业集团公司洛阳电光设备研究所 一种汽车双像源ar hud光机结构
CN109445111B (zh) * 2018-12-29 2021-01-15 联想(北京)有限公司 光学设备
CN211426943U (zh) * 2020-03-31 2020-09-04 优奈柯恩(北京)科技有限公司 光学成像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200026072A1 (en) * 2015-05-18 2020-01-23 Rockwell Collins, Inc. Micro collimator system and method for a head up display (hud)
CN205539729U (zh) * 2016-04-26 2016-08-31 北京亮亮视野科技有限公司 一种微型显示系统
CN109709676A (zh) * 2019-03-07 2019-05-03 浙江水晶光电科技股份有限公司 一种增强现实光学模组及增强现实装置
CN209842238U (zh) * 2019-04-04 2019-12-24 深圳惠牛科技有限公司 一种光学模组结构及ar眼镜
CN209879145U (zh) * 2019-05-09 2019-12-31 北京京东方光电科技有限公司 镜筒、光学模块以及眼镜
CN111290126A (zh) * 2020-03-31 2020-06-16 优奈柯恩(北京)科技有限公司 光学成像装置

Also Published As

Publication number Publication date
EP4120002A1 (en) 2023-01-18
EP4120002A4 (en) 2023-10-04
CN111290126A (zh) 2020-06-16
US20230176392A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US11119322B2 (en) Imaging display system
WO2021197293A1 (zh) 光学成像装置
US10866422B2 (en) Micro LED display system
US8259239B2 (en) Polarized head-mounted projection display
US9726891B2 (en) Left and right eye optical paths with shared optical element for head-mounted display device
TWM577117U (zh) 光學系統
CN111399224A (zh) 显示光学系统及头戴显示设备
CN211426943U (zh) 光学成像装置
CN209842246U (zh) 光学模组及增强现实装置
CN116540484A (zh) 投影显示模组以及可穿戴设备
CN117031747A (zh) 光学模组以及头戴显示设备
CN216870952U (zh) 光学结构和近眼显示设备
WO2019024090A1 (zh) 光学成像系统和头戴设备
CN110764348A (zh) 投影装置
CN114063286A (zh) 用于增强现实的光学系统及头戴式增强现实设备
CN111694211A (zh) 投影系统以及ar显示设备
CN208737102U (zh) 光学系统及增强现实眼镜
CN111999895A (zh) 光学装置及增强现实设备
CN212694162U (zh) 用于增强现实的光学系统及头戴式增强现实设备
CN114675481B (zh) 一种光学投影系统以及电子设备
CN212515326U (zh) 投影系统以及ar显示设备
CN108710209B (zh) 光学系统及增强现实眼镜
WO2022133968A1 (zh) 光学系统及显示装置
CN213338213U (zh) 用于头戴式显示设备的光学系统及头戴式显示设备
CN109283774B (zh) 一种投影镜头及投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021780738

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: DE