WO2019120251A1 - 智能3d打印系统及其打印方法 - Google Patents

智能3d打印系统及其打印方法 Download PDF

Info

Publication number
WO2019120251A1
WO2019120251A1 PCT/CN2018/122377 CN2018122377W WO2019120251A1 WO 2019120251 A1 WO2019120251 A1 WO 2019120251A1 CN 2018122377 W CN2018122377 W CN 2018122377W WO 2019120251 A1 WO2019120251 A1 WO 2019120251A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
model
slice
database
print
Prior art date
Application number
PCT/CN2018/122377
Other languages
English (en)
French (fr)
Inventor
何永刚
Original Assignee
珠海天威飞马打印耗材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海天威飞马打印耗材有限公司 filed Critical 珠海天威飞马打印耗材有限公司
Publication of WO2019120251A1 publication Critical patent/WO2019120251A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to the field of additive manufacturing technology, and in particular to an intelligent 30 printing system and a smart printing method.
  • the present application is based on a Chinese patent application filed on Dec. 22, 2017, application No. 0X2017114015 32.6, the disclosure of which is incorporated herein by reference.
  • 30 printer also known as 3D printer, is called additive manufacturing technology. It is a machine that uses rapid prototyping technology. Based on digital model files, it uses molding materials to construct three-dimensional entities by layer-by-layer printing. . Before printing, it is necessary to use computer modeling software to model, form 30 models to be printed, and then “partition” the built 30 models into layer-by-layer sections, ie slices, to guide 30 printers to print layer by layer.
  • 30 printers have been widely used in the product manufacturing industry. 30 printers work in much the same way as traditional printers. They consist of control components, mechanical components, printheads, consumables (ie molding materials), and media. The printing principle is similar.
  • a conventional three-dimensional printer 10 includes a housing 11 that encloses a cavity for three-dimensional molding, in which three motors are mounted, which are X-axis moving motors 21, V, respectively.
  • the shaft moving motor 22 and the ⁇ axis moving motor 23, the ⁇ axis moving motor 23 are mounted at the bottom of the cavity, and the screw 17 is connected to the ⁇ axis moving motor 23, and a guide rod is also mounted on the bottom wall of the cavity.
  • the shaft moving bracket 16 is mounted thereon, and the forming base 20 is disposed on the shaft moving bracket 16. Since the shaft moving bracket 16 is screwed into the screw 17, when the shaft moving motor 23 is operated, the driving screw 17 is rotated.
  • the molding base 20 is then moved in the direction of the axis axis by the drive of the axis moving motor 23.
  • the V-axis moving motor 22 is mounted on the side wall of the cavity, and a guide rod is fixedly disposed on the side wall, and a V-axis moving bracket is disposed on the guiding rod, and the V-axis moving motor is connected to the ⁇ shaft moving bracket through the belt
  • the ⁇ axis moving motor 22 rotates, the ⁇ axis moving bracket is slid along the guide rod by the belt, that is, the ⁇ axis moving bracket is moved in the x-axis direction under the driving of the spindle moving motor 22.
  • An X-axis moving motor 21 and two guiding rods are mounted on the axle moving bracket, and two guiding rods are respectively disposed on two sides of the shaft moving motor 21, and the printing head 14 is disposed on the two guiding rods, and printing Print spray is arranged in the head 14 ⁇ 0 2019/120251
  • a feed end is provided at the upper end of the print head 14, and the feed end is for receiving the image forming yarn 15.
  • a feed material supply motor 13 is provided on the feed end, and a molding material supply motor 13 is used to drive the molding material 15 to be transported into the print head 14.
  • a discharge port is provided, and the discharge port is used for molding.
  • the molding material is extruded on the seat 20.
  • the X-axis moving motor 21 is connected to the print head 14 via a belt. When the shaft moving motor 121 rotates, the print head 14 is slid along the guide rod by the belt, that is, the print head 14 is driven in the axial direction by the shaft moving motor 21. mobile.
  • the heating device disposed in the printhead 14 melts the filament, and the melted material is ejected from the printing nozzle to form a printing platform on the molding base 20, as the molding material
  • the production of 30 objects is completed.
  • some 30 printers have a heating plate at the bottom of the forming base 20.
  • the heating plate is used to heat the printing platform of the forming base 20.
  • the printing platform is provided with a steel plate and a glass plate, and the molding material is sprayed on the glass plate. on.
  • the most common printing method shown in FIG. 1 is fused deposition molding (FDM), which is formed by extruding a heated and melted molding material in a horizontally moving print head, and forming a three-dimensional model in a stacked pile. . Since the 30 model needs to be sliced with the slicing software before the 30 model is printed, the current slice layering method is mainly performed by the setting method of the slicing software, or the printing model is sliced according to the experience of the user.
  • FDM fused deposition molding
  • Printers the existing 30 printers also include photo-curing 30 printers, 30 printers, etc. These printers also need to slice 30 models when printing 30 models, and the molding materials such as photo-curing 11 materials, powder materials through the printing components. Layer by layer spraying on the printing platform ⁇ 0 2019/120251
  • a primary object of the present invention is to provide an intelligent 30 printing system that effectively assists a user in the proper selection of printing parameters.
  • Another object of the present invention is to provide an intelligent 30 printing method which can reduce waste of printing materials and has a good printing effect.
  • the smart 30 printing system comprises a printing component, and the printing component prints the molding material on the printing platform; the controller outputs a control instruction to the driving device of the printing component to control the operation of the printing component.
  • the smart 30 printing system further includes: a model analysis processor, configured to receive data of 30 models to be printed, and form 30 model slices into a multi-layer slice layer, obtain print conditions of each slice layer, and print the database from the print database. Find a print parameter matching the print condition, and output the print parameter to the controller; wherein, the print database is a database set on a server or a local storage, and the print database stores a preset print experience value or self-learning Preferred data.
  • the printing conditions include at least one of: a thickness of the slice layer, a type of the molding material, a shape of the slice layer, a shape of the slice layer located above the slice layer or under the slice layer, and a shape of the support body.
  • the print parameters include at least one of the following: the speed at which the print component moves, and the trajectory of the print component.
  • the printing assembly includes a printing nozzle, and the molding material is extruded on the printing platform through the printing nozzle, and the driving device drives the printing nozzle;
  • the printing parameters include one of the following: the moving speed of the printing nozzle, the printing nozzle The heating temperature, the aperture of the print nozzle, the extrusion speed of the print nozzle, and the trajectory of the print nozzle.
  • the smart 30 printing system further comprises a heating device for heating the printing platform, and the controller is further configured to control the heating temperature of the heating device; the printing parameter further comprises a heating temperature of the heating device during the printing process.
  • a preferred solution is: when the model analysis processor slices the 30 model, acquires the shape of the model, searches the slice database for the slice parameter that matches the shape of the model, and performs slice according to the slice parameter; the slice parameter includes at least One of the following: the thickness of the slice layer, the fill type of the model, the shape of the support, and the placement position.
  • a further solution is: after receiving the data of the 30 model, the model analysis processor searches the model database for a reference model that is similar to the 3 ⁇ model; and when the 30 model slices are formed into a multi-layer slice layer, the reference reference model The slice parameters are sliced.
  • At least one of the slicing database or the model database is set in the cloud server, and the data in the slicing database or the model database is a preset empirical value.
  • At least one of the slicing database or the model database is a database set in the local storage, and the data in the slicing database or the model database is the preferred data obtained by self-learning.
  • the smart 30 printing method includes the model analysis processor receiving data of 30 models to be printed, and forming 30 model slices into a multi-layer slice layer to obtain printing of each slice layer.
  • the print parameter matching the print condition is searched from the print database, and the print parameter is output to the controller; the controller outputs a control command to the drive device of the print component to control the operation of the print component, and the print component prints the molding material on the print
  • the print database is a database set on a server or a local storage, and the print database stores preset print experience values or preferred data obtained by self-learning.
  • the printing conditions include at least one of: a thickness of the slice layer, a type of the molding material, a shape of the slice layer, a shape of the slice layer located above the slice layer or under the slice layer, and a shape of the support body.
  • the print parameters include at least one of the following: the speed at which the print component moves, and the trajectory of the print component.
  • the present invention extracts the best print parameters from the print database according to the print conditions after the 30 model is sliced, and prints using the print parameters, manual printing of the print parameters can be avoided and the printing is prevented. ⁇ 0 2019/120251
  • the printing of the model can be effectively improved by setting various parameters such as the moving speed of the printing nozzle, the heating temperature of the printing nozzle, the aperture of the printing nozzle, the extrusion speed of the printing nozzle, and the movement trajectory of the printing nozzle. quality.
  • the heating temperature of the heating device it is possible to ensure that the printing platform performs printing at a reasonable temperature, so that the model effect of the printing process is better.
  • the data of the slice database is used for slicing, which makes the slicing of the model more reasonable and is more conducive to printing.
  • the present invention makes reference to the 30 model by locating the approximate reference model and performing the slicing operation, and can effectively improve the molding speed of the 30 model, and can reduce the waste of the molding material. And by obtaining pre-set empirical values, and also slicing or determining print parameters based on empirical values, the optimal printing scheme can be obtained, thereby improving the quality of the printed model, and reducing the printing time and reducing the molding time. Use of materials.
  • the smart 30 printing system of the present invention acquires preferred slice parameters, printing parameters, and the like by self-learning, and implements artificial intelligence self-learning and intelligent printing as reference data for future printing.
  • the printing method of the present invention obtains the best printing parameters from the printing database according to the printing conditions after the 30 model is sliced, and prints using the printing parameters, thereby avoiding the manual selection of the printing parameters and the printing parameters. If the selection is unreasonable, the printed model will not be ideal, or the molding material will be wasted, and the use of reasonable printing parameters can save printing time and improve printing efficiency.
  • 1 is a structural diagram of a conventional 30 printer.
  • FIG. 2 is a block diagram showing the structure of an embodiment of the smart 30 printing system of the present invention.
  • FIG. 3 is a flow chart of an embodiment of the smart 30 printing method of the present invention.
  • FIG. 4 is a schematic structural view of an object printed by applying the embodiment of the smart 30 printing method of the present invention.
  • FIG. 5 is a schematic structural view of an object slice printed by applying the embodiment of the smart 30 printing method of the present invention.
  • FIG. 7 is a partial parameter of a cube for a reference model to which an embodiment of the smart 30 printing method of the present invention is applied.
  • the smart 30 printing system of the present invention comprises a 30 printer and a computer device for slicing a model and calculating printing parameters.
  • the computer device may be disposed on a 30 printer or may be disposed on an external device connected to the 30 printer. , such as a computer device that communicates with a 30 printer, including a portable electronic device such as a desktop computer, a notebook computer, a smart phone, or a tablet computer.
  • the smart 30 printing method of the present invention is a printing method implemented by the above-described smart 30 printing system, which improves the quality of the printed object by using some preset optimal printing parameters to print, and can reduce the printing time. It also saves the material used.
  • the smart 30 printing system of this embodiment includes a printing component 30.
  • the printing component can be a common printing mechanism of 30 printers.
  • the structure of the printer for example, including the print nozzle 34, which is driven by the drive device 31, may be a motor that drives the print nozzle 34 to move in the direction, the V direction, and the direction, and includes heating to heat the print nozzle.
  • the drive unit 31 may also include means for adjusting the aperture of the discharge opening, such as a drive motor.
  • the printing assembly 30 further includes a printing platform 33 located below the printing nozzle 34.
  • the printing platform 33 is fixedly disposed in the printer and cannot move up and down.
  • the printing nozzle 34 is in multiple directions above the printing platform 33. Move to achieve the printing of objects.
  • a heating device 32 can be disposed beneath the printing platform 33 for heating the printing platform 33 to ensure that the temperature of the printing platform 33 is maintained at a suitable temperature during printing.
  • the driving device 31 can receive a signal output from the controller 51, for example, receiving a signal from the controller 51 that controls the rotation of the motor, and the controller 51 drives the printing nozzle 34 to move on the printing platform 33 by the rotation of the driving motor.
  • the controller 51 can also control the speed at which the silk for printing is conveyed to the printing nozzle 34, ⁇ 0 2019/120251
  • the heating temperature of the print nozzle 34, the aperture of the discharge port, and the like can be controlled.
  • controller 51 can also issue control commands to the heating device 32 to control the heating temperature of the heating device 32 to adjust the temperature of the printing platform 33 to ensure that the printing platform 33 maintains a corresponding temperature during printing.
  • the printing component is not necessarily a reference
  • the structure of the printer can also refer to settings such as the structure of the photo-curing printer or the structure of the printer.
  • the printing unit generally needs to be provided with a driving device, such as a motor that drives the nozzle that conveys the molding material, a motor that controls the amount of molding material, and A heating device or the like that controls the temperature of the photo-curing printing platform.
  • the controller 51 can send control signals to the driving device and the heating device to control the operation of the driving device and the heating device.
  • the smart 30 printing system further includes a model analysis processor 50.
  • the model analysis processor 50 may be a processor disposed on the printer 30, and the processor communicates with the controller 51 to the controller 51. send data.
  • the model analysis processor 50 is disposed on a terminal device such as a desktop computer, a notebook computer, or a smart phone, and the terminal device communicates with the controller 51.
  • the model analysis processor 50 has data computing capabilities, and is capable of acquiring data stored in the model database 40, the slice database 41, and the print database 42, and also acquiring data of 30 models to be printed input by the user. Receiving the data of the 30 model to be printed, acquiring relevant data from the model database 40, the slice database 41, and the print database 42, determining the print parameters, and transmitting the print parameters to the controller 51, and the drive device 31 is controlled by the controller 51, The heating device 32 performs a printing operation.
  • one or more of the model database 40, the slice database 41, or the print database 42 are set in the cloud server, and the data in the model database 40, the slice database 41, or the print database 42 is a preset experience. Value, such as empirical data written by experienced engineers.
  • one or more of the model database 40, the slice database 41, or the print database 42 is a database set in the local storage, and the data in one or more of the model database 40, the slice database 41, or the print database 42 is self-learning.
  • the preferred data obtained, that is, the self-learning object based on the previous successful printing case, is recorded as a reference data for future printing.
  • the smart 30 printing system includes a cloud server, and the model database 40, the slice database 41, or the print database 42 is set on the cloud server, and written to the model database 40, the slice database 41, or the print database 42, respectively.
  • Empirical data such as provided by experienced engineers ⁇ 0 2019/120251
  • the model analysis processor 50 records the model data, the slice parameter or the print parameter each time after receiving the set model data, the slice parameter or the print parameter, and receives the user after each printing is completed.
  • the evaluation for example, for a certain group of model data, slicing parameters or printing parameters, according to the user's evaluation, determine to apply the set of parameters for printing, whether the effect of the printed model is ideal, if the effect is ideal, the set of parameters is stored Go to model database 40, slice database 41, or print database 42. If the user's evaluation is a negative evaluation, for example, the printing effect is not satisfactory, or the printing time is long, the molding material used is large, etc., the set of print data is discarded.
  • the data stored in the model database 40, the slice database 41, or the print database 42 is print data that has been evaluated by the user and has a good print effect, and can be used as data for future print reference.
  • step 81 is executed to receive data of the 30 model to be printed input by the user.
  • the user first creates 30 models to be printed by 30 software, and then sends the completed 30 model data to the model analysis processor 50. Therefore, in step 51, the model analysis processor 50 receives the 30 model data to be printed transmitted by the user.
  • the 30 model data to be printed can be transmitted in a contact manner, such as using an II disk, or wirelessly, for example, via a network.
  • step 82 is performed to find a reference model similar to the 30 model to be printed from the model database 40.
  • the 30 model to be printed is a cylinder
  • a reference model for the cylinder is looked up from the model database 40.
  • the model database 40 stores a plurality of common reference models, such as cylinders, regular hexahedrons, cones, spheres, spherical crowns, etc., and can store various common reference models such as cartoon characters, animal shapes, and the like.
  • the data of each reference model includes the slice parameters of the reference model and the print parameters of each slice layer.
  • the slice parameters may include the thickness of each slice layer, the fill type of the model, and the support.
  • the shape and placement position of the body, and the printing parameters may include the moving speed of the printing nozzle, the heating temperature of the printing nozzle, the aperture of the printing nozzle, the extrusion speed of the printing nozzle, the movement trajectory of the printing nozzle, and the like. ⁇ 0 2019/120251
  • step 83 is performed to determine whether the reference model is found. If the reference model is found, step 59 is performed to refer to the slice parameter of the reference model, and the slice parameter of the 30 model that needs to be printed is set. If the reference model is not found, step 54 is performed to find the slice parameters matching the shape of the 30 model to be printed from the slice database according to the shape of the 30 model to be printed.
  • the best slice parameters need to be looked up from the slice database 41 based on the shape of the 30 model.
  • the slice parameters include not only the slice direction, the thickness of each slice layer, but also whether or not a support body needs to be provided.
  • a support body 62 is required to be disposed under the member 61 to facilitate support of the member 61 at the time of printing.
  • step 85 After acquiring the slice parameters, step 85 is performed, the 30 models to be printed are sliced according to the determined slice parameters, and the print conditions of each slice layer are obtained, for example, the acquired print conditions include the thickness of the slice layer.
  • the type of molding material, the shape of the slice layer, the shape of the slice layer located above the current slice layer or under the slice layer, the shape of the support, and the like, and the matching print parameters are obtained according to these print conditions.
  • FIG. 5 is a different slice layer obtained after slicing a 30 model 70 of a cone, such as the slice layer 71 having the largest diameter, the slice layer 73 having the smallest diameter, and the slice layer 72 having the diameter at the slice layer 71 and the slice. Between layers 73 .
  • the print database 42 can store print parameters of different slice layers under different printing conditions, as shown in FIG. ⁇ 0 2019/120251
  • FIG. 10 shows a table of common print conditions and print parameters.
  • the printing parameters also need to be changed according to the different molding materials and the diameters of the slice layers, for example, the moving speed of the printing nozzle, the extrusion speed of the program material, the temperature of the printing nozzle, The heating temperature of the printing platform, etc., changes as the printing conditions change.
  • step 56 is executed, the acquired print parameters are sent to the controller 51, and finally, step 57 is executed, and the controller 51 sends a control signal to the driving device 31 and the heating device 32 according to the received printing parameters.
  • the movement of the printing nozzle 34, the heating temperature, and the extrusion speed of the molding material are controlled, and the temperature of the printing platform 33 during printing is controlled.
  • the print nozzle 34 extrudes the molding material and prints it on the printing platform 33, forming an object to be printed.
  • the plurality of reference models stored in the model database 40 are empirical values set according to the experience of an experienced engineering staff, or the model analysis processor 50 records a plurality of successful previous ones.
  • the preferred data obtained by the case, therefore, after receiving the 30 model to be printed, can be compared with the data in the model database 40 to find out if there is a reference model that can be referenced.
  • the reference model may include dimensional information of the model, printed material information, and information on whether a support body is required, and FIG. 7 shows partial parameters of the cube for the reference model.
  • the parameters of each reference model can be viewed, and whether the reference model is similar to the current 30 model to be printed is determined according to the parameters of the reference model, and if the approximation is similar, the slice of the reference model is used. The parameters are sliced. Of course, if the reference model is a cylinder, a cone, etc., the parameters of the reference model change accordingly.
  • the slices may be sliced according to the slice parameters, and the print conditions of each slice layer are acquired, and the print parameters are acquired according to the print conditions. Since the printing parameters are empirical values set by experienced engineers, or the preferred data recorded by the smart 30 printing system based on successful printing cases, the 30 objects printed according to these preferred data are better, and the printing time is often better. Short, the use of less material is used, improving the quality of 30 prints.
  • the printer describes the case of the printing component.
  • the parameters set during the printing process such as the heating temperature of the printing head, the extrusion speed of the molding material, etc., are mainly for Set by the printer.
  • printers such as using a photo-curing printer as a printing component, or using a 30? printer as ⁇ 0 2019/120251
  • the print parameters are adjusted accordingly.
  • the print parameters can include the movement of the photocurable print head, the time of the 11-ray illumination, and the intensity of the illumination.
  • the invention can select the most suitable printing mode and parameters according to the empirical data of the past 30 printing models, and can learn from the previous printing data, and select the most suitable printing parameter when printing the current object, thereby improving 30 The print quality of the model and the use of molding materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

一种智能3D打印系统及其打印方法,该系统包括打印组件(30),打印组件(30)将成型材料打印喷在打印平台(33)上;控制器(51),向打印组件(30)的驱动设备(31)输出控制指令以控制打印组件(30)的工作;模型分析处理器(50),接收待打印的3D模型的数据,并且将3D模型切片形成多层切片层,获取每一切片层的打印条件,从打印数据库中查找与打印条件相匹配的打印参数,将打印参数输出至控制器(51),其中,打印数据库为设置在服务器或者本地存储器上的数据库,打印数据库内存储有预先设定的打印经验值或者自学习获得的优选数据。该方法应用上述的打印系统进行3D打印。

Description

\¥0 2019/120251
1 智能 3 打印系统及其打印方法 技术领域
[0001] 本发明涉及增材制造技术领域, 具体地说, 是涉及一种智能 30打印系统以及智 打印方法。 本申请基于申请日为 2017年 12月 22日、 申请号 0X2017114015 32.6的中国发明专利, 该申请的内容引入本文作为参考。
背景技术
[0002] 30打印机又称三维打印机, 被称为增材制造技术, 是一种利用快速成型技术的 机器, 以数字模型文件为基础, 采用成型材料, 通过逐层打印的方式来构造三 维的实体。 在打印前, 需要利用计算机建模软件建模, 形成待打印的 30模型, 再将建成的 30模型“分区”成逐层的截面, 即切片, 从而指导 30打印机逐层打印 。 30打印机在产品制造业获得了广泛的应用, 30打印机的工作原理和传统打印 机基本相同, 由控制组件、 机械组件、 打印头、 耗材 (即成型材料) 和介质等 组成, 打印原理也基本类似。
[0003] 参照图 1, 现有的三维打印机 10包括壳体 11, 壳体 11围成用于三维成型的空腔 , 在该空腔内安装有三个电机, 分别是 X轴移动电机 21、 V轴移动电机 22和å轴 移动电机 23 , å轴移动电机 23安装在空腔的底部, 在å轴移动电机 23上连接有螺 杆 17 , 在空腔的底壁还安装有导杆, 在导杆上安装有å轴移动支架 16 , 在该 å轴 移动支架 16上设置有成型座 20, 由于 å轴移动支架 16与螺杆 17螺纹啮合, 所以当 轴移动电机 23工作时, 将带动螺杆 17旋转, 继而使得成型座 20在å轴移动电机 2 3的驱动下在 å轴方向上移动。
[0004] V轴移动电机 22安装在空腔的侧壁上, 在侧壁上固定设置有导杆, 在导杆上设 置有 V轴移动支架, V轴移动电机通过皮带与¥轴移动支架连接, 当¥轴移动电机 22转动时, 将通过皮带带动¥轴移动支架沿着导杆滑动, 即¥轴移动支架在 ¥轴 移动电机 22的驱动下在丫轴方向上移动。
[0005] 在¥轴移动支架上安装有 X轴移动电机 21和两根导杆, 两根导杆分别设置在 轴 移动电机 21的两侧, 在两根导杆上设置有打印头 14, 打印头 14内设置有打印喷 \¥0 2019/120251
2 嘴, 在打印头 14的上端设置有进料端, 该进料端用于接收成像丝料 15。 进料端 上设置有成型材料供给电机 13 , 成型材料供给电机 13用于驱动成型材料 15输送 到打印头 14中, 在打印头 14的下端设置有出料口, 该出料口用于在成型座 20上 挤出成型材料。 X轴移动电机 21通过皮带与打印头 14连接, 当 轴移动电机 121转 动时, 将通过皮带带动打印头 14沿着导杆滑动, 即打印头 14在 轴移动电机 21的 驱动下在 轴方向上移动。
[0006] 当丝料进入打印头 14后, 设置在打印头 14内的加热装置将丝料熔化, 熔化后的 成性材料从打印喷嘴喷出形成在成型座 20的打印平台上, 当成型材料冷却以后 , 即完成 30物体的制作。 现有的一些 30打印机的成型座 20底部还设置有加热板 , 加热板用于对成型座 20的打印平台进入加热, 通常, 打印平台上设置有钢板 以及玻璃板, 成型材料被喷在玻璃板上。
[0007] 图 1所示的是目前最常用打印方式是熔融沉积成型 (FDM), 其是通过在水平移 动的打印头挤出加热熔融后的成型材料, 并在成型座逐层叠堆形成三维模型。 由于在打印 30模型以前, 需要同切片软件对 30模型进行切片, 目前的切片分层 方式主要通过切片软件固定的设置方式, 或者根据使用者的经验来分切使打印 模型进行切片。
[0008] 另外, 由于一些 30模型的结构比较特殊, 因此需要设置支撑结构, 而对于一个 特定的 30模型, 是否需要支撑结构、 支撑结构的打印方式类型等, 都需要通过 合理设置才有效。
[0009] 一般情况下, 有经验的使用者和没有经验的使用者从模型的导入后的打印位置 确定, 支撑方式选择、 分层的设置等都存在很大差异, 另外, 打印成型过程中 , 打印速度设置、 打印头温度设置、 打印平台温度选择等参数的选择, 都会最 终导致打印出来的模型的效果, 模型的外观也存在很大的差异, 如果选择不当 , 打印出来的模型存在大量非必要的支撑结构, 这样会导致打印材料和人力、 时间等资源的浪费以及也会影响打印精度。
[0010] 当然,
Figure imgf000004_0001
打印机, 现有的 30打印机还包括光固化 30打印机、 30 ?打印机等, 这些打印机在打印 30模型时同样需要对 30模型进行切片, 并且通 过打印组件将成型材料, 如光固化11 材料、 粉末材料等逐层的喷涂在打印平台 \¥0 2019/120251
3 上。 因此, 现有的各种 30打印机均存在诸如切片不合理、 打印参数设置不合理 等问题而导致打印质量不佳的问题。
发明概述
技术问题
[0011] 本发明的主要目的是提供一种有效辅助使用人员合理选择打印参数的智能 30打 印系统。
[0012] 本发明的另一目的是提供一种可以减小打印材料浪费且打印效果较好的智能 30 打印方法。
[0013] 技术解决手段
[0014] 为实现上述主要目的, 本发明提供的智能 30打印系统包括打印组件, 打印组件 将成型材料打印在打印平台上; 控制器, 向打印组件的驱动设备输出控制指令 以控制打印组件的工作; 其中, 该智能 30打印系统还包括: 模型分析处理器, 用于接收待打印的 30模型的数据, 并且将 30模型切片形成多层切片层, 获取每 一切片层的打印条件, 从打印数据库中查找与打印条件相匹配的打印参数, 将 打印参数输出至控制器; 其中, 打印数据库为设置在服务器或者本地存储器上 的数据库, 打印数据库内存储有预先设定的打印经验值或者自学习获得的优选 数据。
[0015] 一个优选的方案是, 打印条件至少包括以下的一个: 切片层的厚度、 成型材料 的类型、 切片层的形状、 位于切片层上方或者切片层下方的切片层的形状、 支 撑体的形状; 打印参数至少包括以下的一个: 打印组件的移动速度、 打印组件 的运动轨迹。
[0016] 进一步的方案是, 打印组件包括打印喷嘴, 成型材料通过打印喷嘴挤出成型在 打印平台上, 驱动设备带动打印喷嘴的动作; 打印参数包括以下的一个: 打印 喷嘴的移动速度、 打印喷嘴的加热温度、 打印喷嘴的孔径、 打印喷嘴的挤出速 度、 打印喷嘴的运动轨迹。
[0017] 一个优选的方案是, 智能 30打印系统还包括对打印平台进行加热的加热设备, 且控制器还用于控制加热设备的加热温度; 打印参数还包括打印过程中加热设 备的加热温度。 \¥0 2019/120251
4
[0018] 一个优选的方案是, 模型分析处理器在将 30模型切片时, 获取模型的形状, 从 切片数据库中查找与模型的形状相匹配的切片参数, 根据切片参数进行切片; 切片参数至少包括以下的一个: 切片层的厚度、 模型的填充类型、 支撑体的形 状及放置位置。
[0019] 进一步的方案是, 模型分析处理器在接收到 30模型的数据后, 从模型数据库中 查找与 3〇模型相近似的参考模型; 将 30模型切片形成多层切片层时, 参考参考 模型的切片参数进行切片。
[0020] 更进一步的方案是, 切片数据库或者模型数据库中的至少一个设置于云端服务 器, 且切片数据库或者模型数据库中的数据为预先设定的经验值。
[0021] 更进一步的方案是, 切片数据库或者模型数据库中的至少一个为设置于本地存 储器的数据库, 切片数据库或者模型数据库中的数据为自学习获得的优选数据
[0022] 为实现上述另一目的, 本发明提供的智能 30打印方法包括模型分析处理器接收 待打印的 30模型的数据, 并且将 30模型切片形成多层切片层, 获取每一切片层 的打印条件, 从打印数据库中查找与打印条件相匹配的打印参数, 将打印参数 输出至控制器; 控制器向打印组件的驱动设备输出控制指令以控制打印组件的 工作, 打印组件将成型材料打印在打印平台上, 其中, 打印数据库为设置在服 务器或者本地存储器上的数据库, 打印数据库内存储有预先设定的打印经验值 或者自学习获得的优选数据。
[0023] 一个优选的方案是, 打印条件至少包括以下的一个: 切片层的厚度、 成型材料 的类型、 切片层的形状、 位于切片层上方或者切片层下方的切片层的形状、 支 撑体的形状; 打印参数至少包括以下的一个: 打印组件的移动速度、 打印组件 的运动轨迹。
问题的解决方案
发明的有益效果
有益效果
[0024] 由于本发明对 30模型切片以后, 根据打印条件从打印数据库中获取最佳的打印 参数, 并使用这些打印参数进行打印, 可以避免人工选择打印参数而导致打印 \¥0 2019/120251
5 参数的选择不合理而导致打印出来的模型效果不理想, 或者浪费成型材料, 并 且, 使用合理的打印参数还可以节省打印时间, 提高打印效率。
[0025] 并且, 针对
Figure imgf000007_0001
打印机作为打印组件的情况, 通过设置打印喷嘴的移动速度、 打印喷嘴的加热温度、 打印喷嘴的孔径、 打印喷嘴的挤出速度、 打印喷嘴的运 动轨迹等多个参数, 可以有效的提高模型的打印质量。
[0026] 此外, 通过对加热设备的加热温度进行设定, 可以确保打印平台在合理的温度 下进行打印, 使得打印处理的模型效果更好。 另外, 切片的时候使用切片数据 库的数据进行切片, 使得模型的切片更加合理, 更加有利于打印的进行。
[0027] 本发明通过查找近似的参考模型进行参考并且进行切片操作, 可以使得对 30模 型的切片更加合理, 有效提高 30模型的成型速度, 并且可以减小成型材料的浪 费。 并且通过获取预先设定的经验值, 还根据经验值来进行切片或者确定打印 参数, 可以获取以往最优的打印方案, 从而提高打印出来的模型的质量, 并且 可以减小打印时间以及减小成型材料的使用。
[0028] 另外, 本发明的智能 30打印系统通过自学习的方式获取优选的切片参数、 打印 参数等, 并且作为将来打印时的参考数据, 实现人工智能自学习以及智能打印
[0029] 由于本发明的打印方法在对 30模型切片以后, 根据打印条件从打印数据库中获 取最佳的打印参数, 并使用这些打印参数进行打印, 从而避免了人工选择打印 参数而导致打印参数的选择不合理而导致打印出来的模型效果不理想, 或者浪 费成型材料, 且使用合理的打印参数还可以节省打印时间, 提高打印效率。 对附图的简要说明
附图说明
[0030] 图 1是现有 30打印机的结构图。
[0031] 图 2是本发明智能 30打印系统实施例的结构框图。
[0032] 图 3是本发明智能 30打印方法实施例的流程图。
[0033] 图 4是应用本发明智能 30打印方法实施例打印的物体的结构示意图。
[0034] 图 5是应用本发明智能 30打印方法实施例打印的物体切片的结构示意图。
[0035] 图 6是应用本发明智能 30打印方法实施例的打印条件与打印参数的表格。 \¥0 2019/120251
6
[0036] 图 7是应用本发明智能 30打印方法实施例的针对参考模型为立方体的部分参数
[0037] 以下结合实施例及其附图对本发明作进一步说明。
发明实施例
本发明的实施方式
[0038] 本发明的智能 30打印系统包括 30打印机以及将模型进行切片、 计算打印参数 的计算机装置, 该计算机装置可以是设置在 30打印机上, 也可以设置在与 30打 印机连接的外置设备上, 如与 30打印机进行通信的计算机设备, 包括台式电脑 、 笔记本电脑、 智能手机或者是平板电脑等便携式电子设备。 本发明的智能 30 打印方法是采用上述的智能 30打印系统实现的打印方法, 通过使用一些预先设 定最佳打印参数来进行打印, 来提升打印出来的物体的质量, 并且可以减小打 印时间, 还能够节省所使用的成性材料。
[0039] 智能 30打印系统实施例:
[0040] 参见图 2, 本实施例的智能 30打印系统包括打印组件 30, 本实施例中, 打印组 件可以是常见的 30打印机的打印机构,
Figure imgf000008_0001
打印机的结构, 例如包括打印喷 嘴 34, 打印喷嘴 34由驱动设备 31所驱动, 驱动设备 31可以是带动打印喷嘴 34在 方向、 V方向以及 方向上运动的电机, 还包括对打印喷嘴进行加热的加热装置 , 以便于将打印喷嘴内的成型材料, 如丝料进行加热。 当然, 如果打印喷嘴 34 的出料口的孔径可调, 驱动装置 31还可以包括用于调节出料口孔径的装置, 如 驱动电机。
[0041] 此外, 打印组件 30还包括位于打印喷嘴 34下方的打印平台 33 , 通常, 打印平台 33固定设置在打印机内并且不能上下移动, 通过打印喷嘴 34在打印平台 33的上 方在多个方向上的移动来实现物体的打印。 此外, 打印平台 33的下方可以设置 加热设备 32, 用于对打印平台 33进行加热, 以确保打印过程中打印平台 33的温 度保持在合适的温度。
[0042] 驱动设备 31可以接收控制器 51输出的信号, 例如接收控制器 51发出的控制电机 转动的信号, 控制器 51通过驱动电机的转动带动打印喷嘴 34在打印平台 33上移 动。 此外, 控制器 51还可以控制用于打印的丝料输送到打印喷嘴 34的速度, 还 \¥0 2019/120251
7 可以控制打印喷嘴 34的加热温度、 出料口的孔径等。
[0043] 当然, 控制器 51还可以向加热设备 32发出控制指令, 以控制加热设备 32的加热 温度, 从而调节打印平台 33的温度, 以确保打印平台 33在打印过程中保持相应 的温度。
[0044] 实际应用时, 打印组件不一定是参照
Figure imgf000009_0001
打印机的结构设置, 还可以参照诸如 光固化打印机的结构或者 30?打印机结构等设置, 打印组件上通用需要设置驱动 设备, 例如驱动输送成型材料的喷头移动的电机、 控制成型材料喷射量的电机 、 控制光固化的打印平台的温度的加热设备等。 并且, 控制器 51可以向这些驱 动设备、 加热设备发送控制信号以控制驱动设备、 加热设备的工作。
[0045] 智能 30打印系统还包括模型分析处理器 50, 本实施例中, 模型分析处理器 50可 以是设置在 30打印机上的处理器, 并且该处理器与控制器 51通信, 向控制器 51 发送数据。 或者, 模型分析处理器 50设置在台式电脑、 笔记本电脑或者智能手 机等终端设备上, 终端设备与控制器 51进行通信。
[0046] 模型分析处理器 50具有数据运算能力, 并且能够获取模型数据库 40、 切片数据 库 41以及打印数据库 42内所存储的数据, 同时还获取用户所输入的待打印的 30 模型的数据, 根据所接收的待打印的 30模型的数据, 从模型数据库 40、 切片数 据库 41以及打印数据库 42获取相关的数据, 确定打印参数, 并且将打印参数发 送至控制器 51, 由控制器 51控制驱动设备 31、 加热设备 32进行打印操作。
[0047] 本实施例中, 模型数据库 40、 切片数据库 41或者打印数据库 42中的一个或者多 个设置于云端服务器, 模型数据库 40、 切片数据库 41或者打印数据库 42中的数 据为预先设定的经验值, 例如由有经验的工程人员写入的经验数据。 或者, 模 型数据库 40、 切片数据库 41或者打印数据库 42中的一个或者多个为设置于本地 存储器的数据库, 模型数据库 40、 切片数据库 41或者打印数据库 42中的一个或 者多个中的数据为自学习获得的优选数据, 也就是根据以往的成功的打印案例 作为自学习的对象, 记录下这些成功的案例作为将来打印的参考数据。
[0048] 一种情况是, 智能 30打印系统包括一个云端服务器, 在云端服务器上设置模型 数据库 40、 切片数据库 41或者打印数据库 42, 并且向模型数据库 40、 切片数据 库 41或者打印数据库 42分别写入经验数据, 例如由有经验的工程人员提供的实 \¥0 2019/120251
8 际案例, 并且将这些实际案例的数据分别存储在模型数据库 40、 切片数据库 41 或者打印数据库 42中, 并且作为将来打印的参考数据。
[0049] 另一种情况是, 模型分析处理器 50每次接收设置的模型数据、 切片参数或者打 印参数以后, 记录下模型数据、 切片参数或者打印参数, 并且在每次打印完毕 以后, 接收用户的评价, 例如对于某一组的模型数据、 切片参数或者打印参数 , 根据用户的评价, 确定应用该组参数进行打印, 打印出来的模型的效果是否 理想, 如果效果理想, 则将该组参数存储到模型数据库 40、 切片数据库 41或者 打印数据库 42中。 如果用户的评价是负面的评价, 例如, 打印效果不理想, 或 者打印时间较长、 使用的成型材料较多等, 则舍弃该组打印数据。 这样, 经过 多次打印以后, 模型数据库 40、 切片数据库 41或者打印数据库 42所存储的数据 是经过用户评价并且打印效果较好的打印数据, 可以作为将来打印参考使用的 数据。
[0050] 智能 30打印方法实施例:
[0051] 下面结合图 3介绍智能 30打印方法的流程。 首先, 执行步骤81, 接收用户输入 的待打印的 30模型的数据。 通常, 用户首先通过 30软件制作需要打印的 30模型 , 然后将制作完毕的 30模型数据发送至模型分析处理器 50。 因此, 步骤 51中, 模型分析处理器 50接收用户发送的待打印的 30模型数据。 例如, 待打印的 30模 型数据可以通过接触式的方式传输, 如使用 II盘等方式传输, 也可以使用无线方 式传输, 例如通过网络传输。
[0052] 然后, 执行步骤82, 从模型数据库 40中查找与待打印的 30模型相近似的参考 模型。 例如, 待打印的 30模型是一个圆柱体, 则从模型数据库 40中查找关于圆 柱体的参考模型。 优选的, 模型数据库 40中存储有多种常见的参考模型, 例如 圆柱体、 正六面体、 圆锥体、 球体、 球冠体等, 还可以存储诸如卡通人物、 动 物造型等多种常见的参考模型。 并且, 每一个参考模型的数据均包含有该参考 模型的切片参数以及每一层切片层的打印参数, 本实施例中, 切片参数可以包 括每一层切片层的厚度、 模型的填充类型、 支撑体的形状及放置位置等, 而打 印参数可以包括打印喷嘴的移动速度、 打印喷嘴的加热温度、 打印喷嘴的孔径 、 打印喷嘴的挤出速度、 打印喷嘴的运动轨迹等。 \¥0 2019/120251
9
[0053] 然后, 执行步骤83 , 判断是否查找到参考模型, 如果查找到参考模型, 则执行 步骤 59 , 参考该参考模型的切片参数, 设定当前需要打印的 30模型的切片参数 。 如果没有查找到参考模型, 则执行步骤 54, 根据待打印的 30模型的形状, 从 切片数据库中查找与待打印的 30模型的形状相匹配的切片参数。
[0054] 查找参考模型时, 根据待打印的 30模型的形状与模型数据库 40中的每一个模型 进行逐一的对比, 确定待打印 30模型与参考模型的相似度, 例如, 根据模型的 表面数量、 弧面的弯曲度等, 确定待打印的 30模型与参考模型的相似程度, 查 找出模型数据库 40中与待打印的 30模型最近似的参考模型。 当然, 如果模型数 据库 40中所有的参考模型与待打印的 30模型的相似度都很低, 则确定没有查找 到合适的参考模型。
[0055] 在查找到合适的参考模型以后, 直接获取该参考模型的切片参数, 如每一层切 片层的厚度、 切片方向等, 使用这些切片参数对待打印的 30模型进行切片, 以 形成多层切片层。
[0056] 如果没有查找到合适的参考模型, 则需要根据 30模型的形状从切片数据库 41中 查找最佳的切片参数。 切片参数不但包括诸如切片方向、 每一层切片层的厚度 , 还包括是否需要设置支撑体。 如图 4所示, 如果待打印的 30模型 60包括一块缺 少支撑的部件 61, 则需要在该部件 61的下方设置一个支撑体 62, 以便于在打印 的时候对部件 61进行支撑。 另外, 还可以通过调节 30模型 60的放置方向来避免 设置大量的支撑体, 切片数据库 41中还可以存储有各种不同形状的模型在切片 时模型的放置方向。
[0057] 在获取切片参数以后, 执行步骤85, 根据所确定的切片参数对待打印的 30模 型进行切片, 并且获取每一层切片层的打印条件, 例如, 说获取的打印条件包 括切片层的厚度、 成型材料的类型、 切片层的形状、 位于当前切片层上方或者 切片层下方的切片层的形状、 支撑体的形状等等, 根据这些打印条件获取相匹 配的打印参数。 例如, 图 5是对一个圆锥体的 30模型 70进行切片以后获得的在不 同切片层, 如切片层 71的直径最大, 切片层 73的直径最小, 而切片层 72的直径 在切片层 71与切片层 73之间。
[0058] 打印数据库 42可以存储有不同切片层在不同打印条件下的打印参数, 如图 6所 \¥0 2019/120251
10 示的一个常见的打印条件与打印参数的表格。
[0059] 从图 6的表格可见, 根据成型材料的不同、 切片层的直径不同, 打印参数也相 应的需要改变, 例如, 打印喷嘴的移动速度、 程序材料的挤出速度、 打印喷嘴 的温度、 打印平台的加热温度等, 都随着打印条件的改变而变化。
[0060] 然后, 执行步骤56 , 将所获取的打印参数发送至控制器 51, 最后, 执行步骤57 , 控制器 51根据所接收到的打印参数, 向驱动设备 31以及加热设备 32发出控制 信号, 以控制打印喷嘴 34的移动、 加热温度以及控制成型材料的挤出速度, 并 且控制打印平台 33在打印过程中的温度。 在控制器 51的控制下, 打印喷嘴 34将 成型材料挤出并且打印在打印平台 33上, 已形成需要打印的物体。
[0061] 由于本实施例中, 模型数据库 40所存储的多个参考模型是根据有经验的工程人 员的经验所设定的经验值, 或者是由模型分析处理器 50通过记录以往多个成功 的案例所获得的优选的数据, 因此, 在接收到待打印的 30模型以后, 可以通过 与模型数据库 40中的数据进行对比来查找是否有可以参考的参考模型。 参考模 型可以包括模型的尺寸信息、 打印材料信息以及是否需要支撑体等信息, 图 7所 示的是针对参考模型为立方体的部分参数。
[0062] 根据图 7表格中数据可以查看每一个参考模型的参数, 并且根据参考模型的参 数来判断该参考模型是否与当前待打印的 30模型相近似, 如果相近似则采用该 参考模型的切片参数进行切片。 当然, 如果参考模型是圆柱体、 圆锥体等, 参 考模型的参数则相应的改变。
[0063] 在获取切片参数以后, 则可以根据切片参数进行切片, 并且获取每一层切片层 的打印条件, 并且根据打印条件来获取打印参数。 由于打印参数是有经验的工 程人员设定的经验值, 或者是智能 30打印系统根据成功的打印案例所记录的优 选数据, 根据这些优选数据打印出来的 30物体效果较好, 而且打印时间往往较 短, 所使用的成性材料也较少, 提升 30打印的质量。
[0064] 需要说明的是, 上述的智能 3
Figure imgf000012_0001
打印机为打印组件 的情况进行说明, 在打印过程中所设定的参数, 例如打印喷头的加热温度、 成 型材料的挤出速度等, 这些参数主要是针对
Figure imgf000012_0002
打印机所设置的。 在使用其他类 型的打印机时, 例如使用光固化打印机作为打印组件, 或者使用 30?打印机作为 \¥0 2019/120251
11 打印组件时, 打印参数则相应的调节, 例如, 对于光固化打印组件, 打印参数 可以包括光固化打印喷头的移动、 11 光照射的时间与照射强度等。
[0065] 最后需要说明的是, 以上所述的仅是本发明的优选实施方式, 应当指出, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干 变形和改进, 这些都属于本发明的保护范围。
[0066] 工业应用性
[0067] 本发明可以根据以往 30打印模型的经验数据来选择最合适的打印方式、 参数, 并且可以根据以往的打印数据来自学习, 并且在打印当前物体时选择最合适的 打印参数, 从而提高 30模型的打印质量, 并且节省成型材料的使用。

Claims

\¥0 2019/120251 12 权利要求书
[权利要求 1] 智能 30打印系统, 包括:
打印组件, 所述打印组件将成型材料打印在打印平台上;
控制器, 向所述打印组件的驱动设备输出控制指令以控制所述打印组 件的工作;
其特征在于, 该智能 30打印系统还包括:
模型分析处理器, 用于接收待打印的 30模型的数据, 并且将所述 30 模型切片形成多层切片层, 获取每一所述切片层的打印条件, 从打印 数据库中查找与所述打印条件相匹配的打印参数, 将所述打印参数输 出至所述控制器;
其中, 所述打印数据库为设置在服务器或者本地存储器上的数据库, 所述打印数据库内存储有预先设定的打印经验值或者自学习获得的优 选数据。
[权利要求 2] 根据权利要求 1所述的智能 30打印系统, 其特征在于:
所述打印条件至少包括以下的一个: 所述切片层的厚度、 成型材料的 类型、 所述切片层的形状、 位于所述切片层上方或者所述切片层下方 的切片层的形状、 支撑体的形状;
所述打印参数至少包括以下的一个: 所述打印组件的移动速度、 所述 打印组件的运动轨迹。
[权利要求 3] 根据权利要求 1或 2所述的智能 30打印系统, 其特征在于:
所述打印组件包括打印喷嘴, 所述成型材料通过所述打印喷嘴挤出成 型在所述打印平台上, 所述驱动设备带动所述打印喷嘴的动作; 所述打印参数包括以下的一个: 所述打印喷嘴的移动速度、 所述打印 喷嘴的加热温度、 所述打印喷嘴的孔径、 所述打印喷嘴的挤出速度、 所述打印喷嘴的运动轨迹。
[权利要求 4] 根据权利要求 1至 3任一项所述的智能 30打印系统, 其特征在于: 所述智能 30打印系统还包括对所述打印平台进行加热的加热设备, 且所述控制器还用于控制所述加热设备的加热温度; \¥0 2019/120251
13 所述打印参数还包括打印过程中所述加热设备的加热温度。
[权利要求 5] 根据权利要求 1至 4任一项所述的智能 30打印系统, 其特征在于: 所述模型分析处理器在将所述 30模型切片时, 获取所述模型的形状 , 从切片数据库中查找与所述模型的形状相匹配的切片参数, 根据所 述切片参数进行切片;
所述切片参数至少包括以下的一个: 所述切片层的厚度、 模型的填充 类型、 所述支撑体的形状及放置位置。
[权利要求 6] 根据权利要求 5所述的智能 30打印系统, 其特征在于:
所述模型分析处理器在接收到所述 30模型的数据后, 从模型数据库 中查找与所述 30模型相近似的参考模型;
将所述 30模型切片形成多层切片层时, 参考所述参考模型的切片参 数进行切片。
[权利要求 7] 根据权利要求 6所述的智能 30打印系统, 其特征在于:
所述切片数据库与所述模型数据库中的至少一个设置于服务器, 且所 述切片数据库或者所述模型数据库中的数据为预先设定的经验值; 或 者
所述切片数据库与所述模型数据库中的至少一个为设置于本地存储器 的数据库, 所述切片数据库或者所述模型数据库中的数据为自学习获 得的优选数据。
[权利要求 8] 智能 30打印方法, 其特征在于, 包括:
模型分析处理器接收待打印的 30模型的数据, 并且将所述 30模型切 片形成多层切片层, 获取每一所述切片层的打印条件, 从打印数据库 中查找与所述打印条件相匹配的打印参数, 将所述打印参数输出至控 制器;
所述控制器向打印组件的驱动设备输出控制指令以控制所述打印组件 的工作, 所述打印组件将成型材料打印在打印平台上;
其中, 所述打印数据库为设置在服务器或者本地存储器上的数据库, 所述打印数据库内存储有预先设定的打印经验值或者自学习获得的优 \¥0 2019/120251
14 选数据。
[权利要求 9] 根据权利要求 8所述的智能 30打印方法, 其特征在于:
所述打印条件至少包括以下的一个: 所述切片层的厚度、 成型材料的 类型、 所述切片层的形状、 位于所述切片层上方或者所述切片层下方 的切片层的形状、 支撑体的形状;
所述打印参数至少包括以下的一个: 所述打印组件的移动速度、 所述 打印组件的运动轨迹。
[权利要求 10] 根据权利要求 8或 9所述的智能 30打印方法, 其特征在于:
所述打印组件包括打印喷嘴, 所述成型材料通过所述打印喷嘴挤出成 型在所述打印平台上, 所述驱动设备带动所述打印喷嘴的动作; 所述打印参数包括以下的一个: 所述打印喷嘴的移动速度、 所述打印 喷嘴的加热温度、 所述打印喷嘴的孔径、 所述打印喷嘴的挤出速度、 所述打印喷嘴的运动轨迹。
[权利要求 11] 根据权利要求 8至 10任一项所述的智能 30打印方法, 其特征在于: 所述打印组件包括对所述打印平台进行加热的加热设备, 且所述控制 器还用于控制所述加热设备的加热温度;
所述打印参数还包括打印过程中所述加热设备的加热温度。
[权利要求 12] 根据权利要求 8至 11任一项所述的智能 30打印方法, 其特征在于: 所述模型分析处理器在将所述 30模型切片时, 获取所述模型的形状 , 从切片数据库中查找与所述模型的形状相匹配的切片参数, 根据所 述切片参数进行切片;
所述切片参数至少包括以下的一个: 所述切片层的厚度、 模型的填充 类型、 所述支撑体的形状及放置位置。
PCT/CN2018/122377 2017-12-22 2018-12-20 智能3d打印系统及其打印方法 WO2019120251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711401532.6A CN108127913B (zh) 2017-12-22 2017-12-22 智能3d打印系统及其打印方法
CN201711401532.6 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019120251A1 true WO2019120251A1 (zh) 2019-06-27

Family

ID=62391405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122377 WO2019120251A1 (zh) 2017-12-22 2018-12-20 智能3d打印系统及其打印方法

Country Status (2)

Country Link
CN (1) CN108127913B (zh)
WO (1) WO2019120251A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210252792A1 (en) * 2019-12-07 2021-08-19 Joseph Matthew Sinclair Intuitive Creation System for Additive Manufacturing
WO2021176404A1 (en) * 2020-03-04 2021-09-10 9T Labs Ag Method and apparatus for modeling and forming fiber-reinforced composite objects
CN117103692A (zh) * 2023-04-13 2023-11-24 上海轮廓科技有限公司 3d打印方法、装置、存储介质及计算机程序产品

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108127913B (zh) * 2017-12-22 2019-08-16 珠海天威飞马打印耗材有限公司 智能3d打印系统及其打印方法
CN109408001B (zh) * 2018-08-22 2021-10-22 先临三维科技股份有限公司 多模型的3d打印方法、装置、3d打印设备和存储介质
CN109080131B (zh) * 2018-10-18 2021-05-11 珠海赛纳三维科技有限公司 三维打印方法及装置
CN109648857A (zh) * 2019-01-09 2019-04-19 广州黑格智造信息科技有限公司 3d打印参数值的确定方法及装置
CN109814817A (zh) * 2019-01-29 2019-05-28 福建省纳金网信息技术有限公司 一种基于人工智能技术的3d打印训练数据库构建方法
WO2020199584A1 (zh) * 2019-03-29 2020-10-08 西安增材制造国家研究院有限公司 一种dlp打印机及其控制系统和可见光树脂打印方法
CN110039768B (zh) * 2019-06-03 2021-08-20 吉林大学 一种自适应预防样件翘曲变形的3d打印方法
CN113400652B (zh) 2019-07-11 2022-12-02 中国科学院自动化研究所 基于振动信号的3d打印机监测与诊断知识库装置、系统
CN111347668A (zh) * 2020-03-06 2020-06-30 上海酷鹰机器人科技有限公司 一种3d打印机打印时间的获取方法、装置及3d打印机
CN112835541A (zh) * 2020-12-30 2021-05-25 深圳市创想三维科技有限公司 识别3d模型类型的打印方法、装置、设备及存储介质
CN112895462A (zh) * 2021-01-19 2021-06-04 上海大学 一种基于3d打印的材料基因智能调节方法及系统
CN112976582B (zh) * 2021-02-05 2023-09-01 深圳市创必得科技有限公司 光固化3d打印多套切片参数的打印执行控制方法及装置
WO2023178629A1 (zh) * 2022-03-25 2023-09-28 深圳市纵维立方科技有限公司 打印方法、打印设备、打印系统和存储介质
US11858205B1 (en) 2022-06-23 2024-01-02 Huazhong University Of Science And Technology Composites with controllable superhydrophilic and superhydrophobic interface performances, a 3D printing method and 3D printed parts
CN115091760B (zh) * 2022-08-05 2023-07-25 深圳市智能派科技有限公司 一种光固化3d打印机的数据处理方法及系统
CN115366412B (zh) * 2022-08-23 2024-05-07 湖南大学 一种多材质构件复合打印成形方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160159012A1 (en) * 2014-12-05 2016-06-09 Kt Corporation 3d printing resource allocation
CN106273454A (zh) * 2015-06-04 2017-01-04 深圳维示泰克技术有限公司 一种快速成型设备及快速成型方法
CN106696277A (zh) * 2016-12-12 2017-05-24 英华达(上海)科技有限公司 3d打印方法以及3d打印系统
CN107206693A (zh) * 2015-04-24 2017-09-26 惠普发展公司有限责任合伙企业 处理用于储存的三维物体数据
CN107209647A (zh) * 2015-01-29 2017-09-26 惠普发展公司有限责任合伙企业 处理用于打印的对象
CN107368268A (zh) * 2017-07-27 2017-11-21 北京矩阵空间科技有限公司 一种支撑用户端的3d打印机控制系统
CN108127913A (zh) * 2017-12-22 2018-06-08 珠海天威飞马打印耗材有限公司 智能3d打印系统及其打印方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9588726B2 (en) * 2014-01-23 2017-03-07 Accenture Global Services Limited Three-dimensional object storage, customization, and distribution system
CN105034374A (zh) * 2015-08-10 2015-11-11 珠海天威飞马打印耗材有限公司 三维打印方法及其装置
CN205202191U (zh) * 2015-11-20 2016-05-04 珠海天威飞马打印耗材有限公司 一种新型3d打印机构及3d打印机
CN105599307A (zh) * 2016-03-16 2016-05-25 谭圆圆 3d打印方法及3d打印装置
CN107305556A (zh) * 2016-04-20 2017-10-31 索尼公司 用于3d打印的装置及方法
CN106530393B (zh) * 2016-11-07 2019-04-19 广东电网有限责任公司佛山供电局 一种新型标示牌制作方法及装置
CN106626351A (zh) * 2016-12-19 2017-05-10 深圳晗竣雅科技有限公司 一种义齿快速成型方法及义齿快速成型装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160159012A1 (en) * 2014-12-05 2016-06-09 Kt Corporation 3d printing resource allocation
CN107209647A (zh) * 2015-01-29 2017-09-26 惠普发展公司有限责任合伙企业 处理用于打印的对象
CN107206693A (zh) * 2015-04-24 2017-09-26 惠普发展公司有限责任合伙企业 处理用于储存的三维物体数据
CN106273454A (zh) * 2015-06-04 2017-01-04 深圳维示泰克技术有限公司 一种快速成型设备及快速成型方法
CN106696277A (zh) * 2016-12-12 2017-05-24 英华达(上海)科技有限公司 3d打印方法以及3d打印系统
CN107368268A (zh) * 2017-07-27 2017-11-21 北京矩阵空间科技有限公司 一种支撑用户端的3d打印机控制系统
CN108127913A (zh) * 2017-12-22 2018-06-08 珠海天威飞马打印耗材有限公司 智能3d打印系统及其打印方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210252792A1 (en) * 2019-12-07 2021-08-19 Joseph Matthew Sinclair Intuitive Creation System for Additive Manufacturing
WO2021176404A1 (en) * 2020-03-04 2021-09-10 9T Labs Ag Method and apparatus for modeling and forming fiber-reinforced composite objects
CN117103692A (zh) * 2023-04-13 2023-11-24 上海轮廓科技有限公司 3d打印方法、装置、存储介质及计算机程序产品

Also Published As

Publication number Publication date
CN108127913A (zh) 2018-06-08
CN108127913B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2019120251A1 (zh) 智能3d打印系统及其打印方法
CN103876263B (zh) 一种打印流质材料的三维打印机
CN107368268B (zh) 一种支撑用户端的3d打印机控制系统
US10384389B2 (en) Apparatus for performing three-dimensional printing
CN104802408B (zh) 一种自适应送丝3d打印机及其打印方法
CN106493940B (zh) 喷嘴直径实时可变的3d打印机喷头
US10328686B2 (en) Determining print-time for generation of 3D objects based on 3D printing parameters
CN103978691A (zh) 一种基于螺杆旋转连续挤出的3d打印机
WO2017009831A1 (en) Method and system for 3d printing
WO2015196904A1 (zh) 三维打印机、三维打印机的打印方法及其打印装置
CN208133608U (zh) 自适应多喷头高速3d打印机
CN107718564B (zh) 一种fdm三维打印机智能控制系统及方法
US20150251358A1 (en) Three dimensional printing apparatus and method for controlling printing head thereof
CN109604595B (zh) 一种带有控粉挡板的多材料成型装置及其3d打印方法
US9446558B2 (en) Three-dimensional printing apparatus and printing head module
TWI655079B (zh) 立體列印裝置與其控制方法
CN109049703A (zh) 具有五轴联动打印平台的螺杆式熔融沉积3d打印装置及方法
CN105082537A (zh) 一种3d打印方法及3d打印机
WO2016150321A1 (zh) 一种三维快速成型打印雕刻机
KR20160137344A (ko) 인쇄 온도의 제어 방법 및 제어 장치
WO2021196858A1 (zh) 用于3d打印的设备及其控制方法
CN108724697A (zh) 一种基于fdm的面成型3d打印设备及方法
CN209903473U (zh) 一种基于微流挤出工艺的浆料挤出装置
EP3875251B1 (en) Apparatus for 3d printing and control method thereof
CN203901485U (zh) 3d粘土打印机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18892284

Country of ref document: EP

Kind code of ref document: A1