WO2021197246A1 - 一种基于v2x的车队协同制动方法及系统 - Google Patents

一种基于v2x的车队协同制动方法及系统 Download PDF

Info

Publication number
WO2021197246A1
WO2021197246A1 PCT/CN2021/083483 CN2021083483W WO2021197246A1 WO 2021197246 A1 WO2021197246 A1 WO 2021197246A1 CN 2021083483 W CN2021083483 W CN 2021083483W WO 2021197246 A1 WO2021197246 A1 WO 2021197246A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
braking
acceleration
vehicles
distance
Prior art date
Application number
PCT/CN2021/083483
Other languages
English (en)
French (fr)
Inventor
胡卉
冯芷郁
徐明武
王愚勤
张佳蕊
付义涵
Original Assignee
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长安大学 filed Critical 长安大学
Publication of WO2021197246A1 publication Critical patent/WO2021197246A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration

Definitions

  • the invention belongs to the field of intelligent transportation technology, and particularly relates to a vehicle to Everything (V2X)-based collaborative braking method and system for a fleet of vehicles.
  • V2X vehicle to Everything
  • Vehicles are used together in intelligent transportation systems to enable communication between vehicles, vehicles and base stations, and base stations and base stations.
  • the vehicle coordinated braking method has solved some traffic problems and avoided many traffic accidents.
  • the vehicle perceives the braking information of the preceding vehicle through information interaction, and provides auxiliary information for the driver to facilitate the creation of a safer traffic environment.
  • the V2X-based collaborative braking method for the fleet can control the vehicle more reasonably and efficiently.
  • the vehicle can respond quickly from the braking of the preceding vehicle, which greatly shortens the reaction time of the driver and enhances the safety of the vehicle during the braking process. Therefore, the research on the V2X-based collaborative braking method of the fleet has very important practical significance.
  • the car-following safety distance is mostly calculated from a fixed inter-vehicle time distance.
  • the flexibility is not high and it is difficult to meet the needs of actual driving.
  • the existing method only accepts the front and rear vehicle and its own braking information, accepts the braking command and determines the braking acceleration according to the situation of the preceding vehicle. Due to the inevitable network delay between the fleets, the later the vehicle delays, the longer the delay time. Once the safe car-following distance is insufficient, accidents are prone to occur.
  • the purpose of the present invention is to provide a V2X-based collaborative braking method and system for a fleet of vehicles to solve one or more technical problems mentioned above.
  • the invention can improve the efficiency of information interaction between vehicles and shorten the braking time of following vehicles.
  • a V2X-based collaborative braking method for a fleet of vehicles of the present invention includes the following steps:
  • Step 1 Obtain the braking information of the front vehicle of the team, and notify all the remaining vehicles of the team at the same time through V2X;
  • Step 2 For each of all following vehicles, obtain the driving data of the own vehicle, the driving data of the preceding vehicle, and the braking information of the leading vehicle;
  • Step 3 Establish a dynamic safe car-following distance model based on the driving data of the own vehicle and the driving data of the preceding vehicle obtained in step 2;
  • Step 4 Calculate the vehicle braking model based on the driving data of the preceding vehicle, the driving data of the vehicle and the dynamic safe following distance model;
  • Step 5 According to the vehicle braking model obtained in Step 4, obtain the ideal braking acceleration of the vehicle and transmit it to the actuator for braking, so that the actual acceleration of the vehicle follows the change of the ideal braking acceleration to complete the team's coordinated braking; Adjust the braking acceleration according to the dynamic safe car-following distance model.
  • step 1 specifically includes:
  • V2X Obtain the braking information of the foremost vehicle in the fleet and upload it to the cloud through V2X; use V2X to simultaneously distribute the braking information of the foremost vehicle in the cloud to all remaining following vehicles in the fleet.
  • step 2 specifically includes:
  • the driving data of each vehicle is sent to the cloud through V2X; the driving data of the preceding vehicle is obtained from the cloud, including: the initial speed of the preceding vehicle v q0 and the initial acceleration a q0 ;
  • inter-vehicle distance refers to the distance from the rear of the vehicle in front to the front of the vehicle.
  • a further improvement of the present invention is that the safe car-following distance expression of the dynamic safe car-following distance model established in step 3 is:
  • S b represents the total braking distance of the vehicle
  • S q represents the total braking distance of the preceding vehicle
  • d represents the safe following distance between vehicles during driving
  • d 0 represents the front of the vehicle to the preceding vehicle after the two vehicles are stationary. The relative distance of the tail.
  • step 4 specifically includes:
  • a constant speed movement stage When calculating the total braking distance of the vehicle, it is divided into three stages: a constant speed movement stage, a deceleration increase stage and a continuous braking stage;
  • the expression of the deceleration growth stage is:
  • t 2 is the time required to reach the required deceleration
  • a bi is the initial braking acceleration of the vehicle in the i-th unit collection period
  • t 3 is the constant braking time of the vehicle
  • the total braking distance of the preceding vehicle from the start of braking to the stop of the preceding vehicle is:
  • a qi is the initial braking acceleration of the preceding vehicle in the i-th unit acquisition period
  • v qi is the initial speed of the preceding vehicle in the i-th unit acquisition period
  • step 5 specifically includes: calculating the ideal braking acceleration for the next unit collection period according to the actual distance x between the two vehicles:
  • v b is the driving speed of the vehicle
  • v q is the driving speed of the preceding vehicle
  • a q is the braking acceleration of the preceding vehicle
  • v b , v q and a q are all collected in real time by sensors on the vehicle
  • a ideal represents the next The ideal braking acceleration in a unit of collection period
  • d 0 represents the relative distance from the front of the vehicle to the rear of the preceding vehicle when the two vehicles are stationary;
  • the ideal braking acceleration is less than the maximum acceleration of the vehicle, and the expression is
  • the ideal braking acceleration is transmitted to the actuator, and the actuator makes the actual acceleration of the vehicle follow the change of the ideal braking acceleration by adjusting the relevant components.
  • step 5 also includes:
  • the braking acceleration is adjusted according to the dynamic safe car-following distance model.
  • a V2X-based collaborative braking system for a fleet of vehicles of the present invention includes:
  • the information acquisition module is used to obtain the braking information of the front vehicle of the fleet, and notify all the remaining following vehicles in the fleet through V2X; for each of all following vehicles, it is used to obtain the driving data of the vehicle and the driving data of the preceding vehicle;
  • the dynamic safe car-following distance model building module is used to establish a dynamic safe car-following distance model based on the obtained driving data of the vehicle and the driving data of the preceding vehicle;
  • the vehicle braking model building module is used to calculate the vehicle braking model based on the driving data of the preceding vehicle, the driving data of the vehicle and the dynamic safe following distance model;
  • the execution module is used to obtain the ideal braking acceleration of the vehicle according to the obtained vehicle braking model and transmit it to the actuator for braking, so that the actual acceleration of the vehicle follows the change of the ideal braking acceleration to complete the team's coordinated braking; among them, Adjust the braking acceleration according to the dynamic safe car-following distance model.
  • a further improvement of the present invention is that it includes a brake module installed on each vehicle in the fleet;
  • the braking module includes:
  • the signal transmission module is used to exchange information with the cloud, upload the braking information of the vehicle and the driving data of the vehicle, and obtain the braking information and driving data of the preceding vehicle and the foremost vehicle;
  • the detection module is used to monitor the actual distance between the vehicle in front and the vehicle in front;
  • the central processing unit is used to establish a dynamic safe car-following distance model based on the obtained driving data of the vehicle and the driving data of the preceding vehicle; used to calculate based on the driving data of the preceding vehicle, the driving data of the vehicle and the dynamic safe car-following distance model Vehicle braking model;
  • the actuator is used to complete braking according to the vehicle braking model.
  • a further improvement of the present invention is that the braking module further includes:
  • Alarm module used to send out brake alarm information
  • Electronic display screen used to display brake alarm information.
  • the present invention has the following beneficial effects:
  • the dynamic safe car-following distance model is adopted, which is more reasonable and in line with actual conditions, and can improve the flexibility of calculating the safe car-following distance between cars.
  • the invention realizes "straddle vehicle” recognition, can quickly realize synchronous braking according to the braking information of all the vehicles in front, can reduce the reaction time, and improve the traffic safety in the braking process of the fleet.
  • the braking information of the pilot vehicle is delivered to the fleet through V2X in one transmission and multiple modes. All vehicles are passed backwards instead of one pass.
  • Fig. 1 is a schematic structural diagram of a V2X-based collaborative braking system for a fleet of vehicles provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of a vehicle collision avoidance safe car following distance model provided by an embodiment of the present invention
  • FIG. 3 is a schematic block diagram of the flow of a V2X-based collaborative braking method for a fleet of vehicles provided by an embodiment of the present invention
  • a V2X-based collaborative braking system for a fleet of vehicles including: a sensor 1, a signal transmission module 2, a detection module 3, an alarm module 4, an electronic display screen 5, an actuator 6 and a central processing unit ⁇ 7; Among them, the instructions are all issued by the central processing unit 7.
  • the pilot vehicle (which can be the front car of the fleet) starts to brake, and uses the pilot vehicle's own sensor 1 to obtain its braking information;
  • the unit collection period t is:
  • Acquire real-time vehicle driving data including data such as the vehicle's initial speed v b0 and initial acceleration a b0 ;
  • the detection module 3 uses the detection module 3 to obtain the initial inter-vehicle distance x 0 between the vehicles, and send it to the central processing unit 7; wherein, the inter-vehicle distance refers to the distance between the rear of the vehicle in front and the front of the vehicle;
  • Each vehicle in the fleet obtains the driving data of the preceding vehicle through V2X and sends it to the central processing unit 7, including the initial speed v q0 of the preceding vehicle, the initial acceleration a q0 and other data;
  • the car In order to avoid a collision, the car needs to take braking measures to decelerate with a certain acceleration. To ensure the safety of active collision avoidance, the two cars maintain a certain safe car following distance d.
  • the vehicle dynamic safe car following distance model is established based on the relationship between the braking distance between the vehicle and the preceding car.
  • the safe car following distance d between the two cars is:
  • S b represents the total braking distance of the vehicle
  • S q represents the total braking distance of the preceding vehicle
  • d represents the safe following distance between vehicles during driving
  • d 0 represents the front of the vehicle to the rear of the preceding vehicle after the two vehicles are stationary. The relative distance.
  • the total braking distance is divided into three stages: a constant speed movement stage, a deceleration increase stage and a continuous braking stage.
  • the vehicle does not start to brake, but still travels at the initial speed before braking.
  • the vehicle travel distance S uniform i (m) is:
  • v bi (m/s) is the initial speed of the vehicle in the i-th unit collection period.
  • t 1 is the time from receiving the braking information to the beginning The time elapsed for braking.
  • t 2 is the time required to reach the required deceleration, which is related to vehicle performance.
  • a bi is the initial braking acceleration of the vehicle in the i-th unit acquisition period.
  • t 3 is the constant braking time of the vehicle, and:
  • the total braking distance of the preceding vehicle is calculated.
  • the braking distance of the preceding vehicle in the i-th unit acquisition period is calculated.
  • the current vehicle speed is higher than the own vehicle speed, which is relatively safe at this time. Therefore, in this embodiment, only the case where the preceding vehicle speed is lower than the own vehicle speed is considered.
  • the speed of the present vehicle is the same as the preceding vehicle speed, that is, no collision occurs when the two vehicles reach a common speed. , There is no possibility of collision between the two vehicles in the unit collection period. According to the actual distance between the two vehicles x, calculate the ideal braking acceleration for the next unit collection period:
  • the driver alert alarm module 4 through the electronic display 5 is about to enter the vehicle braking state; a Ideally ⁇ 0, the vehicle enters the braking state, and the alarm module 4 informs the driver that the vehicle has entered the braking state through the electronic display 5;
  • the ideal braking acceleration is transmitted to the actuator 6.
  • the actuator 6 makes the actual acceleration of the vehicle follow the value of the ideal braking acceleration by adjusting the relevant components;
  • the alert Module 4 sends a command to the driver to raise the brake pedal through the electronic display 5; when the actual acceleration is less than the ideal braking acceleration, that is, aactual ⁇ aideal , the alarm module 4 sends a stepping on to the driver through the electronic display 5.
  • the brake state is released under the condition of ensuring a safe following distance, the alarm module 4 releases the warning, and the actuator 6 no longer performs braking.
  • the system of the embodiment of the present invention based on the V2X vehicle coordinated braking method, adopts a dynamic safe car following distance model, which is more reasonable and in line with the actual situation, can improve the flexibility of the safe car following distance between cars, and can also quickly follow
  • the braking information of the front car realizes early braking, which reduces the response time and improves traffic safety during the braking process of the fleet.
  • a V2X-based collaborative braking method for a fleet of vehicles includes the following steps:
  • the alarm module issues a brake warning to the driver to remind the driver that the vehicle enters the braking state
  • Each vehicle in the fleet obtains the braking data of the preceding vehicle through V2X, including the initial speed v q0 of the preceding vehicle, initial acceleration a q0 and other data and inputs it to the central processing unit;
  • the braking acceleration is adjusted in a timely manner according to the dynamic safe car-following distance model. If the driver participates in the braking and cannot be adjusted during the braking process, the alarm module will issue a command to the driver to raise or lower the brake pedal.
  • the present invention discloses a V2X-based vehicle coordinated braking method and system, including: using the sensor of the foremost vehicle to identify the braking information of the foremost vehicle and notifying all vehicles in the fleet through V2X.
  • the alarm module issues a brake warning to the driver to remind the driver that the vehicle enters the braking state.
  • Use the sensors of the own vehicle and the preceding vehicle to obtain real-time braking data of the own vehicle and the preceding vehicle.
  • a dynamic safe car-following distance model is established.
  • the vehicle braking model is calculated based on the driving data of the preceding vehicle, the driving data of the own vehicle and the variable time interval dynamic safe car-following distance model.
  • the ideal braking acceleration of the vehicle is obtained and transmitted to the actuator, so that the actual acceleration of the vehicle follows the change of the ideal braking acceleration value.
  • the braking acceleration is adjusted in a timely manner according to the dynamic safe car-following distance model.
  • the alarm module issues a command to the driver to raise or lower the brake pedal.
  • the method of the present invention adopts a dynamic safe car following distance model, which is more reasonable and in line with actual conditions, and improves the flexibility of the safe car following distance between cars.
  • the invention realizes the identification of "straddle vehicles”, can quickly realize synchronous braking according to the braking information of all the vehicles in front, reduces the reaction time, and improves the traffic safety in the braking process of the fleet.
  • this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware.
  • this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种基于V2X的车队协同制动方法,包括以下步骤:获取车队最前车的制动信息,通过V2X同时通知到车队剩余的所有跟随车辆;对于所有跟随车辆中的每一辆车,获取本车行驶数据、前车行驶数据及最前车的制动信息;基于获取的本车行驶数据和前车行驶数据,建立动态安全跟驰距离模型;基于前车行驶数据、本车行驶数据和动态安全跟驰距离模型,计算得出车辆制动模型;根据车辆制动模型,得出本车理想制动加速度并传输给执行机构进行制动,使车辆的实际加速度跟随理想制动加速度的值变化,完成车队协同制动。可提高车与车之间的信息交互效率,缩短跟随车辆制动时间。还涉及基于V2X的车队协同制动系统。

Description

一种基于V2X的车队协同制动方法及系统
本申请要求于2020年03月31日提交中国专利局、申请号为202010245650.8、发明名称为“一种基于V2X的车队协同制动方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于智能交通技术领域,特别涉及一种基于V2X(Vehicle to Everything)的车队协同制动方法及系统。
背景技术
车辆协同运用于智能交通运输系统,使得车与车、车与基站、基站与基站之间能够通信。随着V2X技术在驾驶车辆上的应用,车辆协同制动方法解决了一些交通问题,避免了许多交通事故。车辆协同制动过程中,车辆通过信息交互感知前车制动信息,为驾驶员提供辅助信息,便于创造更加安全的交通环境。基于V2X的车队协同制动方法能够更合理高效地控制车辆,车辆可以由前车制动迅速作出响应,大大缩短了驾驶人员的反应时间,增强了车辆在制动过程中的安全性。因此,研究基于V2X的车队协同制动方法具有十分重要的现实意义。
目前的车辆协同制动方法中,车辆跟驰安全距离大多由固定车间时距计算得来,灵活度不高,难以符合实际行驶中的需要。另外,现有方法中只接受前后车以及自身制动信息,根据前车情况接受制动命令并判定制动加速度,由于车队间存在难以避免的网络延迟,越往后的车辆延迟时间越长,一旦安全跟驰距离不足很容易发生事故。
综上,亟需一种新的基于V2X的车队协同制动方法及系统。
发明内容
本发明的目的在于提供一种基于V2X的车队协同制动方法及系统,以解决上述存在的一个或多个技术问题。本发明可提高车与车之间的信息交互效率,缩短跟随车辆的制动时间。
为达到上述目的,本发明采用以下技术方案:
本发明的一种基于V2X的车队协同制动方法,包括以下步骤:
步骤1,获取车队最前车的制动信息,通过V2X同时通知到车队剩余的所有跟随车辆;
步骤2,对于所有跟随车辆中的每一辆车,获取本车行驶数据、前车行驶数据及最前车的制动信息;
步骤3,基于步骤2获取的本车行驶数据和前车行驶数据,建立动态安全跟驰距离模型;
步骤4,基于前车行驶数据、本车行驶数据和动态安全跟驰距离模型,计算得出车辆制动模型;
步骤5,根据步骤4获得的车辆制动模型,得出本车理想制动加速度并传输给执行机构进行制动,使车辆的实际加速度跟随理想制动加速度变化,完成车队协同制动;其中,根据动态安全跟驰距离模型调整制动加速度。
本发明的进一步改进在于,步骤1具体包括:
获取车队最前车的制动信息,通过V2X上传至云端;通过V2X将云端中最前车的制动信息同时下发给车队剩余的所有跟随车辆。
本发明的进一步改进在于,步骤2具体包括:
利用车队中每辆车辆安装的传感器,获取各个车辆的行驶数据,包括:车辆的初始速度v b0、初始加速度a b0
其中,传感器采集频次f,单位采集时段t的计算表达式为:
Figure PCTCN2021083483-appb-000001
将各个车辆的行驶数据通过V2X发送至云端;从云端获取前车的行驶数据,包括:前车初始速度v q0、初始加速度a q0
采集获取车队车辆之间的初始车间距x 0;其中,车间距是指前车尾到本车头间的距离。
本发明的进一步改进在于,步骤3中建立的动态安全跟驰距离模型的安全跟驰距离表达式为:
d=S b-S q+d 0
式中,S b表示本车总制动距离,S q表示前车总制动距离,d表示行 驶过程中车辆间的安全跟驰距离,d 0表示两车静止后本车车头到前车车尾的相对距离。
本发明的进一步改进在于,步骤4具体包括:
计算本车总制动距离时,分为三个阶段:匀速运动阶段、减速度增长阶段和持续制动阶段;
每个阶段的时长分别为t 1、t 2、t 3;其中,t 1+t 2+t 3=t;
其中,匀速运动阶段的表达式为:S 匀i=v bit 1
式中,v bi为本车在第i个单位采集时段的初速度;i=0,表示本车在制动初始阶段的初始速度;t 1为从接收制动信息到开始制动所经历的时间;
减速度增长阶段的表达式为:
Figure PCTCN2021083483-appb-000002
式中,t 2为达到所需减速度需要经历的时间;
持续制动阶段的表达式为:
Figure PCTCN2021083483-appb-000003
式中,a bi为本车在第i个单位采集时段的初始制动加速度;t 3为本车匀速制动时间;
本车在单位采集时段的制动距离表达式为:S bi=S 匀i+S 减i+S 持i
本车总制动距离:
Figure PCTCN2021083483-appb-000004
前车在单位采集时段的制动距离:
Figure PCTCN2021083483-appb-000005
前车自制动开始到停止的前车总制动距离为:
Figure PCTCN2021083483-appb-000006
式中,a qi为前车在第i个单位采集时段的初始制动加速度,v qi为前车在第i个单位采集时段的初速度;
当d-x≤c,车辆维持当前运动行驶状态;当d-x>c,调整本车制动加速度;其中,c为允许的误差范围,x为两车实际车间距。
本发明的进一步改进在于,步骤5具体包括:根据两车实际车间距x,计算下一单位采集时段的理想制动加速度:
Figure PCTCN2021083483-appb-000007
Figure PCTCN2021083483-appb-000008
式中,v b为本车行驶速度;v q为前车行驶速度;a q为前车制动加速度;v b、v q和a q均通过车辆上的传感器实时采集得到;a 理想表示下一单位采集时段的理想制动加速度;d 0表示两车静止后本车车头到前车车尾的相对距离;
理想制动加速度小于车辆最大加速度,表达式为|a 理想|<a max
将理想制动加速度传输给执行机构,执行机构通过调节各相关部件使得车辆的实际加速度跟随理想制动加速度变化。
本发明的进一步改进在于,步骤5还包括:
当a 理想≥0,车辆还未进入制动状态,提醒驾驶人员车辆即将进入制动状态;
当a 理想<0,车辆进入制动状态,告知驾驶人员车辆已经进入制动状态;
制动过程中根据动态安全跟驰距离模型调整制动加速度。
本发明的一种基于V2X的车队协同制动系统,包括:
信息获取模块,用于获取车队最前车的制动信息,通过V2X通知到车队剩余的所有跟随车辆;对于所有跟随车辆中的每一辆车,用于获取本车行驶数据和前车行驶数据;
动态安全跟驰距离模型构建模块,用于根据获取的本车行驶数据和前车行驶数据,建立动态安全跟驰距离模型;
车辆制动模型构建模块,用于根据前车行驶数据、本车行驶数据和动态安全跟驰距离模型,计算得出车辆制动模型;
执行模块,用于根据获得的车辆制动模型,得出本车理想制动加速度并传输给执行机构进行制动,使车辆的实际加速度跟随理想制动加速度变化,完成车队协同制动;其中,根据动态安全跟驰距离模型调整制动加速 度。
本发明的进一步改进在于,包括制动模块,所述制动模块安装于所述车队的每辆车上;
所述制动模块包括:
传感器,用于采集获取本车的制动信息及本车行驶数据;
信号传递模块,用于与云端进行信息交互,上传本车制动信息及本车行驶数据,获取前车及最前车的制动信息及前车行驶数据;
探测模块,用于监测本车与前车之间的实际车间距;
中央处理器,用于根据获取的本车行驶数据和前车行驶数据,建立动态安全跟驰距离模型;用于根据前车行驶数据、本车行驶数据和动态安全跟驰距离模型,计算得出车辆制动模型;
执行机构,用于根据车辆制动模型完成制动。
本发明的进一步改进在于,所述制动模块还包括:
警报模块,用于发出制动报警信息;
电子显示屏,用于显示制动报警信息。
与现有技术相比,本发明具有以下有益效果:
本发明的方法中,采用动态安全跟驰距离模型,更加合理、符合实际情况,可提高车与车之间安全跟驰距离计算的灵活性。本发明实现了“跨车”识别,能够迅速根据前面所有车辆的制动信息实现同步制动,可降低反应时间,提高车队制动过程中的交通安全性。本发明中,为能够迅速根据领航车辆制动信息实现提前制动,降低反应时间从而提高车队制动过程中交通安全性,通过V2X将领航车制动信息通过一传多的方式下发至车队所有车辆而非一传一向后传递。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面对实施例或现有技术描述中所需要使用的附图做简单的介绍;显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例所提供的一种基于V2X的车队协同制动系统的 结构示意图;
图2是本发明实施例所提供的车辆避撞安全跟驰距离模型的示意图;
图3是本发明实施例所提供的一种基于V2X的车队协同制动方法的流程示意框图;
符号说明:
1、传感器;2、信号传递模块;3、探测模块;4、警报模块;5、电子显示屏;6、执行机构;7、中央处理器。
具体实施方式
为使本发明实施例的目的、技术效果及技术方案更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例是本发明一部分实施例。基于本发明公开的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,都应属于本发明保护的范围。
请参阅图1,本发明实施例的一种基于V2X的车队协同制动系统,包括:传感器1、信号传递模块2、探测模块3、警报模块4、电子显示屏5、执行机构6和中央处理器7;其中,指令均由中央处理器7下达。
领航车辆(可以是车队的最前车)开始制动,利用领航车自带传感器1获取其制动信息;
利用信号传递模块2将最前车的制动信息通过V2X上传至云端,并通过V2X将最前车的制动信息下发给车队其余车辆;
利用信号传递模块2接收最前车的制动信息;
利用车队中每辆车辆自带传感器1根据采集频次f,单位采集时段t为:
Figure PCTCN2021083483-appb-000009
获取实时的车辆行驶数据,包括车辆的初始速度v b0、初始加速度a b0等数据;
将上述数据发送至各个车辆的中央处理器7并利用信号传递模块2通过V2X发送至云平台;
利用探测模块3获取车辆之间的初始车间距x 0,并发送至中央处理器7;其中,车间距是指前车尾到本车头间距离;
车队中每辆车辆通过V2X获取前车行驶数据并发送至中央处理器7,包括前车初始速度v q0、初始加速度a q0等数据;
为避免碰撞,本车需要采取制动措施以一定的加速度进行减速,为确保主动避撞的安全性,两车保持一定的安全跟驰距离d。
请参阅图2,根据上述过程本车与前车之间制动距离的关系建立车辆动态安全跟驰距离模型,两车之间安全跟驰距离d为:
d=S b-S q+d 0     (2)
其中,S b表示本车总制动距离,S q表示前车总制动距离,d表示行驶过程中车辆间的安全跟驰距离,d 0表示两车静止后本车车头到前车车尾的相对距离。
在实际驾驶过程中,本车与前车运动状态都是实时变化的,动态安全跟驰距离模型计算的结果也是实时进行更新的;基于已获取的数据,建立基于车间距保持的动态安全跟驰距离模型:
首先,计算本车总制动距离,总制动距离分为三个阶段:匀速运动阶段、减速度增长阶段和持续制动阶段。
1、匀速运动阶段:
在制动协调时间车辆未开始制动,仍以制动前初速度行驶,这一期间车辆行驶距离S 匀i(m)为:
S 匀i=v bit 1    (3)
其中,v bi(m/s)为本车在第i个单位采集时段的初速度,当i=0,表示本车在制动初始阶段的初始速度,t 1为从接收制动信息到开始制动所经历的时间。
2、减速度增长阶段:
在减速度增长阶段,由于时间较短,其增长可以看做是线性增长,这一阶段车辆行驶距离S 减i(m)为:
Figure PCTCN2021083483-appb-000010
其中,t 2为达到所需减速度需要经历的时间,与车辆性能有关。a bi为 本车在第i个单位采集时段的初始制动加速度。
3、持续制动阶段:
在持续制动阶段,加速度达到理想值恒定不变,保持该加速度不变直至停车,这一阶段车辆行驶距离S 持i(m)为:
Figure PCTCN2021083483-appb-000011
其中,t 3为本车匀速制动时间,并且:
t=t 1+t 2+t 3      (6)
本车在第i个单位采集时段的制动距离:
S bi=S 匀i+S 减i+S 持i      (7)
假设车辆维持此制动加速度直到制动完成,本车总制动距离:
Figure PCTCN2021083483-appb-000012
然后,计算前车总制动距离,对于前车而言,因为是主动减速,无需考虑匀速运动阶段和减速度增长阶段,所以前车在第i个单位采集时段的制动距离:
Figure PCTCN2021083483-appb-000013
假设车辆维持此制动加速度直到制动完成,前车总制动距离:
Figure PCTCN2021083483-appb-000014
将计算结果代入上述动态安全跟驰距离模型计算安全跟驰距离。
当d-x≤c,其中,c为允许的误差范围,此时两车安全跟驰距离接近实际车间距,车辆维持当前运动行驶状态,此时第一阶段和第二阶段时间为0,即t 1、t 1为0,由公式(3)和(4)可得S 匀i、S 减i为0。当d-x>c,跟驰距离太大或太小,应及时调整本车制动加速度。
当前车车速大于本车车速,此时相对安全,因此在本实施例只考虑前车车速小于本车车速的情况,当本车减速到与前车车速相同即两车达到共速时未发生碰撞,在该单位采集时段内两车就再无碰撞可能,根据两车实际车间距x,计算下一单位采集时段的理想制动加速度:
Figure PCTCN2021083483-appb-000015
Figure PCTCN2021083483-appb-000016
理想加速度小于车辆最大加速度,即|a 理想|<a max,当a 理想≥0,即车辆还未进入制动状态,警报模块4通过电子显示屏5提醒驾驶人员车辆即将进入制动状态;a 理想<0,车辆进入制动状态,警报模块4通过电子显示屏5告知驾驶人员车辆已经进入制动状态;
将理想制动加速度传输给执行机构6,执行机构6通过调节各相关部件使得车辆的实际加速度跟随理想制动加速度的值变化;
制动过程中根据上述动态安全跟驰距离模型适时调整制动加速度,如果制动过程驾驶人员参与制动导致无法调整,当实际加速度大于理想制动加速度,即a 实际>a 理想时,由警报模块4通过电子显示屏5向驾驶人员发出抬高制动踏板的口令;当实际加速度小于理想制动加速度,即a 实际<a 理想时,由警报模块4通过电子显示屏5向驾驶人员发出踩低制动踏板的口令。
当车辆达到制动,或领航车辆解除制动从而车队无需制动,在保证安全跟驰距离的情况下解除制动状态,警报模块4解除警告,执行机构6不再进行制动。
本发明实施例的系统,基于V2X的车辆协同制动方法,采用动态安全跟驰距离模型,更加合理、符合实际情况,能够提高车与车之间安全跟驰距离的灵活性,还能够迅速根据最前车的制动信息实现提前制动,降低了反应时间,提高了车队制动过程中交通安全性。
请参阅图3,本发明实施例的一种基于V2X的车队协同制动方法,包括以下步骤:
利用领航车自带的传感器识别领航车制动信息并通过V2X通知到车队所有车辆;
警报模块向驾驶人员发出制动警告,提醒驾驶人员车辆进入制动状态;
利用车队中每辆车自带的传感器获取实时制动数据,包括初始速度 v b0、初始加速度a b0等数据并输入其中央处理器;
将上述采集数据通过V2X发送至云平台;
车队中每辆车辆通过V2X获取前车制动数据,包括前车初始速度v q0、初始加速度a q0等数据并输入中央处理器;
利用车辆自带的探测模块获取该单位采集时段与前车车间距x并输入中央处理器;
基于获取数据,建立动态安全跟驰距离模型;
根据动态安全跟驰距离模型计算本车理想制动加速度并传输给执行机构,使车辆的实际加速度跟随理想制动加速度的值变化;
制动过程中根据动态安全跟驰距离模型适时调整制动加速度,如果制动过程驾驶人员参与制动导致无法调整,由警报模块向驾驶人员发出抬高或踩低制动踏板的口令。
继续利用车队中每辆车自带的传感器获取实时制动数据,包括速度v bi、加速度a bi等数据并输入其中央处理器。
重复上述步骤,直至车辆完全停止。
综上所述,本发明公开了一种基于V2X的车辆协同制动方法及系统,包括:利用最前车自带的传感器识别最前车的制动信息并通过V2X通知到车队所有车辆。警报模块向驾驶人员发出制动警告,提醒驾驶人员车辆进入制动状态。利用本车与前车自带的传感器获取实时的本车与前车制动数据。基于获取的本车行驶数据和前车行驶数据,建立动态安全跟驰距离模型。基于前车行驶数据、本车行驶数据和可变时距动态安全跟驰距离模型,计算得出车辆制动模型。根据车辆制动模型得出本车理想制动加速度并传输给执行机构,使车辆的实际加速度跟随理想制动加速度值变化。制动过程中根据动态安全跟驰距离模型适时调整制动加速度,当制动时由于驾驶人员的参与导致无法调整,由警报模块向驾驶人员发出抬高或踩低制动踏板的口令。本发明的方法采用动态安全跟驰距离模型,更加合理、符合实际情况,提高车与车之间安全跟驰距离的灵活性。本发明实现了“跨车”识别,能够迅速根据前面所有车辆制动信息实现同步制动,降低了反应时间,提高了车队制动过程中交通安全性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、 或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (10)

  1. 一种基于V2X的车队协同制动方法,其特征在于,包括以下步骤:
    步骤1,获取车队最前车的制动信息,通过V2X同时通知到车队剩余的所有跟随车辆;
    步骤2,对于所有跟随车辆中的每一辆车,获取本车行驶数据、前车行驶数据及最前车的制动信息;
    步骤3,基于步骤2获取的所述本车行驶数据和所述前车行驶数据,建立动态安全跟驰距离模型;
    步骤4,基于所述前车行驶数据、所述本车行驶数据和所述动态安全跟驰距离模型,计算得出车辆制动模型;
    步骤5,根据步骤4获得的所述车辆制动模型,得出本车理想制动加速度并传输给执行机构进行制动,使车辆的实际加速度跟随所述理想制动加速度变化,完成车队协同制动;其中,根据所述动态安全跟驰距离模型调整制动加速度。
  2. 根据权利要求1所述的一种基于V2X的车队协同制动方法,其特征在于,步骤1具体包括:
    获取车队最前车的制动信息,通过V2X上传至云端;通过V2X将云端中所述最前车的制动信息同时下发给车队剩余的所有跟随车辆。
  3. 根据权利要求1所述的一种基于V2X的车队协同制动方法,其特征在于,步骤2具体包括:
    利用车队中每辆车辆安装的传感器,获取各个车辆的行驶数据,包括:车辆的初始速度v b0、初始加速度a b0
    其中,传感器采集频次f,单位采集时段t的计算表达式为:
    Figure PCTCN2021083483-appb-100001
    将所述各个车辆的行驶数据通过V2X发送至云端;从云端获取前车行驶数据,包括:前车初始速度v q0、初始加速度a q0
    采集获取车队车辆之间的初始车间距x 0;其中,车间距是指前车尾到本车头间的距离。
  4. 根据权利要求3所述的一种基于V2X的车队协同制动方法,其特征在于,步骤3中建立的动态安全跟驰距离模型的安全跟驰距离表达式 为:
    d=S b-S q+d 0
    式中,S b表示本车总制动距离,S q表示前车总制动距离,d表示行驶过程中车辆间的安全跟驰距离,d 0表示两车静止后本车车头到前车车尾的相对距离。
  5. 根据权利要求4所述的一种基于V2X的车队协同制动方法,其特征在于,步骤4具体包括:
    计算所述本车总制动距离时,分为三个阶段:匀速运动阶段、减速度增长阶段和持续制动阶段;
    每个阶段的时长分别为t 1、t 2、t 3;其中,t 1+t 2+t 3=t;
    其中,所述匀速运动阶段的表达式为:S 匀i=v bit 1
    式中,v bi为本车在第i个单位采集时段的初速度;i=0,表示本车在制动初始阶段的初始速度;t 1为从接收制动信息到开始制动所经历的时间;
    所述减速度增长阶段的表达式为:
    Figure PCTCN2021083483-appb-100002
    式中,t 2为达到所需减速度需要经历的时间;a bi为本车在第i个单位采集时段的初始制动加速度;
    所述持续制动阶段的表达式为:
    Figure PCTCN2021083483-appb-100003
    式中,t 3为本车匀速制动时间;
    本车在单位采集时段的制动距离表达式为:S bi=S 匀i+S 减i+S 持i
    所述本车总制动距离
    Figure PCTCN2021083483-appb-100004
    前车在单位采集时段的制动距离:
    Figure PCTCN2021083483-appb-100005
    前车自制动开始到停止的前车总制动距离为:
    Figure PCTCN2021083483-appb-100006
    式中,a qi为前车在第i个单位采集时段的初始制动加速度,v qi为前车在第i个单位采集时段的初速度;
    当d-x≤c,车辆维持当前运动行驶状态;当d-x>c,调整本车制动加速度;其中,c为允许的误差范围,x为两车实际车间距。
  6. 根据权利要求5所述的一种基于V2X的车队协同制动方法,其特征在于,步骤5具体包括:根据所述两车实际车间距x,计算下一单位采集时段的理想制动加速度:
    Figure PCTCN2021083483-appb-100007
    Figure PCTCN2021083483-appb-100008
    式中,v b为本车行驶速度;v q为前车行驶速度;a q为前车制动加速度;a 理想表示下一单位采集时段的理想制动加速度;d 0表示两车静止后本车车头到前车车尾的相对距离;
    所述理想制动加速度小于车辆最大加速度,表达式为|a 理想|<a max
    将所述理想制动加速度传输给执行机构,执行机构通过调节各相关部件使得车辆的实际加速度跟随所述理想制动加速度变化。
  7. 根据权利要求6所述的一种基于V2X的车队协同制动方法,其特征在于,步骤5还包括:
    当a 理想≥0,车辆还未进入制动状态,提醒驾驶人员车辆即将进入制动状态;
    当a 理想<0,车辆进入制动状态,告知驾驶人员车辆已经进入制动状态;
    制动过程中根据所述动态安全跟驰距离模型调整制动加速度。
  8. 一种基于V2X的车队协同制动系统,其特征在于,包括:
    信息获取模块,用于获取车队最前车的制动信息,通过V2X通知到车队剩余的所有跟随车辆;对于所有跟随车辆中的每一辆车,用于获取本车行驶数据和前车行驶数据;
    动态安全跟驰距离模型构建模块,用于根据获取的所述本车行驶数据和所述前车行驶数据,建立动态安全跟驰距离模型;
    车辆制动模型构建模块,用于根据所述前车行驶数据、所述本车行驶数据和所述动态安全跟驰距离模型,计算得出车辆制动模型;
    执行模块,用于根据获得的所述车辆制动模型,得出本车理想制动加速度并传输给执行机构进行制动,使车辆的实际加速度跟随所述理想制动加速度变化,完成车队协同制动;其中,根据所述动态安全跟驰距离模型调整制动加速度。
  9. 根据权利要求8所述的一种基于V2X的车队协同制动系统,其特征在于,包括制动模块,所述制动模块安装于所述车队的每辆车上;
    所述制动模块包括:
    传感器,用于采集获取本车的制动信息及所述本车行驶数据;
    信号传递模块,用于与云端进行信息交互,上传所述本车的制动信息及所述本车行驶数据,获取前车及最前车的制动信息和所述前车行驶数据;
    探测模块,用于监测本车与前车的实际车间距;
    中央处理器,用于根据获取的所述本车行驶数据和所述前车行驶数据,建立动态安全跟驰距离模型;用于根据所述前车行驶数据、所述本车行驶数据和所述动态安全跟驰距离模型,计算得出车辆制动模型;
    执行机构,用于根据所述车辆制动模型完成制动。
  10. 根据权利要求9所述的一种基于V2X的车队协同制动系统,其特征在于,所述制动模块还包括:
    警报模块,用于发出制动报警信息;
    电子显示屏,用于显示制动报警信息。
PCT/CN2021/083483 2020-03-31 2021-03-29 一种基于v2x的车队协同制动方法及系统 WO2021197246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010245650.8A CN111348016B (zh) 2020-03-31 2020-03-31 一种基于v2x的车队协同制动方法及系统
CN202010245650.8 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197246A1 true WO2021197246A1 (zh) 2021-10-07

Family

ID=71191135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083483 WO2021197246A1 (zh) 2020-03-31 2021-03-29 一种基于v2x的车队协同制动方法及系统

Country Status (2)

Country Link
CN (1) CN111348016B (zh)
WO (1) WO2021197246A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114187755A (zh) * 2021-12-14 2022-03-15 上海平可行智能科技有限公司 车辆编队控制方法
CN114248780A (zh) * 2021-12-27 2022-03-29 江苏大学 考虑驾驶员风格的idm-lstm组合型跟车模型建立方法
CN114613179A (zh) * 2021-12-22 2022-06-10 江苏大学 网联自动驾驶车辆混行交叉口集聚通行方法及其控制系统
CN115131959A (zh) * 2022-04-09 2022-09-30 哈尔滨工业大学(威海) 车辆队列防追尾主动避撞协同控制方法
CN115440036A (zh) * 2022-08-26 2022-12-06 同济大学 一种车辆跟驰关系管理与角色实时配置方法
CN115465240A (zh) * 2022-08-18 2022-12-13 中国第一汽车股份有限公司 车辆的数据处理方法、装置、存储介质和车辆
CN117542218A (zh) * 2023-11-17 2024-02-09 上海智能汽车融合创新中心有限公司 一种基于车速-车距引导控制的车路协同系统
CN117542218B (zh) * 2023-11-17 2024-05-31 上海智能汽车融合创新中心有限公司 一种基于车速-车距引导控制的车路协同系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348016B (zh) * 2020-03-31 2021-11-30 长安大学 一种基于v2x的车队协同制动方法及系统
CN111935650B (zh) * 2020-08-14 2021-08-31 中国重汽集团济南动力有限公司 一种实现车辆列队跟驰功能的网联通信系统及方法
CN112218266A (zh) * 2020-08-25 2021-01-12 南京市德赛西威汽车电子有限公司 一种基于v2x的跟车预警方法
CN112319441A (zh) * 2020-10-23 2021-02-05 上善智城(苏州)信息科技有限公司 一种基于智能汽车网联化的电子制动辅助刹车系统及方法
CN112590871B (zh) * 2020-12-23 2022-09-02 交控科技股份有限公司 列车安全防护方法、装置和系统
CN113570845A (zh) * 2021-07-23 2021-10-29 东风汽车集团股份有限公司 一种网联式车辆编队行驶方法和系统
CN113460048B (zh) * 2021-08-11 2022-07-01 东南大学 设计自动驾驶车辆高速近距离安全编队间隔策略的方法
CN113734167B (zh) * 2021-09-10 2023-05-30 苏州智加科技有限公司 车辆控制方法、装置、终端及存储介质
CN114684124B (zh) * 2021-09-26 2023-03-24 天津卡尔狗科技有限公司 车辆行驶参数的确定方法、装置、电子设备和存储介质
CN113928314B (zh) * 2021-11-17 2023-11-10 吉林大学 一种冰雪路面条件下考虑前后车的自动驾驶车辆跟驰控制方法
CN114516328B (zh) * 2022-03-08 2024-02-27 武汉科技大学 一种智能网联环境下基于规则的车队跟驰模型方法
CN115056755B (zh) * 2022-08-19 2022-11-15 理工雷科智途(泰安)汽车科技有限公司 一种前前车受遮挡情况下的自车紧急制动控制方法及系统
CN116080716B (zh) * 2023-03-03 2023-06-02 北京全路通信信号研究设计院集团有限公司 一种列车自动驾驶协同控制方法、系统和计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052100A (zh) * 2017-11-23 2018-05-18 南京航空航天大学 一种智能网联电动汽车控制系统及其控制方法
CN108765926A (zh) * 2018-05-29 2018-11-06 重庆大学 一种基于车车通信的车辆协同跟随方法
US20190068639A1 (en) * 2017-08-22 2019-02-28 Paul Dean Alexander Determination of plausibility of intelligent transport system messages
CN109801494A (zh) * 2019-01-25 2019-05-24 浙江众泰汽车制造有限公司 一种基于v2x的路口动态引导系统和方法
CN110525429A (zh) * 2019-08-31 2019-12-03 武汉理工大学 一种基于v2x的商用车紧急制动方法
CN111348016A (zh) * 2020-03-31 2020-06-30 长安大学 一种基于v2x的车队协同制动方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119088A (ko) * 2016-04-18 2017-10-26 현대자동차주식회사 차량의 모터 토크 제어를 통한 제동 성능 향상 방법
US11412360B2 (en) * 2018-09-05 2022-08-09 Toyota Jidosha Kabushiki Kaisha Vehicle-to-everything data transfer for automated vehicles
CN110155046B (zh) * 2019-05-09 2020-12-29 武汉理工大学 自动紧急制动分级控制方法与系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190068639A1 (en) * 2017-08-22 2019-02-28 Paul Dean Alexander Determination of plausibility of intelligent transport system messages
CN108052100A (zh) * 2017-11-23 2018-05-18 南京航空航天大学 一种智能网联电动汽车控制系统及其控制方法
CN108765926A (zh) * 2018-05-29 2018-11-06 重庆大学 一种基于车车通信的车辆协同跟随方法
CN109801494A (zh) * 2019-01-25 2019-05-24 浙江众泰汽车制造有限公司 一种基于v2x的路口动态引导系统和方法
CN110525429A (zh) * 2019-08-31 2019-12-03 武汉理工大学 一种基于v2x的商用车紧急制动方法
CN111348016A (zh) * 2020-03-31 2020-06-30 长安大学 一种基于v2x的车队协同制动方法及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114187755A (zh) * 2021-12-14 2022-03-15 上海平可行智能科技有限公司 车辆编队控制方法
CN114613179A (zh) * 2021-12-22 2022-06-10 江苏大学 网联自动驾驶车辆混行交叉口集聚通行方法及其控制系统
CN114248780A (zh) * 2021-12-27 2022-03-29 江苏大学 考虑驾驶员风格的idm-lstm组合型跟车模型建立方法
CN115131959A (zh) * 2022-04-09 2022-09-30 哈尔滨工业大学(威海) 车辆队列防追尾主动避撞协同控制方法
CN115465240A (zh) * 2022-08-18 2022-12-13 中国第一汽车股份有限公司 车辆的数据处理方法、装置、存储介质和车辆
CN115440036A (zh) * 2022-08-26 2022-12-06 同济大学 一种车辆跟驰关系管理与角色实时配置方法
CN115440036B (zh) * 2022-08-26 2023-08-29 同济大学 一种车辆跟驰关系管理与角色实时配置方法
CN117542218A (zh) * 2023-11-17 2024-02-09 上海智能汽车融合创新中心有限公司 一种基于车速-车距引导控制的车路协同系统
CN117542218B (zh) * 2023-11-17 2024-05-31 上海智能汽车融合创新中心有限公司 一种基于车速-车距引导控制的车路协同系统

Also Published As

Publication number Publication date
CN111348016B (zh) 2021-11-30
CN111348016A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2021197246A1 (zh) 一种基于v2x的车队协同制动方法及系统
CN107993485B (zh) 一种基于车联网的自适应预警方法以及装置
CN110085037A (zh) 一种车路协同环境下交叉口信号控制及车速引导系统
CN108665702B (zh) 基于车路协同的施工道路多级预警系统及方法
WO2020164237A1 (zh) 用于驾驶控制的方法、装置、设备、介质和系统
CN112614340B (zh) 支路车辆汇入主路的方法、装置、电子设备及存储介质
CN108352110A (zh) 控制车辆编队行驶的方法、集中控制设备和车辆
CN107767679A (zh) 基于专用短程通信的信号灯路口车速引导装置及方法
CN105654754B (zh) 一种车辆控制方法及装置
CN110789576B (zh) 协同编队列车安全防护场景划分方法及装置
CN110260872B (zh) 一种车路协同环境下基于gps的动态超车轨迹规划系统
CN112289076A (zh) 双车道智能网联车协同换道方法、装置、设备及存储介质
CN113219962B (zh) 一种面向混行队列跟驰安全的控制方法、系统及存储介质
CN108564791A (zh) 交通信息处理方法、装置和计算设备
CN112925309A (zh) 智能网联汽车数据交互方法及交互系统
CN109816978B (zh) 考虑驾驶员动态响应行为的区域群体交通诱导系统及方法
CN114973733A (zh) 一种信号交叉口处混合流下网联自动车轨迹优化控制方法
CN109101689A (zh) 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
CN112606873A (zh) 一种用于机车辅助驾驶的控制方法及装置
CN103021187B (zh) 一种基于车联网技术的车辆报警方法以及车载终端
CN113990063A (zh) 一种基于双网融合的路口有轨电车信号优先控制方法
CN113650653A (zh) 一种交互式高速铁路列车运行仿真系统
CN111191904A (zh) 一种智慧型车辆编队方法、装置、电子设备及存储介质
EP4201729A1 (en) Vehicle control method and apparatus, medium, device and program
CN115320616A (zh) 一种自动驾驶车辆速度的控制方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779919

Country of ref document: EP

Kind code of ref document: A1