WO2021196593A1 - 迷你灯珠、制作方法、背光源及显示设备 - Google Patents

迷你灯珠、制作方法、背光源及显示设备 Download PDF

Info

Publication number
WO2021196593A1
WO2021196593A1 PCT/CN2020/125553 CN2020125553W WO2021196593A1 WO 2021196593 A1 WO2021196593 A1 WO 2021196593A1 CN 2020125553 W CN2020125553 W CN 2020125553W WO 2021196593 A1 WO2021196593 A1 WO 2021196593A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
emitting surface
source
lamp bead
Prior art date
Application number
PCT/CN2020/125553
Other languages
English (en)
French (fr)
Inventor
胡珊珊
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Publication of WO2021196593A1 publication Critical patent/WO2021196593A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • This application relates to the field of display technology, in particular to a mini lamp bead, a manufacturing method, a backlight source and a display device.
  • mini lamp beads are welcomed by the market due to their small size, thin thickness, high brightness, millimeter-level pixel partitions, high-precision dynamic backlight effects, etc., such as MINI LED, mini OLED and other mini light Lamp beads.
  • the existing MINI LEDs have a small light-emitting angle and basically emit light from the front. There is basically no light emitted from the side of the lamp beads, so that the energy between the lamp beads is less; further, a dark area is generated between the lamp beads.
  • the present application provides a mini lamp bead, a manufacturing method, a backlight source and a display device to expand the light-emitting angle of the mini lamp bead.
  • an embodiment of the present application provides a mini lamp bead, including:
  • a micro lens, the micro lens is covered on the light source
  • the microlens has a first light-emitting surface and a second light-emitting surface; the first light-emitting surface is disposed above the light-emitting source, and part of the light from the light-emitting source is emitted from the first light-emitting surface; Two light-emitting surfaces are arranged corresponding to the side surfaces of the light-emitting source, and part of the light from the light-emitting source is emitted from the second light-emitting surface.
  • a cavity is provided in the microlens, and the side of the cavity close to the lower surface of the microlens has an open end, and the light-emitting source is disposed in the cavity through the open end.
  • the first light exit surface has a first arc surface structure, and the first arc surface structure is recessed in a direction close to the upper surface of the light emitting source; irradiating on the first light exit surface Part of the light is emitted from the second light-emitting surface after being totally reflected, and the other part is emitted from the first light-emitting surface.
  • the portion between the edge position and the middle position of the first light-emitting surface presents an inwardly concave arc surface structure.
  • the portion between the edge position and the middle position of the first light-emitting surface presents an outwardly convex arc surface structure.
  • the second light exit surface has a second arc surface structure, and the second arc surface structure protrudes in a direction away from the side surface of the light-emitting source.
  • the micro lens is made of epoxy resin or silicone resin.
  • a base is provided on a side of the light-emitting source away from the first light-emitting surface, and the base is configured to increase the height of the light-emitting source.
  • the light-emitting source further includes an LED chip, the LED chip is arranged on a side of the base close to the first light-emitting surface; The electrodes are electrically connected.
  • two electrode plates are provided on the side of the base away from the LED chip, and the two electrode plates are respectively electrically connected to the corresponding electrodes on the LED chip; one of the two electrode plates The distance between them is 0.5-1.0mm.
  • an embodiment of the present application provides a backlight source, including a substrate, on which the aforementioned mini lamp beads are arranged in an array.
  • an embodiment of the present application provides a display device including the aforementioned backlight source.
  • an embodiment of the present application provides a method for making mini lamp beads, including:
  • the microlens has a first light-emitting surface and a second light-emitting surface; the first light-emitting surface is correspondingly arranged above the LED chip, and part of the light of the LED chip is emitted from the first light-emitting surface; The second light-emitting surface is arranged corresponding to the side surface of the LED chip, and part of the light of the LED chip is emitted from the second light-emitting surface.
  • the first light exit surface has a first arc surface structure, and the first arc surface structure is recessed in a direction close to the upper surface of the light emitting source; irradiating on the first light exit surface Part of the light is emitted from the second light-emitting surface after being totally reflected, and the other part is emitted from the first light-emitting surface.
  • the portion between the edge position and the middle position of the first light-emitting surface presents an inwardly concave arc surface structure.
  • the portion between the edge position and the middle position of the first light-emitting surface presents an outwardly convex arc surface structure.
  • the second light exit surface has a second arc surface structure, and the second arc surface structure protrudes in a direction away from the side surface of the light-emitting source.
  • the mini lamp beads provided in the present application include a light-emitting source and a microlens covered on the light-emitting source; wherein the microlens is provided with two light-emitting surfaces, and the first light-emitting surface corresponds to the light-emitting source
  • the upper part of the light-emitting source is set to make part of the light emitted from the top
  • the second light-emitting surface is corresponding to the side of the light-emitting source, so that part of the light is emitted to the side, so as to ensure that the mini lamp beads provided in this application can emit light from the side and avoid the lamp beads and the lamp.
  • Dark areas appear between the beads; in turn, the number of lamp beads on the backlight can be reduced, the power of the backlight can be reduced, and the heat generation can be reduced.
  • Figure 1 shows a schematic diagram of the structure of an existing LED backlight
  • Figure 2 shows a schematic cross-sectional structure diagram of the existing mini lamp beads
  • Figure 3 shows a schematic diagram of the structure of an existing mini lamp bead backlight
  • FIG. 4 shows a schematic cross-sectional structure diagram of a mini lamp bead provided by an embodiment of the present application
  • FIG. 5 shows one of the schematic diagrams of the light path of the mini lamp beads provided in the embodiment of the present application
  • Fig. 6 shows the second schematic diagram of the light path of the mini lamp beads provided by the embodiment of the present application
  • FIG. 7 shows a schematic diagram of a part of the structure of a backlight source provided by an embodiment of the present application.
  • Fig. 8 shows a preparation flow chart of the mini lamp beads provided in the embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless explicitly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the OD (Optical Distance) size B1 of the traditional direct-lit LED TV is generally 20-40mm, the distance A1 of the LED lamp beads is 70-160mm, and the LED lamp size is 3*3mm.
  • the backlight source of the traditional direct-lit LED TV has a small number of LED lamp beads, but can only achieve a partition effect of less than 100 pieces, which cannot meet the current demand for high-precision dynamic backlight effects and the needs of light and thin display devices.
  • MINI LED lamp beads as a new display technology, are favored by the market due to their small size, thin thickness, and millimeter-level pixel partitions.
  • the OD size B2 of the display device can be controlled within 0.2-5mm.
  • the existing MINI LED lamp beads are all packaged with COB (Chip on Board) packaging, and the LED chip 12 is directly flip-mounted on the circuit board 11.
  • COB Chip on Board
  • the LED chip 12 is directly flip-mounted on the circuit board 11.
  • the LED chip 12 is directly flip-mounted on the circuit board 11 without a bracket.
  • the height D of the LED chip 12 is about 0.1mm
  • the height D of the MINI LED after the surface encapsulation resin 13 is C1 About 0.25mm, resin 13 has no lens structure. Therefore, the existing MINI LED lamp beads basically emit light from the front, and there is basically no light from the side, resulting in less light energy between the lamp beads of the backlight, and due to the low height of the existing MINI LED lamp beads, mixed Insufficient light distance, resulting in a dark area between the MINI LED lamp beads.
  • the lamp bead spacing A2 needs to be controlled at about 3mm, and a large number of MINI LED lamps need to be arranged on the circuit board 11.
  • a 65-inch backlight source requires about 100,000 MINI LED lamp beads.
  • the cost of the backlight source increases, the power increases, and more heat is generated during operation, which affects the normal operation of the backlight source.
  • the embodiment of the present application provides a mini lamp bead, which can realize the side light emission and increase the brightness between the lamp beads, so as to expand the distance between the lamp beads and reduce the density of the lamp beads on the backlight, thereby reducing cost and power. Consumption.
  • the MINI LED lamp beads appearing in the following text refer to the mini lamp beads.
  • the MINI LED lamp beads may include a light-emitting source 20 and a microlens 24; the microlens 24 is arranged around the light-emitting source 20; the lower surface of the microlens 24 and the light-emitting source 20 The lower surface of the light source 20 is flush.
  • the directions shown in FIG. 4 are used as a reference to define the up, down, left, and right orientations. The up, down, left, and right orientations are only used to describe the relative positions of the components, and should not be used as a limitation to the embodiments of the present application.
  • the microlens 24 is provided with a cavity, the side of the cavity close to the lower surface of the microlens 24 has an open end, the light-emitting source 20 is disposed in the cavity through the open end, and the hair The lower surface of the light source 20 is in contact with the outside through the open end.
  • the light-emitting source 20 can be put into the injection mold of the microlens 24, and then the microlens 24 is poured into the mold.
  • the microlens 24 is directly injection molded on the outside of the light-emitting source 20, and the fixed connection between the microlens 24 and the light-emitting source 20 is realized.
  • the light generated by the light-emitting source 20 is emitted outward after passing through the microlens 24, and the microlens 24 is configured to diffuse the light generated by the light-emitting source 20, so that light is also emitted from the side of the MINI LED, increasing the light from the side.
  • the microlens 24 may be made of epoxy resin or silicone resin with high transmittance and high light resistance. become.
  • the side of the microlens 24 close to the light-emitting source 20 has a light-incident surface, and the light-incident surface is attached to the side surface and the upper end surface of the light-emitting source 20.
  • the light from the light-emitting source 20 enters the microlens 24 through the light-incident surface.
  • the outer surface of the microlens 24 has a first light-emitting surface 24a and a second light-emitting surface 24b, and the light in the microlens 24 is emitted outward through the first light-emitting surface 24a and the second light-emitting surface 24b.
  • the first light-emitting surface 24a is provided corresponding to the upper side of the light-emitting source 20 to realize upward transmission of part of the light, and realize the front light emission of the MINI LED lamp bead.
  • the second light-emitting surface 24b is provided corresponding to the side surface of the light-emitting source 20, so that part of the light is emitted toward the side surface of the MINI LED lamp bead, so as to realize the side light emission of the MINI LED lamp bead.
  • the MINI LED lamp beads provided by the embodiments of this application increase the light energy between adjacent MINI LED lamp beads by increasing the amount of light emitted from the side, so as to avoid dark areas between the lamp beads, and at the same time, it can also be used in the backlight.
  • the number of MINI LED lamp beads can be reduced, and the cost and power consumption of the backlight source can be reduced.
  • the first light-emitting surface 24 a has a first arc surface structure, and the first arc surface structure is recessed in a direction close to the upper surface of the light-emitting source 20.
  • the portion between the edge position and the middle position of the first light-emitting surface 24a may exhibit an inwardly concave arc surface structure, so that the first light-emitting surface 24a is integral Presents a bowl-like structure.
  • the light from the light source 20 when the light from the light source 20 is irradiated on the first light-emitting surface 24a, part of the light will be totally reflected inside the first light-emitting surface 24a and reflected to the second light-emitting surface 24a.
  • the light-emitting surface 24b emits from the second light-emitting surface 24b.
  • the medium density of the microlens 24 is greater than the medium density of the air, that is, the light is emitted from the optically dense medium to the optically thin medium, and total reflection occurs when the incident angle of the light is greater than the critical angle. Therefore, in the foregoing implementation manner, the incident angle of the light near the edge of the first light-emitting surface 24a is greater than the critical angle, and this part of the light will be emitted toward the second light-emitting surface 24b in the form of total reflection, and then be emitted from the second light-emitting surface 24b.
  • the incident angle of the light near the middle part of the first light-emitting surface 24a is smaller than the critical angle, and this part of the light is irradiated through the first light-emitting surface 24a, so as to realize the front light emission and side light emission of the MINI LED lamp bead.
  • the portion between the edge position and the middle position of the first light-emitting surface 24a may also exhibit an outwardly convex arc surface structure.
  • the first light-emitting surface 24a is made to present a conical-like structure as a whole.
  • the incident angle of the light near the middle of the first light-emitting surface 24a is greater than the critical angle, and this part of the light will be totally reflected and irradiated to the second light-emitting surface 24b, and then irradiated from the second light-emitting surface 24b.
  • the incident angle of the light near the edge of the first light-emitting surface 24a is smaller than the critical angle, and this part of the light is emitted from the first light-emitting surface 24a, thereby realizing the front light emission and side light emission of the MINI LED lamp bead.
  • the second light exit surface 24b has a second arc surface structure, and the second arc surface structure protrudes in a direction away from the side surface of the light-emitting source 20. It can be understood that the second light-emitting surface 24b gradually moves away from the side surface of the light-emitting source 20 from the edge position to the middle position, so as to make the incident angle of the light irradiated on the second light-emitting surface 24b smaller than the critical angle, so that The light irradiated on the second light-emitting surface 24b is transmitted out.
  • the junction of the second light-emitting surface 24b and the first light-emitting surface 24a is a curved surface to achieve a smooth transition.
  • the light generated by the light-emitting source 20 can be condensed to the second light-emitting surface 24b and emitted from the second light-emitting surface 24b, thereby achieving Reduce the light emission from the front of the MINI LED lamp bead, and enhance the light emission from the side of the MINI LED lamp bead.
  • the light-emitting angle of the MINI LED lamp beads of the present application can reach more than ⁇ 70°, and then in subsequent use, the distance between the lamp beads can be increased accordingly, and the use in the backlight surface can be reduced.
  • the number of MINI LED lamp beads can reduce costs.
  • the light-emitting source 20 includes a base 21 and an LED chip; the LED chip is stacked on the base 21; the LED chip is arranged close to the first light-emitting surface 24a.
  • the base 21 may be an MCPCB (Metal Core PCB, metal-based printed circuit board); the electrode of the LED chip is arranged close to the base 21 side.
  • a metalized via hole (not shown in the figure) is provided in the base 21 at a position corresponding to the LED chip electrode.
  • One end of the metallized via close to the LED chip is connected to the electrode of the LED chip through the pad 27, so that power transmission can be realized during use.
  • the base 21 is provided with two electrode plates on the side away from the LED chip, and the two electrode plates correspond to the electrodes of the LED chip one by one; the two electrode plates are connected with the corresponding metalized vias in the base 21 ,
  • the electrode sheet is configured to achieve electrical connection with the circuit board.
  • the distance between the electrode sheets on the base 21 is 0.5-1.0 mm.
  • the base 21 may be a ceramic base, wherein the ceramic base may be alumina ceramic, aluminum nitride ceramic, beryllium oxide ceramic, silicon carbide ceramic, boron nitride ceramic, or the like.
  • the ceramic base is embedded with a metal guide post; the ceramic base is provided with two electrode sheets on the side away from the LED chip.
  • One end of the metal guide post is connected to the electrode of the LED chip through the pad 27; the other end of the metal guide post is connected to the electrode sheet on the ceramic base, so as to realize electric energy transmission.
  • the two electrode sheets are arranged in one-to-one correspondence with the two electrodes of the LED chip.
  • conductive structures such as metallized vias can also be provided in the ceramic base to achieve electrical connection between the LED chip electrode and the electrode sheet, so as to achieve electrical energy transmission.
  • the LED chip can be made by flip chip (CSP) (Chip Scale Package), and has a five-sided luminous effect, that is, all five surfaces except one surface close to the base 21 Can emit light.
  • CSP Chip Scale Package
  • the arrangement of the base 21 is equivalent to installing a tray under the LED chip to drag the electrode of the LED chip.
  • the distance between the electrode pads on the base 21 can be 0.5-1.0 mm, which fully complies with the currently used SMT (Surface Mounted Technology) standard. Therefore, when processing the backlight, you can use the SMT process to mount the MINI LED lamp beads.
  • the SMT machine grabs the MINI LED lamp beads and places them on the circuit board, and then fixes the MINI LED lamp beads on the circuit board through a reflow soldering process. superior.
  • the setting of the base 21 can also make the CSP process compatible with the standard mature SMT process in the MINI LED processing and mounting process, thereby improving the production efficiency and yield of the backlight source in the later stage, and reducing the production cost.
  • the overall height C2 of the MINI LED lamp beads can reach 0.65mm, which increases the optical path distance, which in turn facilitates the light mixing effect between the MINI LED lamp beads and increases
  • the light of MINI LED lamp bead complements each other to further improve the light effect between MINI LED lamp bead and avoid dark areas.
  • the LED chip may include an epitaxial layer and a substrate layer 25 stacked in sequence; the epitaxial layer is disposed close to the base 21, and the substrate layer 25 is close to The first light-emitting surface 24a is provided.
  • the electrode of the LED chip is etched on the epitaxial layer.
  • the epitaxial layer may include a P-GaN layer 22 (P-type gallium nitride), an MQWS layer 26 (light emitting layer), and an N-GaN layer 23 (N-type gallium nitride).
  • the MQWS layer 26 is disposed between the P-GaN layer 22 and the N-GaN layer 23, the P-GaN layer 22 is disposed close to the base 21, and the N-GaN layer 23 is disposed close to the substrate layer 25.
  • the N-GaN layer 23, the MQWS layer 26 and the P-GaN layer 22 are sequentially grown on the substrate layer 25 by an epitaxial layer growth method.
  • the substrate layer 25 can be a sapphire substrate (a main component is aluminum oxide).
  • the substrate layer 25 can also be a silicon carbide substrate, a silicon substrate, and a gallium nitride substrate.
  • the MINI LED lamp beads provided in this application can show light in the range of ⁇ 70° through the setting of the microlens 24.
  • the MINI LED lamp bead's optical path can be increased through the setting of the base 21 to improve the MINI LED lamp beads.
  • the light mixing effect can effectively improve the problem of dark areas between the MINI LED lamp beads, and effectively increase the distance between the MINI LED lamp beads, so that the distance between the MINI LED lamp beads can be expanded from the original 3mm to about 10mm, thereby reducing the backlight source
  • the number of MINI LED lamp beads used in processing can save one-tenth of the number of MINI LED lamp beads per unit area, reducing the production cost and power consumption of the backlight.
  • the CSP packaging technology of the MINI LED lamp bead is compatible with the SMT mounting technology through the setting of the base 21, and the MINI LED lamp bead can be directly mounted on the circuit board through the SMT technology during the processing of the backlight, thereby improving the backlight Source production efficiency and yield rate, reduce production costs. At the same time, it is convenient for maintenance in later use and realizes single traceability maintenance, thereby reducing the maintenance cost of the backlight.
  • an embodiment of the present application provides a backlight source, including a substrate 30 and the aforementioned mini lamp beads.
  • the aforementioned MINI LED lamp beads are arranged in an array on the substrate 30, wherein the substrate 30 is a circuit board.
  • the MINI LED lamp beads can achieve a large-angle luminous range of ⁇ 70°, which increases the light energy between the MINI LED lamp beads.
  • the height C2 of the MINI LED lamp bead is about 0.65 mm, so that the MINI LED lamp bead has a larger optical path, thereby increasing the light mixing effect between the MINI LED lamp bead. Therefore, the distance A3 between the MINI LED lamp beads on the backlight of the present application can be about 10 mm, so that the density of the MINI LED lamp beads on the substrate 30 can be reduced, and the number of MINI LED lamp beads in the backlight of the present application per unit area Compared with the traditional backlight source, the number of MINI LED lamp beads can be reduced by one-tenth. In this case, the backlight source of the present application has a lower production cost than the traditional backlight source, and lower power consumption in later work.
  • the MINI LED lamp beads can be mounted on the substrate 30 through a mature SMT process.
  • a single MINI LED lamp is broken, you can trace the source of a single MINI LED lamp and directly replace the MINI LED lamp at the corresponding position. There is no need to replace the entire board of the backlight, thereby reducing the maintenance of the backlight. cost.
  • the MINI LED lamp beads are mounted through the SMT process, which can improve the production efficiency and yield of the backlight, and reduce the production cost of the backlight.
  • the embodiment of the present application provides a display device including a display panel, an optical component, and the aforementioned backlight source.
  • the optical component is arranged between the display panel and the backlight source.
  • the light generated by the backlight is irradiated on the display panel after passing through the optical assembly, so that the display panel is imaged.
  • the density of MINI LED lamp beads on the backlight source is relatively small; in use, energy consumption and heat generation can be reduced, so as to ensure the normal operation of the backlight source, thereby ensuring that the display device can be normal Imaging.
  • an embodiment of the present application also provides a method for manufacturing a MINI LED lamp bead, which is used to manufacture the aforementioned MINI LED lamp bead.
  • the manufacturing method includes:
  • the alumina powder is melted at a high temperature to form a liquid, and the seed crystal is brought into contact with the liquid to form an ingot.
  • the alumina powder can be melted into an alumina liquid at a high temperature of 2000 °C, and then the seed crystals are contacted with the alumina liquid, and the EFG (edge-defined, film-fed-growth ) Method, Cz (czochralskr) method or K (kyropoulos) method to generate ingots.
  • the ingot can be cut into single crystal wafers, and then the defects on the surface of the single crystal wafer can be removed by grinding and polishing until the atomic sequence of the surface of the single crystal wafer is in order, wherein the defects include single crystal wafers. Cracks, fractures, defects or dislocations on the surface of the crystal wafer.
  • an N-GaN layer, an MQWS layer, and a P-GaN layer can be sequentially grown on the surface of a single crystal wafer by an epitaxial growth method.
  • the epitaxial growth crystal growth method can select one of the LPE (liquid phase epitaxy) method, the VPE (vapor phase epitaxy) method, the OMVPE (metal-organic vapor phase epitaxy) method, and the MBE (molecular beam epitaxy) method.
  • S400 Fabricating electrodes on the epitaxial layer of the epitaxial wafer to form LED chips; cutting the epitaxial wafer to form LED chips.
  • the step S400 may include:
  • S401 forming crystal grains, using mask technology to cover the light-emitting part to form a mask; dry etching is used to etch away the unmasked part, and then the mask is removed to leave the light-emitting part on the epitaxial layer to form a mask.
  • a light-emitting diode die A light-emitting diode die.
  • S403 Fabricate an electrode plate, form a mask at the position of the electrode plate by masking technology, and then cover the position of the electrode plate with electrode material by vacuum evaporation to form an n-side electrode plate and a p-side electrode plate, that is, the electrodes of the LED chip ; Remove the mask.
  • S405 Divide the wafers in units of die to form LED chips.
  • a bonding pad can be arranged at the position of the electrode plate of the LED chip, and the electrode board, the bonding pad and the base of the LED chip can be fixedly connected by welding, and electric energy transmission can be realized.
  • the LED chip with the base attached is placed in the micro lens mold, and then the package value is poured into the mold, and then the mold is demolded after curing.
  • the curing includes pre-curing and post-curing; wherein, the pre-curing is maintained at 135°C for one hour, and the post-curing is the heat aging treatment of the encapsulating resin and maintained at 120°C for four hours.
  • the microlens has a first light-emitting surface and a second light-emitting surface; the first light-emitting surface is set corresponding to the upper side of the LED chip so as to transmit part of the light upward, and the second light-emitting surface corresponds to the upper side of the LED chip.
  • the side of the LED chip is arranged to transmit part of the light to the side.
  • the first light-emitting surface has a first curved surface structure, and the first curved surface structure is recessed in a direction close to the upper surface of the light-emitting source, so that the first light-emitting surface is irradiated Part of the light on the surface is emitted from the second light-emitting surface after being totally reflected, and the other part is emitted from the first light-emitting surface.
  • the portion between the edge position and the middle position of the first light-emitting surface presents an inwardly concave arc surface structure, and at this time, the first light-emitting surface as a whole presents a bowl-shaped structure.
  • the part between the edge position and the middle position of the first light-emitting surface presents an outwardly convex arc surface structure, and at this time, the first light-emitting surface as a whole presents a cone-like structure. ⁇ Shape structure.
  • the second light exit surface has a second arc surface structure, and the second arc surface structure protrudes in a direction away from the side surface of the light-emitting source.
  • the light-emitting angle of the MINI LED lamp bead can reach ⁇ 70°, and the light output from the side of the MINI LED lamp bead can be increased, thereby When processing the backlight, the density of MINI LED lamp beads can be reduced, thereby reducing the cost of the backlight, as well as the power consumption and heat production in later use.
  • the MINI LED lamp beads produced by this application can meet the mature SMT process standards, and the backlight can be directly mounted on the circuit board through the SMT machine, thereby improving the production efficiency and yield of the backlight, and also facilitating later maintenance. Reduce the maintenance cost of the backlight source.
  • the embodiment of the application provides a mini lamp bead, a manufacturing method, a backlight source and a display device.
  • the mini lamp bead includes a light-emitting source and a microlens covered on the light-emitting source; wherein the microlens is provided with two light-emitting surfaces, The first light-emitting surface is set above the light-emitting source so that part of the light from the light-emitting source is emitted from above, and the second light-emitting surface is corresponding to the side of the light-emitting source so that part of the light is emitted to the side, so as to ensure that the mini lamp beads provided in this application can be used.
  • the light is emitted from the side to avoid dark areas between the lamp beads and the lamp beads; thereby, the number of lamp beads on the backlight can be reduced, the backlight power and the heat generation can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种迷你灯珠、制作方法、背光源及显示设备,涉及显示技术领域。迷你灯珠包括发光源(20)、罩设于发光源(20)上的微透镜(24);微透镜(24)具有实现光线向上透射的第一出光面(24a)和实现光线向侧面透射的第二出光面(24b)。背光源包括基板(30),基板(30)上呈阵列排布设置有迷你灯珠。显示设备包括该背光源。制作方法包括:制作晶锭;切割晶锭成晶片;在晶片上生成外延层;在外延层上制作电极,形成LED芯片;在LED芯片上加装底座(21)和微透镜(2)。可实现迷你灯珠的侧面出光,减少背光源上迷你灯珠的密度,进而降低成本及功耗。

Description

迷你灯珠、制作方法、背光源及显示设备
相关申请的交叉引用
本申请要求于2020年04月02日提交中国专利局的申请号为2020102560696、名称为“迷你灯珠、制作方法、背光源及显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种迷你灯珠、制作方法、背光源及显示设备。
背景技术
随着手机、iPad、智能电视等显示设备正向轻、薄、画质更优的方向发展。其中,迷你灯珠作为新一代显示技术,以其体积小、厚度薄、亮度高、毫米级像素分区、高精密动态背光效果等优点受到市场欢迎,如,MINI LED、迷你OLED等各种迷你发光灯珠。
然而现有的MINI LED发光角度小,基本都是正面发光,在灯珠的侧边基本没有光线射出,从而使灯珠之间的能量较少;进而,在灯珠之间产生暗区。为实现良好的成像效果,故需要将背光源上的MINI LED灯珠进行密集排布,灯珠间距在3mm左右,由此使背光源的成本增加,且在使用中功率增大、产热更多。
发明内容
本申请的目的之一包括克服上述缺陷,为此本申请提供一种迷你灯珠、制作方法、背光源及显示设备,以扩大迷你灯珠的发光角度。
为解决上述问题,本申请实施例所采用的技术方案如下:
第一方面,本申请实施例提供了一种迷你灯珠,包括:
发光源;
微透镜,所述微透镜罩设于所述发光源上;
所述微透镜具有第一出光面和第二出光面;所述第一出光面对应所述发光源的上方设置,所述发光源的部分光线从所述第一出光面射出;所述第二出光面对应所述发光源的侧面设置,所述发光源的部分光线从所述第二出光面射出。
在一种可能的实现方式中,所述微透镜内设置有一容腔,所述容腔靠近微透镜下表面的一侧具有开口端,所述发光源经所述开口端设置于所述容腔内。
在一种可能的实现方式中,所述第一出光面呈第一弧面结构,所述第一弧面结构向靠近所述发光源上表面的方向凹陷;照射在所述第一出光面上的光线,一部分发生全反射后从第二出光面射出,另一部分从所述第一出光面射出。
在一种可能的实现方式中,所述第一出光面的边缘位置与中间位置之间的部位呈现向 内凹陷的弧面结构。
在一种可能的实现方式中,所述第一出光面的边缘位置与中间位置之间的部位呈现向外凸出的弧面结构。
在一种可能的实现方式中,所述第二出光面呈第二弧面结构,所述第二弧面结构向远离所述发光源侧面的方向凸出设置。
在一种可能的实现方式中,所述微透镜由环氧树脂或硅树脂制成。
在一种可能的实现方式中,所述发光源远离所述第一出光面的一侧设置有底座,所述底座配置成增加所述发光源的高度。
在一种可能的实现方式中,所述发光源还包括LED芯片,所述LED芯片设置于所述底座靠近所述第一出光面的一侧;所述底座通过焊盘与所述LED芯片的电极电连接。
在一种可能的实现方式中,所述底座远离所述LED芯片的一侧设置有两电极片,两所述电极片分别与所述LED芯片上对应的电极电连接;两所述电极片之间的距离为0.5-1.0mm。
第二方面,本申请实施例提供了一种背光源,包括基板,所述基板上呈阵列排布设置有前述的迷你灯珠。
第三方面,本申请实施例提供了一种显示设备,包括前述的背光源。
第四方面,本申请实施例提供了一种迷你灯珠制作方法,包括:
将氧化铝粉末进行高温熔融形成氧化铝液体,将种晶接触所述氧化铝液体生成晶锭;
将所述晶锭进行切割、打磨以形成单晶晶片;
通过外延生长结晶生长法在所述单晶晶片上生成外延层,形成外延晶元;
在外延晶元的外延层上制作电极,形成LED芯片;
在所述LED芯片的电极一侧加装底座;
在所述LED芯片上封装微透镜;
其中,所述微透镜具有第一出光面和第二出光面;所述第一出光面对应所述LED芯片的上方设置,所述LED芯片的部分光线从所述第一出光面射出;所述第二出光面对应所述LED芯片的侧面设置,所述LED芯片的部分光线从第二出光面射出。
在一种可能的实现方式中,所述第一出光面呈第一弧面结构,所述第一弧面结构向靠近所述发光源上表面的方向凹陷;照射在所述第一出光面上的光线,一部分发生全反射后从第二出光面射出,另一部分从所述第一出光面射出。
在一种可能的实现方式中,所述第一出光面的边缘位置与中间位置之间的部位呈现向内凹陷的弧面结构。
在一种可能的实现方式中,所述第一出光面的边缘位置与中间位置之间的部位呈现向外凸出的弧面结构。
在一种可能的实现方式中,所述第二出光面呈第二弧面结构,所述第二弧面结构向远离所述发光源侧面的方向凸出设置。
本申请实施例的有益效果之一包括:本申请提供的迷你灯珠包括发光源和罩设在发光源上的微透镜;其中微透镜设置有两个出光面,第一出光面对应发光源的上方设置使发光源的部分光线从上方射出,第二出光面对应发光源的侧面设置使部分光线向侧面射出,从而确保本申请提供的迷你灯珠可以进行侧面出光,避免灯珠与灯珠之间出现暗区;进而可以减少背光源上灯珠数量的设置,减少背光源功率、减少产热。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了现有LED背光源的结构示意图;
图2示出了现有迷你灯珠的剖面结构示意图;
图3示出了现有迷你灯珠背光源的结构示意图;
图4示出了本申请实施例提供的迷你灯珠的剖面结构示意图;
图5示出了本申请实施例提供的迷你灯珠的光路示意图之一;
图6示出了本申请实施例提供的迷你灯珠的光路示意图之二;
图7示出了本申请实施例提供的背光源的部分结构示意图;
图8示出了本申请实施例提供的迷你灯珠的制备流程图。
主要元件符号说明:
11-线路板;12-LED芯片;13-树脂;20-发光源;21-底座;22-P-GaN层;23-N-GaN层;24-微透镜;24a-第一出光面;24b-第二出光面;25-衬底层;26-MQWS层;27-焊盘;30-基板。
具体实施方式
下面详细描述本申请实施例,所述实施例的实现方式在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实现方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所 指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据实际情况理解上述术语在本申请中的实质含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,传统直下式LED电视的OD(Optical Distance,光程)大小B1一般在20-40mm,LED灯珠的间距A1在70-160mm,LED灯珠大小为3*3mm。其中,传统直下式LED电视的背光源具有较少的LED灯珠数,但是仅能实现百枚以内的分区效果,无法满足现在所需求的高精密动态背光效果以及显示设备轻薄化的需求。
随之,MINI LED灯珠(迷你灯珠)作为新的显示技术,因具有体积小、厚度薄、毫米级像素分区等优点而受到市场的青睐。其中,显示设备的OD大小B2可以控制在0.2-5mm。
以图2和图3所示内容为例,现有的MINI LED灯珠都是采用COB(Chip on Board,芯片直接贴装技术)封装,LED芯片12直接倒装在线路板11上。需要注意的是,由于COB封装工艺要求高,目前国内厂商还没有掌握其封装技术,因此在后期使用中不便于进行后期维修。当背光源出现单个MINI LED灯珠坏掉时,则需要进行整板更换,从而增加了背光源的维修成本。
同时,在现有的MINI LED灯珠采用COB封装形势下,LED芯片12无支架直接倒装在线路板11上,LED芯片12高度D约为0.1mm,表面封装树脂13后MINI LED的高度C1约为0.25mm,树脂13无透镜结构。因此,现有的MINI LED灯珠基本上都是正面出光,侧面基本无光线射出,导致背光源的灯珠之间光线能量较少,并且由于现有的MINI LED灯珠高度较低,使混光距离不足,从而使MINI LED灯珠之间产生暗区。目前,市面上为 避免MINI LED灯珠之间出现暗区,通常需要将MINI LED灯珠进行密集排布,灯珠间距A2需要控制在3mm左右,需要在线路板11上布置大量的MINI LED灯珠,以65寸背光源为例就需要约十万颗MINI LED灯珠。在此情况下,就导致背光源成本增加、功率增加,且在工作时产生更多热量,影响背光源正常工作。
为解决上述技术问题,本申请实施例提供了一种迷你灯珠,可实现侧面出光,增加灯珠间亮度,从而可以扩大灯珠间距,减小背光源上灯珠密度,进而降低成本及功耗。作为说明,在本申请实施例中,后文中出现的MINI LED灯珠即指所述的迷你灯珠。
如图4所示,所述MINI LED灯珠可以包括发光源20和微透镜24;所述微透镜24环绕罩设于所述发光源20上;所述微透镜24的下表面与所述发光源20的下表面齐平。如图4中所示的方向为基准定义上下左右等方位,上下左右等方位仅用于各部件相对位置的描述,不应作为对本申请实施例的限制。
所述微透镜24内设置有一容腔,所述容腔靠近微透镜24下表面的一侧具有开口端,所述发光源20经所述开口端设置于所述容腔内,且所述发光源20的下表面通过所述开口端与外界接触。
在本实施例的一种可能的实现方式中,生产加工所述MINI LED灯珠时,可将所述发光源20放入微透镜24的注塑模具中,随后向模具内浇筑微透镜24的制作原料,使微透镜24直接注塑在发光源20的外侧,并且实现所述微透镜24与发光源20之间的固定连接。
所述发光源20产生的光线经过微透镜24后向外射出,而所述微透镜24配置成将所述发光源20产生的光线进行扩散,从而使MINI LED侧面也有光线射出,增加侧面出光。
在本实施例的一种可能的实现方式中,为了提高MINI LED灯珠的外量子效率,提高出光量,所述微透镜24可由具有高透射率和高耐光性的环氧树脂或硅树脂制成。
如图4和图5所示,所述微透镜24靠近所述发光源20的一面具有入光面,所述入光面与所述发光源20的侧面及上端面贴合设置。由此,所述发光源20的光线经过所述入光面进入所述微透镜24中。
所述微透镜24的外表面具有第一出光面24a和第二出光面24b,所述微透镜24内光线经过所述第一出光面24a和第二出光面24b向外射出。所述第一出光面24a对应所述发光源20的上方设置以实现部分光线向上透射,实现MINI LED灯珠的正面出光。所述第二出光面24b对应所述发光源20的侧面设置,以使部分光线向MINI LED灯珠的侧面方向射出,从而实现MINI LED灯珠的侧面出光。
在使用过程中,本申请实施例提供的MINI LED灯珠通过增加侧面出光量的方式,增加相邻MINI LED灯珠之间的光线能量,避免灯珠之间出现暗区,同时也能在背光源的生产加工过程中,可以减少MINI LED灯珠数量的设置,降低背光源成本及功耗。
在本实施例中,以图5所示内容进行说明,所述第一出光面24a呈第一弧面结构,所述第一弧面结构向靠近所述发光源20上表面的方向凹陷。
其中,在本实施例的一种可能的实现方式,所述第一出光面24a的边缘位置与中间位置之间的部位可呈现向内凹陷的弧面结构,使所述第一出光面24a整体呈现碗状结构。
从而,在图5所示迷你灯珠的使用过程中,发光源20的光线照射到所述第一出光面24a上时,部分光线会在第一出光面24a内侧发生全反射,反射到第二出光面24b,从第二出光面24b射出。
可以理解的是,由于微透镜24的介质密度大于空气的介质密度,即呈现光线从光密介质射向光疏介质中,当光线入射角大于临界角时会发生全反射。因此,在前述实现方式中,靠近第一出光面24a边缘的光线入射角大于临界角,该部分光线会以全反射的形式射向第二出光面24b,由第二出光面24b向外射出。靠近第一出光面24a中间部位的光线入射角小于临界角,该部分光线通过第一出光面24a照射出去,从而实现所述MINI LED灯珠的正面出光和侧面出光。
本实施例的另一种可能的实现方式,以图6所示内容进行说明,所述第一出光面24a的边缘位置与中间位置之间的部位也可呈现向外凸出的弧面结构,使所述第一出光面24a整体呈现类圆锥形结构。靠近第一出光面24a中间的光线入射角大于临界角,该部分光线会发生全反射照射到第二出光面24b,从第二出光面24b照射出去。靠近第一出光面24a边缘的光线入射角小于临界角,该部分光线从第一出光面24a射出去,从而实现所述MINI LED灯珠的正面出光和侧面出光。
在本实施例中,所述第二出光面24b呈第二弧面结构,所述第二弧面结构向远离所述发光源20侧面的方向凸出设置。可以理解的是,所述第二出光面24b由边缘位置向中间位置逐渐远离所述发光源20的侧面,从而尽量使照射到所述第二出光面24b上的光线入射角小于临界角,使照射到第二出光面24b上的光线透射出去。所述第二出光面24b与所述第一出光面24a的衔接处为弧面,以实现平滑过渡。
其中,通过调节所述第一出光面24a和所述第二出光面24b的弧面参数,可以使发光源20产生的光线向第二出光面24b聚集并从第二出光面24b射出,从而实现减弱MINI LED灯珠正面出光,增强MINI LED灯珠侧面出光。在本实施例的一种可能的实现方式中,本申请的MINI LED灯珠的发光角度可以达到±70°以上,进而在后续使用中,可以相应地增加灯珠间距离,降低背光面中使用的MINI LED灯珠数量,降低成本。
在本实施例中,所述发光源20包括底座21和LED芯片;所述LED芯片叠放在所述底座21的上方;所述LED芯片靠近所述第一出光面24a设置。
可选地,所述底座21可为MCPCB板(Metal Core PCB,金属基印刷电路板);所述 LED芯片的电极靠近所述底座21一侧设置。所述底座21中对应所述LED芯片电极的位置设置有金属化过孔(图中未示出)。所述金属化过孔靠近LED芯片的一端通过焊盘27与所述LED芯片的电极连接,从而在使用中可实现电能传输。同时,所述底座21远离所述LED芯片的一侧设置有两电极片,两所述电极片与LED芯片的电极一一对应;两所述电极片与底座21内对应的金属化过孔连接,实现电能传输;所述电极片配置成实现与线路板电连接。其中,所述底座21上的电极片之间的间距为0.5-1.0mm。
可选地,所述底座21可以选用陶瓷底座,其中所述陶瓷底座可选用氧化铝陶瓷、氮化铝陶瓷、氧化铍陶瓷、碳化硅陶瓷或氮化硼陶瓷等。所述陶瓷底座内嵌设由金属导柱;所述陶瓷底座远离所述LED芯片的一侧设置有两电极片。所述金属导柱一端通过焊盘27与LED芯片的电极连接;所述金属导柱另一端与陶瓷底座上的电极片连接,从而实现电能传输。两所述电极片与LED芯片的两电极一一对应设置。
可选地,所述陶瓷底座内还可通过设置金属化过孔等导电结构实现LED芯片电极与电极片之间的电连接,实现电能传输。
在本实施例中,所述LED芯片可采用CSP(Chip Scale Package,芯片级封装)倒装制得,具有五面发光效果,即除了靠近所述底座21的一个面之外其它五个面都可以发出光线。所述底座21的设置相当于在LED芯片的下方加装了一托盘,拖住LED芯片的电极。所述底座21上的电极片之间的间距可以做到0.5-1.0mm,完全符合当前使用的SMT(Surface Mounted Technology,表面贴装技术)标准。因此在进行背光源加工时,可以使用SMT工艺对MINI LED灯珠进行贴装,由SMT机器抓取MINI LED灯珠放置在线路板上,再经过回流焊工艺将MINI LED灯珠固定在线路板上。
可以理解的是,SMT工艺目前已经是较为成熟的技术,也是国内厂商较为常用的贴装技术;因此,在背光源的后期使用中,当出现单颗灯珠坏掉时,可直接对单颗灯珠进行维修,无需再进行整板替换维修,实现单颗溯源,进而降低了背光源的维修成本。
所述底座21的设置,也可使CSP工艺与标准成熟的SMT工艺在MINI LED加工及贴装过程中兼容,进而提高后期背光源的生产效率及良率,降低生产成本。
同时,通过在LED芯片下方加装所述底座21,使MINI LED灯珠的整体高度C2可以达到0.65mm,增加了光程距离,进而有助于光线MINI LED灯珠间进行混光效果,增加MINI LED灯珠间光线互补,进一步改善MINI LED灯珠间的光线效果,避免出现暗区。
以图4所示内容进行说明,在本实施例中,所述LED芯片可以包括依次叠放设置的外延层和衬底层25;所述外延层靠近所述底座21设置,所述衬底层25靠近第一出光面24a设置。所述LED芯片的电极刻蚀于所述外延层上。
其中,所述外延层可以包括P-GaN层22(P型氮化镓)、MQWS层26(发光层)和N-GaN 层23(N型氮化镓)。所述MQWS层26设置于所述P-GaN层22和N-GaN层23之间,所述P-GaN层22靠近底座21设置,所述N-GaN层23靠近衬底层25设置。
所述N-GaN层23、MQWS层26和P-GaN层22通过外延层生长法在所述衬底层25上依次生长制得。
在本实施例中,所述衬底层25可以选用蓝宝石衬底(主要成分为氧化铝)。
在本实施例的一种实现方式中,所述衬底层25也可选用碳化硅衬底、硅衬底和氮化镓衬底。
综上,本申请提供的MINI LED灯珠经过微透镜24的设置,可以呈现±70°范围内的出光,同时通过底座21的设置增加MINI LED灯珠的光程,改善MINI LED灯珠间的混光效果,从而有效改善MINI LED灯珠间出现暗区的问题,有效拉大MINI LED灯珠间距离,使MINI LED灯珠间距离可以由原有的3mm扩大到10mm左右,进而减少背光源加工中用到的MINI LED灯珠数量,单位面积内的可以节省十分之一的MINI LED灯珠数量,降低背光源的生产成本及功耗。
此外,通过底座21的设置使MINI LED灯珠的CSP封装技术与SMT贴装技术兼容,在背光源的加工过程中可直接通过SMT技术将MINI LED灯珠贴装在线路板上,从而提高背光源的生产效率及良率,降低生产成本。同时,便于后期使用中的维修,实现单颗溯源维修,从而降低背光源的维修成本。
如图7所示,本申请实施例提供了一种背光源,包括基板30以及上述的迷你灯珠。所述基板30上呈阵列排布设置有前述的迷你灯珠(MINI LED灯珠)其中所述基板30即线路板。
其中,所述MINI LED灯珠可以实现±70°的大角度发光范围,增加MINI LED灯珠间光线能量。同时,所述MINI LED灯珠高度C2在0.65mm左右,使MINI LED灯珠的具有较大的光程,从而增加了MINI LED灯珠间的混光效果。因此,本申请的背光源上的MINI LED灯珠间距离A3可以做到10mm左右,进而使基板30上的MINI LED灯珠密度可以减少,单位面积内本申请背光源中的MINI LED灯珠数量相较于传统背光源中的MINI LED灯珠数量可以减少十分之一。在此情况下,本申请的背光源相较于传统的背光源具有较低的生产成本,及后期工作中具有较低的功耗。
在本实施例中,所述MINI LED灯珠可通过成熟的SMT工艺贴装在基板30上。以在出现单颗MINI LED灯珠坏掉的情况时,可进行单颗溯源,直接更换对应位置处的MINI LED灯珠即可,无需进行背光源的整板更换,进而降低背光源的后期维修成本。同时,通过SMT工艺对MINI LED灯珠进行贴装,可以提高背光源的生产效率及良率,以及降低背光源的生产成本。
本申请实施例提供了一种显示设备,包括显示面板、光学组件及前述的背光源。所述光学组件设置于所述显示面板和所述背光源之间。所述背光源产生的光线经过所述光学组件后照射在所述显示面板上,使显示面板成像。
在本申请实施例提供的显示设备中,背光源上MINI LED灯珠的密度较小;在使用中,可以减小能耗及产热,从而确保背光源的正常工作,进而确保显示设备可以正常成像。
如图8所示,本申请实施例还提供一种MINI LED灯珠的制作方法,用于制作前述的MINI LED灯珠。所述制作方法包括:
S100,将氧化铝粉末进行高温熔融形成液体,使种晶接触所述液体生成晶锭。
在一种可能的实现方式中,可通过将氧化铝粉末在2000℃的高温下进行融化成氧化铝液体,再将种晶与氧化铝液体接触,通过EFG(edge-defined,film-fed-growth)方法、Cz(czochralskr)方法或K(kyropoulos)方法生成晶锭。
S200,将所述晶锭进行切割、打磨以形成单晶晶片。
在一种可能的实现方式中,可通过将晶锭切割成单晶晶片,再经过研磨、抛光等工序去除单晶晶片表面的缺陷直至单晶晶片表面原子序列有序,其中所述缺陷包括单晶晶片表面的龟裂、破碎、缺陷或错位等。
S300,通过外延生长结晶生长法在所述单晶晶片上生成外延层,形成外延晶元。
在一种可能的实现方式中,可通过外延生长法在单晶晶片表面依次生长出N-GaN层、MQWS层和P-GaN层。其中,所述外延生长结晶生长法可选用LPE(liquid phase epitaxy)法、VPE(vapor phase epitaxy)法、OMVPE(metal-organic vapor phase epitaxy)法和MBE(molecular beam epitaxy)法中的一种。
S400,在所述外延晶元的外延层制作电极,形成LED晶粒;在对外延晶元进行切割形成LED芯片。
在本实施例中,所述步骤S400可以包括:
S401,形成晶粒,通过掩膜技术对发光部分进行覆盖形成掩膜;通过干式蚀刻法将无掩膜部分刻蚀掉,随后在去掉掩膜,使外延层上留下发光部位,形成多个发光二极管晶粒。
S402,制作透明电极,通过掩膜技术在非发光部位表面形成掩膜,通过真空蒸镀(或溅射镀膜)将透明电极材料覆盖在发光部位表面,形成p侧透明电极;随后去掉非发光部位的掩膜。
S403,制作电极板,通过掩膜技术在电极板位置处形成掩膜,再通过真空蒸镀在电极板位置处覆上电极材料,形成n侧电极板和p侧电极板,即LED芯片的电极;去掉掩膜。
S404,制作保护膜,在电极板形成后的晶元上利用溅射镀膜方法形成整体保护膜;再利用掩膜技术在非电极板部位形成掩膜;通过干式刻蚀法去掉电极板位置处的保护膜;去 掉非电极板位置处的掩膜即可。
S405,以晶粒为单位将晶元进行分割,形成LED芯片。
S500,在所述LED芯片的电极板一侧加装底座。
其中,可在LED芯片的电极板位置处设置焊盘,通过焊接将LED芯片的电极板、焊盘和底座之间进行固定连接,且可实现电能传输。
S600,在加装底座的LED芯片上封装微透镜。
可选地,将加装底座后的LED芯片放置到微透镜模具中,随后向模具中浇筑封装数值,再经过固化后脱模。所述固化包括前固化和后固化;其中,前固化是在135℃中维持一小时,而后固化是对封装树脂进行热老化处理,在120℃下维持四小时。
其中,所述微透镜具有第一出光面和第二出光面;所述第一出光面对应所述LED芯片的上方一侧设置以使部分光线向上透射,所述第二出光面对应所述LED芯片的侧面设置以使部分光线向侧面透射。
可选地,在本实施例中,所述第一出光面呈第一弧面结构,所述第一弧面结构向靠近所述发光源上表面的方向凹陷,使照射在所述第一出光面上的光线,一部分发生全反射后从第二出光面射出,另一部分从所述第一出光面射出。
在本实施例的一种实现方式中,所述第一出光面的边缘位置与中间位置之间的部位呈现向内凹陷的弧面结构,此时所述第一出光面整体呈现碗状结构。
在本实施例的另一种实现方式中,所述第一出光面的边缘位置与中间位置之间的部位呈现向外凸出的弧面结构,此时所述第一出光面整体呈现类圆锥形结构。
可选地,在本实施例中,所述第二出光面呈第二弧面结构,所述第二弧面结构向远离所述发光源侧面的方向凸出设置。
由此,可通过调节所述第一出光面和/或所述第二出光面的弧面参数,使MINI LED灯珠的出光角度达到±70°,增大MINI LED灯珠侧面出光,从而在加工背光源时,可以减少MINI LED灯珠的密度,进而降低背光源的成本,以及后期使用中的功耗及产热。
同时,本申请制作的MINI LED灯珠可以符合成熟的SMT工艺标准,可直接通过SMT机器贴装在线路板上制作背光源,从而提高背光源的生产效率及良率,也便于后期的维修,降低背光源的维修维修成本。
在本说明书的描述中,参考术语“一个实现方式”、“一些实现方式”等的描述意指结合该实现方式描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实现方式中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实现方式。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实现方式中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实现方式 的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例的各种实现方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例的各种实现方式进行变化、修改、替换和变型。
工业实用性
本申请实施例提供了一种迷你灯珠、制作方法、背光源及显示设备,通过使迷你灯珠包括发光源和罩设在发光源上的微透镜;其中微透镜设置有两个出光面,第一出光面对应发光源的上方设置使发光源的部分光线从上方射出,第二出光面对应发光源的侧面设置使部分光线向侧面射出,从而确保本申请提供的迷你灯珠可以进行侧面出光,避免灯珠与灯珠之间出现暗区;进而可以减少背光源上灯珠数量的设置,减少背光源功率、减少产热。

Claims (17)

  1. 一种迷你灯珠,其特征在于,包括:
    发光源;
    微透镜,所述微透镜罩设于所述发光源上;
    所述微透镜具有第一出光面和第二出光面;所述第一出光面对应所述发光源的上方设置,所述发光源的部分光线从所述第一出光面射出;所述第二出光面对应所述发光源的侧面设置,所述发光源的部分光线从所述第二出光面射出。
  2. 根据权利要求1所述的迷你灯珠,其特征在于,所述微透镜内设置有一容腔,所述容腔靠近微透镜下表面的一侧具有开口端,所述发光源经所述开口端设置于所述容腔内。
  3. 根据权利要求1或2所述的迷你灯珠,其特征在于,所述第一出光面呈第一弧面结构,所述第一弧面结构向靠近所述发光源上表面的方向凹陷;照射在所述第一出光面上的光线,一部分发生全反射后从第二出光面射出,另一部分从所述第一出光面射出。
  4. 根据权利要求1-3任意一项所述的迷你灯珠,其特征在于,所述第一出光面的边缘位置与中间位置之间的部位呈现向内凹陷的弧面结构。
  5. 根据权利要求1-3任意一项所述的迷你灯珠,其特征在于,所述第一出光面的边缘位置与中间位置之间的部位呈现向外凸出的弧面结构。
  6. 根据权利要求1-5任意一项所述的迷你灯珠,其特征在于,所述第二出光面呈第二弧面结构,所述第二弧面结构向远离所述发光源侧面的方向凸出设置。
  7. 根据权利要求1-6任意一项所述的迷你灯珠,其特征在于,所述微透镜由环氧树脂或硅树脂制成。
  8. 根据权利要求1-7任意一项所述的迷你灯珠,其特征在于,所述发光源远离所述第一出光面的一侧设置有底座,所述底座配置成增加所述发光源的高度。
  9. 根据权利要求8所述的迷你灯珠,其特征在于,所述发光源还包括LED芯片,所述LED芯片设置于所述底座靠近所述第一出光面的一侧;所述底座通过焊盘与所述LED芯片的电极电连接。
  10. 根据权利要求9所述的迷你灯珠,其特征在于,所述底座远离所述LED芯片的一侧设置有两电极片,两所述电极片分别与所述LED芯片上对应的电极电连接;两所述电极片之间的距离为0.5-1.0mm。
  11. 一种背光源,其特征在于,包括基板,所述基板上呈阵列排布设置有权利要 求1至10任意一项所述的迷你灯珠。
  12. 一种显示设备,其特征在于,包括权利要求11所述的背光源。
  13. 一种迷你灯珠制作方法,其特征在于,包括:
    将氧化铝粉末进行高温熔融形成氧化铝液体,将种晶接触所述氧化铝液体生成晶锭;
    将所述晶锭进行切割、打磨以形成单晶晶片;
    通过外延生长结晶生长法在所述单晶晶片上生成外延层,形成外延晶元;
    在外延晶元的外延层上制作电极,形成LED芯片;
    在所述LED芯片的电极一侧加装底座;
    在所述LED芯片上封装微透镜;
    其中,所述微透镜具有第一出光面和第二出光面;所述第一出光面对应所述LED芯片的上方设置,所述LED芯片的部分光线从所述第一出光面射出;所述第二出光面对应所述LED芯片的侧面设置,所述LED芯片的部分光线从第二出光面射出。
  14. 根据权利要求13所述的迷你灯珠制作方法,其特征在于,所述第一出光面呈第一弧面结构,所述第一弧面结构向靠近所述发光源上表面的方向凹陷;照射在所述第一出光面上的光线,一部分发生全反射后从第二出光面射出,另一部分从所述第一出光面射出。
  15. 根据权利要求13或14所述的迷你灯珠制作方法,其特征在于,所述第一出光面的边缘位置与中间位置之间的部位呈现向内凹陷的弧面结构。
  16. 根据权利要求13或14所述的迷你灯珠,其特征在于,所述第一出光面的边缘位置与中间位置之间的部位呈现向外凸出的弧面结构。
  17. 根据权利要求13-16任意一项所述的迷你灯珠,其特征在于,所述第二出光面呈第二弧面结构,所述第二弧面结构向远离所述发光源侧面的方向凸出设置。
PCT/CN2020/125553 2020-04-02 2020-10-30 迷你灯珠、制作方法、背光源及显示设备 WO2021196593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010256069.6A CN111312068A (zh) 2020-04-02 2020-04-02 迷你灯珠、制作方法、背光源及显示设备
CN202010256069.6 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021196593A1 true WO2021196593A1 (zh) 2021-10-07

Family

ID=71162764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125553 WO2021196593A1 (zh) 2020-04-02 2020-10-30 迷你灯珠、制作方法、背光源及显示设备

Country Status (2)

Country Link
CN (1) CN111312068A (zh)
WO (1) WO2021196593A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691008A (zh) * 2023-12-12 2024-03-12 广东省旭晟半导体股份有限公司 一种免模压成型的多面发光led制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312068A (zh) * 2020-04-02 2020-06-19 深圳创维-Rgb电子有限公司 迷你灯珠、制作方法、背光源及显示设备
JP7450770B2 (ja) * 2020-10-15 2024-03-15 泉州三安半導体科技有限公司 発光装置
CN112992877B (zh) * 2021-02-05 2022-11-22 业成科技(成都)有限公司 倒装发光二极管及其制造方法与背光模组
CN114913820B (zh) * 2022-05-11 2023-01-31 福建华佳彩有限公司 一种Mini-LED分区设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561587A (zh) * 2008-04-16 2009-10-21 中国科学院半导体研究所 一种可用于直下式lcd背光源的led的透镜
JP2013218940A (ja) * 2012-04-11 2013-10-24 Sharp Corp 発光モジュール、それを備えた照明装置および表示装置
CN208705619U (zh) * 2018-08-15 2019-04-05 广州视源电子科技股份有限公司 直下式背光模组结构及显示设备
CN110137162A (zh) * 2019-04-01 2019-08-16 深圳市瑞丰光电子股份有限公司 一种可调整出光光形的led产品及其制作方法
US20200044121A1 (en) * 2018-08-03 2020-02-06 Nichia Corporation Light emitting module and method of manufacturing the same
CN111312068A (zh) * 2020-04-02 2020-06-19 深圳创维-Rgb电子有限公司 迷你灯珠、制作方法、背光源及显示设备
CN211699541U (zh) * 2020-04-02 2020-10-16 深圳创维-Rgb电子有限公司 迷你灯珠、背光源及显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168998B2 (en) * 2009-06-09 2012-05-01 Koninklijke Philips Electronics N.V. LED with remote phosphor layer and reflective submount
CN102141215B (zh) * 2010-01-28 2014-04-16 奇菱光电股份有限公司 光源装置及包含该光源装置的背光模块
CN204178089U (zh) * 2014-10-23 2015-02-25 晶科电子(广州)有限公司 一种免二次透镜的led背光源及led背光源模组
KR102425618B1 (ko) * 2015-12-04 2022-08-02 엘지디스플레이 주식회사 광원 패키지 및 그를 포함하는 백라이트 유닛
CN111552119A (zh) * 2020-06-02 2020-08-18 深圳创维-Rgb电子有限公司 一种透镜膜、光源组件、背光模组及显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561587A (zh) * 2008-04-16 2009-10-21 中国科学院半导体研究所 一种可用于直下式lcd背光源的led的透镜
JP2013218940A (ja) * 2012-04-11 2013-10-24 Sharp Corp 発光モジュール、それを備えた照明装置および表示装置
US20200044121A1 (en) * 2018-08-03 2020-02-06 Nichia Corporation Light emitting module and method of manufacturing the same
CN208705619U (zh) * 2018-08-15 2019-04-05 广州视源电子科技股份有限公司 直下式背光模组结构及显示设备
CN110137162A (zh) * 2019-04-01 2019-08-16 深圳市瑞丰光电子股份有限公司 一种可调整出光光形的led产品及其制作方法
CN111312068A (zh) * 2020-04-02 2020-06-19 深圳创维-Rgb电子有限公司 迷你灯珠、制作方法、背光源及显示设备
CN211699541U (zh) * 2020-04-02 2020-10-16 深圳创维-Rgb电子有限公司 迷你灯珠、背光源及显示设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691008A (zh) * 2023-12-12 2024-03-12 广东省旭晟半导体股份有限公司 一种免模压成型的多面发光led制作方法

Also Published As

Publication number Publication date
CN111312068A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021196593A1 (zh) 迷你灯珠、制作方法、背光源及显示设备
US9431592B2 (en) Submount with cavities and through vias for LED packaging
KR100845856B1 (ko) 발광 소자 패키지 및 그 제조방법
US7875897B2 (en) Light emitting device
US20140291716A1 (en) Light emitting device and method of manufacturing the same
KR20150042362A (ko) 발광다이오드 패키지 및 그 제조방법
US20140299898A1 (en) Light emitting device module and method of manufacturing the same
EP2530750A2 (en) Light emitting diode lens, light emitting diode module including the same and method for manufacturing the light emitting diode module with said lens
KR102227774B1 (ko) 발광다이오드 패키지 제조방법
CN106887512A (zh) 电路板和使用该电路板的半导体发光器件封装件
US20190214532A1 (en) Light-emitting-device package and production method therefor
JP5334123B2 (ja) 半導体発光装置、半導体発光装置アセンブリ、および半導体発光装置の製造方法
KR100788931B1 (ko) 전자부품 패키지
US9728691B2 (en) Light-emitting diode structure
US10121934B2 (en) Method for manufacturing semiconductor light emitting device package
KR101682631B1 (ko) 발광 소자 패키지와, 발광 소자 패키지 조합과, 발광 소자 패키지 모듈과, 백라이트 유닛 및 조명 장치
CN211699541U (zh) 迷你灯珠、背光源及显示设备
KR101504171B1 (ko) 발광 소자 패키지, 백라이트 유닛 및 조명 장치
Lee et al. Quasi-conformal phosphor dispensing on LED for white light illumination
KR20140092957A (ko) 발광 소자 및 그를 포함하는 발광소자 패키지
KR20130012661A (ko) 발광 소자, 발광 소자 패키지 및 그 제조방법
KR20140096653A (ko) 발광 소자 및 그를 포함하는 발광소자 패키지
KR20100095211A (ko) 발광소자 및 그 제조방법
TW201733158A (zh) Led晶片的封裝結構及其製造方法
KR20140115389A (ko) 발광 소자 및 그를 포함하는 발광소자 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20928346

Country of ref document: EP

Kind code of ref document: A1