WO2021196820A1 - 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法 - Google Patents

一种低剩磁、表面质量优异的船用5Ni钢板的制造方法 Download PDF

Info

Publication number
WO2021196820A1
WO2021196820A1 PCT/CN2021/070624 CN2021070624W WO2021196820A1 WO 2021196820 A1 WO2021196820 A1 WO 2021196820A1 CN 2021070624 W CN2021070624 W CN 2021070624W WO 2021196820 A1 WO2021196820 A1 WO 2021196820A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
temperature
rolling
surface quality
steel
Prior art date
Application number
PCT/CN2021/070624
Other languages
English (en)
French (fr)
Inventor
刘朝霞
许晓红
白云
苗丕峰
刘俊
韩步强
周永浩
武金明
高俊
李国忠
狄梦龙
孟羽
廖书全
芦莎
高亮
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to CA3188095A priority Critical patent/CA3188095A1/en
Priority to EP21781149.6A priority patent/EP4134465A4/en
Publication of WO2021196820A1 publication Critical patent/WO2021196820A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a method for manufacturing a steel plate for ships, in particular to a method for manufacturing a 5Ni steel plate for ships.
  • LPG liquefied Petroleum Gas
  • Ships are used to store and transport LPG, transport LPG and liquefied ethylene (LEG) obtained through petroleum cracking and liquefaction. It is constructed of 5Ni steel with high strength, good low temperature toughness and high elongation. 5Ni steel means that the Ni content in the steel reaches about 5%. Due to the high Ni content, high surface quality requirements, and low impurity participation requirements of 5Ni steel, higher requirements are put forward for production processes such as smelting, rolling, and heat treatment. In addition, low remanence is also an important factor restricting the mass production of 5Ni steel.
  • the patent document of Publication No. CN104195428A discloses a V-containing low-carbon high-strength 5Ni steel medium and thick plate and its manufacturing method. Controlled rolling and quenched and tempered heat treatment have obtained a 5Ni steel, and introduced the flatness of the steel plate.
  • the production thickness of the steel plate is between 25mm and 50mm, which is not suitable for the production of thinner steel plates. If the production thickness is reduced, the steel plate will be thinner. Straightness is difficult to guarantee.
  • the patent document with publication number CN 102330031A discloses a method for manufacturing high-toughness -130°C low-temperature steel. Nb, Mo, Cr, Zr and RE are added to the method.
  • Nb and Mo are precious metals, which significantly increase the cost of alloy raw materials. Increase, the addition of elements such as Zr and RE will significantly increase the difficulty of molten steel smelting, making it difficult to achieve batch size.
  • the patent document with the publication number CN104388838A discloses a 5Ni steel plate for ultra-low temperature pressure vessel and its production method. The production thickness is 8-50mm, the composition design is simplified, the use of controlled rolling and cooling, stacking cooling, and the use of double quenching and tempering By heat treatment, a 5Ni steel plate with high strength and low temperature toughness to -125°C was obtained.
  • the second stage of controlled rolling requires that the start-rolling temperature is ⁇ 850°C, the final rolling temperature is ⁇ 810°C, the semi-finished steel plate is water-cooled after rolling, and the redness temperature during water cooling is ⁇ 650°C. Water cooling is not conducive to the shape control of thin plates.
  • the patent document of Announcement No. CN105331890A discloses a method for on-line quenching to produce high-toughness 5Ni steel medium-thick plates. It adopts the method of casting billet to carry out two-stage rolling, and on-line quenching to below 200°C, and the temperature is 590 ⁇ 620°C.
  • 5Ni steel plate especially thin gauge 5Ni steel plate, it adopts low C, 5% content of Ni, V+Nb microalloyed composition design.
  • the production method adopts cast slab peeling, high temperature hot rolling, no water cooling after rolling, and then Carry out two quenching + tempering heat treatments to increase the first quenching temperature and improve the segregation of high Ni content.
  • the vacuum chuck is used for hoisting to obtain good strong and tough 5Ni steel with excellent surface quality and low remanence.
  • the chemical composition of 5Ni steel for ships of the present invention is C: 0.07 ⁇ 0.10% by mass percentage, Si: 0.05 ⁇ 0.20%, Mn: 0.60 ⁇ 0.80%, Ni: 4.90 ⁇ 5.25%, P: ⁇ 0.0070%, S: ⁇ 0.0020 %, Alt: 0.010 ⁇ 0.035%, V: 0.010 ⁇ 0.015%, Nb: 0.010 ⁇ 0.020%, Ca: 0.0005 ⁇ 0.0030%, O: ⁇ 0.0012%, N: ⁇ 0.0040%, H: ⁇ 0.00010%, balance It is Fe and inevitable impurity elements.
  • the addition of C can increase the hardenability of steel, especially for the production of medium and thick plates, which can significantly improve the strength, but too much C content is not conducive to the -110°C ⁇ -130°C ultra-low temperature impact performance, ultra-low temperature strain aging performance, and welding performance of steel
  • the carbon content in the present invention is controlled to be between 0.07 and 0.10%.
  • Si is mainly used for deoxidation. Although the amount of Si must be determined according to different smelting methods, it must be above 0.05% in order to obtain good steel sheet properties. If it exceeds 0.30%, it is easy to form silico-alumina spinel in the iron oxide scale. It is not easy to remove. Considering that the surface quality of 5Ni steel is particularly important, the present invention adopts low Si content control, and stipulates that the upper limit is 0.20%.
  • Mn is an element that improves the hardenability of steel, and has a solid solution strengthening effect to compensate for the strength loss caused by the decrease in the C content in the steel.
  • the Mn content in the steel is too low, the effect of ensuring strength cannot be fully exerted, but when the Mn content is too high, its carbon equivalent will be increased and the welding performance will be damaged.
  • Mn tends to segregate in the center of the steel sheet, reducing the impact toughness of the center of the steel sheet. Therefore, the Mn content of the present invention is controlled to 0.60 to 0.80%.
  • Ni is an element that improves the hardenability of the steel plate and can significantly improve its low-temperature toughness, and has a good effect on the impact toughness and ductile-brittle transition temperature.
  • the Ni content is too high, the surface of the slab is prone to produce high-viscosity iron oxide scale, which is difficult to remove, which affects the surface quality of the steel plate.
  • Ni is also a precious metal, too high content will increase costs. Therefore, the present invention controls the content to be 4.90-5.25% on the premise of meeting the requirements of classification societies and international general standards, which is conducive to achieving the best cost performance.
  • V is a strong carbon and nitride forming element. It forms second phase particles such as VC and V(CN) in the steel, which can refine the grains and improve the strength and low temperature toughness of the steel. However, if the content of V is too high, it will decrease The weldability of steel, so its content is controlled at 0.010 to 0.015%.
  • Ca treatment is a necessary treatment link for the steel grade of the present invention.
  • the 0.0005 ⁇ 0.0030% Ca can not only reduce the performance hazards caused by sulfides, but also can be sharp Al 2 O 3 inclusions that change into spherical low melting point inclusions, thereby reducing the steel plate During the rolling process, the micro-cracks at the sharp corners of the hard inclusions are generated, which improves the impact toughness of the steel plate.
  • Al mainly plays the role of nitrogen fixation and deoxidation.
  • AlN formed by joining Al and N can effectively refine grains, but too high a content will impair the toughness of steel. Therefore, the present invention controls the content (Alt) to be 0.010 to 0.035%.
  • O, N harmful gas elements, high content, many inclusions, reduce steel plate plasticity, toughness and welding bending performance.
  • the present invention strictly controls the content of O not to be higher than 0.0012%; the content of N is not higher than 0.0040%.
  • H Harmful gas element.
  • the high content of H is easy to produce white spots, reduce the plasticity and toughness of the steel plate, and seriously harm the performance of the steel plate.
  • the present invention strictly controls the H content within 0.00010%.
  • Smelting and continuous casting process smelting raw materials are smelted in a converter, RH refining, and LF refining in order.
  • low superheat pouring is carried out.
  • the pouring superheat is controlled at 5 ⁇ 25°C, and the whole process of argon protection pouring and dynamic Light reduction control; to ensure that the center segregation of the cast slab is not higher than the C1.0 level.
  • Slow cooling and cleaning and grinding process of slab After the casting slab is off the production line, it must be slowly cooled, and the casting slab must be stacked into the pit for slow cooling or with a cover for slow cooling.
  • the starting temperature of slow cooling shall not be lower than 600°C, and the slow cooling time shall not be lower than 72 hours.
  • the surface of the cast slab is cleaned by sanding. The upper and lower sides of the cast slab are ground to remove 1-2mm thickness. After sanding, paint (high temperature resistant latex paint) is applied. The purpose of the coating is to seal the surface of the cast slab to prevent exposure to air. Oxidize when heated.
  • the casting billet is sent to a walking heating furnace at an average speed of 10-14cm/min, and heated to 1170-1220°C.
  • the temperature of the core reaches the surface temperature, the temperature will be kept, and the heat preservation time shall not be less than 0.5 hours.
  • the alloying elements in the steel are fully dissolved to ensure the uniformity of the composition and performance of the final product.
  • Rolling process After the billet is discharged from the furnace, it is subjected to high-pressure water descaling and two-stage controlled rolling of rough rolling + finishing rolling: the opening temperature of rough rolling is between 1080 ⁇ 1150°C, and the three-pass reduction rate after rough rolling is ⁇ 15 %, the thickness to be warmed ⁇ 1.8H, where H is the thickness of the finished product.
  • the finishing rolling adopts high temperature rolling, the start rolling temperature is between 880 ⁇ 970°C, and the final rolling temperature is not lower than 800°C. After rolling, it is cooled by air, not water cooling.
  • the first quenching (one quenching) temperature is 880 ⁇ 10°C
  • the holding time after the furnace temperature reaches the temperature is 30-100min
  • water quenching the second quenching (second quenching) temperature
  • the holding time after the furnace temperature reaches the temperature is 30-100min
  • water quenching the temperature control accuracy is ⁇ 10°C.
  • Tempering heat treatment process After the steel plate is quenched, it is tempered at 630 ⁇ 10°C. After the core of the steel plate reaches the temperature, the temperature is maintained for 120-200min, and enough time is given to fully diffuse the carbon in the quenched martensite to obtain tempered Soxhlet Body, to ensure the matching of the strength and toughness of the steel plate, and improve the applicability of the steel plate engineering.
  • the steel plate after tempering is the finished steel plate, and the product should be hoisted by vacuum. After tempering, samples will be taken to test the performance.
  • the present invention adopts methods such as low Si content, high temperature rolling, top and bottom surface grinding, surface coating, high-pressure water descaling, etc., to help improve the surface quality of the steel sheet.
  • the present invention guarantees the good shape of the 5Ni steel plate by adding Nb, section heating control, high temperature rolling, and air cooling after rolling (not water cooling), and also prevents the steel plate from scratches caused by straightening, which is helpful for protection Surface quality of steel plate.
  • the present invention increases the first quenching temperature to 880 ⁇ during the heat treatment process. 10°C, without the need for large-scale production heat treatment furnace to raise and lower the temperature drastically, increasing the first quenching temperature at the same time helps to improve the segregation degree of high Ni content steel.
  • the 5Ni steel plate manufacturing method of the present invention can produce thicknesses of 6-50mm, yield strength ⁇ 520MPa, tensile strength 620-645MPa, yield ratio ⁇ 0.82, elongation ⁇ 26%, and impact toughness at -130°C ⁇ 200J Steel plate; excellent surface quality: reach SA 2.0 level.
  • the average remanence at the corners of the steel plate is less than or equal to 15 Guass.
  • Ultrasonic flaw detection is in accordance with the EN 10160 standard, and the board area meets the Class S3 requirements, and the edge area meets the Class E4 requirements.
  • the structure of the steel plate is a uniform tempered sorbite structure, which is suitable for mass production.
  • Figure 1 is the macrostructure of the test steel of Example 4 of the present invention, and the center segregation caused by continuous casting has been significantly improved;
  • Figure 2 is the metallographic structure at 1/4 of the thickness of the test steel of Example 1 of the present invention, which is a tempered sorbite structure;
  • Fig. 3 is the metallographic structure at 1/4 of the thickness of the test steel of Example 4 of the present invention, which is a tempered sorbite structure.
  • step (3) Put the continuous casting billet obtained in step (3) into a walking heating furnace at an average speed of 10-14cm/min, and heat it to 1180-1250°C. When the temperature of the core reaches the surface temperature, start to keep it warm. More than 1 hour. The alloying elements in the steel are fully dissolved to ensure the uniformity of the composition and performance of the final product. And control the heating time of 600 ⁇ 900°C ⁇ 0.32min/mm.
  • the first quenching temperature of the steel plate is 880 ⁇ 10°C, and the holding time after the furnace temperature reaches the temperature is 30-100min; the second quenching temperature is 760 ⁇ 10°C, and the holding time after the furnace temperature reaches the temperature is 30-100min; quenching medium For water.
  • Tempering The tempering temperature of the steel plate is 630 ⁇ 10°C, and the holding time is 120 ⁇ 200min.
  • Figure 1 shows the low power of the test steel plate of Example 4, and the center segregation caused by continuous casting has been significantly improved.
  • Figures 2 and 3 show photos of the microstructure at 1/4 of the thickness of the test steels of Examples 1 and 4.
  • the microstructure of the finished steel plate is tempered sorbite structure.
  • the invention adopts high temperature controlled rolling and off-line quenching + tempering process to control from the perspectives of chemical composition design, process control, base material structure, center segregation, quenching and tempering temperature and time, etc., while realizing the high strength of 5Ni steel plate, Ensure that the steel plate has good elongation, -130°C low temperature impact toughness, excellent surface quality and low remanence.
  • Table 1 The chemical composition of the super-strength steel sheet of the embodiment (wt%)
  • Example Billet thickness mm Overheating degree °C Dynamic soft depression interval fs Slow cooling start temperature°C Hydrogen expansion time hour 1 150 twenty three 0.35-0.95 700 72 2 150 18 0.35-0.95 690 72 3 150 16 0.35-0.95 680 72 4 150 14 0.35-0.95 700 72

Abstract

一种低剩磁、表面质量优异的船用5Ni钢板的制造方法,工艺流程为转炉冶炼->LF精炼->RH高真空脱气->Ca处理->连铸->铸坯缓冷处理->铸坯表面清理->加热->轧制->两次淬火->回火。组分设计采用低碳、低硅,5%Ni,并加入V、Nb,改善淬透性提高低温韧性,提高奥氏体非再晶开始温度,让钢板可采用高温轧制、高温淬火,进而显著改善板型,使适用于薄规格产品的生产。该方法从元素设计、工艺控制、母材组织、中心偏析、淬回火温度及时间等角度进行优化,在实现5Ni钢板高强度的同时,保证钢板具有良好的延伸率、-130℃低温冲击韧性、优异表面质量以及低剩磁。

Description

一种低剩磁、表面质量优异的船用5Ni钢板的制造方法 技术领域
本发明涉及船用钢板的制造方法,尤其涉及一种船用5Ni钢板的制造方法。
背景技术
液化石油气(Liquefied Petroleum Gas,简称LPG)除了管线运输外,最主要的运输方式为海运,采用船舶储运LPG,运输LPG以及经石油裂化、液化得到的液化乙烯(LEG)采用的运输船通常采用强度高,低温韧性好,延伸率高的5Ni钢建造。5Ni钢是指钢中Ni的含量达到5%左右。由于5Ni钢的Ni含量高、表面质量要求高、杂质参与量要求低,给冶炼、轧制、热处理等生产工序提出了更高的要求。除此之外,低剩磁也是制约5Ni钢得以批量生产的重要因素。
公开号CN104195428A的专利文献公开了一种含V低碳高强5Ni钢中厚板及其制造方法,该方法是通过在低C,5%左右的Ni含量的基础上加入适量的V,通过两阶段控制轧制以及调质热处理获得了一款5Ni钢,并介绍了钢板的钢板平直度,钢板的生产厚度在25mm~50mm之间,不适合更薄钢板的生产,若生产厚度减薄则钢板平直度难以保证。公开号CN 102330031A的专利文献公开了一种高韧性-130℃低温钢的制造方法,方法中加入Nb、Mo、Cr、Zr和RE等,Nb、Mo属于贵重金属,显著增加会造成合金原料成本增加,Zr和RE等元素的加入又会显著增加钢水冶炼难度,难以实现批量。公开号CN104388838A的专利文献公开了一种超低温压力容器用5Ni钢板及其生产方法,生产厚度8~50mm,成分设计简化,采用控制轧制及冷却,堆垛冷却,采用两次淬火加回火的热处理方式,获得了高强度,低温韧性至-125℃的5Ni钢板。其中控制轧制第二阶段要求开轧温度≤850℃,终轧温度≤810℃,轧后对半成品钢板水冷,水冷时返红温度≤650℃,轧制第二阶段开轧温度低、轧后水冷不利于薄板的板形控制。公告号CN105331890A的专利文献公开了一种在线淬火生产高韧性5Ni钢中厚板的方法,采用铸坯开坯的方法,进行两阶段轧制,在线淬火至200℃以下,在590~620℃回火,获得回火马氏体加少量逆转变奥氏体混合组织的5Ni钢板。铸坯开坯对于钢板组织性能均匀性有很好的效果,但是也显著增加了生产成本,延长了生产了过程。
对于5Ni钢板而言,表面质量及剩磁都是重要的供货要求,这两个要求也是5Ni供货技术要求中不同于其它钢种最重要的两点。其中表面质量是制约薄规格5Ni钢板生产的重要因素。
发明内容
针对5Ni钢板,尤其是薄规格的5Ni钢板,采用低C、5%含量的Ni、V+Nb微合金化的成分设计,生产方法中采用铸坯剥皮,高温热轧,轧后不水冷,随后进行两次淬火+回火热处理,提高第一次淬火温度,改善高Ni含量的偏析,采用真空吸盘吊装,以此获得良好的强韧性5Ni钢,产品表面质量优异、低剩磁。
本发明船用5Ni钢化学成分按质量百分比计为C:0.07~0.10%,Si:0.05~0.20%,Mn:0.60~0.80%,Ni:4.90~5.25%,P:≤0.0070%,S:≤0.0020%,Alt:0.010~0.035%,V:0.010~0.015%,Nb:0.010~0.020%,Ca:0.0005~0.0030%,O:≤0.0012%,N:≤0.0040%,H:≤0.00010%,余量为Fe及不可避免的杂质元素。
本发明船用5Ni钢中各元素的设置依据如下:
C的加入可以增加钢的淬透性,特别是中厚板生产,可以显著提高强度,但是C含量过多不利于钢的-110℃~-130℃超低温冲击性能、超低温应变时效性能、焊接性能以及耐蚀性能,所以本发明中碳含量控制介于0.07~0.10%。
Si主要用于脱氧,虽要依据不同的冶炼方式来确定其加入量,但要获得良好的钢板性能,必须在0.05%以上,若超过0.30%以上易在氧化铁皮中形成硅铝尖晶石,不易去除,考虑到5Ni钢表面质量尤其重要,所以本发明采用低Si含量控制,并规定其上限为0.20%。
Mn是提高钢淬透性的元素,并起固溶强化作用以弥补钢中因C含量降低而引起的强度损失。当钢中Mn含量过低时,无法充分发挥强度确保的作用,但当Mn含量过高时则会增加其碳当量从而损坏焊接性能。另外,Mn易在钢板中心产生偏析,降低钢板中心部位的冲击韧性。因此,本发明Mn含量控制为0.60~0.80%。
Ni是提高钢板的淬透性并可以显著改善其低温韧性的元素,对冲击韧性和韧脆转变温度具有良好的影响。但Ni含量太高时,板坯表面易生成黏性较高的氧化铁皮,难以去除,影响钢板的表面质量。另外,Ni也是贵重金属,含量过高会增加成本。因此,本发明在满足按照船级社规范与国际通用标准的前提下,将其含量控制在4.90~5.25%,有利于达到最优的性价比。
Nb的溶质拖曳作用和Nb(C,N)对奥氏体晶界的钉扎作用,均抑制形变奥氏体的再结晶,扩大奥氏体非再结晶区间,以此可提高精轧开轧温度,保证钢板板型,易于实现高温精轧,降低钢板的屈强比,避开二次氧化铁皮形成的温度区间。但过多的Nb也会导致钢板的细晶形成,提高屈强比,故本发明控制其含量在窄区间内0.010~0.020%。
V是一种强碳、氮化物形成元素,在钢中形成VC、V(CN)等第二相质点,能细化晶粒,提高钢材的强度和低温韧性,但是V的含量过高会降低钢的焊接性,故其含量控制在0.010~0.015%。
Ca处理是本发明钢种的必要处理环节,0.0005~0.0030%的Ca不仅可以降低硫化 物带来的性能危害,还可以是尖锐的Al 2O 3夹杂变性为球性低熔点夹杂,从而减少钢板轧制过程中硬质夹杂物尖角处微裂纹的产生,提高钢板冲击韧性。
P虽能提高耐蚀性,但会降低低温韧性和影响钢板的可焊性,对结构钢是不适当的,本发明规定其控制在0.0070%以下。
S形成MnS夹杂物,也会导致中心偏析,对耐蚀性也有不良影响,发明规定在其控制在0.0020%以下。
Al主要是起固氮和脱氧作用。Al与N接合形成的AlN可以有效地细化晶粒,但含量过高会损害钢的韧性。因此,本发明控制其含量(Alt)在0.010~0.035%。
O、N:有害气体元素,含量高,夹杂物多,降低钢板塑性、韧性和焊接弯曲性能。本发明严格控制O含量不高于0.0012%;N含量不高于0.0040%。
H:有害气体元素。H含量高,易产生白点,降低钢板塑性、韧性,严重危害钢板使用性能。本发明为提高钢板综合性能,严格控制H含量在0.00010%以内。
本发明5Ni钢板的制备方法,具体工艺如下,
冶炼连铸工艺:冶炼原料依次经转炉冶炼、RH精炼、LF精炼,为了控制钢板内部疏松、偏析,进行低过热度浇注,浇铸过热度控制在5~25℃,全程氩气保护浇注,以及动态轻压下控制;以保证铸坯中心偏析不高于C1.0级。
板坯缓冷及清理修磨工艺:铸坯下线后,必须进行缓冷处理,铸坯堆垛入坑缓冷或加罩缓冷。缓冷开始温度不低于600℃,缓冷时间不得低于72小时。缓冷结束后采用打磨清理铸坯表面,铸坯上下面各磨去1-2mm厚,打磨后涂涂料(耐高温的乳胶漆),涂料的目的是封闭铸坯表面,防止暴露于空气中再加热时氧化。
加热工艺:将铸坯送入步进式加热炉,平均速率在10~14cm/min,加热至1170~1220℃,待心部温度到达表面温度时开始保温,保温时间不低于0.5小时,使钢中的合金元素充分固溶以保证最终产品的成份及性能的均匀性。
轧制工艺:钢坯出炉后经高压水除鳞处理后进行粗轧+精轧两阶段控制轧制:粗轧的开轧温度介于1080~1150℃,粗轧后三道道次压下率≥15%,待温厚度≥1.8H,其中H为成品厚度。精轧采取高温轧制,开轧温度介于880~970℃,终轧温度不低于800℃,轧后空气冷却,不能水冷。
淬火热处理工艺:第一次淬火(一淬)温度880±10℃,炉温到温后保温时间为30~100min,水淬。第二次淬火(二淬)温度为760±10℃,炉温到温后保温时间为30~100min,水淬。为保证钢板的均匀性,温度控制精度为±10℃。
回火热处理工艺:钢板淬火后,在630±10℃回火,钢板芯部到温后,保温120~200min,给予足够的时间,使淬火马氏体中的碳充分扩散,获得回火索氏体,保证钢板强韧性匹配,提升钢板工程应用性。
回火后的钢板即为钢板成品,产品要用真空吊装,回火后取样检测性能。
与现有技术相比,本发明的优点在于:
(1)采用低碳、5%Ni,并加入适量V,保证钢板淬透性,提高钢板的抗拉强度,保证了钢板-130℃~-150℃低温冲击韧性,加入适量Nb,提高奥氏体非再晶开始温度,让钢板高温轧制,尤其是高温精轧,从而保证钢板特别是薄规格钢板的板形。
(2)本发明采用低Si含量、高温轧制、以及铸坯上下表面修磨、表面涂涂料、高压水除鳞等方式,有助于提高钢板的表面质量。
(3)本发明通过加入Nb,分段加热控制,高温轧制,轧后空冷(不水冷),保证了5Ni钢板的良好板形,也防止因矫直导致的钢板划伤,有助于保护钢板表面质量。
(4)虽然5Ni钢相比于其它普通钢材奥氏体铁素体相变点低得多,但本发明为了保证与其它钢种进行一起排产,热处理过程中提高第一淬温度达880±10℃,无需大生产热处理炉大幅度升温降温,提高第一次淬火温度同时有助于改善高Ni含量钢的偏析程度。
本发明的5Ni钢板制造方法可生产厚度为6~50mm,屈服强度≥520MPa,抗拉强度介于620~645MPa,屈强比≤0.82,延伸率≥26%,-130℃下冲击韧性≥200J的钢板;表面质量优异:达到SA 2.0级。钢板角部平均剩磁≤15Guass。超声波探伤按照EN 10160标准,板体区域达到Class S3要求,边缘区域达到Class E4要求。钢板的组织为均匀的回火索氏体组织,可适应批量生产。
附图说明
图1是本发明实施例4的试验钢低倍组织,连铸带来的中心偏析得到了明显改善;
图2是本发明实施例1的试验钢的厚度1/4处金相组织,为回火索氏体组织;
图3是本发明实施例4的试验钢的厚度1/4处金相组织,为回火索氏体组织。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
一种船用5Ni钢板的生产工艺流程为:转炉冶炼->LF精炼->RH高真空脱气->Ca处理->连铸->铸坯缓冷处理->铸坯表面清理->加热->轧制->两次淬火->回火,包括如下具体步骤:
(1)冶炼:选用优质原料,采用150吨转炉冶炼,RH高真空脱气处理后送入LF炉精炼并破空进行Ca处理,再经过RH真空脱气,实施例1-4的合金组分控制见表1。
(2)连铸:将冶炼的钢水浇铸成150mm厚的连铸坯,浇铸温度控制在液相线以上5-25℃,全程氩气保护浇注,浇铸过程中实施动态轻压下。连铸工艺参数见表2,铸坯中心偏析不高于C1.0级的为合格。
(3)铸坯缓冷处理:连铸板坯入坑堆垛缓冷扩氢,缓冷开始温度≥600℃,时间72 小时。入坑温度及缓冷时间见表2。缓冷后对铸坯表面用机器打磨清理,在上下表面各清理掉1.5mm厚,涂高温涂料(耐高温乳胶漆)隔绝空气,防止再加热前氧化。
(4)再加热:将步骤(3)所得连铸坯放入步进式加热炉,平均速率10~14cm/min,加热至1180-1250℃,待心部温度到达表面温度时开始保温,保温1小时以上。使钢中的合金元素充分固溶以保证最终产品的成份及性能的均匀性。并控制600~900℃加热时间≥0.32min/mm。
(6)轧制:钢坯出炉后经高压水除鳞处理后,进行粗轧+精轧两阶段控制轧制:粗轧的开轧温度1080~1150℃,粗轧后三道道次压下率≥15%,待温厚度≥1.8H,其中H为成品厚度。精轧采取高温轧制,精轧开轧温度介于880~970℃,精轧结束温度≥800℃。轧制完成之后钢板不经ACC机组进行加速水冷却,进行空气冷却。轧制阶段的工艺参数见表3。
(7)淬火:钢板一淬温度为880±10℃,炉温到温后保温时间为30~100min;二淬温度为760±10℃,炉温到温后保温时间为30~100min;淬火介质为水。
(8)回火:钢板回火温度为630±10℃,保温时间为120~200min。
(9)二淬后及回火后钢板吊运采取真空吸盘吊装,并进行单独隔离堆放。
(10)回火后钢板进行横向拉伸、横向冲击试验、测定剩磁及钢板表面质量。
实施例1-4的元素组分、工艺参数见表1~表3。各实施例生产出的产品检测性能见表4。
图1给出了实施例4的试验钢钢板低倍,连铸带来的中心偏析得到了明显改善。图2、3给出了实施例1、4试验钢厚度1/4处的微观组织照片。成品钢板的微观组织为回火索氏体组织。
本发明采用高温控轧和离线淬火+回火工艺,从化学成分设计、工艺控制、母材组织、中心偏析、淬回火温度及时间等角度进行控制,在实现5Ni钢板高强度的同时,保证钢板具有良好的延伸率、-130℃低温冲击韧性、优异表面质量以及低剩磁。
表1实施例超强钢板的化学成分(wt%)
Figure PCTCN2021070624-appb-000001
表2连铸工艺控制
实施例 铸坯厚度mm 过热度℃ 动态轻压下区间fs 缓冷起始温度℃ 扩氢时间hour
1 150 23 0.35-0.95 700 72
2 150 18 0.35-0.95 690 72
3 150 16 0.35-0.95 680 72
4 150 14 0.35-0.95 700 72
表3轧制工艺控制
Figure PCTCN2021070624-appb-000002
表4本发明实施例横向拉伸、横向冲击性能及剩磁
Figure PCTCN2021070624-appb-000003

Claims (9)

  1. 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:包括如下步骤:
    (1)钢水冶炼:按质量百分比计为C:0.07~0.10%,Si:0.05~0.20%,Mn:0.60~0.80%,Ni:4.90~5.25%,P:≤0.0070%,S:≤0.0020%,Alt:0.010~0.035%,V:0.010~0.015%,Nb:0.010~0.020%,Ca:0.0005~0.0030%,O:≤0.0012%,N:≤0.0040%,H:≤0.00010%,余量为Fe及不可避免的杂质元素的化学成分冶炼钢水;
    (2)连铸:将钢水浇注成连铸坯,浇铸过热度控制在5~25℃,以中心偏析不高于C1.0级的铸坯为合格坯;
    (3)板坯缓冷及修磨:铸坯下线后进行缓冷处理,缓冷开始温度不低于600℃,缓冷时间不得低于72小时;缓冷后打磨清理铸坯表面,上下表面各磨去1~2mm厚,然后在表面涂涂料隔绝空气防止再加热时氧化;
    (4)再加热:加热至1170~1220℃,并控制600~900℃加热时间≥0.32min/mm,待铸坯心部温度到达铸坯表面温度时开始保温计时,保温时间不低于0.5小时;
    (5)热轧:钢坯出炉后经高压水除鳞处理,进行粗轧+精轧两阶段控制轧制:粗轧开轧温度介于1080~1150℃,粗轧后三道道次压下率≥15%。待温厚度≥1.8H,H为成品钢板厚度;精轧采用高温轧制,开轧温度介于880~970℃,结束温度≥800℃,轧制目标厚度,轧制完成之后钢板空冷;
    (6)淬火热处理工艺:第一次淬火温度880±10℃,炉温到温后保温时间为30~100min,水淬;第二次淬火温度为760±10℃,炉温到温后保温时间为30~100min,水淬;
    (7)回火热处理工艺:回火温度是630±10℃,钢板1/2厚度处到温后,保温120~200min,使淬火马氏体中的碳充分扩散,获得回火索氏体的微观结构。
  2. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:适用于制造6~50mm厚的5Ni钢板。
  3. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:步骤(1)钢水的冶炼包括转炉冶炼、RH精炼、LF精炼。
  4. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:步骤(2)钢水浇注时全程氩气保护、动态轻压下控制。
  5. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:步骤(3)铸坯缓冷时要求堆垛入坑或加罩。
  6. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:步骤(4)采用步进式加热炉加热铸坯,平均速率10~14cm/min。
  7. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:钢板回火热处理后采用真空吸盘吊装,单独堆放。
  8. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:钢板成品表面质量达到SA 2.0,钢板角部平均剩磁≤15Guass,按照EN 10160标准进行超声波探伤:板体区域达到Class S3要求,边缘区域达到Class E4要求。
  9. 根据权利要求1所述的低剩磁、表面质量优异的船用5Ni钢板的制造方法,其特征在于:钢板屈服强度≥520MPa,抗拉强度介于620~645MPa,屈强比≤0.82,延伸率≥26%,-130℃下冲击韧性≥200J的钢板;钢板的组织主要为均匀的回火索氏体组织。
PCT/CN2021/070624 2020-03-30 2021-01-07 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法 WO2021196820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3188095A CA3188095A1 (en) 2020-03-30 2021-01-07 Method for manufacturing a 5ni steel plate with a low remanence and an excellent surface quality to be used in a ship
EP21781149.6A EP4134465A4 (en) 2020-03-30 2021-01-07 PROCESS FOR PRODUCING 5NI STEEL PLATE WITH LOW REMANCE AND EXCELLENT SURFACE QUALITY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010233834.2A CN111440990B (zh) 2020-03-30 2020-03-30 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
CN202010233834.2 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021196820A1 true WO2021196820A1 (zh) 2021-10-07

Family

ID=71648115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070624 WO2021196820A1 (zh) 2020-03-30 2021-01-07 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法

Country Status (4)

Country Link
EP (1) EP4134465A4 (zh)
CN (1) CN111440990B (zh)
CA (1) CA3188095A1 (zh)
WO (1) WO2021196820A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147185A (zh) * 2021-11-15 2022-03-08 无锡蓝豹科技有限公司 电动车后衣架的制造工艺
CN114770049A (zh) * 2022-05-13 2022-07-22 无锡华美新材料有限公司 一种5g通讯pcb制造用超硬模板制造方法
CN114836687A (zh) * 2022-04-18 2022-08-02 伊莱特能源装备股份有限公司 辗环机芯辊锻件加工所用的高质量高寿命原材料及加工方法
CN115354127A (zh) * 2022-05-06 2022-11-18 包头钢铁(集团)有限责任公司 一种700MPa级稀土高强高韧钢板的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440990B (zh) * 2020-03-30 2022-07-15 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
CN112192001B (zh) * 2020-08-18 2022-05-06 江阴兴澄特种钢铁有限公司 一种船用5Ni钢埋弧焊接方法
CN114525389A (zh) * 2022-02-16 2022-05-24 南京钢铁股份有限公司 一种镍系钢板表面质量的控制方法
CN114892105B (zh) * 2022-04-06 2023-06-16 江阴兴澄特种钢铁有限公司 一种具有优异抗脆断性能的船用5Ni钢板及其制造方法
CN114855057B (zh) * 2022-04-15 2023-06-02 包头钢铁(集团)有限责任公司 一种薄规格高韧性12Cr1MoVR压力容器钢板的生产方法
CN116770170A (zh) * 2023-05-18 2023-09-19 江阴兴澄特种钢铁有限公司 一种超低温环境用5.5Ni钢板及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330031A (zh) 2011-10-27 2012-01-25 武汉钢铁(集团)公司 一种高韧性-130℃低温钢及其制造方法
CN103374681A (zh) * 2012-04-13 2013-10-30 株式会社神户制钢所 极低温韧性优异的厚钢板
CN103509999A (zh) * 2012-06-20 2014-01-15 鞍钢股份有限公司 一种低温储罐用高镍钢的制造方法
JP5494166B2 (ja) * 2010-04-14 2014-05-14 新日鐵住金株式会社 極低温用厚鋼板およびその製造方法
CN104195428A (zh) 2014-07-31 2014-12-10 南京钢铁股份有限公司 一种含V低碳高强5Ni钢中厚板及其制造方法
CN104388838A (zh) 2014-10-31 2015-03-04 舞阳钢铁有限责任公司 超低温压力容器用5Ni钢板及其生产方法
CN104583439A (zh) * 2012-08-23 2015-04-29 株式会社神户制钢所 极低温韧性优异的厚钢板
CN105331890A (zh) 2015-11-23 2016-02-17 南京钢铁股份有限公司 一种在线淬火生产高韧性5Ni钢中厚板的方法
CN109576449A (zh) * 2018-12-27 2019-04-05 江阴兴澄特种钢铁有限公司 一种抵抗剩磁增加、节约生产能耗的9Ni钢板的生产方法
CN111440990A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957556B2 (ja) * 2006-01-13 2012-06-20 住友金属工業株式会社 極低温用鋼
JP5673399B2 (ja) * 2011-07-06 2015-02-18 新日鐵住金株式会社 極低温用鋼材およびその製造方法
CN109694987B (zh) * 2017-10-20 2021-02-23 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN110541110B (zh) * 2019-08-24 2021-02-26 江阴兴澄特种钢铁有限公司 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494166B2 (ja) * 2010-04-14 2014-05-14 新日鐵住金株式会社 極低温用厚鋼板およびその製造方法
CN102330031A (zh) 2011-10-27 2012-01-25 武汉钢铁(集团)公司 一种高韧性-130℃低温钢及其制造方法
CN103374681A (zh) * 2012-04-13 2013-10-30 株式会社神户制钢所 极低温韧性优异的厚钢板
CN103509999A (zh) * 2012-06-20 2014-01-15 鞍钢股份有限公司 一种低温储罐用高镍钢的制造方法
CN104583439A (zh) * 2012-08-23 2015-04-29 株式会社神户制钢所 极低温韧性优异的厚钢板
CN104195428A (zh) 2014-07-31 2014-12-10 南京钢铁股份有限公司 一种含V低碳高强5Ni钢中厚板及其制造方法
CN104388838A (zh) 2014-10-31 2015-03-04 舞阳钢铁有限责任公司 超低温压力容器用5Ni钢板及其生产方法
CN105331890A (zh) 2015-11-23 2016-02-17 南京钢铁股份有限公司 一种在线淬火生产高韧性5Ni钢中厚板的方法
CN109576449A (zh) * 2018-12-27 2019-04-05 江阴兴澄特种钢铁有限公司 一种抵抗剩磁增加、节约生产能耗的9Ni钢板的生产方法
CN111440990A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4134465A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147185A (zh) * 2021-11-15 2022-03-08 无锡蓝豹科技有限公司 电动车后衣架的制造工艺
CN114836687A (zh) * 2022-04-18 2022-08-02 伊莱特能源装备股份有限公司 辗环机芯辊锻件加工所用的高质量高寿命原材料及加工方法
CN115354127A (zh) * 2022-05-06 2022-11-18 包头钢铁(集团)有限责任公司 一种700MPa级稀土高强高韧钢板的制备方法
CN114770049A (zh) * 2022-05-13 2022-07-22 无锡华美新材料有限公司 一种5g通讯pcb制造用超硬模板制造方法
CN114770049B (zh) * 2022-05-13 2023-12-15 无锡华美新材料有限公司 一种5g通讯pcb制造用超硬模板制造方法

Also Published As

Publication number Publication date
CN111440990B (zh) 2022-07-15
CA3188095A1 (en) 2021-10-07
CN111440990A (zh) 2020-07-24
EP4134465A1 (en) 2023-02-15
EP4134465A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2021196820A1 (zh) 一种低剩磁、表面质量优异的船用5Ni钢板的制造方法
WO2021036272A1 (zh) 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
CN111363973B (zh) 一种心部低温冲击韧性优良的特厚容器钢板及其制造方法
JP6428970B1 (ja) ホットプレス部材およびその製造方法
CN109576585B (zh) 一种大型集装箱船用eh47止裂钢及其制造方法
CN109266958B (zh) 系列船舶与海洋工程用f级钢及其柔性化生产方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN111441000A (zh) 一种屈服强度690MPa级低屈强比高强钢板及其制造方法
CN109136738B (zh) 一种高强度耐低温船体结构钢板及其制备方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN107974612B (zh) 一种抗sscc球罐用高强韧钢板及其制造方法
CN110295320A (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
WO2023029282A1 (zh) 一种工程机械用高强度钢板的生产方法
CN110714165B (zh) 一种320MPa级家电面板用冷轧薄板及其生产方法
WO2023173803A1 (zh) 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法
CN107130172A (zh) 布氏硬度400hbw级整体硬化型高韧性易焊接特厚耐磨钢板及其制造方法
CN111996462B (zh) 一种纵向变厚度超高强船板及生产方法
CN111534746B (zh) 宽幅450MPa级热轧集装箱用耐候钢及其制造方法
CN107541663B (zh) 一种饮料罐用电镀锡钢板及其生产方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
CN112680652A (zh) 一种Cr-Mo低合金压力容器用钢板及其制备方法
CN114892105B (zh) 一种具有优异抗脆断性能的船用5Ni钢板及其制造方法
CN110273106A (zh) 一种260MPa级冷轧连退搪瓷钢及其生产方法
CN111424221B (zh) 一种层压用不锈钢板及其制造方法
CN109234632B (zh) 80-120mm厚深海潜艇用易焊接耐腐蚀高强度Q690E钢板及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021781149

Country of ref document: EP

Effective date: 20221031

ENP Entry into the national phase

Ref document number: 3188095

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023515367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP