WO2021196858A1 - 用于3d打印的设备及其控制方法 - Google Patents

用于3d打印的设备及其控制方法 Download PDF

Info

Publication number
WO2021196858A1
WO2021196858A1 PCT/CN2021/074434 CN2021074434W WO2021196858A1 WO 2021196858 A1 WO2021196858 A1 WO 2021196858A1 CN 2021074434 W CN2021074434 W CN 2021074434W WO 2021196858 A1 WO2021196858 A1 WO 2021196858A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
printing
sleeve
opening
conveying pipe
Prior art date
Application number
PCT/CN2021/074434
Other languages
English (en)
French (fr)
Inventor
黄卫东
黄芃
Original Assignee
苏州美梦机器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州美梦机器有限公司 filed Critical 苏州美梦机器有限公司
Priority to JP2022559878A priority Critical patent/JP7376962B2/ja
Priority to EP21779974.1A priority patent/EP4116068A4/en
Publication of WO2021196858A1 publication Critical patent/WO2021196858A1/zh
Priority to US17/954,652 priority patent/US20230017560A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/02Small extruding apparatus, e.g. handheld, toy or laboratory extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This application relates to the field of 3D printing, and more specifically, to a device for 3D printing and a control method thereof.
  • FDM technology is a commonly used 3D printing technology. FDM technology usually requires heating the material to a molten state (or semi-fluid state), and extruding the molten material from the discharge port (or extrusion port) of the 3D print head, and the material is deposited layer by layer on the printing platform to form 3D items.
  • the conventional 3D printing head has a feeding part and a nozzle used to form a discharge port.
  • the nozzle is usually installed at the lower end of the conveying part, resulting in an insufficiently compact structure of the equipment.
  • the present application provides a device for 3D printing and a control method thereof, which can make the structure of the device more compact.
  • a device for 3D printing which includes: a feeding pipe, the outer wall of which is provided with an opening extending along the axial direction of the feeding pipe; a sleeve sleeved on the feeding pipe, The outer wall of the sleeve is provided with a discharge port that can communicate with the opening, and the sleeve is rotatable relative to the conveying pipe around the axis of the conveying pipe, so that the discharge port is connected to the Said opening is connected or no longer connected.
  • a method for controlling a 3D printing device includes: a feeding tube, the outer wall of which is provided with an opening extending along the axial direction of the feeding tube; and a sleeve A tube is sleeved on the delivery pipe, the outer wall of the sleeve is provided with a discharge port that can communicate with the opening, and the sleeve can be relative to the delivery pipe around the axis of the delivery pipe Rotation;
  • the control method includes: controlling the sleeve to rotate relative to the feeding tube around the axis of the feeding tube, so that the discharge port is in communication with the opening or no longer in communication.
  • a computer-readable storage medium on which instructions for executing the control method as described in the second aspect are stored.
  • a computer program product including instructions for executing the control method as described in the second aspect.
  • this application uses a sleeve to provide a discharge port, and the sleeve and the conveying pipe are sleeved together, making the structure of the entire equipment more compact, and Pause printing can be realized by rotating the sleeve relative to the feeding tube around the axis of the feeding tube, and a quick response to the pause printing can be realized.
  • Figure 1 is a schematic diagram of the overall structure of a traditional 3D printing device.
  • Fig. 2 is a schematic diagram of the structure of a traditional 3D printing head.
  • Fig. 3a is an example diagram of the printing area of the layer to be printed.
  • Figure 3b is an example diagram of the arrangement of passes.
  • Fig. 4 is a structural example diagram of a device for 3D printing provided by an embodiment of the present application.
  • Fig. 5 is an example diagram of a three-dimensional structure of a feeding pipe provided by an embodiment of the present application.
  • Fig. 6 is a two-dimensional plan view of the feed pipe shown in Fig. 5.
  • Fig. 7 is a schematic cross-sectional view of the feeding pipe and the sleeve provided in the embodiment of the present application in the direction of the extrusion channel passing through the discharge port.
  • Fig. 8 is a structural diagram of the device shown in Fig. 4 after the bracket is removed.
  • FIG. 9 is an example diagram of the three-dimensional structure of the separable part in the separable sleeve provided by an embodiment of the present application.
  • Fig. 10 is a two-dimensional plan view of the separable part shown in Fig. 9.
  • Fig. 11 is a schematic diagram of the assembling mode of the separable part and the feed pipe shown in Fig. 9.
  • Fig. 12 is an exploded view of each separable part of a separable sleeve provided by an embodiment of the present application.
  • Fig. 13 is an assembly diagram of each separable part shown in Fig. 12.
  • Fig. 14 is an exploded view of each separable part of a separable sleeve provided by another embodiment of the present application.
  • Fig. 15 is an assembly diagram of the separable sleeve and the feed pipe shown in Fig. 14.
  • Fig. 16 is an example diagram of a separable sleeve with a closed ring design at the end provided by an embodiment of the present application.
  • FIG. 17 is an example diagram of a three-dimensional structure of a separable part in a separable sleeve provided by another embodiment of the present application.
  • Fig. 18 is an assembly diagram of the sleeve and the feed pipe formed by the separable parts shown in Fig. 17.
  • FIG. 19 is an example diagram of the printing process of the device provided by the embodiment of the present application.
  • FIG. 20 is a comparison diagram of the printing effect of the device provided by the embodiment of the present application and the traditional 3D printing method.
  • Fig. 21 is an example diagram of a pass switching method in a traditional 3D printing method.
  • Fig. 22 is an example diagram of a feeding device provided by an embodiment of the present application.
  • FIG. 23 is a side view of a channel opening in an apparatus for 3D printing provided by another embodiment of the present application.
  • Fig. 24 is a structural diagram of the first part of the sleeve in the device shown in Fig. 26.
  • Fig. 25 is a structural diagram of the sleeve in the device shown in Fig. 26.
  • FIG. 26 is a perspective view of a device for 3D printing according to another embodiment of the present application.
  • FIG. 27 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • a traditional 3D printing device 1 may generally include a feeding device 11, a 3D printing head 12, a printing platform 13, and a control device 14 (the above structural division method is only an example, in fact, other structural division methods can also be used
  • the control device and/or the feeding device 11 may belong to a part of the 3D printing head 12).
  • the feeding device 11 can be connected to the wire reel 15. In the actual printing process, the feeding device 11 can obtain the filamentous material from the reel 15 and transport the filamentous material to the 3D printing head 12.
  • the materials used in the 3D printing process are generally thermoplastic materials, such as polymers. Polymers, low-melting-point metals and other materials that can be formulated into fluid paste-like materials (such as paste-like ceramics, high-melting-point metal powder mixtures, cement, etc.).
  • the 3D printing head 12 may generally include a feeding part 121, a nozzle 122 and a temperature control device 123.
  • the temperature control device 123 is generally arranged on the outside of the conveying part 121 and is used to heat the material sent by the feeding device 11 to the conveying part 121 to a molten state.
  • the temperature control device 123 may be a heating device, for example.
  • the nozzle 122 is installed at the lower end of the feeding part 121.
  • the nozzle can provide a discharge port 124 so that the molten material conveyed by the conveying part 121 can be extruded onto the printing platform 13.
  • the control device 14 can be used to control the 3D printing head 12 to print the article layer by layer.
  • the 3D printing head 12 can be controlled to print the entire printing area of the layer to be printed (that is, the entire area surrounded by the cross-sectional contour line of the layer to be printed) according to a preset printing path.
  • the modeling software may be computer aided design (CAD) software, for example. Then, perform layering processing on the created 3D model, divide the 3D model into multiple layers to be printed, and obtain layered data of each layer to be printed.
  • CAD computer aided design
  • control device 14 can control the 3D print head 12 to move along a certain printing path according to the layered data of each layer to be printed, and in the process of moving, pass the discharge port 124 to The molten material is extruded onto the printing platform 13 to print or fill the printing area of each layer to be printed.
  • the materials solidify layer by layer to form a 3D article.
  • FIGS. 3a and 3b as examples to describe in detail the printing process of a certain layer to be printed by a traditional 3D printing device.
  • the printing area of the layer to be printed is area 31, and the cross-sectional contour line of area 31 is cross-sectional contour line 32.
  • the area 31 is usually divided into a plurality of closely arranged passes based on the cross-sectional contour line 32, such as pass A1-pass A25 as shown in FIG. 3b.
  • control device 14 controls the z coordinate of the 3D printing head 12 to remain unchanged, and controls the 3D printing head 12 to print all passes in a certain order, such as printing passes A1-A25 in sequence according to a parallel reciprocating linear path. .
  • the control device 14 may first move the 3D printing head 12 to above the position point p1 as shown in FIG. 3a, and then control the 3D printing head 12 to move from above the position point p1 to the position point p2 Above, and during the moving process, the molten material is extruded onto pass A1 through the discharge port 124, so that pass A1 is printed.
  • the printing methods for other passes are similar, and will not be repeated here.
  • the 3D printing head 12 or the working platform 13 can be controlled to move along the z-axis direction to prepare to print the next layer.
  • the conventional 3D printing head 12 has a feeding part 121 and a nozzle 122 for providing a discharge port 124.
  • the nozzle 122 is usually installed at the lower end of the feeding part 121, which causes the structure of the 3D printing head 12 to be not compact enough.
  • the device for 3D printing provided in the embodiments of the present application will be described in detail below. It should be noted that the device used for 3D printing can refer to a 3D printing head, or can refer to an entire 3D printer or a 3D printing system.
  • the device 4 for 3D printing may include a feeding tube 5 and a sleeve 6.
  • the sleeve 6 can be sleeved on the feed pipe 5 to form a compact sleeve assembly.
  • an opening 52 is provided on the outer wall of the conveying pipe 5 (the opening may, for example, extend along the axial direction of the conveying pipe 5).
  • the feeding pipe 5 may belong to a section of the entire feeding part of the device 4.
  • the feeding part may also include other parts communicating with the feeding pipe 5.
  • the feeding pipe 5 is the feeding part of the equipment 4, and the feeding port 54 may be provided on the end surface of the feeding pipe 5 or on the outer wall of the feeding pipe 5.
  • the inside of the conveying pipe 5 may adopt a circular arc design.
  • the feed channel can be designed as a cylindrical channel.
  • a circular arc transition is also adopted between the cylindrical channel and its end.
  • the conveying channel adopts a circular arc design, which can not only make the molten material be smoothly conveyed in the conveying channel, but also facilitate the cleaning of the conveying channel, and try to avoid the material staying in the conveying channel and causing material waste.
  • the sleeve 6 can be sleeved on the conveying pipe 5, that is, the conveying pipe 5 can be regarded as the inner tube of the sleeve 6.
  • a discharge port 65 which can communicate with the opening 52 is provided on the outer wall of the sleeve 6.
  • the discharge port 65 may also be a discharge port 65 extending along the axial direction of the conveying pipe 5, that is, the length direction of the discharge port 52 may be the axial direction of the conveying pipe 5.
  • the outer wall of the sleeve 6 can be provided with one discharge port 65 or multiple discharge ports 65.
  • the outer wall of the sleeve 6 can be provided with 2 discharge ports, 3 discharge ports, 4 discharge ports, and 8 discharge ports.
  • the sleeve 6 can move relative to the feeding pipe 5, so that different outlets 65 are connected to the opening 52 (that is, switching between different outlets 65 is realized).
  • the sleeve 6 can rotate relative to the delivery pipe around the axis of the delivery pipe 5 so that the discharge port 65 communicates with the opening 52 or no longer communicates.
  • the sleeve 6 rotates around the axis of the feeding tube 5 relative to the feeding tube, so that when printing needs to be suspended, the outlet 65 and the opening 52 are no longer connected, thereby blocking the material conveying channel and realizing suspension of printing.
  • FIG. 7 schematically shows two discharge ports 65.
  • the two discharge ports are respectively marked as the discharge port 65(1) and the discharge port 65(2).
  • the axis of the feeding pipe 5 can be rotated by an angle (in the example of FIG. 7, it is rotated by an angle clockwise), so that the discharge port 65(1) and the opening 52 are no longer connected, as shown on the right in FIG. Block the material conveying channel and realize the suspension of printing.
  • the device 4 provided in the embodiment of the present application realizes the suspension of printing by rotating the sleeve relative to the feeding tube around the axis of the feeding tube, and can realize a quick response to the suspension of printing.
  • the sleeve 6 can be rotated by a relatively small angle around the axis of the feeding pipe 5 relative to the feeding pipe, so that the outlet 65 and the opening 52 are connected or no longer communicated.
  • the smaller angle refers to the smallest angle that enables the discharge port 65 and the opening 52 to communicate to no longer communicate.
  • the sleeve 6 is rotated relative to the feeding tube around the axis of the feeding tube 5 by the minimum first angle to make the discharge port 65 and the opening 52 no longer communicate, then the sleeve 6 The first angle is rotated about the axis of the feeding pipe 5 relative to the feeding pipe, so that the outlet 65 and the opening 52 are no longer communicated with each other.
  • 3D printing extruded materials are usually high-viscosity materials, for example, with the viscoelastic properties of polymer materials.
  • the material conveying device stops conveying the printing materials the flow of the materials will not stop suddenly, and the printing materials will be in the target printing area. Continue to accumulate outside the edge of the contour, which will destroy the shape of the cross-sectional contour line of the target printing area, resulting in a decrease in the geometric accuracy of the print.
  • the sleeve 6 is wound around the feeding tube.
  • the axis of the feeding pipe 5 rotates at a small angle so that the discharge port 65 is no longer connected to the opening 52, blocking the material conveying channel, so that the printing material quickly responds to the command of the control system and stops flowing out of the discharge port 65 .
  • the device 4 provided in the embodiment of the present application can realize a quick response to pause printing.
  • the sleeve 6 rotates relative to the feeding tube around the axis of the feeding tube 5.
  • the discharging port 65 is connected to the opening 52, thereby opening the material conveying channel and realizing start-up. Print.
  • FIG. 7 Also take Figure 7 as an example. Assuming that the discharge port 65(1) is initially disconnected from the opening 52, as shown on the right in Figure 7, when printing is required, the sleeve 6 can rotate an angle relative to the conveying pipe around the axis of the conveying pipe 5 (in the figure) In the example of 7, rotate an angle counterclockwise) to make the discharge port 65(1) communicate with the opening 52, as shown on the left in FIG. 7, thereby opening the material conveying channel and realizing the start of printing.
  • the device 4 provided in the embodiment of the present application realizes the start of printing by rotating the sleeve 6 relative to the feeding tube around the axis of the feeding tube 5, which can realize a quick response to the start of printing.
  • the rotation of the sleeve 6 relative to the conveying pipe around the axis of the conveying pipe 5 can be realized by a driving device.
  • the device 4 includes a driving device 7.
  • the driving device 7 can be used to drive the sleeve 6 to rotate relative to the conveying pipe around the axis of the conveying pipe 5 so that the discharge port 65 communicates with the opening 52 or no longer communicates.
  • the driving device 7 is used to drive the sleeve 6 to rotate about the axis of the feeding tube 5 relative to the feeding tube when printing needs to be suspended, so that the outlet 65 and the opening 52 are no longer connected.
  • the driving device 7 is used to drive the sleeve 6 to rotate around the axis of the feeding tube 5 relative to the feeding tube when printing needs to be started, so that the outlet 65 and the opening 52 are connected.
  • the driving device 7 may be a rack and pinion mechanism or a crank slider mechanism.
  • the discharge port 65 may always be in communication with the opening 52.
  • the discharge port 65 can be fixed below the opening 52.
  • the sleeve 6 rotates relative to the feeding tube around the axis of the feeding tube 5 so that the discharge port 65 and the opening 52 are no longer connected.
  • the sleeve 6 can move relative to the feed pipe 5 so that the discharge port 65 can be moved below the opening 52 so as to communicate with the opening 52.
  • the sleeve 6 rotates relative to the feeding tube around the axis of the feeding tube 5 so that the discharge port 65 and the opening 52 are no longer connected.
  • the sleeve 6 may be an integral sleeve, such as an integrally formed sleeve. In other embodiments, the sleeve 6 may be a separate sleeve, that is, the outer wall of the sleeve 6 may include multiple separable parts, or the outer wall of the sleeve 6 may be spliced by multiple separable parts.
  • the outer wall of the sleeve 6 may include a first part 61 and a second part 62 that are separable.
  • the first part 61 can be assembled with the feed pipe 5 in the manner shown in FIG. 11.
  • the second part 62 may have a complementary structure to the first part 61, and the two parts are spliced together as shown in FIG. 8 to form the outer wall of the sleeve 6.
  • the outer wall of the sleeve 6 may also be composed of three or more separable parts. Taking Figures 12 to 13 as an example, the outer wall of the sleeve 6 includes a separable first part 61, a second part 62, a third part 63, and a fourth part 64. The edges of these four parts are joined to each other to form the sleeve 6. The outer wall.
  • the sleeve 6 can be fixed with the conveying pipe 5 or can move relative to the conveying pipe 5.
  • the sleeve 6 can move along the axial direction of the conveying pipe 5; another example, the sleeve 6 can rotate around the axis of the conveying pipe 5; another example, the sleeve 6 can move along the axial direction of the conveying pipe 5. It can also rotate along the axis of the feed pipe 5.
  • the discharge port 65 may be a fixed-size discharge port, or may be an adjustable-size discharge port.
  • the size of the discharge port 65 can be adjusted to indicate that the length of the discharge port 65 is adjustable (or the length is continuously adjustable), the width of the discharge port 65 is adjustable (or the width is continuously adjustable), or the length of the discharge port 65 Both the width and the width are adjustable (or continuously adjustable).
  • discharge port 65 As a discharge port with an adjustable size. Several possible implementations are given below.
  • one or more shields may be provided at the discharge port 65 to adjust the size of the discharge port 65.
  • the sleeve 6 may include multiple separable parts.
  • the abutting surfaces of the multiple parts can enclose multiple discharge ports, and the multiple parts can move relative to each other (for example, along the axial direction of the conveying pipe 5), so as to adjust the size of the discharge port 65.
  • the sleeve 6 may include a first part 61 and a second part 62.
  • the first part 61 and the second part 62 are relatively slidable along the axial direction of the conveying pipe 5, so that a discharge port 65 with an adjustable length (or continuously adjustable) can be formed.
  • the shapes of the first part 61 and the second part 62 and the manner in which they form the discharge port 65 can be various.
  • the first portion 61 may include a first upper step surface 611, a first lower step surface 612, and a first connection surface 613 connecting the first upper step surface 611 and the first lower step surface 612.
  • the second part 62 may include a second upper step surface 621, a second lower step surface 622, and a second connection surface 623 connecting the second upper step surface 621 and the second lower step surface 622.
  • the first upper step surface 611 is in contact with the second lower step 622, and the two can slide relative to each other along the axial direction of the conveying pipe 5 (in other words, the first upper step surface 611 and the second lower step 622 are along the conveying pipe 5).
  • the axial sliding connection ).
  • the first lower step surface 612 is in contact with the second upper step 621, and the two can slide relative to each other along the axial direction of the conveying pipe 5 (in other words, the first lower step surface 612 and the second upper step 621 are along the conveying pipe 5).
  • the axial sliding connection ).
  • the hollow area formed by the first lower step surface 612, the first connection surface 613, the second lower step surface 622, and the second connection surface 623 can serve as the discharge port 65.
  • the first part 61 and the second part 62 are butt-connected together in a stepped structure with complementary misalignment, and they slide relative to each other along the axial direction of the conveying pipe 5 to form a discharge port 65 with a continuously adjustable length.
  • the width of the discharge port 65 depends on the height difference between the first upper step surface 611 and the first lower step surface 612 (or the second upper step surface 621 and the second lower step surface 622).
  • This implementation of the discharge port can form a discharge port 65 with a small width under the premise of ensuring the size and strength of the first part 61 and the second part 62 (the width of the discharge port may affect the printing accuracy).
  • first part 61 and the second part 62 may have a concave-convex complementary structure.
  • the relative sliding of the first part 61 and the second part 62 along the axial direction of the conveying pipe 5 can change the relative positional relationship between the concave and convex parts, and the hollow area between the concave and convex parts can form the discharge port 65.
  • first part 61 and the second part 62 are relatively slidable along the axial direction of the conveying pipe 5. It should be noted that the embodiment of the present application does not require that the first part 61 and the second part 62 are both slidable relative to the conveying pipe 5.
  • both the first part 61 and the second part 62 are slidable relative to the feeding pipe 5.
  • the first part 61 is slidable relative to the conveying pipe 61, and the second part 62 is fixedly connected to the conveying pipe 62 or integrally formed with the conveying pipe 5.
  • This implementation can simplify the control of the device 4.
  • the end 614 of the first part 61 can be designed as a closed ring on the feeding pipe 5; and/or the end of the second part 62 can be
  • the part 624 (the end 614 and the end 624 may define the length of the sleeve 6 in the axial direction) is designed as a closed ring set on the conveying pipe 5. In this way, the overall rigidity and tightness of the sleeve 6 can be strengthened.
  • both ends of the first part 61 can be designed as closed rings. . In this way, the overall rigidity and tightness of the sleeve 6 can be strengthened.
  • the embodiment of the present application does not specifically limit the relationship between the size of the discharge port 65 and the size of the opening 52.
  • the size of the discharge port 65 may be the same as the size of the opening 52, or may be different from the size of the opening 52.
  • the length of the discharge port 65 (when the discharge port 65 is an adjustable-length discharge port, the length of the discharge port 65 can indicate the maximum length of the discharge port 65) may be less than the length of the opening 52;
  • the width of the discharge port 65 (when the discharge port 65 is a width-adjustable discharge port, the width of the discharge port 65 can indicate the maximum width of the discharge port 65) may be smaller than the width of the opening 52.
  • the adjustment of the size of the discharge port 65 can be realized by a driving device.
  • a bracket 91 for fixing the first part 61 and a bracket 92 for fixing the second part 62 may be provided on the sleeve 6.
  • the driving device 7 can provide the support 91 and the support 92 with power to move in the axial direction of the conveying pipe 5, so that the support 91 drives the first part 61 to move in the axial direction, and the support 92 drives the second part 62 to move in the axial direction.
  • the driving device 7 may be a rack and pinion mechanism or a crank slider mechanism.
  • the outer wall of the sleeve 6 may be provided with one discharge port 65 or a plurality of discharge ports 65 may be provided.
  • the outer wall of the sleeve 6 can be provided with 2 discharge ports, 3 discharge ports, 4 discharge ports, and 8 discharge ports.
  • the sleeve 6 can move relative to the feeding pipe 5, so that different outlets 65 are connected to the opening 52 (that is, switching between different outlets 65 is realized).
  • a plurality of discharge ports 65 may be arranged along the axial direction of the conveying pipe 5.
  • the sleeve 6 can be translated along the axial direction of the conveying pipe 5 so that different outlets 65 communicate with the opening 52.
  • a plurality of discharge ports 65 may be arranged along the circumferential direction of the sleeve 6.
  • the sleeve 6 can rotate around the axis of the feeding pipe 5 so that different outlets 65 are connected to the opening 52.
  • the device 4 can also be designed with a corresponding driving device.
  • the driving device may be a gear transmission mechanism, for example.
  • the sleeve 6 may include a first part 61 and a second part 62.
  • the first part 61 and the second part 62 are similar to the first part 61 and the second part 62 shown in FIG. 8 and FIG.
  • the butting surfaces are all stepped butting surfaces, wherein the stepped butting surfaces 611a, 612a and 613a of the first part 61 and the corresponding surfaces of the second part are used to form the discharge port 65a; the stepped butting surface 611b of the first part 61 , 612b and 613b and the corresponding surface of the second part are used to form the discharge port 65b.
  • the sleeve 6 is formed by splicing 4 parts 61, 62, 63, 64, and each two adjacent parts form a discharge port, forming a total of 4 Discharge ports 65a, 65b, 65c, 65d.
  • the abutting surfaces of two adjacent parts can also be designed to be flat. In this way, the two adjacent parts will not form a discharge port, so that each can be designed according to actual needs.
  • Various number of outlets for example, an odd number of outlets can be designed, or an even number of outlets can be designed).
  • the embodiment of the present application does not specifically limit the size of the multiple discharge ports 65.
  • the multiple outlets 65 can be outlets with the same size (if the outlet 65 is an adjustable-size outlet, the same size here can indicate that the maximum size of the outlet 65 is the same) or different sizes.
  • the discharge port can be outlets with the same size (if the outlet 65 is an adjustable-size outlet, the same size here can indicate that the maximum size of the outlet 65 is the same) or different sizes.
  • the lengths (or maximum lengths) of the multiple discharge ports 65 are different.
  • the widths of the multiple discharge openings 65 are different.
  • the width of the discharge port 65 affects the width of the extruded material, which in turn affects the 3D printing accuracy.
  • the multiple outlets 65 with different design widths allow the device 4 to select outlets with different precisions for printing according to actual needs.
  • the layer to be printed includes a first printing area where the cross-sectional contour line changes drastically in the vertical direction and a second printing area where the cross-sectional contour line changes gently in the vertical direction
  • the device 4 when the device 4 is used to print the first printing area , You can switch to a smaller width of the discharge port to improve printing accuracy; when using device 4 to print the second printing area, you can switch to a larger width of the discharge port, so as to improve the printing accuracy Printing efficiency.
  • the discharge port 65 provided in the embodiment of the present application may be a discharge port 65 with a continuously adjustable length.
  • the discharge port 65 is designed as a continuously adjustable discharge port, which overcomes the constraints of the traditional discharge port design concept. This new type of discharge port has Obvious advantages and broad application prospects. This is analyzed below.
  • the discharge port of a traditional 3D printing head is usually designed as a nozzle with a fixed shape.
  • Common nozzle shapes include round holes, square holes, or slightly deformed equal-diameter holes.
  • the diameter of the nozzle is usually about 1mm, and the common diameter is 0.4mm.
  • a nozzle with a smaller caliber is usually selected.
  • This type of nozzle has a small amount of material extrusion per unit time and low printing efficiency; when the printing efficiency of the article is high, usually A nozzle with a larger caliber will be selected.
  • This type of nozzle prints a rougher shape and lower printing accuracy. It can be seen that traditional 3D printing heads cannot take into account the efficiency and accuracy of 3D printing.
  • the formation process of this design method of the traditional discharge port is analyzed below.
  • 3D printing technology is a more advanced manufacturing technology developed on the basis of 2D printing technology.
  • the 3D model of the article to be printed Before 3D printing, the 3D model of the article to be printed usually needs to be layered. After layering, it is equivalent to decomposing the printing process of the 3D article into many 2D printing processes, that is, each layered printing process can be regarded as One flat printing process. Therefore, traditional 3D printing equipment has followed many design concepts of 2D printing equipment.
  • the discharge port of the 2D print head generally adopts a fixed-shaped nozzle design.
  • the discharge port of the 3D print head follows the design method of the discharge port of the 2D print head, and the discharge port is also designed with a fixed shape. Nozzle. As mentioned above, this nozzle design makes 3D printing heads unable to balance efficiency and accuracy, and becomes a key obstacle to the development of 3D printing technology.
  • the discharge port 65 is designed as a discharge port whose length is continuously adjustable within a certain range. This is a design made on the basis of fully considering the characteristics of 3D printing objects. Compared with traditional 3D printing equipment, the 3D printing equipment provided by the embodiments of this application makes it possible to balance the efficiency and accuracy of 3D printing, and is more suitable for 3D printing. The specific discussion is as follows.
  • the size of 2D printing objects is generally small, and the printing objects are mainly text or images. Text or images can be arranged freely on a two-dimensional plane, and there is no rule to follow. Therefore, designing the discharge port of the 2D printing device as a nozzle with a fixed shape has a certain versatility, and this design is reasonable in the field of 2D printing.
  • 3D printed objects are generally 3D objects that need to be actually used.
  • a 3D object has a certain physical outline. Therefore, the cross-section of a 3D object along a certain section is usually one or more closed and continuously changing curves.
  • the embodiment of the present application makes full use of this feature of the 3D printed object, and involves the discharge port 65 as a discharge port with a continuously adjustable length. The continuous adjustment of the length of the discharge port 65 is consistent with the closed and continuously changing characteristics of the cross-sectional profile of the 3D printing object. This discharge port 65 is more suitable for 3D printing, making it possible to greatly improve the printing efficiency.
  • continuous printing can be performed along the cross-sectional contour line, and the discharge port 65 can be controlled to change with the change of the cross-sectional contour line during the printing process. It is understandable that it is different from the traditional Compared with the pass-by-pass printing method, printing along the cross-sectional contour line has super-high printing efficiency.
  • the width of the discharge port 65 can be set to a smaller fixed value, so that the printing accuracy of the 3D object remains unchanged, and at a higher accuracy, so that the printing is made during the continuous change of the discharge port 65 The accuracy remains the same, which is difficult to achieve with traditional 3D printing heads. Therefore, the continuously adjustable length of the discharge port provided by the embodiment of the present application makes it possible to take into account the efficiency and accuracy of 3D printing, and is more suitable for 3D printing.
  • the length of the discharge port 65 can be controlled to continuously change according to the shape of the target printing area (or, the length of the discharge port 65 can be controlled to change as the shape of the target printing area changes), wherein the target printing area can be It is part of the printing area of the layer to be printed, or it may be the entire printing area of the layer to be printed.
  • the size of the discharge port 65 can be adjusted so that the length of the discharge port 65 matches the cross-sectional length of the cross-sectional contour line of the target printing area of the layer to be printed.
  • the size of the discharge port 65 can be adjusted so that the two ends of the discharge port 65 are aligned with the cross-sectional contour line of the target printing area in the vertical direction.
  • the two ends of the discharge port 65 are aligned with the cross-sectional contour line of the target printing area in the vertical direction, and the vertical projection of the two ends of the discharge port 65 in the vertical direction will fall on the cross-section line of the cross-sectional contour line of the target printing area. superior.
  • this printing method will be referred to as tracking printing of the cross-sectional contour line of the target printing area in the following text.
  • reference numeral 100 indicates the target printing area of the layer to be printed, and the length direction of the discharge port 65 extends along the x direction.
  • the device 4 can be controlled to move in the y direction as a whole.
  • the length and/or position of the discharge port 65 are changed in real time, so that the two ends of the discharge port 65 are always aligned with the cross-sectional contour line of the target printing area 100 in the vertical direction z (perpendicular to the xy plane). Alignment, even if it is obtained that the projections of the two ends of the material opening 65 in the vertical direction z always fall on the cross-sectional contour line of the target printing area 100.
  • the y coordinate of the current position of the discharge port 65 is y1
  • y1 cuts the cross-sectional contour line of the target printing area 100 along the x direction to obtain two points (x1, y1) and (x2, y1), which can be changed
  • the positions of the two ends of the discharge port 65 are such that the first end is located directly above (x1, y1) and the second end is located directly above (x2, y1), so that the cross-sectional contour line of the target printing area 100 can be measured. Accurate tracking and printing.
  • the positions of the two ends of the discharge port 65 can be adjusted so that the two ends of the discharge port 65 are aligned with the cross-sectional contour line of the target printing area in the vertical direction.
  • the size of the discharge port 65 can be adjusted so that the length of the discharge port 65 matches the cross-sectional length of the cross-sectional contour line of the target printing area of the layer to be printed; and the driving device is used
  • the relative position between the feeding tube 5 and the sleeve 6 as a whole and the printing platform is adjusted so that the two ends of the discharge port 65 are aligned with the cross-sectional contour line of the target printing area in the vertical direction.
  • the device 4 can use one of the above two implementation methods to achieve tracking printing according to actual needs; or, it can also use different tracking printing methods when printing different parts of the target print area .
  • the target printing area may include a portion with a shorter cut line length and a portion with a longer cut line length.
  • the first implementation method can be used for tracking printing to simplify the control of the device 4; when printing a part with a longer line length, the second implementation method can be used for tracking printing .
  • Traditional 3D printing generally prints lane by lane in a certain pass order. Since the size of the discharge port of the traditional 3D printing equipment is small (the caliber is usually in the millimeter level), it takes a long time to print each pass.
  • the material on the previous pass adjacent to the current pass may already be in or close to the solidified state, while the material on the current pass is still in a molten state.
  • the material in the molten state on the current pass needs to be fused with the material in or near the solidification state on the previous pass to form a whole.
  • the material fusion process between adjacent passes is called pass overlap .
  • the material fusion process between adjacent passes may experience poor fusion.
  • the mechanical properties of the printed items are poor.
  • the shape of the object obtained after the materials on the adjacent passes are fused with each other will be relatively rough.
  • the cylinder 101 is a cylinder printed by using the traditional 3D printing technology and the way of overlapping passes.
  • the cylindrical body 101 not only has a rough overall shape and contour, but also has multiple gaps 103 caused by poor material fusion during the lap joint process.
  • the device 4 provided by the embodiment of the present application adjusts the length and position of the discharge port 65 to enable it to track and print the cross-sectional contour line of the target printing area. Therefore, in the process of printing the target printing area, the device 4 does not need to perform printing one by one according to the pass, and there is no need to overlap the passes, so that the problem of poor fusion will not occur. Therefore, the items printed by the device 4 have higher mechanical properties.
  • the cylinder 102 is a cylinder printed by the device 4. Compared with the cylinder 101, the filling material of the cylinder 102 has a good fusion condition, and there is no problem of poor fusion caused by overlapping passes.
  • the switch between pass and pass uses polyline 104 instead of the real contour curve, that is, the polyline is used to approximate the real contour curve, resulting in the printed
  • the outline of the cylinder 102 is relatively rough.
  • the device 4 provided in the embodiment of the present application does not need to print according to the pass, but by adjusting the length and position of the discharge port 65, the cross-sectional contour line of the target printing area is tracked and printed. Therefore, the cylinder 102 printed by the device 4
  • the contour lines are also smoother and more realistic.
  • the target print area there are many ways to determine the target print area. For example, according to one or more of the shape of the cross-sectional contour line of the layer to be printed, the length of the longest cut line, and the size of the discharge port, it can be determined that the entire printing area of the layer to be printed is used as the target printing area. Still divide the printing area of the layer to be printed into multiple target printing areas for printing.
  • the entire printing area of the layer to be printed can be determined as the target printing area; when the cross-sectional contour of the layer to be printed When the length of the longest cut line of the line is greater than the maximum length of the discharge port, the entire printing area of the layer to be printed can be divided into multiple target printing areas.
  • each closed area may be used as one or more target printing areas for printing.
  • the device 4 can be designed as a dedicated device for printing specific items, and the length of the discharge port 65 of the device 4 can be designed to be able to print all the print areas of each printing layer of the item at one time. In this way, in actual work, the device 4 can print each layer of the article in a fixed manner, and there is no need to divide the printing area online.
  • the equipment 4 may further include a feeding device 200.
  • the feeding device 200 can feed the material to the outlet 65 through the feeding pipe 5.
  • the equipment 4 may also include a driving device (not shown in the figure) for driving the feeding device 200, which can drive the feeding device so that the material extruding amount of the outlet 65 is equal to the length of the outlet. match.
  • the feeding device 200 may be a screw feeding device as shown in (a) in FIG. 22, a pneumatic feeding device as shown in (b) in FIG. 22, or as shown in (b) in FIG. 22 c) Piston type feeding device shown.
  • the rotation speed of the screw can be adjusted by the driving device to control the amount of material extruding at the discharge port 65; when the feeding device 200 is a pneumatic feeding device, it can be adjusted by The pressure acting on the liquid surface of the material controls the amount of material extruding from the discharge port 65; in the case that the feeding device 200 is a piston feeding device, the movement of the piston in the piston cylindrical feeding port can be adjusted by the driving device Speed, so as to control the amount of material extruding from the discharge port 65.
  • the matching of the material extrusion volume of the discharge port 65 with the length of the discharge port 65 means that the material extrusion volume of the discharge port 65 changes in proportion to the length of the discharge port 65.
  • the amount of material to be extruded can be determined according to the length of the discharge port 65. Then, the material feeding amount of the feeding device 200 can be controlled so that the material feeding amount is equal to the material extruding amount.
  • the device 4 may also include a control device 8 for controlling various driving devices mentioned above.
  • the control device 46 may be a dedicated numerical control device or a general-purpose processor.
  • the control device 46 may be a distributed control device or a centralized control device.
  • the method embodiment of the present application is described below. Since the method embodiment can be executed by the device 4 described above (specifically, it can be executed by the control device 8 in the device 4), the parts that are not described in detail can be referred to the above.
  • the embodiment of the present application also provides a device for 3D printing.
  • the device has a discharge port with an adjustable length, and the extrusion channel of the discharge port has a structure with a variable cross-section along the material flow direction.
  • the extrusion channel of the discharge port is a structure in which the cross section along the material flow direction gradually shrinks to the required size of the discharge port.
  • the size of the outlet includes width and length.
  • the extrusion channel of the discharge port is a structure in which the cross section along the material flow direction gradually shrinks to the required width of the discharge port.
  • the width of the cross section of the extrusion channel of the discharge port along the material flow direction gradually shrinks to the width required by the discharge port.
  • the extrusion channel of the discharge port is a structure in which the cross section along the material flow direction gradually shrinks to the required length of the discharge port.
  • the discharge port can be designed in a variety of ways.
  • the cross section of the extrusion channel of the discharge port in the length direction is a stepped flow channel cross section.
  • the cross section of the extrusion channel of the discharge port in the length direction is a streamlined flow channel cross section.
  • the cross-section of the extrusion channel of the discharge port in the length direction can also be designed in other feasible shapes or patterns, as long as the extrusion channel of the discharge port can gradually shrink to this cross-section along the material flow direction.
  • the structure of the required size of the discharge port is sufficient.
  • the cross section of the extrusion channel of the discharge port in the width direction may also be a stepped flow channel section or a streamlined flow channel section (not shown in the figure).
  • 3D printing extruded materials are usually high-viscosity materials, and the resistance generated by the extruded materials is proportional to the channel length of the discharge port.
  • the discharge port is equivalent to a slit channel, as shown in (a) in Figure 23, the resistance of the extruded material will be very large, which will reduce the printing efficiency.
  • the material conveying system needs to provide very large conveying power, which will be significant Increase the cost of printing, making the printing process uneconomical.
  • the extrusion channel of the discharge port is a structure in which the cross-section along the material flow direction gradually shrinks to the required size of the discharge port, which can effectively reduce the resistance of the material extrusion, thereby having Conducive to improving the efficiency of printing and molding.
  • the resistance of the material extrusion can be reduced, the requirement for the conveying power of the material conveying system can be reduced, thereby reducing the printing cost.
  • the application scenario of this embodiment includes but is not limited to the device 4 provided in the above embodiment.
  • the device for 3D printing provided in this embodiment is the device 4 provided in the above embodiment, and the discharge port in this embodiment is the discharge port 65 in the device 4.
  • the extrusion channel can be formed by the die of the sleeve 6 as a discharge port 65 whose cross section gradually shrinks along the material flow direction to the required size of the discharge port.
  • a stepped structure can be provided on the abutting surface of two adjacent parts to form an extrusion channel that gradually shrinks the cross section along the material flow direction to the discharge port.
  • the size of the discharge port 65 is required.
  • the abutting surface between the first part 61 and the second part 62 may have a stepped structure in the material outflow direction to
  • the passage of the discharge port 65 is a structure in which the cross section gradually shrinks to the size of the discharge port 65 along the material flow direction.
  • the abutting surface between the two spliced parts of the first part 61, the second part 62, the third part 63 and the fourth part 64 is when the material flows out.
  • the direction may have a stepped structure, so that the passage of the discharge port 65 is a structure whose cross section gradually shrinks to the size of the discharge port 65 along the material flow direction.
  • the butting surface 612 of the first part 61 includes a stepped structure along the material outflow direction.
  • the butting surface 612 includes an upper step surface 6121 and a lower step surface. 6122;
  • the butting surface 622 of the second part 62 also has a stepped structure along the material outflow direction (similar to the stepped structure of the butting surface 612, not shown in the figure).
  • the extrusion channel of the discharge port 65 formed by butting the first part 61 and the second part 62 is a structure in which the cross section gradually shrinks to the required size of the discharge port along the material flow direction, as shown in FIG. 25.
  • the cross section of the extrusion channel of the discharge port 65 in the longitudinal direction is a stepped flow channel cross section as shown in (b) of FIG. 23.
  • the first part 61 and the second part 62 shown in FIG. 25 are assembled with the delivery tube 5 to form a discharge port 65 with a structure in which the cross section of the extrusion channel gradually shrinks along the material flow direction to the required size of the discharge port. ⁇ 4, as shown in Figure 26.
  • the cross section of the feeding tube 5 and the sleeve 6 in the direction of the extrusion channel passing through the outlet 65 is shown in FIG. 7, and the outlet 65(1) shown in FIG. 7 represents The extrusion channel is a discharge port with a structure whose cross-section gradually shrinks along the material flow direction to the required size of the discharge port.
  • FIG. 27 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • the control method of FIG. 27 can control a device used for 3D printing.
  • the device may be the device 4 described above, for example, and the control method may be executed by the control device 8 in the device 4, for example.
  • the equipment may include feed pipes and casing pipes.
  • the outer wall of the conveying pipe is provided with an opening extending along the axial direction of the conveying pipe.
  • the sleeve can be sleeved on the conveying pipe, and the outer wall of the sleeve is provided with a discharge port which can communicate with the opening, and the sleeve can rotate relative to the conveying pipe around the axis of the conveying pipe.
  • the method in FIG. 27 may include step S2710: controlling the sleeve to rotate relative to the feeding tube around the axis of the feeding tube, so that the outlet is connected with the opening or no longer communicated.
  • step S2710 includes: when printing needs to be suspended, the control sleeve rotates relative to the feeding tube around the axis of the feeding tube, so that the discharge port and the opening are no longer connected, thereby blocking the material conveying channel.
  • step S2710 includes: when printing needs to be started, the control sleeve rotates relative to the conveying pipe around the axis of the conveying pipe, so that the discharge port communicates with the opening, thereby opening the material conveying passage.
  • the method in FIG. 27 may include step S2720: adjusting the size of the discharge port.
  • Step S2720 may include: controlling the relative sliding of the first part and the second part to adjust the size of the discharge port.
  • the first part includes a first upper step surface, a first lower step surface, and a first connecting surface connecting the first upper step surface and the first lower step surface
  • the second part includes a second upper step surface, a second lower step surface
  • the step surface and the second connecting surface connecting the second upper step surface and the second lower step surface, the first upper step surface and the first lower step surface are in contact with the second lower step surface and the second upper step surface respectively, and can be along the axis Sliding relative to each other, the hollow area formed by the first lower step surface, the first connecting surface, the second lower step surface and the second connecting surface is a discharge port.
  • step S2720 may include: adjusting the size of the discharge port so that the length of the discharge port matches the cross-sectional length of the cross-sectional contour line of the target printing area of the layer to be printed, wherein the target printing area is the size of the layer to be printed. Part or all of the print area.
  • step S2720 may include: adjusting the size of the discharge port so that the two ends used to define the length of the discharge port are aligned with the cross-sectional contour line of the target printing area in the vertical direction.
  • the method of FIG. 27 may further include: adjusting the relative position between the feeding tube and the sleeve as a whole and the printing platform, so that the two ends used to define the length of the outlet are vertically aligned with the target Align the cross-sectional contour lines of the printing area.
  • the method of FIG. 27 may further include: when the length of the longest cut line of the cross-sectional contour line of the layer to be printed is less than or equal to the maximum length of the discharge port, determining the entire printing area of the layer to be printed as the target printing Area; when the length of the longest cut line of the cross-sectional contour line of the layer to be printed is greater than the maximum length of the discharge port, the entire printing area of the layer to be printed is divided into multiple target printing areas.
  • the method of FIG. 27 may further include: controlling the feeding device to feed the material at the discharge port, so that the extrusion amount of the material at the discharge port matches the size of the discharge port.
  • a plurality of discharge ports are provided on the outer wall of the sleeve.
  • the method of FIG. 27 may further include: controlling the movement of the sleeve relative to the feeding pipe so that different outlets are in communication with the openings.
  • a plurality of discharge ports are arranged along the circumferential direction of the sleeve, and the control sleeve moves relative to the conveying pipe so that different discharge ports communicate with the openings.
  • the movement may include: controlling the sleeve around the conveying pipe The axis rotates to make the different outlets communicate with the openings.
  • the widths of different outlets are different.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Coating Apparatus (AREA)

Abstract

提供一种用于3D打印的设备及其控制方法。该设备包括:输料管,其外壁上设置有沿输料管的轴向延伸的开口;套管,套在输料管上,套管的外壁上设置有可与开口连通的出料口,套管可相对输料管绕输料管的轴线旋转,以使得出料口与开口连通或者不再连通。与传统设计方式相比,上述设备利用套管提供出料口,并将套管和输料管套接在一起,使得整个设备的结构更加紧凑,此外,通过套管相对输料管绕输料管的轴线旋转来实现暂停打印,可以实现暂停打印的快速响应。

Description

用于3D打印的设备及其控制方法
本申请要求于2020年04月03日提交中国专利局、申请号为202010261474.7、申请名称为“用于3D打印的设备及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印领域,更为具体地,涉及一种用于3D打印的设备及其控制方法。
背景技术
熔融沉积成型(fused deposition modeling,FDM)技术是一种常用的3D打印技术。FDM技术通常需要将物料加热至熔融状态(或半流动状态),并将熔融状态的物料从3D打印头的出料口(或称挤出口)挤出,物料在打印平台上逐层沉积,形成3D物品。
传统3D打印头具有输料部分以及用于形成出料口的喷嘴。该喷嘴通常安装在输料部分的下端,导致设备的结构不够紧凑。
发明内容
本申请提供一种用于3D打印的设备及其控制方法,能够使得设备的结构更加紧凑。
第一方面,提供一种用于3D打印的设备,包括:输料管,其外壁上设置有沿所述输料管的轴向延伸的开口;套管,套在所述输料管上,所述套管的外壁上设置有可与所述开口连通的出料口,所述套管可相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通或者不再连通。
第二方面,提供一种用于3D打印的设备的控制方法,所述用于3D打印的设备包括:输料管,其外壁上设置有沿所述输料管的轴向延伸的开口;套管,套在所述输料管上,所述套管的外壁上设置有可与所述开口连通的出料口,所述套管可相对所述输料管绕所述输料管的轴线旋转;所述控制方法包括:控制所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通或者不再连通。
第三方面,提供一种计算机可读存储介质,其上存储有用于执行如第二方面所述的控制方法的指令。
第四方面,提供一种计算机程序产品,包括用于执行如第二方面所述的控制方法的指令。
与传统设计方式(将喷嘴设置在输料部分的底部)相比,本申请利用套管提供出料口,并将套管和输料管套接在一起,使得整个设备的结构更加紧凑,并且通过套管相对输料管绕输料管的轴线旋转来实现暂停打印,可以实现暂停打印的快速响应。
附图说明
图1是传统3D打印设备的总体结构示意图。
图2是传统3D打印头的结构示意图。
图3a是待打印层的打印区域的示例图。
图3b是道次的排布方式示例图。
图4是本申请实施例提供的用于3D打印的设备的结构示例图。
图5是本申请实施例提供输料管的三维结构示例图。
图6是图5所示的输料管的二维平面图。
图7是本申请实施例提供的输料管与套管在通过出料口的挤出通道方向上的横截面示意图。
图8是图4所示的设备去除支架之后的结构图。
图9是本申请一个实施例提供的分离式套管中的可分离部分的三维结构示例图。
图10是图9所示的可分离部分的二维平面图。
图11是图9所示的可分离部分与输料管的组装方式的示意图。
图12是本申请一个实施例提供的分离式套管的各个可分离部分的分解图。
图13是图12所示的各个可分离部分的组装图。
图14是本申请另一实施例提供的分离式套管的各个可分离部分的分解图。
图15是图14所示的可分离套管与输料管的组装图。
图16是本申请实施例提供的端部采用封闭圆环设计的可分离套管的示例图。
图17是本申请另一实施例提供的分离式套管中的可分离部分的三维结构示例图。
图18是由图17所示的可分离部分拼成的套管与输料管的组装图。
图19是本申请实施例提供的设备的打印过程的示例图。
图20是本申请实施例提供的设备与传统3D打印方式的打印效果对比图。
图21是传统3D打印方式中的道次切换方式的示例图。
图22是本申请实施例提供的送料装置的示例图。
图23是本申请又一实施例提供的用于3D打印的设备中开口的通道的侧视图。
图24是图26所示的设备中的套管的第一部分的结构图。
图25是图26所示的设备中的套管的结构图。
图26是本申请又一实施例提供的用于3D打印的设备的立体图。
图27是本申请实施例提供的控制方法的示意性流程图。
具体实施方式
为了便于理解,先对传统3D打印设备进行简单介绍。
如图1所示,传统3D打印设备1通常可以包括送料装置11、3D打印头12、打印平台13以及控制装置14(以上结构划分方式仅仅是一个示例,实际上,也可以采用其他结构划分方式,如控制装置和/或送料装置11可以属于3D打印头12的一部分)。
送料装置11可以与丝盘15相连。实际打印过程中,送料装置11可以从丝盘15上取得丝状的物料,并将丝状的物料输送至3D打印头12。3D打印过程所使用的物料一般是具有热塑性的物料,如高分子聚合物、低熔点金属以及其他可配成流动性膏状的物料(如膏状的陶瓷、高熔点金属粉末混合物、水泥等)。
如图2所示,3D打印头12通常可以包括输料部分121、喷嘴122和温度控制装置123。温度控制装置123一般设置在输料部分121的外侧,用于将送料装置11送至输料部分121的物料加热至熔融状态。温度控制装置123例如可以是加热装置。喷嘴122安装在输料部分121的下端。喷嘴可以提供出料口124,从而可以将输料部分121输送的熔融状态的物料挤出至打印平台13上。
控制装置14可用于控制3D打印头12对物品进行逐层打印。在打印每一层的过程中,可以控制3D打印头12按照预设的打印路径将该待打印层的全部打印区域(即该待打印层的截面轮廓线所包围的全部区域)打印完整。
传统3D打印的总体过程大致如下:
在打印物品之前,可以先利用建模软件建立物品的3D模型。该建模软件例如可以是计算机辅助设计(computer aided design,CAD)软件。然后,对创建出的3D模型进行分层处理,将3D模型划分成多个待打印层,得到各待打印层的分层数据。通过对3D模型进行分层处理,相当于将3D物品的打印过程分解成许多2D打印过程,每个待打印层的打印过程与平面的2D打印过程类似。在得到各待打印层的分层数据之后,控制装置14可以根据各待打印层的分层数据控制3D打印头12沿着一定的打印路径移动,并在移动过程中,通过出料口124将熔融状态的物料挤出至打印平台13上,对各待打印层的打印区域进行打印或填充。当物品的所有待打印层均打印完毕,物料逐层凝固,形成3D物品。
为了便于理解,下面以图3a和图3b为例,对传统3D打印设备对某一待打印层的打印过程进行详细说明。
参见图3a和图3b,待打印层的打印区域为区域31,区域31的截面轮廓线为截面轮廓线32。
为了将区域31打印完整,通常会基于截面轮廓线32,将区域31划分成紧密排布的多个道次(pass),如图3b所示的道次A1-道次A25。
在打印过程中,控制装置14控制3D打印头12的z坐标保持不变,并控制3D打印头12按照一定的顺序将所有道次打印完整,如按照平行往复直线路径依次打印道次A1-A25。
以道次A1的打印过程为例,控制装置14可以先将3D打印头12移动至如图3a所示的位置点p1的上方,然后控制3D打印头12从位置点p1上方移动至位置点p2上方,并在移动过程中通过出料口124将熔融状态的物料挤出至道次A1上,从而对道次A1进行打印,其他道次的打印方式类似,此处不再赘述。当所有道次打印完毕之后,该待打印层的打印过程结束,可以控制3D打印头12或工作平台13沿z轴方向移动,准备对下一层进行打印。
如前文所述,传统3D打印头12具有输料部分121以及用于提供出料口 124的喷嘴122。该喷嘴122通常安装在输料部分121的下端,导致3D打印头12的结构不够紧凑。
下面对本申请实施例提供的用于3D打印的设备进行详细描述。需要说明的是,该用于3D打印的设备可以指3D打印头,也可以指整个3D打印机或3D打印系统。
如图4所示,用于3D打印的设备4可以包括输料管5和套管6。该套管6可以套在输料管5上,从而形成结构紧凑的套接组件。
参见图5至图6,输料管5的外壁上设置有开口52(该开口例如可以沿输料管5的轴向延伸)。
在一些实施例中,输料管5可以属于设备4的整个输料部分的其中一段。除了输料管5之外,输料部分还可以包括与输料管5连通的其他部分。
在另一些实施例中,输料管5即为设备4的输料部分,进料口54可以设置在输料管5的端面上,也可以设置在输料管5的外壁上。
输料管5的内部(下文称其为输料通道)可以采用圆弧设计。例如,参见图5至图6,可以将输料通道设计成圆柱状的通道。此外,在一些实施例中,所述圆柱状的通道与其端部之间也采用圆弧过渡。输料通道采用圆弧设计,不但可以使得熔融状态的物料在输料通道流畅地被输送,而且可以方便输料通道的清洗,尽量避免物料在输料通道内部滞留而引起物料浪费。
套管6可以套在输料管5上,即输料管5可以看成是套管6的内管。套管6的外壁上设置有可与开口52连通的出料口65。在一些实施例中,与开口52类似,出料口65也可以是沿输料管5的轴向延伸的出料口65,即出料口52的长度方向可以为输料管5的轴向。套管6的外壁可以设置一个出料口65,也以设置多个出料口65。例如,套管6的外壁可以设置2个出料口,3个出料口,4个出料口,8个出料口。套管6可相对输料管5运动,使得不同出料口65与开口52连通(即实现不同出料口65之间的切换)。
套管6可相对输料管绕输料管5的轴线旋转,以使得出料口65与开口52连通或者不再连通。
例如,套管6相对输料管绕输料管5的轴线旋转,可以在需要暂停打印的情况下,使得出料口65与开口52不再连通,从而阻断物料输送通道,实现暂停打印。
结合图7描述一个示例。图7中示意性地示出两个出料口65,为了区分 而非限定,将两个出料口分别记为出料口65(1)与出料口65(2)。假设出料口65(1)与开口52初始是连通的,如图7中左边所示,出料口65(1)与开口52连通,当需要暂停打印时,套管6相对输料管绕输料管5的轴线可以旋转一个角度(在图7的示例中,顺时针旋转一个角度),以使得出料口65(1)与开口52不再连通,如图7中右边所示,从而阻断物料输送通道,实现暂停打印。
因此,本申请实施例提供的设备4,通过套管相对输料管绕输料管的轴线旋转来实现暂停打印,可以实现暂停打印的快速响应。
例如,套管6可相对输料管绕输料管5的轴线旋转一个较小的角度,以使得出料口65与开口52连通或者不再连通。例如,该较小的角度指的是,最小的能够使得出料口65与开口52由连通到不再连通的角度。
作为一个示例,在需要暂停打印的情况下,假设套管6相对输料管绕输料管5的轴线最小旋转第一角度就能够使得出料口65与开口52不再连通,则套管6相对输料管绕输料管5的轴线旋转该第一角度,以使得出料口65与开口52不再连通。
在本示例中,在后续需要启动打印时,也只需套管6相对输料管绕输料管5的轴线反向旋转该第一角度,就可使得出料口65与开口52连通,从而快速恢复打印。
在3D打印过程中,经常需要暂停打印过程。例如,打印到目标打印区域的轮廓边缘,就需要暂停打印过程,等到把打印头移动到新的打印起点位置再继续打印过程。3D打印挤出物料通常为高粘度物质,例如,具有高分子材料的粘弹性特性,在物料输送装置停止输送打印物料时,物料的流动不会骤然停止,这时打印物料就会在目标打印区域的轮廓边缘之外继续堆积,这会破坏目标打印区域的截面轮廓线的形状,导致降低打印件的几何精度。
本申请实施例提供的设备4,在3D打印的过程中,当打印进行到目标打印区域的轮廓边缘需要暂停打印时,在物料输送装置停止输送打印物料的同时,套管6相对输料管绕输料管5的轴线旋转一个较小的角度,以使得出料口65与开口52不再连通,阻断物料输送通道,从而使打印物料快速响应控制系统的指令而停止从出料口65流出。
因此,本申请实施例提供的设备4可以实现暂停打印的快速响应。
在一些实施例中,套管6相对输料管绕输料管5的轴线旋转,也可以在 需要启动打印的情况下,使得出料口65与开口52连通,从而开通物料输送通道,实现启动打印。
还以图7为例。假设出料口65(1)与开口52初始不连通,如图7中右边所示,当需要启动打印时,套管6相对输料管绕输料管5的轴线可以旋转一个角度(在图7的示例中,逆时针旋转一个角度),以使得出料口65(1)与开口52连通,如图7中左边所示,从而开通物料输送通道,实现启动打印。
本申请实施例提供的设备4,通过套管6相对输料管绕输料管5的轴线旋转来实现启动打印,可以实现启动打印的快速响应。
套管6相对输料管绕输料管5的轴线旋转可以通过驱动装置实现。如图4所示,设备4包括驱动装置7。
驱动装置7可用于,驱动套管6相对输料管绕输料管5的轴线旋转,以使得出料口65与开口52连通或者不再连通。
例如,驱动装置7用于,在需要暂停打印的情况下,驱动套管6相对输料管绕输料管5的轴线旋转,以使得出料口65与开口52不再连通。
再例如,驱动装置7用于,在需要启动打印的情况下,驱动套管6相对输料管绕输料管5的轴线旋转,以使得出料口65与开口52连通。
驱动装置7的具体实现可以有多种,本申请实施例对此并不限定,例如可以是齿轮齿条机构,也可以是曲柄滑块机构。
在一些实施例中,出料口65可以始终与开口52连通。例如,可以将出料口65固定在开口52的下方。在需要暂停打印的情况下,套管6相对输料管绕输料管5的轴线旋转,以使得出料口65与开口52不再连通。
在另一些实施例中,套管6可以相对输料管5运动,从而可以将出料口65移动至开口52的下方,从而与开口52连通。在需要暂停打印的情况下,套管6相对输料管绕输料管5的轴线旋转,以使得出料口65与开口52不再连通。
在一些实施例中,套管6可以是整体式套管,如一体成型的套管。在另一些实施例中,套管6可以采用分离式套管,即套管6的外壁可以包括可分离的多个部分,或者套管6的外壁可以由可分离的多个部分拼接而成。
如图8至图10所示,套管6的外壁可以包括可分离的第一部分61和第二部分62。第一部分61可以按照如图11所示的方式与输料管5装配到一起。 第二部分62可以具有与第一部分61互补的结构,二者按照如图8所示的方式拼接在一起,即可形成套管6的外壁。
在某些实施例中,套管6的外壁还可以由三个或三个以上的可分离的部分组合而成。以图12至图13为例,套管6的外壁包括可分离的第一部分61,第二部分62,第三部分63和第四部分64,这四个部分的边缘相互拼接,形成套管6的外壁。
套管6可以与输料管5固定在一起,也可以相对输料管5运动。例如,套管6可以沿输料管5的轴向运动;又如,套管6可以绕输料管5的轴线旋转;又如,套管6既可以沿输料管5的轴向运动,又可以沿输料管5的轴线旋转。
出料口65可以为固定大小的出料口,也可以是尺寸可调的出料口。出料口65的尺寸可调可以指出料口65的长度可调(或长度连续可调),也可以指出料口65的宽度可调(或宽度连续可调),或者出料口65的长度和宽度均可调(或连续可调)。
将出料口65设计为尺寸可调的出料口的方式可以有多种。下面给出几种可能的实现方式。
例如,作为一种可能的实现方式,可以在出料口65处设置一个或多个遮挡件,从而调节出料口65的尺寸。
又如,作为另一种可能的实现方式,套管6可以包括可分离的多个部分。该多个部分的对接面可以围成多个出料口,且该多个部分可以相对运动(如沿输料管5的轴向运动),从而调节出料口65的尺寸。
以图8为例,套管6可以包括第一部分61和第二部分62。第一部分61和第二部分62沿输料管5的轴向可相对滑动,从而可以形成长度可调(或连续可调)的出料口65。
第一部分61和第二部分62的形状以及它们形成出料口65的方式可以有多种。
作为一个示例,如图8所示,第一部分61可以包括第一上台阶面611、第一下台阶面612以及连接第一上台阶面611和第一下台阶面612的第一连接面613。第二部分62可以包括第二上台阶面621、第二下台阶面622以及连接第二上台阶面621和第二下台阶面622的第二连接面623。第一上台阶面611与第二下台阶622接触,且二者可沿输料管5的轴向相对滑动(换句 话说,第一上台阶面611与第二下台阶622沿输料管5的轴向滑动连接)。第一下台阶面612与第二上台阶621接触,且二者可沿输料管5的轴向相对滑动(换句话说,第一下台阶面612与第二上台阶621沿输料管5的轴向滑动连接)。第一下台阶面612、第一连接面613、第二下台阶面622和第二连接面623形成的中空区域即可作为出料口65。
本示例中,第一部分61和第二部分62采用错位互补的台阶形结构对接在一起,二者沿输料管5的轴向相对滑动形成长度连续可调的出料口65。出料口65的宽度取决于第一上台阶面611和第一下台阶面612(或第二上台阶面621和第二下台阶面622)之间的高度差。这种出料口的实现方式在保证第一部分61和第二部分62的尺寸和强度的前提下可以形成宽度很小的出料口65(出料口的宽度可以影响打印精度)。
作为另一个示例,第一部分61和第二部分62可以具有凹凸互补结构。第一部分61和第二部分62沿输料管5的轴向的相对滑动可以更改凹凸部分之间的相对位置关系,该凹凸部分之间的中空区域即可形成出料口65。
上文指出第一部分61和第二部分62沿输料管5的轴向可相对滑动。需要说明的是,本申请实施例并不要求第一部分61和第二部分62均相对输料管5可滑动。
作为一种可能的实现方式,第一部分61和第二部分62均相对输料管5可滑动。
作为另一种可能的实现方式,如图14至图15所示,第一部分61相对输料管61可滑动,第二部分62与输料管62固定连接或与输料管5一体成型。这种实现方式能够简化设备4的控制。
如图8或图16所示,在一些实施例中,可以将第一部分61的端部614设计成套在输料管5上的封闭的圆环;和/或,可以将第二部分62的端部624(端部614和端部624可以限定出套管6沿轴向的长度)设计成套在输料管5上的封闭的圆环。这样可以加强套管6的整体刚度和密封性。
在某些实施例中,当第一部分61为滑动件,第二部分62为固定件时,如图14至图15所示,可以将第一部分61的两个端部均设计成封闭的圆环。这样可以加强套管6的整体刚度和密封性。
本申请实施例对出料口65的尺寸与开口52的尺寸之间的关系不做具体限定。出料口65的尺寸可以与开口52的尺寸相同,也可以与开口52的尺 寸不同。
例如,出料口65的长度(当出料口65为长度可调的出料口时,出料口65的长度可以指出料口65的最大长度)可以小于所述开口52的长度;又如,出料口65的宽度(当出料口65为宽度可调的出料口时,出料口65的宽度可以指出料口65的最大宽度)可以小于所述开口52的宽度。
出料口65尺寸的调节可以通过驱动装置实现。以图4为例,可以在套管6上设置用于固定第一部分61的支架91和用于固定第二部分62的支架92。驱动装置7可以向支架91和支架92提供沿输料管5轴向运动的动力,从而通过支架91带动第一部分61沿轴向运动,通过支架92带动第二部分62沿轴向运动。
驱动装置7的具体实现可以有多种,本申请实施例对此并不限定,例如可以是齿轮齿条机构,也可以是曲柄滑块机构。
如前文描述,套管6的外壁可以设置一个出料口65,也以设置多个出料口65。例如,套管6的外壁可以设置2个出料口,3个出料口,4个出料口,8个出料口。套管6可相对输料管5运动,使得不同出料口65与开口52连通(即实现不同出料口65之间的切换)。
作为一个示例,多个出料口65可以沿输料管5的轴向排布。在这种情况下,套管6可以沿输料管5的轴向平移,使得不同出料口65与开口52连通。
作为另一示例,多个出料口65可以沿套管6的圆周方向排布。在这种情况下,套管6可绕输料管5的轴线旋转,使得不同出料口65与开口52连通。为了实现套管6绕输料管5的轴线的旋转,设备4还可以设计相应的驱动装置。该驱动装置例如可以是齿轮传动机构。
当然,也可以是上述两种情况的组合。
下面结合图12、图13、图17、图18,对套管6的外壁上形成多个出料口65的方式进行详细的举例说明。
作为一种可能的实现方式,参见图17至图18,套管6可以包括第一部分61和第二部分62。该第一部分61和第二部分62与图8和图9所示的第一部分61和第二部分62类似,不同之处在于图17至图18中,第一部分61和第二部分62的两个对接面均为台阶状的对接面,其中第一部分61的台阶状的对接面611a,612a和613a与第二部分的相应面用于形成出料口65a; 第一部分61的台阶状的对接面611b,612b和613b与第二部分的相应面用于形成出料口65b。
作为另一种可能的实现方式,参见图12至图13,套管6由4个部分61,62,63,64拼接而成,每两个相邻部分形成一个出料口,共形成4个出料口65a,65b,65c,65d。当然,在某些实施例中,也可以将某两个相邻部分的对接面设计成平面,这样一来,该两个相邻部分不会形成出料口,从而可以根据实际需要设计出各种数量的出料口(如可以设计出奇数个出料口,也可以设计出偶数个出料口)。
本申请实施例对多个出料口65的尺寸不做具体限定。该多个出料口65可以是尺寸相同(如果出料口65为尺寸可调的出料口,这里的尺寸相同可以指出料口65的最大尺寸相同)的出料口,也可以是尺寸不同的出料口。
作为一个示例,多个出料口65的长度(或最大长度)不同。
作为另一示例,多个出料口65的宽度不同。出料口65的宽度影响挤出的物料的宽度,进而影响3D打印精度。设计宽度不同的多个出料口65使得设备4可以根据实际需要选取精度不同的出料口进行打印。
例如,假设待打印层包括截面轮廓线在垂直方向上变化剧烈的第一打印区域以及截面轮廓线在垂直方向上变化平缓的第二打印区域,则在使用设备4对第一打印区域进行打印时,可以切换至宽度较小的出料口,以提高打印精度;当使用设备4对第二打印区域进行打印时,可以切换至宽度较大的出料口,从而在保证打印精度的前提下提高打印效率。
当然,也可以是上述情况的组合,即多个出料口65的宽度和长度(或最大长度)均不同。
上文指出,本申请实施例提供的出料口65可以是长度连续可调的出料口65。与传统3D打印头的出料口的设计方式相比,将出料口65设计成长度连续可调的出料口,克服了传统出料口设计理念的束缚,这种新型的出料口具有明显的优势和广阔的应用前景。下面对此进行分析。
传统3D打印头的出料口通常被设计为形状固定的喷嘴,常见的喷嘴形状包括圆孔、方孔或稍加变形的等径异形孔。喷嘴的口径通常在1mm左右,常见的口径为0.4mm。当物品的打印精度要求较高时,通常会选取口径较小的喷嘴,这种类型的喷嘴单位时间内的物料挤出量少,打印效率较低;当物品的打印效率要求较高时,通常会选取口径较大的喷嘴,这种类型的喷嘴打 印出的物品形状比较粗糙,打印精度较低。由此可见,传统3D打印头无法兼顾3D打印的效率和精度。下面对传统出料口的这种设计方式的形成过程进行分析。
3D打印技术是在2D打印技术基础上发展起来的一项更为先进的制造技术。在3D打印前,通常需要对待打印物品的3D模型进行分层处理,经过分层处理,相当于将3D物品的打印过程分解成许多2D打印过程,即每个分层的打印过程可以看成是一次平面打印过程。因此,传统3D打印设备沿用了2D打印设备的许多设计理念。最为明显地,2D打印头的出料口一般采用形状固定的喷嘴设计,3D打印头的出料口沿袭了2D打印头的出料口的这种设计方式,也将出料口设计成形状固定的喷嘴。如上文所述,这种喷嘴设计导致3D打印头无法兼顾效率和精度,成为阻碍3D打印技术发展的关键障碍。
本申请实施例将出料口65设计成长度在一定范围内连续可调的出料口。这是在充分考虑了3D打印对象特性的基础上做出的设计,与传统3D打印设备相比,本申请实施例提供的3D打印设备使得3D打印的效率和精度的兼顾成为可能,更加适于3D打印。具体论述如下。
2D打印对象的尺寸一般较小,且打印对象以文字或图像为主。文字或图像可以在二维平面上自由排布,没有规律可循。因此,将2D打印设备的出料口设计成形状固定的喷嘴具有一定的通用性,这种设计在2D打印领域是合理的。与2D打印对象不同,3D打印对象一般为需要实际使用的3D物品。3D物品具有一定的物理轮廓,因此,3D物品沿某一截面的截线通常是一个或多个封闭且连续变化的曲线。本申请实施例充分利用3D打印对象的这一特点,将出料口65涉及为长度连续可调的出料口。出料口65长度的连续可调与3D打印对象的截面轮廓线封闭且连续变化的特性相吻合,这种出料口65更加适于3D打印,使得打印效率的大幅提升成为可能。
例如,采用本申请实施例提供的出料口,可以沿着截面轮廓线进行连续打印,并在打印过程中控制出料口65随截面轮廓线的变化而变化,可以理解的是,与传统的逐道次打印的方式相比,沿着截面轮廓线打印具有超高的打印效率。
进一步地,可以将出料口65的宽度设置成取值较小的固定值,使3D物品的打印精度保持不变,且保持在较高精度,在出料口65连续变化的过程 中使得打印精度保持不变,这是传统3D打印头所难以达到的。因此,本申请实施例提供的长度连续可调的出料口使得兼顾3D打印的效率和精度成为可能,更加适于3D打印。
下面结合具体的实施例,对出料口65的长度的变化方式进行详细的举例说明。
可选地,可以根据目标打印区域的形状控制出料口65的长度连续改变(或者,可以控制出料口65的长度随着目标打印区域的形状的变换而变换),其中,目标打印区域可以为待打印层的部分打印区域,也可以是待打印层的全部打印区域。
例如,在某些实施例中,可以对出料口65的尺寸进行调节,使得出料口65的长度与待打印层的目标打印区域的截面轮廓线的截线长度相匹配。
又如,在某些实施例中,可以对出料口65的尺寸进行调节,使得出料口65的两端在竖直方向上与目标打印区域的截面轮廓线对准。
出料口65的两端在竖直方向上与目标打印区域的截面轮廓线对准,则出料口65的两端在竖直方向的投影会落在目标打印区域的截面轮廓线的截线上。为了便于描述,后文将这种打印方式称为目标打印区域的截面轮廓线的跟踪打印。
下面结合图19,对跟踪打印进行更为详细的说明。
参见图19,附图标记100表示的是待打印层的目标打印区域,出料口65的长度方向沿x方向延伸。在对目标打印区域100进行打印的过程中,可以控制设备4总体上朝y方向移动。在设备4移动过程中,实时改变出料口65的长度和/或位置,使得出料口65的两端在竖直方向z(垂直于x-y平面)上始终与目标打印区域100的截面轮廓线对准,即使得出料口65的两端在竖直方向z上的投影始终落在目标打印区域100的截面轮廓线上。
举例说明,假设出料口65当前位置的y坐标为y1,且y1沿x方向截目标打印区域100的截面轮廓线,得到两个点(x1,y1)和(x2,y1),则可以改变出料口65的两端的位置,使第一端部位于(x1,y1)的正上方,第二端部位于(x2,y1)的正上方,从而可以对目标打印区域100的截面轮廓线进行精准的跟踪打印。
目标打印区域的截面轮廓线的跟踪打印的实现方式可以有多种。可选地,作为第一种实现方式,可以调节出料口65两端的位置,使得出料口65的两 端在竖直方向上与目标打印区域的截面轮廓线对准。
可选地,作为第二种实现方式,可以调节出料口65的尺寸,使得出料口65的长度与待打印层的目标打印区域的截面轮廓线的截线长度相匹配;并利用驱动装置调节输料管5和套管6作为一个整体与打印平台之间的相对位置,使得出料口65的两端在竖直方向上与目标打印区域的截面轮廓线对准。
在对目标打印区域进行打印的过程中,设备4可以根据实际需要采用上述两种实现方式中的一种实现跟踪打印;或者,也可以在打印目标打印区域的不同部分时采用不同的跟踪打印方式。
例如,目标打印区域可以包括截线长度较短的部分和截线长度较长的部分。当打印截线长度较短的部分时,可以采用第一种实现方式进行跟踪打印,以简化设备4的控制;当打印截线长度较长的部分时,可以采用第二种实现方式进行跟踪打印。
与传统出料口打印出的物品相比,对目标打印区域的截面轮廓线进行跟踪打印,打印出的物品在力学性能和形状均匀度方面也具有显著提升,下面结合图20和图21,对此进行详细论述。
传统3D打印一般会按照一定的道次顺序进行逐道打印。由于传统3D打印设备的出料口的尺寸较小(口径通常为毫米级别),因此,每个道次的打印均需要花费较长时间。当准备打印当前道次时,与当前道次相邻的前一道次上的物料可能已经处于或接近凝固状态,而当前道次上的物料仍处于熔融状态。当前道次上的熔融状态的物料需要与前一道次上的已经处于或接近凝固状态的物料进行融合,以形成一个整体,这里将相邻道次之间的物料融合过程称为道次搭接。
在道次搭接过程中,如果当前道次的前一道次已经凝固或接近凝固,而当前道次仍处于熔融状态,则相邻道次之间的物料融合过程就可能出现融合不良的现象,导致打印出的物品的力学性能较差。此外,由于物料状态不同步,相邻道次上的物料相互融合之后得到的物体形状也会比较粗糙。以打印圆柱体为例,如图20所示,圆柱体101是采用传统3D打印技术,利用道次搭接方式打印出的圆柱体。该圆柱体101不但整体形状轮廓比较粗糙,而且还存在由于道次搭接过程中的物料融合不良而产生的多个缺口103。
本申请实施例提供的设备4通过调整出料口65的长度和位置,使其对 目标打印区域的截面轮廓线进行跟踪打印。因此,在打印目标打印区域的过程中,设备4无需按照道次进行逐道打印,也就无需进行道次搭接,进而不会产生融合不良的问题。因此,设备4打印出的物品具有较高的力学性能。如图20所示,圆柱体102是设备4打印出的圆柱体,相比圆柱体101,圆柱体102的填充物料的融合情况良好,不存在道次搭接产生的融合不良的问题。
仍以打印圆柱体为例,参见图21,在传统3D打印过程中,道次与道次之间的切换采用折线104代替真实轮廓曲线,即,使用折线逼近真实的轮廓曲线,导致打印出的圆柱体102轮廓线比较粗糙。本申请实施例提供的设备4无需按照道次进行打印,而是通过调整出料口65的长度和位置,对目标打印区域的截面轮廓线进行跟踪打印,因此,设备4打印出的圆柱体102的轮廓线也更加光滑和真实。
目标打印区域的确定方式可以有多种。例如,可以根据待打印层的截面轮廓线的形状、最长截线的长度以及出料口的尺寸等因素中的一种或多种确定是将待打印层的全部打印区域作为目标打印区域,还是将待打印层的打印区域划分成多个目标打印区域分别进行打印。
例如,当待打印层的截面轮廓线的最长截线的长度小于或等于出料口的最大长度时,可以将待打印层的全部打印区域确定为目标打印区域;当待打印层的截面轮廓线的最长截线的长度大于出料口的最大长度时,可以将待打印层的全部打印区域划分成多个目标打印区域。
又如,当待打印层的截面轮廓线包含不连通的多个封闭区域时,可以将每个封闭区域作为一个或多个目标打印区域进行打印。
又如,在某些实施例中,也可以无需对待打印层的全部打印区域进行划分,而是将待打印层的全部打印区域直接作为目标打印区域。例如,可以将设备4设计成专门打印特定物品的专用设备,且将设备4的出料口65的长度设计成能够一次性打印完物品的每一打印层的全部打印区域。这样一来,实际工作时,设备4可以按照固定的方式打印该物品的每一层,无需在线进行打印区域的划分。
如图22所示,设备4还可包括送料装置200。该送料装置200可通过输料管5为出料口65送料。设备4还可包括用于对送料装置200进行驱动的驱动装置(图中未示出),该驱动装置对送料装置的驱动可以使得出料口65的物料挤出量与出料口的长度相匹配。
该送料装置200可以是如图22中的(a)所示的螺杆式送料装置,也可以是如图22中的(b)所示的气压式送料装置,还可以是如图22中的(c)所示的活塞式送料装置。
在送料装置200为螺杆式送料装置的情况下,可以通过驱动装置调整螺杆的转速,从而控制出料口65的物料挤出量;在送料装置200为气压式送料装置的情况下,可以通过调整作用在物料液面上的压力来控制出料口65的物料挤出量;在送料装置200为活塞式送进装置的情况下,可以通过驱动装置调整活塞在活塞筒状的进料口中的运动速度,从而控制出料口65的物料挤出量。
出料口65的物料挤出量与出料口65的长度相匹配指的是出料口65的物料挤出量与出料口65的长度成正比变化。
实际打印时,可以根据出料口65的长度确定物料挤出量。然后,可以控制送料装置200的物料送进量,使得物料送进量与物料挤出量相等。
如图4所示,设备4还可以包括控制装置8,用于对上文提及的各种驱动装置进行控制。该控制装置46可以是专用的数控装置,也可以是通用的处理器。此外,该控制装置46可以是分布式的控制装置,也可以是集中式的控制装置。
下面对本申请的方法实施例进行描述,由于方法实施例可以由上文描述的设备4执行(具体可以由设备4中的控制装置8执行),因此未详细描述的部分可以参见上文。
本申请实施例还提供一种用于3D打印的设备,该设备具有长度可调节的出料口,且该出料口的挤出通道为沿物料流动方向变截面的结构。
例如,出料口的挤出通道为沿物料流动方向上的截面逐渐收缩至该出料口所需尺寸的结构。出料口的尺寸包括宽度与长度。
例如,出料口的挤出通道为沿物料流动方向上的截面逐渐收缩至该出料口所需宽度的结构。换句话说,出料口的挤出通道在沿物料流动方向上的截面的宽度逐渐收缩至该出料口所需的宽度。
再例如,出料口的挤出通道为沿物料流动方向上的截面逐渐收缩至该出料口所需长度的结构。
为了实现出料口的挤出通道为沿物料流动方向上的截面逐渐收缩至该出料口所需尺寸的结构,出料口可以有多种设计方式。
作为一个示例,如图23中的(b)所示,出料口的挤出通道在长度方向上的截面为台阶形流道截面。
作为另一个示例,如图23中的(c)所示,出料口的挤出通道在长度方向上的截面为流线型流道截面。
可选地,出料口的挤出通道在长度方向上的截面还可以设计为其他可行的形状或图样,只要能够使得出料口的挤出通道为沿物料流动方向上的截面逐渐收缩至该出料口所需的尺寸的结构即可。
作为再一个示例,出料口的挤出通道在宽度方向上的截面也可以为台阶形流道截面或流线型流道截面(图中未示出)。
3D打印挤出物料通常为高粘度物质,挤出物料产生的阻力与出料口的通道长度成正比,当出料口的宽度很小(当打印精度较高时,要求出料口的宽度较小)时,出料口相当于一个狭缝通道,如图23中的(a)所示,挤出物料的阻力会非常大,这会降低打印效率。在这种情况下,将物料高速地挤出狭缝通道以便高效率地实现高精度3D打印,就需要提供非常大的挤出压力,则需要物料输送系统提供非常大的输送功率,这将显著提高打印成本,使打印过程不经济。
在本申请实施例提供的设备中,出料口的挤出通道为沿物料流动方向上的截面逐渐收缩至该出料口所需尺寸的结构,这可以有效减少物料挤出的阻力,从而有利于提高打印成型的效率。此外,因为可以减少物料挤出的阻力,因此可以降低对物料输送系统的输送功率的要求,从而可以降低打印成本。
本实施例的应用场景包括但不限于上文实施例提供的设备4。
例如,本实施例提供的用于3D打印的设备为上文实施例提供的设备4,本实施例中的出料口为设备4中的出料口65。
在套管6为一体成型的情况下,可以通过套管6的模具,形成挤出通道为沿物料流动方向截面逐渐收缩至出料口所需尺寸的出料口65。
在套管6包括可分离的多个部分的情况下,可以通过在相邻两个部分的对接面上设置台阶形结构,来形成挤出通道为沿物料流动方向截面逐渐收缩至出料口所需尺寸的出料口65。
例如,在上文如图8至图10,和图17至图18所示的实施例中,第一部分61与第二部分62之间的对接面在物料流出方向上可以具有台阶形结构,以使得出料口65的通道为沿物料流出方向截面逐渐收缩至该出料口65的尺 寸的结构。
例如,在上文如图12与图13所示的实施例中,第一部分61、第二部分62、第三部分63与第四部分64中拼接的两个部分之间的对接面在物料流出方向上可以具有台阶形结构,以使得出料口65的通道为沿物料流出方向截面逐渐收缩至该出料口65的尺寸的结构。
以图8至图10所示的实施例为例,第一部分61的对接面612上包括沿物料流出方向的台阶形结构,如图24所示,对接面612包括上台阶面6121与下台阶面6122;第二部分62的对接面622上也具有沿物料流出方向的台阶形结构(与对接面612的台阶形结构类似,图中未示出)。这样,第一部分61与第二部分62对接形成的出料口65的挤出通道为沿物料流动方向截面逐渐收缩至出料口所需尺寸的结构,如图25所示。在本例中,出料口65的挤出通道在长度方向的截面为如图23中的(b)所示的台阶形流道截面。
图25所示的第一部分61与第二部分62与输料管5装配在一起,即形成具有挤出通道为沿物料流动方向截面逐渐收缩至出料口所需尺寸的结构的出料口65的设备4,如图26所示。在图26的示例中,输料管5与套管6在通过出料口65的挤出通道方向上的横截面如图7所示,图7中所示的出料口65(1)表示挤出通道为沿物料流动方向截面逐渐收缩至出料口所需尺寸的结构的出料口。
图27是本申请实施例提供的控制方法的示意性流程图。图27的控制方法可以对用于3D打印的设备进行控制。该设备例如可以是上文描述的设备4,该控制方法例如可以由设备4中的控制装置8执行。
该设备可以包括输料管和套管。输料管的外壁上设置有沿输料管的轴向延伸的开口。套管可以套在输料管上,且套管的外壁上设置有可与开口连通的出料口,套管可相对输料管绕输料管的轴线旋转。
图27的方法可以包括步骤S2710:控制所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通或者不再连通。
可选地,步骤S2710包括:在需要暂停打印的情况下,控制套管相对输料管绕输料管的轴线旋转,以使得出料口与开口不再连通,从而阻断物料输送通道。
可选地,步骤S2710包括:在需要启动打印的情况下,控制套管相对输料管绕输料管的轴线旋转,以使得出料口与开口连通,从而开通物料输送通 道。
可选地,图27的方法可以包括步骤S2720:调节出料口的尺寸。
可选地,套管的外壁包括第一部分和第二部分,第一部分和第二部分沿轴向可相对滑动。步骤S2720可以包括:控制第一部分和第二部分相对滑动,以调节出料口的尺寸。
可选地,第一部分包括第一上台阶面、第一下台阶面以及连接第一上台阶面和第一下台阶面的第一连接面,第二部分包括第二上台阶面、第二下台阶面以及连接第二上台阶面和第二下台阶面的第二连接面,第一上台阶面和第一下台阶面分别与第二下台阶和第二上台阶面接触,且可沿轴向相对滑动,第一下台阶面、第一连接面、第二下台阶面和第二连接面形成的中空区域为出料口。
可选地,步骤S2720可以包括:调节出料口的尺寸,使得出料口的长度与待打印层的目标打印区域的截面轮廓线的截线长度相匹配,其中目标打印区域为待打印层的部分或全部打印区域。
可选地,步骤S2720可以包括:调节出料口的尺寸,使得用于限定出料口的长度的两端在竖直方向上与目标打印区域的截面轮廓线对准。
可选地,图27的方法还可包括:调节输料管和套管作为一个整体与打印平台之间的相对位置,使得用于限定出料口的长度的两端在竖直方向上与目标打印区域的截面轮廓线对准。
可选地,图27的方法还可包括:当待打印层的截面轮廓线的最长截线的长度小于或等于出料口的最大长度时,将待打印层的全部打印区域确定为目标打印区域;当待打印层的截面轮廓线的最长截线的长度大于出料口的最大长度时,将待打印层的全部打印区域划分成多个目标打印区域。
可选地,图27的方法还可包括:控制送料装置为出料口送料,使得出料口的物料挤出量与出料口的尺寸相匹配。
可选地,套管的外壁上设置有多个出料口。图27的方法还可包括:控制套管相对输料管运动,使得不同出料口与开口连通。
可选地,多个出料口沿套管的圆周方向排布,所述控制套管相对输料管运动,使得不同出料口与开口连通,该运动可以包括:控制套管绕输料管的轴线旋转,使得不同出料口与开口连通。
可选地,不同出料口的宽度不同。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种用于3D打印的设备,其特征在于,包括:
    输料管,其外壁上设置有沿所述输料管的轴向延伸的开口;
    套管,套在所述输料管上,所述套管的外壁上设置有可与所述开口连通的出料口,所述套管可相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通或者不再连通。
  2. 根据权利要求1所述的设备,其特征在于,所述套管可相对所述输料管绕所述输料管的轴线旋转,以在需要暂停打印的情况下,使得所述出料口与所述开口不再连通。
  3. 根据权利要求2所述的设备,其特征在于,还包括:
    第一驱动装置,用于在需要暂停打印的情况下,驱动所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口不再连通。
  4. 根据权利要求1-3中任一项所述的设备,其特征在于,还包括:
    第二驱动装置,用于在需要启动打印的情况下,驱动所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通。
  5. 根据权利要求3或4所述的设备,其特征在于,还包括:
    控制装置,用于对所述设备中的驱动装置进行控制。
  6. 根据权利要求1-5中任一项所述的设备,其特征在于,所述出料口的通道为沿物料流出方向截面逐渐收缩至所述出料口所需尺寸的结构。
  7. 根据权利要求6所述的设备,其特征在于,所述出料口的通道为沿物料流出方向截面逐渐收缩至所述出料口所需宽度的结构。
  8. 根据权利要求7所述的设备,其特征在于,所述出料口的通道在长度方向上的截面为台阶形流道截面或流线型流道截面。
  9. 根据权利要求1-8中任一项所述的设备,其特征在于,所述套管的外壁包括第一部分和第二部分,所述第一部分和所述第二部分沿所述轴向可相对滑动,以调整所述出料口的长度;
    所述第一部分与所述第二部分之间的对接面在沿物料流出方向上具有台阶形结构,以使得所述出料口的通道为沿物料流出方向截面逐渐收缩至所述出料口所需尺寸的结构。
  10. 一种用于3D打印的设备的控制方法,其特征在于,所述用于3D打印的设备包括:
    输料管,其外壁上设置有沿所述输料管的轴向延伸的开口;
    套管,套在所述输料管上,所述套管的外壁上设置有可与所述开口连通的出料口,所述套管可相对所述输料管绕所述输料管的轴线旋转;
    所述控制方法包括:
    控制所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通或者不再连通。
  11. 根据权利要求10所述的控制方法,其特征在于,所述控制所述套管相对所述输料管绕所述输料管的轴线旋转,包括:
    在需要暂停打印的情况下,控制所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口不再连通,从而阻断物料输送通道。
  12. 根据权利要求10或11所述的控制方法,其特征在于,所述控制所述套管相对所述输料管绕所述输料管的轴线旋转,包括:
    在需要启动打印的情况下,控制所述套管相对所述输料管绕所述输料管的轴线旋转,以使得所述出料口与所述开口连通,从而开通物料输送通道。
PCT/CN2021/074434 2020-04-03 2021-01-29 用于3d打印的设备及其控制方法 WO2021196858A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022559878A JP7376962B2 (ja) 2020-04-03 2021-01-29 3d印刷用装置及びその制御方法
EP21779974.1A EP4116068A4 (en) 2020-04-03 2021-01-29 3D PRINTING APPARATUS AND CONTROL METHOD THEREOF
US17/954,652 US20230017560A1 (en) 2020-04-03 2022-09-28 Device for 3d printing and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010261474.7A CN112757623B (zh) 2020-04-03 2020-04-03 用于3d打印的设备及其控制方法
CN202010261474.7 2020-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/954,652 Continuation US20230017560A1 (en) 2020-04-03 2022-09-28 Device for 3d printing and control method thereof

Publications (1)

Publication Number Publication Date
WO2021196858A1 true WO2021196858A1 (zh) 2021-10-07

Family

ID=75693052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074434 WO2021196858A1 (zh) 2020-04-03 2021-01-29 用于3d打印的设备及其控制方法

Country Status (5)

Country Link
US (1) US20230017560A1 (zh)
EP (1) EP4116068A4 (zh)
JP (1) JP7376962B2 (zh)
CN (1) CN112757623B (zh)
WO (1) WO2021196858A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115431377A (zh) * 2022-08-31 2022-12-06 上海思飞历保建筑科技有限公司 一种古建筑的模型3d打印设备
EP4180231A3 (en) * 2021-11-15 2023-08-30 Xerox Corporation Liquid metal ejector dual sensor system and methods thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106426908A (zh) * 2016-10-14 2017-02-22 山东大学 一种变口径的3d打印机挤出头及其打印方法
WO2017113163A1 (zh) * 2015-12-30 2017-07-06 四川蓝光英诺生物科技股份有限公司 生物打印机喷头组件及生物打印机
CN107042632A (zh) * 2017-06-16 2017-08-15 华中科技大学 一种用于建筑3d打印的变径喷头及挤出装置
CN107175819A (zh) * 2017-07-27 2017-09-19 张玲玲 一种流量自动变径3d打印挤出头
CN107599396A (zh) * 2017-11-10 2018-01-19 衡阳师范学院 3d打印机喷头单元及3d打印机
CN108057890A (zh) * 2018-01-19 2018-05-22 孟恬静 一种激光选区熔化单刀双向铺粉装置
WO2020087359A1 (zh) * 2018-10-31 2020-05-07 黄卫东 用于3d打印的设备及其控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030199A (en) * 1998-02-09 2000-02-29 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Apparatus for freeform fabrication of a three-dimensional object
US10766802B2 (en) * 2014-11-29 2020-09-08 National Tsing Hua University Flexible 3D freeform techniques
EP3427930B1 (en) * 2017-05-09 2021-01-13 Weidong Huang 3d print head, 3d printing device, control method for 3d print head
CN107696470B (zh) * 2017-09-06 2019-06-18 东营市远信电器与技术有限责任公司 多形态3d打印机挤出机构
CN108058382A (zh) * 2017-12-20 2018-05-22 苏州大成电子科技有限公司 一种用于3d打印机的防堵塞物料喷头
CN208375962U (zh) * 2018-02-05 2019-01-15 广州原天环保科技有限公司 一种pp发泡材料螺旋挤出机
CN209191312U (zh) * 2018-11-12 2019-08-02 内蒙古机电职业技术学院 用于slm打印机的铺粉机构
JP7172566B2 (ja) 2018-12-21 2022-11-16 セイコーエプソン株式会社 三次元造形装置、および、三次元造形物の製造方法
CN109571954B (zh) 2019-01-29 2024-03-05 牟振如 一种可调狭缝式挤出头
CN110524868B (zh) 2019-07-29 2023-09-08 华南理工大学 一种3d打印机用液体材料打印头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113163A1 (zh) * 2015-12-30 2017-07-06 四川蓝光英诺生物科技股份有限公司 生物打印机喷头组件及生物打印机
CN106426908A (zh) * 2016-10-14 2017-02-22 山东大学 一种变口径的3d打印机挤出头及其打印方法
CN107042632A (zh) * 2017-06-16 2017-08-15 华中科技大学 一种用于建筑3d打印的变径喷头及挤出装置
CN107175819A (zh) * 2017-07-27 2017-09-19 张玲玲 一种流量自动变径3d打印挤出头
CN107599396A (zh) * 2017-11-10 2018-01-19 衡阳师范学院 3d打印机喷头单元及3d打印机
CN108057890A (zh) * 2018-01-19 2018-05-22 孟恬静 一种激光选区熔化单刀双向铺粉装置
WO2020087359A1 (zh) * 2018-10-31 2020-05-07 黄卫东 用于3d打印的设备及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180231A3 (en) * 2021-11-15 2023-08-30 Xerox Corporation Liquid metal ejector dual sensor system and methods thereof
CN115431377A (zh) * 2022-08-31 2022-12-06 上海思飞历保建筑科技有限公司 一种古建筑的模型3d打印设备
CN115431377B (zh) * 2022-08-31 2023-12-22 上海思飞历保建筑科技有限公司 一种古建筑的模型3d打印设备

Also Published As

Publication number Publication date
CN112757623A (zh) 2021-05-07
JP2023520447A (ja) 2023-05-17
JP7376962B2 (ja) 2023-11-09
US20230017560A1 (en) 2023-01-19
EP4116068A4 (en) 2023-08-30
CN112757623B (zh) 2023-01-20
EP4116068A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
CN109247014B (zh) 3d打印头、3d打印设备和3d打印头的控制方法
WO2021196858A1 (zh) 用于3d打印的设备及其控制方法
EP3507073B1 (en) Methods and apparatus for processing and dispensing material during additive manufacturing
US10286606B2 (en) Methods and apparatus for additive manufacturing along user-specified toolpaths
WO2019120251A1 (zh) 智能3d打印系统及其打印方法
US10471702B2 (en) Additive manufacturing systems and method of filling voids in 3D parts
TWI596000B (zh) 立體列印裝置以及列印頭模組
US10737441B2 (en) Methods and apparatus for additive manufacturing along user-specified toolpaths
US11433612B2 (en) Device for 3D printing and control method thereof
CN111113888B (zh) 用于3d打印的设备及其控制方法
KR20180080072A (ko) 3차원 인쇄 장치 및 그 제어 방법
CN211917720U (zh) 一种3d打印装置
CN108127882A (zh) 一种管材挤出机
CN111195952A (zh) 用于3d打印的设备及其控制方法
CN107696478B (zh) 一种包含冷却系统的高速3d打印机
CN113492528B (zh) 用于3d打印的设备及其控制方法
WO2018170694A1 (zh) 3d打印喷头及3d打印设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559878

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021779974

Country of ref document: EP

Effective date: 20221005

NENP Non-entry into the national phase

Ref country code: DE